WorldWideScience

Sample records for biomass growth calculations

  1. Scaling-up vaccine production: implementation aspects of a biomass growth observer and controller

    OpenAIRE

    Soons, Z.I.T.A.; IJssel, van den, J.; Pol, van der, L.A.; Straten, van, G.; Boxtel, van, A.J.B.

    2009-01-01

    Abstract This study considers two aspects of the implementation of a biomass growth observer and specific growth rate controller in scale-up from small- to pilot-scale bioreactors towards a feasible bulk production process for whole-cell vaccine against whooping cough. The first is the calculation of the oxygen uptake rate, the starting point for online monitoring and control of biomass growth, taking into account the dynamics in the gas-phase. Mixing effects and delays are caused by amongst ...

  2. Scaling-up vaccine production: implementation aspects of a biomass growth observer and controller

    NARCIS (Netherlands)

    Soons, Z.I.T.A.; IJssel, van den J.; Pol, van der L.A.; Straten, van G.; Boxtel, van A.J.B.

    2009-01-01

    Abstract This study considers two aspects of the implementation of a biomass growth observer and specific growth rate controller in scale-up from small- to pilot-scale bioreactors towards a feasible bulk production process for whole-cell vaccine against whooping cough. The first is the calculation

  3. Conditioning biomass for microbial growth

    Science.gov (United States)

    Bodie, Elizabeth A; England, George

    2015-03-31

    The present invention relates to methods for improving the yield of microbial processes that use lignocellulose biomass as a nutrient source. The methods comprise conditioning a composition comprising lignocellulose biomass with an enzyme composition that comprises a phenol oxidizing enzyme. The conditioned composition can support a higher rate of growth of microorganisms in a process. In one embodiment, a laccase composition is used to condition lignocellulose biomass derived from non-woody plants, such as corn and sugar cane. The invention also encompasses methods for culturing microorganisms that are sensitive to inhibitory compounds in lignocellulose biomass. The invention further provides methods of making a product by culturing the production microorganisms in conditioned lignocellulose biomass.

  4. Scaling-up vaccine production: implementation aspects of a biomass growth observer and controller.

    Science.gov (United States)

    Soons, Zita I T A; van den IJssel, Jan; van der Pol, Leo A; van Straten, Gerrit; van Boxtel, Anton J B

    2009-04-01

    This study considers two aspects of the implementation of a biomass growth observer and specific growth rate controller in scale-up from small- to pilot-scale bioreactors towards a feasible bulk production process for whole-cell vaccine against whooping cough. The first is the calculation of the oxygen uptake rate, the starting point for online monitoring and control of biomass growth, taking into account the dynamics in the gas-phase. Mixing effects and delays are caused by amongst others the headspace and tubing to the analyzer. These gas phase dynamics are modelled using knowledge of the system in order to reconstruct oxygen consumption. The second aspect is to evaluate performance of the monitoring and control system with the required modifications of the oxygen consumption calculation on pilot-scale. In pilot-scale fed-batch cultivation good monitoring and control performance is obtained enabling a doubled concentration of bulk vaccine compared to standard batch production.

  5. Closed-loop system for growth of aquatic biomass and gasification thereof

    Science.gov (United States)

    Oyler, James R.

    2017-09-19

    Processes, systems, and methods for producing combustible gas from wet biomass are provided. In one aspect, for example, a process for generating a combustible gas from a wet biomass in a closed system is provided. Such a process may include growing a wet biomass in a growth chamber, moving at least a portion of the wet biomass to a reactor, heating the portion of the wet biomass under high pressure in the reactor to gasify the wet biomass into a total gas component, separating the gasified component into a liquid component, a non-combustible gas component, and a combustible gas component, and introducing the liquid component and non-combustible gas component containing carbon dioxide into the growth chamber to stimulate new wet biomass growth.

  6. Biomass markets. Growth strategy and challenges for French actors

    International Nuclear Information System (INIS)

    2015-01-01

    This study comprises three reports. The first one is an executive summary which focuses on the main aspects of the evolution of the activity in the biomass sector, and highlights factors of change and their strategic consequences. The second one proposes an overview of the situation of biomass French markets, analyses growth strategies adopted by actors of the biomass sector (development of new production capacities, international growth, development of strategies based on several energies, diversification of prospects, innovation and improvement of installation efficiency), and discusses the main strategic challenges on the medium term. The third report proposes a presentation of the context of French biomass markets (political, regulatory and energetic framework, energetic assessment and assessment of the waste-based sector, economic context, housing stock, and other contextual factors), a presentation of the biomass French market (data for 2005-2013, dynamics of three specific segments: solid biomass, renewable urban wastes, and biogas), and a description of the competitive landscape (economic structure, actors) and of the 15 main actors

  7. Explaining biomass growth of tropical canopy trees: the importance of sapwood.

    Science.gov (United States)

    van der Sande, Masha T; Zuidema, Pieter A; Sterck, Frank

    2015-04-01

    Tropical forests are important in worldwide carbon (C) storage and sequestration. C sequestration of these forests may especially be determined by the growth of canopy trees. However, the factors driving variation in growth among such large individuals remain largely unclear. We evaluate how crown traits [total leaf area, specific leaf area and leaf nitrogen (N) concentration] and stem traits [sapwood area (SA) and sapwood N concentration] measured for individual trees affect absolute biomass growth for 43 tropical canopy trees belonging to four species, in a moist forest in Bolivia. Biomass growth varied strongly among trees, between 17.3 and 367.3 kg year(-1), with an average of 105.4 kg year(-1). We found that variation in biomass growth was chiefly explained by a positive effect of SA, and not by tree size or other traits examined. SA itself was positively associated with sapwood growth, sapwood lifespan and basal area. We speculate that SA positively affects the growth of individual trees mainly by increasing water storage, thus securing water supply to the crown. These positive roles of sapwood on growth apparently offset the increased respiration costs incurred by more sapwood. This is one of the first individual-based studies to show that variation in sapwood traits-and not crown traits-explains variation in growth among tropical canopy trees. Accurate predictions of C dynamics in tropical forests require similar studies on biomass growth of individual trees as well as studies evaluating the dual effect of sapwood (water provision vs. respiratory costs) on tropical tree growth.

  8. A tree biomass and carbon estimation system

    Science.gov (United States)

    Emily B. Schultz; Thomas G. Matney; Donald L. Grebner

    2013-01-01

    Appropriate forest management decisions for the developing woody biofuel and carbon credit markets require inventory and growth-and-yield systems reporting component tree dry weight biomass estimates. We have developed an integrated growth-and-yield and biomass/carbon calculator. The objective was to provide Mississippi’s State inventory system with bioenergy economic...

  9. Systems Level Regulation of Rhythmic Growth Rate and Biomass Accumulation in Grasses

    Energy Technology Data Exchange (ETDEWEB)

    Kay, Steve A. [Univ. of Southern California, Los Angeles, CA (United States)

    2017-10-20

    Objectives: Several breakthroughs have been recently made in our understanding of plant growth and biomass accumulation. It was found that plant growth is rhythmically controlled throughout the day by the circadian clock through a complex interplay of light and phytohormone signaling pathways. While plants such as the C4 energy crop sorghum (Sorghum bicolor (L.) Moench) and possibly the C3 grass Brachypodium distachyon also exhibit daily rhythms in growth rate, the molecular details of its regulation remain to be explored. A better understanding of diurnally regulated growth behavior in grasses may lead to species-specific mechanisms highly relevant to future strategies to optimize energy crop biomass yield. Here we propose to devise a systems approach to identify, in parallel, regulatory hubs associated with rhythmic growth in C3 and C4 plants. We propose to use rhythmicity in daily growth patterns to drive the discovery of regulatory network modules controlling biomass accumulation. Description: The project is divided in three main parts: 1) Performing time-lapse imaging and growth measurement in B. distachyon and S. bicolor to determine growth rate dynamic during the day/night cycle. Identifying growth-associated genes whose expression patterns follow the observed growth dynamics using deep sequencing technology, 2) identifying regulators of these genes by screening for DNA-binding proteins interacting with the growth-associated gene promoters identified in Aim 1. Screens will be performed using a validated yeast-one hybrid strategy paired with a specifically designed B. distachyon and S. bicolor transcription factor libraries (1000 clones each), and 3) Selecting 50 potential growth regulators from the screen for downstream characterization. The selection will be made by using a sytems biology approach by calculating the connectivity between growth rate, rhythmic gene expression profiles and TF expression profile and determine which TF is likely part of a hub

  10. Systems Level Regulation of Rhythmic Growth Rate and Biomass Accumulation in Grasses

    Energy Technology Data Exchange (ETDEWEB)

    Kay, Steve A. [Scripps Research Inst., La Jolla, CA (United States); Hazen, Samuel [Scripps Research Inst., San Diego, CA (United States); Mullet, John [Texas A & M Univ., College Station, TX (United States)

    2017-11-22

    Critical to the development of renewable energy sources from biofuels is the improvement of biomass from energy feedstocks, such as sorghum and maize. The specific goals of this project include 1) characterize the growth and gene expression patterns under diurnal and circadian conditions, 2) select transcription factors associated with growth and build a cis-regulatory network in yeast, and 3) perturb these transcription factors in planta using transgenic Brachypodium and sorghum, and characterize the phenotypic outcomes as they relate to biomass accumulation. A better understanding of diurnally regulated growth behavior in grasses may lead to species-specific mechanisms highly relevant to future strategies to optimize energy crop biomass yield.

  11. Effects of precipitation changes on switchgrass photosynthesis, growth, and biomass: A mesocosm experiment.

    Science.gov (United States)

    Hui, Dafeng; Yu, Chih-Li; Deng, Qi; Dzantor, E Kudjo; Zhou, Suping; Dennis, Sam; Sauve, Roger; Johnson, Terrance L; Fay, Philip A; Shen, Weijun; Luo, Yiqi

    2018-01-01

    Climate changes, including chronic changes in precipitation amounts, will influence plant physiology and growth. However, such precipitation effects on switchgrass, a major bioenergy crop, have not been well investigated. We conducted a two-year precipitation simulation experiment using large pots (95 L) in an environmentally controlled greenhouse in Nashville, TN. Five precipitation treatments (ambient precipitation, and -50%, -33%, +33%, and +50% of ambient) were applied in a randomized complete block design with lowland "Alamo" switchgrass plants one year after they were established from tillers. The growing season progression of leaf physiology, tiller number, height, and aboveground biomass were determined each growing season. Precipitation treatments significantly affected leaf physiology, growth, and aboveground biomass. The photosynthetic rates in the wet (+50% and +33%) treatments were significantly enhanced by 15.9% and 8.1%, respectively, than the ambient treatment. Both leaf biomass and plant height were largely increased, resulting in dramatically increases in aboveground biomass by 56.5% and 49.6% in the +50% and +33% treatments, respectively. Compared to the ambient treatment, the drought (-33% and -50%) treatments did not influence leaf physiology, but the -50% treatment significantly reduced leaf biomass by 37.8%, plant height by 16.3%, and aboveground biomass by 38.9%. This study demonstrated that while switchgrass in general is a drought tolerant grass, severe drought significantly reduces Alamo's growth and biomass, and that high precipitation stimulates its photosynthesis and growth.

  12. Low Tree-Growth Elasticity of Forest Biomass Indicated by an Individual-Based Model

    Directory of Open Access Journals (Sweden)

    Robbie A. Hember

    2018-01-01

    Full Text Available Environmental conditions and silviculture fundamentally alter the metabolism of individual trees and, therefore, need to be studied at that scale. However, changes in forest biomass density (Mg C ha−1 may be decoupled from changes in growth (kg C year−1 when the latter also accelerates the life cycle of trees and strains access to light, nutrients, and water. In this study, we refer to an individual-based model of forest biomass dynamics to constrain the magnitude of system feedbacks associated with ontogeny and competition and estimate the scaling relationship between changes in tree growth and forest biomass density. The model was driven by fitted equations of annual aboveground biomass growth (Gag, probability of recruitment (Pr, and probability of mortality (Pm parameterized against field observations of black spruce (Picea mariana (Mill. BSP, interior Douglas-fir (Pseudotsuga menziesii var. glauca (Beissn. Franco, and western hemlock (Tsuga heterophylla (Raf. Sarg.. A hypothetical positive step-change in mean tree growth was imposed half way through the simulations and landscape-scale responses were then evaluated by comparing pre- and post-stimulus periods. Imposing a 100% increase in tree growth above calibrated predictions (i.e., contemporary rates only translated into 36% to 41% increases in forest biomass density. This corresponded with a tree-growth elasticity of forest biomass (εG,SB ranging from 0.33 to 0.55. The inelastic nature of stand biomass density was attributed to the dependence of mortality on intensity of competition and tree size, which decreased stand density by 353 to 495 trees ha−1, and decreased biomass residence time by 10 to 23 years. Values of εG,SB depended on the magnitude of the stimulus. For example, a retrospective scenario in which tree growth increased from 50% below contemporary rates up to contemporary rates indicated values of εG,SB ranging from 0.66 to 0.75. We conclude that: (1 effects of

  13. Modeling mangrove biomass using remote sensing based age and growth estimates

    Science.gov (United States)

    Lagomasino, D.; Fatoyinbo, T. E.; Feliciano, E. A.; Lee, S. K.; Trettin, C.; Mangora, M.; Rahman, M.

    2016-12-01

    Mangroves are highly regarded coastal forests because of their ecosystem services and high carbon storage potential. In addition, these forests can develop rapidly in locations where congenial environmental conditions and sediment supply are available. Monitoring the growth and age of developing mangrove forests is crucial for sustainable management and estimating carbon stocks. Combining imagery from radar and optical satellites (e.g., TanDEM-X and Landsat), we can estimate young mangrove growth and age at regional and continental scales. We used TanDEM-X radar interferometry for modeling canopy height in 2013 and Landsat to measure land cover change from 1990 to 2013. Annual NDVI composites were determined for each calendar year between 1990 and 2013. New land areas gained from the transition of water to vegetation were determined by the differences in annual NDVI composites and the reference year 2013. The year of the greatest NDVI difference that met the threshold criteria was used as the initial tree height (0 m). Annual canopy height growth rates were estimated by the duration between land generation times and 2013 canopy height models derived from TanDEM-X and very-high resolution optical data. In this presentation, we compare growth rates and biomass accumulation in mangrove forests at four river deltas; the Zambezi (Mozambique), Rufiji (Tanzania), Ganges (Bangladesh), and Mekong (Vietnam). The spatial patterns of growth rates coincided with characteristic successional paradigms and stream morphology, where the maximum growth rates typically occurred along prograding creek banks. Initial comparisons between height-only and growth-age biomass indicate that the latter tend to overestimate biomass for younger forest stands of similar height. Both the vertical (e.g., canopy height) and horizontal (e.g., expansion) growth rates measured from remote sensing can garner important information regarding mangrove succession and primary productivity. Continued research

  14. Accumulation of biomass and mineral elements with calendar time by corn: application of the expanded growth model.

    Directory of Open Access Journals (Sweden)

    Allen R Overman

    Full Text Available The expanded growth model is developed to describe accumulation of plant biomass (Mg ha(-1 and mineral elements (kg ha(-1 in with calendar time (wk. Accumulation of plant biomass with calendar time occurs as a result of photosynthesis for green land-based plants. A corresponding accumulation of mineral elements such as nitrogen, phosphorus, and potassium occurs from the soil through plant roots. In this analysis, the expanded growth model is tested against high quality, published data on corn (Zea mays L. growth. Data from a field study in South Carolina was used to evaluate the application of the model, where the planting time of April 2 in the field study maximized the capture of solar energy for biomass production. The growth model predicts a simple linear relationship between biomass yield and the growth quantifier, which is confirmed with the data. The growth quantifier incorporates the unit processes of distribution of solar energy which drives biomass accumulation by photosynthesis, partitioning of biomass between light-gathering and structural components of the plants, and an aging function. A hyperbolic relationship between plant nutrient uptake and biomass yield is assumed, and is confirmed for the mineral elements nitrogen (N, phosphorus (P, and potassium (K. It is concluded that the rate limiting process in the system is biomass accumulation by photosynthesis and that nutrient accumulation occurs in virtual equilibrium with biomass accumulation.

  15. Accumulation of Biomass and Mineral Elements with Calendar Time by Corn: Application of the Expanded Growth Model

    Science.gov (United States)

    Overman, Allen R.; Scholtz, Richard V.

    2011-01-01

    The expanded growth model is developed to describe accumulation of plant biomass (Mg ha−1) and mineral elements (kg ha−1) in with calendar time (wk). Accumulation of plant biomass with calendar time occurs as a result of photosynthesis for green land-based plants. A corresponding accumulation of mineral elements such as nitrogen, phosphorus, and potassium occurs from the soil through plant roots. In this analysis, the expanded growth model is tested against high quality, published data on corn (Zea mays L.) growth. Data from a field study in South Carolina was used to evaluate the application of the model, where the planting time of April 2 in the field study maximized the capture of solar energy for biomass production. The growth model predicts a simple linear relationship between biomass yield and the growth quantifier, which is confirmed with the data. The growth quantifier incorporates the unit processes of distribution of solar energy which drives biomass accumulation by photosynthesis, partitioning of biomass between light-gathering and structural components of the plants, and an aging function. A hyperbolic relationship between plant nutrient uptake and biomass yield is assumed, and is confirmed for the mineral elements nitrogen (N), phosphorus (P), and potassium (K). It is concluded that the rate limiting process in the system is biomass accumulation by photosynthesis and that nutrient accumulation occurs in virtual equilibrium with biomass accumulation. PMID:22194842

  16. Assessing biomass accumulation in second growth forests of Puerto Rico using airborne lidar

    Science.gov (United States)

    Martinuzzi, S.; Cook, B.; Corp, L. A.; Morton, D. C.; Helmer, E.; Keller, M.

    2017-12-01

    Degraded and second growth tropical forests provide important ecosystem services, such as carbon sequestration and soil stabilization. Lidar data measure the three-dimensional structure of forest canopies and are commonly used to quantify aboveground biomass in temperate forest landscapes. However, the ability of lidar data to quantify second growth forest biomass in complex, tropical landscapes is less understood. Our goal was to evaluate the use of airborne lidar data to quantify aboveground biomass in a complex tropical landscape, the Caribbean island of Puerto Rico. Puerto Rico provides an ideal place for studying biomass accumulation because of the abundance of second growth forests in different stages of recovery, and the high ecological heterogeneity. Puerto Rico was almost entirely deforested for agriculture until the 1930s. Thereafter, agricultural abandonment resulted in a mosaic of second growth forests that have recovered naturally under different types of climate, land use, topography, and soil fertility. We integrated forest plot data from the US Forest Service, Forest Inventory and Analysis (FIA) Program with recent lidar data from NASA Goddard's Lidar, Hyperspectral, and Thermal (G-LiHT) airborne imager to quantify forest biomass across the island's landscape. The G-LiHT data consisted on targeted acquisitions over the FIA plots and other forested areas representing the environmental heterogeneity of the island. To fully assess the potential of the lidar data, we compared the ability of lidar-derived canopy metrics to quantify biomass alone, and in combination with intensity and topographic metrics. The results presented here are a key step for improving our understanding of the patterns and drivers of biomass accumulation in tropical forests.

  17. Looking for age-related growth decline in natural forests: unexpected biomass patterns from tree rings and simulated mortality

    Science.gov (United States)

    Foster, Jane R.; D'Amato, Anthony W.; Bradford, John B.

    2014-01-01

    Forest biomass growth is almost universally assumed to peak early in stand development, near canopy closure, after which it will plateau or decline. The chronosequence and plot remeasurement approaches used to establish the decline pattern suffer from limitations and coarse temporal detail. We combined annual tree ring measurements and mortality models to address two questions: first, how do assumptions about tree growth and mortality influence reconstructions of biomass growth? Second, under what circumstances does biomass production follow the model that peaks early, then declines? We integrated three stochastic mortality models with a census tree-ring data set from eight temperate forest types to reconstruct stand-level biomass increments (in Minnesota, USA). We compared growth patterns among mortality models, forest types and stands. Timing of peak biomass growth varied significantly among mortality models, peaking 20–30 years earlier when mortality was random with respect to tree growth and size, than when mortality favored slow-growing individuals. Random or u-shaped mortality (highest in small or large trees) produced peak growth 25–30 % higher than the surviving tree sample alone. Growth trends for even-aged, monospecific Pinus banksiana or Acer saccharum forests were similar to the early peak and decline expectation. However, we observed continually increasing biomass growth in older, low-productivity forests of Quercus rubra, Fraxinus nigra, and Thuja occidentalis. Tree-ring reconstructions estimated annual changes in live biomass growth and identified more diverse development patterns than previous methods. These detailed, long-term patterns of biomass development are crucial for detecting recent growth responses to global change and modeling future forest dynamics.

  18. Seasonal response of biomass growth and allocation of a boreal bioenergy crop (Phalaris arundinacea L.) to climate change

    Energy Technology Data Exchange (ETDEWEB)

    Chang Zhang

    2013-06-01

    The aim of this work was to analyse how the seasonal biomass growth and allocation in a boreal bioenergy crop (Phalaris arundinacea L., hereafter RCG) were affected by elevated temperature and CO{sub 2} under different levels of groundwater. For this purpose, plants in peat monoliths representing young and old cultivations were grown in auto-controlled environmental chambers over two growing seasons (April-September, 2009 and 2010) under elevated temperature (ambient + 3.5 deg C) and CO{sub 2} (700 {mu}mol mol{sup -1}). (CON: ambient conditions, EC: elevated CO{sub 2}, ET: elevated temperature, ETC: elevated temperature and CO{sub 2}). Three levels of groundwater, ranging from high (HW, 0 cm below the soil surface), to normal (NW, 20 cm below the soil surface) and low (LW, 40 cm below the soil surface), were used. Compared to growth under CON, ET enhanced leaf development and photosynthesis in the RCG plant. Consequently, ET enhanced biomass growth during early growing periods. It also reduced photosynthesis and caused earlier leaf senescence during later growing periods. ET therefore reduced total biomass growth across the entire growing season. EC significantly increased biomass growth throughout the growing period primarily because of increased leaf area and photosynthesis. LW decreased the growth of RCG, mainly because of lower leaf area and photosynthesis. Furthermore, LW accelerated the cessation of growth, thus making the growing season shorter compared with the effects of higher groundwater levels. The LW- induced reductions in biomass growth were exacerbated by ET and partially mitigated by EC. The ETC slightly increased final plant growth. The age of cultivation did not affect the biomass growth among the three major organs (leaf, stem and root) and thus did not affect total biomass growth. Biomass growth was mainly allocated to leaves (LMF) and stems (SMF) in the early growing season, to stems in the middle of the growing season and to roots (RMF) later

  19. The limited contribution of large trees to annual biomass production in an old-growth tropical forest.

    Science.gov (United States)

    Ligot, Gauthier; Gourlet-Fleury, Sylvie; Ouédraogo, Dakis-Yaoba; Morin, Xavier; Bauwens, Sébastien; Baya, Fidele; Brostaux, Yves; Doucet, Jean-Louis; Fayolle, Adeline

    2018-04-16

    Although the importance of large trees regarding biodiversity and carbon stock in old-growth forests is undeniable, their annual contribution to biomass production and carbon uptake remains poorly studied at the stand level. To clarify the role of large trees in biomass production, we used data of tree growth, mortality, and recruitment monitored during 20 yr in 10 4-ha plots in a species-rich tropical forest (Central African Republic). Using a random block design, three different silvicultural treatments, control, logged, and logged + thinned, were applied in the 10 plots. Annual biomass gains and losses were analyzed in relation to the relative biomass abundance of large trees and by tree size classes using a spatial bootstrap procedure. Although large trees had high individual growth rates and constituted a substantial amount of biomass, stand-level biomass production decreased with the abundance of large trees in all treatments and plots. The contribution of large trees to annual stand-level biomass production appeared limited in comparison to that of small trees. This pattern did not only originate from differences in abundance of small vs. large trees or differences in initial biomass stocks among tree size classes, but also from a reduced relative growth rate of large trees and a relatively constant mortality rate among tree size classes. In a context in which large trees are increasingly gaining attention as being a valuable and a key structural characteristic of natural forests, the present study brought key insights to better gauge the relatively limited role of large trees in annual stand-level biomass production. In terms of carbon uptake, these results suggest, as already demonstrated, a low net carbon uptake of old-growth forests in comparison to that of logged forests. Tropical forests that reach a successional stage with relatively high density of large trees progressively cease to be carbon sinks as large trees contribute sparsely or even

  20. Idaho forest growth response to post-thinning energy biomass removal and complementary soil amendments

    Science.gov (United States)

    Lauren A. Sherman; Deborah S. Page-Dumroese; Mark D. Coleman

    2018-01-01

    Utilization of woody biomass for biofuel can help meet the need for renewable energy production. However, there is a concern biomass removal will deplete soil nutrients, having short- and long-term effects on tree growth. This study aimed to develop short-term indicators to assess the impacts of the first three years after small-diameter woody biomass removal on forest...

  1. Growth promoting characteristics of rhizobacteria and AM Fungi for biomass amelioration of Zea mays

    Directory of Open Access Journals (Sweden)

    Kumar Manoj

    2015-01-01

    Full Text Available Plant growth promoting rhizobacteria (PGPR and mycorrhiza were evaluated on the growth (biomass and yield of Zea mays. In the present study, selective rhizospheric PGPR (Azotobacter chroococcum, Pseudomonas aeruginosa, Azospirillum brasilense and Streptomyces sp. and a combination of six strains of arbuscular mycorrhizal fungi (AMF (Acaulospora morrowae, Gigaspora margarita, Glomus constrictum, Glomus mossae, Glomus aggregatum and Scutellospora calospora were isolated and identified with standard methods and 16S rRNA sequence analysis. PGPR and AMF were checked for their growth-promoting behavior under specific treatment conditions. The 30-48-day-old treated plants in all combinations showed a significantly higher mass value. The average dry weight from the shoot was in a range from 41-52% as compared to the control. This increase also translated into a higher mass value of the roots. Overall, an 82% growth rate was observed in terms of height as the consequence of biomass production, specifically in the case of AMF + rhizobacteria combination. We report an efficient, sustainable and cost-effective biofertilizer for enhanced biomass of Z. mays, one of the staple food crops worldwide.

  2. The Impact of Moss Species and Biomass on the Growth of Pinus sylvestris Tree Seedlings at Different Precipitation Frequencies

    Directory of Open Access Journals (Sweden)

    Babs M. Stuiver

    2014-08-01

    Full Text Available Boreal forests are characterized by an extensive moss layer, which may have both competitive and facilitative effects on forest regeneration. We conducted a greenhouse experiment to investigate how variation in moss species and biomass, in combination with precipitation frequency, affect Pinus sylvestris seedling growth. We found that moss species differed in their effects on seedling growth, and moss biomass had negative effects on seedlings, primarily when it reached maximal levels. When moss biomass was maximal, seedling biomass decreased, whereas height and above- relative to below-ground mass increased, due to competition for light. The effect that moss biomass had on seedling performance differed among the moss species. Hylocomium splendens and Polytrichum commune reduced seedling growth the most, likely because of their taller growth form. Seedlings were not adversely affected by Sphagnum girgensohnii and Pleurozium schreberi, possibly because they were not tall enough to compete for light and improved soil resource availability. Reduced precipitation frequency decreased the growth of all moss species, except P. commune, while it impaired the growth of seedlings only when they were grown with P. commune. Our findings suggest that changes in moss species and biomass, which can be altered by disturbance or climate change, can influence forest regeneration.

  3. Survival, growth, wood basic density and wood biomass of seven ...

    African Journals Online (AJOL)

    A performance comparison of seven-year-old individuals of 13 Casuarina species/provenances in terms of survival, growth (diameter, height and volume), wood basic density and wood biomass was undertaken at Kongowe, Kibaha, Tanzania. The trial was laid out using a randomised complete block design with four ...

  4. Studies on mould growth and biomass production using waste banana peel.

    Science.gov (United States)

    Essien, J P; Akpan, E J; Essien, E P

    2005-09-01

    Hyphomycetous (Aspergillus fumigatus) and Phycomycetous (Mucor hiemalis) moulds were cultivated in vitro at room temperature (28 + 20 degrees C) to examined their growth and biomass production on waste banana peel agar (BPA) and broth (BPB) using commercial malt extract agar (MEA) and broth (MEB) as control. The moulds grew comparatively well on banana peel substrates. No significant difference (p > 0.05) in radial growth rates was observed between moulds cultivated on PBA and MEA, although growth rates on MEA were slightly better. Slight variations in sizes of asexual spores and reproductive hyphae were also observed between moulds grown on MEA and BPA. Smaller conidia and sporangiospores, and shorter aerial hyphae (conidiophores and sporangiophores) were noticed in moulds grown on BPA than on MEA. The biomass weight of the test moulds obtained after one month of incubation with BPB were only about 1.8 mg and 1.4 mg less than values recorded for A. fumigatus and M. hiemalis respectively, grown on MEB. The impressive performance of the moulds on banana peel substrate may be attributed to the rich nutrient (particularly the crude protein 7.8% and crude fat 11.6% contents) composition of banana peels. The value of this agricultural waste can therefore be increased by its use not only in the manufacture of mycological medium but also in the production of valuable microfungal biomass which is rich in protein and fatty acids.

  5. Extraction of solubles from plant biomass for use as microbial growth stimulant and methods related thereto

    Energy Technology Data Exchange (ETDEWEB)

    Lau, Ming Woei

    2015-12-08

    A method for producing a microbial growth stimulant (MGS) from a plant biomass is described. In one embodiment, an ammonium hydroxide solution is used to extract a solution of proteins and ammonia from the biomass. Some of the proteins and ammonia are separated from the extracted solution to provide the MGS solution. The removed ammonia can be recycled and the proteins are useful as animal feeds. In one embodiment, the method comprises extracting solubles from pretreated lignocellulosic biomass with a cellulase enzyme-producing growth medium (such T. reesei) in the presence of water and an aqueous extract.

  6. Promotion of Crystal Growth on Biomass-based Carbon using Phosphoric Acid Treatments

    Directory of Open Access Journals (Sweden)

    Liwei Yu

    2015-02-01

    Full Text Available The effect of phosphoric acid treatments on graphitic microcrystal growth of biomass-based carbons was investigated using X-ray diffraction, infrared spectroscopy, and Raman spectroscopy. Although biomass-based carbons are believed to be hard to graphitize even after heat treatments well beyond 2000 °C, we found that graphitic microcrystals of biomass-based carbons were significantly promoted by phosphoric acid treatments above 800 °C. Moreover, twisted spindle-like whiskers were formed on the surface of the carbons. This suggests that phosphorus-containing groups turn graphitic microcrystalline domains into graphite during phosphoric acid treatments. In addition, the porous texture of the phosphoric acid-treated carbon has the advantage of micropore development.

  7. Explaining biomass growth of tropical canopy trees: the importance of sapwood

    OpenAIRE

    Sande, van der, M.T.; Zuidema, P.A.; Sterck, F.J.

    2015-01-01

    Tropical forests are important in worldwide carbon (C) storage and sequestration. C sequestration of these forests may especially be determined by the growth of canopy trees. However, the factors driving variation in growth among such large individuals remain largely unclear. We evaluate how crown traits [total leaf area, specific leaf area and leaf nitrogen (N) concentration] and stem traits [sapwood area (SA) and sapwood N concentration] measured for individual trees affect absolute biomass...

  8. TREATMENTS OF PLASMA CORONA RADIATION ON SEAWEED Gracilaria Verrucosa (HUDSON PAPENFUSS: Efforts to increase growth and biomass

    Directory of Open Access Journals (Sweden)

    Filemon Jalu N Putra

    2014-12-01

    Full Text Available Gracilaria verrucosa (Hudson Papenfuss has great potential to be farmed in the water resources in Indonesia. As natural resource, the weed has a major contribution in the field of industry both for human food and health. Efforts have been done intensively to increase the production capacity to meet the market demand especially gelatin, both national and international market. One of them is the application of plasma corona irradiation treatments on the weed to improve developmental pathways. The concept of plasma irradiation performed at atmospheric conditions may impact on nitrogen intrusion pathway that is important element in the growth of the weed. The aims of this study are to assess the potential impact of plasma irradiation in improving the growth of G. verrucosa and thus increase their biomass production. The treatments were done using five different duration of plasma irradiation, which were 2, 4, 6, 8, and 10 minutes at a 0,5mA stable source of voltage and 8kV of electrical current. Observations of growth rate include thallus length and biomass of G. verrucosa , that was observed every week for 28 days. The result showed that the growth of weed exhibited better than those without radiation. The best growth was reached in the group of treatment of 8 minutes irradiation, exhibited 65,91g of biomass and 9.5515% growth rate and length of thallus reached 22,33 cm and daily growth rate of 2.9759%. The lowest growth of the weed occurred in the treatment of 10 minutes irradiation, which was 44,82 g biomass, 8.123% growth rate, 17,13 cm thallus length with a daily growth rate of 1.9942%

  9. Optimal control of nutrition restricted dynamics model of Microalgae biomass growth model

    Science.gov (United States)

    Ratianingsih, R.; Azim; Nacong, N.; Resnawati; Mardlijah; Widodo, B.

    2017-12-01

    The biomass of the microalgae is very potential to be proposed as an alternative renewable energy resources because it could be extracted into lipid. Afterward, the lipid could be processed to get the biodiesel or bioethanol. The extraction of the biomass on lipid synthesis process is very important to be studied because the process just gives some amount of lipid. A mathematical model of restricted microalgae biomass growth just gives 1/3 proportion of lipid with respect to the biomass in the synthesis process. An optimal control is designed to raise the ratio between the number of lipid formation and the microalgae biomass to be used in synthesis process. The minimum/ Pontryagin maximum principle is used to get the optimal lipid production. The simulation shows that the optimal lipid formation could be reach by simultaneously controlling the carbon dioxide, in the respiration and photosynthesis the process, and intake nutrition rates of liquid waste and urea substrate. The production of controlled microalgae lipid could be increase 6.5 times comparing to the uncontrolled one.

  10. Influence of static magnetic fields on S. cerevisae biomass growth

    Directory of Open Access Journals (Sweden)

    João B. Muniz

    2007-05-01

    Full Text Available Biomass growth of Saccharomyces cerevisiae DAUFPE-1012 was studied in eight batch fermentations exposed to steady magnetic fields (SMF running at 23ºC (± 1ºC, for 24 h in a double cylindrical tube reactor with synchronic agitation. For every batch, one tube was exposed to 220mT flow intensity SMF, produced by NdFeB rod magnets attached diametrically opposed (N to S magnets on one tube. In the other tube, without magnets, the fermentation occurred in the same conditions. The biomass growth in culture (yeast extract + glucose 2% was monitored by spectrometry to obtain the absorbance and later, the corresponding cell dry weight. The culture glucose concentration was monitored every two hours so as the pH, which was maintained between 4 and 5. As a result, the biomass (g/L increment was 2.5 times greater in magnetized cultures (n=8 as compared with SMF non-exposed cultures (n=8. The differential (SMF-control biomass growth rate (135% was slightly higher than the glucose consumption rate (130 % leading to increased biomass production of the magnetized cells.O crescimento da biomassa da Saccharomyces cerevisiae DAUFPE-1012 foi estudado em oito bateladas de fermentação, cada uma exposta aos campos magnéticos contínuos (CMC, à 23ºC (± 1ºC, durante um período de 24 horas em um reator duplo com agitação sincrônica. Em cada batelada,um tubo foi exposto ao CMC, com 220mT de intensidade de fluxo, produzidos por imãs de NdFeB fixados diametralmente opostos (N para S em um tubo do reator de fermentação. Em outro tubo, sem imãs, a fermentação ocorreu nas mesmas condições. O crescimento da biomassa nas culturas (extrato de fermento + glicose 2% foi monitorado através de espectrometria e correlacionado ao peso seco de levedura. A concentração de glicose nas culturas foi monitorada a cada duas horas e o pH foi mantido entre 4 e 5. Como resultado, a biomassa (g/L aumentou 2,5 vezes nas culturas magnetizadas (n=8 quando comparadas com as

  11. The hemicellulolytic enzyme arsenal of Thermobacillus xylanilyticus depends on the composition of biomass used for growth

    Directory of Open Access Journals (Sweden)

    Rakotoarivonina Harivony

    2012-12-01

    Full Text Available Abstract Background Thermobacillus xylanilyticus is a thermophilic and highly xylanolytic bacterium. It produces robust and stable enzymes, including glycoside hydrolases and esterases, which are of special interest for the development of integrated biorefineries. To investigate the strategies used by T. xylanilyticus to fractionate plant cell walls, two agricultural by-products, wheat bran and straw (which differ in their chemical composition and tissue organization, were used in this study and compared with glucose and xylans. The ability of T. xylanilyticus to grow on these substrates was studied. When the bacteria used lignocellulosic biomass, the production of enzymes was evaluated and correlated with the initial composition of the biomass, as well as with the evolution of any residues during growth. Results Our results showed that T. xylanilyticus is not only able to use glucose and xylans as primary carbon sources but can also use wheat bran and straw. The chemical compositions of both lignocellulosic substrates were modified by T. xylanilyticus after growth. The bacteria were able to consume 49% and 20% of the total carbohydrates in bran and straw, respectively, after 24 h of growth. The phenolic and acetyl ester contents of these substrates were also altered. Bacterial growth on both lignocellulosic biomasses induced hemicellulolytic enzyme production, and xylanase was the primary enzyme secreted. Debranching activities were differentially produced, as esterase activities were more important to bacterial cultures grown on wheat straw; arabinofuranosidase production was significantly higher in bacterial cultures grown on wheat bran. Conclusion This study provides insight into the ability of T. xylanilyticus to grow on abundant agricultural by-products, which are inexpensive carbon sources for enzyme production. The composition of the biomass upon which the bacteria grew influenced their growth, and differences in the biomass provided

  12. Method for calculating the variance and prediction intervals for biomass estimates obtained from allometric equations

    CSIR Research Space (South Africa)

    Kirton, A

    2010-08-01

    Full Text Available for calculating the variance and prediction intervals for biomass estimates obtained from allometric equations A KIRTON B SCHOLES S ARCHIBALD CSIR Ecosystem Processes and Dynamics, Natural Resources and the Environment P.O. BOX 395, Pretoria, 0001, South... intervals (confidence intervals for predicted values) for allometric estimates can be obtained using an example of estimating tree biomass from stem diameter. It explains how to deal with relationships which are in the power function form - a common form...

  13. EFFECTS OF CARBON DIOXIDE AND OZONE ON GROWTH AND BIOMASS ALLOCATION IN PINUS PONDEROSA

    Science.gov (United States)

    The future productivity of forests will be affected by combinations of elevated atmospheric CO2 and O3. Because productivity of forests will, in part, be determined by growth of young trees, we evaluated shoot growth and biomass responses of Pinus ponderosa seedlings exposed to ...

  14. Exploring Bioeconomy Growth through the Public Release of the Biomass Scenario Model

    Energy Technology Data Exchange (ETDEWEB)

    Newes, Emily K [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Biddy, Mary J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bush, Brian W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Inman, Daniel J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Vimmerstedt, Laura J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Peterson, Steve [Lexidyne, LLC

    2017-08-02

    The Biomass Scenario Model (BSM) is an important tool for exploring vibrant future bioeconomy scenarios that leverage domestic resources. Developed by NREL and BETO, this model of the domestic biofuels supply chain has been used to explore success strategies for BETO's activities towards bioeconomy growth. The BSM offers a robust test bed for detailed exploration of effects of BETO activities within the complex context of resource availability; physical, technological, and economic constraints; behavior; and policy. The public release of the model in 2017 will allow broad engagement with the theme of the conference as model users can analyze bioeconomy growth, domestic biomass resource use, and associated effects. The BSM is a carefully validated, state-of-the-art, dynamic model of the biomass to biofuels supply chain. Using a system dynamics simulation modeling approach, the model tracks long-term deployment of biofuels given technology development and investment, considering land availability, the competing oil market, consumer demand, and government policies over time. Sample outputs include biofuels production, feedstock use, capital investment, incentives, and costs of feedstocks and fuels. BSM scenarios reveal technological, economic, and policy challenges, as well as opportunities for dynamic growth of the bioeconomy with strategic public and private investment at key points in the system. The model logic and results have been reviewed extensively, through collaborative analysis, expert reviews and external publications (https://www.zotero.org/groups/bsm_publications/).

  15. The relative contributions of forest growth and areal expansion to forest biomass carbon

    Science.gov (United States)

    P. Li; J. Zhu; H. Hu; Z. Guo; Y. Pan; R. Birdsey; J. Fang

    2016-01-01

    Forests play a leading role in regional and global terrestrial carbon (C) cycles. Changes in C sequestration within forests can be attributed to areal expansion (increase in forest area) and forest growth (increase in biomass density). Detailed assessment of the relative contributions of areal expansion and forest growth to C sinks is crucial to reveal the mechanisms...

  16. Microalgae biomass growth using primary treated wastewater as nutrient source and their potential use for lipids production

    Science.gov (United States)

    Frementiti, Anastacia; Aravantinou, Andriana F.; Manariotis, Ioannis D.

    2015-04-01

    The great demand for energy, the rising price of the crude oil and the rapid decrease of the supply of fossil fuels are the main reasons that have increased the interest for the production of fuels from renewable resources. Microalgae are considered to be the most promising new source of biomass and biofuels, since their lipid content in some cases is up to 70%. The microalgal growth and its metabolism processes are essential in wastewater treatment with many economical prospects. The aim of this work was to evaluate the algal production in a laboratory scale open pond. The pond had a working volume of 30 L and was fed with sterilized primary treated wastewater. Chlorococcum sp. was used as a model microalgal. Experiments were conducted under controlled environmental conditions in order to investigate the removal of nutrients, biomass growth, and lipids accumulation in microalgae. Chlorococcum sp. cultures behavior was investigated under batch, fill and draw, and continuous operation mode, at two different radiation intensities (100 and 200 μmol/m2s). The maximum biomass concentration of 630 mg/L was observed with the fill and draw mode. Moreover, the growth rates of microalgal biomass were depended on the influent nutrients concentration. Specifically, the phosphates were the limiting factor for biomass growth in continuous condition; the phosphates removal in this condition, reached a 100%. Chemical demand oxygen (COD) was not removed efficiently by Chlorococcum sp. since it was an autotrophic microalgal with no organic carbon demands for its growth. The lipids content in the dry weight of Chlorococcum sp. ranged from 1 to 9% depending on the concentration of nutrients and the operating conditions.

  17. Does warming affect growth rate and biomass production of shrubs in the High Arctic?

    DEFF Research Database (Denmark)

    Campioli, Matteo; Schmidt, Niels Martin; Albert, Kristian Rost

    2013-01-01

    Few studies have assessed directly the impact of warming on plant growth and biomass production in the High Arctic. Here, we aimed to investigate the impact of 7 years of warming (open greenhouses) on the aboveground relative growth rate (RGR) of Cassiope tetragona and Salix arctica in North-East...

  18. Multi-decade biomass dynamics in an old-growth hemlock-northern hardwood forest, Michigan, USA

    Directory of Open Access Journals (Sweden)

    Kerry D. Woods

    2014-09-01

    Full Text Available Trends in living aboveground biomass and inputs to the pool of coarse woody debris (CWD in an undisturbed, old-growth hemlock-northern hardwood forest in northern MI were estimated from multi-decade observations of permanent plots. Growth and demographic data from seven plot censuses over 47 years (1962–2009, combined with one-time measurement of CWD pools, help assess biomass/carbon status of this landscape. Are trends consistent with traditional notions of late-successional forests as equilibrial ecosystems? Specifically, do biomass pools and CWD inputs show consistent long-term trends and relationships, and can living and dead biomass pools and trends be related to forest composition and history? Aboveground living biomass densities, estimated using standard allometric relationships, range from 360–450 Mg/ha among sampled stands and types; these values are among the highest recorded for northeastern North American forests. Biomass densities showed significant decade-scale variation, but no consistent trends over the full study period (one stand, originating following an 1830 fire, showed an aggrading trend during the first 25 years of the study. Even though total above-ground biomass pools are neither increasing nor decreasing, they have been increasingly dominated, over the full study period, by very large (>70 cm dbh stems and by the most shade-tolerant species (Acer saccharum and Tsuga canadensis.CWD pools measured in 2007 averaged 151 m3/ha, with highest values in Acer-dominated stands. Snag densities averaged 27/ha, but varied nearly ten-fold with canopy composition (highest in Tsuga-dominated stands, lowest in Acer-dominated; snags constituted 10–50% of CWD biomass. Annualized CWD inputs from tree mortality over the full study period averaged 1.9–3.2 Mg/ha/yr, depending on stand and species composition. CWD input rates tended to increase over the course of the study. Input rates may be expected to increase over longer

  19. Lipase Production in Solid-State Fermentation Monitoring Biomass Growth of Aspergillus niger Using Digital Image Processing

    Science.gov (United States)

    Dutra, Julio C. V.; da Terzi, Selma C.; Bevilaqua, Juliana Vaz; Damaso, Mônica C. T.; Couri, Sônia; Langone, Marta A. P.; Senna, Lilian F.

    The aim of this study was to monitor the biomass growth of Aspergillus niger in solid-state fermentation (SSF) for lipase production using digital image processing technique. The strain A. niger 11T53A14 was cultivated in SSF using wheat bran as support, which was enriched with 0.91% (m/v) of ammonium sulfate. The addition of several vegetable oils (castor, soybean, olive, corn, and palm oils) was investigated to enhance lipase production. The maximum lipase activity was obtained using 2% (m/m) castor oil. In these conditions, the growth was evaluated each 24 h for 5 days by the glycosamine content analysis and digital image processing. Lipase activity was also determined. The results indicated that the digital image process technique can be used to monitor biomass growth in a SSF process and to correlate biomass growth and enzyme activity. In addition, the immobilized esterification lipase activity was determined for the butyl oleate synthesis, with and without 50% v/v hexane, resulting in 650 and 120 U/g, respectively. The enzyme was also used for transesterification of soybean oil and ethanol with maximum yield of 2.4%, after 30 min of reaction.

  20. Lipase production in solid-state fermentation monitoring biomass growth of aspergillus niger using digital image processing.

    Science.gov (United States)

    Dutra, Júlio C V; da C Terzi, Selma; Bevilaqua, Juliana Vaz; Damaso, Mônica C T; Couri, Sônia; Langone, Marta A P; Senna, Lilian F

    2008-03-01

    The aim of this study was to monitor the biomass growth of Aspergillus niger in solid-state fermentation (SSF) for lipase production using digital image processing technique. The strain A. niger 11T53A14 was cultivated in SSF using wheat bran as support, which was enriched with 0.91% (m/v) of ammonium sulfate. The addition of several vegetable oils (castor, soybean, olive, corn, and palm oils) was investigated to enhance lipase production. The maximum lipase activity was obtained using 2% (m/m) castor oil. In these conditions, the growth was evaluated each 24 h for 5 days by the glycosamine content analysis and digital image processing. Lipase activity was also determined. The results indicated that the digital image process technique can be used to monitor biomass growth in a SSF process and to correlate biomass growth and enzyme activity. In addition, the immobilized esterification lipase activity was determined for the butyl oleate synthesis, with and without 50% v/v hexane, resulting in 650 and 120 U/g, respectively. The enzyme was also used for transesterification of soybean oil and ethanol with maximum yield of 2.4%, after 30 min of reaction.

  1. Biomass recalcitrance

    DEFF Research Database (Denmark)

    Felby, Claus

    2009-01-01

    Alternative and renewable fuels derived from lignocellulosic biomass offer a promising alternative to conventional energy sources, and provide energy security, economic growth, and environmental benefits. However, plant cell walls naturally resist decomposition from microbes and enzymes - this co......Alternative and renewable fuels derived from lignocellulosic biomass offer a promising alternative to conventional energy sources, and provide energy security, economic growth, and environmental benefits. However, plant cell walls naturally resist decomposition from microbes and enzymes...... - this collective resistance is known as "biomass recalcitrance." Breakthrough technologies are needed to overcome barriers to developing cost-effective processes for converting biomass to fuels and chemicals. This book examines the connection between biomass structure, ultrastructure, and composition......, to resistance to enzymatic deconstruction, with the aim of discovering new cost-effective technologies for biorefineries. It contains chapters on topics extending from the highest levels of biorefinery design and biomass life-cycle analysis, to detailed aspects of plant cell wall structure, chemical treatments...

  2. Effects of biomass removal from forests on soil acidification, nutrient balances and tree growth - Upscaling based on experimental data and model calculations as a base for mapping the need for ash recycling; Effekter av skogsbraensleuttag paa markfoersurning, naeringsbalanser och tillvaext - Uppskalning baserat paa experimentella data och modellberaekningar som grund foer kartlaeggning av behov av askaaterfoering

    Energy Technology Data Exchange (ETDEWEB)

    Hellsten, Sofie; Akselsson, Cecilia; Olsson, Bengt; Belyazid, Salim; Zetterberg, Therese

    2008-12-15

    Increased biomass removal from forests has become more important as the demand for renewable energy has increased due to climate change. Stump removal, in addition to wholetree harvesting, is now considered in Sweden. However, increased biomass removal may affect the nutrient balances in forest soils causing nutrient depletion and increased acidification . It is therefore important to improve the understanding of the effects of different levels of biomass removal and to assess the need for liming. In this study, the effect of different levels of biomass removal regarding nutrient balances (N, P, Ca, Mg, K and Na), acidification and tree growth has been assessed in three ways; i) assessing the effect of wholetree harvesting from three site experiments, ii) calculations of nutrient balances in forest soils applying a nutrient mass balance model, and iii) dynamic modelling. Three different biomass scenarios have been assessed; stem harvesting, wholetree harvesting, and stump removal. It is important to develop and refine the calculation for stumps, and to develop realistic forestry scenarios for removal of stem, wholetree and stumps. i) Three site experiments : The experiments showed that biomass is reduced by about 15 % at the time of the first thinning following wholetree harvesting. Furthermore, the concentrations of nutrients in the trees are reduced by up to 10 % after wholetree harvesting. The studies also showed that base saturation in the organic layer and in the upper part of the mineral soil was reduced, often between 10 and 30 %, 15 and 26 years after the wholetree harvesting. It was also possible to find a relation between the C/N-ratio in the humus layer and the nitrogen content in the needles. ii) Mass balance calculation: This study shows that there is a great potential to use nutrient mass balance calculations and calculations of excess acidity to assess the rate of depletion for base cations and the need for liming. The mass balance calculation showed

  3. Growth of sugarcane under high input conditions in tropical Australia. 1. Radiation use, biomass accumulation and partitioning

    International Nuclear Information System (INIS)

    Robertson, M.J.; Wood, A.W.; Muchow, R.C.

    1996-01-01

    There is little detailed information on yield accumulation in sugarcane under high-input conditions, which can be used to quantify the key physiological parameters contributing to yield variation. Sugarcane is grown under plant and ratoon crop conditions. This study analysed canopy development, radiation interception and biomass accumulation of two contrasting cultivars of sugarcane under irrigation during the same season under plant and ratoon crop conditions. Over the 15 month season, 11 crop samplings were conducted. Biomass partitioning to stalk was also measured to determine to what extent differences in partitioning between cultivars under ratoon and plant crop conditions contribute to differential productivity. The key findings were: (1) The ratoon crop accumulated biomass more quickly than the plant crop during the first 100 days of growth due to higher stalk number, faster canopy development and greater radiation interception. For similar reasons, cultivar Q138 had higher early biomass production than cultivar Q117 in the plant crop, (2) Early differences in biomass accumulation due to crop class became negligible at about 220 days because maximum RUE of the plant crop (1.72 +/- 0.01 g MJ -1 ) was 8% higher than in the first ratoon crop (1.59 +/- 0.08 g MJ -1 ). The higher maximum RUE in the plant crop was consistent with a higher crop growth rate (35.1 +/- 2.3 versus 31.0 +/- 3.4 g m -2 d -1 ) during the Linear phase of biomass accumulation. (3) Biomass accumulation, which ceased about 300 days after planting/ratooning and 140 days before final harvest, attained similar levels of 53-58 t ha -1 in all four crops. (4) The plateau in biomass was associated with loss of live millable stalks, and not a cessation in the growth rate of individual stalks. The crops continued to intercept radiation while on the biomass plateau, so that average RUEs at final harvest were much lower than the maximum values. (5) There was no effect of crop class or cultivar on the

  4. A comparative study on the effect of gamma-irradiation on growth and biomass yield in certain fuel-wood species

    International Nuclear Information System (INIS)

    Bandyopadhyay, B.; Nandy, A.K.; Mallick, R.; Chatterjee, A.

    1990-01-01

    A trial was conducted to study a comparative effect of gamma-radiation on the growth behaviour vis-a-vis biomass yield of Acacia nilotica Delite, Leucaena leucocephala (Lam) De Wit and Prosopis chilensis D.C (sub-family Mimosoidae). Dry seeds were exposed to 1, 2, 4, 8 and 16 KR doses of gammaradiation. Irradiat ed seeds were sown in the field along with the control. In case of L. leucocephala the growth of the plants as well as total biomass production increased steadily with increasing doses of irradiation upto 8 KR. In A. nilotica the response was similar to that of L leucocephala, but in this case maximum growth and biomass yield was obtained after 4 KR. On the other hand, P. chilensis did not exhibit a positive response to gammaradiation. Karyotype of the three species was also done. All these observations indicate the greater possibility of the utilization of gammaradiation in increasing biomass production. (author). 12 refs., 2 tabs., 7 figs

  5. Comprehensive computational model for combining fluid hydrodynamics, light transport and biomass growth in a Taylor vortex algal photobioreactor: Lagrangian approach.

    Science.gov (United States)

    Gao, Xi; Kong, Bo; Vigil, R Dennis

    2017-01-01

    A comprehensive quantitative model incorporating the effects of fluid flow patterns, light distribution, and algal growth kinetics on biomass growth rate is developed in order to predict the performance of a Taylor vortex algal photobioreactor for culturing Chlorella vulgaris. A commonly used Lagrangian strategy for coupling the various factors influencing algal growth was employed whereby results from computational fluid dynamics and radiation transport simulations were used to compute numerous microorganism light exposure histories, and this information in turn was used to estimate the global biomass specific growth rate. The simulations provide good quantitative agreement with experimental data and correctly predict the trend in reactor performance as a key reactor operating parameter is varied (inner cylinder rotation speed). However, biomass growth curves are consistently over-predicted and potential causes for these over-predictions and drawbacks of the Lagrangian approach are addressed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. A Spatial Model of the Biomass to Energy Cycle

    DEFF Research Database (Denmark)

    Möller, Bernd

    2003-01-01

    by location. This paper aims to contribute to the development of a biomass to energy evaluation and mapping system, using geographical information systems (GIS). A GIS-based in-forest residue model considers forest growth and choice of harvest method. Data from a sawmill survey is used to assess sawmill resi...... and the costs of accumulated amounts of wood residues can now be calculated almost instantly for each location in the country. It is assumed that this approach will facilitate the assessment of future biomass markets....

  7. Modelling Growth and Partitioning of Annual Above-Ground Vegetative and Reproductive Biomass of Grapevine

    Science.gov (United States)

    Meggio, Franco; Vendrame, Nadia; Maniero, Giovanni; Pitacco, Andrea

    2014-05-01

    In the current climate change scenarios, both agriculture and forestry inherently may act as carbon sinks and consequently can play a key role in limiting global warming. An urgent need exists to understand which land uses and land resource types have the greatest potential to mitigate greenhouse gas (GHG) emissions contributing to global change. A common believe is that agricultural fields cannot be net carbon sinks due to many technical inputs and repeated disturbances of upper soil layers that all contribute to a substantial loss both of the old and newly-synthesized organic matter. Perennial tree crops (vineyards and orchards), however, can behave differently: they grow a permanent woody structure, stand undisturbed in the same field for decades, originate a woody pruning debris, and are often grass-covered. In this context, reliable methods for quantifying and modelling emissions and carbon sequestration are required. Carbon stock changes are calculated by multiplying the difference in oven dry weight of biomass increments and losses with the appropriate carbon fraction. These data are relatively scant, and more information is needed on vineyard management practices and how they impact vineyard C sequestration and GHG emissions in order to generate an accurate vineyard GHG footprint. During the last decades, research efforts have been made for estimating the vineyard carbon budget and its allocation pattern since it is crucial to better understand how grapevines control the distribution of acquired resources in response to variation in environmental growth conditions and agronomic practices. The objective of the present study was to model and compare the dynamics of current year's above-ground biomass among four grapevine varieties. Trials were carried out over three growing seasons in field conditions. The non-linear extra-sums-of-squares method demonstrated to be a feasible way of growth models comparison to statistically assess significant differences among

  8. The linkages between photosynthesis, productivity, growth and biomass in lowland Amazonian forests.

    Science.gov (United States)

    Malhi, Yadvinder; Doughty, Christopher E; Goldsmith, Gregory R; Metcalfe, Daniel B; Girardin, Cécile A J; Marthews, Toby R; Del Aguila-Pasquel, Jhon; Aragão, Luiz E O C; Araujo-Murakami, Alejandro; Brando, Paulo; da Costa, Antonio C L; Silva-Espejo, Javier E; Farfán Amézquita, Filio; Galbraith, David R; Quesada, Carlos A; Rocha, Wanderley; Salinas-Revilla, Norma; Silvério, Divino; Meir, Patrick; Phillips, Oliver L

    2015-06-01

    Understanding the relationship between photosynthesis, net primary productivity and growth in forest ecosystems is key to understanding how these ecosystems will respond to global anthropogenic change, yet the linkages among these components are rarely explored in detail. We provide the first comprehensive description of the productivity, respiration and carbon allocation of contrasting lowland Amazonian forests spanning gradients in seasonal water deficit and soil fertility. Using the largest data set assembled to date, ten sites in three countries all studied with a standardized methodology, we find that (i) gross primary productivity (GPP) has a simple relationship with seasonal water deficit, but that (ii) site-to-site variations in GPP have little power in explaining site-to-site spatial variations in net primary productivity (NPP) or growth because of concomitant changes in carbon use efficiency (CUE), and conversely, the woody growth rate of a tropical forest is a very poor proxy for its productivity. Moreover, (iii) spatial patterns of biomass are much more driven by patterns of residence times (i.e. tree mortality rates) than by spatial variation in productivity or tree growth. Current theory and models of tropical forest carbon cycling under projected scenarios of global atmospheric change can benefit from advancing beyond a focus on GPP. By improving our understanding of poorly understood processes such as CUE, NPP allocation and biomass turnover times, we can provide more complete and mechanistic approaches to linking climate and tropical forest carbon cycling. © 2015 John Wiley & Sons Ltd.

  9. Lipid for biodiesel production from attached growth Chlorella vulgaris biomass cultivating in fluidized bed bioreactor packed with polyurethane foam material.

    Science.gov (United States)

    Mohd-Sahib, Ainur-Assyakirin; Lim, Jun-Wei; Lam, Man-Kee; Uemura, Yoshimitsu; Isa, Mohamed Hasnain; Ho, Chii-Dong; Kutty, Shamsul Rahman Mohamed; Wong, Chung-Yiin; Rosli, Siti-Suhailah

    2017-09-01

    The potential to grow attached microalgae Chlorella vulgaris in fluidized bed bioreactor was materialized in this study, targeting to ease the harvesting process prior to biodiesel production. The proposed thermodynamic mechanism and physical property assessment of various support materials verified polyurethane to be suitable material favouring the spontaneous adhesion by microalgae cells. The 1-L bioreactor packed with only 2.4% (v/v) of 1.00-mL polyurethane foam cubes could achieve the highest attached growth microalgae biomass and lipid weights of 812±122 and 376±37mg, respectively, in comparison with other cube sizes. The maturity of attached growth microalgae biomass for harvesting could also be determined from the growth trend of suspended microalgae biomass. Analysis of FAME composition revealed that the harvested microalgae biomass was dominated by C16-C18 (>60%) and mixture of saturated and mono-unsaturated fatty acids (>65%), satiating the biodiesel standard with adequate cold flow property and oxidative stability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Seedling growth and biomass allocation in relation to leaf habit and shade tolerance among 10 temperate tree species.

    Science.gov (United States)

    Modrzyński, Jerzy; Chmura, Daniel J; Tjoelker, Mark G

    2015-08-01

    Initial growth of germinated seeds is an important life history stage, critical for establishment and succession in forests. Important questions remain regarding the differences among species in early growth potential arising from shade tolerance. In addition, the role of leaf habit in shaping relationships underlying shade tolerance-related differences in seedling growth remains unresolved. In this study we examined variation in morphological and physiological traits among seedlings of 10 forest tree species of the European temperate zone varying in shade tolerance and leaf habit (broadleaved winter-deciduous species vs needle-leaved conifers) during a 10-week period. Seeds were germinated and grown in a controlled environment simulating an intermediate forest understory light environment to resolve species differences in initial growth and biomass allocation. In the high-resource experimental conditions during the study, seedlings increased biomass allocation to roots at the cost of leaf biomass independent of shade tolerance and leaf habit. Strong correlations between relative growth rate (RGR), net assimilation rate (NAR), leaf area ratio (LAR), specific leaf area (SLA) and leaf mass fraction (LMF) indicate that physiology and biomass allocation were equally important determinants of RGR as plant structure and leaf morphology among these species. Our findings highlight the importance of seed mass- and seed size-related root morphology (specific root length-SRL) for shade tolerance during early ontogeny. Leaf and plant morphology (SLA, LAR) were more successful in explaining variation among species due to leaf habit than shade tolerance. In both broadleaves and conifers, shade-tolerant species had lower SRL and greater allocation of biomass to stems (stem mass fraction). Light-seeded shade-intolerant species with greater SRL had greater RGR in both leaf habit groups. However, the greatest plant mass was accumulated in the group of heavy-seeded shade

  11. Biomass growth aspects during bioreclamation of contaminated soils

    International Nuclear Information System (INIS)

    Elektorowicz, M.; Yong, R.N.

    1993-01-01

    Some microorganisms metabolize petroleum compounds. Under favorable environmental conditions, the development of microorganisms can be used to reclamation of contaminated soils. The aim of each bioreclamation technique is to improve these conditions in order to accelerate microorganism activity in the soil. In practice, bioreclamation on an industrial scale is induced through the controlled growth of indigenous microorganisms or through inoculating the soil with specific microorganisms, developed in a lab. These two techniques can be applied either in-situ or ex-situ in the excavated soils. Generally, the growth process includes six phases: the lag phase, the acceleration phase, the exponential phase, the growth decline phase, the stationary phase and the endogenous phase. The goal of each technique is to diminish the time lag, increase the acceleration phase, extend the stationary phase and delay the endogenous phase. However, during the bioreclamation phase, the biochemical processes may postpone the treatment by slowing down its growth,. Very often, the advanced techniques developed in the laboratory does not equate with efficiency on the site itself. On the site, the biomass growth decreases faster then expected because of various interaction processes taking place in contaminated soil. The principal factors described in paper which delay the growth of microorganisms capable of reclaiming petroleum products include the following: competition among microorganisms, unavailability of nutrients, variation of the pH, inadequate moisture, temperature variation, sorption, toxicity of by-products, mutation and impact of additives. The most of the factors are insufficiently recognized, however, impact of some parameters is observed when additives as sawdust and nutrients are added. In similar cases the feasibility studies are necessary before implementation of any technique on industrial scale

  12. Growth of filamentous blue-green algae at high temperatures: a source of biomass for renewable fuels

    Energy Technology Data Exchange (ETDEWEB)

    Timourian, H.; Ward, R.L.; Jeffries, T.W.

    1977-08-17

    The growth of filamentous blue-green algae (FBGA) at high temperatures in outdoor, shallow solar ponds is being investigated. The temperature of the 60-m/sup 2/ ponds can be controlled to an average temperature of 45/sup 0/C. The growth of FBGA at high temperatures offers an opportunity, not presently available from outdoor algal ponds or energy farms, to obtain large amounts of biomass. Growth of algae at high temperatures results in higher yields because of increased growth rate, the higher light intensity that can be used before saturating the photosynthetic process, easier maintenance of selected FBGA strains, and fewer predators to decimate culture. Additional advantages of growing FBGA as a source of biomass include: bypassing the limitations of nutrient sources, because FBGA fix their own nitrogen and require only CO/sub 2/ when inorganic nutrients are recycled; toleration of higher salinity and metal ion concentrations; and easier and less expensive harvesting procedures.

  13. Effects of gamma radiation on stem diameter growth, carbon gain and biomass partitioning in Helianthus annuus

    International Nuclear Information System (INIS)

    Thiede, M.E.; Link, S.O.; Fellows, R.J.; Beedlow, P.A.

    1995-01-01

    To determine the effects of gamma radiation on stem diameter growth, carbon gain, and biomass partitioning, 19-day-old dwarf sunflower plants (Helianthus annuus, variety NK894) were given variable doses (0–40 Gy) from a 60Co gamma source. Exposure of plants to gamma radiation caused a significant reduction in stem growth and root biomass. Doses as low as 5 Gy resulted in a significant increase in leaf density, suggesting that very low doses of radiation could induce morphological growth changes. Carbohydrate analysis of plants exposed to 40 Gy demonstrated significantly more starch content in leaves and significantly less in stems 18 days after exposure compared with control plants. In contrast, the carbohydrate content of the roots of plants exposed to 40 Gy was not significantly different from non-irradiated plants 18 days after exposure. (author)

  14. Selecting and optimizing eco-physiological parameters of Biome-BGC to reproduce observed woody and leaf biomass growth of Eucommia ulmoides plantation in China using Dakota optimizer

    Science.gov (United States)

    Miyauchi, T.; Machimura, T.

    2013-12-01

    In the simulation using an ecosystem process model, the adjustment of parameters is indispensable for improving the accuracy of prediction. This procedure, however, requires much time and effort for approaching the simulation results to the measurements on models consisting of various ecosystem processes. In this study, we tried to apply a general purpose optimization tool in the parameter optimization of an ecosystem model, and examined its validity by comparing the simulated and measured biomass growth of a woody plantation. A biometric survey of tree biomass growth was performed in 2009 in an 11-year old Eucommia ulmoides plantation in Henan Province, China. Climate of the site was dry temperate. Leaf, above- and below-ground woody biomass were measured from three cut trees and converted into carbon mass per area by measured carbon contents and stem density. Yearly woody biomass growth of the plantation was calculated according to allometric relationships determined by tree ring analysis of seven cut trees. We used Biome-BGC (Thornton, 2002) to reproduce biomass growth of the plantation. Air temperature and humidity from 1981 to 2010 was used as input climate condition. The plant functional type was deciduous broadleaf, and non-optimizing parameters were left default. 11-year long normal simulations were performed following a spin-up run. In order to select optimizing parameters, we analyzed the sensitivity of leaf, above- and below-ground woody biomass to eco-physiological parameters. Following the selection, optimization of parameters was performed by using the Dakota optimizer. Dakota is an optimizer developed by Sandia National Laboratories for providing a systematic and rapid means to obtain optimal designs using simulation based models. As the object function, we calculated the sum of relative errors between simulated and measured leaf, above- and below-ground woody carbon at each of eleven years. In an alternative run, errors at the last year (at the

  15. Analytical evaluation of different carbon sources and growth stimulators on the biomass and lipid production of Chlorella vulgaris – Implications for biofuels

    International Nuclear Information System (INIS)

    Josephine, A.; Niveditha, C.; Radhika, A.; Shali, A. Brindha; Kumar, T.S.; Dharani, G.; Kirubagaran, R.

    2015-01-01

    The key challenges in lipid production from marine microalgae include the selection of appropriate strain, optimization of the culture conditions and enhancement of biolipid yield. This study is aimed at evaluating the optimal harvest time and effect of chlorella growth factor (CGF) extract, carbon sources and phytohormones on the biomass and lipid production in Chlorella vulgaris. CGF, extracted using hot water from Chlorella has been reported to possess various medicinal properties. However, in the present study, for the first time in C. vulgaris, CGF was found as a best growth stimulator by enhancing the biomass level (1.208 kg m −3 ) significantly on day 5. Gibberellin and citrate augmented the biomass by 0.935 kg m −3 and 1.025 kg m −3 . Combination of CGF and phytohormones were more effective than CGF and carbon sources. Analysis of fatty acid methyl esters indicated that the ratio of saturated to unsaturated fatty acids is higher in cytokinin, abscisic acid and CGF, and are also rich in short chain carbon atoms, ideal criteria for biodiesel. Nitrogen starvation favoured synthesis of more unsaturated fatty acids than saturated. This study shows that CGF enhances the biomass and lipid significantly and thus can be used for large scale biomass production. - Highlights: • Optimization studies revealed 7th day to be the ideal period for harvesting Chlorella vulgaris. • Chlorella growth factor extract acted as a chief growth promoting factor of C. vulgaris. • Chlorella growth factor with carbon sources or phytohormones was not effective than chlorella growth factor extract alone. • Cytokinin treatment increased saturated fatty acids level, although the biomass production was not significant

  16. Attached biomass growth and substrate utilization rate in a moving bed biofilm reactor

    Directory of Open Access Journals (Sweden)

    J. J. Marques

    2008-12-01

    Full Text Available A moving bed bioreactor containing cubes of polyether foam immersed in a synthetic wastewater (an aqueous mixture of meat extract, yeast extract, dextrose, meat peptone, ammonium chloride, potassium chloride, sodium chloride, sodium bicarbonate, potassium mono-hydrogen-phosphate and magnesium sulphate was used to evaluate bacterial growth and biomass yield parameters based on Monod's equation. The wastewater was supplied in the bottom of the equipment flowing ascending in parallel with a diffused air current that provided the mixing of the reactor content. Suspended and attached biomass concentration was measured through gravimetric methods. Good agreement was found between experimental kinetic parameters values and those obtained by other researchers. The only significant difference was the high global biomass content about 2 times the values obtained in conventional processes, providing high performance with volumetric loading rates up to 5.5 kg COD/m³/d.

  17. Calculating the share of process energy consumed by biomass conversion plants. Bestimmung der Anteile der Prozessenergie bei einer Biogasanlage

    Energy Technology Data Exchange (ETDEWEB)

    Goebel, W

    1984-06-01

    During the winter season the process energy consumption of biomass conversion plants is relatively high. Apart from the quantity and temperature of manures and insulation of the fermentation tank the process energy consumption depends on the efficiency of the heating system. Moreover, heat losses decide on the required quantities of process energy. Compared with the process energy consumption the electric power consumption of the engines supplying the biomass conversion plant is relatively low. Along with calculations tests and measurements in a biomass conversion plant during the winter season of 1981/1982 give access to the interrelation between process energy and electric power consumption.

  18. Applying Central Composite Design and Response Surface Methodology to Optimize Growth and Biomass Production of Haemophilus influenzae Type b.

    Science.gov (United States)

    Momen, Seyed Bahman; Siadat, Seyed Davar; Akbari, Neda; Ranjbar, Bijan; Khajeh, Khosro

    2016-06-01

    Haemophilus influenzae type b (Hib) is the leading cause of bacterial meningitis, otitis media, pneumonia, cellulitis, bacteremia, and septic arthritis in infants and young children. The Hib capsule contains the major virulence factor, and is composed of polyribosyl ribitol phosphate (PRP) that can induce immune system response. Vaccines consisting of Hib capsular polysaccharide (PRP) conjugated to a carrier protein are effective in the prevention of the infections. However, due to costly processes in PRP production, these vaccines are too expensive. To enhance biomass, in this research we focused on optimizing Hib growth with respect to physical factors such as pH, temperature, and agitation by using a response surface methodology (RSM). We employed a central composite design (CCD) and a response surface methodology to determine the optimum cultivation conditions for growth and biomass production of H. influenzae type b. The treatment factors investigated were initial pH, agitation, and temperature, using shaking flasks. After Hib cultivation and determination of dry biomass, analysis of experimental data was performed by the RSM-CCD. The model showed that temperature and pH had an interactive effect on Hib biomass production. The dry biomass produced in shaking flasks was about 5470 mg/L, which was under an initial pH of 8.5, at 250 rpm and 35° C. We found CCD and RSM very effective in optimizing Hib culture conditions, and Hib biomass production was greatly influenced by pH and incubation temperature. Therefore, optimization of the growth factors to maximize Hib production can lead to 1) an increase in bacterial biomass and PRP productions, 2) lower vaccine prices, 3) vaccination of more susceptible populations, and 4) lower risk of Hib infections.

  19. Climate-related variation in plant peak biomass and growth phenology across Pacific Northwest tidal marshes

    Science.gov (United States)

    Buffington, Kevin J.; Dugger, Bruce D.; Thorne, Karen M.

    2018-03-01

    The interannual variability of tidal marsh plant phenology is largely unknown and may have important ecological consequences. Marsh plants are critical to the biogeomorphic feedback processes that build estuarine soils, maintain marsh elevation relative to sea level, and sequester carbon. We calculated Tasseled Cap Greenness, a metric of plant biomass, using remotely sensed data available in the Landsat archive to assess how recent climate variation has affected biomass production and plant phenology across three maritime tidal marshes in the Pacific Northwest of the United States. First, we used clipped vegetation plots at one of our sites to confirm that tasseled cap greenness provided a useful measure of aboveground biomass (r2 = 0.72). We then used multiple measures of biomass each growing season over 20-25 years per study site and developed models to test how peak biomass and the date of peak biomass varied with 94 climate and sea-level metrics using generalized linear models and Akaike Information Criterion (AIC) model selection. Peak biomass was positively related to total annual precipitation, while the best predictor for date of peak biomass was average growing season temperature, with the peak 7.2 days earlier per degree C. Our study provides insight into how plants in maritime tidal marshes respond to interannual climate variation and demonstrates the utility of time-series remote sensing data to assess ecological responses to climate stressors.

  20. Influence of abscisic acid on growth, biomass and lipid yield of Scenedesmus quadricauda under nitrogen starved condition.

    Science.gov (United States)

    Sulochana, Sujitha Balakrishnan; Arumugam, Muthu

    2016-08-01

    Scenedesmus quadricauda, accumulated more lipid but with a drastic reduction in biomass yield during nitrogen starvation. Abscisic acid (ABA) being a stress responsible hormone, its effect on growth and biomass with sustainable lipid yield during nitrogen depletion was studied. The result revealed that the ABA level shoots up at 24h (27.21pmol/L) during the onset of nitrogen starvation followed by a sharp decline. The external supplemented ABA showed a positive effect on growth pattern (38×10(6)cells/ml) at a lower concentration. The dry biomass yield is also increasing up to 2.1 fold compared to nitrogen deficient S. quadricauda. The lipid content sustains in 1 and 2μM concentration of ABA under nitrogen-deficient condition. The fatty acid composition of ABA treated S. quadricauda cultures with respect to nitrogen-starved cells showed 11.17% increment in saturated fatty acid content, the desired lipid composition for biofuel application. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Solid biomass barometer

    International Nuclear Information System (INIS)

    Anon.

    2011-01-01

    The primary energy production from solid biomass in the European Union reached 79.3 Mtoe in 2010 which implies a growth rate of 8% between 2009 and 2010. The trend, which was driven deeper by Europe's particularly cold winter of 2009-2010, demonstrates that the economic down-turn failed to weaken the member states' efforts to structure the solid biomass sector. Heat consumption rose sharply: the volume of heat sold by heating networks increased by 18% and reached 6.7 Mtoe and if we consider the total heat consumption (it means with and without recovery via heating networks) the figure is 66 Mtoe in 2010, which amounts to 10.1% growth. The growth of electricity production continued through 2010 (8.3% up on 2009) and rose to 67 TWh but at a slower pace than in 2009 (when it rose by 11.3% on 2008). The situation of the main producer countries: Sweden, Finland, Germany and France is reviewed. It appears that cogeneration unit manufacturers and biomass power plant constructors are the main beneficiaries of the current biomass energy sector boom. There is a trend to replace coal-fired plants that are either obsolete or near their end of life with biomass or multi-fuel plants. These opportunities will enable the industry to develop and further exploit new technologies such as gasification, pyrolysis and torrefaction which will enable biomass to be turned into bio-coal. (A.C.)

  2. SIMULATION OF MICROALGAL GROWTH IN A CONTINUOUS PHOTOBIOREACTOR WITH SEDIMENTATION AND PARTIAL BIOMASS RECYCLING

    Directory of Open Access Journals (Sweden)

    C. E. de Farias Silva

    Full Text Available Abstract Microalgae are considered as promising feedstocks for the third generation of biofuels. They are autotrophic organisms with high growth rate and can stock an enormous quantity of lipids (about 20 - 40% of their dried cellular weight. This work was aimed at studying the cultivation of Scenedesmus obliquus in a two-stage system composed of a photobioreactor and a settler to concentrate and partially recycle the biomass as a way to enhance the microalgae cellular productivity. It was attempted to specify by simulation and experimental data a relationship between the recycling rate, kinetic parameters of microalgal growth and photobioreactor operating conditions. Scenedesmus obliquus cells were cultivated in a lab-scale flat-plate reactor, homogenized by aeration, and running in continuous flow with a residence time of 1.66 day. Experimental data for the microalgal growth were used in a semi-empirical simulation model. The best results were obtained for Fw=0.2FI, when R = 1 and kd = 0 and 0.05 day-1, with the biomass production in the reactor varying between 8 g L -1 and 14 g L-1, respectively. The mathematical model fitted to the microalgal growth experimental data was appropriate for predicting the efficiency of the reactor in producing Scenedesmus obliquus cells, establishing a relation between cellular productivity and the minimum recycling rate that must be used in the system.

  3. Landsat Time-series for the Masses: Predicting Wood Biomass Growth from Tree-rings Using Departures from Mean Phenology in Google Earth Engine

    Science.gov (United States)

    Foster, J. R.; D'Amato, A. W.; Itter, M.; Reinikainen, M.; Curzon, M.

    2017-12-01

    The terrestrial carbon cycle is perturbed when disturbances remove leaf biomass from the forest canopy during the growing season. Changes in foliar biomass arise from defoliation caused by insects, disease, drought, frost or human management. As ephemeral disturbances, these often go undetected and their significance to models that predict forest growth from climatic drivers remains unknown. Here, we seek to distinguish the roles of weather vs. canopy disturbance on forest growth by using dense Landsat time-series to quantify departures in mean phenology that in turn predict changes in leaf biomass. We estimated a foliar biomass index (FBMI) from 1984-2016, and predict plot-level wood growth over 28 years on 156 tree-ring monitoring plots in Minnesota, USA. We accessed the entire Landsat archive (sensors 4, 5 & 7) to compute FBMI using Google Earth Engine's cloud computing platform (GEE). GEE allows this pixel-level approach to be applied at any location; a feature we demonstrate with published wood-growth data from flux tower sites. Our Bayesian models predicted biomass changes from tree-ring plots as a function of Landsat FBMI and annual climate data. We expected model parameters to vary by tree functional groups defined by differences in xylem anatomy and leaf longevity, two traits with linkages to phenology, as reported in a recent review. We found that Landsat FBMI was a surprisingly strong predictor of aggregate wood-growth, explaining up to 80% of annual growth variation for some deciduous plots. Growth responses to canopy disturbance varied among tree functional groups, and the importance of some seasonal climate metrics diminished or changed sign when FBMI was included (e.g. fall and spring climatic water deficit), while others remained unchanged (current and lagged summer deficit). Insights emerging from these models can clear up sources of persistent uncertainty and open a new frontier for models of forest productivity.

  4. Climate-related variation in plant peak biomass and growth phenology across Pacific Northwest tidal marshes

    Science.gov (United States)

    Buffington, Kevin J.; Dugger, Bruce D.; Thorne, Karen M.

    2018-01-01

    The interannual variability of tidal marsh plant phenology is largely unknown and may have important ecological consequences. Marsh plants are critical to the biogeomorphic feedback processes that build estuarine soils, maintain marsh elevation relative to sea level, and sequester carbon. We calculated Tasseled Cap Greenness, a metric of plant biomass, using remotely sensed data available in the Landsat archive to assess how recent climate variation has affected biomass production and plant phenology across three maritime tidal marshes in the Pacific Northwest of the United States. First, we used clipped vegetation plots at one of our sites to confirm that tasseled cap greenness provided a useful measure of aboveground biomass (r2 = 0.72). We then used multiple measures of biomass each growing season over 20–25 years per study site and developed models to test how peak biomass and the date of peak biomass varied with 94 climate and sea-level metrics using generalized linear models and Akaike Information Criterion (AIC) model selection. Peak biomass was positively related to total annual precipitation, while the best predictor for date of peak biomass was average growing season temperature, with the peak 7.2 days earlier per degree C. Our study provides insight into how plants in maritime tidal marshes respond to interannual climate variation and demonstrates the utility of time-series remote sensing data to assess ecological responses to climate stressors.

  5. The contrasting effects of nutrient enrichment on growth, biomass allocation and decomposition of plant tissue in coastal wetlands

    NARCIS (Netherlands)

    Hayes, Matthew A.; Jesse, Amber; Tabet, Basam; Reef, Ruth; Keuskamp, Joost A.; Lovelock, Catherine E.

    2017-01-01

    Eutrophication of coastal waters can have consequences for the growth, function and soil processes of coastal wetlands. Our aims were to assess how nutrient enrichment affects growth, biomass allocation and decomposition of plant tissues of a common and widespread mangrove, Avicennia marina, and how

  6. Plot size recommendations for biomass estimation in a midwestern old-growth forest

    Science.gov (United States)

    Martin A. Spetich; George R Parker

    1998-01-01

    The authors examine the relationship between disturbance regime and plot size for woody biomass estimation in a midwestern old-growth deciduous forest from 1926 to 1992. Analysis was done on the core 19.6 ac of a 50.1 ac forest in which every tree 4 in. d.b.h. and greater has been tagged and mapped since 1926. Five windows of time are compared—1926, 1976, 1981, 1986...

  7. Effects of nutrient ratios and carbon dioxide bio-sequestration on biomass growth of Chlorella sp. in bubble column photobioreactor.

    Science.gov (United States)

    Vo, Hoang-Nhat-Phong; Bui, Xuan-Thanh; Nguyen, Thanh-Tin; Nguyen, Dinh Duc; Dao, Thanh-Son; Cao, Ngoc-Dan-Thanh; Vo, Thi-Kim-Quyen

    2018-08-01

    Photobioreactor technology, especially bubble column configuration, employing microalgae cultivation (e.g., Chlorella sp.), is an ideal man-made environment to achieve sufficient microalgae biomass through its strictly operational control. Nutrients, typically N and P, are necessary elements in the cultivation process, which determine biomass yield and productivity. Specifically, N:P ratios have certain effects on microalgae's biomass growth. It is also attractive that microalgae can sequester CO 2 by using that carbon source for photosynthesis and, subsequently, reducing CO 2 emission. Therefore, this study aims to investigate the effect of N:P ratios on Chlorella sp.'s growth, and to study the dynamic of CO 2 fixation in the bubble column photobioreactor. According to our results, N:P ratio of 15:1 could produce the highest biomass yield (3568 ± 158 mg L -1 ). The maximum algae concentration was 105 × 10 6  cells mL -1 , receiving after 92 h. Chlorella sp. was also able to sequester CO 2 at 28 ± 1.2%, while the specific growth rate and carbon fixation rate were observed at 0.064 h -1 and 68.9 ± 1.91 mg L -1  h -1 , respectively. The types of carbon sources (e.g., organic and inorganic carbon) possessed potential impact on microalgae's cultivation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Sclerotial biomass and carotenoid yield of Penicillium sp. PT95 under oxidative growth conditions and in the presence of antioxidant ascorbic acid.

    Science.gov (United States)

    Li, X L; Cui, X H; Han, J R

    2006-09-01

    To determine the effect of oxidative stress and exogenous ascorbic acid on sclerotial biomass and carotenoid yield of Penicillium sp. PT95. In this experiment, high oxidative stress was applied by the inclusion of FeSO(4) in the growth medium and exposure to light. Low oxidative stress was applied by omitting iron from the growth medium and by incubation in the dark. Supplementation of exogenous ascorbic acid (as antioxidant) to the basal medium caused a concentration-dependent delay of sclerotial differentiation (up to 48 h), decrease of sclerotial biomass (up to 40%) and reduction of carotenoid yield (up to 91%). On the contrary, the exogenous ascorbic acid also caused a concentration-dependent decrease of lipid peroxidation in colonies of this fungus. Under high oxidative stress growth condition, the sclerotial biomass and carotenoid yield of PT95 strain in each plate culture reached 305 mg and 32.94 microg, which were 1.23 and 3.71 times higher, respectively, than those at low oxidative stress growth condition. These data prompted us to consider that in order to attain higher sclerotial biomass and pigment yield, the strain PT95 should be grown under high oxidative stress and in the absence of antioxidants. These results suggest that strain PT95 may be used for solid-state fermentation of carotenoid production under high oxidative stress growth conditions.

  9. Nitrogen nutrition of Canna indica: Effects of ammonium versus nitrate on growth, biomass allocation, photosynthesis, nitrate reductase activity and N uptake rates

    DEFF Research Database (Denmark)

    Konnerup, Dennis; Brix, Hans

    2010-01-01

    The effects of inorganic nitrogen (N) source (NH4+, NO3- or both) on growth, biomass allocation, photosynthesis, N uptake rate, nitrate reductase activity and mineral composition of Canna indica were studied in hydroponic culture. The relative growth rates (0.05-0.06 g g-1 d-1), biomass allocation...

  10. Changes In Growth Culture FDA Activity Under Changing Growth Conditions

    DEFF Research Database (Denmark)

    Jørgensen, Per Elberg; Eriksen, Thomas Juul; Jensen, Bjørn K.

    1992-01-01

    The FDA hydrolysis capacities and bacterial biomass concentrations (estimated by determination of ATP content) of growth cultures prepared from activated sludge and wastewater, were measured to find out whether the FDA activity would reflect bacterial biomass under different physiological states...... of the bacteria. The FDA activity/ATP ratio was calculated for different concentrations of autoclaved sludge. A faster decay rate of ATP relative to FDA hydrolysis activity was observed, thus causing changes in the ratio. Furthermore, comparison between values obtained from pure cultures and different soils...... revealed differences up to two orders of magnitude of the ratio. Based on these results it was concluded that the FDA activity should not be applied for measurements of viable biomass in environments in which different physiological conditions occur....

  11. Algal biofuels from urban wastewaters: maximizing biomass yield using nutrients recycled from hydrothermal processing of biomass.

    Science.gov (United States)

    Selvaratnam, T; Pegallapati, A K; Reddy, H; Kanapathipillai, N; Nirmalakhandan, N; Deng, S; Lammers, P J

    2015-04-01

    Recent studies have proposed algal cultivation in urban wastewaters for the dual purpose of waste treatment and bioenergy production from the resulting biomass. This study proposes an enhancement to this approach that integrates cultivation of an acidophilic strain, Galdieria sulphuraria 5587.1, in a closed photobioreactor (PBR); hydrothermal liquefaction (HTL) of the wet algal biomass; and recirculation of the nutrient-rich aqueous product (AP) of HTL to the PBR to achieve higher biomass productivity than that could be achieved with raw wastewater. The premise is that recycling nutrients in the AP can maintain optimal C, N and P levels in the PBR to maximize biomass growth to increase energy returns. Growth studies on the test species validated growth on AP derived from HTL at temperatures from 180 to 300°C. Doubling N and P concentrations over normal levels in wastewater resulted in biomass productivity gains of 20-25% while N and P removal rates also doubled. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Biomass Production System (BPS) Plant Growth Unit

    Science.gov (United States)

    Morrow, R. C.; Crabb, T. M.

    The Biomass Production System (BPS) was developed under the Small Business Innovative Research (SBIR) program to meet science, biotechnology and commercial plant growth needs in the Space Station era. The BPS is equivalent in size to a double middeck locker, but uses it's own custom enclosure with a slide out structure to which internal components mount. The BPS contains four internal growth chambers, each with a growing volume of more than 4 liters. Each of the growth chambers has active nutrient delivery, and independent control of temperature, humidity, lighting, and CO2 set-points. Temperature control is achieved using a thermoelectric heat exchanger system. Humidity control is achieved using a heat exchanger with a porous interface which can both humidify and dehumidify. The control software utilizes fuzzy logic for nonlinear, coupled temperature and humidity control. The fluorescent lighting system can be dimmed to provide a range of light levels. CO2 levels are controlled by injecting pure CO2 to the system based on input from an infrared gas analyzer. The unit currently does not scrub CO2, but has been designed to accept scrubber cartridges. In addition to providing environmental control, a number of features are included to facilitate science. The BPS chambers are sealed to allow CO2 and water vapor exchange measurements. The plant chambers can be removed to allow manipulation or sampling of specimens, and each chamber has gas/fluid sample ports. A video camera is provided for each chamber, and frame-grabs and complete environmental data for all science and hardware system sensors are stored on an internal hard drive. Data files can also be transferred to 3.5-inch disks using the front panel disk drive

  13. Shorea robusta: A sustainable biomass feedstock

    Directory of Open Access Journals (Sweden)

    Vishal Kumar Singh

    2016-09-01

    Full Text Available The biomass feedstock needs to be available in a manner that is sustainable as well as renewable. However, obtaining reliable and cost effective supplies of biomass feedstock produced in a sustainable manner can prove to be difficult. Traditional biomass, mainly in the form of fallen leaves, fuel wood or dried dung, has long been the renewable and sustainable energy source for cooking and heating. Present study accounts for the biomass of fallen leaves of Shorea robusta, also known as sal, sakhua or shala tree, in the campus of BIT Mesra (Ranchi. These leaves are being gathered and burnt rather than being sold commercially. They contain water to varying degrees which affects their energy content. Hence, measurement of moisture content is critical for its biomass assessment. The leaves were collected, weighed, oven dried at 100oC until constant weight, then dry sample was reweighed to calculate the moisture content that has been driven off. By subtraction of moisture content from the initial weight of leaves, biomass was calculated. Using Differential Scanning Calorimeter (DSC the heat content of the leaves was calculated and the elemental analysis of leaf was done by CHNSO elemental analyser. Further, total biomass and carbon content of Sal tree was calculated using allometric equations so as to make a comparison to the biomass stored in dried fallen leaves

  14. The Effect of CO2 Injection on Macroalgae Gelidium latifolium Biomass Growth Rate and Carbohydrate Content

    Directory of Open Access Journals (Sweden)

    Mujizat Kawaroe

    2016-06-01

    Full Text Available There are many species of macroalga grow in marine ecosystem and potentially as raw material for bioethanol resource. Bioethanol is a conversion result of carbohydrate, one of macroalgae biomass content. The exploration of macroalgae require information about  growth rate ability to determine availability in the nature. This research analyze growth rate and carbohydrate content of marine macroalga Gelidium latifolium on cultivation using varied injection of carbon dioxide and aeration. The treatments were control (K, 2000 cc CO2 injection and aeration (P1, 3000 cc CO2 injection and aeration (P2, 2000 cc CO2 injection without aeration (P3, and 3000 cc CO2 injection without aeration (P4. Samples weight were 3 gram in early cultivation on laboratorium scale for 42 days observation. The results showed that the daily growth rate Gelidium latifolium during the study ranged from 0.02-1.06%. The highest daily growth rate was 1.06±0.14% (P2. Carbohydrate yield was 18.23% in early cultivation then 19.40% (K and P2, 20.40% (P1, 16.87% (K3, and 16.40% (P4 after cultivation. The high of carbohydrates value may not guarantee the sustainable Gelidium latifolium biomass utilization as raw material for bioethanol production because of the low growth rate, thus it is necessary to modified and encourage cultivation method effectively. Keywords: CO2 injection, growth rate, carbohydrate, macroalgae, Gelidium latifolium

  15. Earthworms (Amynthas spp. increase common bean growth, microbial biomass, and soil respiration

    Directory of Open Access Journals (Sweden)

    Julierme Zimmer Barbosa

    2017-10-01

    Full Text Available Few studies have evaluated the effect of earthworms on plants and biological soil attributes, especially among legumes. The objective of this study was to evaluate the influence of earthworms (Amynthas spp. on growth in the common bean (Phaseolus vulgaris L. and on soil biological attributes. The experiment was conducted in a greenhouse using a completely randomized design with five treatments and eight repetitions. The treatments consisted of inoculation with five different quantities of earthworms of the genus Amynthas (0, 2, 4, 6, and 8 worms per pot. Each experimental unit consisted of a plastic pot containing 4 kg of soil and two common bean plants. The experiment was harvested 38 days after seedling emergence. Dry matter and plant height, soil respiration, microbial respiration, microbial biomass, and metabolic quotient were determined. Earthworm recovery in our study was high in number and mass, with all values above 91.6% and 89.1%, respectively. In addition, earthworm fresh biomass decreased only in the treatment that included eight earthworms per pot. The presence of earthworms increased the plant growth and improved soil biological properties, suggesting that agricultural practices that favor the presence of these organisms can be used to increase the production of common bean, and the increased soil CO2 emission caused by the earthworms can be partially offset by the addition of common bean crop residues to the soil.

  16. Metabolic efficiency in yeast Saccharomyces cerevisiae in relation to temperature dependent growth and biomass yield.

    Science.gov (United States)

    Zakhartsev, Maksim; Yang, Xuelian; Reuss, Matthias; Pörtner, Hans Otto

    2015-08-01

    Canonized view on temperature effects on growth rate of microorganisms is based on assumption of protein denaturation, which is not confirmed experimentally so far. We develop an alternative concept, which is based on view that limits of thermal tolerance are based on imbalance of cellular energy allocation. Therefore, we investigated growth suppression of yeast Saccharomyces cerevisiae in the supraoptimal temperature range (30-40°C), i.e. above optimal temperature (Topt). The maximal specific growth rate (μmax) of biomass, its concentration and yield on glucose (Yx/glc) were measured across the whole thermal window (5-40°C) of the yeast in batch anaerobic growth on glucose. Specific rate of glucose consumption, specific rate of glucose consumption for maintenance (mglc), true biomass yield on glucose (Yx/glc(true)), fractional conservation of substrate carbon in product and ATP yield on glucose (Yatp/glc) were estimated from the experimental data. There was a negative linear relationship between ATP, ADP and AMP concentrations and specific growth rate at any growth conditions, whilst the energy charge was always high (~0.83). There were two temperature regions where mglc differed 12-fold, which points to the existence of a 'low' (within 5-31°C) and a 'high' (within 33-40°C) metabolic mode regarding maintenance requirements. The rise from the low to high mode occurred at 31-32°C in step-wise manner and it was accompanied with onset of suppression of μmax. High mglc at supraoptimal temperatures indicates a significant reduction of scope for growth, due to high maintenance cost. Analysis of temperature dependencies of product formation efficiency and Yatp/glc revealed that the efficiency of energy metabolism approaches its lower limit at 26-31°C. This limit is reflected in the predetermined combination of Yx/glc(true), elemental biomass composition and degree of reduction of the growth substrate. Approaching the limit implies a reduction of the safety margin

  17. Increased biomass yield of Lactococcus lactis during energetically limited growth and respiratory conditions

    DEFF Research Database (Denmark)

    Købmann, Brian Jensen; Blank, Lars Mathias; Solem, Christian

    2008-01-01

    (glucose/mannose-specific phosphotransferase system). Amino acid catabolism could be excluded as the source of the additional ATP. Since mutants without a functional H+-ATPase produced less ATP under sugar starvation and respiratory conditions, the additional ATP yield appears to come partly from energy......Lactococcus lactis is known to be capable of respiration under aerobic conditions in the presence of haemin. In the present study the effect of respiration on ATP production during growth on different sugars was examined. With glucose as the sole carbon source, respiratory conditions in L. lactis...... MG1363 resulted in only a minor increase, 21%, in biomass yield. Since ATP production through substrate-level phosphorylation was essentially identical with and without respiration, the increased biomass yield was a result of energy-saving under respiratory conditions estimated to be 0.4 mol of ATP...

  18. Biomass and water storage dynamics of epiphytes in old-growth and secondary montane cloud forest stands in Costa Rica

    NARCIS (Netherlands)

    Koehler, L.; Tobon, C.; Frumau, K.F.A.; Bruijnzeel, L.A.

    2007-01-01

    Epiphytic biomass, canopy humus and associated canopy water storage capacity are known to vary greatly between old-growth tropical montane cloud forests but for regenerating forests such data are virtually absent. The present study was conducted in an old-growth cloud forest and in a 30-year-old

  19. Demographic controls of aboveground forest biomass across North America.

    Science.gov (United States)

    Vanderwel, Mark C; Zeng, Hongcheng; Caspersen, John P; Kunstler, Georges; Lichstein, Jeremy W

    2016-04-01

    Ecologists have limited understanding of how geographic variation in forest biomass arises from differences in growth and mortality at continental to global scales. Using forest inventories from across North America, we partitioned continental-scale variation in biomass growth and mortality rates of 49 tree species groups into (1) species-independent spatial effects and (2) inherent differences in demographic performance among species. Spatial factors that were separable from species composition explained 83% and 51% of the respective variation in growth and mortality. Moderate additional variation in mortality (26%) was attributable to differences in species composition. Age-dependent biomass models showed that variation in forest biomass can be explained primarily by spatial gradients in growth that were unrelated to species composition. Species-dependent patterns of mortality explained additional variation in biomass, with forests supporting less biomass when dominated by species that are highly susceptible to competition (e.g. Populus spp.) or to biotic disturbances (e.g. Abies balsamea). © 2016 John Wiley & Sons Ltd/CNRS.

  20. Bio energy: Production of Biomass; Produksjon av biomasse

    Energy Technology Data Exchange (ETDEWEB)

    Noreng, Katrina; Indergaard, Mentz; Liodden, Ole Joergen; Hohle, Erik Eid; Sandberg, Eiliv

    2001-07-01

    This is Chapter 2 of the book ''Bio energy - Environment, technique and market''. Its main sections are: (1) Biomass resources in Norway, (2) The foundation - photosynthesis, (3) Biomass from forestry, (4) Biomass from peat lands, (5) Biomass from agriculture and (6) Biomass from lakes and sea. The exposition largely describes the conditions in Norway, where the use of bio energy can be increased from 15 TWh to 35 TWh using available technology. At present, water-borne heating systems are not extensively used in Norway and 30% of the biomass that is cut in the forests remains there as waste. Using this waste for energy generation would not only contribute to reduce the emission of greenhouse gases, but would often lead to improved forest rejuvenation. Use of a few per thousand of the Norwegian peat lands would produce 2 - 3 TWh. According to calculations, along the coast of Norway, there are at least 15 mill tonnes of kelp and sea tangle and these resources can be utilized in a sustainable way.

  1. Growth, reproduction, mortality, distribution, and biomass of freshwater drum in Lake Erie

    Science.gov (United States)

    Bur, Michael T.

    1984-01-01

    Predominant age-groups in the Lake Erie freshwater drum Aplodinotus grunnienspopulation were 3, 4, and 5 as determined from gill net, trap net, bottom trawl, and midwater trawl samples. Age and growth calculations indicated that females grew faster than males. However, the length-weight relation did not differ between sexes and was described by the equation: log W = −5.4383 + 3.1987 log L. Some males became sexually mature at age 2 and all were mature by age 6. Females matured 1 year later than males. Three sizes of eggs were present in ovaries; the average total number was 127,000 per female for 20 females over a length range of 270 to 478 mm. Seasonal analysis of the ovary-body weight ratio indicated that spawning extended from June to August. A total annual mortality rate of 49% for drum aged 4 through 11 was derived from catch-curve analysis. Freshwater drum were widely distributed throughout Lake Erie in 1977–1979, the greatest concentration being in the western basin. They moved into warm, shallow water (less than 10 m deep) during summer, and returned to deeper water in late fall. Summer biomass estimates for the western basin, based on systematic surveys with bottom trawls, were 9,545 t in 1977 and 2,333 t in 1978.

  2. An empirical, integrated forest biomass monitoring system

    Science.gov (United States)

    Kennedy, Robert E.; Ohmann, Janet; Gregory, Matt; Roberts, Heather; Yang, Zhiqiang; Bell, David M.; Kane, Van; Hughes, M. Joseph; Cohen, Warren B.; Powell, Scott; Neeti, Neeti; Larrue, Tara; Hooper, Sam; Kane, Jonathan; Miller, David L.; Perkins, James; Braaten, Justin; Seidl, Rupert

    2018-02-01

    The fate of live forest biomass is largely controlled by growth and disturbance processes, both natural and anthropogenic. Thus, biomass monitoring strategies must characterize both the biomass of the forests at a given point in time and the dynamic processes that change it. Here, we describe and test an empirical monitoring system designed to meet those needs. Our system uses a mix of field data, statistical modeling, remotely-sensed time-series imagery, and small-footprint lidar data to build and evaluate maps of forest biomass. It ascribes biomass change to specific change agents, and attempts to capture the impact of uncertainty in methodology. We find that: • A common image framework for biomass estimation and for change detection allows for consistent comparison of both state and change processes controlling biomass dynamics. • Regional estimates of total biomass agree well with those from plot data alone. • The system tracks biomass densities up to 450-500 Mg ha-1 with little bias, but begins underestimating true biomass as densities increase further. • Scale considerations are important. Estimates at the 30 m grain size are noisy, but agreement at broad scales is good. Further investigation to determine the appropriate scales is underway. • Uncertainty from methodological choices is evident, but much smaller than uncertainty based on choice of allometric equation used to estimate biomass from tree data. • In this forest-dominated study area, growth and loss processes largely balance in most years, with loss processes dominated by human removal through harvest. In years with substantial fire activity, however, overall biomass loss greatly outpaces growth. Taken together, our methods represent a unique combination of elements foundational to an operational landscape-scale forest biomass monitoring program.

  3. The biomass file

    International Nuclear Information System (INIS)

    2010-01-01

    As biomass represents the main source of renewable energy to reach the 23 per cent objective in terms of energy consumption by 2020, a first article gives a synthetic overview of its definition, its origins, its possible uses, its share in the French energy mix, its role by 2020, strengths and weaknesses for its development, the growth potential of its market, and its implications in terms of employment. A second article outlines the assets of biomass, indicates the share of some crops in biomass energy production, and discusses the development of new resources and the possible energy valorisation of various by-products. Interviews about biomass market and development perspectives are proposed with representatives of institutions, energy industries and professional bodies concerned with biomass development and production. Other articles comments the slow development of biomass-based cogeneration, the coming into operation of a demonstration biomass roasting installation in Pau (France), the development potential of biogas in France, the project of bio natural gas vehicles in Lille, and the large development of biogas in Germany

  4. Controlled expression of pectic enzymes in Arabidopsis thaliana enhances biomass conversion without adverse effects on growth.

    Science.gov (United States)

    Tomassetti, Susanna; Pontiggia, Daniela; Verrascina, Ilaria; Reca, Ida Barbara; Francocci, Fedra; Salvi, Gianni; Cervone, Felice; Ferrari, Simone

    2015-04-01

    Lignocellulosic biomass from agriculture wastes is a potential source of biofuel, but its use is currently limited by the recalcitrance of the plant cell wall to enzymatic digestion. Modification of the wall structural components can be a viable strategy to overcome this bottleneck. We have previously shown that the expression of a fungal polygalacturonase (pga2 from Aspergillus niger) in Arabidopsis and tobacco plants reduces the levels of de-esterified homogalacturonan in the cell wall and significantly increases saccharification efficiency. However, plants expressing pga2 show stunted growth and reduced biomass production, likely as a consequence of an extensive loss of pectin integrity during the whole plant life cycle. We report here that the expression in Arabidopsis of another pectic enzyme, the pectate lyase 1 (PL1) of Pectobacterium carotovorum, under the control of a chemically inducible promoter, results, after induction of the transgene, in a saccharification efficiency similar to that of plants expressing pga2. However, lines with high levels of transgene induction show reduced growth even in the absence of the inducer. To overcome the problem of plant fitness, we have generated Arabidopsis plants that express pga2 under the control of the promoter of SAG12, a gene expressed only during senescence. These plants expressed pga2 only at late stages of development, and their growth was comparable to that of WT plants. Notably, leaves and stems of transgenic plants were more easily digested by cellulase, compared to WT plants, only during senescence. Expression of cell wall-degrading enzymes at the end of the plant life cycle may be therefore a useful strategy to engineer crops unimpaired in biomass yield but improved for bioconversion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. An integrated microalgal growth model and its application to optimize the biomass production of Scenedesmus sp. LX1 in open pond under the nutrient level of domestic secondary effluent.

    Science.gov (United States)

    Wu, Yin-Hu; Li, Xin; Yu, Yin; Hu, Hong-Ying; Zhang, Tian-Yuan; Li, Feng-Min

    2013-09-01

    Microalgal growth is the key to the coupled system of wastewater treatment and microalgal biomass production. In this study, Monod model, Droop model and Steele model were incorporated to obtain an integrated growth model describing the combined effects of nitrogen, phosphorus and light intensity on the growth rate of Scenedesmus sp. LX1. The model parameters were obtained via fitting experimental data to these classical models. Furthermore, the biomass production of Scenedesmus sp. LX1 in open pond under nutrient level of secondary effluent was analyzed based on the integrated model, predicting a maximal microalgal biomass production rate about 20 g m(-2) d(-1). In order to optimize the biomass production of open pond the microalgal biomass concentration, light intensity on the surface of open pond, total depth of culture medium and hydraulic retention time should be 500 g m(-3), 16,000 lx, 0.2 m and 5.2 d in the conditions of this study, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. The use of flue gas for the growth of microalgal biomass

    International Nuclear Information System (INIS)

    Zeiler, K.G.; Kadam, K.L.; Heacox, D.A.

    1995-01-01

    Capture and utilization of carbon dioxide (CO 2 ) by microalgae is a promising technology to help reduce emissions from fossil fuel-fired power plants. Microalgae are of particular interest because of their rapid growth rates and tolerance to varying environmental conditions. Laboratory work is directed toward investigating the effects of simulated flue gas on microalgae, while engineering studies have focused on the economics of the technology. One strain of a green algae, Monoraphidium minutum, has shown excellent tolerance and growth when exposed to simulated flue gas which meets the requirements of the 1990 Clean Air Act Amendments (1990 CAAA). Biomass concentrations of ∼2g/L have been measured in batch culture. Several other microalgae have also shown tolerance to simulated flue gas; however, the growth of these strains is not equivalent to that observed for M. minutum. Coupling the production of biodiesel or other microalgae-derived commodity chemicals with the use of flue gas carbon dioxide is potentially a zero-cost method of reducing the amount of carbon dioxide contributed to the atmosphere by fossil fuel-fired power plants. We have identified two major biological performance parameters which can provide sufficient improvement in this technology to render it cost-competitive with other existing CO x mitigation technologies. These are algal growth rate and lipid content. An updated economic analysis shows that growth rate is the more important of the two, and should be the focus of near term research activities. The long term goal of achieving zero cost will require other, non-biological, improvements in the process

  7. The use of flue gas for the growth of microalgal biomass

    Energy Technology Data Exchange (ETDEWEB)

    Zeiler, K.G.; Kadam, K.L.; Heacox, D.A. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1995-11-01

    Capture and utilization of carbon dioxide (CO{sub 2}) by microalgae is a promising technology to help reduce emissions from fossil fuel-fired power plants. Microalgae are of particular interest because of their rapid growth rates and tolerance to varying environmental conditions. Laboratory work is directed toward investigating the effects of simulated flue gas on microalgae, while engineering studies have focused on the economics of the technology. One strain of a green algae, Monoraphidium minutum, has shown excellent tolerance and growth when exposed to simulated flue gas which meets the requirements of the 1990 Clean Air Act Amendments (1990 CAAA). Biomass concentrations of {similar_to}2g/L have been measured in batch culture. Several other microalgae have also shown tolerance to simulated flue gas; however, the growth of these strains is not equivalent to that observed for M. minutum. Coupling the production of biodiesel or other microalgae-derived commodity chemicals with the use of flue gas carbon dioxide is potentially a zero-cost method of reducing the amount of carbon dioxide contributed to the atmosphere by fossil fuel-fired power plants. We have identified two major biological performance parameters which can provide sufficient improvement in this technology to render it cost-competitive with other existing CO{sub x} mitigation technologies. These are algal growth rate and lipid content. An updated economic analysis shows that growth rate is the more important of the two, and should be the focus of near term research activities. The long term goal of achieving zero cost will require other, non-biological, improvements in the process.

  8. Biomass accumulation and radiation use efficiency of honey mesquite and eastern red cedar

    International Nuclear Information System (INIS)

    Kiniry, J.R.

    1998-01-01

    Rangeland models that simulate hydrology, soil erosion and nutrient balance can be used to select management systems which maximize profits for producers while they minimize adverse impacts on water quality. Values are needed for parameters that describe the growth of invading woody species in order to allow simulation of their competition with grasses. Three attributes useful for describing and quantifying plant growth are: the potential leaf area index (LAI) or ratio of leaf area divided by ground area; the light extinction coefficient (k) that is used to calculate the fraction of light intercepted by leaves, applying Beer’s law; and the radiation-use efficiency (RUE) or amount of dry biomass produced per unit of intercepted light. Objectives in this study were to measure LAI, k, and RUE for eastern red cedar (Juniperus virginiana L.) and honey mesquite (Prosopis glandulosa Torr. var. glandulosa), without competing plants, as a first step toward simulating their growth. Seedlings were planted in the field at Temple, Texas, USA in early 1992 and kept free of competition from herbaceous plants. During 1993, 1994 and 1995 data were collected on biomass, leaf area and intercepted photosynthetically active radiation (PAR) for individual trees. Both tree species showed exponential biomass increases. At the end of the 1995 growing season, mean LAI values were 1.16 for cedar and 1.25 for mesquite. Mean k values were 0.34 for mesquite and 0.37 for cedar. Radiation use efficiency for aboveground biomass was 1.60±0.17 (mean±standard deviation) g per MJ of intercepted PAR for cedar and 1.61±0.26 for mesquite. The rapid growth in 1995 was accompanied by greater leaf area and thus greater summed intercepted PAR. These values are critical for quantifying growth of these two species. (author)

  9. Effects of different sources of organic waste application on the growth and biomass production of kenaf (hibiscus cannabinus L.)

    International Nuclear Information System (INIS)

    Shahariara, M.S.; Tahsina, S.; Muhammad, S.; Gani, M.N.; Huq, I.

    2012-01-01

    The growth and biomass productivity of kenaf (Hibiscus cannabinus L.) grown with different sources of organic waste viz. sewage sludge, poultry litter, cow dung and rice straw application were observed in a field experiment. Organic wastes were applied at the rate of 5 t/ha and were compared with recommended dose of fertilizers and control. The plants were harvested at 120 days after sowing (at the flowering stage). Different sources of organic wastes had a significant effect (P cow dung>poultry litter > rice straw treatments. Among the four sources of organic wastes, sewage sludge treated plot produced the highest mean biomass of 23.33 t/ha (dry weight basis) which was 14.64% higher than the mean biomass production from control plot. (author)

  10. Effects of different sources of organic waste application on the growth and biomass production of kenaf (hibiscus cannabinus L.)

    International Nuclear Information System (INIS)

    Shahariar, M.S.; Tashin, S.; Gani, N.; Muhammad, S.; Huq, I.

    2012-01-01

    The growth and biomass productivity of kenaf(Hibiscus cannabinus L.) grown with different sources of organic waste viz. sewage sludge, poultry litter, cow dung and rice straw application were observed in a field experiment. Organic wastes were applied at the rate of 5 t/ha and were compared with recommended dose of fertilizers and control. The plants were harvested at 120 days after sowing (at the flowering stage). Different sources of organic wastes had a significant effect (P cow dung>poultry litter> rice straw treatments. Among the four sources of organic wastes, sewage sludge treated plot produced the highest mean biomass of 23.33 t/ha (dry weight basis) which was 14.64% higher than the mean biomass production from control plot. (author)

  11. Influence of crude glycerol on the biomass and lipid content of microalgae

    International Nuclear Information System (INIS)

    Choi, Hee-Jeong; Yu, Sung-Whan

    2015-01-01

    The growth of the algae Chlorella vulgaris, Botryococcus braunii and Scenedesmus sp. under mixotrophic conditions in the presence of different concentrations of crude glycerol was evaluated with the objective of increasing the biomass growth and algal oil content. A high biomass concentration was characteristic of these strains when grown on crude glycerol compared to autotrophic growth, and 5 g/L glycerol yielded the highest biomass concentration for these strains. Mixotrophic conditions improved both the growth of the microalgae and the accumulation of triacylglycerols (TAGs). The maximum amount of TAGs in the algae biomass was obtained in the 5 g/L glycerol growth medium. The fatty acid profiles of the oil for the cultures met the necessary requirements and the strains are promising resources for biofuel production. Keywords: biomass; glycerol; microalgae; mixotrophic; oil content

  12. Growth and biomass productivity of Scenedesmus vacuolatus on a twin layer system and a comparison with other types of cultivations.

    Science.gov (United States)

    Carbone, Dora Allegra; Olivieri, Giuseppe; Pollio, Antonino; Gabriele; Melkonian, Michael

    2017-12-01

    Scenedesmus is a genus of microalgae employed for several industrial uses. Industrial cultivations are performed in open ponds or in closed photobioreactors (PBRs). In the last years, a novel type of PBR based on immobilized microalgae has been developed termed porous substrate photobioreactors (PSBR) to achieve significant higher biomass density during cultivation in comparison to classical PBRs. This work presents a study of the growth of Scenedesmus vacuolatus in a Twin Layer System PSBR at different light intensities (600 μmol photons m -2  s -1 or 1000 μmol photons m -2  s -1 ), different types and concentrations of the nitrogen sources (nitrate or urea), and at two CO 2 levels in the gas phase (2% or 0.04% v/v). The microalgal growth was followed by monitoring the attached biomass density as dry weight, the specific growth rate and pigment accumulation. The highest productivity (29 g m -2 d -1 ) was observed at a light intensity of 600 μmol photons m -2  s -1 and 2% CO 2 . The types and concentrations of nitrogen sources did not influence the biomass productivity. Instead, the higher light intensity of 1000 μmol photons m -2  s -1 and an ambient CO 2 concentration (0.04%) resulted in a significant decrease of productivity to 18 and 10-12 g m -2 d -1 , respectively. When compared to the performance of similar cultivation systems (15-30 g m -2 d -1 ), these results indicate that the Twin Layer cultivation System is a competitive technique for intensified microalgal cultivation in terms of productivity and, at the same time, biomass density.

  13. The stability analysis of the nutrition restricted dynamic model of the microalgae biomass growth

    Science.gov (United States)

    Ratianingsih, R.; Fitriani, Nacong, N.; Resnawati, Mardlijah, Widodo, B.

    2018-03-01

    The biomass production is very essential in microalgae farming such that its growth rate is very important to be determined. This paper proposes the dynamics model of it that restricted by its nutrition. The model is developed by considers some related processes that are photosynthesis, respiration, nutrition absorption, stabilization, lipid synthesis and CO2 mobilization. The stability of the dynamical system that represents the processes is analyzed using the Jacobian matrix of the linearized system in the neighborhood of its critical point. There is a lipid formation threshold needed to require its existence. In such case, the absorption rate of respiration process has to be inversely proportional to the absorption rate of CO2 due to photosynthesis process. The Pontryagin minimal principal also shows that there are some requirements needed to have a stable critical point, such as the rate of CO2 released rate, due to the stabilization process that is restricted by 50%, and the threshold of its shifted critical point. In case of the rate of CO2 released rate due to the photosynthesis process is restricted in such interval; the stability of the model at the critical point could not be satisfied anymore. The simulation shows that the external nutrition plays a role in glucose formation such that sufficient for the biomass growth and the lipid production.

  14. Evaluation of SPOT imagery for the estimation of grassland biomass

    Science.gov (United States)

    Dusseux, P.; Hubert-Moy, L.; Corpetti, T.; Vertès, F.

    2015-06-01

    In many regions, a decrease in grasslands and change in their management, which are associated with agricultural intensification, have been observed in the last half-century. Such changes in agricultural practices have caused negative environmental effects that include water pollution, soil degradation and biodiversity loss. Moreover, climate-driven changes in grassland productivity could have serious consequences for the profitability of agriculture. The aim of this study was to assess the ability of remotely sensed data with high spatial resolution to estimate grassland biomass in agricultural areas. A vegetation index, namely the Normalized Difference Vegetation Index (NDVI), and two biophysical variables, the Leaf Area Index (LAI) and the fraction of Vegetation Cover (fCOVER) were computed using five SPOT images acquired during the growing season. In parallel, ground-based information on grassland growth was collected to calculate biomass values. The analysis of the relationship between the variables derived from the remotely sensed data and the biomass observed in the field shows that LAI outperforms NDVI and fCOVER to estimate biomass (R2 values of 0.68 against 0.30 and 0.50, respectively). The squared Pearson correlation coefficient between observed and estimated biomass using LAI derived from SPOT images reached 0.73. Biomass maps generated from remotely sensed data were then used to estimate grass reserves at the farm scale in the perspective of operational monitoring and forecasting.

  15. Media arrangement impacts cell growth in anaerobic fixed-bed reactors treating sugarcane vinasse: Structured vs. randomic biomass immobilization.

    Science.gov (United States)

    de Aquino, Samuel; Fuess, Lucas Tadeu; Pires, Eduardo Cleto

    2017-07-01

    This study reports on the application of an innovative structured-bed reactor (FVR) as an alternative to conventional packed-bed reactors (PBRs) to treat high-strength solid-rich wastewaters. Using the FVR prevents solids from accumulating within the fixed-bed, while maintaining the advantages of the biomass immobilization. The long-term operation (330days) of a FVR and a PBR applied to sugarcane vinasse under increasing organic loads (2.4-18.0kgCODm -3 day -1 ) was assessed, focusing on the impacts of the different media arrangements over the production and retention of biomass. Much higher organic matter degradation rates, as well as long-term operational stability and high conversion efficiencies (>80%) confirmed that the FVR performed better than the PBR. Despite the equivalent operating conditions, the biomass growth yield was different in both reactors, i.e., 0.095gVSSg -1 COD (FVR) and 0.066gVSSg -1 COD (PBR), indicating a clear control of the media arrangement over the biomass production in fixed-bed reactors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Growth, aboveground biomass, and nutrient concentration of young Scots pine and lodgepole pine in oil shale post-mining landscapes in Estonia.

    Science.gov (United States)

    Kuznetsova, Tatjana; Tilk, Mari; Pärn, Henn; Lukjanova, Aljona; Mandre, Malle

    2011-12-01

    The investigation was carried out in 8-year-old Scots pine (Pinus sylvestris L.) and lodgepole pine (Pinus contorta var. latifolia Engelm.) plantations on post-mining area, Northeast Estonia. The aim of the study was to assess the suitability of lodgepole pine for restoration of degraded lands by comparing the growth, biomass, and nutrient concentration of studied species. The height growth of trees was greater in the Scots pine stand, but the tree aboveground biomass was slightly larger in the lodgepole pine stand. The aboveground biomass allocation to the compartments did not differ significantly between species. The vertical distribution of compartments showed that 43.2% of the Scots pine needles were located in the middle layer of the crown, while 58.5% of the lodgepole pine needles were in the lowest layer of the crown. The largest share of the shoots and stem of both species was allocated to the lowest layer of the crown. For both species, the highest NPK concentrations were found in the needles and the lowest in the stems. On the basis of the present study results, it can be concluded that the early growth of Scots pine and lodgepole pine on oil shale post-mining landscapes is similar.

  17. High-EPA Biomass from Nannochloropsis salina Cultivated in a Flat-Panel Photo-Bioreactor on a Process Water-Enriched Growth Medium

    Directory of Open Access Journals (Sweden)

    Hamed Safafar

    2016-07-01

    Full Text Available Nannochloropsis salina was grown on a mixture of standard growth media and pre-gasified industrial process water representing effluent from a local biogas plant. The study aimed to investigate the effects of enriched growth media and cultivation time on nutritional composition of Nannochloropsis salina biomass, with a focus on eicosapentaenoic acid (EPA. Variations in fatty acid composition, lipids, protein, amino acids, tocopherols and pigments were studied and results compared to algae cultivated on F/2 media as reference. Mixed growth media and process water enhanced the nutritional quality of Nannochloropsis salina in laboratory scale when compared to algae cultivated in standard F/2 medium. Data from laboratory scale translated to the large scale using a 4000 L flat panel photo-bioreactor system. The algae growth rate in winter conditions in Denmark was slow, but results revealed that large-scale cultivation of Nannochloropsis salina at these conditions could improve the nutritional properties such as EPA, tocopherol, protein and carotenoids compared to laboratory-scale cultivated microalgae. EPA reached 44.2% ± 2.30% of total fatty acids, and α-tocopherol reached 431 ± 28 µg/g of biomass dry weight after 21 days of cultivation. Variations in chemical compositions of Nannochloropsis salina were studied during the course of cultivation. Nannochloropsis salina can be presented as a good candidate for winter time cultivation in Denmark. The resulting biomass is a rich source of EPA and also a good source of protein (amino acids, tocopherols and carotenoids for potential use in aquaculture feed industry.

  18. Nutritional value content, biomass production and growth performance of Daphnia magna cultured with different animal wastes resulted from probiotic bacteria fermentation

    Science.gov (United States)

    Endar Herawati, Vivi; Nugroho, R. A.; Pinandoyo; Hutabarat, Johannes

    2017-02-01

    Media culture is an important factor for the growth and quality of Daphnia magna nutrient value. This study has purpose to find the increasing of nutritional content, biomass production and growth performance of D. magna using different animal wastes fermented by probiotic bacteria. This study conducted using completely randomized experimental design with 10 treatments and 3 replicates. Those media used different animal manures such as chicken manure, goat manure and quail manure mixed by rejected bread and tofu waste fermented by probiotic bacteria then cultured for 24 days. The results showed that the media which used 50% chicken manure, 100% rejected bread and 50% tofu waste created the highest biomass production, population and nutrition content of D.magna about 2111788.9 ind/L for population; 342 grams biomass production and 68.85% protein content. The highest fatty acid profile is 6.37% of linoleic and the highest essential amino acid is 22.8% of lysine. Generally, the content of ammonia, DO, temperature, and pH during the study were in the good range of D. magna’s life. This research has conclusion that media used 50% chicken manure, 100% rejected bread and 50% tofu waste created the highest biomass production, population and nutrition content of D. magna.

  19. Growth conditions for the biomass yield of two methanol utilizing yeast spp. , Candida sp. and Rhodotorula sp

    Energy Technology Data Exchange (ETDEWEB)

    Hong, S.W.

    1976-01-01

    More than 580 MeOH utilizing yeasts were isolated from samples collected throughout South Korea. Of these, 2 strains showed good biomass yield and were selected and tentatively identified as Candida melinii and Rhodotorula glutinis glutinis. Experiments on growth conditions for these 2 species were performed. Optimum pH was 2.6 for Candida, 5.2 for Rhodotorula, and the temperature optimum was 28 to 30/sup 0/ for both. Maximum biomass yield was 4.32 g/L for Candida and 4.2l g/L for Rhodotorula. Optimum concentrations were (NH/sub 4/)/sub 2/SO/sub 4/ 0.3%, Mg/sup +/ 400 ppM, Fe/sup +/ 10 to 15 ppM for Candida and (NH/sub 4/)/sub 2/SO/sub 4/ 0.3% Mg/sup +/ 600 ppM Ca/sup +/ 2 ppM for Rhodotorula. Biotin stimulated Candida. Protein contents of the dry cell biomass were 39.3% in Candida and 44.0% in Rhodotorula.

  20. Effects of light and biomass partitioning on growth, photosynthesis and carbohydrate content of the seagrass Zostera nolti Hornem.

    NARCIS (Netherlands)

    Olivé, I.; Brun Murillo, F.G.; Vergara, J.J.; Pérez-Lloréns, J.J.

    2007-01-01

    Plants of the seagrass Zostera noltii were cultured in the laboratory (mesocosms) for two weeks to assess the effect of above:below-ground (AG/BG) biomass ratios and light on growth, photosynthesis and chemical composition. Experimental plant units (EPUs) with different proportions between AG and BG

  1. Biomass potential

    Energy Technology Data Exchange (ETDEWEB)

    Asplund, D [VTT Energy, Espoo (Finland)

    1997-12-31

    Biomass resources of the industrialised countries are enormous, if only a small fraction of set-aside fields were used for energy crops. Forest resources could also be utilised more efficiently than at present for large-scale energy production. The energy content of the annual net growth of the total wood biomass is estimated to be 180 million toe in Europe without the former USSR, and about 50 million toe of that in the EC area, in 1990. Presently, the harvesting methods of forest biomass for energy production are not yet generally competitive. Among the most promising methods are integrated harvesting methods, which supply both raw material to the industry and wood fuel for energy production. Several new methods for separate harvesting of energy wood are being developed in many countries. (orig.)

  2. Biomass potential

    Energy Technology Data Exchange (ETDEWEB)

    Asplund, D. [VTT Energy, Espoo (Finland)

    1996-12-31

    Biomass resources of the industrialised countries are enormous, if only a small fraction of set-aside fields were used for energy crops. Forest resources could also be utilised more efficiently than at present for large-scale energy production. The energy content of the annual net growth of the total wood biomass is estimated to be 180 million toe in Europe without the former USSR, and about 50 million toe of that in the EC area, in 1990. Presently, the harvesting methods of forest biomass for energy production are not yet generally competitive. Among the most promising methods are integrated harvesting methods, which supply both raw material to the industry and wood fuel for energy production. Several new methods for separate harvesting of energy wood are being developed in many countries. (orig.)

  3. Input of biomass in power plants for power generation. Calculation of the financial gap. Final report

    International Nuclear Information System (INIS)

    Van Tilburg, X.; De Vries, H.J.; Pfeiffer, A.E.; Cleijne, J.W.

    2005-09-01

    The Ministry of Economic Affairs has requested ECN and KEMA to answer two questions. (1) Are the costs and benefits of projects in which wood-pellets are co-fired in a coal fired power plant representative for those of bio-oil fueled co-firing projects in a gas fired plant?; and (2) Are new projects representative for existing projects? To answer these questions, ECN and KEMA have calculated the financial gaps in six different situations: co-firing bio-oil in a gas fired power plant; co-firing bio-oil in a coal fired power plant; gasification of solid biomass; co-firing wood pellets in a coal fired power plant; co-firing agricultural residues in a coal fired power plant; and co-firing waste wood (A- and B-grade) in a coal fired power plant. The ranges and reference cases show that co-firing bio-oil on average has a smaller financial gap than the solid biomass reference case. On average it can also be concluded that when using waste wood or agro-residues, the financial gaps are smaller. Based on these findings it is concluded that: (1) The reference case of co-firing wood pellets in a coal fired power plant are not representative for bio-fuel options. A new category for bio-oil options seems appropriate; and (2) The financial gap of new projects as calculated in November 2004, is often higher then the ranges for existing projects indicate [nl

  4. Sensitivity of growth and biomass allocation patterns to increasing nitrogen: a comparison between ephemerals and annuals in the Gurbantunggut Desert, north-western China.

    Science.gov (United States)

    Zhou, Xiaobing; Zhang, Yuanming; Niklas, Karl J

    2014-02-01

    Biomass accumulation and allocation patterns are critical to quantifying ecosystem dynamics. However, these patterns differ among species, and they can change in response to nutrient availability even among genetically related individuals. In order to understand this complexity further, this study examined three ephemeral species (with very short vegetative growth periods) and three annual species (with significantly longer vegetative growth periods) in the Gurbantunggut Desert, north-western China, to determine their responses to different nitrogen (N) supplements under natural conditions. Nitrogen was added to the soil at rates of 0, 0.5, 1.0, 3.0, 6.0 and 24.0 g N m(-2) year(-1). Plants were sampled at various intervals to measure relative growth rate and shoot and root dry mass. Compared with annuals, ephemerals grew more rapidly, increased shoot and root biomass with increasing N application rates and significantly decreased root/shoot ratios. Nevertheless, changes in the biomass allocation of some species (i.e. Erodium oxyrrhynchum) in response to the N treatment were largely a consequence of changes in overall plant size, which was inconsistent with an optimal partitioning model. An isometric log shoot vs. log root scaling relationship for the final biomass harvest was observed for each species and all annuals, while pooled data of three ephemerals showed an allometric scaling relationship. These results indicate that ephemerals and annuals differ observably in their biomass allocation patterns in response to soil N supplements, although an isometric log shoot vs. log root scaling relationship was maintained across all species. These findings highlight that different life history strategies behave differently in response to N application even when interspecific scaling relationships remain nearly isometric.

  5. Mathematical modeling and experimental validation of Phaeodactylum tricornutum microalgae growth rate with glycerol addition

    Energy Technology Data Exchange (ETDEWEB)

    Morais, Keli Cristiane Correia; Ribeiro, Robert Luis Lara; Santos, Kassiana Ribeiro dos; Mariano, Andre Bellin [Mariano Center for Research and Development of Sustainable Energy (NPDEAS), Curitiba, PR (Brazil); Vargas, Jose Viriato Coelho [Departament of Mechanical Engineering, Federal University of Parana (UFPR) Curitiba, PR (Brazil)

    2010-07-01

    The Brazilian National Program for Bio fuel Production has been encouraging diversification of feedstock for biofuel production. One of the most promising alternatives is the use of microalgae biomass for biofuel production. The cultivation of microalgae is conducted in aquatic systems, therefore microalgae oil production does not compete with agricultural land. Microalgae have greater photosynthetic efficiency than higher plants and are efficient fixing CO{sub 2}. The challenge is to reduce production costs, which can be minimized by increasing productivity and oil biomass. Aiming to increase the production of microalgae biomass, mixotrophic cultivation, with the addition of glycerol has been shown to be very promising. During the production of biodiesel from microalgae there is availability of glycerol as a side product of the transesterification reaction, which could be used as organic carbon source for microalgae mixotrophic growth, resulting in increased biomass productivity. In this paper, to study the effect of glycerol in experimental conditions, the batch culture of the diatom Phaeodactylum tricornutum was performed in a 2-liter flask in a temperature and light intensity controlled room. During 16 days of cultivation, the number of cells per ml was counted periodically in a Neubauer chamber. The calculation of dry biomass in the control experiment (without glycerol) was performed every two days by vacuum filtration. In the dry biomass mixotrophic experiment with glycerol concentration of 1.5 M, the number of cells was assessed similarly in the 10{sup th} and 14{sup th} days of cultivation. Through a volume element methodology, a mathematical model was written to calculate the microalgae growth rate. It was used an equation that describes the influence of irradiation and concentration of nutrients in the growth of microalgae. A simulation time of 16 days was used in the computations, with initial concentration of 0.1 g l{sup -1}. In order to compare

  6. Biomass resilience of Neotropical secondary forests.

    Science.gov (United States)

    Poorter, Lourens; Bongers, Frans; Aide, T Mitchell; Almeyda Zambrano, Angélica M; Balvanera, Patricia; Becknell, Justin M; Boukili, Vanessa; Brancalion, Pedro H S; Broadbent, Eben N; Chazdon, Robin L; Craven, Dylan; de Almeida-Cortez, Jarcilene S; Cabral, George A L; de Jong, Ben H J; Denslow, Julie S; Dent, Daisy H; DeWalt, Saara J; Dupuy, Juan M; Durán, Sandra M; Espírito-Santo, Mario M; Fandino, María C; César, Ricardo G; Hall, Jefferson S; Hernandez-Stefanoni, José Luis; Jakovac, Catarina C; Junqueira, André B; Kennard, Deborah; Letcher, Susan G; Licona, Juan-Carlos; Lohbeck, Madelon; Marín-Spiotta, Erika; Martínez-Ramos, Miguel; Massoca, Paulo; Meave, Jorge A; Mesquita, Rita; Mora, Francisco; Muñoz, Rodrigo; Muscarella, Robert; Nunes, Yule R F; Ochoa-Gaona, Susana; de Oliveira, Alexandre A; Orihuela-Belmonte, Edith; Peña-Claros, Marielos; Pérez-García, Eduardo A; Piotto, Daniel; Powers, Jennifer S; Rodríguez-Velázquez, Jorge; Romero-Pérez, I Eunice; Ruíz, Jorge; Saldarriaga, Juan G; Sanchez-Azofeifa, Arturo; Schwartz, Naomi B; Steininger, Marc K; Swenson, Nathan G; Toledo, Marisol; Uriarte, Maria; van Breugel, Michiel; van der Wal, Hans; Veloso, Maria D M; Vester, Hans F M; Vicentini, Alberto; Vieira, Ima C G; Bentos, Tony Vizcarra; Williamson, G Bruce; Rozendaal, Danaë M A

    2016-02-11

    Land-use change occurs nowhere more rapidly than in the tropics, where the imbalance between deforestation and forest regrowth has large consequences for the global carbon cycle. However, considerable uncertainty remains about the rate of biomass recovery in secondary forests, and how these rates are influenced by climate, landscape, and prior land use. Here we analyse aboveground biomass recovery during secondary succession in 45 forest sites and about 1,500 forest plots covering the major environmental gradients in the Neotropics. The studied secondary forests are highly productive and resilient. Aboveground biomass recovery after 20 years was on average 122 megagrams per hectare (Mg ha(-1)), corresponding to a net carbon uptake of 3.05 Mg C ha(-1) yr(-1), 11 times the uptake rate of old-growth forests. Aboveground biomass stocks took a median time of 66 years to recover to 90% of old-growth values. Aboveground biomass recovery after 20 years varied 11.3-fold (from 20 to 225 Mg ha(-1)) across sites, and this recovery increased with water availability (higher local rainfall and lower climatic water deficit). We present a biomass recovery map of Latin America, which illustrates geographical and climatic variation in carbon sequestration potential during forest regrowth. The map will support policies to minimize forest loss in areas where biomass resilience is naturally low (such as seasonally dry forest regions) and promote forest regeneration and restoration in humid tropical lowland areas with high biomass resilience.

  7. Growth and biomass productivity of kenaf (Hibiscus cannabinus, L.) under different agricultural inputs and management practices in central Greece

    NARCIS (Netherlands)

    Danalatos, N.G.; Archontoulis, S.V.

    2010-01-01

    The growth and biomass productivity of kenaf (Hibiscus cannabinus, L.) cultivars Tainung 2 and Everglades 41 were determined under three irrigation applications (low: 25%, moderate: 50% and fully: 100% of maximum evapotranspiration; ETm), four nitrogen dressings (0, 50, 100 and 150 kg hat), two

  8. Biomass and leaf-level gas exchange characteristics of three African savanna C4 grass species under optimum growth conditions

    NARCIS (Netherlands)

    Mantlana, K.B.; Veenendaal, E.M.; Arneth, A.; Grispen, V.; Bonyongo, C.M.; Heitkönig, I.M.A.; Lloyd, J.

    2009-01-01

    C4 savanna grass species, Digitaria eriantha, Eragrostis lehmanniana and Panicum repens, were grown under optimum growth conditions with the aim of characterizing their above- and below-ground biomass allocation and the response of their gas exchange to changes in light intensity, CO2 concentration

  9. Comparison of the growth and biomass production of Miscanthus sinensis, Miscanthus floridulus and Saccharum arundinaceum

    Energy Technology Data Exchange (ETDEWEB)

    Feng, X.; He, Y.; Fang, J.; Fang, Z.; Jiang, B.; Brancourt-Hulmel, M.; Zheng, B.; Jiang, D.

    2015-07-01

    Miscanthus and Saccharum are considered excellent candidates for bioenergy feedstock production. A field experiment was conducted in Zhejiang province of China to characterize the phenotypic differences in three species, two of Miscanthus (M. sinensis and M. floridulus) and one of Saccharum (S. arundinaceum), each with two accessions collected from China. Agronomical traits, including plant height, culm number, tuft diameter and culm diameter, were monitored monthly for the first 3 years of growth. For each year of trail, flowering time was observed and biomass yield was harvested. M. floridulus produced a superior biomass yield with increasing plant age associated with higher yields (4.18, 24.16 and 29.01 t dry matter/hain November of years one to three, respectively). Higher culm diameter, plant height and tuft diameter values were observed for M. floridulus when compared to the other species. Biomass yield was positively correlated to tuft diameter, culm diameter, culm number and negatively to flowering time, but it showed no correlation with plant height. Tuft diameter and culm diameter could be suitable indicators in the selection of accessions for crop yield at the yield-building phase. Studies of the primary colonizers of Miscanthus and Saccharum in their original location may be of interest from the perspective of bioenergy germplasm resource collection. (Author)

  10. Calculation of economic viability and environmental costs of biomass from dende oil for small communities of Brazilian northeast region

    International Nuclear Information System (INIS)

    Stecher, Luiza C.; Pacheco, Rafael R.; Sabundjian, Gaiane

    2015-01-01

    The current environmental problems caused by human activity has been gaining attention in society, i.e., as it has influenced in the growth and development of the global economic. The availability of energy resources is central point to economic development and the generation of energy is responsible for a significant portion of the emissions causing the greenhouse effect nowadays. The Brazil, a developing country, still has a large number of people without access to electricity, which affects the quality of life of individuals. In this context, it should think in the sustainable economic development, so the alternative energy sources emerge as an option for power generation. Can highlight biomass as a source in the Brazilian scenario by its wide availability and variety. Therefore, the objective of this work is to estimate the economic viability of the decentralized generation of electricity based on the use of biomass from dende oil in small communities in the Brazilian Northeast considering the environmental costs involved for the source in question. The methodology is based on economic concepts and economic evaluation of environmental resources. The biomass from dende oil was adopted in this work by its characteristics and availability in the studied region. The results show that the generation of energy by biomass from dende oil, it will contribute significantly to the sustainable development of the region, already that it will bring gains environmental, social and financial to society. (author)

  11. Calculation of economic viability and environmental costs of biomass from dende oil for small communities of Brazilian northeast region

    Energy Technology Data Exchange (ETDEWEB)

    Stecher, Luiza C.; Pacheco, Rafael R.; Sabundjian, Gaiane, E-mail: luizastecher@usp.br, E-mail: rafaelrade@gmail.com, E-mail: gdjian@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    The current environmental problems caused by human activity has been gaining attention in society, i.e., as it has influenced in the growth and development of the global economic. The availability of energy resources is central point to economic development and the generation of energy is responsible for a significant portion of the emissions causing the greenhouse effect nowadays. The Brazil, a developing country, still has a large number of people without access to electricity, which affects the quality of life of individuals. In this context, it should think in the sustainable economic development, so the alternative energy sources emerge as an option for power generation. Can highlight biomass as a source in the Brazilian scenario by its wide availability and variety. Therefore, the objective of this work is to estimate the economic viability of the decentralized generation of electricity based on the use of biomass from dende oil in small communities in the Brazilian Northeast considering the environmental costs involved for the source in question. The methodology is based on economic concepts and economic evaluation of environmental resources. The biomass from dende oil was adopted in this work by its characteristics and availability in the studied region. The results show that the generation of energy by biomass from dende oil, it will contribute significantly to the sustainable development of the region, already that it will bring gains environmental, social and financial to society. (author)

  12. Modeling Forest Biomass and Growth: Coupling Long-Term Inventory and Lidar Data

    Science.gov (United States)

    Babcock, Chad; Finley, Andrew O.; Cook, Bruce D.; Weiskittel, Andrew; Woodall, Christopher W.

    2016-01-01

    Combining spatially-explicit long-term forest inventory and remotely sensed information from Light Detection and Ranging (LiDAR) datasets through statistical models can be a powerful tool for predicting and mapping above-ground biomass (AGB) at a range of geographic scales. We present and examine a novel modeling approach to improve prediction of AGB and estimate AGB growth using LiDAR data. The proposed model accommodates temporal misalignment between field measurements and remotely sensed data-a problem pervasive in such settings-by including multiple time-indexed measurements at plot locations to estimate AGB growth. We pursue a Bayesian modeling framework that allows for appropriately complex parameter associations and uncertainty propagation through to prediction. Specifically, we identify a space-varying coefficients model to predict and map AGB and its associated growth simultaneously. The proposed model is assessed using LiDAR data acquired from NASA Goddard's LiDAR, Hyper-spectral & Thermal imager and field inventory data from the Penobscot Experimental Forest in Bradley, Maine. The proposed model outperformed the time-invariant counterpart models in predictive performance as indicated by a substantial reduction in root mean squared error. The proposed model adequately accounts for temporal misalignment through the estimation of forest AGB growth and accommodates residual spatial dependence. Results from this analysis suggest that future AGB models informed using remotely sensed data, such as LiDAR, may be improved by adapting traditional modeling frameworks to account for temporal misalignment and spatial dependence using random effects.

  13. A Model of the Effect of the Microbial Biomass on the Isotherm of the Fermenting Solids in Solid-State Fermentation

    Directory of Open Access Journals (Sweden)

    Barbara Celuppi Marques

    2006-01-01

    Full Text Available We compare isotherms for soybeans and soybeans fermented with Rhizopus oryzae, showing that in solid-state fermentation the biomass affects the isotherm of the fermenting solids. Equations are developed to calculate, for a given overall water content of the fermenting solids, the water contents of the biomass and residual substrate, as well as the water activity. A case study, undertaken using a mathematical model of a well-mixed bioreactor, shows that if water additions are made on the basis of the assumption that fermenting solids have the same isotherm as the substrate itself, poor growth can result since the added water does not maintain the water activity at levels favorable for growth. We conclude that the effect of the microbial biomass on the isotherm of the fermenting solids must be taken into account in mathematical models of solid-state fermentation bioreactors.

  14. Liquid biofuels from blue biomass

    DEFF Research Database (Denmark)

    Kádár, Zsófia; Jensen, Annette Eva; Bangsø Nielsen, Henrik

    2011-01-01

    Marine (blue) biomasses, such as macroalgaes, represent a huge unexploited amount of biomass. With their various chemical compositions, macroalgaes can be a potential substrate for food, feed, biomaterials, pharmaceuticals, health care products and also for bioenergy. Algae use seawater as a growth...... medium, light as energy source and they capture CO2 for the synthesis of new organic material, thus can grow on non-agricultural land, without increasing food prices, or using fresh water. Due to all these advantages in addition to very high biomass yield with high carbohydrate content, macroalgaes can...

  15. Effects of biofloc promotion on water quality, growth, biomass yield and heterotrophic community in Litopenaeus vannamei (Boone, 1931 experimental intensive cultures

    Directory of Open Access Journals (Sweden)

    Irasema E. Luis-Villaseñor

    2015-08-01

    Full Text Available Six 1.2-m3 tanks were stocked with an initial biomass of 500 g m-3 of Litopenaeus vannamei juveniles (individual weight: 1.0±0.3 g, to evaluate the effect of biofloc promotion on water quality and on shrimp growth and production, and to identify the dominant taxa in the heterotrophic communities present in experimental closed cultures. Feeding was ad libitum twice daily with 35% protein shrimp feed. Three tanks were managed as biofloc technology (BFT systems, adding daily an amount of cornmeal equivalent to 50% of the shrimp feed supplied. The remaining three received only shrimp feed and served as controls. Experiment lasted 21 days. The mean concentrations of P-PO4 3- and inorganic dissolved N species (TAN, N-NO2 -, N-NO3 - were significantly lower (P<0.5 in BFT than in the control. The individual final weight, increase in biomass, food, and protein conversion rates were significantly better in BFT than in the control (P<0.05. The mean N content of the shrimp biomass gained in the BFT cultures was equivalent to 45.7% of the protein-N added as feed, and was significantly higher than the 34.7% recycled into shrimp biomass in the control cultures. Bacterial concentrations were not significantly different. Vibrionaceae dominated in both systems; in both some isolates were potential pathogens, and diversity was higher in the control than in the BFT treatment. The advantages of BFT technology are confirmed by the significantly lower TAN and N-NO2 - concentrations, as well as by the better shrimp performance in terms of growth, biomass yield, and food and protein conversion efficiency.

  16. Influence of mechanical disintegration on the microbial growth of aerobic sludge biomass: A comparative study of ultrasonic and shear gap homogenizers by oxygen uptake measurements.

    Science.gov (United States)

    Divyalakshmi, P; Murugan, D; Sivarajan, M; Saravanan, P; Lajapathi Rai, C

    2015-11-01

    Wastewater treatment plant incorporates physical, chemical and biological processes to treat and remove the contaminants. The main drawback of conventional activated sludge process is the huge production of excess sludge, which is an unavoidable byproduct. The treatment and disposal of excess sludge costs about 60% of the total operating cost. The ideal way to reduce excess sludge production during wastewater treatment is by preventing biomass formation within the aerobic treatment train rather than post treatment of the generated sludge. In the present investigation two different mechanical devices namely, Ultrasonic and Shear Gap homogenizers have been employed to disintegrate the aerobic biomass. This study is intended to restrict the multiplication of microbial biomass and at the same time degrade the organics present in wastewater by increasing the oxidative capacity of microorganisms. The disintegrability on biomass was determined by biochemical methods. Degree of inactivation provides the information on inability of microorganisms to consume oxygen upon disruption. The soluble COD quantifies the extent of release of intra cellular compounds. The participation of disintegrated microorganism in wastewater treatment process was carried out in two identical respirometeric reactors. The results show that Ultrasonic homogenizer is very effective in the disruption of microorganisms leading to a maximum microbial growth reduction of 27%. On the other hand, Shear gap homogenizer does not favor the sludge growth reduction rather it facilitates the growth. This study also shows that for better microbial growth reduction, floc size reduction alone is not sufficient but also microbial disruption is essential. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Solid biomass barometer

    International Nuclear Information System (INIS)

    Anon.

    2009-01-01

    The economic and financial crisis has not brought solid biomass energy growth to a standstill. Primary energy production in the European Union member states increased in 2008 by 2,3%, which represents a gain of 1,5% million tonnes of oil equivalent over 2007. This growth was particularly marked in electricity production which increased output by 10,8% over 2007, an additional 5,6 TWh. (A.L.B.)

  18. LCA from Biomass Powerplants: from Soil to Electricity

    OpenAIRE

    François , Jessica; Fortin , Mathieu; Patisson , Fabrice; Mauviel , Guillain; Feidt , Michel; Rogaume , Caroline; Rogaume , Yann; Mirgaux , Olivier; Dufour , Anthony

    2013-01-01

    International audience; Biomass is one of the most promising renewable energy. The sustainability of biomass to energy chains needs to be assessed from the soil, including forest management, to the biomass valorization process. A strategy is presented to model the whole life cycle inventory of power production from biomass (beech). The forest growth, management and the wood valorization chain (including pulp, timber, etc., and energy) are modeled by a dedicated platform (called "CAPSIS"). It ...

  19. Biofertilizer potential of residual biomass of Akk (alotropis procera (Ait.))

    International Nuclear Information System (INIS)

    Ahmad, N.

    2016-01-01

    The biofertilizer potential of residual biomass, derived from two parts that is flowers and leaves of Akk,was investigated in terms of its applications as a substrate for phyto-beneficial bacterial growth and subsequent inorganic phosphate solubilizing agent. The residual biomass was obtained after the extraction of antioxidants from the leaves and flowers of Akk using different solvent systems. The treatment with residual biomass of Akk (RBA) significantly (p<0.05) enhanced the growth of Enterobacter sp. Fs-11 and Rhizobium sp. E-11 as compared to control (without residual biomass). Maximum microbial growth in terms of optical density (0.92-1.22) was observed for residual biomass sample extracted with aqueous acetone against the control (0.58-0.68). On the other hand, maximum phosphate solubilization (589.27-611.32 mu g mL-1) was recorded for aqueous ethanol extracted residual biomass while the minimum (246.31-382.15 micro g) for aqueous acetone extracted residual biomass against the control (576.65 micro g mL-1). The present study revealed that the tested RBA can be explored as an effective bio-inoculant to supplement synthetic inorganic phosphate fertilizers. However, some appropriate in-vitro assays should be conducted to optimize and standardize the quantity and mesh size of residual biomass prior to use in biofertilizer production as carrier material. (author)

  20. Methanol from biomass and hydrogen

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    For Hawaii in the near term, the only liquid fuels indigenous sources will be those that can be made from biomass, and of these, methanol is the most promising. In addition, hydrogen produced by electrolysis can be used to markedly increase the yield of biomass methanol. This paper calculates cost of producing methanol by an integrated system including a geothermal electricity facility plus a plant producing methanol by gasifying biomass and adding hydrogen produced by electrolysis. Other studies cover methanol from biomass without added hydrogen and methanol from biomass by steam and carbon dioxide reforming. Methanol is made in a two-step process: the first is the gasification of biomass by partial oxidation with pure oxygen to produce carbon oxides and hydrogen, and the second is the reaction of gases to form methanol. Geothermal steam is used to generate the electricity used for the electrolysis to produce the added hydrogen

  1. Microbial biodiesel production from oil palm biomass hydrolysate using marine Rhodococcus sp. YHY01.

    Science.gov (United States)

    Bhatia, Shashi Kant; Kim, Junyoung; Song, Hun-Seok; Kim, Hyun Joong; Jeon, Jong-Min; Sathiyanarayanan, Ganesan; Yoon, Jeong-Jun; Park, Kyungmoon; Kim, Yun-Gon; Yang, Yung-Hun

    2017-06-01

    The effect of various biomass derived inhibitors (i.e. furfural, hydroxymethylfurfural (HMF), vanillin, 4-hydroxy benzaldehyde (4-HB) and acetate) was investigated for fatty acid accumulation in Rhodococcus sp. YHY 01. Rhodococcus sp. YHY01 was able to utilize acetate, vanillin, and 4-HB for biomass production and fatty acid accumulation. The IC 50 value for furfural (3.1mM), HMF (3.2mM), vanillin (2.0mM), 4-HB (2.7mM) and acetate (3.7mM) was calculated. HMF and vanillin affect fatty acid composition and increase saturated fatty acid content. Rhodococcus sp. YHY 01 cultured with empty fruit bunch hydrolysate (EFBH) as the main carbon source resulted in enhanced biomass (20%) and fatty acid productivity (37%), in compression to glucose as a carbon source. Overall, this study showed the beneficial effects of inhibitory molecules on growth and fatty acid production, and support the idea of biomass hydrolysate utilization for biodiesel production by avoiding complex efforts to remove inhibitory compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. The Effect of Fermentation Time with Probiotic Bacteria on Organic Fertilizer as Daphnia magna Cultured Medium towards Nutrient Quality, Biomass Production and Growth Performance Enhancement

    Science.gov (United States)

    Endar Herawati, Vivi; Agung Nugroho, Ristiawan; Pinandoyo; Darmanto, YS; Hutabarat, Johannes

    2018-02-01

    The nutrient quality and growth performance of D. magna are highly depend on the organic fertilizer which is used in its culture medium. The objective of this study was to identify the best fermentation time by using probiotic bacteria on organic fertilizer as mass culture medium to improve its nutrient quality, biomass production, and growth performance. This study was conducted using completely randomized experimental design with five treatments and three repetitions. Organic fertilizers used cultured medium with chicken manure, rejected bread and tofu waste fermented by probiotic bacteria then cultured for 0, 7, 14, 21 and 28 days. The results showed that medium which used 25% chicken manure, 25% tofu waste and 50% rejected bread cultured for 28 days created the highest biomass production, population density and nutrient content of D. magna those are 233,980 ind/L for population density; 134.60 grams for biomass production, 0.574% specific growth rate; 68.06% protein content and 6.91% fat. The highest fatty acid profile is 4.83% linoleic and 3.54% linolenic acid. The highest essential amino acid is 53.94 ppm lysine. In general, the content of ammonia, DO, temperature, and pH during the study were in the good range of D. magna life. The conclusion of this research is medium which used 25% chicken manure, 25% tofu waste and 50% rejected bread cultured for 28 days created the highest biomass production, population and nutrient content of D. magna.

  3. Comparison of biomass productivity and nitrogen fixing potential of Azolla SPP

    Energy Technology Data Exchange (ETDEWEB)

    Arora, A.; Singh, P.K. [Indian Agricultural Research Inst., New Delhi (India)

    2003-03-01

    Study was conducted on six different Azolla species, available in the germplasm collection of NCCUBGA, IARI, New Delhi namely A. filiculoides, A. mexicana, A. microphylla, A. pinnata, A. rubra and A. caroliniana in a polyhouse to assess their growth potential by determining their maximal biomass productivity, doubling time and relative growth rates. Their nitrogen fixing potential was assessed by acetylene reduction assay. Among them Azolla microphylla gave highest biomass production and relative growth rate followed by Azolla caroliniana. Both these had high nitrogenase activity also. Peak nitrogenase activity of these strains was found on 14th day of growth and it declined on further incubation. Azolla microphylla and Azolla rubra were more tolerant to salinity than others. On the other hand Azolla pinnata, which is endemic species found in India, exhibited low biomass production, relative growth rate and lower nitrogenase activity compared to other species. It was unable to sustain growth in saline medium. Under polyhouse conditions, A. microphylla was found to perform better than other cultures in terms of biomass productivity, N fixing ability and salt tolerance. Hence it is taken up for mass production.(author)

  4. Estimation of Viable Biomass In Wastewater And Activated Sludge By Determination of ATP, Oxygen Utilization Rate And FDA Hydrolysis

    DEFF Research Database (Denmark)

    Jørgensen, Poul-Erik; Eriksen, T.; Jensen, B.K.

    1992-01-01

    ATP content, oxygen utilization rate (OUR) and fluorescein diacetate (FDA) hydrolysis were tested for the ability to express the amount of viable biomass in wastewater and activated sludge. The relationship between biomass and these activity parameters was established in growth cultures made...... with biomass, while FDA hydrolysis in the sludge failed to show any such correlation. Conversion factors of 3 mg ATP/g dw, 300 mg O2/h g dw and 0.4 A/h (mg dw/ml) for ATP, OUR and FDA methods, respectively, were calculated. When the methods were applied for in situ determinations in four different wastewater...... plants, it was found that ATP content and respiration rate estimated viable biomass to range from 81 to 293 mg dw/g SS for raw wastewater and from 67 to 187 mg dw/g SS for activated sludge with a rather weak correlation between ATP and respiration measurements. The FDA hydrolysis estimated viable biomass...

  5. Optical Properties of Biomass Burning Aerosols: Comparison of Experimental Measurements and T-Matrix Calculations

    Directory of Open Access Journals (Sweden)

    Samin Poudel

    2017-11-01

    Full Text Available The refractive index (RI is an important parameter in describing the radiative impacts of aerosols. It is important to constrain the RI of aerosol components, since there is still significant uncertainty regarding the RI of biomass burning aerosols. Experimentally measured extinction cross-sections, scattering cross-sections, and single scattering albedos for white pine biomass burning (BB aerosols under two different burning and sampling conditions were modeled using T-matrix theory. The refractive indices were extracted from these calculations. Experimental measurements were conducted using a cavity ring-down spectrometer to measure the extinction, and a nephelometer to measure the scattering of size-selected aerosols. BB aerosols were obtained by burning white pine using (1 an open fire in a burn drum, where the aerosols were collected in distilled water using an impinger, and then re-aerosolized after several days, and (2 a tube furnace to directly introduce the BB aerosols into an indoor smog chamber, where BB aerosols were then sampled directly. In both cases, filter samples were also collected, and electron microscopy images were used to obtain the morphology and size information used in the T-matrix calculations. The effective radius of the particles collected on filter media from the open fire was approximately 245 nm, whereas it was approximately 76 nm for particles from the tube furnace burns. For samples collected in distilled water, the real part of the RI increased with increasing particle size, and the imaginary part decreased. The imaginary part of the RI was also significantly larger than the reported values for fresh BB aerosol samples. For the particles generated in the tube furnace, the real part of the RI decreased with particle size, and the imaginary part was much smaller and nearly constant. The RI is sensitive to particle size and sampling method, but there was no wavelength dependence over the range considered (500

  6. Effect of biomass concentration on methane oxidation activity using mature compost and graphite granules as substrata.

    Science.gov (United States)

    Xie, S; O'Dwyer, T; Freguia, S; Pikaar, I; Clarke, W P

    2016-10-01

    Reported methane oxidation activity (MOA) varies widely for common landfill cover materials. Variation is expected due to differences in surface area, the composition of the substratum and culturing conditions. MOA per methanotrophic cell has been calculated in the study of natural systems such as lake sediments to examine the inherent conditions for methanotrophic activity. In this study, biomass normalised MOA (i.e., MOA per methanotophic cell) was measured on stabilised compost, a commonly used cover in landfills, and on graphite granules, an inert substratum widely used in microbial electrosynthesis studies. After initially enriching methanotrophs on both substrata, biomass normalised MOA was quantified under excess oxygen and limiting methane conditions in 160ml serum vials on both substrata and blends of the substrata. Biomass concentration was measured using the bicinchoninic acid assay for microbial protein. The biomass normalised MOA was consistent across all compost-to-graphite granules blends, but varied with time, reflecting the growth phase of the microorganisms. The biomass normalised MOA ranged from 0.069±0.006μmol CH4/mg dry biomass/h during active growth, to 0.024±0.001μmol CH4/mg dry biomass/h for established biofilms regardless of the substrata employed, indicating the substrata were equally effective in terms of inherent composition. The correlation of MOA with biomass is consistent with studies on methanotrophic activity in natural systems, but biomass normalised MOA varies by over 5 orders of magnitude between studies. This is partially due to different methods being used to quantify biomass, such as pmoA gene quantification and the culture dependent Most Probable Number method, but also indicates that long term exposure of materials to a supply of methane in an aerobic environment, as can occur in natural systems, leads to the enrichment and adaptation of types suitable for those conditions. Copyright © 2016 Elsevier Ltd. All rights

  7. New particle formation and growth in biomass burning plumes: An important source of cloud condensation nuclei

    Science.gov (United States)

    Hennigan, Christopher J.; Westervelt, Daniel M.; Riipinen, Ilona; Engelhart, Gabriella J.; Lee, Taehyoung; Collett, Jeffrey L., Jr.; Pandis, Spyros N.; Adams, Peter J.; Robinson, Allen L.

    2012-05-01

    Experiments were performed in an environmental chamber to characterize the effects of photo-chemical aging on biomass burning emissions. Photo-oxidation of dilute exhaust from combustion of 12 different North American fuels induced significant new particle formation that increased the particle number concentration by a factor of four (median value). The production of secondary organic aerosol caused these new particles to grow rapidly, significantly enhancing cloud condensation nuclei (CCN) concentrations. Using inputs derived from these new data, global model simulations predict that nucleation in photo-chemically aging fire plumes produces dramatically higher CCN concentrations over widespread areas of the southern hemisphere during the dry, burning season (Sept.-Oct.), improving model predictions of surface CCN concentrations. The annual indirect forcing from CCN resulting from nucleation and growth in biomass burning plumes is predicted to be -0.2 W m-2, demonstrating that this effect has a significant impact on climate that has not been previously considered.

  8. High-EPA Biomass from Nannochloropsis salina Cultivated in a Flat-Panel Photo-Bioreactor on a Process Water-Enriched Growth Medium

    DEFF Research Database (Denmark)

    Safafar, Hamed; Hass, Michael Z.; Møller, Per

    2016-01-01

    salina biomass, with a focus on eicosapentaenoic acid (EPA). Variations in fatty acid composition, lipids, protein, amino acids, tocopherols and pigments were studied and results compared to algae cultivated on F/2 media as reference. Mixed growth media and process water enhanced the nutritional quality...... of Nannochloropsis salina in laboratory scale when compared to algae cultivated in standard F/2 medium. Data from laboratory scale translated to the large scaleusing a 4000 L flat panel photo-bioreactor system. The algae growth rate in winter conditions in Denmark was slow, but results revealed that large...... after 21 days of cultivation. Variations in chemical compositions of Nannochloropsis salina were studied during the course of cultivation. Nannochloropsis salina can be presented as a good candidate for winter time cultivation in Denmark.The resulting biomass is a rich source of EPA and also a good...

  9. Spatial variation and prediction of forest biomass in a heterogeneous landscape

    Institute of Scientific and Technical Information of China (English)

    S.Lamsal; D.M.Rizzo; R.K.Meentemeyer

    2012-01-01

    Large areas assessments of forest biomass distribution are a challenge in heterogeneous landscapes,where variations in tree growth and species composition occur over short distances.In this study,we use statistical and geospatial modeling on densely sampled forest biomass data to analyze the relative importance of ecological and physiographic variables as determinants of spatial variation of forest biomass in the environmentally heterogeneous region of the Big Sur,California.We estimated biomass in 280 forest plots (one plot per 2.85 km2) and measured an array of ecological (vegetation community type,distance to edge,amount of surrounding non-forest vegetation,soil properties,fire history) and physiographic drivers (elevation,potential soil moisture and solar radiation,proximity to the coast) of tree growth at each plot location.Our geostatistical analyses revealed that biomass distribution is spatially structured and autocorrelated up to 3.1 km.Regression tree (RT) models showed that both physiographic and ecological factors influenced biomass distribution.Across randomly selected sample densities (sample size 112 to 280),ecological effects of vegetation community type and distance to forest edge,and physiographic effects of elevation,potentialsoil moisture and solar radiation were the most consistent predictors of biomass.Topographic moisture index and potential solar radiation had a positive effect on biomass,indicating the importance of topographicallymediated energy and moisture on plant growth and biomass accumulation.RT model explained 35% of the variation in biomass and spatially autocorrelated variation were retained in regession residuals.Regression kriging model,developed from RT combined with kriging of regression residuals,was used to map biomass across the Big Sur.This study demonstrates how statistical and geospatial modeling can be used to discriminate the relative importance of physiographic and ecologic effects on forest biomass and develop

  10. Experimental measurement of the biomass of Olea europaea L ...

    African Journals Online (AJOL)

    The C stock evaluation methodology made in this research and the calculation of biomass expansion factor can be considered as the first scientific contribution in estimating productivity, CO2 sequestration, carbon stocks and yield of olive groves. Key words: Biomass, biomass expansion factor, Intergovernmental Panel on ...

  11. Growth, biomass, and production of two small barbs (Barbus humilis and B. tanapelagius, Cyprinidae) and their role in the food web of Lake Tana (Ethiopia)

    NARCIS (Netherlands)

    Dejen, E.; Vijverberg, J.; Nagelkerke, L.A.J.; Sibbing, F.A.

    2009-01-01

    Growth, biomass and production of two small barbs (Barbus humilis and Barbus tanapelagius) and their role in the food web of Lake Tana were investigated. From length–frequency distribution of trawl monitoring surveys growth coefficient, F' values were estimated at 3.71–4.17 for B. humilis and

  12. Final Harvest of Above-Ground Biomass and Allometric Analysis of the Aspen FACE Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Mark E. Kubiske

    2013-04-15

    The Aspen FACE experiment, located at the US Forest Service Harshaw Research Facility in Oneida County, Wisconsin, exposes the intact canopies of model trembling aspen forests to increased concentrations of atmospheric CO2 and O3. The first full year of treatments was 1998 and final year of elevated CO2 and O3 treatments is scheduled for 2009. This proposal is to conduct an intensive, analytical harvest of the above-ground parts of 24 trees from each of the 12, 30 m diameter treatment plots (total of 288 trees) during June, July & August 2009. This above-ground harvest will be carefully coordinated with the below-ground harvest proposed by D.F. Karnosky et al. (2008 proposal to DOE). We propose to dissect harvested trees according to annual height growth increment and organ (main stem, branch orders, and leaves) for calculation of above-ground biomass production and allometric comparisons among aspen clones, species, and treatments. Additionally, we will collect fine root samples for DNA fingerprinting to quantify biomass production of individual aspen clones. This work will produce a thorough characterization of above-ground tree and stand growth and allocation above ground, and, in conjunction with the below ground harvest, total tree and stand biomass production, allocation, and allometry.

  13. Stochastic modelling of tree architecture and biomass allocation: application to teak (Tectona grandis L. f.), a tree species with polycyclic growth and leaf neoformation.

    Science.gov (United States)

    Tondjo, Kodjo; Brancheriau, Loïc; Sabatier, Sylvie; Kokutse, Adzo Dzifa; Kokou, Kouami; Jaeger, Marc; de Reffye, Philippe; Fourcaud, Thierry

    2018-06-08

    For a given genotype, the observed variability of tree forms results from the stochasticity of meristem functioning and from changing and heterogeneous environmental factors affecting biomass formation and allocation. In response to climate change, trees adapt their architecture by adjusting growth processes such as pre- and neoformation, as well as polycyclic growth. This is the case for the teak tree. The aim of this work was to adapt the plant model, GreenLab, in order to take into consideration both these processes using existing data on this tree species. This work adopted GreenLab formalism based on source-sink relationships at organ level that drive biomass production and partitioning within the whole plant over time. The stochastic aspect of phytomer production can be modelled by a Bernoulli process. The teak model was designed, parameterized and analysed using the architectural data from 2- to 5-year-old teak trees in open field stands. Growth and development parameters were identified, fitting the observed compound organic series with the theoretical series, using generalized least squares methods. Phytomer distributions of growth units and branching pattern varied depending on their axis category, i.e. their physiological age. These emerging properties were in accordance with the observed growth patterns and biomass allocation dynamics during a growing season marked by a short dry season. Annual growth patterns observed on teak, including shoot pre- and neoformation and polycyclism, were reproduced by the new version of the GreenLab model. However, further updating is discussed in order to ensure better consideration of radial variation in basic specific gravity of wood. Such upgrading of the model will enable teak ideotypes to be defined for improving wood production in terms of both volume and quality.

  14. Biomass Allocation and Growth Data of Seeded Plants

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set of leaf, stem, and root biomass for various plant taxa was compiled from the primary literature of the 20th century with a significant...

  15. Biomass Allocation and Growth Data of Seeded Plants

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set of leaf, stem, and root biomass for various plant taxa was compiled from the primary literature of the 20th century with a significant portion derived...

  16. Characterising willows for biomass and phytoremediation: growth, nitrogen and water use of 14 willow clones under different irrigation and fertilisation regimes

    International Nuclear Information System (INIS)

    Weih, Martin; Nordh, N.-E.

    2002-01-01

    Fourteen clones of willow (Salix spp.) were characterised in terms of growth, nitrogen and water-use efficiency under different irrigation and fertilisation treatments. Cuttings of willow clones, some commercially introduced and others new material, were pot-grown outdoors in Central Sweden under four experimental treatments in a full-factorial design. The experiment covered the period from bud-break until leaf abscission and the experimental conditions included two irrigation and two fertilisation regimes. The growth of the clones was evaluated in terms of relative growth rate and total biomass production of whole plants and shoots. Nitrogen (N) economy was studied by means of N productivity, N accumulation and N losses by leaf abscission. Water economy was analysed with respect to intrinsic water-use efficiency (foliar carbon isotope ratio; δ 13 C) and the capacity of leaves to retain water (relative water content). Significant differences between clones were found in nearly all parameters measured and the clones varied in the responses to the experimental treatments (clone x factor interaction effects). Thus, clone ranking often changed depending on the experimental treatment. The results are discussed with respect to clone selection for different willow applications such as biomass production and phytoremediation, and willow growth performance under different water and nutrient availabilities. The growth-physiological characterisation of young willows in the short term (several months) is regarded as a suitable approach for pre-selection of promising clones prior to extensive field evaluation

  17. Does chronic nitrogen deposition during biomass growth affect atmospheric emissions from biomass burning?

    Science.gov (United States)

    Michael R Giordano; Joey Chong; David R Weise; Akua A Asa-Awuku

    2016-01-01

    Chronic nitrogen deposition has measureable impacts on soil and plant health.We investigate burning emissions from biomass grown in areas of high and low NOx deposition. Gas and aerosolphase emissions were measured as a function of photochemical aging in an environmental chamber at UC-Riverside. Though aerosol chemical speciation was not...

  18. Growth, biomass, and production of two small barbs (Barbus humilis and B. tanapelagius, Cyprinidae) and their role in the food web of Lake Tana (Ethiopia)

    NARCIS (Netherlands)

    Dejen, E.; Vijverberg, J.; Nagelkerke, L.A.J.; Sibbing, F.A.

    2009-01-01

    Growth, biomass and production of two small barbs (Barbus humilis and Barbus tanapelagius) and their role in the food web of Lake Tana were investigated. From length–frequency distribution of trawl monitoring surveys growth coefficient, Φ′ values were estimated at 3.71–4.17 for B. humilis and

  19. Dynamics of Aviation Biofuel Investment, Incentives, and Market Growth: An Exploration Using the Biomass Scenario Model

    Energy Technology Data Exchange (ETDEWEB)

    Vimmerstedt, Laura; Newes, Emily

    2016-10-25

    The Federal Aviation Administration promotes the development of an aviation biofuel market, and has pursued a goal of 1 billion gallons of production annually by 2018. Although this goal is unlikely to be met, this analysis applies the Biomass Scenario Model to explore conditions affecting market growth, and identifies policy incentive and oil price conditions under which this level of production might occur, and by what year. Numerous combinations of conditions that are more favorable than current conditions can reach the goal before 2030.

  20. Effects of simultaneous ozone exposure and nitrogen loads on carbohydrate concentrations, biomass, and growth of young spruce trees (Picea abies)

    International Nuclear Information System (INIS)

    Thomas, V.F.D.; Braun, S.; Flueckiger, W.

    2005-01-01

    Spruce saplings were grown under different nitrogen fertilization regimes in eight chamberless fumigation systems, which were fumigated with either charcoal-filtered (F) or ambient air (O 3 ). After the third growing season trees were harvested for biomass and non-structural carbohydrate analysis. Nitrogen had an overall positive effect on the investigated plant parameters, resulting in increased shoot elongation, biomass production, fine root soluble carbohydrate concentrations, and also slightly increased starch concentrations of stems and roots. Only needle starch concentrations and fine root sugar alcohol concentrations were decreased. Ozone fumigation resulted in needle discolorations and affected most parameters negatively, including decreased shoot elongation and decreased starch concentrations in roots, stems, and needles. In fine roots, however, soluble carbohydrate concentrations remained unaffected or increased by ozone fumigation. The only significant interaction was an antagonistic effect on root starch concentrations, where higher nitrogen levels alleviated the negative impact of ozone. - Simultaneous ozone fumigation and nitrogen fertilization have no synergistic impacts on carbohydrate concentrations, biomass, or growth of Picea abies saplings

  1. Effects of anaerobic growth conditions on biomass accumulation, root morphology, and efficiencies of nutrient uptake and utilization in seedlings of some southern coastal plain pine species

    International Nuclear Information System (INIS)

    Topa, M.A.

    1984-01-01

    Seedlings of pond (Pinus serotina (Michx.)), sand (P. clausa (Engelm.) Sarg.), and loblolly pines (P. taeda L., drought-hardy and wet site seed sources) were grown in a non-circulating, continuously-flowing solution culture under anaerobic or aerobic conditions to determine the effects of anaerobics on overall growth, root morphology and efficiencies of nutrient uptake and utilization. Although shoot growth of the 11-week old loblolly and pond pines was not affected by anaerobic treatment, it did significantly reduce root biomass. Sand pine suffered the largest biomass reduction. Flooding tolerance was positively correlated with specific morphological changes which enhanced root internal aeration. Oxygen transport from shoot to the root in anaerobically-grown loblolly and pond pine seedlings was demonstrated via rhizosphere oxidation experiments. Tissue elemental analyses showed that anaerobic conditions interfered with nutrient absorption and utilization. Short-term 32 p uptake experiments with intact seedlings indicated that net absorption decreased because of the reduction in root biomass, since H 2 PO 4 - influx in the anaerobically-grown seedlings was more than twice that of their aerobic counterparts. Sand pine possessed the physiological but not morphological capacity to increase P uptake under anaerobic growth conditions. Pond and wet-site loblolly pine seedlings maintained root growth, perhaps through enhanced internal root aeration - an advantage in field conditions where the phosphorus supply may be limited or highly localized

  2. Analytical Methods for Biomass Characterization during Pretreatment and Bioconversion

    Energy Technology Data Exchange (ETDEWEB)

    Pu, Yunqiao [ORNL; Meng, Xianzhi [University of Tennessee, Knoxville (UTK); Yoo, Chang Geun; Li, Mi; Ragauskas, Arthur J [ORNL

    2016-01-01

    Lignocellulosic biomass has been introduced as a promising resource for alternative fuels and chemicals because of its abundance and complement for petroleum resources. Biomass is a complex biopolymer and its compositional and structural characteristics largely vary depending on its species as well as growth environments. Because of complexity and variety of biomass, understanding its physicochemical characteristics is a key for effective biomass utilization. Characterization of biomass does not only provide critical information of biomass during pretreatment and bioconversion, but also give valuable insights on how to utilize the biomass. For better understanding biomass characteristics, good grasp and proper selection of analytical methods are necessary. This chapter introduces existing analytical approaches that are widely employed for biomass characterization during biomass pretreatment and conversion process. Diverse analytical methods using Fourier transform infrared (FTIR) spectroscopy, gel permeation chromatography (GPC), and nuclear magnetic resonance (NMR) spectroscopy for biomass characterization are reviewed. In addition, biomass accessibility methods by analyzing surface properties of biomass are also summarized in this chapter.

  3. Photochemistry of the African troposphere: Influence of biomass-burning emissions

    Science.gov (United States)

    Marufu, L.; Dentener, F.; Lelieveld, J.; Andreae, M. O.; Helas, G.

    2000-06-01

    The relative importance of biomass-burning (pyrogenic) emissions from savannas, deforestation, agricultural waste burning, and biofuel consumption to tropospheric ozone abundance over Africa has been estimated for the year 1993, on the basis of global model calculations. We also calculated the importance of this emission source to tropospheric ozone in other regions of the world and compared it to different sources on the African regional and global scales. The estimated annual average total tropospheric ozone abundance over Africa for the reference year is 26 Tg. Pyrogenic, industrial, biogenic, and lightning emissions account for 16, 19, 12, and 27%, respectively, while stratospheric ozone input accounts for 26%. In the planetary boundary layer over Africa, the contribution by biomass burning is ˜24%. A large fraction of the African biomass-burning-related ozone is transported away from the continent. On a global scale, biomass burning contributes ˜9% to tropospheric ozone. Our model calculations suggest that Africa is the single most important region for biomass-burning-related tropospheric ozone, accounting for ˜35% of the global annual pyrogenic ozone enhancement of 29 Tg in 1993.

  4. OSCAAR calculations for the Hanford dose reconstruction scenario of BIOMASS Theme 2

    International Nuclear Information System (INIS)

    Homma, Toshimitsu; Tomita, Kenichi

    2000-10-01

    This report presents the results obtained from the application of the accident consequence assessment code, called OSCAAR, developed in Japan Atomic Energy Research Institute to the Hanford dose reconstruction scenario of BIOMASS Theme 2 organized by International Atomic Energy Agency. The scenario relates to an inadvertent release of 131 I to atmosphere from the Hanford Purex Chemical Separations Plant on 2-5 September 1963. This exercise was used to test the atmospheric dispersion and deposition models and food chain transport models for 131 I in OSCAAR with actual measurements and to identify the most important sources of uncertainty with respect both to the part of the assessment and to the overall assessment. The OSCAAR food chain model performed relatively well, while the atmospheric dispersion and deposition calculations made using wind data at the release height and wind fields by simple interpolation of the surrounding surface wind data indicated limited capabilities. The Monte Carlo based uncertainty and sensitivity method linked with OSCAAR successfully demonstrated its usefulness in the scenario. The method presented here also allowed the determination of the parameters that have the most important impact in accident consequence assessments. (author)

  5. OSCAAR calculations for the Hanford dose reconstruction scenario of BIOMASS Theme 2

    Energy Technology Data Exchange (ETDEWEB)

    Homma, Toshimitsu; Tomita, Kenichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Inoue, Yoshihisa [Visible Information Center Inc., Tokai, Ibaraki (Japan)

    2000-10-01

    This report presents the results obtained from the application of the accident consequence assessment code, called OSCAAR, developed in Japan Atomic Energy Research Institute to the Hanford dose reconstruction scenario of BIOMASS Theme 2 organized by International Atomic Energy Agency. The scenario relates to an inadvertent release of {sup 131}I to atmosphere from the Hanford Purex Chemical Separations Plant on 2-5 September 1963. This exercise was used to test the atmospheric dispersion and deposition models and food chain transport models for {sup 131}I in OSCAAR with actual measurements and to identify the most important sources of uncertainty with respect both to the part of the assessment and to the overall assessment. The OSCAAR food chain model performed relatively well, while the atmospheric dispersion and deposition calculations made using wind data at the release height and wind fields by simple interpolation of the surrounding surface wind data indicated limited capabilities. The Monte Carlo based uncertainty and sensitivity method linked with OSCAAR successfully demonstrated its usefulness in the scenario. The method presented here also allowed the determination of the parameters that have the most important impact in accident consequence assessments. (author)

  6. Alley cropping of legumes with grasses as forages : Effect of different grass species and row spacing of gliricidia on the growth and biomass production of forages

    Directory of Open Access Journals (Sweden)

    Siti Yuhaeni

    1998-12-01

    Full Text Available A study to evaluate the effect of different grass species and row spacing of gliricidia (Gliricidia sepium on the growth and biomass production of forages in an alley cropping system was conducted in two different agroclimatical zones i.e. Bogor, located at 500 m a .s .l . with an average annual rainfall of 3,112 nun/year and Sukabumi located at 900 m a .s .l . with an average annual rainfall of 1,402 mm/year . Both locations have low N, P, and K content and the soil is classified as acidic. The experimental design used was a split plot design with 3 replicates . The main plots were different grass species i.e. king grass (Pennisetum purpureum x P. typhoides and elephant grass (P. purpureum. The sub plots were the row spacing of gliricidia at 2, 3, 4, 6 m (1 hedgerows and 4 m (2 hedgerows. The results indicated that the growth and biomass production of grasses were significantly affected (P<0 .05 by the treatments in Bogor. The highest biomass productions was obtained from the 2 m row spacing which gave the highest dry matter production of grasses (1 .65 kg/hill and gliricidia (0 .086 kg/tree . In Sukabumi the growth and biomass production of grasses and gliricidia were also significantly affected by the treatments . The highest dry matter production was obtained with 2 m row spacing (dry matter of grasses and gliricidia were 1 .12 kg/hill and 0 .026 kg/tree, respectively . The result further indicated that biomass production of forages increased with the increase in gliricidia population. The alley cropping system wich is suitable for Bogor was the 2 m row spacing of gliricidia intercropped with either king or elephant grass and for Sukabumi 2 and 4 m (2 rows of gliricidia row spacing intercropped with king or elephant grass .

  7. Algal growth inhibition test results of 425 organic chemical substances

    DEFF Research Database (Denmark)

    Kusk, Kresten Ole; Christensen, Anne Munch; Nyholm, Niels

    2018-01-01

    The toxicity towards the algal species Pseudokirchneriella subcapitata of 425 organic chemical substances was tested in a growth inhibition test. Precautions were taken to prevent loss of the compounds from the water phase and the test system (closed test system, low biomass, shorter test duration......, silanized glass) and to keep pH constant by applying a higher alkalinity. Chemical phase distribution was modelled taking ionization, volatilisation, and adsorption to glass and biomass into consideration. If the modelled water concentration was below 90% of the nominal concentration the calculated EC...... values were corrected accordingly. The model helped to identify substances, where the calculated water concentration was too uncertain. Substances covering a wide range of physical-chemical properties and different modes of action were tested. Median effect concentrations (EC50) lower than 1000 mg/L were...

  8. Predictive modeling of biomass production by Chlorella vulgaris in a draft-tube airlift photobioreactor

    Directory of Open Access Journals (Sweden)

    Mohsen Mansouri

    2017-04-01

    Full Text Available The objective of this study was to investigate the growth rate of Chlorella vulgaris for CO2 biofixation and biomass production. Six mathematical growth models (Logistic, Gompertz, modified Gompertz, Baranyi, Morgan and Richards were used to evaluate the biomass productivity in continuous processes and to predict the following parameters of cell growth: lag phase duration (λ, maximum specific growth rate (μmax, and maximum cell concentration (Xmax. The low root-mean-square error (RMSE and high regression coefficients (R2 indicated that the models employed were well fitted to the experiment data and it could be regarded as enough to describe biomass production. Using statistical and physiological significance criteria, the Baranyi model was considered the most appropriate for quantifying biomass growth. The biological variables of this model are as follows: μmax=0.0309 h−1, λ=100 h, and Xmax=1.82 g/L.

  9. Slow growth rates of Amazonian trees: Consequences for carbon cycling

    Science.gov (United States)

    Vieira, Simone; Trumbore, Susan; Camargo, Plinio B.; Selhorst, Diogo; Chambers, Jeffrey Q.; Higuchi, Niro; Martinelli, Luiz Antonio

    2005-01-01

    Quantifying age structure and tree growth rate of Amazonian forests is essential for understanding their role in the carbon cycle. Here, we use radiocarbon dating and direct measurement of diameter increment to document unexpectedly slow growth rates for trees from three locations spanning the Brazilian Amazon basin. Central Amazon trees, averaging only ≈1mm/year diameter increment, grow half as fast as those from areas with more seasonal rainfall to the east and west. Slow growth rates mean that trees can attain great ages; across our sites we estimate 17-50% of trees with diameter >10 cm have ages exceeding 300 years. Whereas a few emergent trees that make up a large portion of the biomass grow faster, small trees that are more abundant grow slowly and attain ages of hundreds of years. The mean age of carbon in living trees (60-110 years) is within the range of or slightly longer than the mean residence time calculated from C inventory divided by annual C allocation to wood growth (40-100 years). Faster C turnover is observed in stands with overall higher rates of diameter increment and a larger fraction of the biomass in large, fast-growing trees. As a consequence, forests can recover biomass relatively quickly after disturbance, whereas recovering species composition may take many centuries. Carbon cycle models that apply a single turnover time for carbon in forest biomass do not account for variations in life strategy and therefore may overestimate the carbon sequestration potential of Amazon forests. PMID:16339903

  10. Yeast biomass production: a new approach in glucose-limited feeding strategy

    Directory of Open Access Journals (Sweden)

    Érika Durão Vieira

    2013-01-01

    Full Text Available The aim of this work was to implement experimentally a simple glucose-limited feeding strategy for yeast biomass production in a bubble column reactor based on a spreadsheet simulator suitable for industrial application. In biomass production process using Saccharomyces cerevisiae strains, one of the constraints is the strong tendency of these species to metabolize sugars anaerobically due to catabolite repression, leading to low values of biomass yield on substrate. The usual strategy to control this metabolic tendency is the use of a fed-batch process in which where the sugar source is fed incrementally and total sugar concentration in broth is maintained below a determined value. The simulator presented in this work was developed to control molasses feeding on the basis of a simple theoretical model in which has taken into account the nutritional growth needs of yeast cell and two input data: the theoretical specific growth rate and initial cell biomass. In experimental assay, a commercial baker's yeast strain and molasses as sugar source were used. Experimental results showed an overall biomass yield on substrate of 0.33, a biomass increase of 6.4 fold and a specific growth rate of 0.165 h-1 in contrast to the predicted value of 0.180 h-1 in the second stage simulation.

  11. Forest biomass variation in Southernmost Brazil: the impact of Araucaria trees.

    Science.gov (United States)

    Rosenfield, Milena Fermina; Souza, Alexandre F

    2014-03-01

    A variety of environmental and biotic factors determine vegetation growth and affect plant biomass accumulation. From temperature to species composition, aboveground biomass storage in forest ecosystems is influenced by a number of variables and usually presents a high spatial variability. With this focus, the aim of the study was to evaluate the variables affecting live aboveground forest biomass (AGB) in Subtropical Moist Forests of Southern Brazil, and to analyze the spatial distribution of biomass estimates. Data from a forest inventory performed in the State of Rio Grande do Sul, Southern Brazil, was used in the present study. Thirty-eight 1-ha plots were sampled and all trees with DBH > or = 9.5cm were included for biomass estimation. Values for aboveground biomass were obtained using published allometric equations. Environmental and biotic variables (elevation, rainfall, temperature, soils, stem density and species diversity) were obtained from the literature or calculated from the dataset. For the total dataset, mean AGB was 195.2 Mg/ha. Estimates differed between Broadleaf and Mixed Coniferous-Broadleaf forests: mean AGB was lower in Broadleaf Forests (AGB(BF)=118.9 Mg/ha) when compared to Mixed Forests (AGB(MF)=250.3 Mg/ha). There was a high spatial and local variability in our dataset, even within forest types. This condition is normal in tropical forests and is usually attributed to the presence of large trees. The explanatory multiple regressions were influenced mainly by elevation and explained 50.7% of the variation in AGB. Stem density, diversity and organic matter also influenced biomass variation. The results from our study showed a positive relationship between aboveground biomass and elevation. Therefore, higher values of AGB are located at higher elevations and subjected to cooler temperatures and wetter climate. There seems to be an important contribution of the coniferous species Araucaria angustifolia in Mixed Forest plots, as it presented

  12. Growth and biomass partitioning of mulungu seedlings in response to phosphorus fertilization and mycorrhizal inoculation

    Directory of Open Access Journals (Sweden)

    Tiago de Sousa Leite

    2014-12-01

    Full Text Available The objective of this work was to evaluate the initial growth and biomass partitioning of mulungu (Erythrina velutina Willd. seedlings under different rates of phosphorus in the presence and absence of arbuscular mycorrhizal fungi (FMA’s. A randomized blocks design in a 5 x 2 factorial arrangement was used, with four replicates and three plants per plot. Treatments consisted of five phosphorus rates (0, 50, 100, 150 and 200 mg.Kg soil-1, using as source the superphosphate fertilizer, and presence or absence of FMA’s. At 98 days after sowing (DAS, shoot height, stem diameter, leaf number, leaf chlorophyll index, leaf dry matter, stem dry matter, root dry matter, leaf area, Dickson quality index and height/stem diameter ratio were evaluated. The phosphorus rate of 200 mg.kg-1 proved to be the most efficient for production of Erythrina velutina seedlings, but with a significant reduction in the biological association of this plant with rhizobacteria. Biomass distribution within the different parts of the plants did not change with distinct rates of P, and there were no benefits in the use of FMA’s until 98 DAS.

  13. Effects of heavy-metal-contaminated soil on growth, phenology and biomass turnover of Hieracium piloselloides

    International Nuclear Information System (INIS)

    Ryser, Peter; Sauder, Wendy R.

    2006-01-01

    The effects of low levels of heavy metals on plant growth, biomass turnover and reproduction were investigated for Hieracium pilosella. Plants were grown for 12 weeks on substrates with different concentrations of heavy metals obtained by diluting contaminated soils with silica sand. To minimize effects of other soil factors, the substrates were limed, fertilized, and well watered. The more metal-contaminated soil the substrate contained, the lower the leaf production rate and the plant mass were, and the more the phenological development was delayed. Flowering phenology was very sensitive to metals. Leaf life span was reduced at the highest and the lowest metal levels, the latter being a result of advanced seed ripening. Even if the effect of low metal levels on plant growth may be small, the delayed and reduced reproduction may have large effects at population, community and ecosystem level, and contribute to rapid evolution of metal tolerance. - Flowering phenology shows a very sensitive response to heavy metal contamination of soils

  14. Energy analysis of biochemical conversion processes of biomass to bioethanol

    Energy Technology Data Exchange (ETDEWEB)

    Bakari, M.; Ngadi, M.; Bergthorson, T. [McGill Univ., Ste-Anne-de-Bellevue, PQ (Canada). Dept. of Bioresource Engineering

    2010-07-01

    Bioethanol is among the most promising of biofuels that can be produced from different biomass such as agricultural products, waste and byproducts. This paper reported on a study that examined the energy conversion of different groups of biomass to bioethanol, including lignocelluloses, starches and sugar. Biochemical conversion generally involves the breakdown of biomass to simple sugars using different pretreatment methods. The energy needed for the conversion steps was calculated in order to obtain mass and energy efficiencies for the conversions. Mass conversion ratios of corn, molasses and rice straw were calculated as 0.3396, 0.2300 and 0.2296 kg of bioethanol per kg of biomass, respectively. The energy efficiency of biochemical conversion of corn, molasses and rice straw was calculated as 28.57, 28.21 and 31.33 per cent, respectively. The results demonstrated that lignocelluloses can be efficiently converted with specific microorganisms such as Mucor indicus, Rhizopus oryzae using the Simultaneous Saccharification and Fermentation (SSF) methods.

  15. The effects of different sewage sludge amendment rates on the heavy metal bioaccumulation, growth and biomass of cucumbers (Cucumis sativus L.).

    Science.gov (United States)

    Eid, Ebrahem M; Alrumman, Sulaiman A; El-Bebany, Ahmed F; Hesham, Abd El-Latif; Taher, Mostafa A; Fawy, Khaled F

    2017-07-01

    When sewage sludge is incorrectly applied, it may adversely impact agro-system productivity. Thus, this study addresses the reaction of Cucumis sativus L. (cucumber) to different amendment rates (0, 10, 20, 30, 40 and 50 g kg -1 ) of sewage sludge in a greenhouse pot experiment, in which the plant growth, heavy metal uptake and biomass were evaluated. A randomized complete block design with six treatments and six replications was used as the experimental design. The soil electrical conductivity, organic matter and Cr, Fe, Zn and Ni concentrations increased, but the soil pH decreased in response to the sewage sludge applications. As approved by the Council of European Communities, all of the heavy metal concentrations in the sewage sludge were less than the permitted limit for applying sewage sludge to land. Generally, applications of sewage sludge of up to 40 g kg -1 resulted in a considerable increase in all of the morphometric parameters and biomass of cucumbers in contrast to plants grown on the control soil. Nevertheless, the cucumber shoot height; root length; number of leaves, internodes and fruits; leaf area; absolute growth rate and biomass decreased in response to 50 g kg -1 of sewage sludge. All of the heavy metal concentrations (except the Cu, Zn and Ni in the roots, Mn in the fruits and Pb in the stems) in different cucumber tissues increased with increasing sewage sludge application rates. However, all of the heavy metal concentrations (except the Cr and Fe in the roots, Fe in the leaves and Cu in the fruits) were within the normal range and did not reach phytotoxic levels. A characteristic of these cucumbers was that all of the heavy metals had a bioaccumulation factor sewage sludge used in this study could be considered for use as a fertilizer in cucumber production systems in Saudi Arabia and can also serve as a substitute method of sewage sludge disposal. Graphical Abstract The effects of different sewage sludge amendment rates on the heavy

  16. Parametric calculations of fatigue-crack growth in piping

    International Nuclear Information System (INIS)

    Simonen, F.A.; Goodrich, C.W.

    1983-06-01

    This study presents calculations of the growth of piping flaws produced by fatigue. Flaw growth was predicted as a function of the initial flaw size, the level and number of stress cycles, the piping material, and environmental factors. The results indicate that the present flaw acceptance standards of ASME Section XI provide a relatively consistent set of allowable flaw sizes because the predicted life of flawed piping is relatively insensitive to pipe wall thickness, flaw aspect ratio, and piping material (ferritic versus austenitic). On the other hand, the results show that flaws that are acceptable under ASME Section XI can grow at unacceptable rates if the cyclic stresses are at the maximum level permitted by the design rules of ASME Section III. However, a review of the conservatisms inherent to the ASME code rules is presented to explain the low occurrence of piping fatigue failures in service. It is concluded that decreases in the allowable flaw sizes are not justified

  17. High-biomass C4 grasses-Filling the yield gap.

    Science.gov (United States)

    Mullet, John E

    2017-08-01

    A significant increase in agricultural productivity will be required by 2050 to meet the needs of an expanding and rapidly developing world population, without allocating more land and water resources to agriculture, and despite slowing rates of grain yield improvement. This review examines the proposition that high-biomass C 4 grasses could help fill the yield gap. High-biomass C 4 grasses exhibit high yield due to C 4 photosynthesis, long growth duration, and efficient capture and utilization of light, water, and nutrients. These C 4 grasses exhibit high levels of drought tolerance during their long vegetative growth phase ideal for crops grown in water-limited regions of agricultural production. The stems of some high-biomass C 4 grasses can accumulate high levels of non-structural carbohydrates that could be engineered to enhance biomass yield and utility as feedstocks for animals and biofuels production. The regulatory pathway that delays flowering of high-biomass C 4 grasses in long days has been elucidated enabling production and deployment of hybrids. Crop and landscape-scale modeling predict that utilization of high-biomass C 4 grass crops on land and in regions where water resources limit grain crop yield could increase agricultural productivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Multi-omics approach to study the growth efficiency and amino acid metabolism in Lactococcus lactis at various specific growth rates

    Directory of Open Access Journals (Sweden)

    Arike Liisa

    2011-02-01

    Full Text Available Abstract Background Lactococcus lactis is recognised as a safe (GRAS microorganism and has hence gained interest in numerous biotechnological approaches. As it is fastidious for several amino acids, optimization of processes which involve this organism requires a thorough understanding of its metabolic regulations during multisubstrate growth. Results Using glucose limited continuous cultivations, specific growth rate dependent metabolism of L. lactis including utilization of amino acids was studied based on extracellular metabolome, global transcriptome and proteome analysis. A new growth medium was designed with reduced amino acid concentrations to increase precision of measurements of consumption of amino acids. Consumption patterns were calculated for all 20 amino acids and measured carbon balance showed good fit of the data at all growth rates studied. It was observed that metabolism of L. lactis became more efficient with rising specific growth rate in the range 0.10 - 0.60 h-1, indicated by 30% increase in biomass yield based on glucose consumption, 50% increase in efficiency of nitrogen use for biomass synthesis, and 40% reduction in energy spilling. The latter was realized by decrease in the overall product formation and higher efficiency of incorporation of amino acids into biomass. L. lactis global transcriptome and proteome profiles showed good correlation supporting the general idea of transcription level control of bacterial metabolism, but the data indicated that substrate transport systems together with lower part of glycolysis in L. lactis were presumably under allosteric control. Conclusions The current study demonstrates advantages of the usage of strictly controlled continuous cultivation methods combined with multi-omics approach for quantitative understanding of amino acid and energy metabolism of L. lactis which is a valuable new knowledge for development of balanced growth media, gene manipulations for desired product

  19. Biomass energy development in California: Accomplishments and challenges

    International Nuclear Information System (INIS)

    Miller, W.G.

    1994-01-01

    The recent and rapid growth of biomass power development in California has created the largest contiguous biomass fueled electrical generating capacity in U.S. This growth has been fostered by resource availability, federal (PURPA) incentives, and the entrepeneurial response of independent power producers. California's environment has benefited from reduced air emissions, wildfire suppression, landfill reduction and the sequestering of carbon. The state has benefited economically through capital investment, employment for several thousand, and the generation of over $100 million in state and local tax revenues. Along with the benefits have come serious challenges brought about largely due to changes in the utility and regulatory environment. These changes threaten the continued existence and economic viability of the developed biomass power industry in California and threatens to establish national precedents. Specific issues are identified and recommended actions are presented

  20. Bioenergy Project Development and Biomass Supply

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Modern biomass, and the resulting useful forms of bioenergy produced from it, are anticipated by many advocates to provide a significant contribution to the global primary energy supply of many IEA member countries during the coming decades. For non-member countries, particularly those wishing to achieve economic growth as well as meet the goals for sustainable development, the deployment of modern bioenergy projects and the growing international trade in biomass-based energy carriers offer potential opportunities.

  1. Effect of growth regulator Kelpak SL on the formation of aboveground biomass of Festulolium braunii (K. Richt. A. Camus

    Directory of Open Access Journals (Sweden)

    Jacek Sosnowski

    2013-07-01

    Full Text Available A study on the cultivation of Festulolium braunii cv. 'Felopa' was carried out using polyurethane rings with a diameter of 36 cm and a height of 40 cm, which were sunk into the ground to a depth of 30 cm and filled with soil material. In this experiment, Kelpak SL was used as a bioregulator. It consists of natural plant hormones such as auxins (11 mg in dm3 and cytokinins (0.03 mg in dm3. The experimental factors were as follows: A1-control; A2 – 20% solution of the growth regulator; A3 – 40% solution; and A4 – 60% solution. The preparation was applied to all three regrowths in the form of spray, at a rate of 3 cm3 ring-1, at the stem elongation stage. The full period of this experiment was in the years 2010–2011. During this time, detailed investigations were carried out on aboveground biomass yield (g DM ring-1, number of shoots (pcs ring-1, leaf blade length (cm, width of the leaf blade base (mm, leaf greenness index (SPAD. The study showed a significant effect of the growth regulator on the formation of Festulolium braunii biomass. However, its highest effectiveness was observed when the 60% solution was applied.

  2. Growth characteristics and biomass production of kenaf | Tahery ...

    African Journals Online (AJOL)

    Parameters of height, diameter and internode were measured within four to six regular intervals of 10 to 15 days, while biomass production parameters of dry one meter stalk mass (DMSM), defoliated plant mass (DPM), one meter stalk mass (MSM) and fresh plant mass (FPM) were measured at harvest time. There was no ...

  3. Initial effects of quinclorac on the survival and growth of high biomass tree species

    Directory of Open Access Journals (Sweden)

    Joshua P. Adams

    2017-07-01

    Full Text Available Increasingly, short rotation woody crops are being planted for biofuel/biomass production on unused lands or marginal agricultural lands. Many of these plantations occur near agriculture land which is intensively managed including yearly herbicide applications. Herbicide drift from these applications may cause tree stress and decreasing yields impacting potential biomass production. Quinclorac, a rice herbicide, is often cited as a potential source of tree damage and is the focal herbicide of this study. Five planting stocks, including three eastern cottonwood clones, a hybrid poplar clone, and American sycamore, were assessed for herbicide affects and deployed at three sites across south Arkansas. Stocks were exposed to a full rate labeled for rice (3.175 L ha-1, two rates simulating drift (1/100th and 1/10th the full rate, and a no-spray control. Survival of all Populus clones decreased drastically as quinclorac rate increased, while there was little observed effect on American sycamore. Some variability in treatment response among poplars occurred below the full herbicide rate; however, direct spraying a full herbicide rate on poplars resulted in survival rates below 65 percent and negative growth rates due to dieback. Conversely, photosynthetic rates of remaining leaves increased as quinclorac rate increased. Survival and damage scores of American sycamore, regardless of herbicide rate, remained nearly constant.

  4. Growth, biomass production and ions accumulation in Atriplex nummularia Lindl grown under abiotic stress

    Directory of Open Access Journals (Sweden)

    Hidelblandi F. de Melo

    2016-02-01

    Full Text Available ABSTRACT Atriplex nummularia is a halophyte of great importance in the recovery of saline soils and is considered as a model plant to study biosaline scenarios. This study aimed to evaluate biometric parameters, biomass production and the accumulation of ions in A. nummularia grown under abiotic stresses. Cultivation was carried out in a Fluvic Neosol for 100 days, adopting two water regimes: 37 and 70% of field capacity. Plants were irrigated with saline solutions containing two types of salts (NaCl and a mixture of NaCl, KCl, MgCl2 and CaCl2 at six levels of electrical conductivity: 0, 5, 10, 20, 30 and 40 dS m-1, arranged in a 6 x 2 x 2 factorial with 4 replicates, forming 96 plots. At the end of the experiment, plants were divided into leaves, stem and roots, for the determination of fresh matter (FM, dry matter (DM and estimated leaf area (LA, besides the contents of Ca2+, Mg2+, Na+, K+ and Cl-. The type of salt did not influence plant growth or biomass production; however, it influenced the levels of Ca2+, Mg2+, Na+ and Cl- in the leaves and Mg2+, K+ and Cl- in the roots. Increase in salinity reduced the contents of Ca2+, Mg2+, Na+, K+ and Cl- for all treatments.

  5. Xylose isomerase improves growth and ethanol production rates from biomass sugars for both Saccharomyces pastorianus and Saccharomyces cerevisiae.

    Science.gov (United States)

    Miller, Kristen P; Gowtham, Yogender Kumar; Henson, J Michael; Harcum, Sarah W

    2012-01-01

    The demand for biofuel ethanol made from clean, renewable nonfood sources is growing. Cellulosic biomass, such as switch grass (Panicum virgatum L.), is an alternative feedstock for ethanol production; however, cellulosic feedstock hydrolysates contain high levels of xylose, which needs to be converted to ethanol to meet economic feasibility. In this study, the effects of xylose isomerase on cell growth and ethanol production from biomass sugars representative of switch grass were investigated using low cell density cultures. The lager yeast species Saccharomyces pastorianus was grown with immobilized xylose isomerase in the fermentation step to determine the impact of the glucose and xylose concentrations on the ethanol production rates. Ethanol production rates were improved due to xylose isomerase; however, the positive effect was not due solely to the conversion of xylose to xylulose. Xylose isomerase also has glucose isomerase activity, so to better understand the impact of the xylose isomerase on S. pastorianus, growth and ethanol production were examined in cultures provided fructose as the sole carbon. It was observed that growth and ethanol production rates were higher for the fructose cultures with xylose isomerase even in the absence of xylose. To determine whether the positive effects of xylose isomerase extended to other yeast species, a side-by-side comparison of S. pastorianus and Saccharomyces cerevisiae was conducted. These comparisons demonstrated that the xylose isomerase increased ethanol productivity for both the yeast species by increasing the glucose consumption rate. These results suggest that xylose isomerase can contribute to improved ethanol productivity, even without significant xylose conversion. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  6. Design of biomass district heating systems

    International Nuclear Information System (INIS)

    Vallios, Ioannis; Tsoutsos, Theocharis; Papadakis, George

    2009-01-01

    The biomass exploitation takes advantage of the agricultural, forest, and manure residues and in extent, urban and industrial wastes, which under controlled burning conditions, can generate heat and electricity, with limited environmental impacts. Biomass can - significantly - contribute in the energy supplying system, if the engineers will adopt the necessary design changes to the traditional systems and become more familiar with the design details of the biomass heating systems. The aim of this paper is to present a methodology of the design of biomass district heating systems taking into consideration the optimum design of building structure and urban settlement around the plant. The essential energy parameters are presented for the size calculations of a biomass burning-district heating system, as well as for the environmental (i.e. Greenhouse Gas Emissions) and economic evaluation (i.e. selectivity and viability of the relevant investment). Emphasis has been placed upon the technical parameters of the biomass system, the economic details of the boiler, the heating distribution network, the heat exchanger and the Greenhouse Gas Emissions

  7. Research and evaluation of biomass resources/conversion/utilization systems. Biomass allocation model. Volume 1: Test and appendices A & B

    Science.gov (United States)

    Stringer, R. P.; Ahn, Y. K.; Chen, H. T.; Helm, R. W.; Nelson, E. T.; Shields, K. J.

    1981-08-01

    A biomass allocation model was developed to show the most profitable combination of biomass feedstocks, thermochemical conversion processes, and fuel products to serve the seasonal conditions in a regional market. This optimization model provides a tool for quickly calculating which of a large number of potential biomass missions is the most profitable mission. Other components of the system serve as a convenient storage and retrieval mechanism for biomass marketing and thermochemical conversion processing data. The system can be accessed through the use of a computer terminal, or it could be adapted to a microprocessor. A User's Manual for the system is included. Biomass derived fuels included in the data base are the following: medium Btu gas, low Btu gas, substitute natural gas, ammonia, methanol, electricity, gasoline, and fuel oil.

  8. Energy potential of fruit tree pruned biomass in Croatia

    Energy Technology Data Exchange (ETDEWEB)

    Bilandzija, N.; Voca, N.; Kricka, T.; Martin, A.; Jurisic, V.

    2012-11-01

    The world's most developed countries and the European Union (EU) deem that the renewable energy sources should partly substitute fossil fuels and become a bridge to the utilization of other energy sources of the future. This paper will present the possibility of using pruned biomass from fruit cultivars. It will also present the calculation of potential energy from the mentioned raw materials in order to determine the extent of replacement of non-renewable sources with these types of renewable energy. One of the results of the intensive fruit-growing process, in post pruning stage, is large amount of pruned biomass waste. Based on the calculated biomass (kg ha{sup 1}) from intensively grown woody fruit crops that are most grown in Croatia (apple, pear, apricots, peach and nectarine, sweet cherry, sour cherry, prune, walnut, hazelnut, almond, fig, grapevine, and olive) and the analysis of combustible (carbon 45.55-49.28%, hydrogen 5.91-6.83%, and sulphur 0.18-0.21%) and non-combustible matters (oxygen 43.34-46.6%, nitrogen 0.54-1.05%, moisture 3.65-8.83%, ashes 1.52-5.39%) with impact of lowering the biomass heating value (15.602-17.727 MJ kg{sup 1}), the energy potential of the pruned fruit biomass is calculated at 4.21 PJ. (Author) 31 refs.

  9. Quantitative Assessment of Microalgae Biomass and Lipid Stability Post-Cultivation

    Energy Technology Data Exchange (ETDEWEB)

    Napan, Katerine; Christianson, Tyler; Voie, Kristen; Quinn, Jason C., E-mail: jason.quinn@usu.edu [Department of Mechanical and Aerospace Engineering, Utah State University, Logan, UT (United States)

    2015-04-15

    Processing of microalgal biomass to biofuels and other products requires the removal of the culture from a well-controlled growth system to a containment or preprocessing step at non-ideal growth conditions, such as darkness, minimal gas exchange, and fluctuating temperatures. The conditions and the length of time between harvest and processing will impact microalgal metabolism, resulting in biomass and lipid degradation. This study experimentally investigates the impact of time and temperature on Nannochloropsis salina harvested from outdoor plate photobioreactors. The impact of three temperatures, 4, 40, or 70°C, on biomass and lipid content (as fatty acid methyl esters) of the harvested microalgae was evaluated over a 156 h time period. Results show that for N. salina, time and temperature are key factors that negatively impact biomass and lipid yields. The temperature of 70°C resulted in the highest degradation with the overall biofuel potential reduced by 30% over 156 h. Short time periods, 24 h, and low temperatures are shown to have little effect on the harvested biomass.

  10. Quantitative assessment of microalgae biomass and lipid stability post cultivation

    Directory of Open Access Journals (Sweden)

    Katerine eNapan

    2015-04-01

    Full Text Available Processing of microalgal biomass to biofuels and other products requires the removal of the culture from a well-controlled growth system to a containment or preprocessing step at non-ideal growth conditions, such as darkness, minimal gas exchange, and fluctuating temperatures. The conditions and the length of time between harvest and processing will impact microalgal metabolism resulting in biomass and lipid degradation. This study experimentally investigates the impact of time and temperature on Nannochloropsis salina harvested from outdoor plate photobioreactors. The impact of three temperatures, 4°, 40° or 70°C, on biomass and lipid content (as fatty acid methyl esters of the harvested microalgae was evaluated over a 156 hour time period. Results show that for N. salina, time and temperature are key factors that negatively impact biomass and lipid yields. The temperature of 70°C resulted in the highest degradation with the overall biofuel potential reduced by 30% over 156 hours. Short time periods, 24 hours, and low temperatures are shown to have little effect on the harvested biomass.

  11. Growth Response and Feed Utilization of Giant Gourami (Osphronemus goramy Juvenile Feeding Different Protein Levels of the Diets Supplemented with Recombinant Growth Hormone

    Directory of Open Access Journals (Sweden)

    DARMAWAN SETIA BUDI

    2015-01-01

    Full Text Available The purpose of this study was to examine the effect of dietary supplementation with recombinant growth hormone (rGH on the growth and dietary utility of juvenile giant gourami. The rGH was mixed with chicken egg yolk and sprayed on to artificial feed with different protein levels (34, 28, and 21%; isoenergy. Each treatment group of gourami was paired with a control group that received feed of the same protein level, but without rGH supplementation. Juvenile of giant gourami (weight 15.83 ± 0.13 g were fed diets containing rGH, to apparent satiation, 2 times a week. Fish were reared from less than 2 months old for 42 days in 100 L glass aquaria at an initial density of 10 fish per aquarium. At the end of this period, the biomass and daily growth rate (SGR of the fish were measured and the feed conversion ratio calculated and compared. Our data showed that fish fed rGH-supplemented diets experienced higher growth than fish in the control groups and showed that fish with higher protein diets experienced higher growth than the groups with less protein diets. The group with the highest biomass gain, SGR, and lowest feed conversion ratio (FCR was the group fed a 34% protein diet supplemented with rGH. Furthermore, biomass gain, SGR, and FCR in the rGH treatment group with a 28% protein diet matched the measurements of the non-rGH control group receiving a 34% protein diet (P > 0.05. We conclude that giant juvenile gourami given feed supplemented with recombinant growth hormone will experience increased growth and dietary utility compared with gourami given the same feed without supplementation.

  12. Predicting tree biomass growth in the temperate-boreal ecotone: is tree size, age, competition or climate response most important?

    Science.gov (United States)

    Foster, Jane R.; Finley, Andrew O.; D'Amato, Anthony W.; Bradford, John B.; Banerjee, Sudipto

    2016-01-01

    As global temperatures rise, variation in annual climate is also changing, with unknown consequences for forest biomes. Growing forests have the ability to capture atmospheric CO2and thereby slow rising CO2 concentrations. Forests’ ongoing ability to sequester C depends on how tree communities respond to changes in climate variation. Much of what we know about tree and forest response to climate variation comes from tree-ring records. Yet typical tree-ring datasets and models do not capture the diversity of climate responses that exist within and among trees and species. We address this issue using a model that estimates individual tree response to climate variables while accounting for variation in individuals’ size, age, competitive status, and spatially structured latent covariates. Our model allows for inference about variance within and among species. We quantify how variables influence aboveground biomass growth of individual trees from a representative sample of 15 northern or southern tree species growing in a transition zone between boreal and temperate biomes. Individual trees varied in their growth response to fluctuating mean annual temperature and summer moisture stress. The variation among individuals within a species was wider than mean differences among species. The effects of mean temperature and summer moisture stress interacted, such that warm years produced positive responses to summer moisture availability and cool years produced negative responses. As climate models project significant increases in annual temperatures, growth of species likeAcer saccharum, Quercus rubra, and Picea glauca will vary more in response to summer moisture stress than in the past. The magnitude of biomass growth variation in response to annual climate was 92–95% smaller than responses to tree size and age. This means that measuring or predicting the physical structure of current and future forests could tell us more about future C dynamics than growth

  13. Predicting tree biomass growth in the temperate-boreal ecotone: Is tree size, age, competition, or climate response most important?

    Science.gov (United States)

    Foster, Jane R; Finley, Andrew O; D'Amato, Anthony W; Bradford, John B; Banerjee, Sudipto

    2016-06-01

    As global temperatures rise, variation in annual climate is also changing, with unknown consequences for forest biomes. Growing forests have the ability to capture atmospheric CO2 and thereby slow rising CO2 concentrations. Forests' ongoing ability to sequester C depends on how tree communities respond to changes in climate variation. Much of what we know about tree and forest response to climate variation comes from tree-ring records. Yet typical tree-ring datasets and models do not capture the diversity of climate responses that exist within and among trees and species. We address this issue using a model that estimates individual tree response to climate variables while accounting for variation in individuals' size, age, competitive status, and spatially structured latent covariates. Our model allows for inference about variance within and among species. We quantify how variables influence aboveground biomass growth of individual trees from a representative sample of 15 northern or southern tree species growing in a transition zone between boreal and temperate biomes. Individual trees varied in their growth response to fluctuating mean annual temperature and summer moisture stress. The variation among individuals within a species was wider than mean differences among species. The effects of mean temperature and summer moisture stress interacted, such that warm years produced positive responses to summer moisture availability and cool years produced negative responses. As climate models project significant increases in annual temperatures, growth of species like Acer saccharum, Quercus rubra, and Picea glauca will vary more in response to summer moisture stress than in the past. The magnitude of biomass growth variation in response to annual climate was 92-95% smaller than responses to tree size and age. This means that measuring or predicting the physical structure of current and future forests could tell us more about future C dynamics than growth responses

  14. Growth responses, biomass partitioning, and nitrogen isotopes of prairie legumes in response to elevated temperature and varying nitrogen source in a growth chamber experiment.

    Science.gov (United States)

    Whittington, Heather R; Deede, Laura; Powers, Jennifer S

    2012-05-01

    Because legumes can add nitrogen (N) to ecosystems through symbiotic fixation, they play important roles in many plant communities, such as prairies and grasslands. However, very little research has examined the effect of projected climate change on legume growth and function. Our goal was to study the effects of temperature on growth, nodulation, and N chemistry of prairie legumes and determine whether these effects are mediated by source of N. We grew seedlings of Amorpha canescens, Dalea purpurea, Lespedeza capitata, and Lupinus perennis at 25/20°C (day/night) or 28/23°C with and without rhizobia and mineral N in controlled-environment growth chambers. Biomass, leaf area, nodule number and mass, and shoot N concentration and δ(15)N values were measured after 12 wk of growth. Both temperature and N-source affected responses in a species-specific manner. Lespedeza showed increased growth and higher shoot N content at 28°C. Lupinus showed decreases in nodulation and lower shoot N concentration at 28°C. The effect of temperature on shoot N concentration occurred only in individuals whose sole N source was N(2)-fixation, but there was no effect of temperature on δ(15)N values in these plants. Elevated temperature enhanced seedling growth of some species, while inhibiting nodulation in another. Temperature-induced shifts in legume composition or nitrogen dynamics may be another potential mechanism through which climate change affects unmanaged ecosystems.

  15. High yielding biomass genotypes of willow (Salix spp.) show differences in below ground biomass allocation

    International Nuclear Information System (INIS)

    Cunniff, Jennifer; Purdy, Sarah J.; Barraclough, Tim J.P.; Castle, March; Maddison, Anne L.; Jones, Laurence E.; Shield, Ian F.; Gregory, Andrew S.; Karp, Angela

    2015-01-01

    Willows (Salix spp.) grown as short rotation coppice (SRC) are viewed as a sustainable source of biomass with a positive greenhouse gas (GHG) balance due to their potential to fix and accumulate carbon (C) below ground. However, exploiting this potential has been limited by the paucity of data available on below ground biomass allocation and the extent to which it varies between genotypes. Furthermore, it is likely that allocation can be altered considerably by environment. To investigate the role of genotype and environment on allocation, four willow genotypes were grown at two replicated field sites in southeast England and west Wales, UK. Above and below ground biomass was intensively measured over two two-year rotations. Significant genotypic differences in biomass allocation were identified, with below ground allocation differing by up to 10% between genotypes. Importantly, the genotype with the highest below ground biomass also had the highest above ground yield. Furthermore, leaf area was found to be a good predictor of below ground biomass. Growth environment significantly impacted allocation; the willow genotypes grown in west Wales had up to 94% more biomass below ground by the end of the second rotation. A single investigation into fine roots showed the same pattern with double the volume of fine roots present. This greater below ground allocation may be attributed primarily to higher wind speeds, plus differences in humidity and soil characteristics. These results demonstrate that the capacity exists to breed plants with both high yields and high potential for C accumulation. - Highlights: • SRC willows are a source of biomass and act as carbon (C) sinks. • Biomass allocation was measured in 4 willow genotypes grown in two UK field sites. • The greatest yielding genotype had the greatest below ground biomass at both sites. • Below ground biomass allocation differed by up to 10% between genotypes and 94% between sites. • Environment e.g. wind

  16. Biomass from the Brazilian raining forest; Biomassa das florestas amazonicas brasileiras

    Energy Technology Data Exchange (ETDEWEB)

    Fearnside, Philip M [Instituto Nacional de Pesquisas da Amazonia (INPA), Manaus, AM (Brazil)

    1994-12-31

    This work summarizes the existing knowledge about biomass in the Brazilian area of the Amazon jungle and presents a calculation for the average total biomass in virgin forests. The results are presented. The results are higher than those presently accepted. The reasons for the discrepancy in the calculated and presently used value are presented and discussed 64 refs., 8 tabs.

  17. A fracture- mechanics calculation of crack growth rate for a gas turbine blade

    International Nuclear Information System (INIS)

    Mirzaei, M.; Karimi, R.

    2002-01-01

    The existence of thermo-mechanical stresses, due to the frequent start-ups and shutdowns of gas turbines. Combined with high working temperatures may cause creep and fatigue failure of the blades. This paper describes a fracture-mechanics life assessment of a gas turbine blade. Initially, the distributions of thermal and mechanical stresses were obtained by using the finite element method. Accordingly; the crack modeling was performed in a high stress region at the suction side surface of the blade. Several crack growth increments were observed and the related crack tip parameters were calculated. Finally; the creep-fatigue crack growth in each cycle was calculated and the total number of start-stop cycles was determined

  18. Nitrogen Alters Initial Growth, Fine-Root Biomass and Soil Organic Matter Properties of a Eucalyptus dunnii Maiden Plantation in a Recently Afforested Grassland in Southern Brazil

    Directory of Open Access Journals (Sweden)

    Gabriel W. D. Ferreira

    2018-01-01

    Full Text Available Nitrogen (N fertilization effects on Eucalyptus growth and soil carbon (C stocks are still controversial. We set up an N fertilization experiment in southern Brazil to evaluate initial tree growth and changes in soil organic matter (SOM. Four N levels (24–Reference, 36, 48 and 108 kg ha−1 of N were tested and tree growth was assessed during the first two years. Afterwards, representative trees were chosen to evaluate fine-root biomass (FRB and its spatial distribution. Soil was sampled to a 40-cm depth and SOM was fractionated in Particulate (POM and Mineral-Associated Organic Matter (MAOM for C and N content, and δ13C determination. Positive N effect on tree growth was seen only for tree height. N addition resulted in higher FRB. Changes in SOM were more expressive in top-soil layers. Overall, afforestation had positive effects on soil C. Increasing reference N dose resulted in higher C and N content in both SOM fractions. C and N dynamics were tightly correlated, especially in MAOM. Eucalypt-derived C was on average three-fold higher in POM. In summary, we showed that N fertilization may have positive but limited effects on tree growth, nevertheless it enhances fine-root biomass and C and N accumulation in SOM pools.

  19. Mechanisms for catalytic carbon nanofiber growth studied by ab initio density functional theory calculations

    DEFF Research Database (Denmark)

    Abild-Pedersen, Frank; Nørskov, Jens Kehlet; Rostrup-Nielsen, Jens

    2006-01-01

    Mechanisms and energetics of graphene growth catalyzed by nickel nanoclusters were studied using ab initio density functional theory calculations. It is demonstrated that nickel step-edge sites act as the preferential growth centers for graphene layers on the nickel surface. Carbon is transported......, and it is argued how these processes may lead to different nanofiber structures. The proposed growth model is found to be in good agreement with previous findings....

  20. Effect of diverse ecological conditions on biomass production of ...

    African Journals Online (AJOL)

    Kangaroo grass native to Australia is known as the best grass to grow on different environmental and soil conditions. Biomass production of any grass is the key factor to estimate that if the grass could fulfill the animal requirements. Biomass production of kangaroo grass was estimated in this study at three growth stages on ...

  1. Input of biomass in power plants or the power generation. Calculation of the financial gap

    International Nuclear Information System (INIS)

    De Vries, H.J.; Van Tilburg, X.; Pfeiffer, A.E.; Cleijne, H.

    2005-09-01

    The project on the title subject concerns two questions: (1) Are projects in which wood-pellets are co-fired in a coalfired power plant representative for bio-oil fueled co-firing projects in a gas-fired plant?; and (2) are new projects representative for existing projects? To answer those questions the financial gaps have been calculated for five different situations: Co-firing bio-oil in a gas-fired power plant; Co-firing bio-oil in a coal-fired power plant; Co-firing wood pellets in a coal-fired power plant; Co-firing agro-residues in a coal-fired power plant; and Co-firing waste-wood (A- and B-grade) in a coal-fired power plant. The ranges and reference cases in this report show that co-firing bio-oil on average has a smaller financial gap than the solid biomass reference case. On average it can also be concluded that by using waste wood or agro-residues, the financial gaps can decrease [nl

  2. Biomass, lasting perspective. Biomassa, een duurzaam perspectief

    Energy Technology Data Exchange (ETDEWEB)

    Knol, M E [Centrum voor Energiebesparing en Schone Technologie,Delft (Netherlands)

    1989-10-01

    The contribution of biomass in a possible sustainable energy future of the Netherlands is discussed. The different types of biomass, their properties and their most effective energy conversion techniques are summarized. At this moment the energy potential of the available biomass is 110 PJ per year. Net energy: 45 PJ per year (= 2% of the energy consumption in the Netherlands). Estimated net energy in 2000 is 60 PJ per year. Scenario calculations for the late 21st century reveal potential and net energy amounts of 350 PJ and 280 PJ per year, respectively. 2 refs., 4 tabs., 1 ill.

  3. Integrated resource management of biomass

    International Nuclear Information System (INIS)

    Goodwin, E.R.

    1992-01-01

    An overview is presented of the use of biomass, with emphasis on peat, as an alternative energy source, from an integrated resource management perspective. Details are provided of the volume of the peat resource, economics of peat harvesting, and constraints to peat resource use, which mainly centre on its high water content. Use of waste heat to dry peat can increase the efficiency of peat burning for electric power generation, and new technologies such as gasification and turbo expanders may also find utilization. The burning or gasification of biomass will release no more carbon dioxide to the atmosphere than other fuels, has less sulfur content than solid fuels. The removal of peat reduces methane emissions and allows use of produced carbon dioxide for horticulture and ash for fertilizer, and creates space that may be used for forestry or agricultural biomass growth. 38 refs

  4. Biomass-derived, functional step-growth polymers for coating applications

    NARCIS (Netherlands)

    Noordover, B.A.J.; Duchateau, R.; Koning, C.E.; Benthem, van R.A.T.M.

    2011-01-01

    Performance polymers derived from biomass represent a fascinating and increasingly important field of research, as such macromolecules offer differentiated material properties as compared to conventional polymers from fossil feedstock.1,2 The aim of our research is to understand the chemistry of

  5. Testing mechanistic models of growth in insects.

    Science.gov (United States)

    Maino, James L; Kearney, Michael R

    2015-11-22

    Insects are typified by their small size, large numbers, impressive reproductive output and rapid growth. However, insect growth is not simply rapid; rather, insects follow a qualitatively distinct trajectory to many other animals. Here we present a mechanistic growth model for insects and show that increasing specific assimilation during the growth phase can explain the near-exponential growth trajectory of insects. The presented model is tested against growth data on 50 insects, and compared against other mechanistic growth models. Unlike the other mechanistic models, our growth model predicts energy reserves per biomass to increase with age, which implies a higher production efficiency and energy density of biomass in later instars. These predictions are tested against data compiled from the literature whereby it is confirmed that insects increase their production efficiency (by 24 percentage points) and energy density (by 4 J mg(-1)) between hatching and the attainment of full size. The model suggests that insects achieve greater production efficiencies and enhanced growth rates by increasing specific assimilation and increasing energy reserves per biomass, which are less costly to maintain than structural biomass. Our findings illustrate how the explanatory and predictive power of mechanistic growth models comes from their grounding in underlying biological processes. © 2015 The Author(s).

  6. Growth and biomass production with enhanced {beta}-glucan and dietary fibre contents of Ganoderma australe ATHUM 4345 in a batch-stirred tank bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Papaspyridi, Lefki-Maria; Christakopoulos, Paul [BIOtechMASS Unit, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens (Greece); Katapodis, Petros [BIOtechMASS Unit, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens (Greece); Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, Ioannina (Greece); Gonou-Zagou, Zacharoula; Kapsanaki-Gotsi, Evangelia [Department of Ecology and Systematics, Faculty of Biology, National and Kapodistrian University of Athens, Athens (Greece)

    2011-02-15

    In this study we maximized biomass production by the basidiomycete Ganoderma australe ATHUM 4345, a species of pharmaceutical interest as it is a valuable source of nutraceuticals, including dietary fibers and glucans. We used the Biolog FF MicroPlate to screen 95 different carbon sources for growth monitoring. The pattern of substrate catabolism forms a substrate assimilation fingerprint, which is useful in selecting components for media optimization of maximum biomass production. Response surface methodology, based on the central composite design was applied to explore the optimum concentrations of carbon and nitrogen sources of culture medium in shake flask cultures. When the improved culture medium was tested in a 20-L stirred tank bioreactor, using 13.7 g/L glucose and 30.0 g/L yeast extract, high biomass yields (10.1{+-}0.4 g/L) and productivity of 0.09 g L{sup -1} h{sup -1} were obtained. The yield coefficients for total glucan and dietary fibers on biomass formed were 94.82{+-}6 and 341.15{+-}12.3 mg/g mycelium dry weight, respectively. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Genetic architecture and temporal patterns of biomass accumulation in spring barley revealed by image analysis.

    Science.gov (United States)

    Neumann, Kerstin; Zhao, Yusheng; Chu, Jianting; Keilwagen, Jens; Reif, Jochen C; Kilian, Benjamin; Graner, Andreas

    2017-08-10

    Genetic mapping of phenotypic traits generally focuses on a single time point, but biomass accumulates continuously during plant development. Resolution of the temporal dynamics that affect biomass recently became feasible using non-destructive imaging. With the aim to identify key genetic factors for vegetative biomass formation from the seedling stage to flowering, we explored growth over time in a diverse collection of two-rowed spring barley accessions. High heritabilities facilitated the temporal analysis of trait relationships and identification of quantitative trait loci (QTL). Biomass QTL tended to persist only a short period during early growth. More persistent QTL were detected around the booting stage. We identified seven major biomass QTL, which together explain 55% of the genetic variance at the seedling stage, and 43% at the booting stage. Three biomass QTL co-located with genes or QTL involved in phenology. The most important locus for biomass was independent from phenology and is located on chromosome 7HL at 141 cM. This locus explained ~20% of the genetic variance, was significant over a long period of time and co-located with HvDIM, a gene involved in brassinosteroid synthesis. Biomass is a dynamic trait and is therefore orchestrated by different QTL during early and late growth stages. Marker-assisted selection for high biomass at booting stage is most effective by also including favorable alleles from seedling biomass QTL. Selection for dynamic QTL may enhance genetic gain for complex traits such as biomass or, in the future, even grain yield.

  8. Using straw hydrolysate to cultivate Chlorella pyrenoidosa for high-value biomass production and the nitrogen regulation for biomass composition.

    Science.gov (United States)

    Zhang, Tian-Yuan; Wang, Xiao-Xiong; Wu, Yin-Hu; Wang, Jing-Han; Deantes-Espinosa, Victor M; Zhuang, Lin-Lan; Hu, Hong-Ying; Wu, Guang-Xue

    2017-11-01

    Heterotrophic cultivation of Chlorella pyrenoidosa based on straw substrate was proposed as a promising approach in this research. The straw pre-treated by ammonium sulfite method was enzymatically hydrolyzed for medium preparation. The highest intrinsic growth rate of C. pyrenoidosa reached to 0.097h -1 in hydrolysate medium, which was quicker than that in glucose medium. Rising nitrogen concentration could significantly increase protein content and decrease lipid content in biomass, meanwhile fatty acids composition kept stable. The highest protein and lipid content in microalgal biomass reached to 62% and 32% under nitrogen excessive and deficient conditions, respectively. Over 40% of amino acids and fatty acids in biomass belonged to essential amino acids (EAA) and essential fatty acids (EFA), which were qualified for high-value uses. This research revealed the rapid biomass accumulation property of C. pyrenoidosa in straw hydrolysate medium and the effectiveness of nitrogen regulation to biomass composition at heterotrophic condition. Copyright © 2017. Published by Elsevier Ltd.

  9. Digital Biomass Accumulation Using High-Throughput Plant Phenotype Data Analysis.

    Science.gov (United States)

    Rahaman, Md Matiur; Ahsan, Md Asif; Gillani, Zeeshan; Chen, Ming

    2017-09-01

    Biomass is an important phenotypic trait in functional ecology and growth analysis. The typical methods for measuring biomass are destructive, and they require numerous individuals to be cultivated for repeated measurements. With the advent of image-based high-throughput plant phenotyping facilities, non-destructive biomass measuring methods have attempted to overcome this problem. Thus, the estimation of plant biomass of individual plants from their digital images is becoming more important. In this paper, we propose an approach to biomass estimation based on image derived phenotypic traits. Several image-based biomass studies state that the estimation of plant biomass is only a linear function of the projected plant area in images. However, we modeled the plant volume as a function of plant area, plant compactness, and plant age to generalize the linear biomass model. The obtained results confirm the proposed model and can explain most of the observed variance during image-derived biomass estimation. Moreover, a small difference was observed between actual and estimated digital biomass, which indicates that our proposed approach can be used to estimate digital biomass accurately.

  10. Effects of citrus pulp, fish by-product and Bacillus subtilis fermentation biomass on growth performance, nutrient digestibility, and fecal microflora of weanling pigs.

    Science.gov (United States)

    Noh, Hyun Suk; Ingale, Santosh Laxman; Lee, Su Hyup; Kim, Kwang Hyun; Kwon, Ill Kyong; Kim, Young Hwa; Chae, Byung Jo

    2014-01-01

    An experiment was conducted to investigate the effects of dietary supplementation with citrus pulp, fish by-product, and Bacillus subtilis fermentation biomass on the growth performance, apparent total tract digestibility (ATTD) of nutrients, and fecal microflora of weanling pigs. A total of 180 weaned piglets (Landrace × Yorkshire × Duroc) were randomly allotted to three treatments on the basis of body weight (BW). There were six replicate pens in each treatment with 10 piglets per pen. Dietary treatments were corn-soybean meal-based basal diet supplemented with 0 (control), 2.5, and 5.0% citrus pulp, fish by-product, and B. subtilis fermentation biomass. The isocaloric and isoproteineous experimental diets were fed in mash form in two phases (d 0 ~ 14, phase I and d 15 ~ 28, phase II). Dietary treatments had significant linear effects on gain to feed ratio (G:F) in all periods, whereas significant linear effects on ATTD of dry matter (DM), gross energy (GE), and ash were only observed in phase I. Piglets fed diet supplemented with 5.0% citrus pulp, fish by-product, and B. subtilis fermentation biomass showed greater (p by-product and B. subtilis fermentation biomass showed greater (p by-product, and B. subtilis fermentation biomass has the potential to improve the feed efficiency, nutrient digestibility, and fecal microflora of weanling pigs.

  11. A sustainable woody biomass biorefinery.

    Science.gov (United States)

    Liu, Shijie; Lu, Houfang; Hu, Ruofei; Shupe, Alan; Lin, Lu; Liang, Bin

    2012-01-01

    Woody biomass is renewable only if sustainable production is imposed. An optimum and sustainable biomass stand production rate is found to be one with the incremental growth rate at harvest equal to the average overall growth rate. Utilization of woody biomass leads to a sustainable economy. Woody biomass is comprised of at least four components: extractives, hemicellulose, lignin and cellulose. While extractives and hemicellulose are least resistant to chemical and thermal degradation, cellulose is most resistant to chemical, thermal, and biological attack. The difference or heterogeneity in reactivity leads to the recalcitrance of woody biomass at conversion. A selection of processes is presented together as a biorefinery based on incremental sequential deconstruction, fractionation/conversion of woody biomass to achieve efficient separation of major components. A preference is given to a biorefinery absent of pretreatment and detoxification process that produce waste byproducts. While numerous biorefinery approaches are known, a focused review on the integrated studies of water-based biorefinery processes is presented. Hot-water extraction is the first process step to extract value from woody biomass while improving the quality of the remaining solid material. This first step removes extractives and hemicellulose fractions from woody biomass. While extractives and hemicellulose are largely removed in the extraction liquor, cellulose and lignin largely remain in the residual woody structure. Xylo-oligomers, aromatics and acetic acid in the hardwood extract are the major components having the greatest potential value for development. Higher temperature and longer residence time lead to higher mass removal. While high temperature (>200°C) can lead to nearly total dissolution, the amount of sugars present in the extraction liquor decreases rapidly with temperature. Dilute acid hydrolysis of concentrated wood extracts renders the wood extract with monomeric sugars

  12. Artificial neural network-based model for the prediction of optimal growth and culture conditions for maximum biomass accumulation in multiple shoot cultures of Centella asiatica.

    Science.gov (United States)

    Prasad, Archana; Prakash, Om; Mehrotra, Shakti; Khan, Feroz; Mathur, Ajay Kumar; Mathur, Archana

    2017-01-01

    An artificial neural network (ANN)-based modelling approach is used to determine the synergistic effect of five major components of growth medium (Mg, Cu, Zn, nitrate and sucrose) on improved in vitro biomass yield in multiple shoot cultures of Centella asiatica. The back propagation neural network (BPNN) was employed to predict optimal biomass accumulation in terms of growth index over a defined culture duration of 35 days. The four variable concentrations of five media components, i.e. MgSO 4 (0, 0.75, 1.5, 3.0 mM), ZnSO 4 (0, 15, 30, 60 μM), CuSO 4 (0, 0.05, 0.1, 0.2 μM), NO 3 (20, 30, 40, 60 mM) and sucrose (1, 3, 5, 7 %, w/v) were taken as inputs for the ANN model. The designed model was evaluated by performing three different sets of validation experiments that indicated a greater similarity between the target and predicted dataset. The results of the modelling experiment suggested that 1.5 mM Mg, 30 μM Zn, 0.1 μM Cu, 40 mM NO 3 and 6 % (w/v) sucrose were the respective optimal concentrations of the tested medium components for achieving maximum growth index of 1654.46 with high centelloside yield (62.37 mg DW/culture) in the cultured multiple shoots. This study can facilitate the generation of higher biomass of uniform, clean, good quality C. asiatica herb that can efficiently be utilized by pharmaceutical industries.

  13. Modelling tree biomasses in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Repola, J.

    2013-06-01

    Biomass equations for above- and below-ground tree components of Scots pine (Pinus sylvestris L), Norway spruce (Picea abies [L.] Karst) and birch (Betula pendula Roth and Betula pubescens Ehrh.) were compiled using empirical material from a total of 102 stands. These stands (44 Scots pine, 34 Norway spruce and 24 birch stands) were located mainly on mineral soil sites representing a large part of Finland. The biomass models were based on data measured from 1648 sample trees, comprising 908 pine, 613 spruce and 127 birch trees. Biomass equations were derived for the total above-ground biomass and for the individual tree components: stem wood, stem bark, living and dead branches, needles, stump, and roots, as dependent variables. Three multivariate models with different numbers of independent variables for above-ground biomass and one for below-ground biomass were constructed. Variables that are normally measured in forest inventories were used as independent variables. The simplest model formulations, multivariate models (1) were mainly based on tree diameter and height as independent variables. In more elaborated multivariate models, (2) and (3), additional commonly measured tree variables such as age, crown length, bark thickness and radial growth rate were added. Tree biomass modelling includes consecutive phases, which cause unreliability in the prediction of biomass. First, biomasses of sample trees should be determined reliably to decrease the statistical errors caused by sub-sampling. In this study, methods to improve the accuracy of stem biomass estimates of the sample trees were developed. In addition, the reliability of the method applied to estimate sample-tree crown biomass was tested, and no systematic error was detected. Second, the whole information content of data should be utilized in order to achieve reliable parameter estimates and applicable and flexible model structure. In the modelling approach, the basic assumption was that the biomasses of

  14. Bioenergetics of growth and lipid production in Chlamydomonas reinhardtii

    International Nuclear Information System (INIS)

    Küçük, Kübra; Tevatia, Rahul; Sorgüven, Esra; Demirel, Yaşar; Özilgen, Mustafa

    2015-01-01

    The study of thermodynamic aspects of the lipid, e.g., raw material for biodiesel, production in microalgae is important, as the non-lipid producing biological activities of the algal cultivation consume part of the solar energy captured during photosynthesis in expense of the exergetic efficiency of the lipid production process. The cultivation of Chlamydomonas reinhardtii (a unicellular biflagellate fresh-water microalga) is modeled as a three-step chemical mechanism representing growth, respiration, and lipid production. Further, the comprehensive thermodynamic analysis of these mechanisms is presented. The cumulative degree of perfection of the cellular proliferation, after excluding the lipid synthesis, fluctuates with no trend around 0.52 ± 0.19. The exergy analysis has indicated that C. reinhardtii prefers to maximize the lipid production when it is difficult to generate new cells. Under batch production of algal biomass, the highest heat and exergy loss per unit biomass production are accountable under the most favorable biological growth conditions, whereas the highest exergetic efficiency of the lipid production accounted under the least favorable growth conditions, which is in line with the previous studies. - Highlights: • Biomass, lipid production and respiration modeled as three-step chemical reaction. • CDP (cumulative degree of perfection) is calculated based on the model. • The CDP of the algae, after excluding the lipids, is about 0.52 ± 0.19. • Chlamydomonas reinhardtii maximized lipid production when it was difficult to grow

  15. Study on new biomass energy systems

    Science.gov (United States)

    1992-03-01

    A biomass energy total system is proposed, and its feasibility is studied. It is the system in which liquid fuel is produced from eucalyptuses planted in the desert area in Australia for production of biomass resource. Eucalyptus tree planting aims at a growth amount of 40 cu m/ha. per year and a practical application area of 45,000ha. CO2 fixation in the biomass plantation becomes 540,000 tons at a 12 ton/ha. rate. Assuming that 0.55 ton of liquid fuel is produced from 1 ton of biomass, a petrochemical plant having a production of 2.5 million bbl/year per unit (equivalent to the fuel used in the 100,000kW class power plant) is needed. Moreover, survey is made on practicality of diesel substitution fuel by esterification of palm oil, and a marked effect of reduction in soot/smoke and particulates in exhaust gas is confirmed. The biomass conversion process technology and the technology for afforestation at the arid land and irrigation are important as future subjects, and the technology development using a bench plant and a pilot plant is needed.

  16. ROE Carbon Storage - Forest Biomass

    Science.gov (United States)

    This polygon dataset depicts the density of forest biomass in counties across the United States, in terms of metric tons of carbon per square mile of land area. These data were provided in spreadsheet form by the U.S. Department of Agriculture (USDA) Forest Service. To produce the Web mapping application, EPA joined the spreadsheet with a shapefile of U.S. county (and county equivalent) boundaries downloaded from the U.S. Census Bureau. EPA calculated biomass density based on the area of each county polygon. These data sets were converted into a single polygon feature class inside a file geodatabase.

  17. Electrifying biomass

    International Nuclear Information System (INIS)

    Kusnierczyk, D.

    2005-01-01

    British Columbia's (BC) energy plan was outlined in this PowerPoint presentation. BC Hydro is the third largest electric utility in Canada with a generating capacity of 11,000 MW, 90 per cent of which is hydro generation. Various independent power project (IPP) biomass technologies were outlined, including details of biogas, wood residue and municipal solid waste facilities. An outline of BC Hydro's overall supply mix was presented, along with details of the IPP supply mix. It was suggested that the cancellation of the Duke Point power project has driven growth in the renewable energy sector. A chart of potential energy contribution by resource type was presented, as well as unit energy cost ranges. Resources included small and large hydro; demand side management; resource smart natural gas; natural gas; coal; wind; geothermal; biomass; wave; and tidal. The acquisition process was reviewed. Details of calls for tenders were presented, and issues concerning bidder responsibility and self-selection were examined. It was observed that wood residue presents a firm source of electricity that is generally local, and has support from the public. In addition, permits for wood residue energy conversion are readily available. However, size limitations, fuel risks, and issues concerning site control may prove to be significant challenges. It was concluded that the success of biomass energy development will depend on adequate access and competitive pricing. tabs., figs

  18. Pore-scale investigation of biomass plug development and propagation in porous media.

    Science.gov (United States)

    Stewart, Terri L; Scott Fogler, H

    2002-03-05

    Biomass plugging of porous media finds application in enhanced oil recovery and bioremediation. An understanding of biomass plugging of porous media was sought by using a porous glass micromodel through which biomass and nutrient were passed. This study describes the pore-scale physics of biomass plug propagation of Leuconostoc mesenteroides under nutrient-rich conditions. It was found that, as the nutrient flowed through the micromodel, the initial biomass plug occurred at the nutrient-inoculum interface due to growth in the larger pore throats. As growth proceeded, biomass filled and closed these larger pore throats, until only isolated groupings of pore throats with smaller radii remained empty. As nutrient flow continued, a maximum pressure drop was reached. At the maximum pressure drop, the biomass yielded in a manner similar to a Bingham plastic to form a breakthrough channel consisting of a path of interconnected pore throats. The channel incorporated the isolated groupings of empty pore throats that had been present before breakthrough. As the nutrient flow continued, subsequent plugs developed as breakthrough channels refilled with biomass and in situ growth was stimulated in the region just downstream of the previous plug. The downstream plugs had a higher fraction of isolated groupings of empty pore throats, which can be attributed to depletion of nutrient downstream. When the next breakthrough channel formed, it incorporated these isolated groupings, causing the breakthrough channels to be branched. It was observed that the newly formed plug could be less stable with this higher fraction of empty pore throats and that the location of breakthrough channels changed in subsequent plugs. This change in breakthrough channel location could be attributed to the redistribution of nutrient flow and the changes in flowrate in the pore throats. Copyright 2002 John Wiley & Sons, Inc. Biotechnol Bioeng 77: 577-588, 2002; DOI 10.1002/bit.10044

  19. Developing business in emerging biomass energy markets

    International Nuclear Information System (INIS)

    Kadyszewski, J.

    2005-01-01

    Global market trends for forest products were reviewed in this PowerPoint presentation. The status of biomass energy products in relation to climate change and renewable energy portfolio standards was also examined. It was noted that China has increased investment in processing capacity and has increased imports of raw logs. India has doubled its imports of raw logs. Details of major tropical log producers and consumers were presented. Details of the biomass industry in the United States were presented, as well as data on fuel use at biomass energy plants and biomass energy capacity. An overview of biomass energy in the Russian far east and Siberia was presented, as well as details of activities and opportunities in Brazil and Indonesia. An economic analysis for small dry kilns was presented. Issues concerning boiler capacity in Russian companies for 2001-2005 were discussed. A case study of a biomass project from Congo was presented. It was noted that projects that replace fossil fuels can obtain revenues from the sale of carbon benefits, and that biomass energy offers the most attractive current option for the removal of carbon dioxide (CO 2 ) from the atmosphere. Details of a district heating project in Siberia were presented, and it was noted that in remote regions, costs for heat and power from biomass can be lower than costs from diesel and coal. It was concluded that there will be significant growth for biomass energy systems in the developing world, and that climate change will be an increasingly important element in advancing biomass energy. tabs., figs

  20. Biomass a fast growing energy resource

    International Nuclear Information System (INIS)

    Hansen, Ulf

    2003-01-01

    Biomass as an energy resource is as versatile as the biodiversity suggests. The global net primary production, NPP, describes the annual growth of biomass on land and in the seas. This paper focuses on biomass grown on land. A recent estimate for the NPP on land is 120 billion tons of dry matter. How much of this biomass are available for energy purposes? The potential contribution of wood fuel and energy plants from sustainable production is limited to some 5% of NPP, i.e. 6 Bt. One third of the potential is energy forests and energy plantations which at present are not economic. One third is used in rural areas as traditional fuel. The remaining third would be available for modern biomass energy conversion. Biomass is assigned an expanding role as a new resource in the world's energy balance. The EU has set a target of doubling the share of renewable energy sources by 2010. For biomass the target is even more ambitious. The challenge for biomass utilization lies in improving the technology for traditional usage and expanding the role into other areas like power production and transportation fuel. Various technologies for biomass utilization are available among those are combustion, gasification, and liquefaction. Researchers have a grand vision in which the chemical elements in the hydrocarbon molecules of biomass are separated and reformed to yield new tailored fuels and form the basis for a new world economy. The vision of a new energy system based on fresh and fossilized biomass to be engineered into an environmentally friendly and sustainable fuel is a conceivable technical reality. One reason for replacing exhaustible fossil fuels with biomass is to reduce carbon emissions. The most efficient carbon dioxide emission reduction comes from replacing brown coal in a steam-electric unit, due to the efficiency of the thermal cycle and the high carbon intensity of the coal. The smallest emission reduction comes from substituting natural gas. (BA)

  1. Growth and content of Spirulina platensis biomass chlorophyll cultivated at different values of light intensity and temperature using different nitrogen sources

    Directory of Open Access Journals (Sweden)

    Eliane Dalva Godoy Danesi

    2011-03-01

    Full Text Available The effects of light intensity and temperature in S. platensis cultivation with potassium nitrate or urea as nitrogen source were investigated, as well as the biomass chlorophyll contents of this cyanobacteria, through the Response Surface Methodology. Experiments were performed at temperatures from 25 to 34.5ºC and light intensities from 15 to 69 µmol photons m-2 s-1, in mineral medium. In cultivations with both sources of nitrogen, KNO3 and urea, statistic evaluation through multiple regression, no interactions of such independent variables were detected in the results of the dependent variables maximum cell concentration, chlorophyll biomass contents, cell and chlorophyll productivities, as well as in the nitrogen-cell conversion factor. In cultivation performed with both sources of nitrogen, it was possible to obtain satisfactory adjustments to relate the dependent variables to the independent variables. The best results were achieved at temperature of 30ºC, at light intensity of 60 µmol photons m-2s-1, for cell growth, with cell productivity of approximately 95 mg L-1 d-1 in cultivations with urea. For the chlorophyll biomass content, the most adequate light intensity was 24 µmol photons m-2 s-1.

  2. The seeding and cultivation of a tropical species of filamentous Ulva for algal biomass production.

    Directory of Open Access Journals (Sweden)

    Christina Carl

    Full Text Available Filamentous species of Ulva are ideal for cultivation because they are robust with high growth rates and maintained across a broad range of environments. Temperate species of filamentous Ulva are commercially cultivated on nets which can be artificially 'seeded' under controlled conditions allowing for a high level of control over seeding density and consequently biomass production. This study quantified for the first time the seeding and culture cycle of a tropical species of filamentous Ulva (Ulva sp. 3 and identified seeding density and nursery period as key factors affecting growth and biomass yield. A seeding density of 621,000 swarmers m(-1 rope in combination with a nursery period of five days resulted in the highest growth rate and correspondingly the highest biomass yield. A nursery period of five days was optimal with up to six times the biomass yield compared to ropes under either shorter or longer nursery periods. These combined parameters of seeding density and nursery period resulted in a specific growth rate of more than 65% day(-1 between 7 and 10 days of outdoor cultivation post-nursery. This was followed by a decrease in growth through to 25 days. This study also demonstrated that the timing of harvest is critical as the maximum biomass yield of 23.0 ± 8.8 g dry weight m(-1 (228.7 ± 115.4 g fresh weight m(-1 was achieved after 13 days of outdoor cultivation whereas biomass degraded to 15.5 ± 7.3 g dry weight m(-1 (120.2 ± 71.8 g fresh weight m(-1 over a longer outdoor cultivation period of 25 days. Artificially seeded ropes of Ulva with high biomass yields over short culture cycles may therefore be an alternative to unattached cultivation in integrated pond-based aquaculture systems.

  3. Shrub biomass production following simulated herbivory: A test of the compensatory growth hypothesis

    Science.gov (United States)

    Terri B. Teaschner; Timothy E. Fulbright

    2007-01-01

    The objective of this experiment was to test the hypotheses that 1) simulated herbivory stimulates increased biomass production in spiny hackberry (Celtis pallida), but decreases biomass production in blackbrush acacia (Acacia rigidula) compared to unbrowsed plants and 2) thorn density and length increase in blackbrush acacia to a...

  4. Solid biomass barometer - EurObserv'ER - December 2013

    International Nuclear Information System (INIS)

    2013-12-01

    Primary energy production from solid biomass is back on the road to growth, which according to EurObserv'ER stood at about 5.4% between 2011 and 2012. Output rose to 82.3 million tons of oil equivalent, which is a 4.2 Mtoe improvement on 2011, whose exceptionally mild winter put paid to the sector's uninterrupted rise since 1999. This growth was enjoyed by all the solid biomass energy application sectors. Heat sales to heating networks increased 12.9% to 7.9 Mtoe in 2012 while electricity production, boosted by coal-fired power station conversions, gained 7.8% to produce 79.5 TWh

  5. The effect of water availability on plastic responses and biomass allocation in early growth traits of Pinus radiata D. Don

    Energy Technology Data Exchange (ETDEWEB)

    Espinoza, S. E.; Magni, C. R.; Martinez, V. A.; Ivkovic, M.

    2013-05-01

    Aim of study: The aim of the study was to assess the effect of water availability on plastic responses and biomass allocation in early growth traits of Pinus radiata D. Don. Area of study: Seedlings of 69 families of P. radiata belonging to five different sites in Central Chile, ranging from coastal range to fothills of the Andes, were grown in controlled conditions to evaluate differences in response to watering. Material and methods: The seedlings were subjected to two watering regimes: well-watered treatment, in which seedlings were watered daily, and water stress treatment in which seedlings were subjected to three cyclic water deficits by watering to container capacity on 12 days cycles each. After twenty-eight weeks root collar diameter, height, shoot dry weight (stem + needles), root dry weight, total dry weight, height/diameter ratio and root/shoot ratio were recorded. Patterns and amounts of phenotypic changes, including changes in biomass allocation, were analyzed. Main results: Families from coastal sites presented high divergence for phenotypic changes, allocating more biomass to shoots, and those families from interior sites presented low phenotypic plasticity, allocating more biomass to roots at the expense of shoots. These changes are interpreted as a plastic response and leads to the conclusion that the local land race of P. radiata in Chile originating from contrasting environments possess distinct morphological responses to water deficit which in turn leads to phenotypic plasticity. Research highlights: Families belonging to sandy soil sites must be considered for tree breeding in dry areas, selecting those with high root: shoot ratio. (Author) 46 refs.

  6. Experimental workflow for developing a feed forward strategy to control biomass growth and exploit maximum specific methane productivity of Methanothermobacter marburgensis in a biological methane production process (BMPP

    Directory of Open Access Journals (Sweden)

    Alexander Krajete

    2016-08-01

    Full Text Available Recently, interests for new biofuel generations allowing conversion of gaseous substrate(s to gaseous product(s arose for power to gas and waste to value applications. An example is biological methane production process (BMPP with Methanothermobacter marburgensis. The latter, can convert carbon dioxide (CO2 and hydrogen (H2, having different origins and purities, to methane (CH4, water and biomass. However, these gas converting bioprocesses are tendentiously gas limited processes and the specific methane productivity per biomass amount (qCH4 tends to be low. Therefore, this contribution proposes a workflow for the development of a feed forward strategy to control biomass, growth (rx and qCH4 in a continuous gas limited BMPP. The proposed workflow starts with a design of experiment (DoE to optimize media composition and search for a liquid based limitation to control selectively growth. From the DoE it came out that controlling biomass growth was possible independently of the dilution and gassing rate applied while not affecting methane evolution rates (MERs. This was done by shifting the process from a natural gas limited state to a controlled liquid limited growth. The latter allowed exploiting the maximum biocatalytic activity for methane formation of Methanothermobacter marburgensis. An increase of qCH4 from 42 to 129 mmolCH4 g−1 h−1 was achieved by applying a liquid limitation compare with the reference state. Finally, a verification experiment was done to verify the feeding strategy transferability to a different process configuration. This evidenced the ratio of the fed KH2PO4 to rx (R(FKH2PO4/rx has an appropriate parameter for scaling feeds in a continuous gas limited BMPP. In the verification experiment CH4 was produced in a single bioreactor step at a methane evolution rate (MER of   132 mmolCH4*L−1*h−1 at a CH4 purity of 93 [Vol.%].

  7. Two-stage heterotrophic and phototrophic culture strategy for algal biomass and lipid production.

    Science.gov (United States)

    Zheng, Yubin; Chi, Zhanyou; Lucker, Ben; Chen, Shulin

    2012-01-01

    A two-stage heterotrophic and phototrophic culture strategy for algal biomass and lipid production was studied, wherein high density heterotrophic cultures of Chlorellasorokiniana serve as seed for subsequent phototrophic growth. The data showed growth rate, cell density and productivity of heterotrophic C.sorokiniana were 3.0, 3.3 and 7.4 times higher than phototrophic counterpart, respectively. Hetero- and phototrophic algal seeds had similar biomass/lipid production and fatty acid profile when inoculated into phototrophic culture system. To expand the application, food waste and wastewater were tested as feedstock for heterotrophic growth, and supported cell growth successfully. These results demonstrated the advantages of using heterotrophic algae cells as seeds for open algae culture system. Additionally, high inoculation rate of heterotrophic algal seed can be utilized as an effective method for contamination control. This two-stage heterotrophic phototrophic process is promising to provide a more efficient way for large scale production of algal biomass and biofuels. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Energy Efficiency of Biogas Produced from Different Biomass Sources

    International Nuclear Information System (INIS)

    Begum, Shahida; Nazri, A H

    2013-01-01

    Malaysia has different sources of biomass like palm oil waste, agricultural waste, cow dung, sewage waste and landfill sites, which can be used to produce biogas and as a source of energy. Depending on the type of biomass, the biogas produced can have different calorific value. At the same time the energy, being used to produce biogas is dependent on transportation distance, means of transportation, conversion techniques and for handling of raw materials and digested residues. An energy systems analysis approach based on literature is applied to calculate the energy efficiency of biogas produced from biomass. Basically, the methodology is comprised of collecting data, proposing locations and estimating the energy input needed to produce biogas and output obtained from the generated biogas. The study showed that palm oil and municipal solid waste is two potential sources of biomass. The energy efficiency of biogas produced from palm oil residues and municipal solid wastes is 1.70 and 3.33 respectively. Municipal solid wastes have the higher energy efficiency due to less transportation distance and electricity consumption. Despite the inherent uncertainties in the calculations, it can be concluded that the energy potential to use biomass for biogas production is a promising alternative.

  9. Alcohol Fermentation and Biomass formation from xylose, glucose ...

    African Journals Online (AJOL)

    Cerevisiae (LB-7) was the slowest in growth and utilization of xylose into biomass (economic conversion coefficient of 0.03), while K3 showed fastest utilization of xylose (coefficient 0.76). For the production of ethanol, the fastest growth and assimilation of glucose was recorded by Pa. tannophilus (P1) (coefficient 0.56) ...

  10. Modelling of toluene biodegradation and biofilm growth in a fixed biofilm reactor

    DEFF Research Database (Denmark)

    Arcangeli, Jean-Pierre; Arvin, Erik

    1992-01-01

    The modelling of aerobic biodegradation of toluene and the associated biofilm growth in a fixed biofilm system is presented. The model includes four biomass fractions, three dissolved components, and seven processes. It is assumed that part of the active biomass is composed of filamentous bacteria...... which grow relatively fast and detach easily, leading to a biomass growth delayed with respect to substrate degradation. The non-filamentous bacteria inside the biofilm also degrade toluene but with a slower rate compared to the filamentous bacteria. Because the nonfilamentous bacteria do not detach......, they are primarily responsible for the biofilm growth. The active biomass decays into biodegradable and ``inert'' dead biomass which is hydrolyzed into soluble products at two different rates. These products are partly degradable by the biomass and constitute the endogenous respiration. The dynamic growth phase...

  11. Modelling of toluene biodegradation and biofilm growth in a fixed biofilm reactor

    DEFF Research Database (Denmark)

    Arcangeli, Jean-Pierre; Arvin, Erik

    1992-01-01

    The modelling of aerobic biodegradation of toluene and the associated biofilm growth in a fixed biofilm system is presented. The model includes four biomass fractions, three dissolved components, and seven processes. It is assumed that part of the active biomass is composed of filamentous bacteria......, they are primarily responsible for the biofilm growth. The active biomass decays into biodegradable and ``inert'' dead biomass which is hydrolyzed into soluble products at two different rates. These products are partly degradable by the biomass and constitute the endogenous respiration. The dynamic growth phase...... which grow relatively fast and detach easily, leading to a biomass growth delayed with respect to substrate degradation. The non-filamentous bacteria inside the biofilm also degrade toluene but with a slower rate compared to the filamentous bacteria. Because the nonfilamentous bacteria do not detach...

  12. Intensive biomass harvesting in forests - what about the carbon balance?

    International Nuclear Information System (INIS)

    Berg, Bjoern; Johansson, Maj-Britt

    1998-08-01

    The use of biofuels is considered to be CO 2 -neutral. This means that the use of forest biomass for fuel does not add more CO 2 to the atmosphere than what has been taken up over a stand age by photosynthesis. However, the biomass that may be harvested only contains part of the CO 2 immobilized through fixation during the growth of the forest stand. A fraction of the produced biomass will always decompose on and in the soil, in part producing humus and in part CO 2 . To this fraction belongs the litter formed during the period of stand growth, e.g. the annual foliar litterfall. The decomposition of both foliar litter and green needles have been shown to follow an asymptotic function, meaning that the decomposition approaches a limit value. This means that recalcitrant remains are left. The decomposition of felling residues have been assumed to follow the same function. The obvious question is how the amount of humus is affected by removal of felling residues. In an investigation of humus storage in five stands of Norway spruce in south Sweden limit values were estimated for the decomposition of local spruce needle litter giving a variation from 63 to 85 per cent. With the use of these limit values and the amount of litterfall the accumulation of humus was estimated. These calculations showed that there is a growth of the humus layer in the period of stand growth. The rate of humus accumulation varied among the stands and on the average a theoretical humus accumulation of about 42 tons per hectare was estimated for a stand age of 60 years. This amount of already accumulated humus is not affected by harvests of remains from thinnings or clearcuts. If, on the other hand the felling residues are not removed that means that the amount of humus should increase. Experiments with soil scarification showed that for litter buried under plowed-up mineral soil the decomposition went further than in soil not scarified. The estimated limit value was on the average about 40 per

  13. Estimating aboveground tree biomass on forest land in the Pacific Northwest: a comparison of approaches

    Science.gov (United States)

    Xiaoping Zhou; Miles A. Hemstrom

    2009-01-01

    Live tree biomass estimates are essential for carbon accounting, bioenergy feasibility studies, and other analyses. Several models are currently used for estimating tree biomass. Each of these incorporates different calculation methods that may significantly impact the estimates of total aboveground tree biomass, merchantable biomass, and carbon pools. Consequently,...

  14. Biomass production and nitrogen dynamics in an integrated aquaculture/agriculture system

    Science.gov (United States)

    Owens, L. P.; Hall, C. R.

    1990-01-01

    A combined aquaculture/agriculture system that brings together the three major components of a Controlled Ecological Life Support System (CELSS) - biomass production, biomass processing, and waste recycling - was developed to evaluate ecological processes and hardware requirements necessary to assess the feasibility of and define design criteria for integration into the Kennedy Space Center (KSC) Breadboard Project. The system consists of a 1 square meter plant growth area, a 500 liter fish culture tank, and computerized monitoring and control hardware. Nutrients in the hydrophonic solution were derived from fish metabolites and fish food leachate. In five months of continuous operation, 27.0 kg of lettuce tops, 39.9 kg of roots and biofilm, and 6.6 kg of fish (wet weights) were produced with 12.7 kg of fish food input. Based on dry weights, a biomass conversion index of 0.52 was achieved. A nitrogen budget was derived to determine partitioning of nitrogen within various compartments of the system. Accumulating nitrogen in the hypoponic solution indicated a need to enlarge the plant growth area, potentially increasing the biomass production and improving the biomass conversion index.

  15. Northeastern states sharpen biomass focus

    International Nuclear Information System (INIS)

    Lusk, P.D.

    1993-01-01

    Wood energy use in the northeastern region of the USA currently replaces an estimated annual equivalent of 45--50 million barrels of oil. Including municipal wastes and recovered methane emissions for regional landfills, total biomass contribution to the energy economy is over 70 million barrels of oil equivalent annually. A reasonable consensus suggests wood alone could replace the equivalent of over 300 million barrels of oil each year on a sustainable basis over the next two decades. Beyond energy security, over 60,000 total jobs are now provided in the region by the wood energy industry. Over 375,000 total jobs could be generated by the wood energy industry, about 65,000 in the harvesting, transportation, and end-use operations of the wood energy industry. Biomass producers must be committed to sustainable development by necessity. Sound forest management practices that keep residual stand damage from wood harvesting to a minimum can create positive impacts on the region's forest. When combined with a balanced energy policy, the conditional use of wood energy can play a modest, but significant, role in reducing air emissions. Depletion of traditional energy resources creates open-quotes bubbleclose quotes benefits which will be exhausted after a generation. Sustainable development of biomass can create inexhaustible wealth for generations, and does not pose the risk of sudden ecological disruption. While the choice between policy options is not mutually exclusive, the interrelationship between energy security, economic growth and environmental quality clearly favors biomass. The environmental benefits and the economic growth impacts of biobased products produced by the northeastern states are considerable. The 11 states located in the northeastern USA should intensify their efforts to work with industry and investors to expand markets for industrial biobased products, either produced from local feedstocks or manufactured by companies operating in the region

  16. Biomass measurement by flow cytometry during solid-state fermentation of basidiomycetes.

    Science.gov (United States)

    Steudler, Susanne; Böhmer, Ulrike; Weber, Jost; Bley, Thomas

    2015-02-01

    Solid-state fermentation (SSF) is a robust process that is well suited to the on-site cultivation of basidiomycetes that produce enzymes for the treatment of lignocellulosics. Reliable methods for biomass quantification are essential for the analysis of fungal growth kinetics. However, direct biomass determination is not possible during SSF because the fungi grow into the substrate and use it as a nutrient source. This necessitates the use of indirect methods that are either very laborious and time consuming or can only provide biomass measurements during certain growth periods. Here, we describe the development and optimization of a new rapid method for fungal biomass determination during SSF that is based on counting fungal nuclei by flow cytometry. Fungal biomass was grown on an organic substrate and its concentration was measured by isolating the nuclei from the fungal hyphae after cell disruption, staining them with SYTOX(®) Green, and then counting them using a flow cytometer. A calibration curve relating the dry biomass of the samples to their concentrations of nuclei was established. Multiple buffers and disruption methods were tested. The results obtained were compared with values determined using the method of ergosterol determination, a classical technique for fungal biomass measurement during SSF. Our new approach can be used to measure fungal biomass on a range of different scales, from 15 mL cultures to a laboratory reactor with a working volume of 10 L (developed by the Research Center for Medical Technology and Biotechnology (fzmb GmbH)). © 2014 International Society for Advancement of Cytometry. © 2014 International Society for Advancement of Cytometry.

  17. Biomass and Volume Yield in Mature Hybrid Poplar Plantations on Temperate Abandoned Farmland

    Directory of Open Access Journals (Sweden)

    Benoit Truax

    2014-12-01

    Full Text Available In this study, we developed clone-specific allometric relationships, with the objective of calculating volume and biomass production after 13 years in 8 poplar plantations, located across an environmental gradient, and composed of 5 unrelated hybrid poplar clones. Allometry was found to be very similar for clones MxB-915311, NxM-3729 and DNxM-915508, all having P. maximoviczii parentage. Clones DxN-3570 and TxD-3230 also had a similar allometry; for a given DBH they have a lower stem volume, stem biomass and branch biomass than P. maximoviczii hybrids. Strong Site × Clone interactions were observed for volume and woody biomass growth, with DxN and TxD hybrids only productive on low elevation fertile sites, whereas P. maximovizcii hybrids were also very productive on higher elevation sites with moderate to high soil fertility. At the site level (5 clones mean, yield reached 27.5 and 22.7 m3/ha/yr. on the two best sites (high fertility and low elevation, confirming the great potential of southern Québec (Canada for poplar culture. The productivity gap between the most and least productive sites has widened from year 8 to year 13, highlighting the need for high quality abandoned farmland site selection in terms of climate and soil fertility. Although clone selection could optimize yield across the studied environmental gradient, it cannot fully compensate for inadequate site selection.

  18. Perceptions of Agriculture Teachers Regarding Education about Biomass Production in Iowa

    Science.gov (United States)

    Han, Guang; Martin, Robert A.

    2015-01-01

    With the growth of biorenewable energy, biomass production has become an important segment in the agriculture industry (Iowa Energy Center, 2013). A great workforce will be needed for this burgeoning biomass energy industry (Iowa Workforce Development, n. d.). Instructional topics in agricultural education should take the form of problems and…

  19. The Interrelationship of pCO2, Soil Moisture Content, and Biomass Fertilization Expressed in the Carbon Isotope Signature of C3 Plant Tissue

    Science.gov (United States)

    Schubert, B.; Jahren, A. H.

    2017-12-01

    Hundreds of chamber and field experiments have shown an increase in C3 plant biomass in response to elevated atmospheric carbon dioxide (pCO2); however, secondary water and nutrient deficits are thought to limit this response. Some have hypothesized that secondary limitation might be self-alleviating under elevated pCO2 as greater root biomass imparts enhanced access to water and nutrients. Here we present results of growth chamber experiments designed to test this hypothesis: we grew 206 Arabidopsis thaliana plants within 5 growth chambers, each set at a different level of pCO2: 390, 685, 1075, 1585, and 2175 ppmv. Within each growth chamber, soil moisture content (θm) was maintained across a spectrum: 1.50, 0.83, 0.44, and 0.38 g g-1. After 3 weeks of total growth, tissues were analyzed for both biomass and net carbon isotope discrimination (Δ13C) value. From these values, we calculated Δresidual, which represents the residual effect of water stress after subtraction of the effect of pCO2 due to photorespiration. Across the full range of moisture content, Δresidual displayed a significant 2.5‰ increase with increasing pCO2. This further implies a 0.1 unit increase in ci/ca, consistent with decreased water stress at elevated pCO2. The influence of CO2 fertilization on the alleviation of water stress was further evidenced in a positive correlation between percent biomass change and Δresidual, such that a doubling of plant biomass yielded a 1.85‰ increase in carbon isotope discrimination. In addition to providing new insight into water uptake in plants growing under elevated carbon dioxide, these data underscore the importance of separating the effects of increased pCO2 (via photorespiration) and altered ci/ca (via stomatal conductance) when considering changes in the Δ13C value of C3 land plants during the Anthropocene, or across any geological period that includes a marked change in global carbon cycling.

  20. Modeling of the solar radiative impact of biomass burning aerosols during the Dust and Biomass-burning Experiment (DABEX)

    Science.gov (United States)

    Myhre, G.; Hoyle, C. R.; Berglen, T. F.; Johnson, B. T.; Haywood, J. M.

    2008-12-01

    The radiative forcing associated with biomass burning aerosols has been calculated over West Africa using a chemical transport model. The model simulations focus on the period of January˜February 2006 during the Dust and Biomass-burning Experiment (DABEX). All of the main aerosol components for this region are modeled including mineral dust, biomass burning (BB) aerosols, secondary organic carbon associated with BB emissions, and carbonaceous particles from the use of fossil fuel and biofuel. The optical properties of the BB aerosol are specified using aircraft data from DABEX. The modeled aerosol optical depth (AOD) is within 15-20% of data from the few available Aerosol Robotic Network (AERONET) measurement stations. However, the model predicts very high AOD over central Africa, which disagrees somewhat with satellite retrieved AOD from Moderate Resolution Imaging Spectroradiometer (MODIS) and Multiangle Imaging Spectroradiometer (MISR). This indicates that BB emissions may be too high in central Africa or that very high AOD may be incorrectly screened out of the satellite data. The aerosol single scattering albedo increases with wavelength in our model and in AERONET retrievals, which contrasts with results from a previous biomass burning aerosol campaign. The model gives a strong negative radiative forcing of the BB aerosols at the top of the atmosphere (TOA) in clear-sky conditions over most of the domain, except over the Saharan desert where surface albedos are high. The all-sky TOA radiative forcing is quite inhomogeneous with values varying from -10 to 10 W m-2. The regional mean TOA radiative forcing is close to zero for the all-sky calculation and around -1.5 W m-2 for the clear-sky calculation. Sensitivity simulations indicate a positive regional mean TOA radiative forcing of up to 3 W m-2.

  1. Forest biomass carbon sinks in East Asia, with special reference to the relative contributions of forest expansion and forest growth.

    Science.gov (United States)

    Fang, Jingyun; Guo, Zhaodi; Hu, Huifeng; Kato, Tomomichi; Muraoka, Hiroyuki; Son, Yowhan

    2014-06-01

    Forests play an important role in regional and global carbon (C) cycles. With extensive afforestation and reforestation efforts over the last several decades, forests in East Asia have largely expanded, but the dynamics of their C stocks have not been fully assessed. We estimated biomass C stocks of the forests in all five East Asian countries (China, Japan, North Korea, South Korea, and Mongolia) between the 1970s and the 2000s, using the biomass expansion factor method and forest inventory data. Forest area and biomass C density in the whole region increased from 179.78 × 10(6) ha and 38.6 Mg C ha(-1) in the 1970s to 196.65 × 10(6) ha and 45.5 Mg C ha(-1) in the 2000s, respectively. The C stock increased from 6.9 Pg C to 8.9 Pg C, with an averaged sequestration rate of 66.9 Tg C yr(-1). Among the five countries, China and Japan were two major contributors to the total region's forest C sink, with respective contributions of 71.1% and 32.9%. In China, the areal expansion of forest land was a larger contributor to C sinks than increased biomass density for all forests (60.0% vs. 40.0%) and for planted forests (58.1% vs. 41.9%), while the latter contributed more than the former for natural forests (87.0% vs. 13.0%). In Japan, increased biomass density dominated the C sink for all (101.5%), planted (91.1%), and natural (123.8%) forests. Forests in South Korea also acted as a C sink, contributing 9.4% of the total region's sink because of increased forest growth (98.6%). Compared to these countries, the reduction in forest land in both North Korea and Mongolia caused a C loss at an average rate of 9.0 Tg C yr(-1), equal to 13.4% of the total region's C sink. Over the last four decades, the biomass C sequestration by East Asia's forests offset 5.8% of its contemporary fossil-fuel CO2 emissions. © 2014 John Wiley & Sons Ltd.

  2. Thermodynamic approach to biomass gasification; Approche thermodynamique des transformations de la biomasse

    Energy Technology Data Exchange (ETDEWEB)

    Boissonnet, G.; Seiler, J.M.

    2003-07-01

    The document presents an approach of biomass transformation in presence of steam, hydrogen or oxygen. Calculation results based on thermodynamic equilibrium are discussed. The objective of gasification techniques is to increase the gas content in CO and H{sub 2}. The maximum content in these gases is obtained when thermodynamic equilibrium is approached. Any optimisation action of a process. will, thus, tend to approach thermodynamic equilibrium conditions. On the other hand, such calculations can be used to determine the conditions which lead to an increase in the production of CO and H{sub 2}. An objective is also to determine transformation enthalpies that are an important input for process calculations. Various existing processes are assessed, and associated thermodynamic limitations are evidenced. (author)

  3. Biomass estimation by allometric relationships, nutrients, and carbon associated to heart-of-palm plantations in Costa Rica

    International Nuclear Information System (INIS)

    Ares, A.; Boniche, Y.; Quesada, J.P.; Yost, R.; Molina, E.; Smyth, T.J.

    2002-01-01

    Peach palm (Bactris gasipaes) agroecosystems constitute a productive and sustainable land use for the humid tropics. Allometric methods allow to predict biomass non-destructively at any time and, subsequently, to determine the span of growth phases, biomass and nutrient pools, and economic yields. The overall goals of this study were to obtain and validate predictive functions of aboveground dry biomass, and to relate standing biomass with heart-of-palm yields as well. Towards this purpose, peach palm shoots were harvested and separated into components: foliage, petiole and stem, in the Atlantic region of Costa Rica. A non-linear seemingly unrelated regression (NSUR) procedure, which simultaneously fits the component equations that predict leaf, petiole and stem in order to assure biomass additivity, was used to generate the allometric equations. Basal diameter (BD) was a more effective predictor of biomass than height to the fork between the spear leaf and the first fully expanded leaf, total height and number of leaves. Regression models explained 70-89% of the variance in biomass components (foliage, petiole and stem) or total shoot biomass. Three growth stages were identified: establishment (0-1 years), fast growth (1-3 or 1-8 years depending on plant density) and maturity (> 8 years). Nutrient contents associated to above- and below-ground biomass were measured. For above-ground biomass nutrient contents were N (up to 150 kg ha-1)>K (up to 119 kg ha-1)>Ca (up to 45 kg ha-1)>Mg=S=P (between 15-17 kg ha-1). The below-ground biomass: above-ground biomass ratio increased with the plantation age [es

  4. Allometric Models to Predict Aboveground Woody Biomass of Black Locust (Robinia pseudoacacia L. in Short Rotation Coppice in Previous Mining and Agricultural Areas in Germany

    Directory of Open Access Journals (Sweden)

    Christin Carl

    2017-09-01

    Full Text Available Black locust is a drought-resistant tree species with high biomass productivity during juvenility; it is able to thrive on wastelands, such as former brown coal fields and dry agricultural areas. However, research conducted on this species in such areas is limited. This paper aims to provide a basis for predicting tree woody biomass for black locust based on tree, competition, and site variables at 14 sites in northeast Germany that were previously utilized for mining or agriculture. The study areas, which are located in an area covering 320 km × 280 km, are characterized by a variety of climatic and soil conditions. Influential variables, including tree parameters, competition, and climatic parameters were considered. Allometric biomass models were employed. The findings show that the most important parameters are tree and competition variables. Different former land utilizations, such as mining or agriculture, as well as growth by cores or stumps, significantly influenced aboveground woody biomass production. The new biomass models developed as part of this study can be applied to calculate woody biomass production and carbon sequestration of Robinia pseudoacacia L. in short rotation coppices in previous mining and agricultural areas.

  5. Pilot-scale continuous recycling of growth medium for the mass culture of a halotolerant Tetraselmis sp. in raceway ponds under increasing salinity: a novel protocol for commercial microalgal biomass production.

    Science.gov (United States)

    Fon Sing, S; Isdepsky, A; Borowitzka, M A; Lewis, D M

    2014-06-01

    The opportunity to recycle microalgal culture medium for further cultivation is often hampered by salinity increases from evaporation and fouling by dissolved and particulate matter. In this study, the impact of culture re-use after electro-flocculation of seawater-based medium on growth and biomass productivity of the halotolerant green algal strain Tetraselmis sp., MUR 233, was investigated in pilot-scale open raceway ponds over 5months. Despite a salinity increase from 5.5% to 12% (w/v) NaCl, Tetraselmis MUR 233 grown on naturally DOC-enriched recycled medium produced 48-160% more ash free dry weight (AFDW) biomass daily per unit pond area than when grown on non-recycled medium. A peak productivity of 37.5±3.1gAFDWm(-2)d(-1) was reached in the recycled medium upon transition from ∼14% to ∼7% NaCl. The combination of high biomass-yielding mixotrophic growth under high salinity has been proven to be a successful sustainable cultivation strategy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Distribution of known macrozooplankton abundance and biomass in the global ocean

    Science.gov (United States)

    Moriarty, R.; Buitenhuis, E. T.; Le Quéré, C.; Gosselin, M.-P.

    2013-07-01

    Macrozooplankton are an important link between higher and lower trophic levels in the oceans. They serve as the primary food for fish, reptiles, birds and mammals in some regions, and play a role in the export of carbon from the surface to the intermediate and deep ocean. Little, however, is known of their global distribution and biomass. Here we compiled a dataset of macrozooplankton abundance and biomass observations for the global ocean from a collection of four datasets. We harmonise the data to common units, calculate additional carbon biomass where possible, and bin the dataset in a global 1 × 1 degree grid. This dataset is part of a wider effort to provide a global picture of carbon biomass data for key plankton functional types, in particular to support the development of marine ecosystem models. Over 387 700 abundance data and 1330 carbon biomass data have been collected from pre-existing datasets. A further 34 938 abundance data were converted to carbon biomass data using species-specific length frequencies or using species-specific abundance to carbon biomass data. Depth-integrated values are used to calculate known epipelagic macrozooplankton biomass concentrations and global biomass. Global macrozooplankton biomass, to a depth of 350 m, has a mean of 8.4 μg C L-1, median of 0.2 μg C L-1 and a standard deviation of 63.5 μg C L-1. The global annual average estimate of macrozooplankton biomass in the top 350 m, based on the median value, is 0.02 Pg C. There are, however, limitations on the dataset; abundance observations have good coverage except in the South Pacific mid-latitudes, but biomass observation coverage is only good at high latitudes. Biomass is restricted to data that is originally given in carbon or to data that can be converted from abundance to carbon. Carbon conversions from abundance are restricted by the lack of information on the size of the organism and/or the absence of taxonomic information. Distribution patterns of global

  7. THE BREAKEVEN POINT GIVEN LIMIT COST USING BIOMASS CHP PLANT

    Directory of Open Access Journals (Sweden)

    Paula VOICU

    2015-06-01

    Full Text Available Biomass is a renewable source, non-fossil, from which can be obtained fuels, which can be used in power generation systems. The main difference of fossil fuels is the availability biomass in nature and that it is in continue "reproduction". The use its enable the use of materials that could be destined destruction, as a source of energy "renewable", though result with many ecological values. In this paper we will study, applying a calculation model in view optimal sizing of the cogeneration plant based on biomass, biomass cost limit for the net present value is zero. It will consider that in cogeneration systems and in heating peak systems using biomass. After applying the mathematical model for limit value of biomass cost will determine the nominal optimal coefficient of cogeneration, for which discounted net revenue value is zero. Optimal sizing of CHP plants based on using biomass will be given by optimum coefficient of cogeneration determined following the application of the proposed mathematical model.

  8. Comparison of calculation methods for estimating annual carbon stock change in German forests under forest management in the German greenhouse gas inventory.

    Science.gov (United States)

    Röhling, Steffi; Dunger, Karsten; Kändler, Gerald; Klatt, Susann; Riedel, Thomas; Stümer, Wolfgang; Brötz, Johannes

    2016-12-01

    The German greenhouse gas inventory in the land use change sector strongly depends on national forest inventory data. As these data were collected periodically 1987, 2002, 2008 and 2012, the time series on emissions show several "jumps" due to biomass stock change, especially between 2001 and 2002 and between 2007 and 2008 while within the periods the emissions seem to be constant due to the application of periodical average emission factors. This does not reflect inter-annual variability in the time series, which would be assumed as the drivers for the carbon stock changes fluctuate between the years. Therefore additional data, which is available on annual basis, should be introduced into the calculations of the emissions inventories in order to get more plausible time series. This article explores the possibility of introducing an annual rather than periodical approach to calculating emission factors with the given data and thus smoothing the trajectory of time series for emissions from forest biomass. Two approaches are introduced to estimate annual changes derived from periodic data: the so-called logging factor method and the growth factor method. The logging factor method incorporates annual logging data to project annual values from periodic values. This is less complex to implement than the growth factor method, which additionally adds growth data into the calculations. Calculation of the input variables is based on sound statistical methodologies and periodically collected data that cannot be altered. Thus a discontinuous trajectory of the emissions over time remains, even after the adjustments. It is intended to adopt this approach in the German greenhouse gas reporting in order to meet the request for annually adjusted values.

  9. Chemical hot gas purification for biomass gasification processes; Chemische Heissgasreinigung bei Biomassevergasungsprozessen

    Energy Technology Data Exchange (ETDEWEB)

    Stemmler, Michael

    2010-07-01

    The German government decided to increase the percentage of renewable energy up to 20 % of all energy consumed in 2020. The development of biomass gasification technology is advanced compared to most of the other technologies for producing renewable energy. So the overall efficiency of biomass gasification processes (IGCC) already increased to values above 50 %. Therefore, the production of renewable energy attaches great importance to the thermochemical biomass conversion. The feedstock for biomass gasification covers biomasses such as wood, straw and further energy plants. The detrimental trace elements released during gasification of these biomasses, e.g. KCl, H{sub 2}S and HCl, cause corrosion and harm downstream devices. Therefore, gas cleaning poses an especial challenge. In order to improve the overall efficiency this thesis aims at the development of gas cleaning concepts for the allothermic, water blown gasification at 800 C and 1 bar (Guessing-Process) as well as for the autothermic, water and oxygen blown gasification at 950 C and 18 bar (Vaernamo-Process). Although several mechanisms for KCl- and H{sub 2}S-sorption are already well known, the achievable reduction of the contamination concentration is still unknown. Therefore, calculations on the produced syngas and the chemical hot gas cleaning were done with a thermodynamic process model using SimuSage. The syngas production was included in the calculations because the knowledge of the biomass syngas composition is very limited. The results of these calculations prove the dependence of syngas composition on H{sub 2}/C-ratio and ROC (Relative Oxygen Content). Following the achievable sorption limits were detected via experiments. The KCl containing syngases were analysed by molecular beam mass spectrometry (MBMS). Furthermore, an optimised H{sub 2}S-sorbent was developed because the examined sorbents exceeded the sorption limit of 1 ppmv. The calculated sorption limits were compared to the limits

  10. Matching species and sites for biomass plantations in Hawaii

    International Nuclear Information System (INIS)

    Phillips, V.D.; Takahashi, P.K.; Singh, D.; Khan, M.A.

    1991-01-01

    Two methods for matching species and sites for biomass plantations in Hawaii were utilized to estimate biomass yields and production costs for Eucalyptus grandis, Eucalyptus saligna, and Leucaena leucocephala. The 'analogous site' method matches the environmental conditions, including soil, rainfall, temperature, and insolation parameters, of well-characterized experimental biomass research sites which produce known yields of these species with similar land areas, or with those areas that can be made similar through soil amendments and improvement, where no field trials exist. The result is the identification of sites with biomass growth, yield, and cost performances which are analogous to the experimental site. The 'regression model' method relates known site-specific biomass productivity with environmental and soil conditions and management practices developed from sites featuring widely different and distinct environmental conditions. Equations then enable the prediction of biomass performance and production costs for each species at any location statewide. The analytical results, using a geographical information system database and the above methods, are presented in map form to expedite the site selection process which indicates expected biomass yield and cost for several fast-growing tropical hardwood species in Hawaii

  11. Biomass production from electricity using ammonia as an electron carrier in a reverse microbial fuel cell.

    Directory of Open Access Journals (Sweden)

    Wendell O Khunjar

    Full Text Available The storage of renewable electrical energy within chemical bonds of biofuels and other chemicals is a route to decreasing petroleum usage. A critical challenge is the efficient transfer of electrons into a biological host that can covert this energy into high energy organic compounds. In this paper, we describe an approach whereby biomass is grown using energy obtained from a soluble mediator that is regenerated electrochemically. The net result is a separate-stage reverse microbial fuel cell (rMFC that fixes CO₂ into biomass using electrical energy. We selected ammonia as a low cost, abundant, safe, and soluble redox mediator that facilitated energy transfer to biomass. Nitrosomonas europaea, a chemolithoautotroph, was used as the biocatalyst due to its inherent capability to utilize ammonia as its sole energy source for growth. An electrochemical reactor was designed for the regeneration of ammonia from nitrite, and current efficiencies of 100% were achieved. Calculations indicated that overall bioproduction efficiency could approach 2.7±0.2% under optimal electrolysis conditions. The application of chemolithoautotrophy for industrial bioproduction has been largely unexplored, and results suggest that this and related rMFC platforms may enable biofuel and related biochemical production.

  12. Ex situ growth and biomass of Populus bioenergy crops irrigated and fertilized with landfill leachate

    International Nuclear Information System (INIS)

    Zalesny, Ronald S.; Wiese, Adam H.; Bauer, Edmund O.; Riemenschneider, Donald E.

    2009-01-01

    Merging traditional intensive forestry with waste management offers dual goals of fiber and bioenergy production, along with environmental benefits such as soil/water remediation and carbon sequestration. As part of an ongoing effort to acquire data about initial genotypic performance, we evaluated: (1) the early aboveground growth of trees belonging to currently utilized Populus genotypes subjected to irrigation with municipal solid waste landfill leachate or non-fertilized well water (control), and (2) the above- and below-ground biomass of the trees after 70 days of growth. We determined height, diameter, and number of leaves at 28, 42, 56, and 70 days after planting (DAP), along with stem, leaf, and root dry mass by testing six Populus clones (DN34, DN5, I4551, NC14104, NM2, NM6) grown in a greenhouse in a split-split plot, repeated measures design with two blocks, two treatments (whole-plots), six clones (sub-plots), and four sampling dates (sub-sub-plots, repeated measure). Treatments (leachate, water) were applied every other day beginning 42 DAP. The leachate-treated trees exhibited greater height, diameter, and number of leaves at 56 and 70 DAP (P 0.05). Overall, genotypic responses to the leachate treatment were clone-specific for all traits

  13. LIGNOCELLULOSIC BIOMASS AFTER EXPLOSIVE AUTOHYDROLYSIS AS SUBSTRATE TO BUTANOL OBTAINING

    Directory of Open Access Journals (Sweden)

    Tigunova

    2016-08-01

    Full Text Available The aim of the work was investigation of the effect of the explosive autohydrolysis on lignocellulosic biomass (saving, switchgrass biomass for consequent use as a substrate to produce biofuels such as butanol. Butanol-producing strains, switchgrass Panicum virgatum L. biomass and its components after autohydrolysis were used in study. The thermobaric pressure pretreatment of lignocellulosic biomass was carried out using specially designed equipment. The effect of explosive autohydrolysis on lignocellulosic biomass for further use in producing biofuels using microbial conversion was studied. Components of lignocellulosic biomass were fractionated after undergoing thermobaric treatment. The possibility of using different raw material components after using explosive autohydrolysis processing to produce biobutanol was found. Products of switchgrass biomass autohydrolysis were shown to need further purification before fermentation from furfural formed by thermobaric pretreatment and inhibiting the growth of microorganisms. The ability of strains of the genus Clostridium to use cellulose as a substrate for fermentation was proved. It was found that using explosive autohydrolysis pretreatment to savings allowed boosting the butanol accumulation by 2 times.

  14. Optimization of biomass and dihydroorotase (DHOase) production ...

    African Journals Online (AJOL)

    Growth conditions which maintains DHOase overproduction by Saccharomyces cerevisiae MNJ3 (pMNJ1) and allow sufficient biomass production to ensure DHoase's purification were investigated. We used as basal medium the Yeast Carbon Base (YCB; Difco), especially designed for studies of nitrogen metabolism in ...

  15. Biomass production efficiency controlled by management in temperate and boreal ecosystems

    Science.gov (United States)

    Campioli, M.; Vicca, S.; Luyssaert, S.; Bilcke, J.; Ceschia, E.; Chapin, F. S., III; Ciais, P.; Fernández-Martínez, M.; Malhi, Y.; Obersteiner, M.; Olefeldt, D.; Papale, D.; Piao, S. L.; Peñuelas, J.; Sullivan, P. F.; Wang, X.; Zenone, T.; Janssens, I. A.

    2015-11-01

    Plants acquire carbon through photosynthesis to sustain biomass production, autotrophic respiration and production of non-structural compounds for multiple purposes. The fraction of photosynthetic production used for biomass production, the biomass production efficiency, is a key determinant of the conversion of solar energy to biomass. In forest ecosystems, biomass production efficiency was suggested to be related to site fertility. Here we present a database of biomass production efficiency from 131 sites compiled from individual studies using harvest, biometric, eddy covariance, or process-based model estimates of production. The database is global, but dominated by data from Europe and North America. We show that instead of site fertility, ecosystem management is the key factor that controls biomass production efficiency in terrestrial ecosystems. In addition, in natural forests, grasslands, tundra, boreal peatlands and marshes, biomass production efficiency is independent of vegetation, environmental and climatic drivers. This similarity of biomass production efficiency across natural ecosystem types suggests that the ratio of biomass production to gross primary productivity is constant across natural ecosystems. We suggest that plant adaptation results in similar growth efficiency in high- and low-fertility natural systems, but that nutrient influxes under managed conditions favour a shift to carbon investment from the belowground flux of non-structural compounds to aboveground biomass.

  16. Assessing Effects and interactions among key variables affecting the growth of mixotrophic microalgae: pH, inoculum volume, and growth medium composition

    DEFF Research Database (Denmark)

    Ale, Marcel Tutor; Pinelo, Manuel; Meyer, Anne S.

    2014-01-01

    of growth medium (MWC) and wastewater at different proportions (from 20 to 50% of MWC) and at different pH (from 7 to 9). Multilinear regression analysis of the biomass productivity data showed that for SA and CD the biomass productivity was independent of the proportion of medium (MWC), while the growth...... of CV and CR slowed down in mixtures with high proportions of wastewater. However, the biomass productivity of SA was dependent on pH, while the growth of the other microalgae was independent of pH (7-9). When evaluating the influence of pH and proportion of medium, CD appeared most robust among...

  17. Acquisition of data from on-line laser turbidimeter and calculation of some kinetic variables in computer-coupled automated fed-batch culture

    International Nuclear Information System (INIS)

    Kadotani, Y.; Miyamoto, K.; Mishima, N.; Kominami, M.; Yamane, T.

    1995-01-01

    Output signals of a commercially available on-line laser turbidimeter exhibit fluctuations due to air and/or CO 2 bubbles. A simple data processing algorithm and a personal computer software have been developed to smooth the noisy turbidity data acquired, and to utilize them for the on-line calculations of some kinetic variables involved in batch and fed-batch cultures of uniformly dispersed microorganisms. With this software, about 10 3 instantaneous turbidity data acquired over 55 s are averaged and convert it to dry cell concentration, X, every minute. Also, volume of the culture broth, V, is estimated from the averaged output data of weight loss of feed solution reservoir, W, using an electronic balance on which the reservoir is placed. Then, the computer software is used to perform linear regression analyses over the past 30 min of the total biomass, VX, the natural logarithm of the total biomass, ln(VX), and the weight loss, W, in order to calculate volumetric growth rate, d(VX)/dt, specific growth rate, μ [ = dln(VX)/dt] and the rate of W, dW/dt, every minute in a fed-batch culture. The software used to perform the first-order regression analyses of VX, ln(VX) and W was applied to batch or fed-batch cultures of Escherichia coli on minimum synthetic or natural complex media. Sample determination coefficients of the three different variables (VX, ln(VX) and W) were close to unity, indicating that the calculations are accurate. Furthermore, growth yield, Y x/s , and specific substrate consumption rate, q sc , were approximately estimated from the data, dW/dt and in a ‘balanced’ fed-batch culture of E. coli on the minimum synthetic medium where the computer-aided substrate-feeding system automatically matches well with the cell growth. (author)

  18. Modeling biomass competition and invasion in a schematic wetland

    Science.gov (United States)

    Ursino, N.

    2010-08-01

    Plants growing along hydrologic gradients adjust their biomass allocation and distribution in response to interspecific competition. Furthermore, susceptibility of a community to invasion is to some extent mediated by differences in growth habit, including root architecture and canopy hight. With reference to the study of a schematic wetland, the aim of this paper is (1) to test, via numerical modeling, the capacity of native plants to counteract an alien dominant species and cause eco-hydrological shifts of the ecosystem by changing their growth habit (e.g. allocating biomass below ground and by so doing changing the evapotranspiration locally) and (2) to test the impact on biodiversity of management practices that alter nutrient supply. The results demonstrated that unique combinations of vegetation types characterized by different growth habits may lead to different vegetation patterns under the same hydrologic forcing, and additionally, the vegetation patterns may change in response to major hydrological shifts, which could be related to diverse wetland management and restoration practices.

  19. Root diseases, climate change and biomass productivity

    International Nuclear Information System (INIS)

    Warren, G.R.; Cruickshank, M.

    2004-01-01

    Tree growth and yield in eastern boreal spruce fir forests are both greatly affected by root and butt rots. These pests are also prevalent in western coniferous species and boreal-sub-boreal forests. Infections are difficult to detect, but reduced growth, tree mortality, wind throw and scaled butt cull contribute to considerable forest gaps. Harvesting and stand tending practices in second growth stands are creating conditions for increased incidence. Tree stress is one of the major factors affecting the spread of root disease. It is expected that climate change will create abnormal stress conditions that will further compound the incidence of root disease. A comparison was made between natural and managed stands, including harvesting and stand practices such as commercial thinning. Studies of Douglas-fir forests in British Columbia were presented, with results indicating that managed forests contain one third to one half less carbon biomass than unmanaged forests. It was concluded that root diseases must be recognized and taken into account in order to refine and improve biomass estimates, prevent overestimation of wood supply models and avoid potential wood fibre losses. 40 refs., 2 figs.

  20. Energy conversion of biomass in coping with global warming

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, Shin-ya; Ogi, Tomoko; Minowa, Tomoaki [National Inst. for Resources and Environment, Tsukuba, Ibaraki (Japan)

    1993-12-31

    The main purpose of the present paper is to propose energy conversion technologies of biomass in coping with global warming. Among thermochemical conversion, liquid fuel production by high pressure process is mainly introduced. Biomass is a term used to describe materials of biological origin, either purpose-grown or arising as by-products, residues or wastes from forestry, agriculture and food processing. Such biomass is a renewable energy sources dependent on solar energy. Through photosynthesis, plants converts carbon dioxide into organic materials used in their growth. Energy can be recovered from the plant materials by several processes, the simplest way is burning in air. As far as biomass is used in this way, there is no atmospheric accumulation of carbon dioxide making no effect on the Greenhouse Effect, provided that the cycle of regrowth and burning is sustained.

  1. Assessment of potential biomass energy production in China towards 2030 and 2050

    Science.gov (United States)

    Zhao, Guangling

    2018-01-01

    The objective of this paper is to provide a more detailed picture of potential biomass energy production in the Chinese energy system towards 2030 and 2050. Biomass for bioenergy feedstocks comes from five sources, which are agricultural crop residues, forest residues and industrial wood waste, energy crops and woody crops, animal manure, and municipal solid waste. The potential biomass production is predicted based on the resource availability. In the process of identifying biomass resources production, assumptions are made regarding arable land, marginal land, crops yields, forest growth rate, and meat consumption and waste production. Four scenarios were designed to describe the potential biomass energy production to elaborate the role of biomass energy in the Chinese energy system in 2030. The assessment shows that under certain restrictions on land availability, the maximum potential biomass energy productions are estimated to be 18,833 and 24,901 PJ in 2030 and 2050.

  2. Biomass production of sesbania sesban pers. On different habitats

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, S.K.; Pathak, P.S.; Roy, R.D.

    1983-01-01

    Three month-old seedlings of S. sesban (a shortlived medicinal shrub or small tree which can be used for fuelwood and forage) were planted at 7 sites starting in 1975. The seedlings were raised in polythene bags and planted in pits. Growth was assessed after 1.0-4.5 years by felling and measuring 3 sample trees each from 3 collar diameter (high, medium and low) groups at each site. Sites were (1) two nursery sites with optimum moisture and management conditions, assessed at 1 and 2.5 years old respectively, (2) three canal-side sites inundated for more than 8 months per year planted as blocks (assessed at 3.5 and 4.5 years) and as a single row (3.5 years), (3) a dry farm forestry site planted as a single row (assessed at 3.5 years) and (4) a moist silvopastoral site planted as a block (assessed at 3.5 years). Detailed growth and biomass data are tabulated. On the moist canal site plants were still growing at 4.5 year old (average above-ground biomass/plant 60 kg compared with 16-17 kg at 3.5 years); values were similar on the moist silvopastoral site (16 kg at 3.5 years) but lower on the dry site (6 kg at 3.5 years). On the nursery site average above-ground biomass increased from 2 kg/plant at 1 year old to 6 kg at 2.5 years. Collar diameter was linearly related to diameter at breast height and biomass, and diameter at breast height to biomass at all sites.

  3. Biomass production of intensively grown poplars in the southernmost part of Sweden: Observations of characters, traits and growth potential

    International Nuclear Information System (INIS)

    Christersson, Lars

    2006-01-01

    Observation of possibilities and problems was performed when trying to optimise growing conditions for high biomass production by irrigation and fertilisation in a clone test of poplar on sandy soil in the south of Sweden. One hundred and eight clones of pure Populus trichocarpa and hybrids between P. trichocarpa and P. deltoides were evaluated for growth rate, phenology, quality, frost hardiness and pest resistance. Some fertilisation experiments were performed. In some years, some unfertilised clones produced up to 2 kg m -2 of woody dry biomass. Some fertilised clones produced almost twice as much in the years following fertilisation. Stem canker was the main cause of serious injuries in all hybrids, but pure P. trichocarpa stems were not affected. The cimbicid sawfly (Cimbex lutea) caused damage to the quality of the trees in the form of curved stems of some clones. Winter frost killed top shoots of the hybrids in a year with particularly low winter temperatures with long duration. Summer frost (in June) killed up to 1 m of some young top shoots in some clones in the first 3-4 years. The results are discussed in terms of radiation utilisation efficiency, energy efficient ratio, and water and nutrient use efficiency. The discussion finishes with the conclusion that fertilisation, but not irrigation, can be economically motivated. If irrigation is to be economic, then the main objective of the whole operation should be to produce drinkable water from water polluted by society. Biomass production would then be a bonus

  4. A guideline for fire prevention during the storage of biomass; Leitfaden zur Brandvermeidung bei der Lagerung von Biomasse

    Energy Technology Data Exchange (ETDEWEB)

    Ferrero, Fabio; Malow, Marcus; Schmidt, Martin; Krause, Ulrich

    2009-10-14

    For five years, an increasing number of fires in timber-yards is observed. A multiplicity of these fires results from self inflammation of the material. Under this aspect, the contribution under consideration reports on the fundamentals of the self inflammation by biomass using wood as an example. The methodology for the avoidance of the self inflammation of biomass is based on a combination of laboratory tests and numeric simulation in order to determine the reliable waste dump geometry and storage times. In particular, the humidity content of the stored material is very important for growth and heat production of the micro organisms. If the material does not possess optimal humidity content, heat production and the probability of self inflammation are reduced. The optimal content of humidity amounts nearly 50-60 mass-%. For the determination of a safe storage of biomass, a flow chart is developed using pinewood as an example. (orig.)

  5. Photon up-conversion increases biomass yield in Chlorella vulgaris.

    Science.gov (United States)

    Menon, Kavya R; Jose, Steffi; Suraishkumar, Gadi K

    2014-12-01

    Photon up-conversion, a process whereby lower energy radiations are converted to higher energy levels via the use of appropriate phosphor systems, was employed as a novel strategy for improving microalgal growth and lipid productivity. Photon up-conversion enables the utilization of regions of the solar spectrum, beyond the typical photosynthetically active radiation, that are usually wasted or are damaging to the algae. The effects of up-conversion of red light by two distinct sets of up-conversion phosphors were studied in the model microalgae Chlorella vulgaris. Up-conversion by set 1 phosphors led to a 2.85 fold increase in biomass concentration and a 3.2 fold increase in specific growth rate of the microalgae. While up-conversion by set 2 phosphors resulted in a 30% increase in biomass and 12% increase in specific intracellular neutral lipid, while the specific growth rates were comparable to that of the control. Furthermore, up-conversion resulted in higher levels of specific intracellular reactive oxygen species in C. vulgaris. Up-conversion of red light (654 nm) was shown to improve biomass yields in C. vulgaris. In principle, up-conversion can be used to increase the utilization range of the electromagnetic spectrum for improved cultivation of photosynthetic systems such as plants, algae, and microalgae. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Yeast Biomass Production in Brewery's Spent Grains Hemicellulosic Hydrolyzate

    Science.gov (United States)

    Duarte, Luís C.; Carvalheiro, Florbela; Lopes, Sónia; Neves, Ines; Gírio, Francisco M.

    Yeast single-cell protein and yeast extract, in particular, are two products which have many feed, food, pharmaceutical, and biotechnological applications. However, many of these applications are limited by their market price. Specifically, the yeast extract requirements for culture media are one of the major technical hurdles to be overcome for the development of low-cost fermentation routes for several top value chemicals in a biorefinery framework. A potential biotechnical solution is the production of yeast biomass from the hemicellulosic fraction stream. The growth of three pentose-assimilating yeast cell factories, Debaryomyces hansenii, Kluyveromyces marxianus, and Pichia stipitis was compared using non-detoxified brewery's spent grains hemicellulosic hydrolyzate supplemented with mineral nutrients. The yeasts exhibited different specific growth rates, biomass productivities, and yields being D. hansenii as the yeast species that presented the best performance, assimilating all sugars and noteworthy consuming most of the hydrolyzate inhibitors. Under optimized conditions, D. hansenii displayed a maximum specific growth rate, biomass yield, and productivity of 0.34 h-1, 0.61 g g-1, and 0.56 g 1-1 h-1, respectively. The nutritional profile of D. hansenii was thoroughly evaluated, and it compares favorably to others reported in literature. It contains considerable amounts of some essential amino acids and a high ratio of unsaturated over saturated fatty acids.

  7. Astronaut observations of global biomass burning

    International Nuclear Information System (INIS)

    Wood, C.A.; Nelson, R.

    1991-01-01

    One of the most fundamental inputs for understanding and modeling possible effects of biomass burning is knowledge of the size of the area burned. Because the burns are often very large and occur on all continents (except Antarctica), observations from space are essential. Information is presented in this chapter on another method for monitoring biomass burning, including immediate and long-term effects. Examples of astronaut photography of burning during one year give a perspective of the widespread occurrence of burning and the variety of biological materials that are consumed. The growth of burning in the Amazon region is presented over 15 years using smoke as a proxy for actual burning. Possible climate effects of smoke palls are also discussed

  8. Assessment of the microbial growth potential of slow sand filtrate with the biomass production potential test in comparison with the assimilable organic carbon method.

    Science.gov (United States)

    van der Kooij, Dick; Veenendaal, Harm R; van der Mark, Ed J; Dignum, Marco

    2017-11-15

    Slow sand filtration is the final treatment step at four surface-water supplies in the Netherlands. The microbial growth potential (MGP) of the finished water was measured with the assimilable organic carbon (AOC) method using pure cultures and the biomass production potential (BPP) test. In the BPP test, water samples were incubated untreated at 25 °C and the active-biomass concentration was measured by adenosine tri-phosphate (ATP) analysis. Addition of a river-water inoculum improved the test performance and characteristic growth and maintenance profiles of the water were obtained. The maximum ATP concentration attained within seven days and the cumulative biomass production after 14 days of incubation (BPC 14 , d ng ATP L -1 ) showed highly significant and strong linear relationships with the AOC in the slow sand filtrates. The lowest AOC and BPC 14 levels were observed in the supplies applying dune filtration without ozonation in post treatment, with AOC/TOC = 1.7 ± 0.3 μg acetate-C equivalents mg -1 C and BPC 14 /TOC = 16.3 ± 2.2 d ng ATP mg -1 C, corresponding with 1.2 ± 0.19 ng ATP mg -1 C. These characteristics may represent the lowest specific MGP of natural organic matter achievable by biofiltration at temperatures ≤20 °C. The AOC and BPC 14 concentrations in the slow sand filtrate of the supply treating lake water by ozonation with granular-activated-carbon filtration and slow sand filtration as post treatment increased with decreasing temperature. The BPP test revealed that this slow sand filtrate sampled at 2 °C contained growth-promoting compounds that were not detected with the AOC test. These observations demonstrate the utility of the BPP test for assessing the MGP of drinking water and show the performance limits of biofiltration for MGP reduction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. BIOMASS PRODUCTION AND FORMULATION OF Bacillus subtilis FOR BIOLOGICAL CONTROL

    Directory of Open Access Journals (Sweden)

    Amran Muis

    2016-10-01

    Full Text Available Bacillus subtilis is a widespread bacterium found in soil, water, and air. It controls the growth of certain harmful bacteria and fungi, presumably by competing for nutrients, growth sites on plants, and by directly colonizing and attaching to fungal pathogens. When applied to seeds, it colonizes the developing root system of the plants and continues to live on the root system and provides protection throughout the growing season. The study on biomass production and formulation of B. subtilis for biological control was conducted in the laboratory of Department of Plant Pathology, College of Agriculture, University of the Philippines Los Baños (UPLB-CA, College, Laguna from May to July 2005. The objective of the study was to determine the optimum pH and a good carbon source for biomass production of B. subtilis and to develop a seed treatment formulation of B. subtilis as biological control agent. Results showed that the optimum pH for growth of B. subtilis was pH 6 (1.85 x 109 cfu/ml. In laboratory tests for biomass production using cassava flour, corn flour, rice flour, and brown sugar as carbon sources, it grew best in brown sugar plus yeast extract medium (6.8 x 108 cfu ml-1 in sterile distilled water and 7.8 x 108 cfu ml-1 in coconut water. In test for bacterial biomass carriers, talc proved to be the best in terms of number of bacteria recovered from the seeds (3.98 x 105 cfu seed-1.

  10. A spatial model for the economic evaluation of biomass production systems

    International Nuclear Information System (INIS)

    Wei Liu; Phillips, V.D.; Singh, Devindar

    1992-01-01

    A system model for estimating short-rotation, intensive-culture woody biomass production costs, including establishment, maintenance, harvesting, and transport costs, was developed and applied to the island of Kauai. Using data from existing large-plot field trials, biomass yield of the tropical hardwood Eucalyptus saligna was predicted from site-specific factors such as local weather and soil conditions and management strategies. Possible harvesting systems were identified and associated harvesting costs were estimated. The distances from the plantation sites to a bio-conversion plant located at the Lihue sugar mill were calculated based on existing road networks. The delivered cost of biomass on a dollar per dry metric ton (Mg) basis was then calculated using a discounted cash flow method. A geographic information system was interfaced with the biomass system model to access a database and present results in map form. Under the most favorable management strategy modeled, approximately 330 x 10 3 dry Mg year -1 of Eucalyptus saligna could be produced from 12,000 ha at a delivered cost of $25-38 per dry Mg chips. (author)

  11. Timber volume and aboveground live tree biomass estimations for landscape analyses in the Pacific Northwest

    Science.gov (United States)

    Xiaoping Zhou; Miles A. Hemstrom

    2010-01-01

    Timber availability, aboveground tree biomass, and changes in aboveground carbon pools are important consequences of landscape management. There are several models available for calculating tree volume and aboveground tree biomass pools. This paper documents species-specific regional equations for tree volume and aboveground live tree biomass estimation that might be...

  12. Soil type affects Pinus ponderosa var. scopulorum (Pinaceae) seedling growth in simulated drought experiments.

    Science.gov (United States)

    Lindsey, Alexander J; Kilgore, Jason S

    2013-08-01

    Effects of drought stress and media type interactions on growth of Pinus ponderosa var. scopulorum germinants were investigated. • Soil properties and growth responses under drought were compared across four growth media types: two native soils (dolomitic limestone and granite), a soil-less industry standard conifer medium, and a custom-mixed conifer medium. After 35 d of growth, the seedlings under drought stress (reduced watering) produced less shoot and root biomass than watered control seedlings. Organic media led to decreased root biomass, but increased root length and shoot biomass relative to the mineral soils. • Media type affected root-to-shoot biomass partitioning of P. ponderosa var. scopulorum, which may influence net photosynthetic rates, growth, and long-term seedling survival. Further work should examine how specific soil properties like bulk density and organic matter influence biomass allocation in greenhouse studies.

  13. Fiscal 1998 research report. Research on energy conversion technology using biomass resources; 1998 nendo chosa hokokusho. Biomass shigen wo genryo to suru energy henkan gijutsu ni kansuru chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Feasibility study was made on construction of the new energy production system by thermochemical conversion or combination of thermochemical and biological conversions of agricultural, fishery and organic waste system biomass resources. This report first outlines types and characteristics of biomass over the world, proposes the classification method of biomass from the viewpoint of biomass energy use, and shows the introduction scenario of biomass energy. The energy potential is calculated of agricultural waste, forestry waste and animal waste as the most promising biomass energy resources, and the biomass energy potential of energy plantation is estimated. The present and future of biochemical energy conversion technologies are viewed. The present and future of thermochemical energy conversion technologies are also viewed. Through evaluation of every conversion technology, the difference in feature between each conversion technology was clarified, and the major issues for further R and D were showed. (NEDO)

  14. Photoautotrophic Production of Biomass, Laurate, and Soluble Organics by Synechocystis sp. PCC 6803

    Science.gov (United States)

    Nguyen, Binh Thanh

    Photosynthesis converts sunlight to biomass at a global scale. Among the photosynthetic organisms, cyanobacteria provide an excellent model to study how photosynthesis can become a practical platform of large-scale biotechnology. One novel approach involves metabolically engineering the cyanobacterium Synechocystis sp. PCC 6803 to excrete laurate, which is harvested directly. This work begins by defining a working window of light intensity (LI). Wild-type and laurate-excreting Synechocystis required an LI of at least 5 muE/m2-s to sustain themselves, but are photo-inhibited by LI of 346 to 598 muE/m2-s. Fixing electrons into valuable organic products, e.g., biomass and excreted laurate, is critical to success. Wild-type Synechocystis channeled 75% to 84% of its fixed electrons to biomass; laurate-excreting Synechocystis fixed 64 to 69% as biomass and 6.6% to 10% as laurate. This means that 16 to 30% of the electrons were diverted to non-valuable soluble products, and the trend was accentuated with higher LI. How the Ci concentration depended on the pH and the nitrogen source was quantified by the proton condition and experimentally validated. Nitrate increased, ammonium decreased, but ammonium nitrate stabilized alkalinity and Ci. This finding provides a mechanistically sound tool to manage Ci and pH independently. Independent evaluation pH and Ci on the growth kinetics of Synechocystis showed that pH 8.5 supported the fastest maximum specific growth rate (mumax): 2.4/day and 1.7/day, respectively, for the wild type and modified strains with LI of 202 muE/m2-s. Half-maximum-rate concentrations (KCi) were less than 0.1 mM, meaning that Synechocystis should attain its mumax with a modest Ci concentration (≥1.0 mM). Biomass grown with day-night cycles had a night endogenous decay rate of 0.05-1.0/day, with decay being faster with higher LI and the beginning of dark periods. Supplying light at a fraction of daylight reduced dark decay rate and improved overall

  15. Potential of Biomass for Energy. Market Survey Portugal

    International Nuclear Information System (INIS)

    2007-03-01

    The objective of this market survey is to provide information about the biomass sector in Portugal, relevant to mainly small and medium-sized enterprises (SME) in the Netherlands that are interested to strengthen their position in that sector. Much knowledge could be gathered from conversations with the partners of Sunergy, the company responsible for this survey. Sunergy is producing bio-diesel, and considering further investments in the solid biomass sector, and therefore well familiar with the developments. Other interviews were held with representatives of the Government (DGGE), association of forestry owners (AFLOPS), a biomass trading SME (Sobioen), the leading environmental NGO (Quercus), and an association representing the paper- and pulp industry (CELPA). Chapter 1 is a general introduction on biomass. Chapter 2 gives the background of the Portuguese energy sector and the relative importance of renewable and biomass energies within this market. Some prospects for future developments of the different renewable sources are given. Portugal's energy sector is dominated by a small number of players, which are introduced. Also the current policies and incentives (subsidies) are presented. In Chapter 3 the focus is on the Portuguese biomass sector, presenting the current use of biomass in each of the subsectors: transport, electricity and heat, and an overview of the policy framework specifically for biomass. Chapter 4 is a literature review of the market for existing and potential biomass resources, including demand, supply and other characteristics. Chapter 5 synthesizes the previous chapters. Also an overview of key drivers and key constraints for growth of this sector is given, leading to conclusions regarding the opportunities for Dutch companies. Finally, further information on how to proceed once the interest for Portugal's biomass sector is vested is listed at the end of Chapter 5

  16. Prevention of Tibetan eco-environmental degradation caused by traditional use of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qiang [Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China)

    2009-12-15

    Tibet is short in fossil energy, but rich in renewable energy sources, such as biomass, hydro, solar, geothermal, and wind power. This potential energy supply in Tibet can be juxtaposed to what drives Tibetan energy consumption its economic motivation and its cultural traditions. Currently, biomass heavily dominates Tibet's energy consumption. In 2003, total energy consumption was about 2 million tce (ton coal equivalent), traditional biomass accounting for nearly 70%. The rarified atmosphere and use of outdated stoves, make for a very low combustion efficiency, utilizing 10-15% of the potential energy of biomass. With population and economic growth, traditional use of biomass has become the principal factor responsible for deforestation, grassland degradation, desertification, and soil erosion. To eradicate the negative impact of the traditional use of biomass on the eco-environment in Tibet, a series of effective countermeasures are investigated. Among these are improved efficiency of stoves, widespread use of solar energy, hydroelectricity as a substitute for traditional biomass, and the development of biogas. (author)

  17. Logistics, Costs, and GHG Impacts of Utility Scale Cofiring with 20% Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Boardman, Richard D.; Cafferty, Kara G.; Nichol, Corrie; Searcy, Erin M.; Westover, Tyler; Wood, Richard; Bearden, Mark D.; Cabe, James E.; Drennan, Corinne; Jones, Susanne B.; Male, Jonathan L.; Muntean, George G.; Snowden-Swan, Lesley J.; Widder, Sarah H.

    2014-07-22

    This report presents the results of an evaluation of utility-scale biomass cofiring in large pulverized coal power plants. The purpose of this evaluation is to assess the cost and greenhouse gas reduction benefits of substituting relatively high volumes of biomass in coal. Two scenarios for cofiring up to 20% biomass with coal (on a lower heating value basis) are presented; (1) woody biomass in central Alabama where Southern Pine is currently produced for the wood products and paper industries, and (2) purpose-grown switchgrass in the Ohio River Valley. These examples are representative of regions where renewable biomass growth rates are high in correspondence with major U.S. heartland power production. While these scenarios may provide a realistic reference for comparing the relative benefits of using a high volume of biomass for power production, this evaluation is not intended to be an analysis of policies concerning renewable portfolio standards or the optimal use of biomass for energy production in the U.S.

  18. The growth response of plants to elevated CO2 under non-optimal environmental conditions

    NARCIS (Netherlands)

    Poorter, H.; Pérez-Soba, M.

    2001-01-01

    Under benign environmental conditions, plant growth is generally stimulated by elevated atmospheric CO2 concentrations. When environmental conditions become sub- or supra-optimal for growth, changes in the biomass enhancement ratio (BER; total plant biomass at elevated CO2 divided by plant biomass

  19. Assessment of forest nutrient pools in view of biomass potentials - a case study from Austria oak stands

    Science.gov (United States)

    Yan, S.; Bruckman, V. J.; Glatzel, G.; Hochbichler, E.

    2012-04-01

    As one of the renewable energy forms, bio-energy could help to relieve the pressure which is caused by growing global energy demand. In Austria, large area of forests, traditional utilization of biomass and people's desire to live in a sound environment have supported the positive development of bio-energy. Soil nutrient status is in principle linked with the productivity of the aboveground biomass. This study focuses on K, Ca and Mg pools in soils and aboveground biomass in order to learn more on the temporal dynamics of plant nutrients as indicators for biomass potentials in Quercus dominated forests in northeastern Austria. Three soil types (according to WRB: eutric cambisol, calcic chernozem and haplic luvisol) were considered representative for the area and sampled. We selected nine Quercus petraea dominated permanent plots for this study. Exchangeable cations K, Ca and Mg in the soils were quantified in our study plots. Macronutrients pools of K, Ca and Mg in aboveground biomass were calculated according to inventory data and literature review. The exchangeable cations pool in the top 50 cm of the soil were 882 - 1,652 kg ha-1 for K, 2,661 to 16,510 kg ha-1 for Ca and 320 - 1,850 kg ha-1 for Mg. The nutrient pool in aboveground biomass ranged from 29 to 181 kg ha-1 for K, from 56 to 426 kg ha-1 for Ca and from 4 to 26 kg ha-1 for Mg. The underground exchangeable pools of K, Ca and Mg are generally 10, 22 and 58 times higher than aboveground biomass nutrient pools. Our results showed that the nutrient pools in the mineral soil are sufficient to support the tree growth. The levels of soil nutrients in particular K, Ca and Mg in our study areas are reasonably high and do not indicate the necessity for additional fertilization under current silvicultural practices and biomass extraction rate. The forest in our study areas is in favorable condition to supply biomass as raw material for energy utilization.

  20. Scaling-up the biomass production of Cymbopogon citratus L. in temporary immersion system

    Directory of Open Access Journals (Sweden)

    Elisa Quiala

    2014-04-01

    Full Text Available Shoot-tips, collected from greenhouse-grown plants of Cymbopogon citratus L. (lemmon grass, were incubated on a semi-solid Murashige and Skoog (MS medium with 30% (w/v sucrose, and supplemented with 0.89 µM 6-benzyladenine (BA. After three weeks of culture shoots were individualized and then inoculated in 10 litres temporary immersion system (TIS containing 3 litres of the same basal MS liquid medium. The effects of three immersion frequency (immersion every 12, 6 and 4 hours on the production of biomass were studied. Three inoculum densities (forty, fifty and sixty shoots/TIS were also tested. The biomass growth was inûuenced by the immersion frequency. The highest proliferation rate (17.3 shoots/explants and the plant length (45.2 cm were obtained in plants immersed every 4 h. Also, the fresh and dry biomass weight (153.4 gFW and 24.8 gDW, respectively were higher in this treatment. The maximum biomass accumulation (185.2 gFW and 35.2 gDW was achieved after 30 days of culture when an inoculum density of 60 explants per TIS was used. For the first time, biomass of C. citratus has been produced in10 litres TIS. These results represent the first step in the scaling-up the biomass production of this medicinal plant in large temporary immersion bioreactors. Key words: automation, biomass growth, lemmon grass medicinal plant, tissue culture

  1. Evaluation of social and environment effect of using biomass energy

    International Nuclear Information System (INIS)

    Alighardashi, A.; Adl, M.; Karbasi, A.R.; Naeiji, K.

    2001-01-01

    Biomass is one of the most important sources for clean and renewable energy. International studies show that potential of power generation from biomass has been equal of amount of electricity generated from all centralized sources in the world at 1993. this paper considers social and environmental effects of biomass energy utilization instead of fossil fuels. This study is performed in several sections; destruction of natural resources, emission of pollutants, creation of new job opportunities and public welfare. In each section, some of world experiences and statistics are mentioned. Estimated and calculated results for Iran have been presented. In public welfare section, security cost in different Iranian energy consumption sections have been considered and resulted fuel savings due to biomass energy consumption, are mentioned in detail

  2. Biomass energy: Another driver of land acquisitions?

    Energy Technology Data Exchange (ETDEWEB)

    Cotula, Lorenzo; Finnegan, Lynn; MacQueen, Duncan

    2011-08-15

    As governments in the global North look to diversify their economies away from fossil fuel and mitigate climate change, plans for biomass energy are growing fast. These are fuelling a sharp rise in the demand for wood, which, for some countries, could outstrip domestic supply capacity by as much as 600 per cent. It is becoming clear that although these countries will initially look to tap the temperate woodlands of developed countries, there are significant growth rate advantages that may lead them to turn to the tropics and sub-tropics to fill their biomass gap in the near future. Already there is evidence of foreign investors acquiring land in Africa, South America and Southeast Asia to establish tree plantations for biomass energy. If left unchecked, these trends could increase pressures on land access and food security in some of the world's poorest countries and communities.

  3. Methyl halide emission estimates from domestic biomass burning in Africa

    Science.gov (United States)

    Mead, M. I.; Khan, M. A. H.; White, I. R.; Nickless, G.; Shallcross, D. E.

    Inventories of methyl halide emissions from domestic burning of biomass in Africa, from 1950 to the present day and projected to 2030, have been constructed. By combining emission factors from Andreae and Merlet [2001. Emission of trace gases and aerosols from biomass burning. Global Biogeochemical Cycles 15, 955-966], the biomass burning estimates from Yevich and Logan [2003. An assessment of biofuel use and burning of agricultural waste in the developing world. Global Biogeochemical Cycles 17(4), 1095, doi:10.1029/2002GB001952] and the population data from the UN population division, the emission of methyl halides from domestic biomass usage in Africa has been estimated. Data from this study suggest that methyl halide emissions from domestic biomass burning have increased by a factor of 4-5 from 1950 to 2005 and based on the expected population growth could double over the next 25 years. This estimated change has a non-negligible impact on the atmospheric budgets of methyl halides.

  4. Biomass Development in SRI Field Under Unmaintained Alternate Wetting-Drying Irrigation

    Science.gov (United States)

    Ardiansyah; Chusnul, A.; Krissandi, W.; Asna, M.

    2018-05-01

    The aim of this research is to observe biomass development of SRI on farmers practice in three plots with different level. This research observes the farmer practice of SRI and Non-SRI during the uncertainty of irrigation water supply and its effects on paddy biomass development during growth stages and final stage of crop. A farmer group that already understand the principle of SRI, applied this method into several plots of their rented paddy field. Researcher interventions were eliminated from their action, so it is purely on farmers decision on managing their SRI plots. Three plots from both SRI and Non-SRI were chosen based on the position of the plot related their access to water. First plots had direct access to water from tertiary irrigation channel (on farm). Second plots were received water from previous upper plots and drainage water into other plots. Third plots were in the bottom position, where they received water from upper plot, and drainage water into farm drainage channel. Result shows there are similar patterns of root, straw, and leaves of biomass during crop growth. On the other hand, during generative phase, grain development shows different pattern and resulting different biomass in harvest time. Second plot, (of SRI) that has water from first plot has the average of biomass grain per plant of 54.4, higher than first plot and third plot, which are 33.8 g and 38.4. Average biomass in second plot is 74.6 g, higher than first and third plot, which are 49.9 g and 52.3 g.

  5. Green Gasification Technology for Wet Biomass

    Directory of Open Access Journals (Sweden)

    W. H. Chong

    2010-12-01

    Full Text Available The world now is facing two energy related threats which are lack of sustainable, secure and affordable energy supplies and the environmental damage acquired in producing and consuming ever-increasing amount of energy. In the first decade of the twenty-first century, increasing energy prices reminds us that an affordable energy plays an important role in economic growth and human development. To overcome the abovementioned problem, we cannot continue much longer to consume finite reserves of fossil fuels, the use of which contributes to global warming. Preferably, the world should move towards more sustainable energy sources such as wind energy, solar energy and biomass. However, the abovementioned challenges may not be met solely by introduction of sustainable energy forms. We also need to use energy more efficiently. Developing and introducing more efficient energy conversion technologies is therefore important, for fossil fuels as well as renewable fuels. This assignment addresses the question how biomass may be used more efficiently and economically than it is being used today. Wider use of biomass, a clean and renewable feedstock may extend the lifetime of our fossil fuels resources and alleviate global warming problems. Another advantage of using of biomass as a source of energy is to make developed countries less interdependent on oil-exporting countries, and thereby reduce political tension. Furthermore, the economies of agricultural regions growing energy crops benefit as new jobs are created. Keywords: energy, gasification, sustainable, wet biomass

  6. Biomass electric technologies: Status and future development

    International Nuclear Information System (INIS)

    Bain, R.L.; Overend, R.P.

    1992-01-01

    At the present time, there axe approximately 6 gigawatts (GWe) of biomass-based, grid-connected electrical generation capacity in the United States. This capacity is primarily combustion-driven, steam-turbine technology, with the great majority of the plants of a 5-50 megawatt (MW) size and characterized by heat rates of 14,770-17,935 gigajoules per kilowatt-hour (GJ/kWh) (14,000-17,000 Btu/kWh or 18%-24% efficiency), and with installed capital costs of $1,300-$1,500/kW. Cost of electricity for existing plants is in the $0.065-$O.08/kWh range. Feedstocks are mainly waste materials; wood-fired systems account for 88% of the total biomass capacity, followed by agricultural waste (3%), landfill gas (8%), and anaerobic digesters (1%). A significant amount of remote, non-grid-connected, wood-fired capacity also exists in the paper and wood products industry. This chapter discusses biomass power technology status and presents the strategy for the U.S. Department of Energy (DOE) Biomass Power Program for advancing biomass electric technologies to 18 GWe by the year 2010, and to greater than 100 GWe by the year 2030. Future generation systems will be characterized by process efficiencies in the 35%-40% range, by installed capital costs of $770-$900/kW, by a cost of electricity in the $0.04-$O.05/kWh range, and by the use of dedicated fuel-supply systems. Technology options such as integrated gasification/gas-turbine systems, integrated pyrolysis/gas-turbine systems, and innovative direct-combustion systems are discussed, including present status and potential growth. This chapter also presents discussions of the U.S. utility sector and the role of biomass-based systems within the industry, the potential advantages of biomass in comparison to coal, and the potential environmental impact of biomass-based electricity generation

  7. Soil Type Affects Pinus ponderosa var. scopulorum (Pinaceae Seedling Growth in Simulated Drought Experiments

    Directory of Open Access Journals (Sweden)

    Alexander J. Lindsey

    2013-07-01

    Full Text Available Premise of the study: Effects of drought stress and media type interactions on growth of Pinus ponderosa var. scopulorum germinants were investigated. Methods and Results: Soil properties and growth responses under drought were compared across four growth media types: two native soils (dolomitic limestone and granite, a soil-less industry standard conifer medium, and a custom-mixed conifer medium. After 35 d of growth, the seedlings under drought stress (reduced watering produced less shoot and root biomass than watered control seedlings. Organic media led to decreased root biomass, but increased root length and shoot biomass relative to the mineral soils. Conclusions: Media type affected root-to-shoot biomass partitioning of P. ponderosa var. scopulorum, which may influence net photosynthetic rates, growth, and long-term seedling survival. Further work should examine how specific soil properties like bulk density and organic matter influence biomass allocation in greenhouse studies.

  8. Azolla pinnata growth performance in different water sources.

    Science.gov (United States)

    Nordiah, B; Harah, Z Muta; Sidik, B Japar; Hazma, W N Wan

    2012-07-01

    Azolla pinnata R.Br. growth performance experiments in different water sources were conducted from May until July 2011 at Aquaculture Research Station, Puchong, Malaysia. Four types of water sources (waste water, drain water, paddy field water and distilled water) each with different nutrient contents were used to grow and evaluate the growth performance of A. pinnata. Four water sources with different nutrient contents; waste, drain, paddy and distilled water as control were used to evaluate the growth performance of A. pinnata. Generally, irrespective of the types of water sources there were increased in plant biomass from the initial biomass (e.g., after the first week; lowest 25.2% in distilled water to highest 133.3% in drain water) and the corresponding daily growth rate (3.61% in distilled water to 19.04% in drain water). The increased in biomass although fluctuated with time was consistently higher in drain water compared to increased in biomass for other water sources. Of the four water sources, drain water with relatively higher nitrate concentration (0.035 +/- 0.003 mg L(-l)) and nitrite (0.044 +/- 0.005 mg L(-1)) and with the available phosphate (0.032 +/- 0.006 mg L(-1)) initially provided the most favourable conditions for Azolla growth and propagation. Based on BVSTEP analysis (PRIMER v5), the results indicated that a combination of more than one nutrient or multiple nutrient contents explained the observed increased in biomass of A. pinnata grown in the different water sources.

  9. Growth and biochemical composition of Chlorella vulgaris in different growth media

    Directory of Open Access Journals (Sweden)

    MATHIAS A. CHIA

    2013-10-01

    Full Text Available The need for clean and low-cost algae production demands for investigations on algal physiological response under different growth conditions. In this research, we investigated the growth, biomass production and biochemical composition of Chlorella vulgaris using semi-continuous cultures employing three growth media (LC Oligo, Chu 10 and WC media. The highest cell density was obtained in LC Oligo, while the lowest in Chu medium. Chlorophyll a, carbohydrate and protein concentrations and yield were highest in Chu and LC Oligo media. Lipid class analysis showed that hydrocarbons (HC, sterol esthers (SE, free fatty acids (FFA, aliphatic alcohols (ALC, acetone mobile polar lipids (AMPL and phospholipids (PL concentrations and yields were highest in the Chu medium. Triglyceride (TAG and sterol (ST concentrations were highest in the LC Oligo medium. The results suggested that for cost effective cultivation, LC Oligo medium is the best choice among those studied, as it saved the cost of buying vitamins and EDTA associated with the other growth media, while at the same time resulted in the best growth performance and biomass production.

  10. Biomass co-firing for Delta Electricity

    International Nuclear Information System (INIS)

    Anon

    2014-01-01

    Electricity generator Delta Electricity has implemented a biomass co-firing program at its Vales Point power station on the Central Coast to reduce its reliance on coal and emissions of CO 2 . The program comprises two parts: direct co-firing with coal of up to 5% biomass; and development of Continuous Biomass Converter (CBC) technology with the Crucible Group to remove technology constraints and enable much higher rates of biomass co-firing. It is talking industrial scale tests. Delta increased biomass co-firing in 2013/14 to 32,000 tonnes, up from just 3,000 tonnes the previous year, and conducted biochar co-firing trials at a rate equivalent to 400,000 tonnes per annum to demonstrate the potential of CBC technology. It reduced CO 2 emissions in 2013/14 by more than 32,000 tonnes. 'Legislation and regulations define biomass as renewable,' said Delta Electricity sustainability manager Justin Flood. 'By preferring biomass over coal, the carbon in the coal is not burnt and remains locked up.' One biomass source is wood waste that would normally go to landfill, but the primary driver of Delta's recent increase in co-firing is sawmill residues. 'Previously there was a higher value market for the residues for paper pulp. However, when that market evaporated the timber industry was left with a sizable problem in terms of what to do with its residues and the loss of revenue,' said Flood. The way greenhouse gas accounting is conducted in Australia, with carbon emissions based on site activities, makes it difficult to undertake a life cycle assessment of the program. 'However, some of the international studies looking at this issue have concluded that the net carbon emissions of the biomass system are significantly lower than the coal system because of the uptake of carbon during biomass growth,' said Flood. Delta identified two challenges, sourcing the feedstock and that biomass conversion to electricity is slightly less

  11. Lidar-based biomass assessment for the Yukon River Basin

    Science.gov (United States)

    Peterson, B.; Wylie, B. K.; Stoker, J.; Nossov, D.

    2010-12-01

    Climate change is expected to have a significant impact on high-latitude forests in terms of their ability to sequester carbon as expressed as pools of standing total biomass and soil organic matter. Above ground biomass is an important driver in ecosystem process models used to assess, predict, and understand climate change impacts. Therefore, it is of compelling interest to acquire accurate assessments of current biomass levels for these high-latitude forests, a particular challenge because of their vastness and remoteness. At this time, remote sensing is the only feasible method through which to acquire such assessments. In this study, the use of lidar data for estimating shrub and tree biomass for the Yukon Flats region of Alaska’s Yukon River Basin (YRB) is demonstrated. The lidar data were acquired in the late summer and fall of 2009 as were an initial set of field sampling data collected for training and validation purposes. The 2009 field campaigns were located near Canvasback Lake and Boot Lake in the YRB. Various tallies of biomass were calculated from the field data using allometric equations (Bond-Lamberty et al. 2002, Yarie et al. 2007, Mack et al. 2008). Additional field data were also collected during two 2010 field campaigns at different locations in the Yukon Flats. Linear regressions have been developed based on field-based shrub and tree biomass and various lidar metrics of canopy height calculated for the plots (900 m^2). A multiple linear regression performed at the plot level resulted in a strong relationship (R^2=0.88) between observed and predicted biomass at the plot level. The coefficients for this regression were used to generate a shrub and tree biomass map for the entire Yukon Flats study area covered by lidar. This biomass map will be evaluated using additional field data collected in 2010 as well as other remote sensing data sources. Furthermore, additional lidar metrics (e.g. height of median energy) are being derived from the raw

  12. A Comparison Study of Machine Learning Based Algorithms for Fatigue Crack Growth Calculation.

    Science.gov (United States)

    Wang, Hongxun; Zhang, Weifang; Sun, Fuqiang; Zhang, Wei

    2017-05-18

    The relationships between the fatigue crack growth rate ( d a / d N ) and stress intensity factor range ( Δ K ) are not always linear even in the Paris region. The stress ratio effects on fatigue crack growth rate are diverse in different materials. However, most existing fatigue crack growth models cannot handle these nonlinearities appropriately. The machine learning method provides a flexible approach to the modeling of fatigue crack growth because of its excellent nonlinear approximation and multivariable learning ability. In this paper, a fatigue crack growth calculation method is proposed based on three different machine learning algorithms (MLAs): extreme learning machine (ELM), radial basis function network (RBFN) and genetic algorithms optimized back propagation network (GABP). The MLA based method is validated using testing data of different materials. The three MLAs are compared with each other as well as the classical two-parameter model ( K * approach). The results show that the predictions of MLAs are superior to those of K * approach in accuracy and effectiveness, and the ELM based algorithms show overall the best agreement with the experimental data out of the three MLAs, for its global optimization and extrapolation ability.

  13. Biomass shock pretreatment

    Science.gov (United States)

    Holtzapple, Mark T.; Madison, Maxine Jones; Ramirez, Rocio Sierra; Deimund, Mark A.; Falls, Matthew; Dunkelman, John J.

    2014-07-01

    Methods and apparatus for treating biomass that may include introducing a biomass to a chamber; exposing the biomass in the chamber to a shock event to produce a shocked biomass; and transferring the shocked biomass from the chamber. In some aspects, the method may include pretreating the biomass with a chemical before introducing the biomass to the chamber and/or after transferring shocked biomass from the chamber.

  14. MODIS Based Estimation of Forest Aboveground Biomass in China.

    Directory of Open Access Journals (Sweden)

    Guodong Yin

    Full Text Available Accurate estimation of forest biomass C stock is essential to understand carbon cycles. However, current estimates of Chinese forest biomass are mostly based on inventory-based timber volumes and empirical conversion factors at the provincial scale, which could introduce large uncertainties in forest biomass estimation. Here we provide a data-driven estimate of Chinese forest aboveground biomass from 2001 to 2013 at a spatial resolution of 1 km by integrating a recently reviewed plot-level ground-measured forest aboveground biomass database with geospatial information from 1-km Moderate-Resolution Imaging Spectroradiometer (MODIS dataset in a machine learning algorithm (the model tree ensemble, MTE. We show that Chinese forest aboveground biomass is 8.56 Pg C, which is mainly contributed by evergreen needle-leaf forests and deciduous broadleaf forests. The mean forest aboveground biomass density is 56.1 Mg C ha-1, with high values observed in temperate humid regions. The responses of forest aboveground biomass density to mean annual temperature are closely tied to water conditions; that is, negative responses dominate regions with mean annual precipitation less than 1300 mm y-1 and positive responses prevail in regions with mean annual precipitation higher than 2800 mm y-1. During the 2000s, the forests in China sequestered C by 61.9 Tg C y-1, and this C sink is mainly distributed in north China and may be attributed to warming climate, rising CO2 concentration, N deposition, and growth of young forests.

  15. MODIS Based Estimation of Forest Aboveground Biomass in China

    Science.gov (United States)

    Sun, Yan; Wang, Tao; Zeng, Zhenzhong; Piao, Shilong

    2015-01-01

    Accurate estimation of forest biomass C stock is essential to understand carbon cycles. However, current estimates of Chinese forest biomass are mostly based on inventory-based timber volumes and empirical conversion factors at the provincial scale, which could introduce large uncertainties in forest biomass estimation. Here we provide a data-driven estimate of Chinese forest aboveground biomass from 2001 to 2013 at a spatial resolution of 1 km by integrating a recently reviewed plot-level ground-measured forest aboveground biomass database with geospatial information from 1-km Moderate-Resolution Imaging Spectroradiometer (MODIS) dataset in a machine learning algorithm (the model tree ensemble, MTE). We show that Chinese forest aboveground biomass is 8.56 Pg C, which is mainly contributed by evergreen needle-leaf forests and deciduous broadleaf forests. The mean forest aboveground biomass density is 56.1 Mg C ha−1, with high values observed in temperate humid regions. The responses of forest aboveground biomass density to mean annual temperature are closely tied to water conditions; that is, negative responses dominate regions with mean annual precipitation less than 1300 mm y−1 and positive responses prevail in regions with mean annual precipitation higher than 2800 mm y−1. During the 2000s, the forests in China sequestered C by 61.9 Tg C y−1, and this C sink is mainly distributed in north China and may be attributed to warming climate, rising CO2 concentration, N deposition, and growth of young forests. PMID:26115195

  16. MODIS Based Estimation of Forest Aboveground Biomass in China.

    Science.gov (United States)

    Yin, Guodong; Zhang, Yuan; Sun, Yan; Wang, Tao; Zeng, Zhenzhong; Piao, Shilong

    2015-01-01

    Accurate estimation of forest biomass C stock is essential to understand carbon cycles. However, current estimates of Chinese forest biomass are mostly based on inventory-based timber volumes and empirical conversion factors at the provincial scale, which could introduce large uncertainties in forest biomass estimation. Here we provide a data-driven estimate of Chinese forest aboveground biomass from 2001 to 2013 at a spatial resolution of 1 km by integrating a recently reviewed plot-level ground-measured forest aboveground biomass database with geospatial information from 1-km Moderate-Resolution Imaging Spectroradiometer (MODIS) dataset in a machine learning algorithm (the model tree ensemble, MTE). We show that Chinese forest aboveground biomass is 8.56 Pg C, which is mainly contributed by evergreen needle-leaf forests and deciduous broadleaf forests. The mean forest aboveground biomass density is 56.1 Mg C ha-1, with high values observed in temperate humid regions. The responses of forest aboveground biomass density to mean annual temperature are closely tied to water conditions; that is, negative responses dominate regions with mean annual precipitation less than 1300 mm y-1 and positive responses prevail in regions with mean annual precipitation higher than 2800 mm y-1. During the 2000s, the forests in China sequestered C by 61.9 Tg C y-1, and this C sink is mainly distributed in north China and may be attributed to warming climate, rising CO2 concentration, N deposition, and growth of young forests.

  17. Thermodynamic approach to biomass gasification

    International Nuclear Information System (INIS)

    Boissonnet, G.; Seiler, J.M.

    2003-01-01

    The document presents an approach of biomass transformation in presence of steam, hydrogen or oxygen. Calculation results based on thermodynamic equilibrium are discussed. The objective of gasification techniques is to increase the gas content in CO and H 2 . The maximum content in these gases is obtained when thermodynamic equilibrium is approached. Any optimisation action of a process. will, thus, tend to approach thermodynamic equilibrium conditions. On the other hand, such calculations can be used to determine the conditions which lead to an increase in the production of CO and H 2 . An objective is also to determine transformation enthalpies that are an important input for process calculations. Various existing processes are assessed, and associated thermodynamic limitations are evidenced. (author)

  18. Evaluation of energy plantation crops in a high-throughput indirectly heated biomass gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Paisley, M.A.; Litt, R.D. [Battelle, Columbus, OH (United States)

    1993-12-31

    Experiments were run in Battelle`s 10 ton per day Process Research Unit (PRU) gasifier using two high-growth, energy plantation crops -- hybrid poplar -- and an herbaceous biomass crop -- switch grass. The results show that both feedstocks provide gas production rates, product gas compositions, and heating value similar to other biomass feedstocks tested in the Battelle gasification process. The ash compositions of the switch grass and hybrid poplar feedstocks were high in potassium relative to previously tested biomass feedstocks. High growth biomass species tend to concentrate minerals such as potassium in the ash. The higher potassium content in the ash can then cause agglomeration problems in the gasification system. A method for controlling this agglomeration through the addition of small amounts (approximately 2 percent of the wood feed rate) of an additive could adequately control the agglomeration tendency of the ash. During the testing program in the PRU, approximately 50 tons of hybrid poplar and 15 tons of switch grass were gasified to produce a medium Btu product gas.

  19. Climate mitigation comparison of woody biomass systems with the inclusion of land-use in the reference fossil system

    International Nuclear Information System (INIS)

    Haus, S.; Gustavsson, L.; Sathre, R.

    2014-01-01

    While issues of land-use have been considered in many direct analyses of biomass systems, little attention has heretofore been paid to land-use in reference fossil systems. Here we address this limitation by comparing forest biomass systems to reference fossil systems with explicit consideration of land-use in both systems. We estimate and compare the time profiles of greenhouse gas (GHG) emission and cumulative radiative forcing (CRF) of woody biomass systems and reference fossil systems. A life cycle perspective is used that includes all significant elements of both systems, including GHG emissions along the full material and energy chains. We consider the growth dynamics of forests under different management regimes, as well as energy and material substitution effects of harvested biomass. We determine the annual net emissions of CO 2 , N 2 O and CH 4 for each system over a 240-year period, and then calculate time profiles of CRF as a proxy measurement of climate change impact. The results show greatest potential for climate change mitigation when intensive forest management is applied in the woody biomass system. This methodological framework provides a tool to help determine optimal strategies for managing forests so as to minimize climate change impacts. The inclusion of land-use in the reference system improves the accuracy of quantitative projections of climate benefits of biomass-based systems. - Highlights: • We analyze the dynamics of GHG emissions from woody biomass and fossil systems. • With a life cycle perspective, we account for forest land-use in both systems. • Replacing more carbon intensive fossil fuels gives greater climate benefit. • Increasing the intensity of forest management gives greater climate benefit. • Methodological choices in defining temporal system boundaries are important

  20. Endophyte-assisted promotion of biomass production and metal-uptake of energy crop sweet sorghum by plant-growth-promoting endophyte Bacillus sp. SLS18

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Shenglian; Xu, Taoying; Chen, Liang [Hunan Univ., Changsha (China). College of Environmental Science and Engineering] [and others

    2012-02-15

    The effects of Bacillus sp. SLS18, a plant-growth-promoting endophyte, on the biomass production and Mn/Cd uptake of sweet sorghum (Sorghum bicolor L.), Phytolacca acinosa Roxb., and Solanum nigrum L. were investigated. SLS18 displayed multiple heavy metals and antibiotics resistances. The strain also exhibited the capacity of producing indole-3-acetic acid, siderophores, and 1-aminocyclopropane-1-carboxylic acid deaminase. In pot experiments, SLS18 could not only infect plants effectively but also significantly increase the biomass of the three tested plants in the presence of Mn/Cd. The promoting effect order of SLS18 on the biomass of the tested plants was sweet sorghum > P. acinosa > S. nigrum L. In the presence of Mn (2,000 mg kg{sup -1}) and Cd (50 mg kg{sup -1}) in vermiculite, the total Mn/Cd uptakes in the aerial parts of sweet sorghum, P. acinosa, and S. nigrum L. were increased by 65.2%/40.0%, 55.2%/31.1%, and 18.6%/25.6%, respectively, compared to the uninoculated controls. This demonstrates that the symbiont of SLS18 and sweet sorghum has the potential of improving sweet sorghum biomass production and its total metal uptake on heavy metal-polluted marginal land. It offers the potential that heavy metal-polluted marginal land could be utilized in planting sweet sorghum as biofuel feedstock for ethanol production, which not only gives a promising phytoremediation strategy but also eases the competition for limited fertile farmland between energy crops and food crops. (orig.)

  1. A Comparative Study on Energy Derived from Biomass

    Directory of Open Access Journals (Sweden)

    A.M. Algarny

    2017-03-01

    Full Text Available The paper promotes sustainable community through empowering the production and utilization of biomass renewable energy. The aim of this paper is to urge societies to adopt sustainable energy practices and resources; the objective is to appraise the possibilities of biomass energy produced through a neighborhood in Eastern Province, Saudi Arabia. The system incorporates an evaluation of the measure of biomass created, then utilizes two ascertaining techniques to gauge whether the measure of energy can be delivered. The computation strategies are hypothetical, with one drawn from past works and the other from a Biomass Calculation Template performed as part of the Evaluation of Biomass Resources for Municipalities study (EBIMUN by the Waterford County Council. The outcomes demonstrate that the aggregate potential biogas generation of the study area is around 43,200 m3 /year, the methane mass is around 18,000 m3 /year, and the energy production amount is around 250 MWh/year. Contrasting the capability of biogas creation from both techniques, the figure assessed by EBIMUN is around 7,000 m3 /year less than the hypothetically computed amount. The figures suggest that biogas is worthy of consideration as a renewable source of energy.

  2. Thermochemical conversion of microalgal biomass into biofuels: a review.

    Science.gov (United States)

    Chen, Wei-Hsin; Lin, Bo-Jhih; Huang, Ming-Yueh; Chang, Jo-Shu

    2015-05-01

    Following first-generation and second-generation biofuels produced from food and non-food crops, respectively, algal biomass has become an important feedstock for the production of third-generation biofuels. Microalgal biomass is characterized by rapid growth and high carbon fixing efficiency when they grow. On account of potential of mass production and greenhouse gas uptake, microalgae are promising feedstocks for biofuels development. Thermochemical conversion is an effective process for biofuel production from biomass. The technology mainly includes torrefaction, liquefaction, pyrolysis, and gasification. Through these conversion technologies, solid, liquid, and gaseous biofuels are produced from microalgae for heat and power generation. The liquid bio-oils can further be upgraded for chemicals, while the synthesis gas can be synthesized into liquid fuels. This paper aims to provide a state-of-the-art review of the thermochemical conversion technologies of microalgal biomass into fuels. Detailed conversion processes and their outcome are also addressed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Fusion of Plant Height and Vegetation Indices for the Estimation of Barley Biomass

    Directory of Open Access Journals (Sweden)

    Nora Tilly

    2015-09-01

    Full Text Available Plant biomass is an important parameter for crop management and yield estimation. However, since biomass cannot be determined non-destructively, other plant parameters are used for estimations. In this study, plant height and hyperspectral data were used for barley biomass estimations with bivariate and multivariate models. During three consecutive growing seasons a terrestrial laser scanner was used to establish crop surface models for a pixel-wise calculation of plant height and manual measurements of plant height confirmed the results (R2 up to 0.98. Hyperspectral reflectance measurements were conducted with a field spectrometer and used for calculating six vegetation indices (VIs, which have been found to be related to biomass and LAI: GnyLi, NDVI, NRI, RDVI, REIP, and RGBVI. Furthermore, biomass samples were destructively taken on almost the same dates. Linear and exponential biomass regression models (BRMs were established for evaluating plant height and VIs as estimators of fresh and dry biomass. Each BRM was established for the whole observed period and pre-anthesis, which is important for management decisions. Bivariate BRMs supported plant height as a strong estimator (R2 up to 0.85, whereas BRMs based on individual VIs showed varying performances (R2: 0.07–0.87. Fused approaches, where plant height and one VI were used for establishing multivariate BRMs, yielded improvements in some cases (R2 up to 0.89. Overall, this study reveals the potential of remotely-sensed plant parameters for estimations of barley biomass. Moreover, it is a first step towards the fusion of 3D spatial and spectral measurements for improving non-destructive biomass estimations.

  4. Switchgrass a valuable biomass crop for energy

    CERN Document Server

    2012-01-01

    The demand of renewable energies is growing steadily both from policy and from industry which seeks environmentally friendly feed stocks. The recent policies enacted by the EU, USA and other industrialized countries foresee an increased interest in the cultivation of energy crops; there is clear evidence that switchgrass is one of the most promising biomass crop for energy production and bio-based economy and compounds. Switchgrass: A Valuable Biomass Crop for Energy provides a comprehensive guide to  switchgrass in terms of agricultural practices, potential use and markets, and environmental and social benefits. Considering this potential energy source from its biology, breed and crop physiology to its growth and management to the economical, social and environmental impacts, Switchgrass: A Valuable Biomass Crop for Energy brings together chapters from a range of experts in the field, including a foreword from Kenneth P. Vogel, to collect and present the environmental benefits and characteristics of this a ...

  5. Biomass Assessment. Assessment of global biomass potentials and their links to food, water, biodiversity, energy demand and economy. Inventory and analysis of existing studies. Main report

    Energy Technology Data Exchange (ETDEWEB)

    Dornburg, V.; Faaij, A.; Verweij, P. [Utrecht University, Utrecht (Netherlands); Banse, M.; Van Diepen, K.; Van Keulen, H.; Langeveld, H.; Meeusen, M.; Van de Ven, G.; Wester, F. [Wageningen UR, Wageningen (Netherlands); Alkemade, R.; Ten Brink, B.; Van den Born, G.J.; Van Oorschot, M.; Ros, J.; Smout, F.; Van Vuuren, D.; Van den Wijngaart, R. [Netherlands Environmental Assessment Agency NMP, Bilthoven (Netherlands); Aiking, H. [Vrije Universiteit, Amsterdam (Netherlands); Londo, M.; Mozaffarian, H.; Smekens, K. [ECN Policy Studies, Petten (Netherlands); Lysen, E. (ed.); Van Egmond, S. (ed.) [Utrecht Centre for Energy research UCE, Utrecht University, Utrecht (Netherlands)

    2008-01-15

    The increased use and potential growth of biomass for energy has triggered a heated debate on the sustainability of those developments as biomass production is now also associated with increased competition with food and feed production, loss of forest cover and the like. Besides such competition, also the net reduction in greenhouse gas emissions is questioned in case land-use for biomass is associated with clearing forest, with conversion of peat land, as well as with high fossil energy inputs for machinery, fertilisers and other agrochemicals. Although available studies give a reasonable insight in the importance of various parameters, the integration between different arenas is still limited. This causes confusion in public as well as scientific debate, with conflicting views on the possibilities for sustainable use of biomass as a result. This study aims to tackle this problem by providing a more comprehensive assessment of the current knowledge with respect to biomass resource potentials.

  6. Biomass Assessment. Assessment of global biomass potentials and their links to food, water, biodiversity, energy demand and economy. Inventory and analysis of existing studies. Main report

    International Nuclear Information System (INIS)

    Dornburg, V.; Faaij, A.; Verweij, P.; Banse, M.; Van Diepen, K.; Van Keulen, H.; Langeveld, H.; Meeusen, M.; Van de Ven, G.; Wester, F.; Alkemade, R.; Ten Brink, B.; Van den Born, G.J.; Van Oorschot, M.; Ros, J.; Smout, F.; Van Vuuren, D.; Van den Wijngaart, R.; Aiking, H.; Londo, M.; Mozaffarian, H.; Smekens, K.; Lysen, E.

    2008-01-01

    The increased use and potential growth of biomass for energy has triggered a heated debate on the sustainability of those developments as biomass production is now also associated with increased competition with food and feed production, loss of forest cover and the like. Besides such competition, also the net reduction in greenhouse gas emissions is questioned in case land-use for biomass is associated with clearing forest, with conversion of peat land, as well as with high fossil energy inputs for machinery, fertilisers and other agrochemicals. Although available studies give a reasonable insight in the importance of various parameters, the integration between different arenas is still limited. This causes confusion in public as well as scientific debate, with conflicting views on the possibilities for sustainable use of biomass as a result. This study aims to tackle this problem by providing a more comprehensive assessment of the current knowledge with respect to biomass resource potentials

  7. Soil type affects Pinus ponderosa var. scopulorum (Pinaceae) seedling growth in simulated drought experiments1

    Science.gov (United States)

    Lindsey, Alexander J.; Kilgore, Jason S.

    2013-01-01

    • Premise of the study: Effects of drought stress and media type interactions on growth of Pinus ponderosa var. scopulorum germinants were investigated. • Methods and Results: Soil properties and growth responses under drought were compared across four growth media types: two native soils (dolomitic limestone and granite), a soil-less industry standard conifer medium, and a custom-mixed conifer medium. After 35 d of growth, the seedlings under drought stress (reduced watering) produced less shoot and root biomass than watered control seedlings. Organic media led to decreased root biomass, but increased root length and shoot biomass relative to the mineral soils. • Conclusions: Media type affected root-to-shoot biomass partitioning of P. ponderosa var. scopulorum, which may influence net photosynthetic rates, growth, and long-term seedling survival. Further work should examine how specific soil properties like bulk density and organic matter influence biomass allocation in greenhouse studies. PMID:25202578

  8. Optimization of macronutrient kinetics for biomass production in Nostoc calcicola

    Science.gov (United States)

    Aiyer, Subramanian Seshadri C.; Akshai, A.; Kumar, B. G. Prakash; Ramachandran, S.

    2018-04-01

    To assess the feasibility of Allen and Arnon’s (AA) media addition to increase the biomass productivity, (0, 2.5, 5, 7.5 ml of 10x media concentrate - MC) was added to aerated culture every six days, in two separate conditions i.e., single harvest (SH) and continuous harvest (CH) after 15th day. Results show that with addition of 5 ml of MC produced maximum amount of biomass is 1.32 g/L and 2.88 g/L for Sh and CH respectively. These results show that with addition of 5 ml of MC to an aerated culture every six days with continuous biomass harvesting leads to maximum growth of Nostoc calcicola @25°C

  9. Root Characteristics of Perennial Warm-Season Grasslands Managed for Grazing and Biomass Production

    Directory of Open Access Journals (Sweden)

    Rattan Lal

    2013-07-01

    Full Text Available Minirhizotrons were used to study root growth characteristics in recently established fields dominated by perennial C4-grasses that were managed either for cattle grazing or biomass production for bioenergy in Virginia, USA. Measurements over a 13-month period showed that grazing resulted in smaller total root volumes and root diameters. Under biomass management, root volume was 40% higher (49 vs. 35 mm3 and diameters were 20% larger (0.29 vs. 0.24 mm compared to grazing. While total root length did not differ between grazed and biomass treatments, root distribution was shallower under grazed areas, with 50% of total root length in the top 7 cm of soil, compared to 41% in ungrazed exclosures. These changes (i.e., longer roots and greater root volume in the top 10 cm of soil under grazing but the reverse at 17–28 cm soil depths were likely caused by a shift in plant species composition as grazing reduced C4 grass biomass and allowed invasion of annual unsown species. The data suggest that management of perennial C4 grasslands for either grazing or biomass production can affect root growth in different ways and this, in turn, may have implications for the subsequent carbon sequestration potential of these grasslands.

  10. Calculation of transportation energy for biomass collection

    Energy Technology Data Exchange (ETDEWEB)

    Kanai, G.; Takekura, K.; Kato, H.; Kobayashi, Y.; Yakushido, K. [National Agricultural Research Center, Tsukuba, Ibaraki (Japan)

    2010-07-01

    This paper reported on a study at a rice straw facility in Japan that produces bioethanol. Simulation modeling and calculations methods were used to examine the characteristics of field-to-facility transportation. Fuel consumption was found to be influenced by the conversion rate from straw to ethanol, the quantity of straw collected, and the ratio of the field area to that around the facility. Standard conditions were assumed based on reported data and actual observations for 15 ML/yr ethanol production, 0.3 kL output of ethanol from 1 t dry straw, 53.6 day/yr working days, 2.7 t truck load capacity, and 0.128 as the ratio of field to the area around the facility. According to calculations, a quantity of 50 kt dry straw requires 2.78 L of fuel to transport 1 t of dry straw, 109.5 trucks, and a 19.1 km collection area radius. The fuel consumption for transportation was found to be proportional to the quantity of straw to the 0.5 power, but inversely proportional to the ratio of field to the 0.5 power. The rate of increase in the number of trucks needed to collect straw increases with the decrease in the ratio of the field to area surface around the facility.

  11. Nitrogen utilization and biomass yield in trickle bed air biofilters.

    Science.gov (United States)

    Kim, Daekeun; Sorial, George A

    2010-10-15

    Nitrogen utilization and subsequent biomass yield were investigated in four independent lab-scale trickle bed air biofilters (TBABs) fed with different VOCs substrate. The VOCs considered were two aromatic (toluene, styrene) and two oxygenated (methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK)). Long-term observations of TBABs performances show that more nitrogen was required to sustain high VOC removal, but the one fed with a high loading of VOC utilized much more nitrogen for sustaining biomass yield. The ratio N(consumption)/N(growth) was an effective indicator in evaluating nitrogen utilization in the system. Substrate VOC availability in the system was significant in determining nitrogen utilization and biomass yield. VOC substrate availability in the TBAB system was effectively identified by using maximum practical concentrations in the biofilm. Biomass yield coefficient, which was driven from the regression analysis between CO(2) production rate and substrate consumption rate, was effective in evaluating the TBAB performance with respect to nitrogen utilization and VOC removal. Biomass yield coefficients (g biomass/g substrate, dry weight basis) were observed to be 0.668, 0.642, 0.737, and 0.939 for toluene, styrene, MEK, and MIBK, respectively. 2010 Elsevier B.V. All rights reserved.

  12. Biomass energetics potential of wetlands at Saare county

    International Nuclear Information System (INIS)

    Kask, U.; Kask, L.

    2002-01-01

    Most of the fuels that are being used to produce the thermal and electrical power are nonrenewable. Transferring them into energy pollutes the environment with CO 2 and surplus heat. Biomass is the most suitable energy resource in Estonian natural circumstances. Hitherto, one kind of biomass - plants of wetland - has almost not been used. There are plenty of wetlands in Saaremaa that have reasonably high productivity of biomass. Exertion of technologies of processing and using the biomass helps to create new jobs in agriculture as well in other sector of economy and evolve the regional development. The local currency circulation will improve and there are also possibilities in increase of capital expenditures and export potential. The biomass productivity of wetland plants accounting to dry matter can reach up to 4-5 kg/m 2 in a year. One advantage to use the plants of wetland (reed, cattail) in energy production is the fact that these plants will disengage from water in the end of their growth period and will need no extra drying. There are over 12000 ha of wetlands in Saaremaa, half of them could be used to get energetical biomass. The other half is either under (nature)protection or it would be economically inefficient to cut reed there. The major wetlands are in the surroundings of Mullatu bay and the Koigi swamp, also in Tornimae. There could be significant reduce in the emission of solid particles into the atmosphere, if the biomass of wetlands would be used to produce thermal and electrical power in Kuressaare. (author)

  13. Biomass accident investigations – missed opportunities for learning and accident prevention

    DEFF Research Database (Denmark)

    Hedlund, Frank Huess

    2017-01-01

    The past decade has seen a major increase in the production of energy from biomass. The growth has been mirrored in an increase of serious biomass related accidents involving fires, gas explosions, combustible dust explosions and the release of toxic gasses. There are indications that the number...... of bioenergy related accidents is growing faster than the energy production. This paper argues that biomass accidents, if properly investigated and lessons shared widely, provide ample opportunities for improving general hazard awareness and safety performance of the biomass industry. The paper examines...... selected serious accidents involving biogas and wood pellets in Denmark and argues that such opportunities for learning were missed because accident investigations were superficial, follow-up incomplete and information sharing absent. In one particularly distressing case, a facility saw a repeat accident...

  14. Biomass energy: Sustainable solution for greenhouse gas emission

    Science.gov (United States)

    Sadrul Islam, A. K. M.; Ahiduzzaman, M.

    2012-06-01

    Biomass is part of the carbon cycle. Carbon dioxide is produced after combustion of biomass. Over a relatively short timescale, carbon dioxide is renewed from atmosphere during next generation of new growth of green vegetation. Contribution of renewable energy including hydropower, solar, biomass and biofuel in total primary energy consumption in world is about 19%. Traditional biomass alone contributes about 13% of total primary energy consumption in the world. The number of traditional biomass energy users expected to rise from 2.5 billion in 2004 to 2.6 billion in 2015 and to 2.7 billion in 2030 for cooking in developing countries. Residential biomass demand in developing countries is projected to rise from 771 Mtoe in 2004 to 818 Mtoe in 2030. The main sources of biomass are wood residues, bagasse, rice husk, agro-residues, animal manure, municipal and industrial waste etc. Dedicated energy crops such as short-rotation coppice, grasses, sugar crops, starch crops and oil crops are gaining importance and market share as source of biomass energy. Global trade in biomass feedstocks and processed bioenergy carriers are growing rapidly. There are some drawbacks of biomass energy utilization compared to fossil fuels viz: heterogeneous and uneven composition, lower calorific value and quality deterioration due to uncontrolled biodegradation. Loose biomass also is not viable for transportation. Pelletization, briquetting, liquefaction and gasification of biomass energy are some options to solve these problems. Wood fuel production is very much steady and little bit increase in trend, however, the forest land is decreasing, means the deforestation is progressive. There is a big challenge for sustainability of biomass resource and environment. Biomass energy can be used to reduce greenhouse emissions. Woody biomass such as briquette and pellet from un-organized biomass waste and residues could be used for alternative to wood fuel, as a result, forest will be saved and

  15. Forest Biomass Mapping From Lidar and Radar Synergies

    Science.gov (United States)

    Sun, Guoqing; Ranson, K. Jon; Guo, Z.; Zhang, Z.; Montesano, P.; Kimes, D.

    2011-01-01

    The use of lidar and radar instruments to measure forest structure attributes such as height and biomass at global scales is being considered for a future Earth Observation satellite mission, DESDynI (Deformation, Ecosystem Structure, and Dynamics of Ice). Large footprint lidar makes a direct measurement of the heights of scatterers in the illuminated footprint and can yield accurate information about the vertical profile of the canopy within lidar footprint samples. Synthetic Aperture Radar (SAR) is known to sense the canopy volume, especially at longer wavelengths and provides image data. Methods for biomass mapping by a combination of lidar sampling and radar mapping need to be developed. In this study, several issues in this respect were investigated using aircraft borne lidar and SAR data in Howland, Maine, USA. The stepwise regression selected the height indices rh50 and rh75 of the Laser Vegetation Imaging Sensor (LVIS) data for predicting field measured biomass with a R(exp 2) of 0.71 and RMSE of 31.33 Mg/ha. The above-ground biomass map generated from this regression model was considered to represent the true biomass of the area and used as a reference map since no better biomass map exists for the area. Random samples were taken from the biomass map and the correlation between the sampled biomass and co-located SAR signature was studied. The best models were used to extend the biomass from lidar samples into all forested areas in the study area, which mimics a procedure that could be used for the future DESDYnI Mission. It was found that depending on the data types used (quad-pol or dual-pol) the SAR data can predict the lidar biomass samples with R2 of 0.63-0.71, RMSE of 32.0-28.2 Mg/ha up to biomass levels of 200-250 Mg/ha. The mean biomass of the study area calculated from the biomass maps generated by lidar- SAR synergy 63 was within 10% of the reference biomass map derived from LVIS data. The results from this study are preliminary, but do show the

  16. Evaluation of biomass production in unleaded gasoline and BTEX-fed batch reactors.

    Science.gov (United States)

    Acuna-Askar, K; Englande, A J; Ramirez-Medrano, A; Coronado-Guardiola, J E; Chavez-Gomez, B

    2003-01-01

    BTEX removal under aerobic conditions by unleaded gasoline acclimated biomass and BTEX acclimated biomass, and the effect of surfactant on BTEX biodegradation were evaluated. The effect of BTEX concentration as the sole source of carbon for biomass acclimation and the effect of yeast extract on cell growth in unleaded gasoline-fed reactors were also evaluated. For the unleaded gasoline acclimated biomass, benzene was shown the most recalcitrant among all BTEX, followed by o-xylene and toluene with 16-23%, 35-41% and 57-69% biodegradation, respectively. Ethylbenzene was consistently the fastest BTEX chemical removed with 99% biodegradation for the four bioreactor acclimated biomasses tested. For the 1,200 ppm BTEX acclimated biomass, benzene showed the highest removal efficiency (99%) among the four biomass environmental conditions tested, along with 99% toluene and 99% ethylbenzene biodegradation. O-xylene showed 92-94% removal. In all bioassays tested Tergitol NP-10 was fully removed, and did not have a substantial effect on BTEX biodegradation at the end of a 10-day evaluation.

  17. Experimental study of the production of biomass by Sacharomyces ...

    African Journals Online (AJOL)

    SERVER

    2008-04-17

    Apr 17, 2008 ... h-1 exceeds by far the maximum specific growth rate of the yeast under aerobic condition as obtained ... use for bread-making, a staple food for large section of ..... mental yield of biomass may be inaccurate measurement.

  18. Impact of thermal stress on the growth, size-distribution and biomass ...

    African Journals Online (AJOL)

    This paper reports an in-vivo account of the impact of thermal stress on the biomass and sizedistribution of estuarine populations of Pachymelania aurita in Epe Lagoon, Nigeria. Off all physicochemical variables investigated only water temperature was statistically different among study stations. A total of 7626 individuals of ...

  19. Transgenic plants with enhanced growth characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Unkefer, Pat J.; Anderson, Penelope S.; Knight, Thomas J.

    2018-01-09

    The invention relates to transgenic plants exhibiting dramatically enhanced growth rates, greater seed and fruit/pod yields, earlier and more productive flowering, more efficient nitrogen utilization, increased tolerance to high salt conditions, and increased biomass yields. In one embodiment, transgenic plants engineered to over-express both glutamine phenylpyruvate transaminase (GPT) and glutamine synthetase (GS) are provided. The GPT+GS double-transgenic plants of the invention consistently exhibit enhanced growth characteristics, with T0 generation lines showing an increase in biomass over wild type counterparts of between 50% and 300%. Generations that result from sexual crosses and/or selfing typically perform even better, with some of the double-transgenic plants achieving an astounding four-fold biomass increase over wild type plants.

  20. Transgenic plants with enhanced growth characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Unkefer, Pat J.; Anderson, Penelope S.; Knight, Thomas J.

    2016-09-06

    The invention relates to transgenic plants exhibiting dramatically enhanced growth rates, greater seed and fruit/pod yields, earlier and more productive flowering, more efficient nitrogen utilization, increased tolerance to high salt conditions, and increased biomass yields. In one embodiment, transgenic plants engineered to over-express both glutamine phenylpyruvate transaminase (GPT) and glutamine synthetase (GS) are provided. The GPT+GS double-transgenic plants of the invention consistently exhibit enhanced growth characteristics, with T0 generation lines showing an increase in biomass over wild type counterparts of between 50% and 300%. Generations that result from sexual crosses and/or selfing typically perform even better, with some of the double-transgenic plants achieving an astounding four-fold biomass increase over wild type plants.

  1. Biomass carbon stocks in China's forests between 2000 and 2050: a prediction based on forest biomass-age relationships.

    Science.gov (United States)

    Xu, Bing; Guo, ZhaoDi; Piao, ShiLong; Fang, JingYun

    2010-07-01

    China's forests are characterized by young forest age, low carbon density and a large area of planted forests, and thus have high potential to act as carbon sinks in the future. Using China's national forest inventory data during 1994-1998 and 1999-2003, and direct field measurements, we investigated the relationships between forest biomass density and forest age for 36 major forest types. Statistical approaches and the predicted future forest area from the national forestry development plan were applied to estimate the potential of forest biomass carbon storage in China during 2000-2050. Under an assumption of continuous natural forest growth, China's existing forest biomass carbon (C) stock would increase from 5.86 Pg C (1 Pg=10(15) g) in 1999-2003 to 10.23 Pg C in 2050, resulting in a total increase of 4.37 Pg C. Newly planted forests through afforestation and reforestation will sequestrate an additional 2.86 Pg C in biomass. Overall, China's forests will potentially act as a carbon sink for 7.23 Pg C during the period 2000-2050, with an average carbon sink of 0.14 Pg C yr(-1). This suggests that China's forests will be a significant carbon sink in the next 50 years.

  2. Biomass yield potential of short-rotation hardwoods in the Great Plains

    Energy Technology Data Exchange (ETDEWEB)

    Geyer, W A [Kansas State Univ., Manhattan, KS (USA). Dept. of Forestry

    1989-01-01

    Wood for fuel has increased in importance. Its primary use in the world is for energy, increasingly coming from wood wastes and new biomass sources. One solution to the potential problem of using high-quality trees for fuel could be woody biomass grown under a short-rotation intensive culture system. Species, size, age and spacing are factors that affect biomass production of broadleafed trees. Trials of several species grown at close spacing (0.3 m x 0.3 m) and cut at various ages are described and related to the growth and yield of more conventionally spaced plantings on an alluvial site in eastern Kansas. (author).

  3. INTERNATIONAL BIOMASS TRADE AND SUSTAINABLE DEVELOPMENT: AN OVERVIEW

    Directory of Open Access Journals (Sweden)

    Chiriac Catalin

    2011-12-01

    Full Text Available It is crystal clear that the neoclassical economical theory, despite being probably the best growth model ever invented by man, tickled a cost of environmental degradation which can threaten our wealth and even our existence. For this reason, the concept of sustainable development (SD is so empathic, being considered probably the best theoretical alternative invented by man to standard growth, because of its vision of a better world, where economics, society and environment are intimately linked. Thus, all human activities have to adapt to this new paradigm, in order to achieve its goals. From the economical perspective, production, consumption and trade must incorporate a kind of sustainable type of activity. In the recent years, growing demands in energy use and the increase of oil and coal prices, have led to the usage of new energy sources such as biomass, water, solar, wind and geothermal energy. This is why we propose in this paper to present an overview of international trade in biomass reported to the philosophy of SD. In short, we want to give an answer at two questions: how much is biomass trade sustainable and what risks may arise if the main source of energy used today, based on fossil fuels, will be totally substitute by biomass? To be sustainable, biomass, must meet certain criteria, such as: to possess a high capacity for regeneration, in a relatively short time; to offer a better efficiency compared with the traditional fossil fuel sources; to be less or non-polluting, to be used in solid, liquid and gaseous form; to have a broad applicability in production and consumption; to have a competitive level in terms of costs and prices for transport or storage, in both stages, as a raw material or as a finished product; to be a good substitute of traditional fuels (gasoline or diesel, without the necessity for structural changes of the of the engine. The article will conclude that the uprising trend of the EU biomass trade and

  4. Nitrogen cycling in an integrated biomass for energy system

    International Nuclear Information System (INIS)

    Moorhead, K.K.

    1986-01-01

    A series of experiments was conducted to evaluate N cycling in three components of an integrated biomass for energy system, i.e. water hyacinth production, anaerobic digestion in hyacinth biomass, and recycling of digester effluent and sludge. Plants assimilated 50 to 90% of added N in hyacinth production systems. Up to 28% of the total plant N was contained in hyacinth detritus. Nitrogen loading as plant detritus into hyacinth ponds was 92 to 148 kg N ha -1 yr -1 . Net mineralization of plant organic 15 N during anaerobic digestion was 35 and 70% for water hyacinth plants with low and high N content, respectively. Approximately 20% of the 15 N was recovered in the digested sludge while the remaining 15 N was recovered in the effluent. Water hyacinth growth in digester effluents was affected by electrical conductivity and 15 NH 4 + -N concentration. Addition of water hyacinth biomass to soil resulted in decomposition of 39 to 50% of added C for fresh plant biomass and 19 to 23% of added C for digested biomass sludge. Only 8% of added 15 N in digested sludges was mineralized to 15 NO 3 - -N despite differences in initial N content. In contrast, 3 and 33% of added 15 N in fresh biomass with low and high N content, respectively, was recovered as 15 NO 3 - -N. Total 15 N recovery after anaerobic digestion ranged from 70 to 100% of the initial plant biomass 15 N. Total N recovery by sludge and effluent recycling in the integrated biomass for energy system was 48 to 60% of the initial plant biomass 15 N

  5. The characteristics of biomass production, lipid accumulation and ...

    African Journals Online (AJOL)

    Glucose was the optimal carbon source for mixotrophic cultivation of C. vulgaris and the effects of glucose content on the alga growth under mixotrophic conditions were considerable because lower glucose content (1 g/l) promoted the production of biomass and photosynthetic pigments; higher glucose contents (>5 g/l) ...

  6. Effects of substrate concentrations on the growth of heterotrophic bacteria and algae in secondary facultative ponds.

    Science.gov (United States)

    Kayombo, S; Mbwette, T S A; Katima, J H Y; Jorgensen, S E

    2003-07-01

    This paper presents the effect of substrate concentration on the growth of a mixed culture of algae and heterotrophic bacteria in secondary facultative ponds (SFPs) utilizing settled domestic sewage as a sole source of organic carbon. The growth of the mixed culture was studied at the concentrations ranging between 200 and 800 mg COD/l in a series of batch chemostat reactors. From the laboratory data, the specific growth rate (micro) was determined using the modified Gompertz model. The maximum specific growth rate ( micro(max)) and half saturation coefficients (K(s)) were calculated using the Monod kinetic equation. The maximum observed growth rate ( micro(max)) for heterotrophic bacteria was 3.8 day(-1) with K(s) of 200 mg COD/l. The micro(max) for algal biomass based on suspended volatile solids was 2.7 day(-1) with K(s) of 110 mg COD/l. The micro(max) of algae based on the chlorophyll-a was 3.5 day(-1) at K(s) of 50mg COD/l. The observed specific substrate removal by heterotrophic bacteria varied between the concentrations of substrate used and the average value was 0.82 (mg COD/mg biomass). The specific substrate utilization rate in the bioreactors was direct proportional to the specific growth rate. Hence, the determined Monod kinetic parameters are useful for the definition of the operation of SFPs.

  7. Biomass Torrefaction Process Review and Moving Bed Torrefaction System Model Development

    Energy Technology Data Exchange (ETDEWEB)

    Jaya Shakar Tumuluru; Shahab Sokhansanj; Christopher T. Wright; Richard D. Boardman

    2010-08-01

    Torrefaction is currently developing as an important preprocessing step to improve the quality of biomass in terms of physical properties, and proximate and ultimate composition. Torrefaction is a slow heating of biomass in an inert or reduced environment to a maximum temperature of 300 C. Torrefaction can also be defined as a group of products resulting from the partially controlled and isothermal pyrolysis of biomass occurring in a temperature range of 200-230 C and 270-280 C. Thus, the process can also be called a mild pyrolysis as it occurs at the lower temperature range of the pyrolysis process. At the end of the torrefaction process, a solid uniform product with lower moisture content and higher energy content than raw biomass is produced. Most of the smoke-producing compounds and other volatiles are removed during torrefaction, producing a final product that will have a lower mass but a higher heating value. An important aspect of research is to establish a degree of torrefaction where gains in heating value offset the loss of mass. There is a lack of literature on torrefaction reactor designs and a design sheet for estimating the dimensions of the torrefier based on capacity. This study includes (a) conducting a detailed review on the torrefaction of biomass in terms of understanding the process, product properties, off-gas compositions, and methods used, and (b) to design a moving bed torrefier, taking into account the basic fundamental heat and mass transfer calculations. Specific objectives include calculating the dimensions like diameter and height of the moving packed bed for different capacities, designing the heat loads and gas flow rates, and developing an interactive excel sheet where the user can define design specifications. In this report, 25-1000 kg/hr are used in equations for the design of the torrefier, examples of calculations, and specifications for the torrefier.

  8. Biomass torrefaction: A promising pretreatment technology for biomass utilization

    Science.gov (United States)

    Chen, ZhiWen; Wang, Mingfeng; Ren, Yongzhi; Jiang, Enchen; Jiang, Yang; Li, Weizhen

    2018-02-01

    Torrefaction is an emerging technology also called mild pyrolysis, which has been explored for the pretreatment of biomass to make the biomass more favorable for further utilization. Dry torrefaction (DT) is a pretreatment of biomass in the absence of oxygen under atmospheric pressure and in a temperature range of 200-300 degrees C, while wet torrrefaction (WT) is a method in hydrothermal or hot and high pressure water at the tempertures within 180-260 degrees C. Torrrefied biomass is hydrophobic, with lower moisture contents, increased energy density and higher heating value, which are more comparable to the characteristics of coal. With the improvement in the properties, torrefied biomass mainly has three potential applications: combustion or co-firing, pelletization and gasification. Generally, the torrefaction technology can accelerate the development of biomass utilization technology and finally realize the maximum applications of biomass energy.

  9. Audible sound treatment of the microalgae Picochlorum oklahomensis for enhancing biomass productivity.

    Science.gov (United States)

    Cai, Weiming; Dunford, Nurhan Turgut; Wang, Ning; Zhu, Songming; He, Huinong

    2016-02-01

    It has been reported in the literature that exposure of microalgae cells to audible sound could promote growth. This study examined the effect of sound waves with the frequency of 1100 Hz, 2200 Hz, and 3300 Hz to stimulate the biomass productivity of an Oklahoma native strain, Picochlorum oklahomensis (PO). The effect of the frequency of sound on biomass mass was measured. This study demonstrated that audible sound treatment of the algae cultures at 2200 Hz was the most effective in terms of biomass production and volumetric oil yield. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Bio-methane via fast pyrolysis of biomass

    International Nuclear Information System (INIS)

    Görling, Martin; Larsson, Mårten; Alvfors, Per

    2013-01-01

    Highlights: ► Pyrolysis gases can efficiently be upgraded to bio-methane. ► The integration can increase energy efficiency and provide a renewable vehicle fuel. ► The biomass to bio-methane conversion efficiency is 83% (HHV). ► The efficiency is higher compared to bio-methane produced via gasification. ► Competitive alternative to other alternatives of bio-oil upgrading. - Abstract: Bio-methane, a renewable vehicle fuel, is today produced by anaerobic digestion and a 2nd generation production route via gasification is under development. This paper proposes a poly-generation plant that produces bio-methane, bio-char and heat via fast pyrolysis of biomass. The energy and material flows for the fuel synthesis are calculated by process simulation in Aspen Plus®. The production of bio-methane and bio-char amounts to 15.5 MW and 3.7 MW, when the total inputs are 23 MW raw biomass and 1.39 MW electricity respectively (HHV basis). The results indicate an overall efficiency of 84% including high-temperature heat and the biomass to bio-methane yield amounts to 83% after allocation of the biomass input to the final products (HHV basis). The overall energy efficiency is higher for the suggested plant than for the gasification production route and is therefore a competitive route for bio-methane production

  11. seasonal variation of biomass and secondary production

    African Journals Online (AJOL)

    Preferred Customer

    consimilis was cultured in the laboratory to obtain life history data on duration of embryonic and post-embryonic ... medium. Laboratory duration times were close to biomass turnover rates calculated from field data ... Ethiopian lakes include the work of Seyoum. Mengistou ... water balance of this lake as the static water level.

  12. A lifetime perspective of biomass allocation in Quercus pubescens trees in a dry, alpine valley

    NARCIS (Netherlands)

    Slot, M.; Janse-ten Klooster, S.H.; Sterck, F.J.; Sass-Klaassen, U.; Zweifel, R.

    2012-01-01

    Plasticity of biomass allocation is a key to growth and survival of trees exposed to variable levels of stress in their lifetime. Most of our understanding of dynamic biomass allocation comes from seedling studies, but plasticity may be different in mature trees. We used stem analysis to reconstruct

  13. Effect of culture density on biomass production and light utilization efficiency of Synechocystis sp. PCC 6803.

    Science.gov (United States)

    Straka, Levi; Rittmann, Bruce E

    2018-02-01

    The viability of large-scale microalgae cultivation depends on providing optimal growth conditions, for which a key operational parameter is culture density. Using Synechocystis sp. PCC 6803, we conducted a series of fixed-density, steady-state experiments and one batch-growth experiment to investigate the role of culture density on biomass production and light utilization efficiency. In all cases, the fixed-density, steady-state experiments and batch-growth experiment showed good agreement. The highest biomass production rates (260 mg L -1  d -1 ) and efficiency for converting light energy to biomass (0.80 μg (μmol photons) -1 ) occurred together at a culture density near 760 mg L -1 , which approximately corresponded to the lowest culture density where almost all incident light was absorbed. The ratio of OD 680 /OD 735 increased with culture density up to the point of maximum productivity, where it plateaued (at a value of 2.4) for higher culture densities. This change in OD 680 /OD 735 indicates a photoacclimation effect that depended on culture density. Very high culture densities led to a sharp decline in efficiency of biomass production per photons absorbed, likely due to a combination of increased decay relative to growth, metabolic changes due to cell-cell interactions, and photodamage due to mixing between regions with high light intensity and zero light intensity. © 2017 Wiley Periodicals, Inc.

  14. Restoration of areas degraded by alluvial sand mining: use of soil microbiological activity and plant biomass growth to assess evolution of restored riparian vegetation.

    Science.gov (United States)

    Venson, Graziela R; Marenzi, Rosemeri C; Almeida, Tito César M; Deschamps-Schmidt, Alexandre; Testolin, Renan C; Rörig, Leonardo R; Radetski, Claudemir M

    2017-03-01

    River or alluvial sand mining is causing a variety of environmental problems in the Itajaí-açú river basin in Santa Catarina State (south of Brazil). When this type of commercial activity degrades areas around rivers, environmental restoration programs need to be executed. In this context, the aim of this study was to assess the evolution of a restored riparian forest based on data on the soil microbial activity and plant biomass growth. A reference site and three sites with soil degradation were studied over a 3-year period. Five campaigns were performed to determine the hydrolysis of the soil enzyme fluorescein diacetate (FDA), and the biomass productivity was determined at the end of the studied period. The variation in the enzyme activity for the different campaigns at each site was low, but this parameter did differ significantly according to the site. Well-managed sites showed the highest biomass productivity, and this, in turn, showed a strong positive correlation with soil enzyme activity. In conclusion, soil enzyme activity could form the basis for monitoring and the early prediction of the success of vegetal restoration programs, since responses at the higher level of biological organization take longer, inhibiting the assessment of the project within an acceptable time frame.

  15. Effects of dispersal on total biomass in a patchy, heterogeneous system: analysis and experiment.

    Science.gov (United States)

    Zhang, Bo; Liu, Xin; DeAngelis, Donald L.; Ni, Wei-Ming; Wang, G Geoff

    2015-01-01

    An intriguing recent result from mathematics is that a population diffusing at an intermediate rate in an environment in which resources vary spatially will reach a higher total equilibrium biomass than the population in an environment in which the same total resources are distributed homogeneously. We extended the current mathematical theory to apply to logistic growth and also showed that the result applies to patchy systems with dispersal among patches, both for continuous and discrete time. This allowed us to make specific predictions, through simulations, concerning the biomass dynamics, which were verified by a laboratory experiment. The experiment was a study of biomass growth of duckweed (Lemna minor Linn.), where the resources (nutrients added to water) were distributed homogeneously among a discrete series of water-filled containers in one treatment, and distributed heterogeneously in another treatment. The experimental results showed that total biomass peaked at an intermediate, relatively low, diffusion rate, higher than the total carrying capacity of the system and agreeing with the simulation model. The implications of the experiment to dynamics of source, sink, and pseudo-sink dynamics are discussed.

  16. Overexpression of Populus trichocarpa CYP85A3 promotes growth and biomass production in transgenic trees.

    Science.gov (United States)

    Jin, Yan-Li; Tang, Ren-Jie; Wang, Hai-Hai; Jiang, Chun-Mei; Bao, Yan; Yang, Yang; Liang, Mei-Xia; Sun, Zhen-Cang; Kong, Fan-Jing; Li, Bei; Zhang, Hong-Xia

    2017-10-01

    Brassinosteroids (BRs) are essential hormones that play crucial roles in plant growth, reproduction and response to abiotic and biotic stress. In Arabidopsis, AtCYP85A2 works as a bifunctional cytochrome P450 monooxygenase to catalyse the conversion of castasterone to brassinolide, a final rate-limiting step in the BR-biosynthetic pathway. Here, we report the functional characterizations of PtCYP85A3, one of the three AtCYP85A2 homologous genes from Populus trichocarpa. PtCYP85A3 shares the highest similarity with AtCYP85A2 and can rescue the retarded-growth phenotype of the Arabidopsis cyp85a2-2 and tomato d x mutants. Constitutive expression of PtCYP85A3, driven by the cauliflower mosaic virus 35S promoter, increased the endogenous BR levels and significantly promoted the growth and biomass production in both transgenic tomato and poplar. Compared to the wild type, plant height, shoot fresh weight and fruit yield increased 50%, 56% and 43%, respectively, in transgenic tomato plants. Similarly, plant height and stem diameter increased 15% and 25%, respectively, in transgenic poplar plants. Further study revealed that overexpression of PtCYP85A3 enhanced xylem formation without affecting the composition of cellulose and lignin, as well as the cell wall thickness in transgenic poplar. Our finding suggests that PtCYP85A3 could be used as a potential candidate gene for engineering fast-growing trees with improved wood production. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  17. Production of Saccharomyces cerevisiae biomass in papaya extract ...

    African Journals Online (AJOL)

    Extracts of papaya fruit were used as substrate for single cell protein (SCP) production using Saccharomyces cerevisiae. A 500 g of papaya fruit was extracted with different volumes of sterile distilled water. Extraction with 200 mL of sterile distilled water sustained highest cell growth. Biochemical analysis of dry biomass ...

  18. Reaction pathways of model compounds of biomass-derived oxygenates on Fe/Ni bimetallic surfaces

    Science.gov (United States)

    Yu, Weiting; Chen, Jingguang G.

    2015-10-01

    Controlling the activity and selectivity of converting biomass-derivatives to fuels and valuable chemicals is critical for the utilization of biomass feedstocks. There are primarily three classes of non-food competing biomass, cellulose, hemicellulose and lignin. In the current work, glycolaldehyde, furfural and acetaldehyde are studied as model compounds of the three classes of biomass-derivatives. Monometallic Ni(111) and monolayer (ML) Fe/Ni(111) bimetallic surfaces are studied for the reaction pathways of the three biomass surrogates. The ML Fe/Ni(111) surface is identified as an efficient surface for the conversion of biomass-derivatives from the combined results of density functional theory (DFT) calculations and temperature programmed desorption (TPD) experiments. A correlation is also established between the optimized adsorption geometry and experimental reaction pathways. These results should provide helpful insights in catalyst design for the upgrading and conversion of biomass.

  19. Renewable energy--traditional biomass vs. modern biomass

    International Nuclear Information System (INIS)

    Goldemberg, Jose; Teixeira Coelho, Suani

    2004-01-01

    Renewable energy is basic to reduce poverty and to allow sustainable development. However, the concept of renewable energy must be carefully established, particularly in the case of biomass. This paper analyses the sustainability of biomass, comparing the so-called 'traditional' and 'modern' biomass, and discusses the need for statistical information, which will allow the elaboration of scenarios relevant to renewable energy targets in the world

  20. Validating Community-Led Forest Biomass Assessments.

    Science.gov (United States)

    Venter, Michelle; Venter, Oscar; Edwards, Will; Bird, Michael I

    2015-01-01

    The lack of capacity to monitor forest carbon stocks in developing countries is undermining global efforts to reduce carbon emissions. Involving local people in monitoring forest carbon stocks could potentially address this capacity gap. This study conducts a complete expert remeasurement of community-led biomass inventories in remote tropical forests of Papua New Guinea. By fully remeasuring and isolating the effects of 4,481 field measurements, we demonstrate that programmes employing local people (non-experts) can produce forest monitoring data as reliable as those produced by scientists (experts). Overall, non-experts reported lower biomass estimates by an average of 9.1%, equivalent to 55.2 fewer tonnes of biomass ha(-1), which could have important financial implications for communities. However, there were no significant differences between forest biomass estimates of expert and non-expert, nor were there significant differences in some of the components used to calculate these estimates, such as tree diameter at breast height (DBH), tree counts and plot surface area, but were significant differences between tree heights. At the landscape level, the greatest biomass discrepancies resulted from height measurements (41%) and, unexpectedly, a few large missing trees contributing to a third of the overall discrepancies. We show that 85% of the biomass discrepancies at the tree level were caused by measurement taken on large trees (DBH ≥50 cm), even though they consisted of only 14% of the stems. We demonstrate that programmes that engage local people can provide high-quality forest carbon data that could help overcome barriers to reducing forest carbon emissions in developing countries. Nonetheless, community-based monitoring programmes should prioritise reducing errors in the field that lead to the most important discrepancies, notably; overcoming challenges to accurately measure large trees.

  1. Recycle of Inorganic Nutrients for Hydroponic Crop Production Following Incineration of Inedible Biomass

    Science.gov (United States)

    Bubenheim, David L.; Wignarajah, Kanapathipillai; Kliss, Mark H. (Technical Monitor)

    1996-01-01

    Recovery of resources from waste streams is essential for future implementation and reliance on a regenerative life support system. The major waste streams of concern are from human activities and plant wastes. Carbon, water and inorganics are the primary desired raw materials of interest. The goal of resource recovery is maintenance of product quality to insure support of reliable and predictable levels of life support function performance by the crop plant component. Further, these systems must be maintained over extended periods of time, requiring maintenance of nutrient solutions to avoid toxicity and deficiencies. Today, reagent grade nutrients are used to make nutrient solutions for hydroponic culture and these solutions are frequently changed during the life cycle or sometimes managed for only one crop life cycle. The focus of this study was to determine the suitability of the ash product following incineration of inedible biomass as a source of inorganic nutrients for hydroponic crop production. Inedible wheat biomass was incinerated and ash quality characterized. The incinerator ash was dissolved in adequate nitric acid to establish a consistent nitrogen concentration in all nutrient solution treatments. Four experimental nutrient treatments were included: control, ash only, ash supplemented to match control, and ash only quality formulated with reagent grade chemicals. When nutrient solutions are formulated using only ash following-incineration of inedible biomass, a balance in solution is established representing elemental retention following incineration and nutrient proportions present in the original biomass. The resulting solution is not identical to the control. This imbalance resulted in suppression of crop growth. When the ash is supplemented with nutrients to establish the same balance as in the control, growth is identical to the control. The ash appears to carry no phytotoxic materials. Growth in solution formulated with reagent grade chemicals

  2. Sustainable biomass production for energy in Sri Lanka

    International Nuclear Information System (INIS)

    Perera, K.K.C.K.; Rathnasiri, P.G.; Sugathapala, A.G.T.

    2003-01-01

    The present study concentrates mainly on the estimation of land availability for biomass production and the estimation of sustainable biomass production potential for energy. The feasible surplus land area available for bioenergy plantation is estimated assuming two land availability scenarios (Scenarios 1 and 2) and three biomass demand scenarios (IBD Scenario, SBD Scenario and FBD Scenario). Scenario 1 assumes that 100% of the surplus area available in base year 1997 will be suitable for plantation without considering population growth and food production and that 75% of this surplus land is feasible for plantation. Scenario 2 assumes that future food requirement will grow by 20% and the potential surplus area will be reduced by that amount. The incremental biomass demand scenario (IBD Scenario) assumes that only the incremental demand for biomass in the year 2010 with respect to the base year 1997 has to be produced from new plantation. The sustainable biomass demand scenario (SBD Scenario) assumes that the total sustainable supply of biomass in 1997 is deducted from the future biomass demand in 2010 and only the balance is to be met by new plantation. The full biomass demand scenario (FBD Scenario) assumes that the entire projected biomass demand of the year 2010 needs to be produced from new plantation. The total feasible land area for the scenarios IBD-1, 1BD-2, SBD-1, SBD-2, FBD-1 and FBD-2 are approximately 0.96, 0.66, 0.80, 0.94, 0.60 and 0.30 Mha, respectively. Biomass production potential is estimated by selecting appropriate plant species, plantation spacing and productivity level. The results show that the total annual biomass production in the country could vary from 2 to 9.9 Mt. With the production option (i.e. 1.5 mx1.5 m spacing plantation with fertilizer application) giving the highest yield, the total biomass production for energy under IBD Scenario would be 9.9 Mt yr -1 for Scenario 1 and 6.7 Mt yr -1 for Scenario 2. Under SBD Scenario, the

  3. Combustion behavior of different kinds of torrefied biomass and their blends with lignite.

    Science.gov (United States)

    Toptas, Asli; Yildirim, Yeliz; Duman, Gozde; Yanik, Jale

    2015-02-01

    In this study, the combustion behavior of different kinds of torrefied biomass (lignocellulosic and animal wastes) and their blends with lignite was investigated via non-isothermal thermogravimetric method under air atmosphere. For comparison, combustion characteristics of raw biomasses were also determined. Torrefaction process improved the reactivity of char combustion step of biomasses. Characteristic combustion parameters for blends showed non-additivity behavior. It was found that the mixture of torrefied biomasses and lignite at a ratio of 1:1 had a lower ignition and burnout temperature than the coal-only sample. Although no interactions were observed between the lignite and torrefied biomass at initial step of combustion, a certain degree of interaction between the components occurred at char combustion step. Kinetic parameters of combustion were calculated by using the Coats Redfern model. Overall, this study showed that poultry litters can be used as a substitute fuel in coal/biomass co-firing systems by blending with lignocellulosic biomass. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Aspects of using biomass as energy source for power generation

    Directory of Open Access Journals (Sweden)

    Tîrtea Raluca-Nicoleta

    2017-07-01

    Full Text Available Biomass represents an important source of renewable energy in Romania with about 64% of the whole available green energy. Being a priority for the energy sector worldwide, in our country the development stage is poor compared to solar and wind energy. Biomass power plants offer great horizontal economy development, local and regional economic growth with benefic effects on life standard. The paper presents an analysis on biomass to power conversion solutions compared to fossil fuels using two main processes: combustion and gasification. Beside the heating value, which can be considerably higher for fossil fuels compared to biomass, a big difference between fossil fuels and biomass can be observed in the sulphur content. While the biomass sulphur content is between 0 and approximately 1%, the sulphur content of coal can reach 4%. Using coal in power plants requires important investments in installations of flue gas desulfurization. If limestone is used to reduce SO2 emissions, then additional carbon dioxide moles will be released during the production of CaO from CaCO3. Therefore, fossil fuels not only release a high amount of carbon dioxide through burning, but also through the caption of sulphur dioxide, while biomass is considered CO2 neutral. Biomass is in most of the cases represented by residues, so it is a free fuel compared to fossil fuels. The same power plant can be used even if biomass or fossil fuels is used as a feedstock with small differences. The biomass plant could need a drying system due to high moisture content of the biomass, while the coal plant will need a desulfurization installation of flue gas and additional money will be spent with fuel purchasing.

  5. Maintenance-energy-dependent dynamics of growth and poly(3-hydroxybutyrate) [P(3HB)] production by Azohydromonas lata MTCC 2311 using simple and renewable carbon substrates

    OpenAIRE

    Zafar,M.; Kumar,S.; Kumar,S.; Dhiman,A. K.; Park,H.-S.

    2014-01-01

    The dynamics of microbial growth and poly(3-hydroxybutyrate) [P(3HB)] production in growth/ non-growth phases of Azhohydromonas lata MTCC 2311 were studied using a maintenance-energy-dependent mathematical model. The values of calculated model kinetic parameters were: m s1 = 0.0005 h-1, k = 0.0965, µmax = 0.25 h-1 for glucose; m s1 = 0.003 h-1, k = 0.1229, µmax = 0.27 h-1 for fructose; and m s1 = 0.0076 h-1, k = 0.0694, µmax = 0.25 h-1 for sucrose. The experimental data of biomass growth, sub...

  6. Second generation bioethanol potential from selected Malaysia's biodiversity biomasses: A review.

    Science.gov (United States)

    Aditiya, H B; Chong, W T; Mahlia, T M I; Sebayang, A H; Berawi, M A; Nur, Hadi

    2016-01-01

    Rising global temperature, worsening air quality and drastic declining of fossil fuel reserve are the inevitable phenomena from the disorganized energy management. Bioethanol is believed to clear out the effects as being an energy-derivable product sourced from renewable organic sources. Second generation bioethanol interests many researches from its unique source of inedible biomass, and this paper presents the potential of several selected biomasses from Malaysia case. As one of countries with rich biodiversity, Malaysia holds enormous potential in second generation bioethanol production from its various agricultural and forestry biomasses, which are the source of lignocellulosic and starch compounds. This paper reviews potentials of biomasses and potential ethanol yield from oil palm, paddy (rice), pineapple, banana and durian, as the common agricultural waste in the country but uncommon to be served as bioethanol feedstock, by calculating the theoretical conversion of cellulose, hemicellulose and starch components of the biomasses into bioethanol. Moreover, the potential of the biomasses as feedstock are discussed based on several reported works. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Microalgal biomass pretreatment for bioethanol production: a review

    Directory of Open Access Journals (Sweden)

    Jesús Velazquez-Lucio

    2018-03-01

    Full Text Available Biofuels derived from microalgae biomass have received a great deal of attention owing to their high potentials as sustainable alternatives to fossil fuels. Microalgae have a high capacity of CO2 fixation and depending on their growth conditions, they can accumulate different quantities of lipids, proteins, and carbohydrates. Microalgal biomass can, therefore, represent a rich source of fermentable sugars for third generation bioethanol production. The utilization of microalgal carbohydrates for bioethanol production follows three main stages: i pretreatment, ii saccharification, and iii fermentation. One of the most important stages is the pretreatment, which is carried out to increase the accessibility to intracellular sugars, and thus plays an important role in improving the overall efficiency of the bioethanol production process. Diverse types of pretreatments are currently used including chemical, thermal, mechanical, biological, and their combinations, which can promote cell disruption, facilitate extraction, and result in the modification the structure of carbohydrates as well as the production of fermentable sugars. In this review, the different pretreatments used on microalgae biomass for bioethanol production are presented and discussed. Moreover, the methods used for starch and total carbohydrates quantification in microalgae biomass are also briefly presented and compared.

  8. Phototrophic biofilms of restored fields in the Rhenish lignite mining area: development of soil algal, bacterial, and fungal biomasses

    Energy Technology Data Exchange (ETDEWEB)

    Jahnke, K.; Priefer, U.B. [Rhein Westfal TH Aachen, Aachen (Germany)

    2002-07-01

    The formation of phototrophic biofilms in three fields under restoration of a lignite-mining area was recorded over 3 years of lucerne cultivation in terms of biomass carbon from algae, bacteria and fungi. The primary phase of biofilm development on the humus- and nitrogen deficient uppermost soil surfaces was dominated by algae. The ratio of algal carbon to heterotrophic bacterial and fungal carbon ranged from 1:0.4 to 1:2. Only during this initial developmental stage did the total microfloral carbon exceed 10% of the overall organic carbon content. With time, the ratios between algal and heterotrophic microbial carbon increased to 1:10 which was mainly due to decomposed plant residues and humus accumulation supporting the growth of bacteria and fungi. At this later stage of field development the calculated amount of bacterial and fungal carbon associated with the algae was still at least 8% of total heterotrophic microbial carbon and could even reach 20%. Bacterial and fungal biomasses were primarily governed by the organic carbon content (r = 0.81), but fluctuations-up to 50% and occurring mostly simultaneously for the three microfloral members-were observed in response to temperature and moisture conditions. The calculated in situ doubling times were 8 days (algae), 9 days (bacteria) and 14 days (fungi), respectively. Insight is given into the dynamics of phototrophic biofilm development and the abiotic factors affecting them during early phases of arable soil restoration. The results indicate that biomass changes expressed as the respective ratios between their microfloral members are a useful tool to characterise the different developmental stages of terrestrial biofilms.

  9. Growth and enzymatic activity of Leucoagaricus gongylophorus, a mutualistic fungus isolated from the leaf-cutting ant Atta mexicana, on cellulose and lignocellulosic biomass.

    Science.gov (United States)

    Vigueras, G; Paredes-Hernández, D; Revah, S; Valenzuela, J; Olivares-Hernández, R; Le Borgne, S

    2017-08-01

    A mutualistic fungus of the leaf-cutting ant Atta mexicana was isolated and identified as Leucoagaricus gongylophorus. This isolate had a close phylogenetic relationship with L. gongylophorus fungi cultivated by other leaf-cutting ants as determined by ITS sequencing. A subcolony started with ~500 A. mexicana workers could process 2 g day -1 of plant material and generate a 135 cm 3 fungus garden in 160 days. The presence of gongylidia structures of ~35 μm was observed on the tip of the hyphae. The fungus could grow without ants on semi-solid cultures with α-cellulose and microcrystalline cellulose and in solid-state cultures with grass and sugarcane bagasse, as sole sources of carbon. The maximum CO 2 production rate on grass (V max  = 17·5 mg CO 2  L g -1  day -1 ) was three times higher than on sugarcane bagasse (V max  = 6·6 mg CO 2  L g -1 day -1 ). Recoveries of 32·9 mg glucose  g biomass -1 and 12·3 mg glucose  g biomass -1 were obtained from the fungal biomass and the fungus garden, respectively. Endoglucanase activity was detected on carboxymethylcellulose agar plates. This is the first study reporting the growth of L. gongylophorus from A. mexicana on cellulose and plant material. According to the best of our knowledge, this is the first report about the growth of Leucoagaricus gongylophorus, isolated from the colony of the ant Atta mexicana, on semisolid medium with cellulose and solid-state cultures with lignocellulosic materials. The maximum CO 2 production rate on grass was three times higher than on sugarcane bagasse. Endoglucanase activity was detected and it was possible to recover glucose from the fungal gongylidia. The cellulolytic activity could be used to process lignocellulosic residues and obtain sugar or valuable products, but more work is needed in this direction. © 2017 The Society for Applied Microbiology.

  10. Development of biomass in a drinking water granular active carbon (GAC) filter.

    Science.gov (United States)

    Velten, Silvana; Boller, Markus; Köster, Oliver; Helbing, Jakob; Weilenmann, Hans-Ulrich; Hammes, Frederik

    2011-12-01

    Indigenous bacteria are essential for the performance of drinking water biofilters, yet this biological component remains poorly characterized. In the present study we followed biofilm formation and development in a granular activated carbon (GAC) filter on pilot-scale during the first six months of operation. GAC particles were sampled from four different depths (10, 45, 80 and 115 cm) and attached biomass was measured with adenosine tri-phosphate (ATP) analysis. The attached biomass accumulated rapidly on the GAC particles throughout all levels in the filter during the first 90 days of operation and maintained a steady state afterward. Vertical gradients of biomass density and growth rates were observed during start-up and also in steady state. During steady state, biomass concentrations ranged between 0.8-1.83 x 10(-6) g ATP/g GAC in the filter, and 22% of the influent dissolved organic carbon (DOC) was removed. Concomitant biomass production was about 1.8 × 10(12) cells/m(2)h, which represents a yield of 1.26 × 10(6) cells/μg. The bacteria assimilated only about 3% of the removed carbon as biomass. At one point during the operational period, a natural 5-fold increase in the influent phytoplankton concentration occurred. As a result, influent assimilable organic carbon concentrations increased and suspended bacteria in the filter effluent increased 3-fold as the direct consequence of increased growth in the biofilter. This study shows that the combination of different analytical methods allows detailed quantification of the microbiological activity in drinking water biofilters. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Biomass and Neutral Lipid Production in Geothermal Microalgal Consortia

    Science.gov (United States)

    Bywaters, Kathryn F.; Fritsen, Christian H.

    2015-01-01

    Recently, technologies have been developed that offer the possibility of using algal biomass as feedstocks to energy producing systems – in addition to oil-derived fuels (Bird et al., 2011, 2012). Growing native mixed microalgal consortia for biomass in association with geothermal resources has the potential to mitigate negative impacts of seasonally low temperatures on biomass production systems as well as mitigate some of the challenges associated with growing unialgal strains. We assessed community composition, growth rates, biomass, and neutral lipid production of microalgal consortia obtained from geothermal hot springs in the Great Basin/Nevada area that were cultured under different thermal and light conditions. Biomass production rates ranged from 39.0 to 344.1 mg C L−1 day−1. The neutral lipid production in these consortia with and without shifts to lower temperatures and additions of bicarbonate (both environmental parameters that have been shown to enhance neutral lipid production) ranged from 0 to 38.74 mg free fatty acids (FFA) and triacylglycerols (TAG) L−1 day−1; the upper value was approximately 6% of the biomass produced. The higher lipid values were most likely due to the presence of Achnanthidium sp. Palmitic and stearic acids were the dominant free fatty acids. The S/U ratio (the saturated to unsaturated FA ratio) decreased for cultures shifted from their original temperature to 15°C. Biomass production was within the upper limits of those reported for individual strains, and production of neutral lipids was increased with secondary treatment. All results demonstrate a potential of culturing and manipulating resultant microalgal consortia for biomass-based energy production and perhaps even for biofuels. PMID:25763368

  12. Biomass and Neutral Lipid Production in Geothermal Microalgal Consortia

    Directory of Open Access Journals (Sweden)

    Kathryn Faye Bywaters

    2015-02-01

    Full Text Available Recently, technologies have been developed that offer the possibility of using algal biomass as feedstocks to energy producing systems- in addition to oil-derived fuels (Bird et al., 2011;Bird et al., 2012. Growing native mixed microalgal consortia for biomass in association with geothermal resources has the potential to mitigate negative impacts of seasonally low temperatures on biomass production systems as well as mitigate some of the challenges associated with growing unialgal strains. We assessed community composition, growth rates, biomass and neutral lipid production of microalgal consortia obtained from geothermal hot springs in the Great Basin/Nevada area that were cultured under different thermal and light conditions. Biomass production rates ranged from 368 to 3246 mg C L-1 d-1. The neutral lipid production in these consortia with and without shifts to lower temperatures and additions of bicarbonate (both environmental parameters that have been shown to enhance neutral lipid production ranged from zero to 38.74 mg free fatty acids and triacylglycerols L-1 d-1, the upper value was approximately 6% of the biomass produced. The higher lipid values were most likely due to the presence of Achnanthidium sp. Palmitic and stearic acids were the dominant free fatty acids. The S/U ratio (the saturated to unsaturated FA ratio decreased for cultures shifted from their original temperature to 15°C. Biomass production was within the upper limits of those reported for individual strains, and production of neutral lipids was increased with secondary treatment – all results demonstrate a potential of culturing and manipulating resultant microalgal consortia for biomass-based energy production and perhaps even for biofuels.

  13. Pyrolysis characteristics and kinetics of aquatic biomass using thermogravimetric analyzer.

    Science.gov (United States)

    Wu, Kejing; Liu, Ji; Wu, Yulong; Chen, Yu; Li, Qinghai; Xiao, Xin; Yang, Mingde

    2014-07-01

    The differences in pyrolysis process of three species of aquatic biomass (microalgae, macroalgae and duckweed) were investigated by thermogravimetric analysis (TGA). Three stages were observed during the pyrolysis process and the main decomposition stage could be divided further into three zones. The pyrolysis characteristics of various biomasses were different at each zone, which could be attributed to the differences in their components. A stepwise procedure based on iso-conversional and master-plots methods was used for the kinetic and mechanism analysis of the main decomposition stage. The calculation results based on the kinetic model was in good agreement with the experimental data of weight loss, and each biomass had an increasing activation energy of 118.35-156.13 kJ/mol, 171.85-186.46 kJ/mol and 258.51-268.71 kJ/mol in zone 1, 2 and 3, respectively. This study compares the pyrolysis behavior of various aquatic biomasses and provides basis for further applications of the biomass thermochemical conversion. Copyright © 2014. Published by Elsevier Ltd.

  14. Biomass and nutrient accumulation in young Prosopis Juliflora at Mombasa, Kenya

    Energy Technology Data Exchange (ETDEWEB)

    Maghembe, J.A.; Kariuki, E.M.; Haller, R.D.

    1983-01-01

    Data are presented for 6-yr old P. juliflora, grown for quarry reclamation on: biomass of stems, large branches, small branches and leaves; height and volume of stems and large branches. All were calculated from regressions on based diameter. Volume was 209 cubic m/ha (stems), 75 cubic m/ha (large branches). Total biomass was 216 t/ha (77% in stems and large branches). Leaves plus small branches (22.6% of biomass) contained over 50% of the pool of nutrients N, P, K and Mg. Implications are discussed for site depletion as a result of total tree use for fuelwood and fodder. 25 references.

  15. Biomass estimation as a function of vertical forest structure and forest height: potential and limitations for radar remote sensing

    OpenAIRE

    Torano Caicoya, Astor; Kugler, Florian; Papathanassiou, Kostas; Biber, Peter; Pretzsch, Hans

    2010-01-01

    One common method to estimate biomass is measuring forest height and applying allometric equations to get forest biomass. Conditions like changing forest density or changing forest structure bias the allometric relations or biomass estimation fails completely. Remote sensing systems like SAR or LIDAR allow to measure vertical structure of forests. In this paper it is investigated whether vertical structure is sensitive to biomass. For this purpose vertical biomass profiles were calculated usi...

  16. Growth, biomass production and photosynthesis of Cenchrus ciliaris L. under Acacia tortilis (Forssk.) Hayne based silvopastoral systems in semi arid tropics.

    Science.gov (United States)

    Mishra, A K; Tiwari, H S; Bhatt, R K

    2010-11-01

    The growth, biomass production and photosynthesis of Cenchrus ciliaris was studied under the canopies of 17 yr old Acacia tortilis trees in semi arid tropical environment. On an average the full grown canopy of A. tortilis at the spacing of 4 x 4 m allowed 55% of total Photosynthetically Active Radiation (PAR) which in turn increased Relative Humidity (RH) and reduced under canopy temperature to -1.75 degrees C over the open air temperature. C. ciliaris attained higher height under the shade of A. tortilis. The tiller production and leaf area index decreased marginally under the shade of tree canopies as compared to the open grown grasses. C. ciliaris accumulated higher chlorophyll a and b under the shade of tree canopies indicating its shade adaptation potential. The assimilatory functions such as rate of photosynthesis, transpiration, stomatal conductance, photosynthetic water use efficiency (PN/TR) and carboxylation efficiency (PN/CINT) decreased under the tree canopies due to low availability of PAR. The total biomass production in term of fresh and dry weight decreased under the tree canopies. On average of 2 yr C. ciliaris had produced 12.78 t ha(-1) green and 3.72 -t ha(-1) dry biomass under the tree canopies of A. tortilis. The dry matter yield reduced to 38% under the tree canopies over the open grown grasses. The A. tortilis + C. ciliaris maintained higher soil moisture, organic carbon content and available N P K for sustainable biomass production for the longer period. The higher accumulation of crude protein, starch, sugar and nitrogen in leaves and stem of C. ciliaris indicates that this grass species also maintained its quality under A. tortilis based silvopastoral system. The photosynthesis and dry matter accumulation are closely associated with available PAR indicating that for sustainable production of this grass species in the silvopasture systems for longer period about 55% or more PAR is required.

  17. Waste Biomass Based Energy Supply Chain Network Design

    Directory of Open Access Journals (Sweden)

    Hatice Güneş Yıldız

    2018-06-01

    Full Text Available Reducing dependence on fossil fuels, alleviating environmental impacts and ensuring sustainable economic growth are among the most promising aspects of utilizing renewable energy resources. Biomass is a major renewable energy resource that has the potential for creating sustainable energy systems that are critical in terms of social welfare. Utilization of biomass for bioenergy production is an efficient alternative for meeting rising energy demands, reducing greenhouse gas emissions and thus alleviating climate change. A supply chain for such an energy source is crucial for assisting deliverance of a competitive end product to end-user markets. Considering the existing constraints, a mixed integer linear programming (MILP model for waste biomass based supply chain was proposed in this study for economic performance optimization. Performance of the proposed modelling approach was demonstrated with a real life application study realized in İstanbul. Moreover, sensitivity analyses were conducted which would serve as a foresight for efficient management of the supply chain as a whole

  18. Remote Characterization of Biomass Measurements: Case Study of Mangrove Forests

    Science.gov (United States)

    Fatoyinbo, Temilola E.

    2010-01-01

    Accurately quantifying forest biomass is of crucial importance for climate change studies. By quantifying the amount of above and below ground biomass and consequently carbon stored in forest ecosystems, we are able to derive estimates of carbon sequestration, emission and storage and help close the carbon budget. Mangrove forests, in addition to providing habitat and nursery grounds for over 1300 animal species, are also an important sink of biomass. Although they only constitute about 3% of the total forested area globally, their carbon storage capacity -- in forested biomass and soil carbon -- is greater than that of tropical forests (Lucas et al, 2007). In addition, the amount of mangrove carbon -- in the form of litter and leaves exported into offshore areas is immense, resulting in over 10% of the ocean's dissolved organic carbon originating from mangroves (Dittmar et al, 2006) The measurement of forest above ground biomass is carried out on two major scales: on the plot scale, biomass can be measured using field measurements through allometric equation derivation and measurements of forest plots. On the larger scale, the field data are used to calibrate remotely sensed data to obtain stand-wide or even regional estimates of biomass. Currently, biomass can be calculated using average stand biomass values and optical data, such as aerial photography or satellite images (Landsat, Modis, Ikonos, SPOT, etc.). More recent studies have concentrated on deriving forest biomass values using radar (JERS, SIR-C, SRTM, Airsar) and/or lidar (ICEsat/GLAS, LVIS) active remote sensing to retrieve more accurate and detailed measurements of forest biomass. The implementation of a generation of new active sensors (UAVSar, DesdynI, Alos/Palsar, TerraX) has prompted the development of new tecm'liques of biomass estimation that use the combination of multiple sensors and datasets, to quantify past, current and future biomass stocks. Focusing on mangrove forest biomass estimation

  19. Technical Manual for the SAM Biomass Power Generation Model

    Energy Technology Data Exchange (ETDEWEB)

    Jorgenson, J.; Gilman, P.; Dobos, A.

    2011-09-01

    This technical manual provides context for the implementation of the biomass electric power generation performance model in the National Renewable Energy Laboratory's (NREL's) System Advisor Model (SAM). Additionally, the report details the engineering and scientific principles behind the underlying calculations in the model. The framework established in this manual is designed to give users a complete understanding of behind-the-scenes calculations and the results generated.

  20. Effect of pretreatment on biomass residue structure and the application of pyrolysed and composted biomass residues in soilless culture.

    Directory of Open Access Journals (Sweden)

    Linna Suo

    Full Text Available The changes in the structural characteristics of biomass residues during pyrolysis and composting were investigated. The biomass residues particles were prepared by pyrolysing at temperatures ranging from 350 to 400. For soilless production of the ornamental plant Anthurium andraeanum, pure sphagnum peat moss (P has traditionally been used as the growing medium. This use of P must be reduced, however, because P is an expensive and nonrenewable resource. The current study investigated the use of biomass residues as substitutes for P in A. andraeanum production. Plants were grown for 15 months in 10 soilless media that contained different proportions of pyrolysed corn cobs (PC, composted corn cobs (C, pyrolysed garden wastes (PG, and P. Although the media altered the plant nutrient content, A. andraeanum growth, development, and yield were similar with media consisting of 50% P+50% PC, 50% P+35% PC+15% PG, and 100% P. This finding indicates that, when pyrolysed, organic wastes, which are otherwise an environmental problem, can be used to reduce the requirement for peat in the soilless culture of A. andraeanum.

  1. Estimating annual bole biomass production using uncertainty analysis

    Science.gov (United States)

    Travis J. Woolley; Mark E. Harmon; Kari B. O' Connell

    2007-01-01

    Two common sampling methodologies coupled with a simple statistical model were evaluated to determine the accuracy and precision of annual bole biomass production (BBP) and inter-annual variability estimates using this type of approach. We performed an uncertainty analysis using Monte Carlo methods in conjunction with radial growth core data from trees in three Douglas...

  2. Biomass for electricity in the EU-27: Potential demand, CO2 abatements and breakeven prices for co-firing

    International Nuclear Information System (INIS)

    Bertrand, Vincent; Dequiedt, Benjamin; Le Cadre, Elodie

    2014-01-01

    This paper analyses the potential of biomass-based electricity in the EU-27 countries, and interactions with climate policy and the EU ETS. We estimate the potential biomass demand from the existing power plants, and we match our estimates with the potential biomass supply in Europe. Furthermore, we compute the CO2 abatement associated with the co-firing opportunities in European coal plants. We find that the biomass demand from the power sector may be very high compared with potential supply. We also identify that co-firing can produce high volumes of CO 2 abatements, which may be two times larger than that of the coal-to-gas fuel switching. We also compute biomass and CO2 breakeven prices for co-firing. Results indicate that biomass-based electricity remains profitable with high biomass prices, when the carbon price is high: a Euros 16–24 (25–35, respectively) biomass price (per MWh prim ) for a Euros 20 (50, respectively) carbon price. Hence, the carbon price appears as an important driver, which can make profitable a high share of the potential biomass demand from the power sector, even with high biomass prices. This aims to gain insights on how biomass market may be impacted by the EU ETS and others climate policies. - Highlights: • Technical potential of biomass (demand and CO 2 abatement) in European electricity. • Calculation for co-firing and biomass power plants; comparison with potential biomass supply in EU-27 countries. • Calculation of biomass and CO 2 breakeven prices for co-firing. • Potential demand is 8–148% of potential supply (up to 80% of demand from co-firing). • High potential abatement from co-firing (up to 365 Mt/yr); Profitable co-firing with €16-24 (25–35) biomass price for €20 (50) CO 2 price

  3. Flow Cytometry Pulse Width Data Enables Rapid and Sensitive Estimation of Biomass Dry Weight in the Microalgae Chlamydomonas reinhardtii and Chlorella vulgaris

    Science.gov (United States)

    Chioccioli, Maurizio; Hankamer, Ben; Ross, Ian L.

    2014-01-01

    Dry weight biomass is an important parameter in algaculture. Direct measurement requires weighing milligram quantities of dried biomass, which is problematic for small volume systems containing few cells, such as laboratory studies and high throughput assays in microwell plates. In these cases indirect methods must be used, inducing measurement artefacts which vary in severity with the cell type and conditions employed. Here, we utilise flow cytometry pulse width data for the estimation of cell density and biomass, using Chlorella vulgaris and Chlamydomonas reinhardtii as model algae and compare it to optical density methods. Measurement of cell concentration by flow cytometry was shown to be more sensitive than optical density at 750 nm (OD750) for monitoring culture growth. However, neither cell concentration nor optical density correlates well to biomass when growth conditions vary. Compared to the growth of C. vulgaris in TAP (tris-acetate-phosphate) medium, cells grown in TAP + glucose displayed a slowed cell division rate and a 2-fold increased dry biomass accumulation compared to growth without glucose. This was accompanied by increased cellular volume. Laser scattering characteristics during flow cytometry were used to estimate cell diameters and it was shown that an empirical but nonlinear relationship could be shown between flow cytometric pulse width and dry weight biomass per cell. This relationship could be linearised by the use of hypertonic conditions (1 M NaCl) to dehydrate the cells, as shown by density gradient centrifugation. Flow cytometry for biomass estimation is easy to perform, sensitive and offers more comprehensive information than optical density measurements. In addition, periodic flow cytometry measurements can be used to calibrate OD750 measurements for both convenience and accuracy. This approach is particularly useful for small samples and where cellular characteristics, especially cell size, are expected to vary during growth. PMID

  4. Discernment of synergism in pyrolysis of biomass blends using thermogravimetric analysis.

    Science.gov (United States)

    Mallick, Debarshi; Poddar, Maneesh Kumar; Mahanta, Pinakeswar; Moholkar, Vijayanand S

    2018-04-12

    This study reports pyrolysis kinetics of biomass blends using isoconversional methods, viz. Friedman, FWO and KAS. Blends of three biomasses, viz. saw dust, bamboo dust and rice husk, were used. Extractives and volatiles in biomass and minerals in ash had marked influence on enhancement of reaction kinetics during co-pyrolysis, as indicated by reduction in activation energy and increase in decomposition intensity. Pyrolysis kinetics of saw dust and rice husk accelerated (positive synergy), while that of bamboo dust decelerated after blending (negative synergy). Predominant reaction mechanism of all biomass blends was 3-D diffusion in lower conversion range (α ≤ 0.5), while for α ≥ 0.5 pyrolysis followed random nucleation (or nucleation and growth mechanism). Higher reaction order for pyrolysis of blends of rice husk with saw dust and bamboo dust was attributed to catalytic effect of minerals in ash. Positive ΔH and ΔG was obtained for pyrolysis of all biomass blends. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Green energy from microalgae: Usage of algae biomass for anaerobic digestion

    International Nuclear Information System (INIS)

    Skorupskaite, Virginija; Makarevicie, Violeta

    2014-01-01

    The microalgae biomass can be used for various types of biofuels, including biodiesel and biogas. The aim of this study is to investigate the possibilities of microalgae Scenedesmus sp. and Chlorella sp. (widespread in freshwater Lithuanian lakes) usage for biogas production. Microalgae were cultivated under mixotrophic conditions (growth medium BG11 containing technical glycerol). In order to determine biogas yield and quality dependence on feedstock preparation, the analyses of biogas production have been performed with algae biomass prepared i n different ways: wet centrifuged; wet centrifuged, frozen and defrost; dry not de-oiled and dry de-oiled. The highest biogas yield in both cases (Scenedesmus sp. – 646 ml/gDM and Chlorella sp. – 652 ml/gDM) was obtained from centrifuged, frozen and defrost biomass. Biogas yield was app. 1.46 times higher comparing to yield of biogas produced from wastewater sludge. Our results showed that different types of biomass preparation have no significant influence on quality of biogas. Key words: microalgae, biomass, biogas production, biogas quality

  6. Investigation of Requisites for the Optimal Mycelial Growth of the Lingzhi or Reishi Medicinal Mushroom, Ganoderma lucidum (Agaricomycetes), on Oil Palm Biomass in Malaysia.

    Science.gov (United States)

    Sudheer, Surya; Ali, Asgar; Manickam, Sivakumar

    2016-01-01

    Rigorous research has been carried out regarding the cultivation of Ganoderma lucidum using different agricultural residues. Nevertheless, large-scale cultivation and the separation of active compounds of G. lucidum are still challenges for local farmers. The objective of this study was to evaluate the use of oil palm waste fibers such as empty fruit bunch fibers and mesocarp fibers as effective substrates for the growth of G. lucidum mycelia to study the possibility of solid-state cultivation and to determine the optimum conditions necessary for the growth of mycelia of this mushroom on these waste fibers. Various parameters such as temperature, pH, humidity, and carbon and nitrogen compositions required for the optimum growth of mycelia have been determined. Oil palm fibers are a vivid source of lignocellulose, and their availability in Malaysia is high compared to that of sawdust. G. lucidum is a wood-rotting fungi that can easily decay and utilize this lignocellulose biomass, a major agricultural waste in Malaysia.

  7. Predictive models of biomass for poplar and willow. Short rotation coppice in the United Kingdom

    Energy Technology Data Exchange (ETDEWEB)

    Brewer, A.C.; Morgan, G.W.; Poole, E.J.; Baldwin, M.E.; Tubby, I. (Biometrics, Surveys and Statistics Division, Forest Research, Farnham (United Kingdom))

    2007-07-01

    A series of forty-nine experimental trials on short rotation coppice (SRC) were conducted throughout the United Kingdom using a selection of varieties of poplar and willow with the aim of evaluating their performance for wood fuel production under a representative range of UK conditions. Observations on the crops and on a range of site and climatic conditions during the growth of the crops were taken over two three-year cutting cycles. These observations were used to develop a suite of empirical models for poplar and willow SRC growth and yield from which systems were constructed to provide a- priori predictions of biomass yield for any site in the UK with known characteristics (predictive yield models), and estimates of biomass yield from a standing crop (standing biomass models). The structure of the series of field trials and the consequent approach and methodology used in the construction of the suite of empirical models are described, and their use in predicting biomass yields of poplar and willow SRC is discussed. (orig.)

  8. Herbaceous biomass supply chains : assessing the greenhouse gas balance, economics and ILUC effects of Ukrainian biomass for domestic and Dutch energy markets

    NARCIS (Netherlands)

    Poppens, R.P.; Lesschen, J.P.; Galytska, M.; Jamblinne, de P.; Kraisvitnii, P.; Elbersen, H.W.

    2013-01-01

    This report describes the supply chain performance for three types of biomass feedstock (reed, straw and switchgrass) and for three sustainability aspects, i.e. the greenhouse gas balance, economics and Indirect Land Use change effects (ILUC). Calculations are based on a fictional supply chain

  9. Numerical studies of the influence of food ingestion on phytoplankton and zooplankton biomasses

    Directory of Open Access Journals (Sweden)

    Lidia Dzierzbicka-G³owacka

    2002-03-01

    Full Text Available This paper presents the numerical simulations of the influence of food ingestion by a herbivorous copepod on phytoplankton and zooplankton biomasses (PZB in the sea. The numerical studies were carried out using the phytoplankton-zooplankton-nutrient-detritus PhyZooNuDe biological upper layer model. This takes account both of fully developed primary production and regeneration mechanisms and of daily migration of zooplankton. In this model the zooplankton is treated not as a 'biomass' but as organisms having definite patterns of growth, reproduction and mortality. Assuming also that {Zoop} is composed ofi cohorts of copepods with weights Wi and numbers Zi, then {Zoop} = WiZi. The PhyZooNuDe model consists of three coupled, partial second-order differential equations of the diffusion type for phytoplankton, zooplankton and nutrients, and one ordinary first-order differential equation for the benthic detritus pool, together with initial and boundary conditions. The calculations were made during 90 days (April, May and June for the study area P1 (Gdansk Deep in an area 0z<=20 m with a vertical space step of 0.1 m and a time step of 300 s. The simulation given here demonstrated the importance of food ingestion by zooplankton in that it can alter the nature of the interactions of plants and herbivores. The analysis of these numerical studies indicate that the maximal ingestion rate and the half-saturation constant for grazing strongly affect the magnitude of the spring bloom and the cyanobacterial bloom, and also the total zooplankton biomass.

  10. The current state of the California biomass energy industry

    International Nuclear Information System (INIS)

    Morris, G.P.

    1994-01-01

    During the decade of the 1980s the California biomass energy industry grew from a few isolated facilities located mostly at pulp mills into the largest biomass energy industry in the world. Currently, more than fifty biomass powered electricity generating facilities provide the state with some 850 Megawatts (MW) of generating capacity, most of it interconnected to the state's electric utility systems. Each year, more than ten million tons of wood and agricultural wastes in the state are converted into fuel, rather than being disposed of using conventional, environmentally costly methods like open burning and landfill burial. As the 1980s began, the California biomass energy industry was in a nascent state. Optimism was blooming within the wood-products and agricultural sectors of California, who foresaw an opportunity to turn costly wastes into profits. At the same time, the independent energy industry itself was being launched. Interest in biomass energy development was spreading to the engineering and construction industries and the financial community as well. A great variety of firms and individuals were engaged in the development of biomass power plants and biomass fuel sources. The second half of the 1980s saw the fruits of the developmental activity that began in the first half of the decade. Biomass energy facilities were entering construction and coming on-line in increasing numbers, and the demand for biomass fuels was increasing in step. As the decade was coming to an end, biomass fuel supplies were hard put to meet the demand, yet a huge number of new facilities entered operation in 1990. This extreme growth spurt of new generating capacity caused a fuel crisis and a shake-out in the industry just as it was entering full-scale operation. The Crisis of Success had been reached. More recently an equilibrium has been achieved in which fuel prices are at levels that produce adequate supplies, while allowing profitable operations at the power plants

  11. Root biomass, turnover and net primary productivity of a coffee agroforestry system in Costa Rica: effects of soil depth, shade trees, distance to row and coffee age.

    Science.gov (United States)

    Defrenet, Elsa; Roupsard, Olivier; Van den Meersche, Karel; Charbonnier, Fabien; Pastor Pérez-Molina, Junior; Khac, Emmanuelle; Prieto, Iván; Stokes, Alexia; Roumet, Catherine; Rapidel, Bruno; de Melo Virginio Filho, Elias; Vargas, Victor J; Robelo, Diego; Barquero, Alejandra; Jourdan, Christophe

    2016-08-21

    In Costa Rica, coffee (Coffea arabica) plants are often grown in agroforests. However, it is not known if shade-inducing trees reduce coffee plant biomass through root competition, and hence alter overall net primary productivity (NPP). We estimated biomass and NPP at the stand level, taking into account deep roots and the position of plants with regard to trees. Stem growth and root biomass, turnover and decomposition were measured in mixed coffee/tree (Erythrina poeppigiana) plantations. Growth ring width and number at the stem base were estimated along with stem basal area on a range of plant sizes. Root biomass and fine root density were measured in trenches to a depth of 4 m. To take into account the below-ground heterogeneity of the agroforestry system, fine root turnover was measured by sequential soil coring (to a depth of 30 cm) over 1 year and at different locations (in full sun or under trees and in rows/inter-rows). Allometric relationships were used to calculate NPP of perennial components, which was then scaled up to the stand level. Annual ring width at the stem base increased up to 2·5 mm yr -1 with plant age (over a 44-year period). Nearly all (92 %) coffee root biomass was located in the top 1·5 m, and only 8 % from 1·5 m to a depth of 4 m. Perennial woody root biomass was 16 t ha -1 and NPP of perennial roots was 1·3 t ha -1 yr -1 Fine root biomass (0-30 cm) was two-fold higher in the row compared with between rows. Fine root biomass was 2·29 t ha -1 (12 % of total root biomass) and NPP of fine roots was 2·96 t ha -1 yr -1 (69 % of total root NPP). Fine root turnover was 1·3 yr -1 and lifespan was 0·8 years. Coffee root systems comprised 49 % of the total plant biomass; such a high ratio is possibly a consequence of shoot pruning. There was no significant effect of trees on coffee fine root biomass, suggesting that coffee root systems are very competitive in the topsoil. © The Author 2016. Published by Oxford University Press on

  12. Seagrass Biomass and Productivity in Seaweed and Non-Seaweed ...

    African Journals Online (AJOL)

    Seagrass beds are often subjected to stress resulting from natural and human activities. In this study, the shoot density, biomass and growth characteristics of Thalassia hemprichii and Enhalus acoroides were measured to assess the impact of seaweed farming activities on seagrass meadows at Marumbi, Chwaka Bay and ...

  13. Major Biomass Conference

    Science.gov (United States)

    Top Scientists, Industry and Government Leaders to Gather for Major Biomass Conference America, South America and Europe will focus on building a sustainable, profitable biomass business at the Third Biomass Conference of the Americas in Montreal. Scheduled presentations will cover all biomass

  14. Selection of Willows (Salix sp. for Biomass Production

    Directory of Open Access Journals (Sweden)

    Davorin Kajba

    2014-12-01

    Full Text Available Background and Purpose: Willows compared with other species are the most suitable for biomass production in short rotations because of their very abundant growth during the first years. Nowadays, in Croatia, a large number of selected and registered willow clones are available. The main objective of the research should be to find genotypes which, with minimum nutrients, will produce the maximum quantity of biomass. Material and Methods: Clonal test of the arborescent willows include the autochthonous White Willow (Salix alba, interracial hybrids of the autochthonous White Willow and the English ‘cricket’ Willow (S. alba var. calva, interspecies hybrids (S. matsudana × S. alba, as well as multispecies hybrids of willows. Average production of dry biomass (DM∙ha-1∙a-1 per hectare was estimated in regard to the clone, survival, spacing and the number of shoots per stump. Results: The highest biomass production as well as the best adaptedness and phenotypic stability on testing site was shown by clones (‘V 374’, ‘V 461’, ‘V 578’ from 15.2 - 25.0 t∙DM∙ha-1∙a-1 originated from backcross hybrid S. matsudana × (S. matsudana × S. alba and by one S. alba clone (‘V 95’, 23.1 - 25.7 t∙DM∙ha-1∙a-1. These clones are now at the stage of registration and these results indicate significant potential for further breeding aimed at biomass production in short rotations. Conclusions: Willow clones showed high biomass production on marginal sites and dry biomass could be considerably increased with the application of intensive silvicultural and agro technical measures. No nutrition or pest control measures were applied (a practice otherwise widely used in intensive cultivation system, while weed vegetation was regulated only at the earliest age.

  15. Effects of soil type and light on height growth, biomass partitioning, and nitrogen dynamics on 22 species of tropical dry forest tree seedlings: Comparisons between legumes and nonlegumes.

    Science.gov (United States)

    Smith-Martin, Christina M; Gei, Maria G; Bergstrom, Ellie; Becklund, Kristen K; Becknell, Justin M; Waring, Bonnie G; Werden, Leland K; Powers, Jennifer S

    2017-03-01

    The seedling stage is particularly vulnerable to resource limitation, with potential consequences for community composition. We investigated how light and soil variation affected early growth, biomass partitioning, morphology, and physiology of 22 tree species common in tropical dry forest, including eight legumes. Our hypothesis was that legume seedlings are better at taking advantage of increased resource availability, which contributes to their successful regeneration in tropical dry forests. We grew seedlings in a full-factorial design under two light levels in two soil types that differed in nutrient concentrations and soil moisture. We measured height biweekly and, at final harvest, biomass partitioning, internode segments, leaf carbon, nitrogen, δ 13 C, and δ 15 N. Legumes initially grew taller and maintained that height advantage over time under all experimental conditions. Legumes also had the highest final total biomass and water-use efficiency in the high-light and high-resource soil. For nitrogen-fixing legumes, the amount of nitrogen derived from fixation was highest in the richer soil. Although seed mass tended to be larger in legumes, seed size alone did not account for all the differences between legumes and nonlegumes. Both belowground and aboveground resources were limiting to early seedling growth and function. Legumes may have a different regeneration niche, in that they germinate rapidly and grow taller than other species immediately after germination, maximizing their performance when light and belowground resources are readily available, and potentially permitting them to take advantage of high light, nutrient, and water availability at the beginning of the wet season. © 2017 Botanical Society of America.

  16. Paradigm shift in plant growth control.

    Science.gov (United States)

    Körner, Christian

    2015-06-01

    For plants to grow they need resources and appropriate conditions that these resources are converted into biomass. While acknowledging the importance of co-drivers, the classical view is still that carbon, that is, photosynthetic CO2 uptake, ranks above any other drivers of plant growth. Hence, theory and modelling of growth traditionally is carbon centric. Here, I suggest that this view is not reflecting reality, but emerged from the availability of methods and process understanding at leaf level. In most cases, poorly understood processes of tissue formation and cell growth are governing carbon demand, and thus, CO2 uptake. Carbon can only be converted into biomass to the extent chemical elements other than carbon, temperature or cell turgor permit. Copyright © 2015. Published by Elsevier Ltd.

  17. Cell wall metabolism and hexose allocation contribute to biomass accumulation in high yielding extreme segregants of a Saccharum interspecific F2 population.

    Science.gov (United States)

    Wai, Ching Man; Zhang, Jisen; Jones, Tyler C; Nagai, Chifumi; Ming, Ray

    2017-10-11

    Sugarcane is an emerging dual-purpose biofuel crop for energy and sugar production, owing to its rapid growth rate, high sucrose storage in the stems, and high lignocellulosic yield. It has the highest biomass production reaching 1.9 billion tonnes in 2014 worldwide. To improve sugarcane biomass accumulation, we developed an interspecific cross between Saccharum officinarum 'LA Purple' and Saccharum robustum 'MOL5829'. Selected F1 individuals were self-pollinated to generate a transgressive F2 population with a wide range of biomass yield. Leaf and stem internodes of fourteen high biomass and eight low biomass F2 extreme segregants were used for RNA-seq to decipher the molecular mechanism of rapid plant growth and dry weight accumulation. Gene Ontology terms involved in cell wall metabolism and carbohydrate catabolism were enriched among 3274 differentially expressed genes between high and low biomass groups. Up-regulation of cellulose metabolism, pectin degradation and lignin biosynthesis genes were observed in the high biomass group, in conjunction with higher transcript levels of callose metabolic genes and the cell wall loosening enzyme expansin. Furthermore, UDP-glucose biosynthesis and sucrose conversion genes were differentially expressed between the two groups. A positive correlation between stem glucose, but not sucrose, levels and dry weight was detected. We thus postulated that the high biomass sugarcane plants rapidly convert sucrose to UDP-glucose, which is the building block of cell wall polymers and callose, in order to maintain the rapid plant growth. The gene interaction of cell wall metabolism, hexose allocation and cell division contributes to biomass yield.

  18. Biomass treatment method

    Science.gov (United States)

    Friend, Julie; Elander, Richard T.; Tucker, III; Melvin P.; Lyons, Robert C.

    2010-10-26

    A method for treating biomass was developed that uses an apparatus which moves a biomass and dilute aqueous ammonia mixture through reaction chambers without compaction. The apparatus moves the biomass using a non-compressing piston. The resulting treated biomass is saccharified to produce fermentable sugars.

  19. Bio-ethanol production from waste biomass of Pogonatherum crinitum phytoremediator: an eco-friendly strategy for renewable energy.

    Science.gov (United States)

    Waghmare, Pankajkumar R; Watharkar, Anuprita D; Jeon, Byong-Hun; Govindwar, Sanjay P

    2018-03-01

    In this study, we have described three steps to produce ethanol from Pogonatherum crinitum , which was derived after the treatment of textile wastewater. (a) Production of biomass: biomass samples collected from a hydroponic P. crinitum phytoreactor treating dye textile effluents and augmented with Ca-alginate immobilized growth-promoting bacterium, Bacillus pumilus strain PgJ (consortium phytoreactor), and waste sorghum husks were collected and dried. Compositional analysis of biomass (consortium phytoreactor) showed that the concentration of cellulose, hemicelluloses and lignin was 42, 30 and 17%, respectively, whereas the biomass samples without the growth-promoting bacterium (normal phytoreactor) was slightly lower, 40, 29 and 16%, respectively. (b) Hydrolysate (sugar) production: a crude sample of the fungus, Phanerochaete chrysosporium containing hydrolytic enzymes such as endoglucanase (53.25 U/ml), exoglucanase (8.38 U/ml), glucoamylase (115.04 U/ml), xylanase (83.88 U/ml), LiP (0.972 U/ml) and MnP (0.459 U/ml) was obtained, and added to consortium, normal and control phytoreactor derived biomass supplemented with Tween-20 (0.2% v/v). The hydrolysate of biomass from consortium phytoreactor produced maximum reducing sugar (0.93 g/l) than hydrolysates of normal phytoreactor biomass (0.82 g/l) and control phytoreactor biomass (0.79 g/l). FTIR and XRD analysis confirmed structural changes in treated biomass. (c) Ethanol production: the bioethanol produced from enzymatic hydrolysates of waste biomass of consortium and normal phytoreactor using Saccharomyces cerevisiae (KCTC 7296) was 42.2 and 39.4 g/l, respectively, while control phytoreactor biomass hydrolysate showed only 25.5 g/l. Thus, the amalgamation of phytoremediation and bioethanol production can be the truly environment-friendly way to eliminate the problem of textile dye along with bioenergy generation.

  20. Comparative Secretome Analysis of Trichoderma reesei and Aspergillus niger during Growth on Sugarcane Biomass.

    Directory of Open Access Journals (Sweden)

    Gustavo Pagotto Borin

    Full Text Available Our dependence on fossil fuel sources and concern about the environment has generated a worldwide interest in establishing new sources of fuel and energy. Thus, the use of ethanol as a fuel is advantageous because it is an inexhaustible energy source and has minimal environmental impact. Currently, Brazil is the world's second largest producer of ethanol, which is produced from sugarcane juice fermentation. However, several studies suggest that Brazil could double its production per hectare by using sugarcane bagasse and straw, known as second-generation (2G bioethanol. Nevertheless, the use of this biomass presents a challenge because the plant cell wall structure, which is composed of complex sugars (cellulose and hemicelluloses, must be broken down into fermentable sugar, such as glucose and xylose. To achieve this goal, several types of hydrolytic enzymes are necessary, and these enzymes represent the majority of the cost associated with 2G bioethanol processing. Reducing the cost of the saccharification process can be achieved via a comprehensive understanding of the hydrolytic mechanisms and enzyme secretion of polysaccharide-hydrolyzing microorganisms. In many natural habitats, several microorganisms degrade lignocellulosic biomass through a set of enzymes that act synergistically. In this study, two fungal species, Aspergillus niger and Trichoderma reesei, were grown on sugarcane biomass with two levels of cell wall complexity, culm in natura and pretreated bagasse. The production of enzymes related to biomass degradation was monitored using secretome analyses after 6, 12 and 24 hours. Concurrently, we analyzed the sugars in the supernatant.Analyzing the concentration of monosaccharides in the supernatant, we observed that both species are able to disassemble the polysaccharides of sugarcane cell walls since 6 hours post-inoculation. The sugars from the polysaccharides such as arabinoxylan and β-glucan (that compose the most external

  1. Comparative Secretome Analysis of Trichoderma reesei and Aspergillus niger during Growth on Sugarcane Biomass

    Science.gov (United States)

    Borin, Gustavo Pagotto; Sanchez, Camila Cristina; de Souza, Amanda Pereira; de Santana, Eliane Silva; de Souza, Aline Tieppo; Leme, Adriana Franco Paes; Squina, Fabio Marcio; Buckeridge, Marcos; Goldman, Gustavo Henrique; Oliveira, Juliana Velasco de Castro

    2015-01-01

    Background Our dependence on fossil fuel sources and concern about the environment has generated a worldwide interest in establishing new sources of fuel and energy. Thus, the use of ethanol as a fuel is advantageous because it is an inexhaustible energy source and has minimal environmental impact. Currently, Brazil is the world's second largest producer of ethanol, which is produced from sugarcane juice fermentation. However, several studies suggest that Brazil could double its production per hectare by using sugarcane bagasse and straw, known as second-generation (2G) bioethanol. Nevertheless, the use of this biomass presents a challenge because the plant cell wall structure, which is composed of complex sugars (cellulose and hemicelluloses), must be broken down into fermentable sugar, such as glucose and xylose. To achieve this goal, several types of hydrolytic enzymes are necessary, and these enzymes represent the majority of the cost associated with 2G bioethanol processing. Reducing the cost of the saccharification process can be achieved via a comprehensive understanding of the hydrolytic mechanisms and enzyme secretion of polysaccharide-hydrolyzing microorganisms. In many natural habitats, several microorganisms degrade lignocellulosic biomass through a set of enzymes that act synergistically. In this study, two fungal species, Aspergillus niger and Trichoderma reesei, were grown on sugarcane biomass with two levels of cell wall complexity, culm in natura and pretreated bagasse. The production of enzymes related to biomass degradation was monitored using secretome analyses after 6, 12 and 24 hours. Concurrently, we analyzed the sugars in the supernatant. Results Analyzing the concentration of monosaccharides in the supernatant, we observed that both species are able to disassemble the polysaccharides of sugarcane cell walls since 6 hours post-inoculation. The sugars from the polysaccharides such as arabinoxylan and β-glucan (that compose the most external

  2. Import of renewable energy from biomass from Sweden by The Netherlands. Costs and macro-economic effects

    International Nuclear Information System (INIS)

    Agterberg, A.E.

    1997-12-01

    Import of renewable energy from biomass by the Netherlands is expected to be necessary to meet the objective for renewable energy set by the Dutch government. However, this import does not take place yet and there are many possibilities for import because several countries may serve as a supplier of biomass, there are several types of biomass available in these countries and this biomass can be transported to the Netherlands in many ways. Analysis is necessary to find out what are the best possibilities for import of renewable energy from biomass by the Netherlands. In this study the import of energy, produced in Sweden from biomass, by the Netherlands is analyzed. Sweden is selected as the biomass supplying country because it is expected to have a large potential of biomass. The aspects studied are costs and macro-economic effects (increase in employment and value added caused by the import operation). The objectives are: (1) Selection of likely export chains based on the different sources of biomass for energy in Sweden and the different energy carriers that can be exported; (1) Calculation of the costs for the delivery of 1 kWh of electricity to the main grid in the Netherlands for each chain, for the present and for the year 2010; (3) Calculation of macro-economic effects (changes in employment and value added) in Sweden and the Netherlands for the import of 10 PJ of energy from biomass per year for each chain; (4) Comparison of the chains based on both costs and macro-economic effects; and (5) Discussion of the method and recommendations for simplifications for application in situations with a lower data quality. 45 refs

  3. Invertebrate herbivory on floating-leaf macrophytes at the northeast of Argentina: should the damage be taken into account in estimations of plant biomass?

    Science.gov (United States)

    Martínez, Fedra S; Franceschini, Celeste

    2018-01-01

    We assessed the damage produced by invertebrate herbivores per leaf lamina and per m2 of populations floating-leaf macrophytes of Neotropical wetlands in the growth and decay periods, and assessed if the damage produced by the herbivores should be taken into account in the estimations of plant biomass of these macrophytes or not. The biomass removed per lamina and per m2 was higher during the growth period than in decay period in Nymphoides indica and Hydrocleys nymphoides, while Nymphaea prolifera had low values of herbivory in growth period. During decay period this plant is only present as vegetative propagules. According to the values of biomass removed per m2 of N. indica, underestimation up to 17.69% should be produced in cases that herbivory do not should be taking account to evaluate these plant parameters on this macrophyte. Therefore, for the study of biomass and productivity in the study area, we suggest the use of corrected lamina biomass after estimating the biomass removed by herbivores on N. indica. The values of damage in N. indica emphasize the importance of this macrophyte as a food resource for invertebrate herbivores in the trophic networks of the Neotropical wetlands.

  4. Evaluating land use and aboveground biomass dynamics in an oil palm-dominated landscape in Borneo using optical remote sensing

    Science.gov (United States)

    Singh, Minerva; Malhi, Yadvinder; Bhagwat, Shonil

    2014-01-01

    The focus of this study is to assess the efficacy of using optical remote sensing (RS) in evaluating disparities in forest composition and aboveground biomass (AGB). The research was carried out in the East Sabah region, Malaysia, which constitutes a disturbance gradient ranging from pristine old growth forests to forests that have experienced varying levels of disturbances. Additionally, a significant proportion of the area consists of oil palm plantations. In accordance with local laws, riparian forest (RF) zones have been retained within oil palm plantations and other forest types. The RS imagery was used to assess forest stand structure and AGB. Band reflectance, vegetation indicators, and gray-level co-occurrence matrix (GLCM) consistency features were used as predictor variables in regression analysis. Results indicate that the spectral variables were limited in their effectiveness in differentiating between forest types and in calculating biomass. However, GLCM based variables illustrated strong correlations with the forest stand structures as well as with the biomass of the various forest types in the study area. The present study provides new insights into the efficacy of texture examination methods in differentiating between various land-use types (including small, isolated forest zones such as RFs) as well as their AGB stocks.

  5. Solid biomass barometer - EurObserv'ER - November 2011

    International Nuclear Information System (INIS)

    2011-11-01

    The european Union Member states' political resolve to develop the energy potential of solid biomass has started to pay off, as in 2010 there were clear signs that growth of primary energy production had quickened pace. The output figure rose to 79.3 Mtoe in 2010, which is 8% up on 2009 and deserves comparison with the previous year's 4% rise (from 70.6 Mtoe in 2008). The trend, which was driven deeper by Europe's particularly cold winter of 2009- 2010, demonstrates that the economic downturn failed to scuttle the Member states' efforts to structure the solid biomass sector

  6. Nitrogen removal in maturation waste stabilisation ponds via biological uptake and sedimentation of dead biomass.

    Science.gov (United States)

    Camargo Valero, M A; Mara, D D; Newton, R J

    2010-01-01

    In this work a set of experiments was undertaken in a pilot-scale WSP system to determine the importance of organic nitrogen sedimentation on ammonium and total nitrogen removals in maturation ponds and its seasonal variation under British weather conditions, from September 2004 to May 2007. The nitrogen content in collected sediment samples varied from 4.17% to 6.78% (dry weight) and calculated nitrogen sedimentation rates ranged from 273 to 2868 g N/ha d. High ammonium removals were observed together with high concentrations of chlorophyll-a in the pond effluent. Moreover, chlorophyll-a had a very good correlation with the corresponding increment of VSS (algal biomass) and suspended organic nitrogen (biological nitrogen uptake) in the maturation pond effluents. Therefore, when ammonium removal reached its maximum, total nitrogen removal was very poor as most of the ammonia taken up by algae was washed out in the pond effluent in the form of suspended solids. After sedimentation of the dead algal biomass, it was clear that algal-cell nitrogen was recycled from the sludge layer into the pond water column. Recycled nitrogen can either be taken up by algae or washed out in the pond effluent. Biological (mainly algal) uptake of inorganic nitrogen species and further sedimentation of dead biomass (together with its subsequent mineralization) is one of the major mechanisms controlling in-pond nitrogen recycling in maturation WSP, particularly when environmental and operational conditions are favourable for algal growth.

  7. Biomass production for direct generation of energy

    International Nuclear Information System (INIS)

    1992-01-01

    In continuing its activities for the formation of public opinion the Deutsche Farming Association) held a colloquium in 1991 on the issue of biomass production and combustion. Its aim was to gather all current knowledge on this issue and, for the first time, to make a comprehensive appraisal of it. The following aspects were dealt with: Abatement of atmospheric pollution, ecologically oriented production, nature conservation, organisation of decentralized power plant operating corporations, state of the art in combustion technology, operational calculations and, not least, agrarin-political framework conditions. The meeting yielded important statements on remarkable innovations in the area of ecological biomass production and for its utilization as an energy source together with the conventional energy sources of oil, gas, coal and nuclear energy. (orig.) [de

  8. Research and evaluation of biomass resources/conversion/utilization systems (market/experimental analysis for development of a data base for a fuels from biomass model. Volume I. Biomass allocation model. Technical progress report for the period ending September 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Y.K.; Chen, H.T.; Helm, R.W.; Nelson, E.T.; Shields K.J.

    1980-01-01

    A biomass allocation model has been developed to show the most profitable combination of biomass feedstocks thermochemical conversion processes, and fuel products to serve the seasonal conditions in a regional market. This optimization model provides a tool for quickly calculating the most profitable biomass missions from a large number of potential biomass missions. Other components of the system serve as a convenient storage and retrieval mechanism for biomass marketing and thermochemical conversion processing data. The system can be accessed through the use of a computer terminal, or it could be adapted to a portable micro-processor. A User's Manual for the system has been included in Appendix A of the report. The validity of any biomass allocation solution provided by the allocation model is dependent on the accuracy of the data base. The initial data base was constructed from values obtained from the literature, and, consequently, as more current thermochemical conversion processing and manufacturing costs and efficiencies become available, the data base should be revised. Biomass derived fuels included in the data base are the following: medium Btu gas low Btu gas, substitute natural gas, ammonia, methanol, electricity, gasoline, and fuel oil. The market sectors served by the fuels include: residential, electric utility, chemical (industrial), and transportation. Regional/seasonal costs and availabilities and heating values for 61 woody and non-woody biomass species are included. The study has included four regions in the United States which were selected because there was both an availability of biomass and a commercial demand for the derived fuels: Region I: NY, WV, PA; Region II: GA, AL, MS; Region III: IN, IL, IA; and Region IV: OR, WA.

  9. Biomass Energy Basics | NREL

    Science.gov (United States)

    Biomass Energy Basics Biomass Energy Basics We have used biomass energy, or "bioenergy" keep warm. Wood is still the largest biomass energy resource today, but other sources of biomass can landfills (which are methane, the main component in natural gas) can be used as a biomass energy source. A

  10. Windbreak effect on biomass and grain mass accumulation of corn: a modeling approach

    International Nuclear Information System (INIS)

    Zhang, H.; Brandle, J.R.

    1996-01-01

    While numerous studies have indicated that field windbreaks both improve crop growing conditions and generally enhance crop growth and yield, especially under less favorable conditions, the relationship between the two is not clearly understood. A simple model is proposed to simulate biomass and grain mass accumulation of corn (Zea mays L,) with a windbreak shelter or without (exposed condition). The model is based on the positive relationship between intercepted solar radiation and biomass accumulation and requires plant population and hourly inputs of solar radiation and air temperature. Using published data, radiation use efficiency (RUE) was related to plant population, and a temperature function was established between the relative corn growth and temperature for pre-silking stages. Biomass and grain mass simulated by the model agreed well with those measured for both sheltered and unsheltered plants from 1990 to 1992. Windbreaks did not significantly increase biomass or grain mass of corn for this study, even though air temperature was greater with than without shelter, probably indicating that the microclimatic changes induced by windbreaks were not physiologically significant for the 3-yr period studied. The model has potential use in future studies to relate windbreak effects to crop yield and to evaluate windbreak designs for maximum benefits

  11. Biomass Torrefaction Process Review and Moving Bed Torrefaction System Model Development

    Energy Technology Data Exchange (ETDEWEB)

    Jaya Shakar Tumuluru; Shahab Sokhansanj; Christopher T. Wright

    2010-08-01

    Torrefaction is currently developing as an important preprocessing step to improve the quality of biomass in terms of physical properties, and proximate and ultimate composition. Torrefaction is a slow heating of biomass in an inert or reduced environment to a maximum temperature of 300°C. Torrefaction can also be defined as a group of products resulting from the partially controlled and isothermal pyrolysis of biomass occurring in a temperature range of 200–230ºC and 270–280ºC. Thus, the process can also be called a mild pyrolysis as it occurs at the lower temperature range of the pyrolysis process. At the end of the torrefaction process, a solid uniform product with lower moisture content and higher energy content than raw biomass is produced. Most of the smoke-producing compounds and other volatiles are removed during torrefaction, producing a final product that will have a lower mass but a higher heating value. An important aspect of research is to establish a degree of torrefaction where gains in heating value offset the loss of mass. There is a lack of literature on torrefaction reactor designs and a design sheet for estimating the dimensions of the torrefier based on capacity. This study includes a) conducting a detailed review on the torrefaction of biomass in terms of understanding the process, product properties, off-gas compositions, and methods used, and b) to design a moving bed torrefier, taking into account the basic fundamental heat and mass transfer calculations. Specific objectives include calculating the dimensions like diameter and height of the moving packed bed for different capacities, designing the heat loads and gas flow rates, and developing an interactive excel sheet where the user can define design specifications. In this report, 25–1000 kg/hr are used in equations for the design of the torrefier, examples of calculations, and specifications for the torrefier.

  12. Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis.

    Science.gov (United States)

    Mishra, Ranjeet Kumar; Mohanty, Kaustubha

    2018-03-01

    The present study reports pyrolysis behavior of three waste biomass using thermogravimetric analysis to determine kinetic parameters at five different heating rates. Physiochemical characterization confirmed that these biomass have the potential for fuel and energy production. Pyrolysis experiments were carried out at five different heating rates (5-25 °C min -1 ). Five model-free methods such as Kissinger-Akahira-Sunose (KAS), Ozawa-Flynn-Wall (OFW), Friedman, Coats-Redfern, and distributed activation energy (DAEM) were used to calculate the kinetic parameters. The activation energy was found to be 171.66 kJ mol -1 , 148.44 kJ mol -1 , and 171.24 kJ mol -1 from KAS model; 179.29 kJ mol -1 , 156.58 kJ mol -1 , and 179.47 kJ mol -1 from OFW model; 168.58 kJ mol -1 , 181.53 kJ mol -1 , and 184.61 kJ mol -1 from Friedman model; and 206.62 kJ mol -1 , 171.63 kJ mol -1 , and 160.45 kJ mol -1 from DAEM model for PW, SW, AN biomass respectively. The calculated kinetic parameters are in good agreement with other reported biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Chemicals from Biomass: A Market Assessment of Bioproducts with Near-Term Potential

    Energy Technology Data Exchange (ETDEWEB)

    Biddy, Mary J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Scarlata, Christopher [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kinchin, Christopher [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-03-23

    Production of chemicals from biomass offers a promising opportunity to reduce U.S. dependence on imported oil, as well as to improve the overall economics and sustainability of an integrated biorefinery. Given the increasing momentum toward the deployment and scale-up of bioproducts, this report strives to: (1) summarize near-term potential opportunities for growth in biomass-derived products; (2) identify the production leaders who are actively scaling up these chemical production routes; (3) review the consumers and market champions who are supporting these efforts; (4) understand the key drivers and challenges to move biomass-derived chemicals to market; and (5) evaluate the impact that scale-up of chemical strategies will have on accelerating the production of biofuels.

  14. Phenotypic plasticity of fine root growth increases plant productivity in pine seedlings

    Directory of Open Access Journals (Sweden)

    Grissom James E

    2004-09-01

    Full Text Available Abstract Background The plastic response of fine roots to a changing environment is suggested to affect the growth and form of a plant. Here we show that the plasticity of fine root growth may increase plant productivity based on an experiment using young seedlings (14-week old of loblolly pine. We use two contrasting pine ecotypes, "mesic" and "xeric", to investigate the adaptive significance of such a plastic response. Results The partitioning of biomass to fine roots is observed to reduce with increased nutrient availability. For the "mesic" ecotype, increased stem biomass as a consequence of more nutrients may be primarily due to reduced fine-root biomass partitioning. For the "xeric" ecotype, the favorable influence of the plasticity of fine root growth on stem growth results from increased allocation of biomass to foliage and decreased allocation to fine roots. An evolutionary genetic analysis indicates that the plasticity of fine root growth is inducible, whereas the plasticity of foliage is constitutive. Conclusions Results promise to enhance a fundamental understanding of evolutionary changes of tree architecture under domestication and to design sound silvicultural and breeding measures for improving plant productivity.

  15. Approaches to greenhouse gas accounting methods for biomass carbon

    International Nuclear Information System (INIS)

    Downie, Adriana; Lau, David; Cowie, Annette; Munroe, Paul

    2014-01-01

    This investigation examines different approaches for the GHG flux accounting of activities within a tight boundary of biomass C cycling, with scope limited to exclude all other aspects of the lifecycle. Alternative approaches are examined that a) account for all emissions including biogenic CO 2 cycling – the biogenic method; b) account for the quantity of C that is moved to and maintained in the non-atmospheric pool – the stock method; and c) assume that the net balance of C taken up by biomass is neutral over the short-term and hence there is no requirement to include this C in the calculation – the simplified method. This investigation demonstrates the inaccuracies in both emissions forecasting and abatement calculations that result from the use of the simplified method, which is commonly accepted for use. It has been found that the stock method is the most accurate and appropriate approach for use in calculating GHG inventories, however short-comings of this approach emerge when applied to abatement projects, as it does not account for the increase in biogenic CO 2 emissions that are generated when non-CO 2 GHG emissions in the business-as-usual case are offset. Therefore the biogenic method or a modified version of the stock method should be used to accurately estimate GHG emissions abatement achieved by a project. This investigation uses both the derivation of methodology equations from first principles and worked examples to explore the fundamental differences in the alternative approaches. Examples are developed for three project scenarios including; landfill, combustion and slow-pyrolysis (biochar) of biomass. -- Highlights: • Different approaches can be taken to account for the GHG emissions from biomass. • Simplification of GHG accounting methods is useful, however, can lead to inaccuracies. • Approaches used currently are often inadequate for practises that store carbon. • Accounting methods for emissions forecasting can be inadequate for

  16. Fruit production and branching density affect shoot and whole-tree wood to leaf biomass ratio in olive.

    Science.gov (United States)

    Rosati, Adolfo; Paoletti, Andrea; Al Hariri, Raeed; Famiani, Franco

    2018-02-14

    The amount of shoot stem (i.e., woody part of the shoot) dry matter per unit shoot leaf dry matter (i.e., the shoot wood to leaf biomass ratio) has been reported to be lower in short shoots than in long ones, and this is related to the greater and earlier ability of short shoots to export carbon. This is important in fruit trees, since the greater and earlier carbon export ability of shoots with a lower wood to leaf biomass ratio improves fruit production. This ratio may vary with cultivars, training systems or plant age, but no study has previously investigated the possible effect of fruit production. In this study on two olive cultivars (i.e., Arbequina, with low growth rate, and Frantoio, with high growth rate) subject to different fruit production treatments, we found that at increasing fruit production, shoot length and shoot wood to leaf biomass ratio were proportionally reduced in the new shoots growing at the same time as the fruit. Specifically, fruit production proportionally reduced total new-shoot biomass, length, leaf area and average shoot length. With decreasing shoot length, shoot diameter, stem mass, internode length, individual leaf area and shoot wood to leaf biomass ratio also decreased. This may be viewed as a plant strategy to better support fruit growth in the current year, given the greater and earlier ability of short shoots to export carbon. Moreover, at the whole-tree level, the percentage of total tree biomass production invested in leaves was closely correlated with branching density, which differed significantly across cultivars. By branching more, Arbequina concentrates more shoots (thus leaves) per unit of wood (trunk, branches and root) mass, decreasing wood to leaf biomass ratio at the whole-tree level. Therefore, while, at the shoot level, shoot length determines shoot wood to leaf biomass ratio, at the canopy level branching density is also an important determinant of whole-tree wood to leaf biomass ratio. Whole-tree wood to leaf

  17. The weight of nations: an estimation of adult human biomass

    Directory of Open Access Journals (Sweden)

    Walpole Sarah

    2012-06-01

    Full Text Available Abstract Background The energy requirement of species at each trophic level in an ecological pyramid is a function of the number of organisms and their average mass. Regarding human populations, although considerable attention is given to estimating the number of people, much less is given to estimating average mass, despite evidence that average body mass is increasing. We estimate global human biomass, its distribution by region and the proportion of biomass due to overweight and obesity. Methods For each country we used data on body mass index (BMI and height distribution to estimate average adult body mass. We calculated total biomass as the product of population size and average body mass. We estimated the percentage of the population that is overweight (BMI > 25 and obese (BMI > 30 and the biomass due to overweight and obesity. Results In 2005, global adult human biomass was approximately 287 million tonnes, of which 15 million tonnes were due to overweight (BMI > 25, a mass equivalent to that of 242 million people of average body mass (5% of global human biomass. Biomass due to obesity was 3.5 million tonnes, the mass equivalent of 56 million people of average body mass (1.2% of human biomass. North America has 6% of the world population but 34% of biomass due to obesity. Asia has 61% of the world population but 13% of biomass due to obesity. One tonne of human biomass corresponds to approximately 12 adults in North America and 17 adults in Asia. If all countries had the BMI distribution of the USA, the increase in human biomass of 58 million tonnes would be equivalent in mass to an extra 935 million people of average body mass, and have energy requirements equivalent to that of 473 million adults. Conclusions Increasing population fatness could have the same implications for world food energy demands as an extra half a billion people living on the earth.

  18. Airborne measurements of CO2, CH4 and HCN in boreal biomass burning plumes

    Science.gov (United States)

    O'Shea, Sebastian J.; Bauguitte, Stephane; Muller, Jennifer B. A.; Le Breton, Michael; Archibald, Alex; Gallagher, Martin W.; Allen, Grant; Percival, Carl J.

    2013-04-01

    Biomass burning plays an important role in the budgets of a variety of atmospheric trace gases and particles. For example, fires in boreal Russia have been linked with large growths in the global concentrations of trace gases such as CO2, CH4 and CO (Langenfelds et al., 2002; Simpson et al., 2006). High resolution airborne measurements of CO2, CH4 and HCN were made over Eastern Canada onboard the UK Atmospheric Research Aircraft FAAM BAe-146 from 12 July to 4 August 2011. These observations were made as part of the BORTAS project (Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites). Flights were aimed at transecting and sampling the outflow from the commonly occurring North American boreal forest fires during the summer months and to investigate and identify the chemical composition and evolution of these plumes. CO2 and CH4 dry air mole fractions were determined using an adapted system based on a Fast Greenhouse Gas Analyser (FGGA, Model RMT-200) from Los Gatos Research Inc, which uses the cavity enhanced absorption spectroscopy technique. In-flight calibrations revealed a mean accuracy of 0.57 ppmv and 2.31 ppbv for 1 Hz observations of CO2 and CH4, respectively, during the BORTAS project. During these flights a number of fresh and photochemically-aged plumes were identified using simultaneous HCN measurements. HCN is a distinctive and useful marker for forest fire emissions and it was detected using chemical ionisation mass spectrometry (CIMS). In the freshest plumes, strong relationships were found between CH4, CO2 and other tracers for biomass burning. From this we were able to estimate that 8.5 ± 0.9 g of CH4 and 1512 ± 185 g of CO2 were released into the atmosphere per kg of dry matter burnt. These emission factors are in good agreement with estimates from previous studies and can be used to calculate budgets for the region. However for aged plumes the correlations between CH4 and other

  19. Long-term structural and biomass dynamics of virgin Tsuga canadensis-Pinus strobus forests after hurricane disturbance.

    Science.gov (United States)

    D'Amato, Anthony W; Orwig, David A; Foster, David R; Barker Plotkin, Audrey; Schoonmaker, Peter K; Wagner, Maggie R

    2017-03-01

    The development of old-growth forests in northeastern North America has largely been within the context of gap-scale disturbances given the rarity of stand-replacing disturbances. Using the 10-ha old-growth Harvard Tract and its associated 90-year history of measurements, including detailed surveys in 1989 and 2009, we document the long-term structural and biomass development of an old-growth Tsuga canadensis-Pinus strobus forest in southern New Hampshire, USA following a stand-replacing hurricane in 1938. Measurements of aboveground biomass pools were integrated with data from second- and old-growth T. canadensis forests to evaluate long-term patterns in biomass development following this disturbance. Ecosystem structure across the Tract prior to the hurricane exhibited a high degree of spatial heterogeneity with the greatest levels of live tree basal area (70-129 m 2 /ha) on upper west-facing slopes where P. strobus was dominant and intermixed with T. canadensis. Live-tree biomass estimates for these stratified mixtures ranged from 159 to 503 Mg/ha at the localized, plot scale (100 m 2 ) and averaged 367 Mg/ha across these portions of the landscape approaching the upper bounds for eastern forests. Live-tree biomass 71 years after the hurricane is more uniform and lower in magnitude, with T. canadensis currently the dominant overstory tree species throughout much of the landscape. Despite only one living P. strobus stem in the 2009 plots (and fewer than five stems known across the entire 10-ha area), the detrital legacy of this species is pronounced with localized accumulations of coarse woody debris exceeding 237.7-404.2 m 3 /ha where this species once dominated the canopy. These patterns underscore the great sizes P. strobus attained in pre-European landscapes and its great decay resistance relative to its forest associates. Total aboveground biomass pools in this 71-year-old forest (255 Mg/ha) are comparable to those in modern old-growth ecosystems

  20. Biomass to energy : GHG reduction quantification protocols and case study

    Energy Technology Data Exchange (ETDEWEB)

    Reusing, G.; Taylor, C. [Conestoga - Rovers and Associates, Waterloo, ON (Canada); Nolan, W. [Liberty Energy, Hamilton, ON (Canada); Kerr, G. [Index Energy, Ajax, ON (Canada)

    2009-07-01

    With the growing concerns over greenhouses gases and their contribution to climate change, it is necessary to find ways of reducing environmental impacts by diversifying energy sources to include non-fossil fuel energy sources. Among the fastest growing green energy sources is energy from waste facilities that use biomass that would otherwise be landfilled or stockpiled. The quantification of greenhouse gas reductions through the use of biomass to energy systems can be calculated using various protocols and methodologies. This paper described each of these methodologies and presented a case study comparing some of these quantification methodologies. A summary and comparison of biomass to energy greenhouse gas reduction protocols in use or under development by the United Nations, the European Union, the Province of Alberta and Environment Canada was presented. It was concluded that regulatory, environmental pressures, and public policy will continue to impact the practices associated with biomass processing or landfill operations, such as composting, or in the case of landfills, gas collection systems, thus reducing the amount of potential credit available for biomass to energy facility offset projects. 10 refs., 2 tabs., 6 figs.

  1. Biomass to energy : GHG reduction quantification protocols and case study

    International Nuclear Information System (INIS)

    Reusing, G.; Taylor, C.; Nolan, W.; Kerr, G.

    2009-01-01

    With the growing concerns over greenhouses gases and their contribution to climate change, it is necessary to find ways of reducing environmental impacts by diversifying energy sources to include non-fossil fuel energy sources. Among the fastest growing green energy sources is energy from waste facilities that use biomass that would otherwise be landfilled or stockpiled. The quantification of greenhouse gas reductions through the use of biomass to energy systems can be calculated using various protocols and methodologies. This paper described each of these methodologies and presented a case study comparing some of these quantification methodologies. A summary and comparison of biomass to energy greenhouse gas reduction protocols in use or under development by the United Nations, the European Union, the Province of Alberta and Environment Canada was presented. It was concluded that regulatory, environmental pressures, and public policy will continue to impact the practices associated with biomass processing or landfill operations, such as composting, or in the case of landfills, gas collection systems, thus reducing the amount of potential credit available for biomass to energy facility offset projects. 10 refs., 2 tabs., 6 figs

  2. Biomass energy resource enhancement: the move to modern secondary energy forms

    Energy Technology Data Exchange (ETDEWEB)

    Craig, K; Overend, R P [National Renewable Energy Laboratory, Golden, CO (United States)

    1995-12-01

    Income growth and industrialization in developing countries is driving their economies towards the use of secondary energy forms that deliver high efficiency energy and environmentally more benignant-uses for biomass. Typical of these secondary energy forms are electricity, distributed gas systems and liquid fuels. This trend suggests that the hitherto separate pathways taken by biomass energy technology development in developing and industrialized countries will eventually share common elements. While in the United States and the European Union the majority of the bioenergy applications are in medium- and large-scale industrial uses of self-generated biomass residues, the characteristic use in developing countries is in rural cook-stoves. Increasing urbanization and investment in transportation infrastructure may allow increasing the operational scale in developing countries. One factor driving this trend is diminishing individual and household biomass resource demands as rural incomes increase and households ascend the energy ladder towards clean and efficient fuels and appliances. Scale increases and end-user separation from the biomass resource require that the biomass be converted at high efficiency into secondary energy forms that serve as energy carriers. In middle-income developing country economies such as Brazil, secondary energy transmission is increasingly in the form of gas and electricity in addition to liquid transportation fuels. Unfortunately, the biomass resource is finite, and in the face of competing food and fibre uses and land constraints, it is difficult to substantially increase the amount of biomass available. As a result, development must emphasize conversion efficiency and the applications of bioenergy. Moreover, as a consequence of economic growth, biomass resources are increasingly to be found in the secondary and tertiary waste streams of cities and industrial operations. If not used for energy production, this potential resource needs

  3. Biomass energy resource enhancement: the move to modern secondary energy forms

    International Nuclear Information System (INIS)

    Craig, K.; Overend, R.P.

    1995-01-01

    Income growth and industrialization in developing countries is driving their economies towards the use of secondary energy forms that deliver high efficiency energy and environmentally more benignant-uses for biomass. Typical of these secondary energy forms are electricity, distributed gas systems and liquid fuels. This trend suggests that the hitherto separate pathways taken by biomass energy technology development in developing and industrialized countries will eventually share common elements. While in the United States and the European Union the majority of the bioenergy applications are in medium- and large-scale industrial uses of self-generated biomass residues, the characteristic use in developing countries is in rural cook-stoves. Increasing urbanization and investment in transportation infrastructure may allow increasing the operational scale in developing countries. One factor driving this trend is diminishing individual and household biomass resource demands as rural incomes increase and households ascend the energy ladder towards clean and efficient fuels and appliances. Scale increases and end-user separation from the biomass resource require that the biomass be converted at high efficiency into secondary energy forms that serve as energy carriers. In middle-income developing country economies such as Brazil, secondary energy transmission is increasingly in the form of gas and electricity in addition to liquid transportation fuels. Unfortunately, the biomass resource is finite, and in the face of competing food and fibre uses and land constraints, it is difficult to substantially increase the amount of biomass available. As a result, development must emphasize conversion efficiency and the applications of bioenergy. Moreover, as a consequence of economic growth, biomass resources are increasingly to be found in the secondary and tertiary waste streams of cities and industrial operations. If not used for energy production, this potential resource needs

  4. Woody biomass production in a spray irrigation wastewater treatment facility in North Carolina

    International Nuclear Information System (INIS)

    Frederick, D.; Lea, R.; Milosh, R.

    1993-01-01

    Application of municipal wastewater to deciduous tree plantations offers a viable opportunity to dispose of nutrients and pollutants, while protecting water quality. Production of woody biomass for energy or pulp mill furnish, using wastewater if feasible and markets exist in may parts of the world for this biomass. Plantations of sycamore (Platanus occidentalis L.), and sweetgum (Liquidambar styraciflua L.), have been established in Edenton, North Carolina for application of municipal wastewater. Research describing the dry weight biomass following the fifth year of seedling growth is presented along with future estimates for seedling and coppice yields. Ongoing and future work for estimating nutrient assimilation and wastewater renovation are described and discussed

  5. Effect of Glomus mosseae and plant growth promoting rhizomicroorganisms (PGPR's on growth, nutrients and content of secondary metabolites in Begonia malabarica Lam.

    Directory of Open Access Journals (Sweden)

    Thangavel Selvaraj

    2008-10-01

    Full Text Available Begonia malabarica Lam. (Begoniaceae is one of the important medicinal plants whose main secondary metabolites are luteolin, quercetin and β-sitosterol. The leaves are used for the treatment of respiratory tract infections, diarrhoea, blood cancer and skin diseases. A study was undertaken to determine the effect of arbuscular mycorrhizal (AM fungus, Glomus mosseae, and some plant growth promoting rhizomicro-organisms (PGPR's on the growth, biomass, nutrients, and content of secondary metabolites of B. malabarica plant under green house conditions. Various plant growth parameters (total plant biomass, mycorrhizal parameter, shoot and root phosphorus, mineral content (potassium, iron, zinc, and copper, and secondary metabolites (total phenols, ortho-dihydroxy phenols, tannins, flavonoids, and alkaloids were determined and found to vary with different treatments. Among all the treatments, plants inoculated with 'microbial consortium' consisting of Glomus mosseae + Bacillus coagulans + Trichoderma viride performed better than with other treatments or uninoculated control plants. The results of this experiment clearly indicated that inoculation of B. malabarica with G. mosseae along with PGPR's enhanced its growth, biomass yield, nutrients and secondary metabolites.

  6. Biomass CCS study

    Energy Technology Data Exchange (ETDEWEB)

    Cavezzali, S.

    2009-11-15

    The use of biomass in power generation is one of the important ways in reducing greenhouse gas emissions. Specifically, the cofiring of biomass with coal could be regarded as a common feature to any new build power plant if a sustainable supply of biomass fuel is readily accessible. IEA GHG has undertaken a techno-economic evaluation of the use of biomass in biomass fired and co-fired power generation, using post-combustion capture technology. This report is the result of the study undertaken by Foster Wheeler Italiana.

  7. The adjustment of global and partial dry biomass models for Pinus pinaster in the North-East of Portugal

    OpenAIRE

    Lopes, Domingos; Almeida, L.R.; Castro, João Paulo; Aranha, José

    2005-01-01

    Ecosystems net primary production quantification can be done by means of allometric equations. Carbon sequestration studies also involve the quantification of growth dry biomass, knowing the carbon percentage of dry biomass. Fieldwork complexity to collect these kind of data are often limitative for obtaining these mathematical models. Allometric equations were adjusted to estimate dry biomass of individual Pinus pinaster trees, using data from 30 trees. Statisticals form the final equatio...

  8. Constraining Absorption of Organic Aerosol from Biomass Burning with Observations

    Science.gov (United States)

    Feng, Y.; Liu, X.

    2014-12-01

    Biomass burning emissions contribute to a large fraction of global organic aerosol (OA) emissions. In most models, radiative forcing of black carbon (BC) and OA from biomass burning offsets each other to give a small or close to zero total forcing, i.e., an estimate of 0 (-0.2 to +0.2) W m-2 by IPCC-AR5. Recent observational and modeling studies have shown the absorbing part of OA, referred to as "brown" carbon (BrC), to be a significant source of direct absorption of solar radiation thus positive forcing, in particular over regions dominated by biomass burning and biofuel emissions. Here we implement optical treatment for the BrC absorption in the CESM1/CAM5 model, and compare the calculated aerosol spectral absorption with ground-based AERONET and DOE/ARM observations. In this version of CAM5, biomass burning and biofuel OA are treated separately from fossil fuel OA with different imaginary refractive index. Because the absorption of BrC is highly variable and uncertain depending on source, aging, and mixing state, sensitivity studies of BrC refractive index parameterized by fuel type and ratio of BC to OA mass will be examined and the resulting uncertainty in the estimated forcing will be discussed. Preliminary results suggest the simulated wavelength dependence of aerosol absorption, as measured by the absorption Ångström exponent (AAE), increases from 0.9 for non-absorbing OA to 1.2 (or 1.0) for strongly (or moderately) absorbing BrC. The AAE calculated for the strongly absorbing BrC agrees with AERONET spectral observations at 440-870 nm over most regions but overpredicts for the open biomass burning-dominated South America and southern Africa, in which inclusion of moderately absorbing BrC exhibits better agreement.

  9. Trickle-bed root culture bioreactor design and scale-up: growth, fluid-dynamics, and oxygen mass transfer.

    Science.gov (United States)

    Ramakrishnan, Divakar; Curtis, Wayne R

    2004-10-20

    Trickle-bed root culture reactors are shown to achieve tissue concentrations as high as 36 g DW/L (752 g FW/L) at a scale of 14 L. Root growth rate in a 1.6-L reactor configuration with improved operational conditions is shown to be indistinguishable from the laboratory-scale benchmark, the shaker flask (mu=0.33 day(-1)). These results demonstrate that trickle-bed reactor systems can sustain tissue concentrations, growth rates and volumetric biomass productivities substantially higher than other reported bioreactor configurations. Mass transfer and fluid dynamics are characterized in trickle-bed root reactors to identify appropriate operating conditions and scale-up criteria. Root tissue respiration goes through a minimum with increasing liquid flow, which is qualitatively consistent with traditional trickle-bed performance. However, liquid hold-up is much higher than traditional trickle-beds and alternative correlations based on liquid hold-up per unit tissue mass are required to account for large changes in biomass volume fraction. Bioreactor characterization is sufficient to carry out preliminary design calculations that indicate scale-up feasibility to at least 10,000 liters.

  10. Biomass pretreatment

    Science.gov (United States)

    Hennessey, Susan Marie; Friend, Julie; Elander, Richard T; Tucker, III, Melvin P

    2013-05-21

    A method is provided for producing an improved pretreated biomass product for use in saccharification followed by fermentation to produce a target chemical that includes removal of saccharification and or fermentation inhibitors from the pretreated biomass product. Specifically, the pretreated biomass product derived from using the present method has fewer inhibitors of saccharification and/or fermentation without a loss in sugar content.

  11. Low-Energy Electron Scattering by Sugarcane Lignocellulosic Biomass Molecules

    Science.gov (United States)

    Oliveira, Eliane; Sanchez, Sergio; Bettega, Marcio; Lima, Marco; Varella, Marcio

    2012-06-01

    The use of second generation (SG) bioethanol instead of fossil fuels could be a good strategy to reduce greenhouse gas emissions. However, the efficient production of SG bioethanol has being a challenge to researchers around the world. The main barrier one must overcome is the pretreatment, a very important step in SG bioethanol aimed at breaking down the biomass and facilitates the extraction of sugars from the biomass. Plasma-based treatment, which can generate reactive species, could be an interesting possibility since involves low-cost atmospheric-pressure plasma. In order to offer theoretical support to this technique, the interaction of low-energy electrons from the plasma with biomass is investigated. This study was motived by several works developed by Sanche et al., in which they understood that DNA damage arises from dissociative electron attachment, a mechanism in which electrons are resonantly trapped by DNA subunits. We will present elastic cross sections for low-energy electron scattering by sugarcane biomass molecules, obtained with the Schwinger multichannel method. Our calculations indicate the formation of π* shape resonances in the lignin subunits, while a series of broad and overlapping σ* resonances are found in cellulose and hemicellulose subunits. The presence of π* and σ* resonances could give rise to direct and indirect dissociation pathways in biomass. Then, theoretical resonance energies can be useful to guide the plasma-based pretreatment to break down specific linkages of interest in biomass.

  12. Self-aggregation of liquids from biomass in aqueous solution

    International Nuclear Information System (INIS)

    Lomba, Laura; Giner, Beatriz; Zuriaga, Estefanía; Moya, Juana; Lafuente, Carlos

    2013-01-01

    Highlights: • Aggregation behaviour of liquids from biomass in aqueous solution has been studied. • Standard Gibbs free energies of aggregation have been calculated. • Solubility in water of these compounds has been determined. • Critical aggregation concentration decreases as the solubility in water does. -- Abstract: Aggregation of several chemicals from biomass: furfural derived compounds (furfural, 5-methylfurfural, furfuryl alcohol and tetrahydrofurfuryl alcohol), lactate derived compounds (methyl lactate, ethyl lactate and butyl lactate), acrylate derived compound (methyl acrylate) and levulinate compounds (methyl levulinate, ethyl levulinate and butyl levulinate) in aqueous solution has been characterised at T = 298.15 K through density, ρ, speed of sound, u, and isentropic compressibilities, κ S , measurements. In addition the standard Gibbs free energies of aggregation have been also calculated. Furthermore, in order to deepen insight the behaviour of these chemicals in aqueous solution, the solubility of these compounds has been measured at T = 298.15 K

  13. Effect of long-term salinity on the growth and biomass of two non-secretors mangrove plants Rhizophora apiculata and Ceriops tagal

    Science.gov (United States)

    Basyuni, M.; Nuryawan, A.; Yunasfi; Putri, L. A. P.; Baba, S.

    2018-02-01

    The present study describes the effect of long-term salinity on morphological character and biomass content of two non-secretors mangrove plants Rhizophora apiculata and Ceriops tagal. Two mangrove seedlings were grown for six months in 0%, 0.5%, 1.5%, 2.0% and 3.0% salt concentration. The growth of R. apiculata was significantly enhanced by salt with maximal stimulus at 1.5% (equal to 50% natural seawater), and this increase appeared to be attenuated by increasing the salinity concentration above 1.5%. By contrast, the growth of C. tagal thrived up to 0.5% salt concentration. Our findings, therefore, suggested that within the range of treatments used, 1.5% and 0.5%, respectively were the optimal salinity of R. apiculata and C. tagal for growth. The highest leaf area of C. tagal was obtained at 1.5% salinity concentrations and, on the other hand, R. apiculata showed much greater extent. The wet and dry weight of the two seedlings was changed in the same manner as the height of plants upon salt treatment. Our results indicated that R. apiculata was more salt tolerant than C. tagal, which may provide valuable information for mangrove rehabilitation in North Sumatra, Indonesia.

  14. Assessing the fate of nutrients and carbon in the bioenergy chain through the modeling of biomass growth and conversion.

    Science.gov (United States)

    François, Jessica; Fortin, Mathieu; Patisson, Fabrice; Dufour, Anthony

    2014-12-02

    A forest growth model was coupled to a model of combined heat and power (CHP) production in a gasification plant developed in Aspen Plus. For a given production, this integrated forest-to-energy model made it possible to predict the annual flows in wood biomass, carbon, and nutrients, including N, S, P, and K, from the forest to the air emissions (NOx, SOx, PAH, etc.) and ash flows. We simulated the bioenergy potential of pure even-aged high-forest stands of European beech, an abundant forest type in Northeastern France. Two forest management practices were studied, a standard-rotation and a shorter-rotation scenario, along with two wood utilizations: with or without fine woody debris (FWD) harvesting. FWD harvesting tended to reduce the forested area required to supply the CHP by 15–22% since larger amounts of energy wood were available for the CHP process, especially in the short-rotation scenario. Because less biomass was harvested, the short-rotation scenario with FWD decreased the nutrient exports per hectare and year by 4–21% compared to standard practices but increased the amount of N, S, and P in the CHP process by 2–9%. This increase in the input nutrient flows had direct consequences on the inorganic air emissions, thus leading to additional NOx and SO2 emissions. This model is a valuable tool for assessing the life cycle inventories of the entire bioenergy chain.

  15. Biomass and China's carbon emissions: A missing piece of carbon decomposition

    International Nuclear Information System (INIS)

    Ma Chunbo; Stern, David I.

    2008-01-01

    A number of previous studies on China's carbon emissions have mainly focused on two facts: (1) the continuous growth in emissions up till the middle of the 1990s; (2) the recent stability of emissions from 1996 to 2001. Decomposition analysis has been widely used to explore the driving forces behind these phenomena. However, since 2002, China's carbon emissions have resumed their growth at an even greater rate. This paper investigates China's carbon emissions during 1971-2003, with particular focus on the role of biomass, and the fall and resurgence in emissions since the mid-1990s. We use an extended Kaya identity and the well-established logarithmic mean Divisia index (LMDI I) method. Carbon emissions are decomposed into effects of various driving forces. We find that (1) a shift from biomass to commercial energy increases carbon emissions by a magnitude comparable to that of the increase in emissions due to population growth, (2) the technological effect and scale effect due to per-capita gross domestic products (GDP) growth are different in the pre-reform period versus the post-reform period, (3) the positive effect of population growth has been decreasing over the entire period, and (4) the fall in emissions in the late 1990s and resurgence in the early 2000s may be overstated due to inaccurate statistics

  16. [Effects of Cuscuta australis parasitism on the growth, reproduction and defense of Solidago canadensis].

    Science.gov (United States)

    Yang, Bei-fen; Du, Le-shan; Li, Jun-min

    2015-11-01

    In order to find out how parasitic Cuscuta australis influences the growth and reproduction of Solidago canadensis, the effects of the parasitism of C. australis on the morphological, growth and reproductive traits of S. canadensis were examined and the relationships between the biomass and the contents of the secondary metabolites were analyzed. The results showed that the parasitism significantly reduced the plant height, basal diameter, root length, root diameter, root biomass, stem biomass, leaf biomass, total biomass, number of inflorescences branches, axis length of inflorescence, and number of inflorescence. In particular, plant height, number of inflorescence and the stem biomass of parasitized S. canadensis were only 1/2, 1/5 and 1/8 of non-parasitized plants, respectively. There was no significant difference of plant height, root length, stem biomass and total biomass between plants parasitized with high and low intensities. But the basal diameter, root volume, leaf biomass, root biomass, the number of inflorescences branches, axis length of inflorescence and number of inflorescence of S. canadensis parasitized with high intensity were significantly lower than those of plants parasitized with low intensity. The parasitism of C. australis significantly increased the tannins content in the root and the flavonoids content in the stem of S. canadensis. The biomass of S. canadensis was significantly negatively correlated with the tannin content in the root and the flavonoids content in the stem. These results indicated that the parasitism of C. australis could inhibit the growth of S. canadensis by changing the resources allocation patterns as well as reducing the resources obtained by S. canadensis.

  17. Influence of the Addition of Riboflavin in Culture Medium on Delivering Biomass Using Yeast Strains of Saccharomyces Carlsbengensis

    Directory of Open Access Journals (Sweden)

    Cornelia Nicoară

    2010-05-01

    Full Text Available Yeasts requirements for growth factors should be considered both in terms of ability to summarize the simpleaverage and the dependence on external supplies. Vitamins are components of coenzymes or enzymes prostheticgroups and thus they are growth factors for yeast. The study concerns about the influence of the addition ofriboflavin in culture medium in different quantities, the accumulation of yeast biomass under the action of yeaststrains of beer. The process of cultivation has been made for 24 hours at a temperature of 220C. The addition ofriboflavin in culture medium of yeast biomass increased in each strain of yeast compared with the witness - thesample without added riboflavin. Biomass obtained by follow this procedure could be used to create new foodproducts with high ration nutritional value.

  18. Methods for pretreating biomass

    Science.gov (United States)

    Balan, Venkatesh; Dale, Bruce E; Chundawat, Shishir; Sousa, Leonardo

    2017-05-09

    A method for pretreating biomass is provided, which includes, in a reactor, allowing gaseous ammonia to condense on the biomass and react with water present in the biomass to produce pretreated biomass, wherein reactivity of polysaccharides in the biomass is increased during subsequent biological conversion as compared to the reactivity of polysaccharides in biomass which has not been pretreated. A method for pretreating biomass with a liquid ammonia and recovering the liquid ammonia is also provided. Related systems which include a biochemical or biofuel production facility are also disclosed.

  19. GRAIN. Global Restrictions on biomass Availability for Import to the Netherlands

    International Nuclear Information System (INIS)

    Lysen, E.H.

    2001-07-01

    The objective of the study on the title subject (GRAIN) is to provide better insight in the 'upper' limit of the amount of biomass that can be made available in a sustainable way for the energy supply in the Netherlands, on the basis of existing studies. Based on this insight an integral, compact and clear overview is formulated of the possibilities, the boundary conditions and the desirability of import of (energy from) biomass. In order to generate this insight the following questions will be answered: (1) What do the available literature sources mention about global production of biomass and the share of this production which can be utilised for the energy supply at the medium (2020) and long (2050) term?; (2) To what extent is this potential affected by the demand for biomass as a source of materials, based upon experiences in Europe?; (3) What is the result of earlier studies on global land use in relation to the demand for food, population growth, agricultural practices and biophysical production limits?; (4) Which sustainability criteria have to be taken into account when importing biomass in the Netherlands?

  20. Impacts of Frequent Burning on Live Tree Carbon Biomass and Demography in Post-Harvest Regrowth Forest

    Directory of Open Access Journals (Sweden)

    Luke Collins

    2014-04-01

    Full Text Available The management of forest ecosystems to increase carbon storage is a global concern. Fire frequency has the potential to shift considerably in the future. These shifts may alter demographic processes and growth of tree species, and consequently carbon storage in forests. Examination of the sensitivity of forest carbon to the potential upper and lower extremes of fire frequency will provide crucial insight into the magnitude of possible change in carbon stocks associated with shifts in fire frequency. This study examines how tree biomass and demography of a eucalypt forest regenerating after harvest is affected by two experimentally manipulated extremes in fire frequency (i.e., ~3 year fire intervals vs. unburnt sustained over a 23 year period. The rate of post-harvest biomass recovery of overstorey tree species, which constituted ~90% of total living tree biomass, was lower within frequently burnt plots than unburnt plots, resulting in approximately 20% lower biomass in frequently burnt plots by the end of the study. Significant differences in carbon biomass between the two extremes in frequency were only evident after >15–20 years of sustained treatment. Reduced growth rates and survivorship of smaller trees on the frequently burnt plots compared to unburnt plots appeared to be driving these patterns. The biomass of understorey trees, which constituted ~10% of total living tree biomass, was not affected by frequent burning. These findings suggest that future shifts toward more frequent fire will potentially result in considerable reductions in carbon sequestration across temperate forest ecosystems in Australia.

  1. Evaluation of total aboveground biomass and total merchantable biomass in Missouri

    Science.gov (United States)

    Michael E. Goerndt; David R. Larsen; Charles D. Keating

    2014-01-01

    In recent years, the state of Missouri has been converting to biomass weight rather than volume as the standard measurement of wood for buying and selling sawtimber. Therefore, there is a need to identify accurate and precise methods of estimating whole tree biomass and merchantable biomass of harvested trees as well as total standing biomass of live timber for...

  2. Increasing the biomass production level of dedicated or semi-dedicated woody crops. Mains lessons learned from the SYLVABIOM project

    International Nuclear Information System (INIS)

    Bastien, Jean-Charles; Bodineau, Guillaume; Gauvin, Jean; Berthelot, Alain; Maine, Patrice; Brignolas, Franck; Maury, Stephane; Le Jan, Isabelle; Delaunay, Alain; Charnet, Francois; Merzeau, Dominique; Marron, Nicolas; Dalle, Erwin; Toillon, Julien

    2015-01-01

    For three species (poplar, black locust and willow) cultivated as short or very short rotation coppices (SRC/ VSRC), the project relied on monitoring growth and efficiency with which trees use water and nitrogen in a network of four experimental sites, located in contrasting stations. The relevance of DNA methylation levels as an early marker of the level of productivity was also evaluated. For short-rotation plantations (SRP), the project was based on the collection of growth and biomass data in experimental networks, to build compartmented biomass yield tables (trunk, bark, branches and leaves) for forest species for which the literature is scarce. Significant differences appear, both in SRC and VSRC, between the three species, and between intraspecific genotypes for biomass production, its phenology, architecture, leaf structure, and resource use efficiency. The pedo-climatic conditions and the planting density modulated the complex relationships between these traits. Measurement of apex or leaf DNA methylation rate may be a good predictor for the growth potential in poplar. Mean annual biomass production ranging from 7 to 13 dry tons/ha can be expected at age 20 years with fast-growing conifers grown in SRP on site types other than those used for SRC and VSRC. Moreover, very significant genetic gains on biomass production in SRP are also offered by selection of efficient genotypes. (authors)

  3. Integration of mixed conducting membranes in an oxygen–steam biomass gasification process

    DEFF Research Database (Denmark)

    Puig Arnavat, Maria; Soprani, Stefano; Søgaard, Martin

    2013-01-01

    . The two configurations demonstrating the highest efficiency are then thermally integrated into an oxygen– steam biomass gasification plant. The energy demand for oxygen production and the membrane area required for a 6 MWth biomass plant are calculated for different operating conditions. Increasing......Oxygen–steam biomass gasification produces a high quality syngas with a high H2/CO ratio that is suitable for upgrading to liquid fuels. Such a gas is also well suited for use in conjunction with solid oxide fuel cells giving rise to a system yielding high electrical efficiency based on biomass...... distillation, especially for small to medium scale plants. This paper examines different configurations for oxygen production using MIEC membranes where the oxygen partial pressure difference is achieved by creating a vacuum on the permeate side, compressing the air on the feed side or a combination of the two...

  4. DUE GlobBiomass - Estimates of Biomass on a Global Scale

    Science.gov (United States)

    Eberle, J.; Schmullius, C.

    2017-12-01

    For the last three years, a new ESA Data User Element (DUE) project had focussed on creating improved knowledge about the Essential Climate Variable Biomass. The main purpose of the DUE GlobBiomass project is to better characterize and to reduce uncertainties of AGB estimates by developing an innovative synergistic mapping approach in five regional sites (Sweden, Poland, Mexico, Kalimantan, South Africa) for the epochs 2005, 2010 and 2015 and for one global map for the year 2010. The project team includes leading Earth Observation experts of Europe and is linked through Partnership Agreements with further national bodies from Brazil, Canada, China, Russia and South Africa. GlobBiomass has demonstrated how EO observation data can be integrated with in situ measurements and ecological understanding to provide improved biomass estimates that can be effectively exploited by users. The target users had mainly be drawn from the climate and carbon cycle modelling communities and included users concerned with carbon emissions and uptake due to biomass changes within initiatives such as REDD+. GlobBiomass provided a harmonised structure that can be exploited to address user needs for biomass information, but will be capable of being progressively refined as new data and methods become available. This presentation will give an overview of the technical prerequisites and final results of the GlobBiomass project.

  5. Salinity Reduction and Biomass Accumulation in Hydroponic Growth of Purslane (Portulaca oleracea).

    Science.gov (United States)

    de Lacerda, Laís Pessôa; Lange, Liséte Celina; Costa França, Marcel Giovanni; Zonta, Everaldo

    2015-01-01

    In many of the world's semi-arid and arid regions, the increase in demand for good quality water associated with the gradual and irreversible salinisation of the soil and water have raised the development of techniques that facilitate the safe use of brackish and saline waters for agronomic purposes. This study aimed to evaluate the salinity reduction of experimental saline solutions through the ions uptake capability of purslane (Portulaca oleracea), as well as its biomass accumulation. The hydroponic system used contained three different nutrient solutions composed of fixed concentrations of macro and micronutrients to which three different concentrations of sodium chloride had been added. Two conditions were tested, clipped and intact plants. It was observed that despite there being a notable removal of magnesium and elevated biomass accumulation, especially in the intact plants, purslane did not present the expected removal quantity of sodium and chloride. We confirmed that in the research conditions of the present study, purslane is a saline-tolerant species but accumulation of sodium and chloride was not shown as previously described in the literature.

  6. Integration of biomass data in the dynamic vegetation model ORCHIDEE

    Science.gov (United States)

    Delbart, N.; Viovy, N.; Ciais, P.; Le Toan, T.

    2009-04-01

    Dynamic vegetation models (DVMs) are aimed at estimating exchanges between the terrestrial vegetated surface and the atmosphere, and the spatial distribution of natural vegetation types. For this purpose, DVMs use the climatic data alone to feed the vegetation process equations. As dynamic models, they can also give predictions under the current and the future climatic conditions. However, they currently lack accuracy in locating carbon stocks, sinks and sources, and in getting the correct magnitude. Consequently they have been essentially used to compare the vegetation responses under different scenarii. The assimilation of external data such as remote sensing data has been shown to improve the simulations. For example, the land cover maps are used to force the correct distribution of plant functional types (PFTs), and the leaf area index data is used to force the photosynthesis processes. This study concerns the integration of biomass data within the DVM ORCHIDEE. The objective here is to have the living carbon stocks with the correct magnitude and the correct location. Carbon stocks depend on interplay of carbon assimilated by photosynthesis, and carbon lost by respiration, mortality and disturbance. Biomass data can therefore be used as one essential constraint on this interplay. In this study, we use a large database provided by in-situ measurements of carbon stocks and carbon fluxes of old growth forests to constraint this interplay. For each PFT, we first adjust the simulated photosynthesis by reducing the mean error with the in situ measurements. Then we proceed similarly to adjust the autotrophic respiration. We then compare the biomass measured, and adjust the mortality processes in the model. Second, when processes are adjusted for each PFT to minimize the mean error on the carbon stock, biomass measurements can be assimilated. This assimilation is based on the hypothesis that the main variable explaining the biomass level at a given location is the age

  7. Performance of STICS model to predict rainfed corn evapotranspiration and biomass evaluated for 6 years between 1995 and 2006 using daily aggregated eddy covariance fluxes and ancillary measurements.

    Science.gov (United States)

    Pattey, Elizabeth; Jégo, Guillaume; Bourgeois, Gaétan

    2010-05-01

    Verifying the performance of process-based crop growth models to predict evapotranspiration and crop biomass is a key component of the adaptation of agricultural crop production to climate variations. STICS, developed by INRA, was part of the models selected by Agriculture and Agri-Food Canada to be implemented for environmental assessment studies on climate variations, because of its built-in ability to assimilate biophysical descriptors such as LAI derived from satellite imagery and its open architecture. The model prediction of shoot biomass was calibrated using destructive biomass measurements over one season, by adjusting six cultivar parameters and three generic plant parameters to define two grain corn cultivars adapted to the 1000-km long Mixedwood Plains ecozone. Its performance was then evaluated using a database of 40 years-sites of corn destructive biomass and yield. In this study we evaluate the temporal response of STICS evapotranspiration and biomass accumulation predictions against estimates using daily aggregated eddy covariance fluxes. The flux tower was located in an experimental farm south of Ottawa and measurements carried out over corn fields in 1995, 1996, 1998, 2000, 2002 and 2006. Daytime and nighttime fluxes were QC/QA and gap-filled separately. Soil respiration was partitioned to calculate the corn net daily CO2 uptake, which was converted into dry biomass. Out of the six growing seasons, three (1995, 1998, 2002) had water stress periods during corn grain filling. Year 2000 was cool and wet, while 1996 had heat and rainfall distributed evenly over the season and 2006 had a wet spring. STICS can predict evapotranspiration using either crop coefficients, when wind speed and air moisture are not available, or resistance. The first approach provided higher prediction for all the years than the resistance approach and the flux measurements. The dynamic of evapotranspiration prediction of STICS was very good for the growing seasons without

  8. Modelling the growth of a methanotrophic biofilm

    DEFF Research Database (Denmark)

    Arcangeli, J.-P.; Arvin, E.

    1999-01-01

    This article discusses the growth of methanotrophic biofilms. Several independent biofilm growths scenarios involving different inocula were examined. Biofilm growth, substrate removal and product formation were monitored throughout the experiments. Based on the oxygen consumption it was concluded...... that heterotrophs and nitrifiers co-existed with methanotrophs in the biofilm. Heterotrophic biomass grew on soluble polymers formed by the hydrolysis of dead biomass entrapped in the biofilm. Nitrifier populations developed because of the presence of ammonia in the mineral medium. Based on these experimental...... was performed on this model. It indicated that the most influential parameters were those related to the biofilm (i.e. density; solid-volume fraction; thickness). This suggests that in order to improve the model, further research regarding the biofilm structure and composition is needed....

  9. Biomass torrefaction mill

    Science.gov (United States)

    Sprouse, Kenneth M.

    2016-05-17

    A biomass torrefaction system includes a mill which receives a raw biomass feedstock and operates at temperatures above 400 F (204 C) to generate a dusty flue gas which contains a milled biomass product.

  10. Chlorella vulgaris vs cyanobacterial biomasses: Comparison in terms of biomass productivity and biogas yield

    International Nuclear Information System (INIS)

    Mendez, Lara; Mahdy, Ahmed; Ballesteros, Mercedes; González-Fernández, Cristina

    2015-01-01

    Highlights: • Cyanobacteria and C. vulgaris were compared in terms of growth and methane production. • Biomasses were subjected to anaerobic digestion without applying any disruption method. • Cyanobacteria showed an increased methane yield in comparison with C. vulgaris. - Abstract: The aim of the present study was to compare cyanobacteria strains (Aphanizomenon ovalisporum, Anabaena planctonica, Borzia trilocularis and Synechocystis sp.) and microalgae (Chlorella vulgaris) in terms of growth rate, biochemical profile and methane production. Cyanobacteria growth rate ranged 0.5–0.6 day −1 for A. planctonica, A. ovalisporum and Synecochystis sp. and 0.4 day −1 for B. tricularis. Opposite, C. vulgaris maximum growth rate was double (1.2 day −1 ) than that of cyanobacteria. Regarding the methane yield, microalgae C. vulgaris averaged 120 mL CH 4 g COD in −1 due to the presence of a strong cell wall. On the other hand, anaerobic digestion of cyanobacteria supported higher methane yields. B. trilocularis and A. planctonica presented 1.42-fold higher methane yield than microalgae while this value was raised to approximately 1.85-fold for A. ovalisporum and Synechochystis sp. In the biogas production context, this study showed that the low growth rates of cyanobacteria can be overcome by their increased anaerobic digestibility when compared to their microalgae counterpartners, such is the case of C. vulgaris

  11. Biomass energy from wood chips: Diesel fuel dependence?

    International Nuclear Information System (INIS)

    Timmons, Dave; Mejia, Cesar Viteri

    2010-01-01

    Most renewable energy sources depend to some extent on use of other, non-renewable sources. In this study we explore use of diesel fuel in producing and transporting woody biomass in the state of New Hampshire, USA. We use two methods to estimate the diesel fuel used in woody biomass production: 1) a calculation based on case studies of diesel consumption in different parts of the wood chip supply chain, and 2) to support extrapolating those results to a regional system, an econometric study of the variation of wood-chip prices with respect to diesel fuel prices. The econometric study relies on an assumption of fixed demand, then assesses variables impacting supply, with a focus on how the price of diesel fuel affects price of biomass supplied. The two methods yield similar results. The econometric study, representing overall regional practices, suggests that a $1.00 per liter increase in diesel fuel price is associated with a $5.59 per Mg increase in the price of wood chips. On an energy basis, the diesel fuel used directly in wood chip production and transportation appears to account for less than 2% of the potential energy in the wood chips. Thus, the dependence of woody biomass energy production on diesel fuel does not appear to be extreme. (author)

  12. Statistical mechanical estimation of the free energy of formation of E. coli biomass for use with macroscopic bioreactor balances.

    Science.gov (United States)

    Grosz, R; Stephanopoulos, G

    1983-09-01

    The need for the determination of the free energy of formation of biomass in bioreactor second law balances is well established. A statistical mechanical method for the calculation of the free energy of formation of E. coli biomass is introduced. In this method, biomass is modelled to consist of a system of biopolymer networks. The partition function of this system is proposed to consist of acoustic and optical modes of vibration. Acoustic modes are described by Tarasov's model, the parameters of which are evaluated with the aid of low-temperature calorimetric data for the crystalline protein bovine chymotrypsinogen A. The optical modes are described by considering the low-temperature thermodynamic properties of biological monomer crystals such as amino acid crystals. Upper and lower bounds are placed on the entropy to establish the maximum error associated with the statistical method. The upper bound is determined by endowing the monomers in biomass with ideal gas properties. The lower bound is obtained by limiting the monomers to complete immobility. On this basis, the free energy of formation is fixed to within 10%. Proposals are made with regard to experimental verification of the calculated value and extension of the calculation to other types of biomass.

  13. Effects of high ammonium level on biomass accumulation of common duckweed Lemna minor L.

    Science.gov (United States)

    Wang, Wenguo; Yang, Chuang; Tang, Xiaoyu; Gu, Xinjiao; Zhu, Qili; Pan, Ke; Hu, Qichun; Ma, Danwei

    2014-12-01

    Growing common duckweed Lemna minor L. in diluted livestock wastewater is an alternative option for pollutants removal and consequently the accumulated duckweed biomass can be used for bioenergy production. However, the biomass accumulation can be inhibited by high level of ammonium (NH4 (+)) in non-diluted livestock wastewater and the mechanism of ammonium inhibition is not fully understood. In this study, the effect of high concentration of NH4 (+) on L. minor biomass accumulation was investigated using NH4 (+) as sole source of nitrogen (N). NH4 (+)-induced toxicity symptoms were observed when L. minor was exposed to high concentrations of ammonium nitrogen (NH4 (+)-N) after a 7-day cultivation. L. minor exposed to the NH4 (+)-N concentration of 840 mg l(-1) exhibited reduced relative growth rate, contents of carbon (C) and photosynthetic pigments, and C/N ratio. Ammonium irons were inhibitory to the synthesis of photosynthetic pigments and caused C/N imbalance in L. minor. These symptoms could further cause premature senescence of the fronds, and restrain their reproduction, growth and biomass accumulation. L. minor could grow at NH4 (+)-N concentrations of 7-84 mg l(-1) and the optimal NH4 (+)-N concentration was 28 mg l(-1).

  14. Policy Impact on Economic Viability of Biomass Gasification Systems in Indonesia

    Directory of Open Access Journals (Sweden)

    Pranpreya Sriwannawit

    2016-03-01

    Full Text Available Indonesia is facing challenges on the lack of electricity access in rural areas and the management of agricultural waste. The utilization of waste-to-energy technology can help in mitigating these issues. The aim of this paper is to assess the economic viability of a biomass gasification system for rural electrification by investigating its competitiveness in relation to various government supports. Financial modelling is applied to calculate Net Present Value (NPV, Internal Rate of Return (IRR, and Levelized Cost of Electricity (LCOE. NPV and IRR results indicate that biomass gasification is an economically viable option when appropriate financial government supports exist. LCOE result indicates that biomass gasification system is already more economically competitive compared to diesel generator even without additional support but it is less competitive compared to the national electricity grid tariff. In conclusion, the biomass gasification system is an economically viable option for rural electrification in Indonesian context.

  15. Hydrothermal Liquefaction of Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.

    2010-12-10

    collaboration with Canada to investigate kelp (seaweed) as a biomass feedstock. The collaborative project includes process testing of the kelp in HydroThermal Liquefaction in the bench-scale unit at PNNL. HydroThermal Liquefaction at PNNL is performed in the hydrothermal processing bench-scale reactor system. Slurries of biomass are prepared in the laboratory from whole ground biomass materials. Both wet processing and dry processing mills can be used, but the wet milling to final slurry is accomplished in a stirred ball mill filled with angle-cut stainless steel shot. The PNNL HTL system, as shown in the figure, is a continuous-flow system including a 1-litre stirred tank preheater/reactor, which can be connected to a 1-litre tubular reactor. The product is filtered at high-pressure to remove mineral precipitate before it is collected in the two high-pressure collectors, which allow the liquid products to be collected batchwise and recovered alternately from the process flow. The filter can be intermittently back-flushed as needed during the run to maintain operation. By-product gas is vented out the wet test meter for volume measurement and samples are collected for gas chromatography compositional analysis. The bio-oil product is analyzed for elemental content in order to calculate mass and elemental balances around the experiments. Detailed chemical analysis is performed by gas chromatography-mass spectrometry and 13-C nuclear magnetic resonance is used to evaluate functional group types in the bio-oil. Sufficient product is produced to allow subsequent catalytic hydroprocessing to produce liquid hydrocarbon fuels. The product bio-oil from hydrothermal liquefaction is typically a more viscous product compared to fast pyrolysis bio-oil. There are several reasons for this difference. The HTL bio-oil contains a lower level of oxygen because of more extensive secondary reaction of the pyrolysis products. There are less amounts of the many light oxygenates derived from the

  16. Characterization and ethanol potential from giant cassava (Manihot esculenta) stem waste biomass

    Science.gov (United States)

    Septia, E.; Supriadi; Suwinarti, W.; Amirta, R.

    2018-04-01

    Manihot esculenta stem waste biomass is promising material for ethanol production since it is unutilized substance from cassava production. Nowadays, cassava is the most common food in Indonesian society. The aims of this study were to identify availability and characteristic of giant cassava (M. esculenta) stem waste biomass for ethanol feedstock. In term of that, four plots with the size of 5m x 5m were made to calculate the total stem biomass obtained after harvesting process. In this study, various concentrations of alkaline were used to degrade lignin from the substrate. The effects of alkaline pretreatment were investigated using TAPPI method and the ethanol yield was estimated using modified NREL protocol. The results showed that the potential dry stem waste biomass from harvesting of M. esculenta was approximately 10.5 ton/ha. Further, alkaline pretreatment of stem waste biomass with 2% of NaOH coupled with the enzymatic saccharification process using meicelase was showed the highest production of sugar to reach of 38.49 % of total reduction sugar and estimated potentially converted to 2,62 L/ha of ethanol. We suggested M. esculenta stem waste biomass could be used as sustainable feedstock for ethanol production in Indonesia.

  17. Enhancement of Chlorella vulgaris Biomass Cultivated in POME Medium as Biofuel Feedstock under Mixotrophic Conditions

    Directory of Open Access Journals (Sweden)

    M.M. Azimatun Nur

    2015-10-01

    Full Text Available Microalgae cultivated in mixotrophic conditions have received significant attention as a suitable source of biofuel feedstock, based on their high biomass and lipid productivity. POME is one of the wastewaters generated from palm oil mills, containing important nutrients that could be suitable for mixotrophic microalgae growth. The aim of this research was to identify the growth of Chlorella vulgaris cultured in POME medium under mixotrophic conditions in relation to a variety of organic carbon sources added to the POME mixture. The research was conducted with 3 different carbon sources (D-glucose, crude glycerol and NaHCO3 in 40% POME, monitored over 6 days, under an illumination of 3000 lux, and with pH = 7. The biomass was harvested using an autoflocculation method and dry biomass was extracted using an ultrasound method in order to obtain the lipid content. The results show that C. vulgaris using D-glucose as carbon source gained a lipid productivity of 195 mg/l/d.

  18. Methods for producing and using densified biomass products containing pretreated biomass fibers

    Science.gov (United States)

    Dale, Bruce E.; Ritchie, Bryan; Marshall, Derek

    2015-05-26

    A process is provided comprising subjecting a quantity of plant biomass fibers to a pretreatment to cause at least a portion of lignin contained within each fiber to move to an outer surface of said fiber, wherein a quantity of pretreated tacky plant biomass fibers is produced; and densifying the quantity of pretreated tacky plant biomass fibers to produce one or more densified biomass particulates, wherein said biomass fibers are densified without using added binder.

  19. Non-Destructive Lichen Biomass Estimation in Northwestern Alaska: A Comparison of Methods

    Science.gov (United States)

    Rosso, Abbey; Neitlich, Peter; Smith, Robert J.

    2014-01-01

    Terrestrial lichen biomass is an important indicator of forage availability for caribou in northern regions, and can indicate vegetation shifts due to climate change, air pollution or changes in vascular plant community structure. Techniques for estimating lichen biomass have traditionally required destructive harvesting that is painstaking and impractical, so we developed models to estimate biomass from relatively simple cover and height measurements. We measured cover and height of forage lichens (including single-taxon and multi-taxa “community” samples, n = 144) at 73 sites on the Seward Peninsula of northwestern Alaska, and harvested lichen biomass from the same plots. We assessed biomass-to-volume relationships using zero-intercept regressions, and compared differences among two non-destructive cover estimation methods (ocular vs. point count), among four landcover types in two ecoregions, and among single-taxon vs. multi-taxa samples. Additionally, we explored the feasibility of using lichen height (instead of volume) as a predictor of stand-level biomass. Although lichen taxa exhibited unique biomass and bulk density responses that varied significantly by growth form, we found that single-taxon sampling consistently under-estimated true biomass and was constrained by the need for taxonomic experts. We also found that the point count method provided little to no improvement over ocular methods, despite increased effort. Estimated biomass of lichen-dominated communities (mean lichen cover: 84.9±1.4%) using multi-taxa, ocular methods differed only nominally among landcover types within ecoregions (range: 822 to 1418 g m−2). Height alone was a poor predictor of lichen biomass and should always be weighted by cover abundance. We conclude that the multi-taxa (whole-community) approach, when paired with ocular estimates, is the most reasonable and practical method for estimating lichen biomass at landscape scales in northwest Alaska. PMID:25079228

  20. Non-destructive lichen biomass estimation in northwestern Alaska: a comparison of methods.

    Directory of Open Access Journals (Sweden)

    Abbey Rosso

    Full Text Available Terrestrial lichen biomass is an important indicator of forage availability for caribou in northern regions, and can indicate vegetation shifts due to climate change, air pollution or changes in vascular plant community structure. Techniques for estimating lichen biomass have traditionally required destructive harvesting that is painstaking and impractical, so we developed models to estimate biomass from relatively simple cover and height measurements. We measured cover and height of forage lichens (including single-taxon and multi-taxa "community" samples, n = 144 at 73 sites on the Seward Peninsula of northwestern Alaska, and harvested lichen biomass from the same plots. We assessed biomass-to-volume relationships using zero-intercept regressions, and compared differences among two non-destructive cover estimation methods (ocular vs. point count, among four landcover types in two ecoregions, and among single-taxon vs. multi-taxa samples. Additionally, we explored the feasibility of using lichen height (instead of volume as a predictor of stand-level biomass. Although lichen taxa exhibited unique biomass and bulk density responses that varied significantly by growth form, we found that single-taxon sampling consistently under-estimated true biomass and was constrained by the need for taxonomic experts. We also found that the point count method provided little to no improvement over ocular methods, despite increased effort. Estimated biomass of lichen-dominated communities (mean lichen cover: 84.9±1.4% using multi-taxa, ocular methods differed only nominally among landcover types within ecoregions (range: 822 to 1418 g m-2. Height alone was a poor predictor of lichen biomass and should always be weighted by cover abundance. We conclude that the multi-taxa (whole-community approach, when paired with ocular estimates, is the most reasonable and practical method for estimating lichen biomass at landscape scales in northwest Alaska.

  1. Non-destructive lichen biomass estimation in northwestern Alaska: a comparison of methods.

    Science.gov (United States)

    Rosso, Abbey; Neitlich, Peter; Smith, Robert J

    2014-01-01

    Terrestrial lichen biomass is an important indicator of forage availability for caribou in northern regions, and can indicate vegetation shifts due to climate change, air pollution or changes in vascular plant community structure. Techniques for estimating lichen biomass have traditionally required destructive harvesting that is painstaking and impractical, so we developed models to estimate biomass from relatively simple cover and height measurements. We measured cover and height of forage lichens (including single-taxon and multi-taxa "community" samples, n = 144) at 73 sites on the Seward Peninsula of northwestern Alaska, and harvested lichen biomass from the same plots. We assessed biomass-to-volume relationships using zero-intercept regressions, and compared differences among two non-destructive cover estimation methods (ocular vs. point count), among four landcover types in two ecoregions, and among single-taxon vs. multi-taxa samples. Additionally, we explored the feasibility of using lichen height (instead of volume) as a predictor of stand-level biomass. Although lichen taxa exhibited unique biomass and bulk density responses that varied significantly by growth form, we found that single-taxon sampling consistently under-estimated true biomass and was constrained by the need for taxonomic experts. We also found that the point count method provided little to no improvement over ocular methods, despite increased effort. Estimated biomass of lichen-dominated communities (mean lichen cover: 84.9±1.4%) using multi-taxa, ocular methods differed only nominally among landcover types within ecoregions (range: 822 to 1418 g m-2). Height alone was a poor predictor of lichen biomass and should always be weighted by cover abundance. We conclude that the multi-taxa (whole-community) approach, when paired with ocular estimates, is the most reasonable and practical method for estimating lichen biomass at landscape scales in northwest Alaska.

  2. Influence of the Culture Media and the Organic Matter in the Growth of Paxillus ammoniavirescens (Contu & Dessi).

    Science.gov (United States)

    Cagigal, Elena Fernández-Miranda; Sánchez, Abelardo Casares

    2017-09-01

    The genus Paxillus is characterized by the difficulty of species identification, which results in reproducibility problems, as well as the need for large quantities of fungal inoculum. In particular, studies of Paxillus ammoniavirescens have reported divergent results in the in vitro growth while little is known of its capacity to degrade organic matter. For all the above, and assuming that this variability could be due to an inappropriate culture media, the aim of this study was to analyse growth in different culture media (MMN, MS, and 1/2 MS) and in the case of MMN in presence/absence of two types of organic matter (fresh litter and senescence litter) to probe the saprophytic ability of P. ammoniavirescens . We also evaluated the effects of pH changes in the culture media. Growth kinetics was assessed by weekly quantification of the area of growth in solid culture media over 5 wk, calculating the growth curves and inflection points of each culture media. In addition, final biomass after 5 wk in the different culture media was calculated. Results showed that best culture media are MS and 1/2 MS. Moreover, an improvement in growth in culture media containing decomposing fall litter was observed, leading to confirm differences in the culture media of this species with others of the same genus. Further, we established that all growth media suffered a significant acidification after fungal growth.

  3. Ab initio calculations and kinetic modeling of thermal conversion of methyl chloride: implications for gasification of biomass

    DEFF Research Database (Denmark)

    Singla, Mallika; Rasmussen, Morten Lund; Hashemi, Hamid

    2018-01-01

    . In the present work, the thermal conversion of CH3Cl under gasification conditions was investigated. A detailed chemical kinetic model for pyrolysis and oxidation of methyl chloride was developed and validated against selected experimental data from the literature. Key reactions of CH2Cl with O2 and C2H4......Limitations in current hot gas cleaning methods for chlorine species from biomass gasification may be a challenge for end use such as gas turbines, engines, and fuel cells, all requiring very low levels of chlorine. During devolatilization of biomass, chlorine is released partly as methyl chloride...... in low-temperature gasification. The present work illustrates how ab initio theory and chemical kinetic modeling can help to resolve emission issues for thermal processes in industrial scale....

  4. Effects of increased small-scale biomass combustion on local air quality - A theoretical dispersion modelling study

    International Nuclear Information System (INIS)

    Boman, C.

    1997-01-01

    The decided phasing out of nuclear power and the goal of reducing CO 2 emissions from fossil fuels causes a substantial estimated increase in the use of biomass fuels for energy production. Thus, a significant shift from small scale heating generated by electricity or fuel oil to biomass fuels is desirable. If a drastic deterioration of the local air quality is to be avoided, a reduction of today's emission limits is necessary. The objective of this report was therefore to describe the use of biomass fuels and small scale pellet fuel combustion, to make a theoretical study of the effects of increased pellets heating on the air quality in a residential area, and to discuss necessary emission limits for small biomass fuel plants. The general description is based on literature studies. In the theoretical study, several different dispersion model calculations were performed using the computer program Dispersion 1.1.0. The contents of tar and total hydrocarbons (THC) in the air were calculated for different scenarios with conversion from electricity to pellets and with different pellet plant performance. A sensitivity analysis was performed with additional variables and dispersion calculations according to an underlying statistical experimental design. The modeling and design computer program MODDE was used to facilitate design, evaluation and illustration of the calculated results. The results show that a substantial increase in the use of small scale pellets heating with worst calculated plant performance, will lead to a drastic increase of the content of hydrocarbons in the air. Thus, with best available performance, the content only increases marginally. Conversion from electricity to pellets, plant performance and time of year were the most influential variables. Also conversion from wood to pellets showed a significant effect, despite the small number of wood heated houses within the studied area. If a significant deterioration of the air quality is to be avoided

  5. Energy production from biomass

    International Nuclear Information System (INIS)

    Bestebroer, S.I.

    1995-01-01

    The aim of the task group 'Energy Production from Biomass', initiated by the Dutch Ministry of Economic Affairs, was to identify bottlenecks in the development of biomass for energy production. The bottlenecks were identified by means of a process analysis of clean biomass fuels to the production of electricity and/or heat. The subjects in the process analysis are the potential availability of biomass, logistics, processing techniques, energy use, environmental effects, economic impact, and stimulation measures. Three categories of biomass are distinguished: organic residual matter, imported biomass, and energy crops, cultivated in the Netherlands. With regard to the processing techniques attention is paid to co-firing of clean biomass in existing electric power plants (co-firing in a coal-fired power plant or co-firing of fuel gas from biomass in a coal-fired or natural gas-fired power plant), and the combustion or gasification of clean biomass in special stand-alone installations. 5 figs., 13 tabs., 28 refs

  6. Ethanol obtention from fruit biomass; Obtencao de etanol a partir da biomassa de frutas

    Energy Technology Data Exchange (ETDEWEB)

    Joner, Gabriela Chiele; Schutz, Fabiana Costa de Araujo; Steinmacher, Nadia Cristiane [Universidade Tecnologica Federal do Parana (UTFPR), PR (Brazil)], emails: gabriela.chj@hotmail.com, fabianaschutz@gmail.com, nadiac@utfpr.edu.br

    2011-07-01

    The development of a region is directly related to the increase of energy consumption and hence the growth of the generation of residual biomass of fruits per capita. Any kind of fruit biomass produced in cities, resulting from human activities and that is released into the environment, is classified as organic waste and is rarely reused. Biomass is any renewable resource derived from organic matter that can be used as an energy source. The use of fruit biomass for ethanol production leads to an improvement of environmental quality, preventing it being thrown in landfills, causing no harm to society. An example would be the biomass generated in the region's supermarkets, which usually are not included in recovery programs. This study aimed to test the production of ethanol from biomass of different combinations of fruits, through analysis of soluble solids, pH, alcohol content and titratable acids. We obtained a detailed analysis of the correlation of the properties and characteristics of the biomass of the fruits used, allowing to define the best combination of residual biomass for ethanol production, from the point of view technical and economical. 3:1:1 proportion of banana: apple: orange, respectively, was the better combination related with alcoholic degree. (author)

  7. The effects of cadmium pulse dosing on physiological traits and growth of the submerged macrophyte Vallisneria spinulosa and phytoplankton biomass: a mesocosm study.

    Science.gov (United States)

    Liu, Hui; Cao, Yu; Li, Wei; Zhang, Zhao; Jeppesen, Erik; Wang, Wei

    2017-06-01

    Pulse inputs of heavy metals are expected to increase with a higher frequency of extreme climate events (heavy rain), leading to stronger erosion of contaminated and fertilized farmland soils to freshwaters, with potentially adverse effects on lake ecosystems. We conducted a 5-month mesocosm study to elucidate the responses of the submerged macrophyte Vallisneria spinulosa and phytoplankton to four different doses of cadmium (Cd): 0 (control), 0.05, 0.5, and 5 g m -2 (CK, I, II, and III, respectively) under mesotrophic conditions. We found that total phosphorus concentrations were larger in the three Cd pulse treatments, whereas total nitrogen concentrations did not differ among the four treatments. The contents of chlorophyll a and soluble sugar in macrophyte leaves decreased in III, and total biomass, ramet number, plant height, and total stolon length of macrophytes were lower in both II and III. In contrast, abundances of the three main phytoplankton taxa-Cyanophyta, Chlorophyta, and Bacillariophyta-did not differ among treatments. Total phytoplankton biomass was, however, marginally lower in CK than in the Cd treatments. We conclude that exposure to strong Cd pulses led to significantly reduced growth of macrophytes, while no obvious effect appeared for phytoplankton.

  8. Biomass Characterization | Bioenergy | NREL

    Science.gov (United States)

    Characterization Biomass Characterization NREL provides high-quality analytical characterization of biomass feedstocks, intermediates, and products, a critical step in optimizing biomass conversion clear, amber liquid Standard Biomass Laboratory Analytical Procedures We maintain a library of

  9. Exergy analysis of a coal/biomass co-hydrogasification based chemical looping power generation system

    International Nuclear Information System (INIS)

    Yan, Linbo; Yue, Guangxi; He, Boshu

    2015-01-01

    Power generation from co-utilization of coal and biomass is very attractive since this technology can not only save the coal resource but make sufficient utilization of biomass. In addition, with this concept, net carbon discharge per unit electric power generation can also be sharply reduced. In this work, a coal/biomass co-hydrogasification based chemical looping power generation system is presented and analyzed with the assistance of Aspen Plus. The effects of different operating conditions including the biomass mass fraction, R_b, the hydrogen recycle ratio, R_h_r, the hydrogasification pressure, P_h_g, the iron to fuel mole ratio, R_i_f, the reducer temperature, T_r_e, the oxidizer temperature, T_o_x, and the fuel utilization factor, U_f of the SOFC (solid oxide fuel cell) on the system operation results including the energy efficiency, η_e, the total energy efficiency, η_t_e, the exergy efficiency, η_e_x, the total exergy efficiency, η_t_e_x and the carbon capture rate, η_c_c, are analyzed. The energy and exergy balances of the whole system are also calculated and the corresponding Sankey diagram and Grassmann diagram are drawn. Under the benchmark condition, exergy efficiencies of different units in the system are calculated. η_t_e, η_t_e_x and η_c_c of the system are also found to be 43.6%, 41.2% and 99.1%, respectively. - Highlights: • A coal/biomass co-hydrogasification based chemical looping power generation system is setup. • Sankey and Grassmann diagrams are presented based on the energy and exergy balance calculations. • Sensitivity analysis is done to understand the system operation characteristics. • Total energy and exergy efficiencies of this system can be 43.6% and 41.2%, respectively. • About 99.1% of the carbon contained in coal and biomass can be captured in this system.

  10. EERC Center for Biomass Utilization 2008-2010. Phases I-III

    Energy Technology Data Exchange (ETDEWEB)

    Zygarlicke, Christopher J. [Univ. of North Dakota, Grand Forks, ND (United States); Hurley, John P. [Univ. of North Dakota, Grand Forks, ND (United States); Auich, Ted R. [Univ. of North Dakota, Grand Forks, ND (United States); Folkedahl, Bruce C. [Univ. of North Dakota, Grand Forks, ND (United States); Strege, Josua R. [Univ. of North Dakota, Grand Forks, ND (United States); Patel, Nikhil M. [Univ. of North Dakota, Grand Forks, ND (United States); Swanson, Michael L. [Univ. of North Dakota, Grand Forks, ND (United States); Martin, Christopher L [Univ. of North Dakota, Grand Forks, ND (United States); Olson, Edwin S. [Univ. of North Dakota, Grand Forks, ND (United States); Oster, Benjamin G. [Univ. of North Dakota, Grand Forks, ND (United States); Stanislowski, Joshua J. [Univ. of North Dakota, Grand Forks, ND (United States); Nyberg, Carolyn M. [Univ. of North Dakota, Grand Forks, ND (United States); Wocken, Chad A. [Univ. of North Dakota, Grand Forks, ND (United States); Pansegrau, Paul D. [Univ. of North Dakota, Grand Forks, ND (United States)

    2015-07-30

    The U.S. Department of Energy (DOE) Energy Information Administration (EIA) projects nonhydro renewable electric energy increases of 140% and liquid transportation biofuels growing by 32,200 barrels a day between 2012 and 2040 (U.S. Energy Information Administration, 2014). This is the EIA base case scenario, and this outlook could be a low estimate depending on the many assumptions involved in making such projections, not the least of which are climate change and the resultant legislation. The climate change postulate is based on increasing levels of CO2 being introduced into the atmosphere through anthropogenic activity such as fossil fuel combustion for energy use. Renewable energy, and biomass conversion to energy in particular, is a net-zero CO2 emission generator. When biomass is converted to energy, it emits CO2; however, this CO2 is balanced in a cycle where the production of biomass removes CO2 from the atmosphere for growth and then releases it back into the atmosphere to be taken up by new growth of biomass feedstocks for energy. In comparison, fossil fuels are examples of CO2 that has been removed from the atmosphere and sequestered and which, when converted to energy, is a new addition to the atmospheric levels of CO2, which has been linked to climate change. While recent advances in technology used for extracting oil and gas from tight formations have increased the availability of fossil fuels for energy, the end game needs to focus on providing sustainable energy sources for the United States as well as the world. If, in the future, legislation is enacted that places a fee on atmospheric CO2 emissions, this may make the use of biomass for energy more economically attractive, increasing its use. Research that focuses on the future sustainability of energy production is part of the answer to bringing about game-changing technologies that can provide energy in a

  11. Bacterial growth and substrate degradation by BTX-oxidizing culture in response to salt stress.

    Science.gov (United States)

    Lee, Chi-Yuan; Lin, Ching-Hsing

    2006-01-01

    Interactions between microbial growth and substrate degradation are important in determining the performance of trickle-bed bioreactors (TBB), especially when salt is added to reduce biomass formation in order to alleviate media clogging. This study was aimed at quantifying salinity effects on bacterial growth and substrate degradation, and at acquiring kinetic information in order to improve the design and operation of TBB. Experiment works began by cultivating a mixed culture in a chemostat reactor receiving artificial influent containing a mixture of benzene, toluene, and xylene (BTX), followed by using the enrichment culture to degrade the individual BTX substrates under a particular salinity, which ranged 0-50 g l(-1) in batch mode. Then, the measured concentrations of biomass and residual substrate versus time were analyzed with the microbial kinetics; moreover, the obtained microbial kinetic constants under various salinities were modeled using noncompetitive inhibition kinetics. For the three substrates the observed bacterial yields appeared to be decreased from 0.51-0.74 to 0.20-0.22 mg mg(-1) and the maximum specific rate of substrate utilization, q, declined from 0.25-0.42 to 0.07-0.11 h(-1), as the salinity increased from 0 to 50 NaCl g l(-1). The NaCl acted as noncompetitive inhibitor, where the modeling inhibitions of the coefficients, K ( T(S)), were 22.7-29.7 g l(-1) for substrate degradation and K ( T(mu)), 13.0-19.0 g l(-1), for biomass formation. The calculated ratios for the bacterial maintenance rate, m (S), to q, further indicated that the percentage energy spent on maintenance increased from 19-24 to 86-91% as salinity level increased from 0 to 50 g l(-1). These results revealed that the bacterial growth was more inhibited than substrate degradation by the BTX oxidizers under the tested salinity levels. The findings from this study demonstrate the potential of applying NaCl salt to control excessive biomass formation in biotrickling filters.

  12. Challenges and opportunities of international biomass market: Findings from a scenario study

    Energy Technology Data Exchange (ETDEWEB)

    Heinimoe, J. (Lappeenranta University of Technology, Mikkeli (Finland)); Ojanen, V.; Koessi, T. (Lappeenranta University of Technology, Lappeenranta (Finland))

    2007-07-01

    The markets of biomass are developing rapidly and becoming more international. Although biomass has potential to become a more important source of energy, the remarkable increase in biomass use for energy needs parallel and positive development in several sectors and there will be plenty of challenges to overcome. To support the positive development of market and to make the most of the development it is needed to have understanding about the market dynamics. The objective of the study was to clarify the alternative future scenarios for the international biomass market until the year 2020 and based on the scenario process to identify underlying steps needed towards the vital working and sustainable biomass market for energy purposes. A heuristic semi structured approach was applied in the scenario processes. The scenarios estimated that the biomass market will develop and grow rapidly as well as diversify in the future. The scenario analysis shows the key issues on the field: global economic growth including the growing need of energy, environmental forces in the global evolution, possibilities of the technological development to solve the global problems, capabilities of the international community to find solutions for the global issues and the complex interdependencies of all these driving forces. (orig.)

  13. Biomass

    Science.gov (United States)

    Bernard R. Parresol

    2001-01-01

    Biomass, the contraction for biological mass, is the amount of living material provided by a given area or volume of the earth's surface, whether terrestrial or aquatic. Biomass is important for commercial uses (e.g., fuel and fiber) and for national development planning, as well as for scientific studies of ecosystem productivity, energy and nutrient flows, and...

  14. A systems biology, whole-genome association analysis of the molecular regulation of biomass growth and composition in Populus deltoides

    Energy Technology Data Exchange (ETDEWEB)

    Kirst, Matias [Univ. of Florida, Gainesville, FL (United States)

    2014-04-14

    Poplars trees are well suited for biofuel production due to their fast growing habit, favorable wood composition and adaptation to a broad range of environments. The availability of a reference genome sequence, ease of vegetative propagation and availability of transformation methods also make poplar an ideal model for the study of wood formation and biomass growth in woody, perennial plants. The objective of this project was to conduct a genome-wide association genetics study to identify genes that regulate bioenergy traits in Populus deltoides (eastern cottonwood). Populus deltoides is a genetically diverse keystone forest species in North America and an important short rotation woody crop for the bioenergy industry. We searched for associations between eight growth and wood composition traits and common and low-frequency single-nucleotide polymorphisms (SNPs) detected by targeted resequencing of 18,153 genes in a population of 391 unrelated individuals. To increase power to detect associations with low-frequency variants, multiple-marker association tests were used in combination with single-marker association tests. Significant associations were discovered for all phenotypes and are indicative that low-frequency polymorphisms contribute to phenotypic variance of several bioenergy traits. These polymorphism are critical tools for the development of specialized plant feedstocks for bioenergy.

  15. A systems biology, whole-genome association analysis of the molecular regulation of biomass growth and composition in Populus deltoides

    Energy Technology Data Exchange (ETDEWEB)

    Kirst, Matias [Univ. of Florida, Gainesville, FL (United States)

    2015-04-15

    Poplars trees are well suited for biofuel production due to their fast growing habit, favorable wood composition and adaptation to a broad range of environments. The availability of a reference genome sequence, ease of vegetative propagation and availability of transformation methods also make poplar an ideal model for the study of wood formation and biomass growth in woody, perennial plants. The objective of this project was to conduct a genome-wide association genetics study to identify genes that regulate bioenergy traits in Populus deltoides (eastern cottonwood). Populus deltoides is a genetically diverse keystone forest species in North America and an important short rotation woody crop for the bioenergy industry. We searched for associations between eight growth and wood composition traits and common and low-frequency single-nucleotide polymorphisms (SNPs) detected by targeted resequencing of 18,153 genes in a population of 391 unrelated individuals. To increase power to detect associations with low-frequency variants, multiple-marker association tests were used in combination with single-marker association tests. Significant associations were discovered for all phenotypes and are indicative that low-frequency polymorphisms contribute to phenotypic variance of several bioenergy traits. These polymorphism are critical tools for the development of specialized plant feedstocks for bioenergy.

  16. Diameter Growth, Biological Rotation Age and Biomass of Chinese Fir in Burning and Clearing Site Preparations in Subtropical China

    Directory of Open Access Journals (Sweden)

    Hua Zhou

    2016-08-01

    Full Text Available Sustained forest management of Cunninghamia lanceolata (Chinese fir plantations in subtropical China is restricted by the limited availability of quantitative data. This study combines inventory data and tree-ring analysis of Chinese fir from natural and plantation forests that were subjected to controlled burning or brush clearing site preparations. Inter-annual variation of Chinese fir tree-ring widths were measured for the controlled burning, brush clearing and natural forest sites. The mean annual diametric growth of Chinese fir was 0.56 cm·year−1 for the natural forest, 0.80 cm·year−1 for the brush clearing site and 1.10 cm·year−1 for the controlled burning site. The time needed to reach the minimum cutting/logging diameter of 15 cm was 14 years in the controlled burning site, 19 years in the brush clearing site and >40 years in the natural forest. The biological rotation ages for the burning, cutting and natural forest sites were 15, 26 and >100 years, respectively. The total aboveground biomasses for the burning and clearing sites were 269.8 t·ha−1 and 252 t·ha−1, respectively. These results suggest that the current 25-year cutting cycle greatly underestimates the growth rate of Chinese fir plantations.

  17. Regulation of bacterioplankton density and biomass in tropical shallow coastal lagoons

    Directory of Open Access Journals (Sweden)

    Fabiana MacCord

    Full Text Available AIM: Estimating bacterioplankton density and biomass and their regulating factors is important in order to evaluate aquatic systems' carrying capacity, regarding bacterial growth and the stock of matter in the bacterial community, which can be consumed by higher trophic levels. We aim to evaluate the limnological factors which regulate - in space and time - the bacterioplankton dynamics (abundance and biomass in five tropical coastal lagoons in the state of Rio de Janeiro, Brazil. METHOD: The current study was carried out at the following lagoons: Imboassica, Cabiúnas, Comprida, Carapebus and Garças. They differ in morphology and in their main limnological factors. The limnological variables as well as bacterioplankton abundance and biomass were monthly sampled for 14 months. Model selection analyses were performed in order to evaluate the main variables regulating the bacterioplankton's dynamics in these lagoons. RESULT: The salt concentration and the "space" factor (i.e. different lagoons explained great part of the bacterial density and biomass variance in the studied tropical coastal lagoons. When the lagoons were analyzed separately, salinity still explained great part of the variation of bacterial density and biomass in the Imboassica and Garças lagoons. On the other hand, phosphorus concentration was the main factor explaining the variance of bacterial density and biomass in the distrophic Cabiúnas, Comprida and Carapebus lagoons. There was a strong correlation between bacterial density and biomass (r² = 0.70, p < 0.05, indicating that bacterial biomass variations are highly dependent on bacterial density variations. CONCLUSION: (i Different limnological variables regulate the bacterial density and biomass in the studied coastal lagoons, (ii salt and phosphorus concentrations greatly explained the variation of bacterial density and biomass in the saline and distrophic lagoons, respectively, and (iii N-nitrate and chlorophyll

  18. The use of remote sensing to estimate changes of seagrass extent and biomass in Cockburn Sound, Western Australia

    Science.gov (United States)

    Vidyan, S.

    2018-05-01

    The extent of seagrasses in Cockburn Sound was examined using Nearmap images of year 2010, 2012, 2014, and 2016 to be compared to the last assessment in 1999. It was identified that the seagrass coverage has increased by 231 Ha since 1999, with most of the growth occurred in the southern part. While the water quality in Cockburn Sound has improved, it is believed that there are other pressures affecting the slow growth rate of the seagrasses. Seagrass biomass was also evaluated using Landsat images of year 1994, 1999, 2010, 2012, 2014, and 2016 in addition to a field survey data of leaf biomass in 2016. Despite its increasing extent, seagrass in Cockburn Sound indicated a declining biomass since 1994, which is believed due to the changing nutrient content.

  19. [Microbial biomass and growth kinetics of microorganisms in chernozem soils under different farm land use modes].

    Science.gov (United States)

    Blagodatskiĭ, S A; Bogomolova, I N; Blagodatskaia, E V

    2008-01-01

    The carbon content of microbial biomass and the kinetic characteristics of microbial respiration response to substrate introduction have been estimated for chernozem soils of different farm lands: arable lands used for 10, 46, and 76 years, mowed fallow land, non-mowed fallow land, and woodland. Microbial biomass and the content of microbial carbon in humus (Cmic/Corg) decreased in the following order: soils under forest cenoses-mowed fallow land-10-year arable land-46- and 75-year arable land. The amount of microbial carbon in the long-plowed horizon was 40% of its content in the upper horizon of non-mowed fallow land. Arable soils were characterized by a lower metabolic diversity of microbial community and by the highest portion of microorganisms able to grow directly on glucose introduced into soil. The effects of different scenarios of carbon sequestration in soil on the reserves and activity of microbial biomass are discussed.

  20. The biomass

    International Nuclear Information System (INIS)

    Viterbo, J.

    2011-01-01

    Biomass comes mainly from forests and agriculture and is considered as a clean alternative energy that can be valorized as heat, power, bio-fuels and chemical products but its mass production is challenging in terms of adequate technology but also in terms of rethinking the use of lands. Forests can be managed to produce biomass but bio-fuels can also be generated from sea-weeds. Biomass appears very promising but on one hand we have to secure its supplying and assure its economical profitability and on another hand we have to assure a reasonable use of lands and a limited impact on the environment. The contribution of biomass to sustainable development depends on the balance between these 2 ends. (A.C.)

  1. Biomass [updated

    Energy Technology Data Exchange (ETDEWEB)

    Turhollow Jr, Anthony F [ORNL

    2016-01-01

    Biomass resources and conversion technologies are diverse. Substantial biomass resources exist including woody crops, herbaceous perennials and annuals, forest resources, agricultural residues, and algae. Conversion processes available include fermentation, gasification, pyrolysis, anaerobic digestion, combustion, and transesterification. Bioderived products include liquid fuels (e.g. ethanol, biodiesel, and gasoline and diesel substitutes), gases, electricity, biochemical, and wood pellets. At present the major sources of biomass-derived liquid fuels are from first generation biofuels; ethanol from maize and sugar cane (89 billion L in 2013) and biodiesel from vegetable oils and fats (24 billion liters in 2011). For other than traditional uses, policy in the forms of mandates, targets, subsidies, and greenhouse gas emission targets has largely been driving biomass utilization. Second generation biofuels have been slow to take off.

  2. IMPROVING BIOMASS LOGISTICS COST WITHIN AGRONOMIC SUSTAINABILITY CONSTRAINTS AND BIOMASS QUALITY TARGETS

    Energy Technology Data Exchange (ETDEWEB)

    J. Richard Hess; Kevin L. Kenney; Christopher T. Wright; David J. Muth; William Smith

    2012-10-01

    Equipment manufacturers have made rapid improvements in biomass harvesting and handling equipment. These improvements have increased transportation and handling efficiencies due to higher biomass densities and reduced losses. Improvements in grinder efficiencies and capacity have reduced biomass grinding costs. Biomass collection efficiencies (the ratio of biomass collected to the amount available in the field) as high as 75% for crop residues and greater than 90% for perennial energy crops have also been demonstrated. However, as collection rates increase, the fraction of entrained soil in the biomass increases, and high biomass residue removal rates can violate agronomic sustainability limits. Advancements in quantifying multi-factor sustainability limits to increase removal rate as guided by sustainable residue removal plans, and mitigating soil contamination through targeted removal rates based on soil type and residue type/fraction is allowing the use of new high efficiency harvesting equipment and methods. As another consideration, single pass harvesting and other technologies that improve harvesting costs cause biomass storage moisture management challenges, which challenges are further perturbed by annual variability in biomass moisture content. Monitoring, sampling, simulation, and analysis provide basis for moisture, time, and quality relationships in storage, which has allowed the development of moisture tolerant storage systems and best management processes that combine moisture content and time to accommodate baled storage of wet material based upon “shelf-life.” The key to improving biomass supply logistics costs has been developing the associated agronomic sustainability and biomass quality technologies and processes that allow the implementation of equipment engineering solutions.

  3. Topographically mediated controls on aboveground biomass across a mediterranean-type landscape

    Science.gov (United States)

    Dahlin, K.; Asner, G. P.; Field, C. B.

    2009-12-01

    Aboveground biomass accumulation is a useful metric for evaluating habitat restoration and ecosystem services projects, in addition to being a robust measure of carbon sequestration. However, at the landscape scale non-anthropogenic controls on biomass accumulation are poorly understood. In this study we combined field measurements, high resolution data from the NASA JPL Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), and the Carnegie Airborne Observatory (CAO) airborne light detection and ranging (lidar) system to create a comprehensive map of aboveground biomass across a patchy mediterranean-type landscape (Jasper Ridge Biological Preserve, Stanford, CA). Candidate explanatory variables (e.g. slope, elevation, incident solar radiation) were developed using a geologic map and a digital elevation model derived from the lidar data. Finally, candidate variables were tested, and a model was produced to predict aboveground biomass from environmental data. Though many of the explanatory variables have only indirect effects on plant growth, the model permits inferences to be made about the relative importance of light, water, temperature, and edaphic characteristics on carbon accumulation in mediterranean-type systems.

  4. Devolatilization characteristics of biomass at flash heating rate

    Energy Technology Data Exchange (ETDEWEB)

    Xiu Shuangning; Li Zhihe; Li Baoming; Yi Weiming; Bai Xueyuan [China Agricultural University, Beijing (China). College of Water Conservancy and Civil Engineering

    2006-03-15

    The devolatilization characteristics of biomass (wheat straw, coconut shell, rice husk and cotton stalk) during flash pyrolysis has been investigated on a plasma heated laminar entrained flow reactor (PHLEFR) with average heating rates of 10{sup 4} K/s. These experiments were conducted with steady temperatures between 750 and 900 K, and the particle residence time varied from about 0.115 to 0.240 s. The ash tracer method was introduced to calculate the yield of volatile products at a set temperature and the residence time. This experimental study showed that the yield of volatile products depends both on the final pyrolysis temperature and the residence time. From the results, a comparative analysis was done for the biomasses, and a one-step global model was used to simulate the flash pyrolytic process and predict the yield of volatile products during pyrolysis. The corresponding kinetic parameters of the biomasses were also analyzed and determined. These results were essential for designing a suitable pyrolysis reactor. 24 refs., 5 figs., 5 tabs.

  5. Modeling loblolly pine aboveground live biomass in a mature pine-hardwood stand: a cautionary tale

    Science.gov (United States)

    D. C. Bragg

    2011-01-01

    Carbon sequestration in forests is a growing area of interest for researchers and land managers. Calculating the quantity of carbon stored in forest biomass seems to be a straightforward task, but it is highly dependent on the function(s) used to construct the stand. For instance, there are a number of possible equations to predict aboveground live biomass for loblolly...

  6. Urban wastewater photobiotreatment with microalgae in a continuously operated photobioreactor: growth, nutrient removal kinetics and biomass coagulation-flocculation.

    Science.gov (United States)

    Mennaa, Fatima Zahra; Arbib, Zouhayr; Perales, José Antonio

    2017-11-03

    The aim of this study was to investigate the growth, nutrient removal and harvesting of a natural microalgae bloom cultivated in urban wastewater in a bubble column photobioreactor. Batch and continuous mode experiments were carried out with and without pH control by means of CO 2 dosage. Four coagulants (aluminium sulphate, ferric sulphate, ferric chloride and polyaluminium chloride (PAC)) and five flocculants (Chemifloc CM/25, FO 4498SH, cationic polymers Zetag (Z8165, Z7550 and Z8160)) were tested to determine the optimal dosage to reach 90% of biomass recovery. The maximum volumetric productivity obtained was 0.11 g SS L -1  d -1 during the continuous mode. Results indicated that the removal of total dissolved nitrogen and total dissolved phosphorous under continuous operation were greater than 99%. PAC, Fe 2 (SO 4 ) 3 and Al 2 (SO 4 ) 3 were the best options from an economical point of view for microalgae harvesting.

  7. Growth of Quailbush in Acidic, Metalliferous Desert Mine Tailings: Effect of Azospirillum brasilense Sp6 on Biomass Production and Rhizosphere Community Structure

    Science.gov (United States)

    de-Bashan, Luz E.; Hernandez, Juan-Pablo; Nelson, Karis N.; Bashan, Yoav

    2010-01-01

    Mine tailing deposits in semiarid and arid environments frequently remain devoid of vegetation due to the toxicity of the substrate and the absence of a diverse soil microbial community capable of supporting seed germination and plant growth. The contribution of the plant growth promoting bacterium (PGPB) Azospirillum brasilense Sp6 to the growth of quailbush in compost-amended, moderately acidic, high-metal content mine tailings using an irrigation-based reclamation strategy was examined along with its influence on the rhizosphere bacterial community. Sp6 inoculation resulted in a significant (2.2-fold) increase in plant biomass production. The data suggest that the inoculum successfully colonized the root surface and persisted throughout the 60-day experiment in both the rhizosphere, as demonstrated by excision and sequencing of the appropriate denaturing gradient gel electrophoresis (DGGE) band, and the rhizoplane, as indicated by fluorescent in situ hybridization of root surfaces. Changes in rhizosphere community structure in response to Sp6 inoculation were evaluated after 15, 30, and 60 days using DGGE analysis of 16S rRNA polymerase chain reaction amplicons. A comparison of DGGE profiles using canonical correspondence analysis revealed a significant treatment effect (Sp6-inoculated vs. uninoculated plants vs. unplanted) on bacterial community structure at 15, 30, and 60 days (p<0.05). These data indicate that in an extremely stressed environment such as acid mine tailings, an inoculated plant growth promoting bacterium not only can persist and stimulate plant growth but also can directly or indirectly influence rhizobacterial community development. PMID:20632001

  8. Biomass Supply and Trade Opportunities of Preprocessed Biomass for Power Generation

    NARCIS (Netherlands)

    Batidzirai, B.; Junginger, M.; Klemm, M.; Schipfer, F.; Thrän, D.

    2016-01-01

    International trade of solid biomass is expected to increase significantly given the global distribution of biomass resources and anticipated expansion of bioenergy deployment in key global power markets. Given the unique characteristics of biomass, its long-distance trade requires optimized

  9. Metabolic flux analysis of heterotrophic growth in Chlamydomonas reinhardtii.

    Directory of Open Access Journals (Sweden)

    Nanette R Boyle

    Full Text Available Despite the wealth of knowledge available for C. reinhardtii, the central metabolic fluxes of growth on acetate have not yet been determined. In this study, 13C-metabolic flux analysis (13C-MFA was used to determine and quantify the metabolic pathways of primary metabolism in C. reinhardtii cells grown under heterotrophic conditions with acetate as the sole carbon source. Isotopic labeling patterns of compartment specific biomass derived metabolites were used to calculate the fluxes. It was found that acetate is ligated with coenzyme A in the three subcellular compartments (cytosol, mitochondria and plastid included in the model. Two citrate synthases were found to potentially be involved in acetyl-coA metabolism; one localized in the mitochondria and the other acting outside the mitochondria. Labeling patterns demonstrate that Acetyl-coA synthesized in the plastid is directly incorporated in synthesis of fatty acids. Despite having a complete TCA cycle in the mitochondria, it was also found that a majority of the malate flux is shuttled to the cytosol and plastid where it is converted to oxaloacetate providing reducing equivalents to these compartments. When compared to predictions by flux balance analysis, fluxes measured with 13C-MFA were found to be suboptimal with respect to biomass yield; C. reinhardtii sacrifices biomass yield to produce ATP and reducing equivalents.

  10. Biomass Feedstocks | Bioenergy | NREL

    Science.gov (United States)

    Feedstocks Biomass Feedstocks Our mission is to enable the coordinated development of biomass generic biomass thermochemical conversion process (over a screened-back map of the United States) showing U.S. Biomass Resources, represented by photos of timber, corn stover, switchgrass, and poplar. All

  11. Growing Chlorella sp. on meat processing wastewater for nutrient removal and biomass production.

    Science.gov (United States)

    Lu, Qian; Zhou, Wenguang; Min, Min; Ma, Xiaochen; Chandra, Ceria; Doan, Yen T T; Ma, Yiwei; Zheng, Hongli; Cheng, Sibo; Griffith, Richard; Chen, Paul; Chen, Chi; Urriola, Pedro E; Shurson, Gerald C; Gislerød, Hans R; Ruan, Roger

    2015-12-01

    In this work, Chlorella sp. (UM6151) was selected to treat meat processing wastewater for nutrient removal and biomass production. To balance the nutrient profile and improve biomass yield at low cost, an innovative algae cultivation model based on wastewater mixing was developed. The result showed that biomass yield (0.675-1.538 g/L) of algae grown on mixed wastewater was much higher than that on individual wastewater and artificial medium. Wastewater mixing eased the bottleneck for algae growth and contributed to the improved biomass yield. Furthermore, in mixed wastewater with sufficient nitrogen, ammonia nitrogen removal efficiencies (68.75-90.38%) and total nitrogen removal efficiencies (30.06-50.94%) were improved. Wastewater mixing also promoted the synthesis of protein in algal cells. Protein content of algae growing on mixed wastewater reached 60.87-68.65%, which is much higher than that of traditional protein source. Algae cultivation model based on wastewater mixing is an efficient and economical way to improve biomass yield. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Influence of Inoculation, Nitrogen and Phosphorus Levels on Wheat Growth and Soil Microbial Biomass-N Using 15N Techniques

    International Nuclear Information System (INIS)

    Galal, Y.G.; El-Ghandour, I.A.; Abdel Raouf, A.M.; Osman, M.E.

    2003-01-01

    Pot experiment was carried out with wheat that cultivated in virgin sandy soil and inoculated with Rhizobium (Rh), mycorrhizea (VAM) and mixture of both. The objective of this work was to verify the potential of these inoculum on wheat production, nutrient acquisition and microbial biomass N (MBN) contribution as affected by N and P fertilizers levels. MBN was detected through the fumigation-extraction method. Nitrogen and phosphorus fertilizers were applied at three levels, 0; 25 ppm N and 3.3 ppm P and 50 ppm N and 6.6 ppm P in the form of ( 15 NH 4 ) 2 SO 4 , 5% atom excess and super-phosphate, respectively. The effect of inoculation and chemical fertilizers on dry matter (DM), N and P uptake (shoot and grain) and MBN were traced. The obtained data revealed that the highest DM and N uptake by wheat shoot were recorded with the dual inoculation (Rh + VAM) at the highest level of N and P fertilizers. The highest grain yield was detected with single inoculum of AM fungi while N and P uptake were with dual inoculation at the same rate of fertilizers. Inoculation with Rh either alone or in combination with VAM have a positive and stimulative effect on wheat growth and N and P uptake indicating the possibilities of extending the use of symbiotic microorganisms to be applied with cereals. The fluctuation in the soil microbial biomass N did not gave a chance to recognize, exactly, the impact of inoculation and/or fertilization levels

  13. Energy from biomass. Teaching material; Energie aus Biomasse. Ein Lehrmaterial

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-04-01

    The textbook discusses the available options for power and heat generation from biomass as well as the limits of biomass-based power supply. The main obstacle apart from the high cost is a lack of knowledge, which the book intends to remedy. It addresses students of agriculture, forestry, environmental engineering, heating systems engineering and apprentice chimney sweepers, but it will also be useful to all other interested readers. [German] Biomasse kann aufgrund seiner vielfaeltigen Erscheinungs- und Umwandlungsformen sowohl als Brennstoff zur Waerme- und Stromgewinnung oder als Treibstoff eingesetzt werden. Die energetische Nutzung von Biomasse birgt zudem nicht zu verachtende Vorteile. Zum einen wegen des Beitrags zum Klimaschutz aufgrund der CO{sub 2}-Neutralitaet oder einfach, weil Biomasse immer wieder nachwaechst und von fossilen Ressourcen unabhaengig macht. All den bisher erschlossenen Moeglichkeiten der energetischen Nutzung von Biomasse moechte dieses Lehrbuch Rechnung tragen. Es zeigt aber auch die Grenzen auf, die mit der Energieversorgung durch Bioenergie einhergehen. Hohe Kosten und ein erhebliches Informationsdefizit behinderten bisher eine verstaerkte Nutzung dieses Energietraeges. Letzterem soll dieses Lehrbuch entgegenwirken. Das vorliegende Lehrbuch wurde fuer die Aus- und Weiterbildung erstellt. Es richtet sich vor allem an angehende Land- und Forstwirte, Umwelttechniker, Heizungsbauer und Schornsteinfeger, ist aber auch fuer all diejenigen interessant, die das Thema ''Energie aus Biomasse'' verstehen und ueberblicken moechten. (orig.)

  14. Bioremediation of aqueous pollutants using biomass embedded in hydrophilic foam. Final report

    International Nuclear Information System (INIS)

    Wilde, E.W.; Radway, J.C.; Santo Domingo, J.; Zingmark, R.G.; Whitaker, M.J.

    1996-01-01

    The major objective of this project was to examine the potential of a novel hydrophilic polyurethane foam as an immobilization medium for algal, bacteria, and other types of biomass, and to test the resulting foam/biomass aggregates for their use in cleaning up waters contaminated with heavy metals, radionuclides and toxic organic compounds. Initial investigations focused on the bioremoval of heavy metals from wastewaters at SRS using immobilized algal biomass. This effort met with limited success for reasons which included interference in the binding of biomass and target metals by various non-target constituents in the wastewater, lack of an appropriate wastewater at SRS for testing, and the unavailability of bioreactor systems capable of optimizing contact of target pollutants with sufficient biomass binding sites. Subsequent studies comparing algal, bacterial, fungal, and higher plant biomass demonstrated that other biomass sources were also ineffective for metal bioremoval under the test conditions. Radionuclide bioremoval using a Tc-99 source provided more promising results than the metal removal studies with the various types of biomass, and indicated that the alga Cyanidium was the best of the tested sources of biomass for this application. However, all of the biomass/foam aggregates tested were substantially inferior to a TEVA resin for removing Tc-99 in comparative testing. The authors also explored the use of hydrophilic polyurethane foam to embed Burkholderia cepacia, which is an efficient degrader of trichloroethylene (TCE), a contaminant of considerable concern at SRS and elsewhere. The embedded population proved to be incapable of growth on nutrient media, but retained respiratory activity. Lastly, the degradative capabilities of embedded G4 were examined. Phenol- or benzene-induced bacteria retained the ability to degrade TCE and benzene. The authors were successful in inducing enzyme activity after the organisms had already been embedded

  15. Bioremediation of aqueous pollutants using biomass embedded in hydrophilic foam. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wilde, E.W.; Radway, J.C.; Santo Domingo, J.; Zingmark, R.G.; Whitaker, M.J.

    1996-12-31

    The major objective of this project was to examine the potential of a novel hydrophilic polyurethane foam as an immobilization medium for algal, bacteria, and other types of biomass, and to test the resulting foam/biomass aggregates for their use in cleaning up waters contaminated with heavy metals, radionuclides and toxic organic compounds. Initial investigations focused on the bioremoval of heavy metals from wastewaters at SRS using immobilized algal biomass. This effort met with limited success for reasons which included interference in the binding of biomass and target metals by various non-target constituents in the wastewater, lack of an appropriate wastewater at SRS for testing, and the unavailability of bioreactor systems capable of optimizing contact of target pollutants with sufficient biomass binding sites. Subsequent studies comparing algal, bacterial, fungal, and higher plant biomass demonstrated that other biomass sources were also ineffective for metal bioremoval under the test conditions. Radionuclide bioremoval using a Tc-99 source provided more promising results than the metal removal studies with the various types of biomass, and indicated that the alga Cyanidium was the best of the tested sources of biomass for this application. However, all of the biomass/foam aggregates tested were substantially inferior to a TEVA resin for removing Tc-99 in comparative testing. The authors also explored the use of hydrophilic polyurethane foam to embed Burkholderia cepacia, which is an efficient degrader of trichloroethylene (TCE), a contaminant of considerable concern at SRS and elsewhere. The embedded population proved to be incapable of growth on nutrient media, but retained respiratory activity. Lastly, the degradative capabilities of embedded G4 were examined. Phenol- or benzene-induced bacteria retained the ability to degrade TCE and benzene. The authors were successful in inducing enzyme activity after the organisms had already been embedded.

  16. Biomass cogeneration: A business assessment

    Science.gov (United States)

    Skelton, J. C.

    1981-11-01

    The biomass cogeneration was reviewed. The business assessment is based in part on discussions with key officials from firms that have adopted biomass cogeneration systems and from organizations such as utilities, state and federal agencies, and banks directly involved in a biomass cogeneration project. The guide is organized into five chapters: biomass cogeneration systems, biomass cogeneration business considerations, biomass cogeneration economics, biomass cogeneration project planning, and case studies.

  17. Repeat, Low Altitude Measurements of Vegetation Status and Biomass Using Manned Aerial and UAS Imagery in a Piñon-Juniper Woodland

    Science.gov (United States)

    Krofcheck, D. J.; Lippitt, C.; Loerch, A.; Litvak, M. E.

    2015-12-01

    Measuring the above ground biomass of vegetation is a critical component of any ecological monitoring campaign. Traditionally, biomass of vegetation was measured with allometric-based approach. However, it is also time-consuming, labor-intensive, and extremely expensive to conduct over large scales and consequently is cost-prohibitive at the landscape scale. Furthermore, in semi-arid ecosystems characterized by vegetation with inconsistent growth morphologies (e.g., piñon-juniper woodlands), even ground-based conventional allometric approaches are often challenging to execute consistently across individuals and through time, increasing the difficulty of the required measurements and consequently the accuracy of the resulting products. To constrain the uncertainty associated with these campaigns, and to expand the extent of our measurement capability, we made repeat measurements of vegetation biomass in a semi-arid piñon-juniper woodland using structure-from-motion (SfM) techniques. We used high-spatial resolution overlapping aerial images and high-accuracy ground control points collected from both manned aircraft and multi-rotor UAS platforms, to generate digital surface model (DSM) for our experimental region. We extracted high-precision canopy volumes from the DSM and compared these to the vegetation allometric data, s to generate high precision canopy volume models. We used these models to predict the drivers of allometric equations for Pinus edulis and Juniperous monosperma (canopy height, diameter at breast height, and root collar diameter). Using this approach, we successfully accounted for the carbon stocks in standing live and standing dead vegetation across a 9 ha region, which contained 12.6 Mg / ha of standing dead biomass, with good agreement to our field plots. Here we present the initial results from an object oriented workflow which aims to automate the biomass estimation process of tree crown delineation and volume calculation, and partition

  18. Development of renewable energies apart from biomass on farms

    International Nuclear Information System (INIS)

    Brule, K.; Pindard, A.; Jaujay, J.; Femenias, A.

    2009-01-01

    This paper proposes an overview and a prospective glance at the development of renewable energies in farms, apart those which are based on the production or use of biomass. Some indicators are defined (energy production and consumption). Stake holders are identified. Some retrospective major and emerging trends are discussed. The major trends are: growth and diversification of renewable energy production, calling to renewable energy production in farms. The emerging trends are: a recent increase of renewable energy production in farms apart from biomass, locally stressed land market, economic profitability of photovoltaic installations due to purchase tariffs. Some prospective issues are discussed: technical support, financial support, development of other energy sources, and tax policy on fossil energy used in agriculture. Three development hypotheses are discussed

  19. Sensitivity of molecular marker-based CMB models to biomass burning source profiles

    Science.gov (United States)

    Sheesley, Rebecca J.; Schauer, James J.; Zheng, Mei; Wang, Bo

    To assess the contribution of sources to fine particulate organic carbon (OC) at four sites in North Carolina, USA, a molecular marker chemical mass balance model (MM-CMB) was used to quantify seasonal contributions for 2 years. The biomass burning contribution at these sites was found to be 30-50% of the annual OC concentration. In order to provide a better understanding of the uncertainty in MM-CMB model results, a biomass burning profile sensitivity test was performed on the 18 seasonal composites. The results using reconstructed emission profiles based on published profiles compared well, while model results using a single source test profile resulted in biomass burning contributions that were more variable. The biomass burning contribution calculated using an average regional profile of fireplace emissions from five southeastern tree species also compared well with an average profile of open burning of pine-dominated forest from Georgia. The standard deviation of the results using different source profiles was a little over 30% of the annual average biomass contributions. Because the biomass burning contribution accounted for 30-50% of the OC at these sites, the choice of profile also impacted the motor vehicle source attribution due to the common emission of elemental carbon and polycyclic aromatic hydrocarbons. The total mobile organic carbon contribution was less effected by the biomass burning profile than the relative contributions from gasoline and diesel engines.

  20. An economic evaluation of forest improvement opportunities and impacts from the emergence of a biomass fuel market in southwestern Nova Scotia

    International Nuclear Information System (INIS)

    Manley, A.L.; Savage, G.D.

    1993-01-01

    In 1991, Nova Scotia's public power utility initiated a process to purchase privately produced electrical power. A proposal was received to produce 20--25 megawatts from the burning of 350 to 400,000 tonnes annually of wood residue and forest biomass in a co-generation facility in southwestern Nova Scotia, Canada. This proposal has been proceeding and is nearing the construction phase. As a result of this potential market, there is an opportunity for increasing the scope and extent of forest improvement operations. Options for a closer integration of planning, harvesting, and silviculture activities will emerge. Optimum end use allocation could occur and enhance overall economic efficiency. The objective of this project is to assess the effect that this emerging market for forest biomass could have on forest management in the supply area. This project has two phases. Phase 1, presented here, develops the framework and methodology. Phase 2 will apply a linear programming-based analytical model for evaluation. Phase 1 accumulated the required data and information for both the current management and marketing situation and that including the emerging biomass market. Growth and yield of the natural stand types were calculated for a mixture of conventional roundwood products and chip equivalents. Management regimes, based on current forest type, site class, and appropriate silviculture treatments, were established. Expected multiproduct yields, by regime were estimated. Silviculture and harvest costs along with product revenues were used to calculate standing timber and soil expectation values. In Phase 2, a stand-based optimization model will be developed to explore and evaluate the long term opportunities and differences between the present and emerging management and market situations

  1. Effects of thinning and mixed plantations with Alnus cordata on growth and efficiency of common walnut (Juglans regia L.

    Directory of Open Access Journals (Sweden)

    Giannini T

    2009-01-01

    Full Text Available Results about the effects of thinning and mixed plantations with Italian alder (Alnus cordata Loisel. on growth and efficiency of common walnut (Juglans regia L. plantations for wood production are reported. The study, carried out for six years on sixteen year old plantations, compared three theses: pure common walnut plantation (pure common walnut; 50% common walnut - 50% Italian alder plantation; 25% common walnut - 75% Italian alder plantation. Beyond annual surveys of girth at breast height, total height, stem volume and biomass, several variables, useful to describe canopy and foliage characteristics such as leaf area index (LAI, leaf biomass and photosynthetic active radiation below the canopy, were recorded. Data collected allowed to compare growth at individual and whole stand level, to calculate the net assimilation rate (NAR and to compare the growth efficiency of the three theses. Mixed plantations performed results significantly higher than the pure plantation in terms of growth, LAI and leaf biomass both before and after experimental thinning. With reference only to common walnut, growth in mixed plantations was higher than the pure plantation with differences ranging from +40% to +100%. More relevant differences among pure common walnut, 50% common walnut and 25% common walnut at canopy and foliage characteristics were observed, with LAI values of 1.07, 3.96 e 4.35 m2 m-2 respectively. Results accounted for a general positive effect of Italian alder as accessory tree species on growth and efficiency of mixed plantations, mainly due to the good performances induced in common walnut trees. Such performances were enabled by the good ecological integration between the two species and by the positive effects of N-fixing activity of Italian alder. Experimental thinning applied, although heavy, did not biased the dynamics observed before thinning both in pure and mixed plantations. In addition, they had positive effects on common walnut

  2. Comparison of Chlorella vulgaris and cyanobacterial biomass: cultivation in urban wastewater and methane production.

    Science.gov (United States)

    Mendez, Lara; Sialve, Bruno; Tomás-Pejó, Elia; Ballesteros, Mercedes; Steyer, Jean Philippe; González-Fernández, Cristina

    2016-05-01

    Anaerobic digestion of microalgae is hampered by its complex cell wall. Against this background, cyanobacteria cell walls render this biomass as an ideal substrate for overcoming this drawback. The aim of the present study was to compare the growth of two cyanobacteria (Aphanizomenon ovalisporum and Anabaena planctonica) and a microalga (Chlorella vulgaris) in urban wastewater when varying the temperature (22, 27 and 32 °C). Cyanobacterial optimal growth for both strains was attained at 22 °C, while C. vulgaris did not show remarkable differences among temperatures. For all the microorganisms, ammonium removal was higher than phosphate. Biomass collected was subjected to anaerobic digestion. Methane yield of C. vulgaris was 184.8 mL CH4 g COD in(-1) while with A. ovalisporum and A. planctonica the methane production was 1.2- and 1.4-fold higher. This study showed that cyanobacteria growth rates could be comparable to microalgae while presenting the additional benefit of an increased anaerobic digestibility.

  3. Response of biomass and nitrogen yield of white clover to radiation and atmospheric CO2 concentration

    International Nuclear Information System (INIS)

    Manderscheid, R.; Bender, J.; Schenk, U.; Weigel, H.J.

    1997-01-01

    The objectives of the present study were to test (i) whether the effect of season-long CO 2 enrichment on plant dry matter production of white clover (Trifolium repens cv. Karina) depends on the temperature or can solely be explained by changes in radiation use efficiency, and (ii) whether the atmospheric CO 2 concentration affects the relationship between tissue %N and plant biomass. Plants were grown in pots with adequate nutrient and water supply and were exposed to ambient and above ambient CO 2 concentrations (approximately +80 ppm, +160 ppm, +280 ppm) in open-top chambers for two seasons. Nitrogen fertilizer was given only before the experiment started to promote N 2 fixation. Plants were clipped to a height of 5 cm, when the canopy had reached a height of about 20 cm and when the CO 2 effect had not been diminished due to self-shading of the leaves. Photon exposure (400–700 nm) measured above the canopy was linearly related to the above ground biomass, the leaf area index and the nitrogen yield (r 2 > 0.94). The slopes of the curves depended on the CO 2 concentration. Since most of the radiation (>90%) was absorbed by the foliage, the slopes were used to calculate the CO 2 effect on the radiation use efficiency of biomass production, which is shown to increase curvilinearly between 380 and 660 ppm CO 2 from 2.7 g MJ −1 to 3.9 g MJ −1 . CO 2 enrichment increased above ground biomass by increasing the leaf number, the individual leaf weight and the leaf area; specific leaf weight was not affected. The relative CO 2 response varied between harvests; there was a slight but not significant positive relationship with mean daytime temperature. At the beginning of the season, plant nitrogen concentration in the above ground biomass was decreased by CO 2 enrichment. However, at later growth stages, when the plants depended solely on N 2 fixation, nitrogen concentration was found to be increased when the nitrogen concentration value was adjusted for the decrease

  4. Biomass Demand-Resources Value Targeting

    International Nuclear Information System (INIS)

    Lim, Chun Hsion; Lam, Hon Loong

    2014-01-01

    Highlights: • Introduce DRVT supply chain modelling approach to consider underutilised biomass. • Advantages of the novel DRVT biomass supply chain approach. • A case study is presented to demonstrate the improvement of the system. - Abstract: With the global awareness towards sustainability, biomass industry becomes one of the main focuses in the search of alternative renewable resources for energy and downstream product. However, the efficiency of the biomass management, especially in supply chain is still questionable. Even though many researches and integrations of supply chain network have been conducted, less has considered underutilised biomass. This leads to the ignorance of potential value in particular biomass species. A new Demand-Resources Value Targeting (DRVT) approach is introduced in this study to investigate the value of each biomass available in order to fully utilise the biomass in respective applications. With systematic biomass value classification, integration of supply chain based on biomass value from biomass resources-to-downstream product can be developed. DRVT model allows better understanding of biomass and their potential downstream application. A simple demonstration of DRVT approach is conducted based on biomass resources in Malaysia

  5. A new generic plant growth model framework (PMF): Simulating distributed dynamic interaction of biomass production and its interaction with water and nutrients fluxes

    Science.gov (United States)

    Multsch, Sebastian; Kraft, Philipp; Frede, Hans-Georg; Breuer, Lutz

    2010-05-01

    Today, crop models have a widespread application in natural sciences, because plant growth interacts and modifies the environment. Transport processes involve water and nutrient uptake from the saturated and unsaturated zone in the pedosphere. Turnover processes include the conversion of dead root biomass into organic matter. Transpiration and the interception of radiation influence the energy exchange between atmosphere and biosphere. But many more feedback mechanisms might be of interest, including erosion, soil compaction or trace gas exchanges. Most of the existing crop models have a closed structure and do not provide interfaces or code design elements for easy data transfer or process exchange with other models during runtime. Changes in the model structure, the inclusion of alternative process descriptions or the implementation of additional functionalities requires a lot of coding. The same is true if models are being upscaled from field to landscape or catchment scale. We therefore conclude that future integrated model developments would benefit from a model structure that has the following requirements: replaceability, expandability and independency. In addition to these requirements we also propose the interactivity of models, which means that models that are being coupled are highly interacting and depending on each other, i.e. the model should be open for influences from other independent models and react on influences directly. Hence, a model which consists of building blocks seems to be reasonable. The aim of the study is the presentation of the new crop model type, the plant growth model framework, PMF. The software concept refers to an object-oriented approach, which is developed with the Unified Modeling Language (UML). The model is implemented with Python, a high level object-oriented programming language. The integration of the models with a setup code enables the data transfer on the computer memory level and direct exchange of information

  6. Rheology of concentrated biomass

    Science.gov (United States)

    J.R. Samaniuk; J. Wang; T.W. Root; C.T. Scott; D.J. Klingenberg

    2011-01-01

    Economic processing of lignocellulosic biomass requires handling the biomass at high solids concentration. This creates challenges because concentrated biomass behaves as a Bingham-like material with large yield stresses. Here we employ torque rheometry to measure the rheological properties of concentrated lignocellulosic biomass (corn stover). Yield stresses obtained...

  7. Tropical forest biomass and successional age class relationships to a vegetation index derived from Landsat TM data

    Science.gov (United States)

    Sader, Steven A.; Waide, Robert B.; Lawrence, William T.; Joyce, Armond T.

    1989-01-01

    Forest stand structure and biomass data were collected using conventional forest inventory techniques in tropical, subtropical, and warm temperate forest biomes. The feasibility of detecting tropical forest successional age class and total biomass differences using Landsat-Thematic mapper (TM) data, was evaluated. The Normalized Difference Vegetation Index (NDVI) calculated from Landsat-TM data were not significantly correlated with forest regeneration age classes in the mountain terrain of the Luquillo Experimental Forest, Puerto Rico. The low sun angle and shadows cast on steep north and west facing slopes reduced spectral reflectance values recorded by TM orbital altitude. The NDVI, calculated from low altitude aircraft scanner data, was significatly correlated with forest age classes. However, analysis of variance suggested that NDVI differences were not detectable for successional forests older than approximately 15-20 years. Also, biomass differences in young successional tropical forest were not detectable using the NDVI. The vegetation index does not appear to be a good predictor of stand structure variables (e.g., height, diameter of main stem) or total biomass in uneven age, mixed broadleaf forest. Good correlation between the vegetation index and low biomass in even age pine plantations were achieved for a warm temperate study site. The implications of the study for the use of NDVI for forest structure and biomass estimation are discussed.

  8. Biomass Briquette Investigation from Pterocarpus Indicus Leaves Waste as an Alternative Renewable Energy

    Science.gov (United States)

    Anggono, Willyanto; Sutrisno; Suprianto, Fandi D.; Evander, Jovian

    2017-10-01

    Indonesia is a tropical country located in Southeast Asia. Indonesia has a lot of variety of plant species which are very useful for life. Pterocarpus indicus are commonly used as greening and easily found everywhere in Surabaya city because of its characteristics that they have dense leaves and rapid growth. Pterocarpus indicus leaves waste would be a problem for residents of Surabaya and disturbing the cleanliness of the Surabaya city. Therefore, the Pterocarpus indicus leaves waste would be used as biomass briquettes. This research investigated the calorific value of biomass briquettes from the Pterocarpus indicus leaves waste, the effect of tapioca as an adhesive material to the calorific value of biomass briquettes from the Pterocarpus indicus leaves waste, the optimum composition for Pterocarpus indicus leaves waste biomass briquette as an alternative renewable fuel and the property of the optimum resulted biomass briquette using ultimate analysis and proximate analysis based on the ASTM standard. The calorific value biomass briquettes from the Pterocarpus indicus leaves waste were performed using an oxygen bomb calorimeter at various composition of Pterocarpus indicus from 50% to 90% rising by 10% for each experiment. The experimental results showed that the 90% raw materials (Pterocarpus indicus leaves waste)-10% adhesive materials (tapioca) mixtures is the optimum composition for biomass briquette Pterocarpus indicus leaves waste. The lower the percentage of the mass of tapioca in the biomass briquettes, the higher calorific value generated.

  9. Thermal characteristics of various biomass fuels in a small-scale biomass combustor

    International Nuclear Information System (INIS)

    Al-Shemmeri, T.T.; Yedla, R.; Wardle, D.

    2015-01-01

    Biomass combustion is a mature and reliable technology, which has been used for heating and cooking. In the UK, biomass currently qualifies for financial incentives such as the Renewable Heat Incentive (RHI). Therefore, it is vital to select the right type of fuel for a small-scale combustor to address different types of heat energy needs. In this paper, the authors attempt to investigate the performance of a small-scale biomass combustor for heating, and the impact of burning different biomass fuels on useful output energy from the combustor. The test results of moisture content, calorific value and combustion products of various biomass samples were presented. Results from this study are in general agreement with published data as far as the calorific values and moisture contents are concerned. Six commonly available biomass fuels were tested in a small-scale combustion system, and the factors that affect the performance of the system were analysed. In addition, the study has extended to examine the magnitude and proportion of useful heat, dissipated by convection and radiation while burning different biomass fuels in the small-scale combustor. It is concluded that some crucial factors have to be carefully considered before selecting biomass fuels for any particular heating application. - Highlights: • Six biomass materials combustion performance in a small combustor was examined. • Fuel combustion rate and amount of heat release has varied between materials. • Heat release by radiation, convection and flue gasses varied between materials. • Study helps engineers and users of biomass systems to select right materials

  10. The effect of assessment scale and metric selection on the greenhouse gas benefits of woody biomass

    International Nuclear Information System (INIS)

    Galik, Christopher S.; Abt, Robert C.

    2012-01-01

    Recent attention has focused on the net greenhouse gas (GHG) implications of using woody biomass to produce energy. In particular, a great deal of controversy has erupted over the appropriate manner and scale at which to evaluate these GHG effects. Here, we conduct a comparative assessment of six different assessment scales and four different metric calculation techniques against the backdrop of a common biomass demand scenario. We evaluate the net GHG balance of woody biomass co-firing in existing coal-fired facilities in the state of Virginia, finding that assessment scale and metric calculation technique do in fact strongly influence the net GHG balance yielded by this common scenario. Those assessment scales that do not include possible market effects attributable to increased biomass demand, including changes in forest area, forest management intensity, and traditional industry production, generally produce less-favorable GHG balances than those that do. Given the potential difficulty small operators may have generating or accessing information on the extent of these market effects, however, it is likely that stakeholders and policy makers will need to balance accuracy and comprehensiveness with reporting and administrative simplicity. -- Highlights: ► Greenhouse gas (GHG) effects of co-firing forest biomass with coal are assessed. ► GHG effect of replacing coal with forest biomass linked to scale, analytic approach. ► Not accounting for indirect market effects yields poorer relative GHG balances. ► Accounting systems must balance comprehensiveness with administrative simplicity.

  11. Modeling of chemical exergy of agricultural biomass using improved general regression neural network

    International Nuclear Information System (INIS)

    Huang, Y.W.; Chen, M.Q.; Li, Y.; Guo, J.

    2016-01-01

    A comprehensive evaluation for energy potential contained in agricultural biomass was a vital step for energy utilization of agricultural biomass. The chemical exergy of typical agricultural biomass was evaluated based on the second law of thermodynamics. The chemical exergy was significantly influenced by C and O elements rather than H element. The standard entropy of the samples also was examined based on their element compositions. Two predicted models of the chemical exergy were developed, which referred to a general regression neural network model based upon the element composition, and a linear model based upon the high heat value. An auto-refinement algorithm was firstly developed to improve the performance of regression neural network model. The developed general regression neural network model with K-fold cross-validation had a better ability for predicting the chemical exergy than the linear model, which had lower predicted errors (±1.5%). - Highlights: • Chemical exergies of agricultural biomass were evaluated based upon fifty samples. • Values for the standard entropy of agricultural biomass samples were calculated. • A linear relationship between chemical exergy and HHV of samples was detected. • An improved GRNN prediction model for the chemical exergy of biomass was developed.

  12. Effect of Dose and Oxadiargyl Application Time at the Different Growth Stages on Weed Biomass and Tuber Yield of Potato (Solanum tuberosum L.

    Directory of Open Access Journals (Sweden)

    E. Samadi Kalkhoran

    2016-01-01

    Full Text Available To evaluate the effects of dose and application time of oxadiargyl, as a postemergence herbicide, on weed biomass and tuber yield of potato, a factorial experiment based on randomized complete block design with 3 replications was conducted at Alaroog Research Station at the University of Mohaghegh-Ardabili in 2013. Treatments consisted of oxadiargyl dosages (0, 0.05, 0.1, 0.2, 0.4, 0.6 and 0.8 lit a.i /ha, and its time of applications at different potato growth stages (potato emergence, stolon initiation and potato tuber bulking, weed free treatment was considered as control. Statistical analysis showed that 0.8 lit a.i/ha of oxadiargyl reduced biomass of weed by 66.16 percent. Oxadiargyl application at emergence time resulted in highest percent reduction of weed biomass. Results, also, showed that application 0.8 lit a.i/ha of oxadiargyl, after weed free condition, increased number of seed tuber and total tuber yield by 82.16 and 51.59 percent respectively, but it reduced number of non seed tuber by 43.17 percent. Application of oxadiargyl at emergence time, as compared with the other application times, resulted in highest increase in the number of seed tuber and total tuber yield, but it did not affected number of non seed tubers. Interaction effect of dose by time of oxadiargyl application revealed that using 0.8 lit a.i/ha dose at potato emergence time increased number of edible tubers by 100%. It may be conducted that application of this dose at potato emergence time was highly efficient in controlling weeds and increasing potato tuber yield.

  13. Cultivation of high-biomass crops on coal mine spoil banks: Can microbial inoculation compensate for high doses of organic matter?

    Energy Technology Data Exchange (ETDEWEB)

    Gryndler, M.; Sudova, R.; Puschel, D.; Rydlova, J.; Janouskova, M.; Vosatka, M. [Academy of Science Czech Republic, Pruhonice (Czech Republic)

    2008-09-15

    Two greenhouse experiments were focused on the application of arbuscular mycorrhizal fungi (AMF) and plant growth promoting rhizobacteria (PGPR) in planting of high-biomass crops on reclaimed spoil banks. In the first experiment, we tested the effects of different organic amendments on growth of alfalfa and on the introduced microorganisms. While growth of plants was supported in substrate with compost amendment, mycorrhizal colonization was suppressed. Lignocellulose papermill waste had no negative effects on AMF, but did not positively affect growth of plants. The mixture of these two amendments was found to be optimal in both respects, plant growth and mycorrhizal development. Decreasing doses of this mixture amendment were used in the second experiment, where the effects of microbial inoculation (assumed to compensate for reduced doses of organic matter) on growth of two high-biomass crops, hemp and reed canarygrass, were studied. Plant growth response to microbial inoculation was either positive or negative, depending on the dose of the applied amendment and plant species.

  14. Burnout of pulverized biomass particles in large scale boiler - Single particle model approach

    Energy Technology Data Exchange (ETDEWEB)

    Saastamoinen, Jaakko; Aho, Martti; Moilanen, Antero [VTT Technical Research Centre of Finland, Box 1603, 40101 Jyvaeskylae (Finland); Soerensen, Lasse Holst [ReaTech/ReAddit, Frederiksborgsveij 399, Niels Bohr, DK-4000 Roskilde (Denmark); Clausen, Soennik [Risoe National Laboratory, DK-4000 Roskilde (Denmark); Berg, Mogens [ENERGI E2 A/S, A.C. Meyers Vaenge 9, DK-2450 Copenhagen SV (Denmark)

    2010-05-15

    Burning of coal and biomass particles are studied and compared by measurements in an entrained flow reactor and by modelling. The results are applied to study the burning of pulverized biomass in a large scale utility boiler originally planned for coal. A simplified single particle approach, where the particle combustion model is coupled with one-dimensional equation of motion of the particle, is applied for the calculation of the burnout in the boiler. The particle size of biomass can be much larger than that of coal to reach complete burnout due to lower density and greater reactivity. The burner location and the trajectories of the particles might be optimised to maximise the residence time and burnout. (author)

  15. Availability of biomass for energy production. GRAIN: Global Restrictions on biomass Availability for Import to the Netherlands

    International Nuclear Information System (INIS)

    Lysen, E.H.

    2000-08-01

    The report includes reports of activities that were carried out within the GRAIN project. This evaluation shows that the (technical) potential contribution of bio-energy to the future world's energy supply could be very large. In theory, energy farming on current agricultural land could contribute over 800 EJ, without jeopardising the world's food supply. Use of degraded lands may add another 150 EJ, although this contribution will largely come from crops with a low productivity. The growing demand for bio-materials may require a biomass input equivalent to 20-50 EJ, which must be grown on plantations when existing forests are not able to supply this growing demand. Organic wastes and residues could possibly supply another 40-170 EJ, with uncertain contributions from forest residues and potentially a very significant role for organic waste, especially when bio-materials are used on a larger scale. In total, the upper limit of the bio-energy potential could be over 1000 EJ per year. This is considerably more than the current global energy use of 400 EJ. However, this contribution is by no means guaranteed: crucial factors determining biomass availability for energy are: (1) Population growth and economic development; (2) The efficiency and productivity of food production systems that must be adopted worldwide and the rate of their deployment in particular in developing countries; (3) Feasibility of the use of marginal/degraded lands; (4) Productivity of forests and sustainable harvest levels; (5) The (increased) utilisation of bio-materials. Major transitions are required to exploit this bio-energy potential. It is uncertain to what extent such transitions are feasible. Depending on the factors mentioned above, the bio-energy potential could be very low as well. At regional/local level the possibilities and potential consequences of biomass production and use can vary strongly, but the insights in possible consequences are fairly limited up to now. Bio-energy offers

  16. Distribution of mesozooplankton biomass in the global ocean

    Directory of Open Access Journals (Sweden)

    R. Moriarty

    2013-02-01

    Full Text Available Mesozooplankton are cosmopolitan within the sunlit layers of the global ocean. They are important in the pelagic food web, having a significant feedback to primary production through their consumption of phytoplankton and microzooplankton. In many regions of the global ocean, they are also the primary contributors to vertical particle flux in the oceans. Through both they affect the biogeochemical cycling of carbon and other nutrients in the oceans. Little, however, is known about their global distribution and biomass. While global maps of mesozooplankton biomass do exist in the literature, they are usually in the form of hand-drawn maps for which the original data associated with these maps are not readily available. The dataset presented in this synthesis has been in development since the late 1990s, is an integral part of the Coastal and Oceanic Plankton Ecology, Production, and Observation Database (COPEPOD, and is now also part of a wider community effort to provide a global picture of carbon biomass data for key plankton functional types, in particular to support the development of marine ecosystem models. A total of 153 163 biomass values were collected, from a variety of sources, for mesozooplankton. Of those 2% were originally recorded as dry mass, 26% as wet mass, 5% as settled volume, and 68% as displacement volume. Using a variety of non-linear biomass conversions from the literature, the data have been converted from their original units to carbon biomass. Depth-integrated values were then used to calculate an estimate of mesozooplankton global biomass. Global epipelagic mesozooplankton biomass, to a depth of 200 m, had a mean of 5.9 μg C L−1, median of 2.7 μg C L−1 and a standard deviation of 10.6 μg C L−1. The global annual average estimate of mesozooplankton in the top 200 m, based on the median value, was 0.19 Pg C. Biomass was highest in the Northern Hemisphere, and there were slight decreases from polar oceans (40

  17. Influences of radiation and leaf area vertical distribution on the growth of Chinese fir young plantation with different densities

    International Nuclear Information System (INIS)

    Wang Lili

    1990-01-01

    A study on the radiation and leaf area vertical distribution in relation to the growth of 8-year-old Chinese fir plantations of 5 densities was conducted. The leaf area vertical distribution and LAI were closely related to stem density. The crown form varies from conic to cylindric with the increase of stem density. The LAI rises at first and then declines with the increase of density. The extinction of radiation sharpened when the crown density increased. The extinction leveled at the depth of 3/4 forest heights from the tops of forest canopies. Calculating the extinction coefficients by means of accumulated leaf area index separately for each crown layer can minimize the errors caused by the irregularity of leaf distribution. Four indices, i.e., absorption of radiation, LAI,biomass of individual tree and averaged annual increment of biomass were used to have a comprehensive evaluation on the growth of Chinese fir of 5 densities. The results showed that the plantation with a stem density of 2m × 1 m was the best one among the 5 young plantations

  18. The role of ecotypic variation and the environment on biomass and nitrogen in a dominant prairie grass.

    Science.gov (United States)

    Mendola, Meredith L; Baer, Sara G; Johnson, Loretta C; Maricle, Brian R

    2015-09-01

    Knowledge of the relative strength of evolution and the environment on a phenotype is required to predict species responses to environmental change and decide where to source plant material for ecological restoration. This information is critically needed for dominant species that largely determine the productivity of the central U.S. grassland. We established a reciprocal common garden experiment across a longitudinal gradient to test whether ecotypic variation interacts with the environment to affect growth and nitrogen (N) storage in a dominant grass. We predicted plant growth would increase from west to east, corresponding with increasing precipitation, but differentially among ecotypes due to local adaptation in all ecotypes and a greater range of growth response in ecotypes originating from west to east. We quantified aboveground biomass, root biomass, belowground net primary production (BNPP), root C:N ratio, and N storage in roots of three ecotypes of Andropogon gerardii collected from and reciprocally planted in central Kansas, eastern Kansas, and s6uthern Illinois. Only the ecotype from the most mesic region (southern Illinois) exhibited more growth from west to east. There was evidence for local adaptation in the southern Illinois ecotype by means of the local vs. foreign contrast within a site and the home vs. away contrast when growth in southern Illinois was compared to the most distant 'site in central Kansas. Root biomass of the eastern Kansas ecotype was higher at home than at either away site. The ecotype from the driest region, central Kansas, exhibited the least response across the environmental gradient, resulting in a positive relationship between the range of biomass response and precipitation in ecotype region of origin. Across all sites, ecotypes varied in root C:N ratio (highest in the driest-origin ecotype) and N storage in roots (highest in the most mesic-origin ecotype). The low and limited range of biomass, higher C:N ratio of roots

  19. Low cost production of perdeuterated biomass using methylotrophic yeasts

    International Nuclear Information System (INIS)

    Haon, S.; Auge, S.; Tropis, M.; Milon, A.; Lindley, N.D.

    1993-01-01

    Three strains of methylotropic yeasts, Candida boidinii, Pichia angusta (previously Hansenula polymorpha) and Pichia pastoris, were studied for their capacity to grow on methanol in deuterated media. Growth rates, determined relative to the extent of deuteration of water and/or methanol, showed that water deuteration was the major limiting factor. After adaptation to deuterium by progressive transfer through media of increasing deuteration, growth rates were diminished relative to those obtained on hydrogenated media of identical salts composition: the two Pichia species retained the highest growth rates in the full deuterated medium. Perdeuterated biomass (16 g) was obtained in a 1 liter fed-batch fermentation and the extent of deuteration of isolated ergosterol has been shown to be 97.5% by mass spectrometric analysis. (Author)

  20. Estimation of optimal biomass fraction measuring cycle formunicipal solid waste incineration facilities in Korea.

    Science.gov (United States)

    Kang, Seongmin; Cha, Jae Hyung; Hong, Yoon-Jung; Lee, Daekyeom; Kim, Ki-Hyun; Jeon, Eui-Chan

    2018-01-01

    This study estimates the optimum sampling cycle using a statistical method for biomass fraction. More than ten samples were collected from each of the three municipal solid waste (MSW) facilities between June 2013 and March 2015 and the biomass fraction was analyzed. The analysis data were grouped into monthly, quarterly, semi-annual, and annual intervals and the optimum sampling cycle for the detection of the biomass fraction was estimated. Biomass fraction data did not show a normal distribution. Therefore, the non-parametric Kruskal-Wallis test was applied to compare the average values for each sample group. The Kruskal-Wallis test results showed that the average monthly, quarterly, semi-annual, and annual values for all three MSW incineration facilities were equal. Therefore, the biomass fraction at the MSW incineration facilities should be calculated on a yearly cycle which is the longest period of the temporal cycles tested. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Effects of sulfur and phosphorus application on the growth, biomass yield and fuel properties of leucaena (Leucaena leucocephala (Lam. de Wit. as bioenergy crop on sandy infertile soil

    Directory of Open Access Journals (Sweden)

    Songyos Chotchutima

    2016-01-01

    Full Text Available A field experiment was conducted to determine the effect of Sulfur (S and Phosphorus (P fertilizer on the growth, biomass production and wood quality of leucaena for use as a bioenergy crop at the Buriram Livestock Research and Testing Station, Pakham, Buriram province, Thailand during 2011–2013. The experiment was arranged in a split plot design with two rates of S fertilizer (0 and 187.5 kg/ha as a main plot and five rates of P (0, 93.75, 187.5, 375 and 750 kg/ha as a sub-plot, with four replications. The results showed that the plant height, stem diameter, total woody stem and biomass yield of leucaena were significantly increased by the application of S, while the leaf yield was not influenced by S addition. The total woody stem and biomass yield were also proportionately greatest with the maximum rate of P (750 kg/ha application. The addition of S did not result in any significant differences in fuel properties, while the maximum rate of P application also showed the best fuel properties among the several rates of P, especially with low Mg and ash contents compared with the control (0 kg/ha.

  2. Fungi-based treatment of brewery wastewater-biomass production and nutrient reduction.

    Science.gov (United States)

    Hultberg, M; Bodin, H

    2017-06-01

    The beer-brewing process produces high amounts of nutrient-rich wastewater, and the increasing number of microbreweries worldwide has created a need for innovative solutions to deal with this waste. In the present study, fungal biomass production and the removal of organic carbon, phosphorus and nitrogen from synthetic brewery wastewater were studied. Different filamentous fungi with a record of safe use were screened for growth, and Trametes versicolor, Pleurotus ostreatus and Trichoderma harzianum were selected for further work. The highest biomass production, 1.78 ± 0.31 g L -1 of dry weight, was observed when P. ostreatus was used for the treatment, while T. harzianum demonstrated the best capability for removing nutrients. The maximum reduction of chemical oxygen demand, 89% of the initial value, was observed with this species. In the removal of total nitrogen and phosphorus, no significant difference was observed between the species, while removal of ammonium varied between the strains. The maximum reduction of ammonium, 66.1% of the initial value, was also found in the T. harzianum treatment. It can be concluded that all treatments provided significant reductions in all water-quality parameters after 3 days of growth and that the utilisation of filamentous fungi to treat brewery wastewater, linked to a deliberate strategy to use the biomass produced, has future potential in a bio-based society.

  3. Models for high cell density bioreactors must consider biomass volume fraction: Cell recycle example.

    Science.gov (United States)

    Monbouquette, H G

    1987-06-01

    Intrinsic models, which take into account biomass volume fraction, must be formulated for adequate simulation of high-biomass-density fermentations with cell recycle. Through comparison of corresponding intrinsic and non-intrinsic models in dimensionless form, constraints for non-intrinsic model usage in terms of biokinetic and fermenter operating parameters can be identified a priori. Analysis of a simple product-inhibition model indicates that the non-intrinsic approach is suitable only when the attainable biomass volume fraction in the fermentation broth is less than about 0.10. Inappropriate application of a non-intrinsic model can lead to gross errors in calculated substrate and product concentrations, substrate conversion, and volumetric productivity.

  4. Models for high cell density bioreactors must consider biomass volume fraction: cell recycle example

    Energy Technology Data Exchange (ETDEWEB)

    Monbouquette, H.G.

    1987-06-01

    Intrinsic models, which take into account biomass volume fraction, must be formulated for adequate simulation of high-biomass-density fermentations with cell recycle. Through comparison of corresponding intrinsic and non-intrinsic models in dimensionless form, constraints for non-intrinsic model usage in terms of biokinetic and fermenter operating parameters can be identified a priori. Analysis of a simple product-inhibition model indicates that the non-intrinsic approach is suitable only when the attainable biomass volume fraction in the fermentation broth is less than about 0.10. Inappropriate application of a non-intrinsic model can lead to gross errors in calculated substrate and product concentrations, substrate conversion, and volumetric productivity. (Refs. 14).

  5. Negligible impacts of biomass removal on Douglas-fir growth 29 years after outplanting in the northern Rocky Mountains

    Science.gov (United States)

    Woongsoon Jang; Christopher R. Keyes; Deborah S. Page-Dumroese

    2018-01-01

    To investigate the long-term impacts of biomass harvesting on site productivity, we remeasured trees in the 1974 Forest Residues Utilization Research and Development Program at Coram Experimental Forest in western Montana. Three levels (high, medium, and low) of biomass removal intensity combined with broadcast burning treatment were assigned after clearcut in western...

  6. Fuel Pellets from Biomass. Processing, Bonding, Raw Materials

    DEFF Research Database (Denmark)

    Stelte, Wolfgang

    in an increasing interest in biomass densification technologies, such as pelletization and briquetting. The global pellet market has developed quickly, and strong growth is to be expected for the coming years. Due to an increasing demand for biomass, the traditionally used wood residues from sawmills and pulp...... influence of the different processing parameters on the pressure built up in the press channel of a pellet mill. It showed that the major factor was the press channel length as well as temperature, moisture content, particle size and extractive content. Furthermore, extractive migration to the pellet...... surface at an elevated temperature played an important role. The second study presented a method of how key processing parameters can be estimated, based on a pellet model and a small number of fast and simple laboratory trials using a single pellet press. The third study investigated the bonding...

  7. A better understanding of biomass co-firing by developing an advanced non-spherical particle tracking model

    DEFF Research Database (Denmark)

    Yin, Chungen; Rosendahl, Lasse Aistrup; Kær, Søren Knudsen

    2004-01-01

    -area-to-volume ratio and thus experiences a totally different motion and reaction as a non-spherical particle. Therefore, an advanced non-spherical particle-tracking model is developed to calculate the motion and reaction of nonspherical biomass particles. The biomass particles are assumed as solid or hollow cylinders......-gradient force. Since the drag and lift forces are both shape factor- and orientation-dependent, coupled particle rotation equations are resolved to update particle orientation. In the reaction of biomass particles, the actual particle surface area available and the average oxygen mass flux at particle surface...

  8. Biomass burning in Africa: As assessment of annually burned biomass

    International Nuclear Information System (INIS)

    Delmas, R.A.; Loudjani, P.; Podaire, A.; Menaut, J.C.

    1991-01-01

    It is now established that biomass burning is the dominant phenomenon that controls the atmospheric chemistry in the tropics. Africa is certainly the continent where biomass burning under various aspects and processes is the greatest. Three different types of burnings have to be considered-bush fires in savanna zones which mainly affect herbaceous flora, forest fires due to forestation for shifting agriculture or colonization of new lands, and the use of wood as fuel. The net release of carbon resulting from deforestation is assumed to be responsible for about 20% of the CO 2 increase in the atmosphere because the burning of forests corresponds to a destorage of carbon from the biospheric reservoir. The amount of reactive of greenhouse gases emitted by biomass burning is directly proportional, through individual emission factors, to the biomass actually burned. This chapter evaluates the biomass annually burned on the African continent as a result of the three main burning processes previously mentioned

  9. Improving satellite retrievals of NO2 in biomass burning regions

    Science.gov (United States)

    Bousserez, N.; Martin, R. V.; Lamsal, L. N.; Mao, J.; Cohen, R. C.; Anderson, B. E.

    2010-12-01

    The quality of space-based nitrogen dioxide (NO2) retrievals from solar backscatter depends on a priori knowledge of the NO2 profile shape as well as the effects of atmospheric scattering. These effects are characterized by the air mass factor (AMF) calculation. Calculation of the AMF combines a radiative transfer calculation together with a priori information about aerosols and about NO2 profiles (shape factors), which are usually taken from a chemical transport model. In this work we assess the impact of biomass burning emissions on the AMF using the LIDORT radiative transfer model and a GEOS-Chem simulation based on a daily fire emissions inventory (FLAMBE). We evaluate the GEOS-Chem aerosol optical properties and NO2 shape factors using in situ data from the ARCTAS summer 2008 (North America) and DABEX winter 2006 (western Africa) experiments. Sensitivity studies are conducted to assess the impact of biomass burning on the aerosols and the NO2 shape factors used in the AMF calculation. The mean aerosol correction over boreal fires is negligible (+3%), in contrast with a large reduction (-18%) over African savanna fires. The change in sign and magnitude over boreal forest and savanna fires appears to be driven by the shielding effects that arise from the greater biomass burning aerosol optical thickness (AOT) above the African biomass burning NO2. In agreement with previous work, the single scattering albedo (SSA) also affects the aerosol correction. We further investigated the effect of clouds on the aerosol correction. For a fixed AOT, the aerosol correction can increase from 20% to 50% when cloud fraction increases from 0 to 30%. Over both boreal and savanna fires, the greatest impact on the AMF is from the fire-induced change in the NO2 profile (shape factor correction), that decreases the AMF by 38% over the boreal fires and by 62% of the savanna fires. Combining the aerosol and shape factor corrections together results in small differences compared to the

  10. Picoheterotroph (Bacteria and Archaea biomass distribution in the global ocean

    Directory of Open Access Journals (Sweden)

    M. R. Landry

    2012-09-01

    Full Text Available We compiled a database of 39 766 data points consisting of flow cytometric and microscopical measurements of picoheterotroph abundance, including both Bacteria and Archaea. After gridding with 1° spacing, the database covers 1.3% of the ocean surface. There are data covering all ocean basins and depths except the Southern Hemisphere below 350 m or from April until June. The average picoheterotroph biomass is 3.9 ± 3.6 μg C l−1 with a 20-fold decrease between the surface and the deep sea. We estimate a total ocean inventory of about 1.3 × 1029 picoheterotroph cells. Surprisingly, the abundance in the coastal regions is the same as at the same depths in the open ocean. Using an average of published open ocean measurements for the conversion from abundance to carbon biomass of 9.1 fg cell−1, we calculate a picoheterotroph carbon inventory of about 1.2 Pg C. The main source of uncertainty in this inventory is the conversion factor from abundance to biomass. Picoheterotroph biomass is ~2 times higher in the tropics than in the polar oceans. doi:10.1594/PANGAEA.779142

  11. Quantifying biomass production in crops grown for energy

    Energy Technology Data Exchange (ETDEWEB)

    Bullard, M J; Christian, D; Wilkins, C

    1997-12-31

    One estimate suggests that continued CAP (Common Agricultural Policy) reform may lead to as much as 2 million hectares of land set aside from arable production by the year 2020 in the UK alone, with 20 million hectares in the EU in total. Set-aside currently occupies more than 500,000 hectares in the UK. Set-aside land is providing more opportunities for non-food crops, for example fuel crops, which provide biomass for energy. Whilst any crop species will produce biomass which can be burnt to produce energy, arable crops were not developed with this in mind but rather a specific harvestable commodity, e.g. grain, and therefore the total harvestable commodity is seldom maximised. The characteristics of an ideal fuel crop have been identified as: dry harvested material for efficient combustion; perennial growth to minimise establishment costs and lengthen the growing season; good disease resistance; efficient conversion of solar radiation to biomass energy; efficient use of nitrogen fertiliser (where required) and water; and yield close to the theoretical maximum. Miscanthus, a genus of Oriental and African C4 perennial grasses, has been identified as possessing the above characteristics. There may be other species, which, if not yielding quite as much biomass, have other characteristics of merit. This has led to the need to identify inherently productive species which are adapted to the UK, and to validate the productivity of species which have already been 'discovered'. (author)

  12. Quantifying biomass production in crops grown for energy

    Energy Technology Data Exchange (ETDEWEB)

    Bullard, M.J.; Christian, D.; Wilkins, C.

    1996-12-31

    One estimate suggests that continued CAP (Common Agricultural Policy) reform may lead to as much as 2 million hectares of land set aside from arable production by the year 2020 in the UK alone, with 20 million hectares in the EU in total. Set-aside currently occupies more than 500,000 hectares in the UK. Set-aside land is providing more opportunities for non-food crops, for example fuel crops, which provide biomass for energy. Whilst any crop species will produce biomass which can be burnt to produce energy, arable crops were not developed with this in mind but rather a specific harvestable commodity, e.g. grain, and therefore the total harvestable commodity is seldom maximised. The characteristics of an ideal fuel crop have been identified as: dry harvested material for efficient combustion; perennial growth to minimise establishment costs and lengthen the growing season; good disease resistance; efficient conversion of solar radiation to biomass energy; efficient use of nitrogen fertiliser (where required) and water; and yield close to the theoretical maximum. Miscanthus, a genus of Oriental and African C4 perennial grasses, has been identified as possessing the above characteristics. There may be other species, which, if not yielding quite as much biomass, have other characteristics of merit. This has led to the need to identify inherently productive species which are adapted to the UK, and to validate the productivity of species which have already been 'discovered'. (author)

  13. Modeling population dynamics and woody biomass of Alaska coastal forest

    Science.gov (United States)

    Randy L. Peterson; Jingjing Liang; Tara M. Barrett

    2014-01-01

    Alaska coastal forest, 6.2 million ha in size, has been managed in the past mainly through clearcutting. Declining harvest and dwindling commercial forest resources over the past 2 decades have led to increased interest in management of young-growth stands and utilization of woody biomass for bioenergy. However, existing models to support these new management systems...

  14. Effect of sodium accumulation on heterotrophic growth and polyhydroxybutyrate (PHB) production by Cupriavidus necator.

    Science.gov (United States)

    Mozumder, Md Salatul Islam; Garcia-Gonzalez, Linsey; De Wever, Heleen; Volcke, Eveline I P

    2015-09-01

    This study evaluates the effect of sodium (Na(+)) concentration on the growth and PHB production by Cupriavidus necator. Both biomass growth and PHB production were inhibited by Na(+): biomass growth became zero at 8.9 g/L Na(+) concentration while PHB production was completely stopped at 10.5 g/L Na(+). A mathematical model for pure culture heterotrophic PHB production was set up to describe the Na(+) inhibition effect. The parameters related to Na(+) inhibition were estimated based on shake flask experiments. The accumulated Na(+) showed non-linear inhibition effect on biomass growth but linear inhibition effect on PHB production kinetics. Fed-batch experiments revealed that a high accumulation of Na(+) due to a prolonged growth phase, using NaOH for pH control, decreased the subsequent PHB production. The model was validated based on independent experimental data sets, showing a good agreement between experimental data and simulation results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Cotton growth potassium deficiency stress is influenced by photosynthetic apparatus and root system

    International Nuclear Information System (INIS)

    Hussain, Z.U.; Arshad, M.

    2010-01-01

    Due to rapid depletion of soil potassium (K) and increasing cost of K fertilizers in Pakistan, the K-use efficient crop genotypes become very important for agricultural sustain ability. However, limited research has been done on this important issue particularly in cotton, an important fibre crop. We studied the growth and biomass production of three cotton genotypes (CIM-506, NIAB- 78 and NIBGE-2) different in K-use efficiency in a K-deficient solution culture. Genotypes differed significantly for biomass production, absolute growth rates (shoot, root, leaf, total), leaf area, mean leaf area and relative growth rate of leaf under K deficiency stress, besides specific leaf area. The relative growth rate (shoot, root, total) did not differ significantly, except for leaf. For all these characters, NIBGE-2 was the best performer followed by NIAB-78 and CIM-506. Shoot dry weight was significantly related with (in decreasing order of significance): mean leaf area, leaf dry weight, leaf area, root dry weight, absolute growth rate of shoot, absolute growth rate of root, absolute growth rate total, absolute growth rate root, relative growth rate leaf, relative growth rate total and relative growth rate shoot. Hence, the enhanced biomass accumulation of cotton genotypes under K deficiency stress is related to their efficient photosynthetic apparatus and root system, appeared to be the most important morphological markers while breeding for K-use efficient cotton genotypes.(author)

  16. Biomass burning: A significant source of nutrients for Andean rainforests

    Science.gov (United States)

    Fabian, P. F.; Rollenbeck, R.; University Of Marburg, Germany

    2010-12-01

    Regular rain and fogwater sampling in the Podocarpus National Park,on the humid eastern slopes of the Ecuadorian Andes,has been carried out since 2002.The samples,accumulated over about 1-week intervals,were analysed for pH,conductivity,and major ions (K+, Na+, NH4+, Ca2+, Mg2+, Cl-, SO4 2-, NO3-, PO4 3- ).Annual deposition rates of these ions which, due to poor acidic soils with low mineralization rates,constitute the dominant nutrient supply to the mountaineous rainforests, and major ion sources could be determined using back trajectories,along with satellite data. While most of the Na, Cl, and K as well as Ca and Mg input was found to originate from natural oceanic and desert dust sources,respectively (P.Fabian et al.,Adv.Geosci.22,85-94, 2009), NO3, NH4, and about 90% of SO4 (about 10 % is from active volcanoes) are almost entirely due to anthropogenic sources,most likely biomass burning. Industrial and transportation emissions and other pollutants,however,act in a similar way as the precursors produced by biomass burning.For quantifying the impacts of biomass burning vs. those of anthropogenic sources other than biomass burning we used recently established emission inventories,along with simplified model calculations on back trajectories.First results yielding significant contributions of biomass burning will be discussed.

  17. Fungal biomass production from coffee pulp juice

    Energy Technology Data Exchange (ETDEWEB)

    De Leon, R.; Calzada, F.; Herrera, R.; Rolz, C.

    1980-01-01

    Coffee pulp or skin represents about 40% of the weight of the fresh coffee fruit. It is currently a waste and its improper handling creates serious pollution problems for coffee producing countries. Mechanical pressing of the pulp will produce two fractions: coffee pulp juice (CPJ) and pressed pulp. Aspergillus oryzae, Trichoderma harzianum, Penicillium crustosum and Gliocladium deliquescens grew well in supplemented CPJ. At shake flask level the optimum initial C/N ratio was found to be in the range of 8 to 14. At this scale, biomass values of up to 50 g/l were obtained in 24 hours. Biomass production and total sugar consumption were not significantly different to all fungal species tested at the bench-scale level, even when the initial C/N ratio was varied. Best nitrogen consumption values were obtained when the initial C/N ratio was 12. Maximum specific growth rates occurred between 4-12 hours for all fungal species tested. (Refs. 8).

  18. Calculating zeros: Non-equilibrium free energy calculations

    International Nuclear Information System (INIS)

    Oostenbrink, Chris; Gunsteren, Wilfred F. van

    2006-01-01

    Free energy calculations on three model processes with theoretically known free energy changes have been performed using short simulation times. A comparison between equilibrium (thermodynamic integration) and non-equilibrium (fast growth) methods has been made in order to assess the accuracy and precision of these methods. The three processes have been chosen to represent processes often observed in biomolecular free energy calculations. They involve a redistribution of charges, the creation and annihilation of neutral particles and conformational changes. At very short overall simulation times, the thermodynamic integration approach using discrete steps is most accurate. More importantly, reasonable accuracy can be obtained using this method which seems independent of the overall simulation time. In cases where slow conformational changes play a role, fast growth simulations might have an advantage over discrete thermodynamic integration where sufficient sampling needs to be obtained at every λ-point, but only if the initial conformations do properly represent an equilibrium ensemble. From these three test cases practical lessons can be learned that will be applicable to biomolecular free energy calculations

  19. Multilanguage Web application to assess biomass energy production: economic and energetic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Berruto, Remigio; Busato, Patrizia; Piccarolo, Pietro [University of Turin (Italy). Dipt. di Economia e Ingegneria Agraria, Forestale e Ambientale (DEIAFA)], E-mail: remigio.berruto@unito.it

    2008-07-01

    One of the main difficulties in the development of biomass supply chains is the lack of reliable and complete information, which is needed to carry out a correct feasibility study. The aim of the research is contributing to knowledge which can be exploited in designing and evaluating biomass supply chains, within a standardized system approach. For this purpose has been implemented by DEIAFA a Web application - www.energyfarm.unito.it - to investigate the biomass supply chains under the technical, economic and energetic aspects. The first set of procedures allow the evaluation of field and logistic operations related to biomass cultivation, harvest and transport to the point of use. Another set of procedures refers to the feasibility study of biomass power plant. All procedures share a common database, ensuring their proper integration. EnergyFarm{sup R} represents a step toward the standardization of data and calculation procedures. In the future, it will be possible to foresee also in the same application the computing of the results with different standards (ASAE, EU, etc.). The interface to the application is provided in English and Italian languages. (author)

  20. Polymer-Coated Urea Delays Growth and Accumulation of Key Nutrients in Aerobic Rice but Does Not Affect Grain Mineral Concentrations

    Directory of Open Access Journals (Sweden)

    Terry J. Rose

    2016-01-01

    Full Text Available Enhanced efficiency nitrogen (N fertilizers (EEFs may improve crop recovery of fertilizer-N, but there is evidence that some EEFs cause a lag in crop growth compared to growth with standard urea. Biomass and mineral nutrient accumulation was investigated in rice fertilized with urea, urea-3,4-dimethylpyrazole phosphate (DMPP and polymer-coated urea (PCU to determine whether any delays in biomass production alter the accumulation patterns, and subsequent grain concentrations, of key mineral nutrients. Plant growth and mineral accumulation and partitioning to grains did not differ significantly between plants fertilized with urea or urea-DMPP. In contrast, biomass accumulation and the accumulation of phosphorus, potassium, calcium, magnesium, copper, zinc and manganese were delayed during the early growth phase of plants fertilized with PCU. However, plants in the PCU treatment ultimately compensated for this by increasing growth and nutrient uptake during the latter vegetative stages so that no differences in biomass or nutrient accumulation generally existed among N fertilizer treatments at anthesis. Delayed biomass accumulation in rice fertilized with PCU does not appear to reduce the total accumulation of mineral nutrients, nor to have any impact on grain mineral nutrition when biomass and grain yields are equal to those of rice grown with urea or urea-DMPP.