WorldWideScience

Sample records for biomass growth calculations

  1. Conditioning biomass for microbial growth

    Science.gov (United States)

    Bodie, Elizabeth A; England, George

    2015-03-31

    The present invention relates to methods for improving the yield of microbial processes that use lignocellulose biomass as a nutrient source. The methods comprise conditioning a composition comprising lignocellulose biomass with an enzyme composition that comprises a phenol oxidizing enzyme. The conditioned composition can support a higher rate of growth of microorganisms in a process. In one embodiment, a laccase composition is used to condition lignocellulose biomass derived from non-woody plants, such as corn and sugar cane. The invention also encompasses methods for culturing microorganisms that are sensitive to inhibitory compounds in lignocellulose biomass. The invention further provides methods of making a product by culturing the production microorganisms in conditioned lignocellulose biomass.

  2. Calculation of transportation energy for biomass collection

    Energy Technology Data Exchange (ETDEWEB)

    Kanai, G.; Takekura, K.; Kato, H.; Kobayashi, Y.; Yakushido, K. [National Agricultural Research Center, Tsukuba, Ibaraki (Japan)

    2010-07-01

    This paper reported on a study at a rice straw facility in Japan that produces bioethanol. Simulation modeling and calculations methods were used to examine the characteristics of field-to-facility transportation. Fuel consumption was found to be influenced by the conversion rate from straw to ethanol, the quantity of straw collected, and the ratio of the field area to that around the facility. Standard conditions were assumed based on reported data and actual observations for 15 ML/yr ethanol production, 0.3 kL output of ethanol from 1 t dry straw, 53.6 day/yr working days, 2.7 t truck load capacity, and 0.128 as the ratio of field to the area around the facility. According to calculations, a quantity of 50 kt dry straw requires 2.78 L of fuel to transport 1 t of dry straw, 109.5 trucks, and a 19.1 km collection area radius. The fuel consumption for transportation was found to be proportional to the quantity of straw to the 0.5 power, but inversely proportional to the ratio of field to the 0.5 power. The rate of increase in the number of trucks needed to collect straw increases with the decrease in the ratio of the field to area surface around the facility.

  3. Scaling-up vaccine production: implementation aspects of a biomass growth observer and controller

    OpenAIRE

    Soons, Z.I.T.A.; IJssel, van den, J.; Pol, van der, L.A.; Straten, van, G.; Boxtel, van, A.J.B.

    2009-01-01

    Abstract This study considers two aspects of the implementation of a biomass growth observer and specific growth rate controller in scale-up from small- to pilot-scale bioreactors towards a feasible bulk production process for whole-cell vaccine against whooping cough. The first is the calculation of the oxygen uptake rate, the starting point for online monitoring and control of biomass growth, taking into account the dynamics in the gas-phase. Mixing effects and delays are caused by amongst ...

  4. Biomass Production System (BPS) Plant Growth Unit

    Science.gov (United States)

    Morrow, R. C.; Crabb, T. M.

    The Biomass Production System (BPS) was developed under the Small Business Innovative Research (SBIR) program to meet science, biotechnology and commercial plant growth needs in the Space Station era. The BPS is equivalent in size to a double middeck locker, but uses it's own custom enclosure with a slide out structure to which internal components mount. The BPS contains four internal growth chambers, each with a growing volume of more than 4 liters. Each of the growth chambers has active nutrient delivery, and independent control of temperature, humidity, lighting, and CO2 set-points. Temperature control is achieved using a thermoelectric heat exchanger system. Humidity control is achieved using a heat exchanger with a porous interface which can both humidify and dehumidify. The control software utilizes fuzzy logic for nonlinear, coupled temperature and humidity control. The fluorescent lighting system can be dimmed to provide a range of light levels. CO2 levels are controlled by injecting pure CO2 to the system based on input from an infrared gas analyzer. The unit currently does not scrub CO2, but has been designed to accept scrubber cartridges. In addition to providing environmental control, a number of features are included to facilitate science. The BPS chambers are sealed to allow CO2 and water vapor exchange measurements. The plant chambers can be removed to allow manipulation or sampling of specimens, and each chamber has gas/fluid sample ports. A video camera is provided for each chamber, and frame-grabs and complete environmental data for all science and hardware system sensors are stored on an internal hard drive. Data files can also be transferred to 3.5-inch disks using the front panel disk drive

  5. Scaling-up vaccine production: implementation aspects of a biomass growth observer and controller

    NARCIS (Netherlands)

    Soons, Z.I.T.A.; IJssel, van den J.; Pol, van der L.A.; Straten, van G.; Boxtel, van A.J.B.

    2009-01-01

    Abstract This study considers two aspects of the implementation of a biomass growth observer and specific growth rate controller in scale-up from small- to pilot-scale bioreactors towards a feasible bulk production process for whole-cell vaccine against whooping cough. The first is the calculation

  6. Effects of biomass removal from forests on soil acidification, nutrient balances and tree growth - Upscaling based on experimental data and model calculations as a base for mapping the need for ash recycling; Effekter av skogsbraensleuttag paa markfoersurning, naeringsbalanser och tillvaext - Uppskalning baserat paa experimentella data och modellberaekningar som grund foer kartlaeggning av behov av askaaterfoering

    Energy Technology Data Exchange (ETDEWEB)

    Hellsten, Sofie; Akselsson, Cecilia; Olsson, Bengt; Belyazid, Salim; Zetterberg, Therese

    2008-12-15

    Increased biomass removal from forests has become more important as the demand for renewable energy has increased due to climate change. Stump removal, in addition to wholetree harvesting, is now considered in Sweden. However, increased biomass removal may affect the nutrient balances in forest soils causing nutrient depletion and increased acidification . It is therefore important to improve the understanding of the effects of different levels of biomass removal and to assess the need for liming. In this study, the effect of different levels of biomass removal regarding nutrient balances (N, P, Ca, Mg, K and Na), acidification and tree growth has been assessed in three ways; i) assessing the effect of wholetree harvesting from three site experiments, ii) calculations of nutrient balances in forest soils applying a nutrient mass balance model, and iii) dynamic modelling. Three different biomass scenarios have been assessed; stem harvesting, wholetree harvesting, and stump removal. It is important to develop and refine the calculation for stumps, and to develop realistic forestry scenarios for removal of stem, wholetree and stumps. i) Three site experiments : The experiments showed that biomass is reduced by about 15 % at the time of the first thinning following wholetree harvesting. Furthermore, the concentrations of nutrients in the trees are reduced by up to 10 % after wholetree harvesting. The studies also showed that base saturation in the organic layer and in the upper part of the mineral soil was reduced, often between 10 and 30 %, 15 and 26 years after the wholetree harvesting. It was also possible to find a relation between the C/N-ratio in the humus layer and the nitrogen content in the needles. ii) Mass balance calculation: This study shows that there is a great potential to use nutrient mass balance calculations and calculations of excess acidity to assess the rate of depletion for base cations and the need for liming. The mass balance calculation showed

  7. Biomass markets. Growth strategy and challenges for French actors

    International Nuclear Information System (INIS)

    2015-01-01

    This study comprises three reports. The first one is an executive summary which focuses on the main aspects of the evolution of the activity in the biomass sector, and highlights factors of change and their strategic consequences. The second one proposes an overview of the situation of biomass French markets, analyses growth strategies adopted by actors of the biomass sector (development of new production capacities, international growth, development of strategies based on several energies, diversification of prospects, innovation and improvement of installation efficiency), and discusses the main strategic challenges on the medium term. The third report proposes a presentation of the context of French biomass markets (political, regulatory and energetic framework, energetic assessment and assessment of the waste-based sector, economic context, housing stock, and other contextual factors), a presentation of the biomass French market (data for 2005-2013, dynamics of three specific segments: solid biomass, renewable urban wastes, and biogas), and a description of the competitive landscape (economic structure, actors) and of the 15 main actors

  8. Survival, growth, wood basic density and wood biomass of seven ...

    African Journals Online (AJOL)

    A performance comparison of seven-year-old individuals of 13 Casuarina species/provenances in terms of survival, growth (diameter, height and volume), wood basic density and wood biomass was undertaken at Kongowe, Kibaha, Tanzania. The trial was laid out using a randomised complete block design with four ...

  9. Scaling-up vaccine production: implementation aspects of a biomass growth observer and controller.

    Science.gov (United States)

    Soons, Zita I T A; van den IJssel, Jan; van der Pol, Leo A; van Straten, Gerrit; van Boxtel, Anton J B

    2009-04-01

    This study considers two aspects of the implementation of a biomass growth observer and specific growth rate controller in scale-up from small- to pilot-scale bioreactors towards a feasible bulk production process for whole-cell vaccine against whooping cough. The first is the calculation of the oxygen uptake rate, the starting point for online monitoring and control of biomass growth, taking into account the dynamics in the gas-phase. Mixing effects and delays are caused by amongst others the headspace and tubing to the analyzer. These gas phase dynamics are modelled using knowledge of the system in order to reconstruct oxygen consumption. The second aspect is to evaluate performance of the monitoring and control system with the required modifications of the oxygen consumption calculation on pilot-scale. In pilot-scale fed-batch cultivation good monitoring and control performance is obtained enabling a doubled concentration of bulk vaccine compared to standard batch production.

  10. Influence of static magnetic fields on S. cerevisae biomass growth

    Directory of Open Access Journals (Sweden)

    João B. Muniz

    2007-05-01

    Full Text Available Biomass growth of Saccharomyces cerevisiae DAUFPE-1012 was studied in eight batch fermentations exposed to steady magnetic fields (SMF running at 23ºC (± 1ºC, for 24 h in a double cylindrical tube reactor with synchronic agitation. For every batch, one tube was exposed to 220mT flow intensity SMF, produced by NdFeB rod magnets attached diametrically opposed (N to S magnets on one tube. In the other tube, without magnets, the fermentation occurred in the same conditions. The biomass growth in culture (yeast extract + glucose 2% was monitored by spectrometry to obtain the absorbance and later, the corresponding cell dry weight. The culture glucose concentration was monitored every two hours so as the pH, which was maintained between 4 and 5. As a result, the biomass (g/L increment was 2.5 times greater in magnetized cultures (n=8 as compared with SMF non-exposed cultures (n=8. The differential (SMF-control biomass growth rate (135% was slightly higher than the glucose consumption rate (130 % leading to increased biomass production of the magnetized cells.O crescimento da biomassa da Saccharomyces cerevisiae DAUFPE-1012 foi estudado em oito bateladas de fermentação, cada uma exposta aos campos magnéticos contínuos (CMC, à 23ºC (± 1ºC, durante um período de 24 horas em um reator duplo com agitação sincrônica. Em cada batelada,um tubo foi exposto ao CMC, com 220mT de intensidade de fluxo, produzidos por imãs de NdFeB fixados diametralmente opostos (N para S em um tubo do reator de fermentação. Em outro tubo, sem imãs, a fermentação ocorreu nas mesmas condições. O crescimento da biomassa nas culturas (extrato de fermento + glicose 2% foi monitorado através de espectrometria e correlacionado ao peso seco de levedura. A concentração de glicose nas culturas foi monitorada a cada duas horas e o pH foi mantido entre 4 e 5. Como resultado, a biomassa (g/L aumentou 2,5 vezes nas culturas magnetizadas (n=8 quando comparadas com as

  11. Method for calculating the variance and prediction intervals for biomass estimates obtained from allometric equations

    CSIR Research Space (South Africa)

    Kirton, A

    2010-08-01

    Full Text Available for calculating the variance and prediction intervals for biomass estimates obtained from allometric equations A KIRTON B SCHOLES S ARCHIBALD CSIR Ecosystem Processes and Dynamics, Natural Resources and the Environment P.O. BOX 395, Pretoria, 0001, South... intervals (confidence intervals for predicted values) for allometric estimates can be obtained using an example of estimating tree biomass from stem diameter. It explains how to deal with relationships which are in the power function form - a common form...

  12. Biomass growth aspects during bioreclamation of contaminated soils

    International Nuclear Information System (INIS)

    Elektorowicz, M.; Yong, R.N.

    1993-01-01

    Some microorganisms metabolize petroleum compounds. Under favorable environmental conditions, the development of microorganisms can be used to reclamation of contaminated soils. The aim of each bioreclamation technique is to improve these conditions in order to accelerate microorganism activity in the soil. In practice, bioreclamation on an industrial scale is induced through the controlled growth of indigenous microorganisms or through inoculating the soil with specific microorganisms, developed in a lab. These two techniques can be applied either in-situ or ex-situ in the excavated soils. Generally, the growth process includes six phases: the lag phase, the acceleration phase, the exponential phase, the growth decline phase, the stationary phase and the endogenous phase. The goal of each technique is to diminish the time lag, increase the acceleration phase, extend the stationary phase and delay the endogenous phase. However, during the bioreclamation phase, the biochemical processes may postpone the treatment by slowing down its growth,. Very often, the advanced techniques developed in the laboratory does not equate with efficiency on the site itself. On the site, the biomass growth decreases faster then expected because of various interaction processes taking place in contaminated soil. The principal factors described in paper which delay the growth of microorganisms capable of reclaiming petroleum products include the following: competition among microorganisms, unavailability of nutrients, variation of the pH, inadequate moisture, temperature variation, sorption, toxicity of by-products, mutation and impact of additives. The most of the factors are insufficiently recognized, however, impact of some parameters is observed when additives as sawdust and nutrients are added. In similar cases the feasibility studies are necessary before implementation of any technique on industrial scale

  13. Idaho forest growth response to post-thinning energy biomass removal and complementary soil amendments

    Science.gov (United States)

    Lauren A. Sherman; Deborah S. Page-Dumroese; Mark D. Coleman

    2018-01-01

    Utilization of woody biomass for biofuel can help meet the need for renewable energy production. However, there is a concern biomass removal will deplete soil nutrients, having short- and long-term effects on tree growth. This study aimed to develop short-term indicators to assess the impacts of the first three years after small-diameter woody biomass removal on forest...

  14. Closed-loop system for growth of aquatic biomass and gasification thereof

    Science.gov (United States)

    Oyler, James R.

    2017-09-19

    Processes, systems, and methods for producing combustible gas from wet biomass are provided. In one aspect, for example, a process for generating a combustible gas from a wet biomass in a closed system is provided. Such a process may include growing a wet biomass in a growth chamber, moving at least a portion of the wet biomass to a reactor, heating the portion of the wet biomass under high pressure in the reactor to gasify the wet biomass into a total gas component, separating the gasified component into a liquid component, a non-combustible gas component, and a combustible gas component, and introducing the liquid component and non-combustible gas component containing carbon dioxide into the growth chamber to stimulate new wet biomass growth.

  15. Systems Level Regulation of Rhythmic Growth Rate and Biomass Accumulation in Grasses

    Energy Technology Data Exchange (ETDEWEB)

    Kay, Steve A. [Univ. of Southern California, Los Angeles, CA (United States)

    2017-10-20

    Objectives: Several breakthroughs have been recently made in our understanding of plant growth and biomass accumulation. It was found that plant growth is rhythmically controlled throughout the day by the circadian clock through a complex interplay of light and phytohormone signaling pathways. While plants such as the C4 energy crop sorghum (Sorghum bicolor (L.) Moench) and possibly the C3 grass Brachypodium distachyon also exhibit daily rhythms in growth rate, the molecular details of its regulation remain to be explored. A better understanding of diurnally regulated growth behavior in grasses may lead to species-specific mechanisms highly relevant to future strategies to optimize energy crop biomass yield. Here we propose to devise a systems approach to identify, in parallel, regulatory hubs associated with rhythmic growth in C3 and C4 plants. We propose to use rhythmicity in daily growth patterns to drive the discovery of regulatory network modules controlling biomass accumulation. Description: The project is divided in three main parts: 1) Performing time-lapse imaging and growth measurement in B. distachyon and S. bicolor to determine growth rate dynamic during the day/night cycle. Identifying growth-associated genes whose expression patterns follow the observed growth dynamics using deep sequencing technology, 2) identifying regulators of these genes by screening for DNA-binding proteins interacting with the growth-associated gene promoters identified in Aim 1. Screens will be performed using a validated yeast-one hybrid strategy paired with a specifically designed B. distachyon and S. bicolor transcription factor libraries (1000 clones each), and 3) Selecting 50 potential growth regulators from the screen for downstream characterization. The selection will be made by using a sytems biology approach by calculating the connectivity between growth rate, rhythmic gene expression profiles and TF expression profile and determine which TF is likely part of a hub

  16. Systems Level Regulation of Rhythmic Growth Rate and Biomass Accumulation in Grasses

    Energy Technology Data Exchange (ETDEWEB)

    Kay, Steve A. [Scripps Research Inst., La Jolla, CA (United States); Hazen, Samuel [Scripps Research Inst., San Diego, CA (United States); Mullet, John [Texas A & M Univ., College Station, TX (United States)

    2017-11-22

    Critical to the development of renewable energy sources from biofuels is the improvement of biomass from energy feedstocks, such as sorghum and maize. The specific goals of this project include 1) characterize the growth and gene expression patterns under diurnal and circadian conditions, 2) select transcription factors associated with growth and build a cis-regulatory network in yeast, and 3) perturb these transcription factors in planta using transgenic Brachypodium and sorghum, and characterize the phenotypic outcomes as they relate to biomass accumulation. A better understanding of diurnally regulated growth behavior in grasses may lead to species-specific mechanisms highly relevant to future strategies to optimize energy crop biomass yield.

  17. Biomass

    Science.gov (United States)

    Bernard R. Parresol

    2001-01-01

    Biomass, the contraction for biological mass, is the amount of living material provided by a given area or volume of the earth's surface, whether terrestrial or aquatic. Biomass is important for commercial uses (e.g., fuel and fiber) and for national development planning, as well as for scientific studies of ecosystem productivity, energy and nutrient flows, and...

  18. Biomass Allocation and Growth Data of Seeded Plants

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set of leaf, stem, and root biomass for various plant taxa was compiled from the primary literature of the 20th century with a significant portion derived...

  19. Biomass Allocation and Growth Data of Seeded Plants

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set of leaf, stem, and root biomass for various plant taxa was compiled from the primary literature of the 20th century with a significant...

  20. Extraction of solubles from plant biomass for use as microbial growth stimulant and methods related thereto

    Energy Technology Data Exchange (ETDEWEB)

    Lau, Ming Woei

    2015-12-08

    A method for producing a microbial growth stimulant (MGS) from a plant biomass is described. In one embodiment, an ammonium hydroxide solution is used to extract a solution of proteins and ammonia from the biomass. Some of the proteins and ammonia are separated from the extracted solution to provide the MGS solution. The removed ammonia can be recycled and the proteins are useful as animal feeds. In one embodiment, the method comprises extracting solubles from pretreated lignocellulosic biomass with a cellulase enzyme-producing growth medium (such T. reesei) in the presence of water and an aqueous extract.

  1. Effects of precipitation changes on switchgrass photosynthesis, growth, and biomass: A mesocosm experiment.

    Science.gov (United States)

    Hui, Dafeng; Yu, Chih-Li; Deng, Qi; Dzantor, E Kudjo; Zhou, Suping; Dennis, Sam; Sauve, Roger; Johnson, Terrance L; Fay, Philip A; Shen, Weijun; Luo, Yiqi

    2018-01-01

    Climate changes, including chronic changes in precipitation amounts, will influence plant physiology and growth. However, such precipitation effects on switchgrass, a major bioenergy crop, have not been well investigated. We conducted a two-year precipitation simulation experiment using large pots (95 L) in an environmentally controlled greenhouse in Nashville, TN. Five precipitation treatments (ambient precipitation, and -50%, -33%, +33%, and +50% of ambient) were applied in a randomized complete block design with lowland "Alamo" switchgrass plants one year after they were established from tillers. The growing season progression of leaf physiology, tiller number, height, and aboveground biomass were determined each growing season. Precipitation treatments significantly affected leaf physiology, growth, and aboveground biomass. The photosynthetic rates in the wet (+50% and +33%) treatments were significantly enhanced by 15.9% and 8.1%, respectively, than the ambient treatment. Both leaf biomass and plant height were largely increased, resulting in dramatically increases in aboveground biomass by 56.5% and 49.6% in the +50% and +33% treatments, respectively. Compared to the ambient treatment, the drought (-33% and -50%) treatments did not influence leaf physiology, but the -50% treatment significantly reduced leaf biomass by 37.8%, plant height by 16.3%, and aboveground biomass by 38.9%. This study demonstrated that while switchgrass in general is a drought tolerant grass, severe drought significantly reduces Alamo's growth and biomass, and that high precipitation stimulates its photosynthesis and growth.

  2. Does chronic nitrogen deposition during biomass growth affect atmospheric emissions from biomass burning?

    Science.gov (United States)

    Michael R Giordano; Joey Chong; David R Weise; Akua A Asa-Awuku

    2016-01-01

    Chronic nitrogen deposition has measureable impacts on soil and plant health.We investigate burning emissions from biomass grown in areas of high and low NOx deposition. Gas and aerosolphase emissions were measured as a function of photochemical aging in an environmental chamber at UC-Riverside. Though aerosol chemical speciation was not...

  3. Growth characteristics and biomass production of kenaf | Tahery ...

    African Journals Online (AJOL)

    Parameters of height, diameter and internode were measured within four to six regular intervals of 10 to 15 days, while biomass production parameters of dry one meter stalk mass (DMSM), defoliated plant mass (DPM), one meter stalk mass (MSM) and fresh plant mass (FPM) were measured at harvest time. There was no ...

  4. The relative contributions of forest growth and areal expansion to forest biomass carbon

    Science.gov (United States)

    P. Li; J. Zhu; H. Hu; Z. Guo; Y. Pan; R. Birdsey; J. Fang

    2016-01-01

    Forests play a leading role in regional and global terrestrial carbon (C) cycles. Changes in C sequestration within forests can be attributed to areal expansion (increase in forest area) and forest growth (increase in biomass density). Detailed assessment of the relative contributions of areal expansion and forest growth to C sinks is crucial to reveal the mechanisms...

  5. EFFECTS OF CARBON DIOXIDE AND OZONE ON GROWTH AND BIOMASS ALLOCATION IN PINUS PONDEROSA

    Science.gov (United States)

    The future productivity of forests will be affected by combinations of elevated atmospheric CO2 and O3. Because productivity of forests will, in part, be determined by growth of young trees, we evaluated shoot growth and biomass responses of Pinus ponderosa seedlings exposed to ...

  6. Does warming affect growth rate and biomass production of shrubs in the High Arctic?

    DEFF Research Database (Denmark)

    Campioli, Matteo; Schmidt, Niels Martin; Albert, Kristian Rost

    2013-01-01

    Few studies have assessed directly the impact of warming on plant growth and biomass production in the High Arctic. Here, we aimed to investigate the impact of 7 years of warming (open greenhouses) on the aboveground relative growth rate (RGR) of Cassiope tetragona and Salix arctica in North-East...

  7. Calculating the share of process energy consumed by biomass conversion plants. Bestimmung der Anteile der Prozessenergie bei einer Biogasanlage

    Energy Technology Data Exchange (ETDEWEB)

    Goebel, W

    1984-06-01

    During the winter season the process energy consumption of biomass conversion plants is relatively high. Apart from the quantity and temperature of manures and insulation of the fermentation tank the process energy consumption depends on the efficiency of the heating system. Moreover, heat losses decide on the required quantities of process energy. Compared with the process energy consumption the electric power consumption of the engines supplying the biomass conversion plant is relatively low. Along with calculations tests and measurements in a biomass conversion plant during the winter season of 1981/1982 give access to the interrelation between process energy and electric power consumption.

  8. Low Tree-Growth Elasticity of Forest Biomass Indicated by an Individual-Based Model

    Directory of Open Access Journals (Sweden)

    Robbie A. Hember

    2018-01-01

    Full Text Available Environmental conditions and silviculture fundamentally alter the metabolism of individual trees and, therefore, need to be studied at that scale. However, changes in forest biomass density (Mg C ha−1 may be decoupled from changes in growth (kg C year−1 when the latter also accelerates the life cycle of trees and strains access to light, nutrients, and water. In this study, we refer to an individual-based model of forest biomass dynamics to constrain the magnitude of system feedbacks associated with ontogeny and competition and estimate the scaling relationship between changes in tree growth and forest biomass density. The model was driven by fitted equations of annual aboveground biomass growth (Gag, probability of recruitment (Pr, and probability of mortality (Pm parameterized against field observations of black spruce (Picea mariana (Mill. BSP, interior Douglas-fir (Pseudotsuga menziesii var. glauca (Beissn. Franco, and western hemlock (Tsuga heterophylla (Raf. Sarg.. A hypothetical positive step-change in mean tree growth was imposed half way through the simulations and landscape-scale responses were then evaluated by comparing pre- and post-stimulus periods. Imposing a 100% increase in tree growth above calibrated predictions (i.e., contemporary rates only translated into 36% to 41% increases in forest biomass density. This corresponded with a tree-growth elasticity of forest biomass (εG,SB ranging from 0.33 to 0.55. The inelastic nature of stand biomass density was attributed to the dependence of mortality on intensity of competition and tree size, which decreased stand density by 353 to 495 trees ha−1, and decreased biomass residence time by 10 to 23 years. Values of εG,SB depended on the magnitude of the stimulus. For example, a retrospective scenario in which tree growth increased from 50% below contemporary rates up to contemporary rates indicated values of εG,SB ranging from 0.66 to 0.75. We conclude that: (1 effects of

  9. Climate-related variation in plant peak biomass and growth phenology across Pacific Northwest tidal marshes

    Science.gov (United States)

    Buffington, Kevin J.; Dugger, Bruce D.; Thorne, Karen M.

    2018-01-01

    The interannual variability of tidal marsh plant phenology is largely unknown and may have important ecological consequences. Marsh plants are critical to the biogeomorphic feedback processes that build estuarine soils, maintain marsh elevation relative to sea level, and sequester carbon. We calculated Tasseled Cap Greenness, a metric of plant biomass, using remotely sensed data available in the Landsat archive to assess how recent climate variation has affected biomass production and plant phenology across three maritime tidal marshes in the Pacific Northwest of the United States. First, we used clipped vegetation plots at one of our sites to confirm that tasseled cap greenness provided a useful measure of aboveground biomass (r2 = 0.72). We then used multiple measures of biomass each growing season over 20–25 years per study site and developed models to test how peak biomass and the date of peak biomass varied with 94 climate and sea-level metrics using generalized linear models and Akaike Information Criterion (AIC) model selection. Peak biomass was positively related to total annual precipitation, while the best predictor for date of peak biomass was average growing season temperature, with the peak 7.2 days earlier per degree C. Our study provides insight into how plants in maritime tidal marshes respond to interannual climate variation and demonstrates the utility of time-series remote sensing data to assess ecological responses to climate stressors.

  10. Climate-related variation in plant peak biomass and growth phenology across Pacific Northwest tidal marshes

    Science.gov (United States)

    Buffington, Kevin J.; Dugger, Bruce D.; Thorne, Karen M.

    2018-03-01

    The interannual variability of tidal marsh plant phenology is largely unknown and may have important ecological consequences. Marsh plants are critical to the biogeomorphic feedback processes that build estuarine soils, maintain marsh elevation relative to sea level, and sequester carbon. We calculated Tasseled Cap Greenness, a metric of plant biomass, using remotely sensed data available in the Landsat archive to assess how recent climate variation has affected biomass production and plant phenology across three maritime tidal marshes in the Pacific Northwest of the United States. First, we used clipped vegetation plots at one of our sites to confirm that tasseled cap greenness provided a useful measure of aboveground biomass (r2 = 0.72). We then used multiple measures of biomass each growing season over 20-25 years per study site and developed models to test how peak biomass and the date of peak biomass varied with 94 climate and sea-level metrics using generalized linear models and Akaike Information Criterion (AIC) model selection. Peak biomass was positively related to total annual precipitation, while the best predictor for date of peak biomass was average growing season temperature, with the peak 7.2 days earlier per degree C. Our study provides insight into how plants in maritime tidal marshes respond to interannual climate variation and demonstrates the utility of time-series remote sensing data to assess ecological responses to climate stressors.

  11. Input of biomass in power plants for power generation. Calculation of the financial gap. Final report

    International Nuclear Information System (INIS)

    Van Tilburg, X.; De Vries, H.J.; Pfeiffer, A.E.; Cleijne, J.W.

    2005-09-01

    The Ministry of Economic Affairs has requested ECN and KEMA to answer two questions. (1) Are the costs and benefits of projects in which wood-pellets are co-fired in a coal fired power plant representative for those of bio-oil fueled co-firing projects in a gas fired plant?; and (2) Are new projects representative for existing projects? To answer these questions, ECN and KEMA have calculated the financial gaps in six different situations: co-firing bio-oil in a gas fired power plant; co-firing bio-oil in a coal fired power plant; gasification of solid biomass; co-firing wood pellets in a coal fired power plant; co-firing agricultural residues in a coal fired power plant; and co-firing waste wood (A- and B-grade) in a coal fired power plant. The ranges and reference cases show that co-firing bio-oil on average has a smaller financial gap than the solid biomass reference case. On average it can also be concluded that when using waste wood or agro-residues, the financial gaps are smaller. Based on these findings it is concluded that: (1) The reference case of co-firing wood pellets in a coal fired power plant are not representative for bio-fuel options. A new category for bio-oil options seems appropriate; and (2) The financial gap of new projects as calculated in November 2004, is often higher then the ranges for existing projects indicate [nl

  12. Explaining biomass growth of tropical canopy trees: the importance of sapwood.

    Science.gov (United States)

    van der Sande, Masha T; Zuidema, Pieter A; Sterck, Frank

    2015-04-01

    Tropical forests are important in worldwide carbon (C) storage and sequestration. C sequestration of these forests may especially be determined by the growth of canopy trees. However, the factors driving variation in growth among such large individuals remain largely unclear. We evaluate how crown traits [total leaf area, specific leaf area and leaf nitrogen (N) concentration] and stem traits [sapwood area (SA) and sapwood N concentration] measured for individual trees affect absolute biomass growth for 43 tropical canopy trees belonging to four species, in a moist forest in Bolivia. Biomass growth varied strongly among trees, between 17.3 and 367.3 kg year(-1), with an average of 105.4 kg year(-1). We found that variation in biomass growth was chiefly explained by a positive effect of SA, and not by tree size or other traits examined. SA itself was positively associated with sapwood growth, sapwood lifespan and basal area. We speculate that SA positively affects the growth of individual trees mainly by increasing water storage, thus securing water supply to the crown. These positive roles of sapwood on growth apparently offset the increased respiration costs incurred by more sapwood. This is one of the first individual-based studies to show that variation in sapwood traits-and not crown traits-explains variation in growth among tropical canopy trees. Accurate predictions of C dynamics in tropical forests require similar studies on biomass growth of individual trees as well as studies evaluating the dual effect of sapwood (water provision vs. respiratory costs) on tropical tree growth.

  13. Assessing biomass accumulation in second growth forests of Puerto Rico using airborne lidar

    Science.gov (United States)

    Martinuzzi, S.; Cook, B.; Corp, L. A.; Morton, D. C.; Helmer, E.; Keller, M.

    2017-12-01

    Degraded and second growth tropical forests provide important ecosystem services, such as carbon sequestration and soil stabilization. Lidar data measure the three-dimensional structure of forest canopies and are commonly used to quantify aboveground biomass in temperate forest landscapes. However, the ability of lidar data to quantify second growth forest biomass in complex, tropical landscapes is less understood. Our goal was to evaluate the use of airborne lidar data to quantify aboveground biomass in a complex tropical landscape, the Caribbean island of Puerto Rico. Puerto Rico provides an ideal place for studying biomass accumulation because of the abundance of second growth forests in different stages of recovery, and the high ecological heterogeneity. Puerto Rico was almost entirely deforested for agriculture until the 1930s. Thereafter, agricultural abandonment resulted in a mosaic of second growth forests that have recovered naturally under different types of climate, land use, topography, and soil fertility. We integrated forest plot data from the US Forest Service, Forest Inventory and Analysis (FIA) Program with recent lidar data from NASA Goddard's Lidar, Hyperspectral, and Thermal (G-LiHT) airborne imager to quantify forest biomass across the island's landscape. The G-LiHT data consisted on targeted acquisitions over the FIA plots and other forested areas representing the environmental heterogeneity of the island. To fully assess the potential of the lidar data, we compared the ability of lidar-derived canopy metrics to quantify biomass alone, and in combination with intensity and topographic metrics. The results presented here are a key step for improving our understanding of the patterns and drivers of biomass accumulation in tropical forests.

  14. The hemicellulolytic enzyme arsenal of Thermobacillus xylanilyticus depends on the composition of biomass used for growth

    Directory of Open Access Journals (Sweden)

    Rakotoarivonina Harivony

    2012-12-01

    Full Text Available Abstract Background Thermobacillus xylanilyticus is a thermophilic and highly xylanolytic bacterium. It produces robust and stable enzymes, including glycoside hydrolases and esterases, which are of special interest for the development of integrated biorefineries. To investigate the strategies used by T. xylanilyticus to fractionate plant cell walls, two agricultural by-products, wheat bran and straw (which differ in their chemical composition and tissue organization, were used in this study and compared with glucose and xylans. The ability of T. xylanilyticus to grow on these substrates was studied. When the bacteria used lignocellulosic biomass, the production of enzymes was evaluated and correlated with the initial composition of the biomass, as well as with the evolution of any residues during growth. Results Our results showed that T. xylanilyticus is not only able to use glucose and xylans as primary carbon sources but can also use wheat bran and straw. The chemical compositions of both lignocellulosic substrates were modified by T. xylanilyticus after growth. The bacteria were able to consume 49% and 20% of the total carbohydrates in bran and straw, respectively, after 24 h of growth. The phenolic and acetyl ester contents of these substrates were also altered. Bacterial growth on both lignocellulosic biomasses induced hemicellulolytic enzyme production, and xylanase was the primary enzyme secreted. Debranching activities were differentially produced, as esterase activities were more important to bacterial cultures grown on wheat straw; arabinofuranosidase production was significantly higher in bacterial cultures grown on wheat bran. Conclusion This study provides insight into the ability of T. xylanilyticus to grow on abundant agricultural by-products, which are inexpensive carbon sources for enzyme production. The composition of the biomass upon which the bacteria grew influenced their growth, and differences in the biomass provided

  15. Modeling mangrove biomass using remote sensing based age and growth estimates

    Science.gov (United States)

    Lagomasino, D.; Fatoyinbo, T. E.; Feliciano, E. A.; Lee, S. K.; Trettin, C.; Mangora, M.; Rahman, M.

    2016-12-01

    Mangroves are highly regarded coastal forests because of their ecosystem services and high carbon storage potential. In addition, these forests can develop rapidly in locations where congenial environmental conditions and sediment supply are available. Monitoring the growth and age of developing mangrove forests is crucial for sustainable management and estimating carbon stocks. Combining imagery from radar and optical satellites (e.g., TanDEM-X and Landsat), we can estimate young mangrove growth and age at regional and continental scales. We used TanDEM-X radar interferometry for modeling canopy height in 2013 and Landsat to measure land cover change from 1990 to 2013. Annual NDVI composites were determined for each calendar year between 1990 and 2013. New land areas gained from the transition of water to vegetation were determined by the differences in annual NDVI composites and the reference year 2013. The year of the greatest NDVI difference that met the threshold criteria was used as the initial tree height (0 m). Annual canopy height growth rates were estimated by the duration between land generation times and 2013 canopy height models derived from TanDEM-X and very-high resolution optical data. In this presentation, we compare growth rates and biomass accumulation in mangrove forests at four river deltas; the Zambezi (Mozambique), Rufiji (Tanzania), Ganges (Bangladesh), and Mekong (Vietnam). The spatial patterns of growth rates coincided with characteristic successional paradigms and stream morphology, where the maximum growth rates typically occurred along prograding creek banks. Initial comparisons between height-only and growth-age biomass indicate that the latter tend to overestimate biomass for younger forest stands of similar height. Both the vertical (e.g., canopy height) and horizontal (e.g., expansion) growth rates measured from remote sensing can garner important information regarding mangrove succession and primary productivity. Continued research

  16. Modelling Growth and Partitioning of Annual Above-Ground Vegetative and Reproductive Biomass of Grapevine

    Science.gov (United States)

    Meggio, Franco; Vendrame, Nadia; Maniero, Giovanni; Pitacco, Andrea

    2014-05-01

    In the current climate change scenarios, both agriculture and forestry inherently may act as carbon sinks and consequently can play a key role in limiting global warming. An urgent need exists to understand which land uses and land resource types have the greatest potential to mitigate greenhouse gas (GHG) emissions contributing to global change. A common believe is that agricultural fields cannot be net carbon sinks due to many technical inputs and repeated disturbances of upper soil layers that all contribute to a substantial loss both of the old and newly-synthesized organic matter. Perennial tree crops (vineyards and orchards), however, can behave differently: they grow a permanent woody structure, stand undisturbed in the same field for decades, originate a woody pruning debris, and are often grass-covered. In this context, reliable methods for quantifying and modelling emissions and carbon sequestration are required. Carbon stock changes are calculated by multiplying the difference in oven dry weight of biomass increments and losses with the appropriate carbon fraction. These data are relatively scant, and more information is needed on vineyard management practices and how they impact vineyard C sequestration and GHG emissions in order to generate an accurate vineyard GHG footprint. During the last decades, research efforts have been made for estimating the vineyard carbon budget and its allocation pattern since it is crucial to better understand how grapevines control the distribution of acquired resources in response to variation in environmental growth conditions and agronomic practices. The objective of the present study was to model and compare the dynamics of current year's above-ground biomass among four grapevine varieties. Trials were carried out over three growing seasons in field conditions. The non-linear extra-sums-of-squares method demonstrated to be a feasible way of growth models comparison to statistically assess significant differences among

  17. Explaining biomass growth of tropical canopy trees: the importance of sapwood

    OpenAIRE

    Sande, van der, M.T.; Zuidema, P.A.; Sterck, F.J.

    2015-01-01

    Tropical forests are important in worldwide carbon (C) storage and sequestration. C sequestration of these forests may especially be determined by the growth of canopy trees. However, the factors driving variation in growth among such large individuals remain largely unclear. We evaluate how crown traits [total leaf area, specific leaf area and leaf nitrogen (N) concentration] and stem traits [sapwood area (SA) and sapwood N concentration] measured for individual trees affect absolute biomass...

  18. Optical Properties of Biomass Burning Aerosols: Comparison of Experimental Measurements and T-Matrix Calculations

    Directory of Open Access Journals (Sweden)

    Samin Poudel

    2017-11-01

    Full Text Available The refractive index (RI is an important parameter in describing the radiative impacts of aerosols. It is important to constrain the RI of aerosol components, since there is still significant uncertainty regarding the RI of biomass burning aerosols. Experimentally measured extinction cross-sections, scattering cross-sections, and single scattering albedos for white pine biomass burning (BB aerosols under two different burning and sampling conditions were modeled using T-matrix theory. The refractive indices were extracted from these calculations. Experimental measurements were conducted using a cavity ring-down spectrometer to measure the extinction, and a nephelometer to measure the scattering of size-selected aerosols. BB aerosols were obtained by burning white pine using (1 an open fire in a burn drum, where the aerosols were collected in distilled water using an impinger, and then re-aerosolized after several days, and (2 a tube furnace to directly introduce the BB aerosols into an indoor smog chamber, where BB aerosols were then sampled directly. In both cases, filter samples were also collected, and electron microscopy images were used to obtain the morphology and size information used in the T-matrix calculations. The effective radius of the particles collected on filter media from the open fire was approximately 245 nm, whereas it was approximately 76 nm for particles from the tube furnace burns. For samples collected in distilled water, the real part of the RI increased with increasing particle size, and the imaginary part decreased. The imaginary part of the RI was also significantly larger than the reported values for fresh BB aerosol samples. For the particles generated in the tube furnace, the real part of the RI decreased with particle size, and the imaginary part was much smaller and nearly constant. The RI is sensitive to particle size and sampling method, but there was no wavelength dependence over the range considered (500

  19. Accumulation of Biomass and Mineral Elements with Calendar Time by Corn: Application of the Expanded Growth Model

    Science.gov (United States)

    Overman, Allen R.; Scholtz, Richard V.

    2011-01-01

    The expanded growth model is developed to describe accumulation of plant biomass (Mg ha−1) and mineral elements (kg ha−1) in with calendar time (wk). Accumulation of plant biomass with calendar time occurs as a result of photosynthesis for green land-based plants. A corresponding accumulation of mineral elements such as nitrogen, phosphorus, and potassium occurs from the soil through plant roots. In this analysis, the expanded growth model is tested against high quality, published data on corn (Zea mays L.) growth. Data from a field study in South Carolina was used to evaluate the application of the model, where the planting time of April 2 in the field study maximized the capture of solar energy for biomass production. The growth model predicts a simple linear relationship between biomass yield and the growth quantifier, which is confirmed with the data. The growth quantifier incorporates the unit processes of distribution of solar energy which drives biomass accumulation by photosynthesis, partitioning of biomass between light-gathering and structural components of the plants, and an aging function. A hyperbolic relationship between plant nutrient uptake and biomass yield is assumed, and is confirmed for the mineral elements nitrogen (N), phosphorus (P), and potassium (K). It is concluded that the rate limiting process in the system is biomass accumulation by photosynthesis and that nutrient accumulation occurs in virtual equilibrium with biomass accumulation. PMID:22194842

  20. Accumulation of biomass and mineral elements with calendar time by corn: application of the expanded growth model.

    Directory of Open Access Journals (Sweden)

    Allen R Overman

    Full Text Available The expanded growth model is developed to describe accumulation of plant biomass (Mg ha(-1 and mineral elements (kg ha(-1 in with calendar time (wk. Accumulation of plant biomass with calendar time occurs as a result of photosynthesis for green land-based plants. A corresponding accumulation of mineral elements such as nitrogen, phosphorus, and potassium occurs from the soil through plant roots. In this analysis, the expanded growth model is tested against high quality, published data on corn (Zea mays L. growth. Data from a field study in South Carolina was used to evaluate the application of the model, where the planting time of April 2 in the field study maximized the capture of solar energy for biomass production. The growth model predicts a simple linear relationship between biomass yield and the growth quantifier, which is confirmed with the data. The growth quantifier incorporates the unit processes of distribution of solar energy which drives biomass accumulation by photosynthesis, partitioning of biomass between light-gathering and structural components of the plants, and an aging function. A hyperbolic relationship between plant nutrient uptake and biomass yield is assumed, and is confirmed for the mineral elements nitrogen (N, phosphorus (P, and potassium (K. It is concluded that the rate limiting process in the system is biomass accumulation by photosynthesis and that nutrient accumulation occurs in virtual equilibrium with biomass accumulation.

  1. Growth, reproduction, mortality, distribution, and biomass of freshwater drum in Lake Erie

    Science.gov (United States)

    Bur, Michael T.

    1984-01-01

    Predominant age-groups in the Lake Erie freshwater drum Aplodinotus grunnienspopulation were 3, 4, and 5 as determined from gill net, trap net, bottom trawl, and midwater trawl samples. Age and growth calculations indicated that females grew faster than males. However, the length-weight relation did not differ between sexes and was described by the equation: log W = −5.4383 + 3.1987 log L. Some males became sexually mature at age 2 and all were mature by age 6. Females matured 1 year later than males. Three sizes of eggs were present in ovaries; the average total number was 127,000 per female for 20 females over a length range of 270 to 478 mm. Seasonal analysis of the ovary-body weight ratio indicated that spawning extended from June to August. A total annual mortality rate of 49% for drum aged 4 through 11 was derived from catch-curve analysis. Freshwater drum were widely distributed throughout Lake Erie in 1977–1979, the greatest concentration being in the western basin. They moved into warm, shallow water (less than 10 m deep) during summer, and returned to deeper water in late fall. Summer biomass estimates for the western basin, based on systematic surveys with bottom trawls, were 9,545 t in 1977 and 2,333 t in 1978.

  2. OSCAAR calculations for the Hanford dose reconstruction scenario of BIOMASS Theme 2

    International Nuclear Information System (INIS)

    Homma, Toshimitsu; Tomita, Kenichi

    2000-10-01

    This report presents the results obtained from the application of the accident consequence assessment code, called OSCAAR, developed in Japan Atomic Energy Research Institute to the Hanford dose reconstruction scenario of BIOMASS Theme 2 organized by International Atomic Energy Agency. The scenario relates to an inadvertent release of 131 I to atmosphere from the Hanford Purex Chemical Separations Plant on 2-5 September 1963. This exercise was used to test the atmospheric dispersion and deposition models and food chain transport models for 131 I in OSCAAR with actual measurements and to identify the most important sources of uncertainty with respect both to the part of the assessment and to the overall assessment. The OSCAAR food chain model performed relatively well, while the atmospheric dispersion and deposition calculations made using wind data at the release height and wind fields by simple interpolation of the surrounding surface wind data indicated limited capabilities. The Monte Carlo based uncertainty and sensitivity method linked with OSCAAR successfully demonstrated its usefulness in the scenario. The method presented here also allowed the determination of the parameters that have the most important impact in accident consequence assessments. (author)

  3. Input of biomass in power plants or the power generation. Calculation of the financial gap

    International Nuclear Information System (INIS)

    De Vries, H.J.; Van Tilburg, X.; Pfeiffer, A.E.; Cleijne, H.

    2005-09-01

    The project on the title subject concerns two questions: (1) Are projects in which wood-pellets are co-fired in a coalfired power plant representative for bio-oil fueled co-firing projects in a gas-fired plant?; and (2) are new projects representative for existing projects? To answer those questions the financial gaps have been calculated for five different situations: Co-firing bio-oil in a gas-fired power plant; Co-firing bio-oil in a coal-fired power plant; Co-firing wood pellets in a coal-fired power plant; Co-firing agro-residues in a coal-fired power plant; and Co-firing waste-wood (A- and B-grade) in a coal-fired power plant. The ranges and reference cases in this report show that co-firing bio-oil on average has a smaller financial gap than the solid biomass reference case. On average it can also be concluded that by using waste wood or agro-residues, the financial gaps can decrease [nl

  4. OSCAAR calculations for the Hanford dose reconstruction scenario of BIOMASS Theme 2

    Energy Technology Data Exchange (ETDEWEB)

    Homma, Toshimitsu; Tomita, Kenichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Inoue, Yoshihisa [Visible Information Center Inc., Tokai, Ibaraki (Japan)

    2000-10-01

    This report presents the results obtained from the application of the accident consequence assessment code, called OSCAAR, developed in Japan Atomic Energy Research Institute to the Hanford dose reconstruction scenario of BIOMASS Theme 2 organized by International Atomic Energy Agency. The scenario relates to an inadvertent release of {sup 131}I to atmosphere from the Hanford Purex Chemical Separations Plant on 2-5 September 1963. This exercise was used to test the atmospheric dispersion and deposition models and food chain transport models for {sup 131}I in OSCAAR with actual measurements and to identify the most important sources of uncertainty with respect both to the part of the assessment and to the overall assessment. The OSCAAR food chain model performed relatively well, while the atmospheric dispersion and deposition calculations made using wind data at the release height and wind fields by simple interpolation of the surrounding surface wind data indicated limited capabilities. The Monte Carlo based uncertainty and sensitivity method linked with OSCAAR successfully demonstrated its usefulness in the scenario. The method presented here also allowed the determination of the parameters that have the most important impact in accident consequence assessments. (author)

  5. Effects of gamma radiation on stem diameter growth, carbon gain and biomass partitioning in Helianthus annuus

    International Nuclear Information System (INIS)

    Thiede, M.E.; Link, S.O.; Fellows, R.J.; Beedlow, P.A.

    1995-01-01

    To determine the effects of gamma radiation on stem diameter growth, carbon gain, and biomass partitioning, 19-day-old dwarf sunflower plants (Helianthus annuus, variety NK894) were given variable doses (0–40 Gy) from a 60Co gamma source. Exposure of plants to gamma radiation caused a significant reduction in stem growth and root biomass. Doses as low as 5 Gy resulted in a significant increase in leaf density, suggesting that very low doses of radiation could induce morphological growth changes. Carbohydrate analysis of plants exposed to 40 Gy demonstrated significantly more starch content in leaves and significantly less in stems 18 days after exposure compared with control plants. In contrast, the carbohydrate content of the roots of plants exposed to 40 Gy was not significantly different from non-irradiated plants 18 days after exposure. (author)

  6. Promotion of Crystal Growth on Biomass-based Carbon using Phosphoric Acid Treatments

    Directory of Open Access Journals (Sweden)

    Liwei Yu

    2015-02-01

    Full Text Available The effect of phosphoric acid treatments on graphitic microcrystal growth of biomass-based carbons was investigated using X-ray diffraction, infrared spectroscopy, and Raman spectroscopy. Although biomass-based carbons are believed to be hard to graphitize even after heat treatments well beyond 2000 °C, we found that graphitic microcrystals of biomass-based carbons were significantly promoted by phosphoric acid treatments above 800 °C. Moreover, twisted spindle-like whiskers were formed on the surface of the carbons. This suggests that phosphorus-containing groups turn graphitic microcrystalline domains into graphite during phosphoric acid treatments. In addition, the porous texture of the phosphoric acid-treated carbon has the advantage of micropore development.

  7. Attached biomass growth and substrate utilization rate in a moving bed biofilm reactor

    Directory of Open Access Journals (Sweden)

    J. J. Marques

    2008-12-01

    Full Text Available A moving bed bioreactor containing cubes of polyether foam immersed in a synthetic wastewater (an aqueous mixture of meat extract, yeast extract, dextrose, meat peptone, ammonium chloride, potassium chloride, sodium chloride, sodium bicarbonate, potassium mono-hydrogen-phosphate and magnesium sulphate was used to evaluate bacterial growth and biomass yield parameters based on Monod's equation. The wastewater was supplied in the bottom of the equipment flowing ascending in parallel with a diffused air current that provided the mixing of the reactor content. Suspended and attached biomass concentration was measured through gravimetric methods. Good agreement was found between experimental kinetic parameters values and those obtained by other researchers. The only significant difference was the high global biomass content about 2 times the values obtained in conventional processes, providing high performance with volumetric loading rates up to 5.5 kg COD/m³/d.

  8. Parametric calculations of fatigue-crack growth in piping

    International Nuclear Information System (INIS)

    Simonen, F.A.; Goodrich, C.W.

    1983-06-01

    This study presents calculations of the growth of piping flaws produced by fatigue. Flaw growth was predicted as a function of the initial flaw size, the level and number of stress cycles, the piping material, and environmental factors. The results indicate that the present flaw acceptance standards of ASME Section XI provide a relatively consistent set of allowable flaw sizes because the predicted life of flawed piping is relatively insensitive to pipe wall thickness, flaw aspect ratio, and piping material (ferritic versus austenitic). On the other hand, the results show that flaws that are acceptable under ASME Section XI can grow at unacceptable rates if the cyclic stresses are at the maximum level permitted by the design rules of ASME Section III. However, a review of the conservatisms inherent to the ASME code rules is presented to explain the low occurrence of piping fatigue failures in service. It is concluded that decreases in the allowable flaw sizes are not justified

  9. Optimal control of nutrition restricted dynamics model of Microalgae biomass growth model

    Science.gov (United States)

    Ratianingsih, R.; Azim; Nacong, N.; Resnawati; Mardlijah; Widodo, B.

    2017-12-01

    The biomass of the microalgae is very potential to be proposed as an alternative renewable energy resources because it could be extracted into lipid. Afterward, the lipid could be processed to get the biodiesel or bioethanol. The extraction of the biomass on lipid synthesis process is very important to be studied because the process just gives some amount of lipid. A mathematical model of restricted microalgae biomass growth just gives 1/3 proportion of lipid with respect to the biomass in the synthesis process. An optimal control is designed to raise the ratio between the number of lipid formation and the microalgae biomass to be used in synthesis process. The minimum/ Pontryagin maximum principle is used to get the optimal lipid production. The simulation shows that the optimal lipid formation could be reach by simultaneously controlling the carbon dioxide, in the respiration and photosynthesis the process, and intake nutrition rates of liquid waste and urea substrate. The production of controlled microalgae lipid could be increase 6.5 times comparing to the uncontrolled one.

  10. Growth promoting characteristics of rhizobacteria and AM Fungi for biomass amelioration of Zea mays

    Directory of Open Access Journals (Sweden)

    Kumar Manoj

    2015-01-01

    Full Text Available Plant growth promoting rhizobacteria (PGPR and mycorrhiza were evaluated on the growth (biomass and yield of Zea mays. In the present study, selective rhizospheric PGPR (Azotobacter chroococcum, Pseudomonas aeruginosa, Azospirillum brasilense and Streptomyces sp. and a combination of six strains of arbuscular mycorrhizal fungi (AMF (Acaulospora morrowae, Gigaspora margarita, Glomus constrictum, Glomus mossae, Glomus aggregatum and Scutellospora calospora were isolated and identified with standard methods and 16S rRNA sequence analysis. PGPR and AMF were checked for their growth-promoting behavior under specific treatment conditions. The 30-48-day-old treated plants in all combinations showed a significantly higher mass value. The average dry weight from the shoot was in a range from 41-52% as compared to the control. This increase also translated into a higher mass value of the roots. Overall, an 82% growth rate was observed in terms of height as the consequence of biomass production, specifically in the case of AMF + rhizobacteria combination. We report an efficient, sustainable and cost-effective biofertilizer for enhanced biomass of Z. mays, one of the staple food crops worldwide.

  11. Looking for age-related growth decline in natural forests: unexpected biomass patterns from tree rings and simulated mortality

    Science.gov (United States)

    Foster, Jane R.; D'Amato, Anthony W.; Bradford, John B.

    2014-01-01

    Forest biomass growth is almost universally assumed to peak early in stand development, near canopy closure, after which it will plateau or decline. The chronosequence and plot remeasurement approaches used to establish the decline pattern suffer from limitations and coarse temporal detail. We combined annual tree ring measurements and mortality models to address two questions: first, how do assumptions about tree growth and mortality influence reconstructions of biomass growth? Second, under what circumstances does biomass production follow the model that peaks early, then declines? We integrated three stochastic mortality models with a census tree-ring data set from eight temperate forest types to reconstruct stand-level biomass increments (in Minnesota, USA). We compared growth patterns among mortality models, forest types and stands. Timing of peak biomass growth varied significantly among mortality models, peaking 20–30 years earlier when mortality was random with respect to tree growth and size, than when mortality favored slow-growing individuals. Random or u-shaped mortality (highest in small or large trees) produced peak growth 25–30 % higher than the surviving tree sample alone. Growth trends for even-aged, monospecific Pinus banksiana or Acer saccharum forests were similar to the early peak and decline expectation. However, we observed continually increasing biomass growth in older, low-productivity forests of Quercus rubra, Fraxinus nigra, and Thuja occidentalis. Tree-ring reconstructions estimated annual changes in live biomass growth and identified more diverse development patterns than previous methods. These detailed, long-term patterns of biomass development are crucial for detecting recent growth responses to global change and modeling future forest dynamics.

  12. The Effect of CO2 Injection on Macroalgae Gelidium latifolium Biomass Growth Rate and Carbohydrate Content

    Directory of Open Access Journals (Sweden)

    Mujizat Kawaroe

    2016-06-01

    Full Text Available There are many species of macroalga grow in marine ecosystem and potentially as raw material for bioethanol resource. Bioethanol is a conversion result of carbohydrate, one of macroalgae biomass content. The exploration of macroalgae require information about  growth rate ability to determine availability in the nature. This research analyze growth rate and carbohydrate content of marine macroalga Gelidium latifolium on cultivation using varied injection of carbon dioxide and aeration. The treatments were control (K, 2000 cc CO2 injection and aeration (P1, 3000 cc CO2 injection and aeration (P2, 2000 cc CO2 injection without aeration (P3, and 3000 cc CO2 injection without aeration (P4. Samples weight were 3 gram in early cultivation on laboratorium scale for 42 days observation. The results showed that the daily growth rate Gelidium latifolium during the study ranged from 0.02-1.06%. The highest daily growth rate was 1.06±0.14% (P2. Carbohydrate yield was 18.23% in early cultivation then 19.40% (K and P2, 20.40% (P1, 16.87% (K3, and 16.40% (P4 after cultivation. The high of carbohydrates value may not guarantee the sustainable Gelidium latifolium biomass utilization as raw material for bioethanol production because of the low growth rate, thus it is necessary to modified and encourage cultivation method effectively. Keywords: CO2 injection, growth rate, carbohydrate, macroalgae, Gelidium latifolium

  13. Plot size recommendations for biomass estimation in a midwestern old-growth forest

    Science.gov (United States)

    Martin A. Spetich; George R Parker

    1998-01-01

    The authors examine the relationship between disturbance regime and plot size for woody biomass estimation in a midwestern old-growth deciduous forest from 1926 to 1992. Analysis was done on the core 19.6 ac of a 50.1 ac forest in which every tree 4 in. d.b.h. and greater has been tagged and mapped since 1926. Five windows of time are compared—1926, 1976, 1981, 1986...

  14. Studies on mould growth and biomass production using waste banana peel.

    Science.gov (United States)

    Essien, J P; Akpan, E J; Essien, E P

    2005-09-01

    Hyphomycetous (Aspergillus fumigatus) and Phycomycetous (Mucor hiemalis) moulds were cultivated in vitro at room temperature (28 + 20 degrees C) to examined their growth and biomass production on waste banana peel agar (BPA) and broth (BPB) using commercial malt extract agar (MEA) and broth (MEB) as control. The moulds grew comparatively well on banana peel substrates. No significant difference (p > 0.05) in radial growth rates was observed between moulds cultivated on PBA and MEA, although growth rates on MEA were slightly better. Slight variations in sizes of asexual spores and reproductive hyphae were also observed between moulds grown on MEA and BPA. Smaller conidia and sporangiospores, and shorter aerial hyphae (conidiophores and sporangiophores) were noticed in moulds grown on BPA than on MEA. The biomass weight of the test moulds obtained after one month of incubation with BPB were only about 1.8 mg and 1.4 mg less than values recorded for A. fumigatus and M. hiemalis respectively, grown on MEB. The impressive performance of the moulds on banana peel substrate may be attributed to the rich nutrient (particularly the crude protein 7.8% and crude fat 11.6% contents) composition of banana peels. The value of this agricultural waste can therefore be increased by its use not only in the manufacture of mycological medium but also in the production of valuable microfungal biomass which is rich in protein and fatty acids.

  15. Exploring Bioeconomy Growth through the Public Release of the Biomass Scenario Model

    Energy Technology Data Exchange (ETDEWEB)

    Newes, Emily K [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Biddy, Mary J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bush, Brian W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Inman, Daniel J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Vimmerstedt, Laura J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Peterson, Steve [Lexidyne, LLC

    2017-08-02

    The Biomass Scenario Model (BSM) is an important tool for exploring vibrant future bioeconomy scenarios that leverage domestic resources. Developed by NREL and BETO, this model of the domestic biofuels supply chain has been used to explore success strategies for BETO's activities towards bioeconomy growth. The BSM offers a robust test bed for detailed exploration of effects of BETO activities within the complex context of resource availability; physical, technological, and economic constraints; behavior; and policy. The public release of the model in 2017 will allow broad engagement with the theme of the conference as model users can analyze bioeconomy growth, domestic biomass resource use, and associated effects. The BSM is a carefully validated, state-of-the-art, dynamic model of the biomass to biofuels supply chain. Using a system dynamics simulation modeling approach, the model tracks long-term deployment of biofuels given technology development and investment, considering land availability, the competing oil market, consumer demand, and government policies over time. Sample outputs include biofuels production, feedstock use, capital investment, incentives, and costs of feedstocks and fuels. BSM scenarios reveal technological, economic, and policy challenges, as well as opportunities for dynamic growth of the bioeconomy with strategic public and private investment at key points in the system. The model logic and results have been reviewed extensively, through collaborative analysis, expert reviews and external publications (https://www.zotero.org/groups/bsm_publications/).

  16. Calculation of economic viability and environmental costs of biomass from dende oil for small communities of Brazilian northeast region

    International Nuclear Information System (INIS)

    Stecher, Luiza C.; Pacheco, Rafael R.; Sabundjian, Gaiane

    2015-01-01

    The current environmental problems caused by human activity has been gaining attention in society, i.e., as it has influenced in the growth and development of the global economic. The availability of energy resources is central point to economic development and the generation of energy is responsible for a significant portion of the emissions causing the greenhouse effect nowadays. The Brazil, a developing country, still has a large number of people without access to electricity, which affects the quality of life of individuals. In this context, it should think in the sustainable economic development, so the alternative energy sources emerge as an option for power generation. Can highlight biomass as a source in the Brazilian scenario by its wide availability and variety. Therefore, the objective of this work is to estimate the economic viability of the decentralized generation of electricity based on the use of biomass from dende oil in small communities in the Brazilian Northeast considering the environmental costs involved for the source in question. The methodology is based on economic concepts and economic evaluation of environmental resources. The biomass from dende oil was adopted in this work by its characteristics and availability in the studied region. The results show that the generation of energy by biomass from dende oil, it will contribute significantly to the sustainable development of the region, already that it will bring gains environmental, social and financial to society. (author)

  17. Calculation of economic viability and environmental costs of biomass from dende oil for small communities of Brazilian northeast region

    Energy Technology Data Exchange (ETDEWEB)

    Stecher, Luiza C.; Pacheco, Rafael R.; Sabundjian, Gaiane, E-mail: luizastecher@usp.br, E-mail: rafaelrade@gmail.com, E-mail: gdjian@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    The current environmental problems caused by human activity has been gaining attention in society, i.e., as it has influenced in the growth and development of the global economic. The availability of energy resources is central point to economic development and the generation of energy is responsible for a significant portion of the emissions causing the greenhouse effect nowadays. The Brazil, a developing country, still has a large number of people without access to electricity, which affects the quality of life of individuals. In this context, it should think in the sustainable economic development, so the alternative energy sources emerge as an option for power generation. Can highlight biomass as a source in the Brazilian scenario by its wide availability and variety. Therefore, the objective of this work is to estimate the economic viability of the decentralized generation of electricity based on the use of biomass from dende oil in small communities in the Brazilian Northeast considering the environmental costs involved for the source in question. The methodology is based on economic concepts and economic evaluation of environmental resources. The biomass from dende oil was adopted in this work by its characteristics and availability in the studied region. The results show that the generation of energy by biomass from dende oil, it will contribute significantly to the sustainable development of the region, already that it will bring gains environmental, social and financial to society. (author)

  18. The linkages between photosynthesis, productivity, growth and biomass in lowland Amazonian forests.

    Science.gov (United States)

    Malhi, Yadvinder; Doughty, Christopher E; Goldsmith, Gregory R; Metcalfe, Daniel B; Girardin, Cécile A J; Marthews, Toby R; Del Aguila-Pasquel, Jhon; Aragão, Luiz E O C; Araujo-Murakami, Alejandro; Brando, Paulo; da Costa, Antonio C L; Silva-Espejo, Javier E; Farfán Amézquita, Filio; Galbraith, David R; Quesada, Carlos A; Rocha, Wanderley; Salinas-Revilla, Norma; Silvério, Divino; Meir, Patrick; Phillips, Oliver L

    2015-06-01

    Understanding the relationship between photosynthesis, net primary productivity and growth in forest ecosystems is key to understanding how these ecosystems will respond to global anthropogenic change, yet the linkages among these components are rarely explored in detail. We provide the first comprehensive description of the productivity, respiration and carbon allocation of contrasting lowland Amazonian forests spanning gradients in seasonal water deficit and soil fertility. Using the largest data set assembled to date, ten sites in three countries all studied with a standardized methodology, we find that (i) gross primary productivity (GPP) has a simple relationship with seasonal water deficit, but that (ii) site-to-site variations in GPP have little power in explaining site-to-site spatial variations in net primary productivity (NPP) or growth because of concomitant changes in carbon use efficiency (CUE), and conversely, the woody growth rate of a tropical forest is a very poor proxy for its productivity. Moreover, (iii) spatial patterns of biomass are much more driven by patterns of residence times (i.e. tree mortality rates) than by spatial variation in productivity or tree growth. Current theory and models of tropical forest carbon cycling under projected scenarios of global atmospheric change can benefit from advancing beyond a focus on GPP. By improving our understanding of poorly understood processes such as CUE, NPP allocation and biomass turnover times, we can provide more complete and mechanistic approaches to linking climate and tropical forest carbon cycling. © 2015 John Wiley & Sons Ltd.

  19. SIMULATION OF MICROALGAL GROWTH IN A CONTINUOUS PHOTOBIOREACTOR WITH SEDIMENTATION AND PARTIAL BIOMASS RECYCLING

    Directory of Open Access Journals (Sweden)

    C. E. de Farias Silva

    Full Text Available Abstract Microalgae are considered as promising feedstocks for the third generation of biofuels. They are autotrophic organisms with high growth rate and can stock an enormous quantity of lipids (about 20 - 40% of their dried cellular weight. This work was aimed at studying the cultivation of Scenedesmus obliquus in a two-stage system composed of a photobioreactor and a settler to concentrate and partially recycle the biomass as a way to enhance the microalgae cellular productivity. It was attempted to specify by simulation and experimental data a relationship between the recycling rate, kinetic parameters of microalgal growth and photobioreactor operating conditions. Scenedesmus obliquus cells were cultivated in a lab-scale flat-plate reactor, homogenized by aeration, and running in continuous flow with a residence time of 1.66 day. Experimental data for the microalgal growth were used in a semi-empirical simulation model. The best results were obtained for Fw=0.2FI, when R = 1 and kd = 0 and 0.05 day-1, with the biomass production in the reactor varying between 8 g L -1 and 14 g L-1, respectively. The mathematical model fitted to the microalgal growth experimental data was appropriate for predicting the efficiency of the reactor in producing Scenedesmus obliquus cells, establishing a relation between cellular productivity and the minimum recycling rate that must be used in the system.

  20. The Impact of Moss Species and Biomass on the Growth of Pinus sylvestris Tree Seedlings at Different Precipitation Frequencies

    Directory of Open Access Journals (Sweden)

    Babs M. Stuiver

    2014-08-01

    Full Text Available Boreal forests are characterized by an extensive moss layer, which may have both competitive and facilitative effects on forest regeneration. We conducted a greenhouse experiment to investigate how variation in moss species and biomass, in combination with precipitation frequency, affect Pinus sylvestris seedling growth. We found that moss species differed in their effects on seedling growth, and moss biomass had negative effects on seedlings, primarily when it reached maximal levels. When moss biomass was maximal, seedling biomass decreased, whereas height and above- relative to below-ground mass increased, due to competition for light. The effect that moss biomass had on seedling performance differed among the moss species. Hylocomium splendens and Polytrichum commune reduced seedling growth the most, likely because of their taller growth form. Seedlings were not adversely affected by Sphagnum girgensohnii and Pleurozium schreberi, possibly because they were not tall enough to compete for light and improved soil resource availability. Reduced precipitation frequency decreased the growth of all moss species, except P. commune, while it impaired the growth of seedlings only when they were grown with P. commune. Our findings suggest that changes in moss species and biomass, which can be altered by disturbance or climate change, can influence forest regeneration.

  1. Increased biomass yield of Lactococcus lactis during energetically limited growth and respiratory conditions

    DEFF Research Database (Denmark)

    Købmann, Brian Jensen; Blank, Lars Mathias; Solem, Christian

    2008-01-01

    (glucose/mannose-specific phosphotransferase system). Amino acid catabolism could be excluded as the source of the additional ATP. Since mutants without a functional H+-ATPase produced less ATP under sugar starvation and respiratory conditions, the additional ATP yield appears to come partly from energy......Lactococcus lactis is known to be capable of respiration under aerobic conditions in the presence of haemin. In the present study the effect of respiration on ATP production during growth on different sugars was examined. With glucose as the sole carbon source, respiratory conditions in L. lactis...... MG1363 resulted in only a minor increase, 21%, in biomass yield. Since ATP production through substrate-level phosphorylation was essentially identical with and without respiration, the increased biomass yield was a result of energy-saving under respiratory conditions estimated to be 0.4 mol of ATP...

  2. New particle formation and growth in biomass burning plumes: An important source of cloud condensation nuclei

    Science.gov (United States)

    Hennigan, Christopher J.; Westervelt, Daniel M.; Riipinen, Ilona; Engelhart, Gabriella J.; Lee, Taehyoung; Collett, Jeffrey L., Jr.; Pandis, Spyros N.; Adams, Peter J.; Robinson, Allen L.

    2012-05-01

    Experiments were performed in an environmental chamber to characterize the effects of photo-chemical aging on biomass burning emissions. Photo-oxidation of dilute exhaust from combustion of 12 different North American fuels induced significant new particle formation that increased the particle number concentration by a factor of four (median value). The production of secondary organic aerosol caused these new particles to grow rapidly, significantly enhancing cloud condensation nuclei (CCN) concentrations. Using inputs derived from these new data, global model simulations predict that nucleation in photo-chemically aging fire plumes produces dramatically higher CCN concentrations over widespread areas of the southern hemisphere during the dry, burning season (Sept.-Oct.), improving model predictions of surface CCN concentrations. The annual indirect forcing from CCN resulting from nucleation and growth in biomass burning plumes is predicted to be -0.2 W m-2, demonstrating that this effect has a significant impact on climate that has not been previously considered.

  3. Metabolic efficiency in yeast Saccharomyces cerevisiae in relation to temperature dependent growth and biomass yield.

    Science.gov (United States)

    Zakhartsev, Maksim; Yang, Xuelian; Reuss, Matthias; Pörtner, Hans Otto

    2015-08-01

    Canonized view on temperature effects on growth rate of microorganisms is based on assumption of protein denaturation, which is not confirmed experimentally so far. We develop an alternative concept, which is based on view that limits of thermal tolerance are based on imbalance of cellular energy allocation. Therefore, we investigated growth suppression of yeast Saccharomyces cerevisiae in the supraoptimal temperature range (30-40°C), i.e. above optimal temperature (Topt). The maximal specific growth rate (μmax) of biomass, its concentration and yield on glucose (Yx/glc) were measured across the whole thermal window (5-40°C) of the yeast in batch anaerobic growth on glucose. Specific rate of glucose consumption, specific rate of glucose consumption for maintenance (mglc), true biomass yield on glucose (Yx/glc(true)), fractional conservation of substrate carbon in product and ATP yield on glucose (Yatp/glc) were estimated from the experimental data. There was a negative linear relationship between ATP, ADP and AMP concentrations and specific growth rate at any growth conditions, whilst the energy charge was always high (~0.83). There were two temperature regions where mglc differed 12-fold, which points to the existence of a 'low' (within 5-31°C) and a 'high' (within 33-40°C) metabolic mode regarding maintenance requirements. The rise from the low to high mode occurred at 31-32°C in step-wise manner and it was accompanied with onset of suppression of μmax. High mglc at supraoptimal temperatures indicates a significant reduction of scope for growth, due to high maintenance cost. Analysis of temperature dependencies of product formation efficiency and Yatp/glc revealed that the efficiency of energy metabolism approaches its lower limit at 26-31°C. This limit is reflected in the predetermined combination of Yx/glc(true), elemental biomass composition and degree of reduction of the growth substrate. Approaching the limit implies a reduction of the safety margin

  4. A tree biomass and carbon estimation system

    Science.gov (United States)

    Emily B. Schultz; Thomas G. Matney; Donald L. Grebner

    2013-01-01

    Appropriate forest management decisions for the developing woody biofuel and carbon credit markets require inventory and growth-and-yield systems reporting component tree dry weight biomass estimates. We have developed an integrated growth-and-yield and biomass/carbon calculator. The objective was to provide Mississippi’s State inventory system with bioenergy economic...

  5. Comprehensive computational model for combining fluid hydrodynamics, light transport and biomass growth in a Taylor vortex algal photobioreactor: Lagrangian approach.

    Science.gov (United States)

    Gao, Xi; Kong, Bo; Vigil, R Dennis

    2017-01-01

    A comprehensive quantitative model incorporating the effects of fluid flow patterns, light distribution, and algal growth kinetics on biomass growth rate is developed in order to predict the performance of a Taylor vortex algal photobioreactor for culturing Chlorella vulgaris. A commonly used Lagrangian strategy for coupling the various factors influencing algal growth was employed whereby results from computational fluid dynamics and radiation transport simulations were used to compute numerous microorganism light exposure histories, and this information in turn was used to estimate the global biomass specific growth rate. The simulations provide good quantitative agreement with experimental data and correctly predict the trend in reactor performance as a key reactor operating parameter is varied (inner cylinder rotation speed). However, biomass growth curves are consistently over-predicted and potential causes for these over-predictions and drawbacks of the Lagrangian approach are addressed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Controlled expression of pectic enzymes in Arabidopsis thaliana enhances biomass conversion without adverse effects on growth.

    Science.gov (United States)

    Tomassetti, Susanna; Pontiggia, Daniela; Verrascina, Ilaria; Reca, Ida Barbara; Francocci, Fedra; Salvi, Gianni; Cervone, Felice; Ferrari, Simone

    2015-04-01

    Lignocellulosic biomass from agriculture wastes is a potential source of biofuel, but its use is currently limited by the recalcitrance of the plant cell wall to enzymatic digestion. Modification of the wall structural components can be a viable strategy to overcome this bottleneck. We have previously shown that the expression of a fungal polygalacturonase (pga2 from Aspergillus niger) in Arabidopsis and tobacco plants reduces the levels of de-esterified homogalacturonan in the cell wall and significantly increases saccharification efficiency. However, plants expressing pga2 show stunted growth and reduced biomass production, likely as a consequence of an extensive loss of pectin integrity during the whole plant life cycle. We report here that the expression in Arabidopsis of another pectic enzyme, the pectate lyase 1 (PL1) of Pectobacterium carotovorum, under the control of a chemically inducible promoter, results, after induction of the transgene, in a saccharification efficiency similar to that of plants expressing pga2. However, lines with high levels of transgene induction show reduced growth even in the absence of the inducer. To overcome the problem of plant fitness, we have generated Arabidopsis plants that express pga2 under the control of the promoter of SAG12, a gene expressed only during senescence. These plants expressed pga2 only at late stages of development, and their growth was comparable to that of WT plants. Notably, leaves and stems of transgenic plants were more easily digested by cellulase, compared to WT plants, only during senescence. Expression of cell wall-degrading enzymes at the end of the plant life cycle may be therefore a useful strategy to engineer crops unimpaired in biomass yield but improved for bioconversion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Dynamics of Aviation Biofuel Investment, Incentives, and Market Growth: An Exploration Using the Biomass Scenario Model

    Energy Technology Data Exchange (ETDEWEB)

    Vimmerstedt, Laura; Newes, Emily

    2016-10-25

    The Federal Aviation Administration promotes the development of an aviation biofuel market, and has pursued a goal of 1 billion gallons of production annually by 2018. Although this goal is unlikely to be met, this analysis applies the Biomass Scenario Model to explore conditions affecting market growth, and identifies policy incentive and oil price conditions under which this level of production might occur, and by what year. Numerous combinations of conditions that are more favorable than current conditions can reach the goal before 2030.

  8. Comparison of the growth and biomass production of Miscanthus sinensis, Miscanthus floridulus and Saccharum arundinaceum

    Energy Technology Data Exchange (ETDEWEB)

    Feng, X.; He, Y.; Fang, J.; Fang, Z.; Jiang, B.; Brancourt-Hulmel, M.; Zheng, B.; Jiang, D.

    2015-07-01

    Miscanthus and Saccharum are considered excellent candidates for bioenergy feedstock production. A field experiment was conducted in Zhejiang province of China to characterize the phenotypic differences in three species, two of Miscanthus (M. sinensis and M. floridulus) and one of Saccharum (S. arundinaceum), each with two accessions collected from China. Agronomical traits, including plant height, culm number, tuft diameter and culm diameter, were monitored monthly for the first 3 years of growth. For each year of trail, flowering time was observed and biomass yield was harvested. M. floridulus produced a superior biomass yield with increasing plant age associated with higher yields (4.18, 24.16 and 29.01 t dry matter/hain November of years one to three, respectively). Higher culm diameter, plant height and tuft diameter values were observed for M. floridulus when compared to the other species. Biomass yield was positively correlated to tuft diameter, culm diameter, culm number and negatively to flowering time, but it showed no correlation with plant height. Tuft diameter and culm diameter could be suitable indicators in the selection of accessions for crop yield at the yield-building phase. Studies of the primary colonizers of Miscanthus and Saccharum in their original location may be of interest from the perspective of bioenergy germplasm resource collection. (Author)

  9. Seasonal response of biomass growth and allocation of a boreal bioenergy crop (Phalaris arundinacea L.) to climate change

    Energy Technology Data Exchange (ETDEWEB)

    Chang Zhang

    2013-06-01

    The aim of this work was to analyse how the seasonal biomass growth and allocation in a boreal bioenergy crop (Phalaris arundinacea L., hereafter RCG) were affected by elevated temperature and CO{sub 2} under different levels of groundwater. For this purpose, plants in peat monoliths representing young and old cultivations were grown in auto-controlled environmental chambers over two growing seasons (April-September, 2009 and 2010) under elevated temperature (ambient + 3.5 deg C) and CO{sub 2} (700 {mu}mol mol{sup -1}). (CON: ambient conditions, EC: elevated CO{sub 2}, ET: elevated temperature, ETC: elevated temperature and CO{sub 2}). Three levels of groundwater, ranging from high (HW, 0 cm below the soil surface), to normal (NW, 20 cm below the soil surface) and low (LW, 40 cm below the soil surface), were used. Compared to growth under CON, ET enhanced leaf development and photosynthesis in the RCG plant. Consequently, ET enhanced biomass growth during early growing periods. It also reduced photosynthesis and caused earlier leaf senescence during later growing periods. ET therefore reduced total biomass growth across the entire growing season. EC significantly increased biomass growth throughout the growing period primarily because of increased leaf area and photosynthesis. LW decreased the growth of RCG, mainly because of lower leaf area and photosynthesis. Furthermore, LW accelerated the cessation of growth, thus making the growing season shorter compared with the effects of higher groundwater levels. The LW- induced reductions in biomass growth were exacerbated by ET and partially mitigated by EC. The ETC slightly increased final plant growth. The age of cultivation did not affect the biomass growth among the three major organs (leaf, stem and root) and thus did not affect total biomass growth. Biomass growth was mainly allocated to leaves (LMF) and stems (SMF) in the early growing season, to stems in the middle of the growing season and to roots (RMF) later

  10. Biomass and water storage dynamics of epiphytes in old-growth and secondary montane cloud forest stands in Costa Rica

    NARCIS (Netherlands)

    Koehler, L.; Tobon, C.; Frumau, K.F.A.; Bruijnzeel, L.A.

    2007-01-01

    Epiphytic biomass, canopy humus and associated canopy water storage capacity are known to vary greatly between old-growth tropical montane cloud forests but for regenerating forests such data are virtually absent. The present study was conducted in an old-growth cloud forest and in a 30-year-old

  11. The contrasting effects of nutrient enrichment on growth, biomass allocation and decomposition of plant tissue in coastal wetlands

    NARCIS (Netherlands)

    Hayes, Matthew A.; Jesse, Amber; Tabet, Basam; Reef, Ruth; Keuskamp, Joost A.; Lovelock, Catherine E.

    2017-01-01

    Eutrophication of coastal waters can have consequences for the growth, function and soil processes of coastal wetlands. Our aims were to assess how nutrient enrichment affects growth, biomass allocation and decomposition of plant tissues of a common and widespread mangrove, Avicennia marina, and how

  12. The stability analysis of the nutrition restricted dynamic model of the microalgae biomass growth

    Science.gov (United States)

    Ratianingsih, R.; Fitriani, Nacong, N.; Resnawati, Mardlijah, Widodo, B.

    2018-03-01

    The biomass production is very essential in microalgae farming such that its growth rate is very important to be determined. This paper proposes the dynamics model of it that restricted by its nutrition. The model is developed by considers some related processes that are photosynthesis, respiration, nutrition absorption, stabilization, lipid synthesis and CO2 mobilization. The stability of the dynamical system that represents the processes is analyzed using the Jacobian matrix of the linearized system in the neighborhood of its critical point. There is a lipid formation threshold needed to require its existence. In such case, the absorption rate of respiration process has to be inversely proportional to the absorption rate of CO2 due to photosynthesis process. The Pontryagin minimal principal also shows that there are some requirements needed to have a stable critical point, such as the rate of CO2 released rate, due to the stabilization process that is restricted by 50%, and the threshold of its shifted critical point. In case of the rate of CO2 released rate due to the photosynthesis process is restricted in such interval; the stability of the model at the critical point could not be satisfied anymore. The simulation shows that the external nutrition plays a role in glucose formation such that sufficient for the biomass growth and the lipid production.

  13. Earthworms (Amynthas spp. increase common bean growth, microbial biomass, and soil respiration

    Directory of Open Access Journals (Sweden)

    Julierme Zimmer Barbosa

    2017-10-01

    Full Text Available Few studies have evaluated the effect of earthworms on plants and biological soil attributes, especially among legumes. The objective of this study was to evaluate the influence of earthworms (Amynthas spp. on growth in the common bean (Phaseolus vulgaris L. and on soil biological attributes. The experiment was conducted in a greenhouse using a completely randomized design with five treatments and eight repetitions. The treatments consisted of inoculation with five different quantities of earthworms of the genus Amynthas (0, 2, 4, 6, and 8 worms per pot. Each experimental unit consisted of a plastic pot containing 4 kg of soil and two common bean plants. The experiment was harvested 38 days after seedling emergence. Dry matter and plant height, soil respiration, microbial respiration, microbial biomass, and metabolic quotient were determined. Earthworm recovery in our study was high in number and mass, with all values above 91.6% and 89.1%, respectively. In addition, earthworm fresh biomass decreased only in the treatment that included eight earthworms per pot. The presence of earthworms increased the plant growth and improved soil biological properties, suggesting that agricultural practices that favor the presence of these organisms can be used to increase the production of common bean, and the increased soil CO2 emission caused by the earthworms can be partially offset by the addition of common bean crop residues to the soil.

  14. Modeling Forest Biomass and Growth: Coupling Long-Term Inventory and Lidar Data

    Science.gov (United States)

    Babcock, Chad; Finley, Andrew O.; Cook, Bruce D.; Weiskittel, Andrew; Woodall, Christopher W.

    2016-01-01

    Combining spatially-explicit long-term forest inventory and remotely sensed information from Light Detection and Ranging (LiDAR) datasets through statistical models can be a powerful tool for predicting and mapping above-ground biomass (AGB) at a range of geographic scales. We present and examine a novel modeling approach to improve prediction of AGB and estimate AGB growth using LiDAR data. The proposed model accommodates temporal misalignment between field measurements and remotely sensed data-a problem pervasive in such settings-by including multiple time-indexed measurements at plot locations to estimate AGB growth. We pursue a Bayesian modeling framework that allows for appropriately complex parameter associations and uncertainty propagation through to prediction. Specifically, we identify a space-varying coefficients model to predict and map AGB and its associated growth simultaneously. The proposed model is assessed using LiDAR data acquired from NASA Goddard's LiDAR, Hyper-spectral & Thermal imager and field inventory data from the Penobscot Experimental Forest in Bradley, Maine. The proposed model outperformed the time-invariant counterpart models in predictive performance as indicated by a substantial reduction in root mean squared error. The proposed model adequately accounts for temporal misalignment through the estimation of forest AGB growth and accommodates residual spatial dependence. Results from this analysis suggest that future AGB models informed using remotely sensed data, such as LiDAR, may be improved by adapting traditional modeling frameworks to account for temporal misalignment and spatial dependence using random effects.

  15. Growth of sugarcane under high input conditions in tropical Australia. 1. Radiation use, biomass accumulation and partitioning

    International Nuclear Information System (INIS)

    Robertson, M.J.; Wood, A.W.; Muchow, R.C.

    1996-01-01

    There is little detailed information on yield accumulation in sugarcane under high-input conditions, which can be used to quantify the key physiological parameters contributing to yield variation. Sugarcane is grown under plant and ratoon crop conditions. This study analysed canopy development, radiation interception and biomass accumulation of two contrasting cultivars of sugarcane under irrigation during the same season under plant and ratoon crop conditions. Over the 15 month season, 11 crop samplings were conducted. Biomass partitioning to stalk was also measured to determine to what extent differences in partitioning between cultivars under ratoon and plant crop conditions contribute to differential productivity. The key findings were: (1) The ratoon crop accumulated biomass more quickly than the plant crop during the first 100 days of growth due to higher stalk number, faster canopy development and greater radiation interception. For similar reasons, cultivar Q138 had higher early biomass production than cultivar Q117 in the plant crop, (2) Early differences in biomass accumulation due to crop class became negligible at about 220 days because maximum RUE of the plant crop (1.72 +/- 0.01 g MJ -1 ) was 8% higher than in the first ratoon crop (1.59 +/- 0.08 g MJ -1 ). The higher maximum RUE in the plant crop was consistent with a higher crop growth rate (35.1 +/- 2.3 versus 31.0 +/- 3.4 g m -2 d -1 ) during the Linear phase of biomass accumulation. (3) Biomass accumulation, which ceased about 300 days after planting/ratooning and 140 days before final harvest, attained similar levels of 53-58 t ha -1 in all four crops. (4) The plateau in biomass was associated with loss of live millable stalks, and not a cessation in the growth rate of individual stalks. The crops continued to intercept radiation while on the biomass plateau, so that average RUEs at final harvest were much lower than the maximum values. (5) There was no effect of crop class or cultivar on the

  16. OSCAAR calculations for the Iput dose reconstruction scenario of BIOMASS theme 2

    International Nuclear Information System (INIS)

    Homma, Toshimitsu; Matsunaga, Takeshi

    2001-01-01

    This report presents the results obtained from the application of the accident consequence assessment code, called OSCAAR, developed in Japan Atomic Energy Research Institute to the Iput dose reconstruction scenario of BIOMASS Theme 2 organized by International Atomic Energy Agency. The Iput Scenario deals with 137 Cs contamination of the catchment basin and agricultural area in the Bryansk Region of Russia, which was heavily contaminated after the Chernobyl accident. This exercise was used to test the chronic exposure pathway models in OSCAAR with actual measurements and to identify the most important sources of uncertainly with respect to each part of the assessment. The OSCAAR chronic exposure pathway models almost successfully reconstructed the whole 10-year time course of 137 Cs activity concentrations in most requested types of agricultural products and natural foodstuffs. Modeling of 137 Cs downward migration in soils is, however, still incomplete and more detail modeling of the changes of cesium bioavailability with time is needed for long term predictions of the contamination of food. (author)

  17. OSCAAR calculations for the Iput dose reconstruction scenario of BIOMASS theme 2

    Energy Technology Data Exchange (ETDEWEB)

    Homma, Toshimitsu; Matsunaga, Takeshi [Department of Reactor Safety Research, Nuclear Safety Research Center, Tokai Research Establishment, Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan)

    2001-01-01

    This report presents the results obtained from the application of the accident consequence assessment code, called OSCAAR, developed in Japan Atomic Energy Research Institute to the Iput dose reconstruction scenario of BIOMASS Theme 2 organized by International Atomic Energy Agency. The Iput Scenario deals with {sup 137}Cs contamination of the catchment basin and agricultural area in the Bryansk Region of Russia, which was heavily contaminated after the Chernobyl accident. This exercise was used to test the chronic exposure pathway models in OSCAAR with actual measurements and to identify the most important sources of uncertainly with respect to each part of the assessment. The OSCAAR chronic exposure pathway models almost successfully reconstructed the whole 10-year time course of {sup 137}Cs activity concentrations in most requested types of agricultural products and natural foodstuffs. Modeling of {sup 137}Cs downward migration in soils is, however, still incomplete and more detail modeling of the changes of cesium bioavailability with time is needed for long term predictions of the contamination of food. (author)

  18. Growth and biomass partitioning of mulungu seedlings in response to phosphorus fertilization and mycorrhizal inoculation

    Directory of Open Access Journals (Sweden)

    Tiago de Sousa Leite

    2014-12-01

    Full Text Available The objective of this work was to evaluate the initial growth and biomass partitioning of mulungu (Erythrina velutina Willd. seedlings under different rates of phosphorus in the presence and absence of arbuscular mycorrhizal fungi (FMA’s. A randomized blocks design in a 5 x 2 factorial arrangement was used, with four replicates and three plants per plot. Treatments consisted of five phosphorus rates (0, 50, 100, 150 and 200 mg.Kg soil-1, using as source the superphosphate fertilizer, and presence or absence of FMA’s. At 98 days after sowing (DAS, shoot height, stem diameter, leaf number, leaf chlorophyll index, leaf dry matter, stem dry matter, root dry matter, leaf area, Dickson quality index and height/stem diameter ratio were evaluated. The phosphorus rate of 200 mg.kg-1 proved to be the most efficient for production of Erythrina velutina seedlings, but with a significant reduction in the biological association of this plant with rhizobacteria. Biomass distribution within the different parts of the plants did not change with distinct rates of P, and there were no benefits in the use of FMA’s until 98 DAS.

  19. Initial effects of quinclorac on the survival and growth of high biomass tree species

    Directory of Open Access Journals (Sweden)

    Joshua P. Adams

    2017-07-01

    Full Text Available Increasingly, short rotation woody crops are being planted for biofuel/biomass production on unused lands or marginal agricultural lands. Many of these plantations occur near agriculture land which is intensively managed including yearly herbicide applications. Herbicide drift from these applications may cause tree stress and decreasing yields impacting potential biomass production. Quinclorac, a rice herbicide, is often cited as a potential source of tree damage and is the focal herbicide of this study. Five planting stocks, including three eastern cottonwood clones, a hybrid poplar clone, and American sycamore, were assessed for herbicide affects and deployed at three sites across south Arkansas. Stocks were exposed to a full rate labeled for rice (3.175 L ha-1, two rates simulating drift (1/100th and 1/10th the full rate, and a no-spray control. Survival of all Populus clones decreased drastically as quinclorac rate increased, while there was little observed effect on American sycamore. Some variability in treatment response among poplars occurred below the full herbicide rate; however, direct spraying a full herbicide rate on poplars resulted in survival rates below 65 percent and negative growth rates due to dieback. Conversely, photosynthetic rates of remaining leaves increased as quinclorac rate increased. Survival and damage scores of American sycamore, regardless of herbicide rate, remained nearly constant.

  20. Growth, biomass production and ions accumulation in Atriplex nummularia Lindl grown under abiotic stress

    Directory of Open Access Journals (Sweden)

    Hidelblandi F. de Melo

    2016-02-01

    Full Text Available ABSTRACT Atriplex nummularia is a halophyte of great importance in the recovery of saline soils and is considered as a model plant to study biosaline scenarios. This study aimed to evaluate biometric parameters, biomass production and the accumulation of ions in A. nummularia grown under abiotic stresses. Cultivation was carried out in a Fluvic Neosol for 100 days, adopting two water regimes: 37 and 70% of field capacity. Plants were irrigated with saline solutions containing two types of salts (NaCl and a mixture of NaCl, KCl, MgCl2 and CaCl2 at six levels of electrical conductivity: 0, 5, 10, 20, 30 and 40 dS m-1, arranged in a 6 x 2 x 2 factorial with 4 replicates, forming 96 plots. At the end of the experiment, plants were divided into leaves, stem and roots, for the determination of fresh matter (FM, dry matter (DM and estimated leaf area (LA, besides the contents of Ca2+, Mg2+, Na+, K+ and Cl-. The type of salt did not influence plant growth or biomass production; however, it influenced the levels of Ca2+, Mg2+, Na+ and Cl- in the leaves and Mg2+, K+ and Cl- in the roots. Increase in salinity reduced the contents of Ca2+, Mg2+, Na+, K+ and Cl- for all treatments.

  1. Calculation of energy costs of composite biomass stirring at biogas stations

    Science.gov (United States)

    Suslov, D. Yu; Temnikov, D. O.

    2018-03-01

    The paper is devoted to the study of the equipment to produce biogas fuel from organic wastes. The bioreactor equipped with a combined stirring system ensuring mechanical and bubbling stirring is designed. The method of energy cost calculation of the combined stirring system with original design is suggested. The received expressions were used in the calculation of the stirring system installed in the 10 m3 bioreactor: power consumed by the mixer during the start-up period made Nz =9.03 kW, operating power of the mixer made NE =1.406 kW, compressor power for bubbling stirring made NC =18.5 kW. Taking into account the operating mode of single elements of the stirring system, the energy cost made 4.38% of the total energy received by the biogas station.

  2. TREATMENTS OF PLASMA CORONA RADIATION ON SEAWEED Gracilaria Verrucosa (HUDSON PAPENFUSS: Efforts to increase growth and biomass

    Directory of Open Access Journals (Sweden)

    Filemon Jalu N Putra

    2014-12-01

    Full Text Available Gracilaria verrucosa (Hudson Papenfuss has great potential to be farmed in the water resources in Indonesia. As natural resource, the weed has a major contribution in the field of industry both for human food and health. Efforts have been done intensively to increase the production capacity to meet the market demand especially gelatin, both national and international market. One of them is the application of plasma corona irradiation treatments on the weed to improve developmental pathways. The concept of plasma irradiation performed at atmospheric conditions may impact on nitrogen intrusion pathway that is important element in the growth of the weed. The aims of this study are to assess the potential impact of plasma irradiation in improving the growth of G. verrucosa and thus increase their biomass production. The treatments were done using five different duration of plasma irradiation, which were 2, 4, 6, 8, and 10 minutes at a 0,5mA stable source of voltage and 8kV of electrical current. Observations of growth rate include thallus length and biomass of G. verrucosa , that was observed every week for 28 days. The result showed that the growth of weed exhibited better than those without radiation. The best growth was reached in the group of treatment of 8 minutes irradiation, exhibited 65,91g of biomass and 9.5515% growth rate and length of thallus reached 22,33 cm and daily growth rate of 2.9759%. The lowest growth of the weed occurred in the treatment of 10 minutes irradiation, which was 44,82 g biomass, 8.123% growth rate, 17,13 cm thallus length with a daily growth rate of 1.9942%

  3. The use of flue gas for the growth of microalgal biomass

    International Nuclear Information System (INIS)

    Zeiler, K.G.; Kadam, K.L.; Heacox, D.A.

    1995-01-01

    Capture and utilization of carbon dioxide (CO 2 ) by microalgae is a promising technology to help reduce emissions from fossil fuel-fired power plants. Microalgae are of particular interest because of their rapid growth rates and tolerance to varying environmental conditions. Laboratory work is directed toward investigating the effects of simulated flue gas on microalgae, while engineering studies have focused on the economics of the technology. One strain of a green algae, Monoraphidium minutum, has shown excellent tolerance and growth when exposed to simulated flue gas which meets the requirements of the 1990 Clean Air Act Amendments (1990 CAAA). Biomass concentrations of ∼2g/L have been measured in batch culture. Several other microalgae have also shown tolerance to simulated flue gas; however, the growth of these strains is not equivalent to that observed for M. minutum. Coupling the production of biodiesel or other microalgae-derived commodity chemicals with the use of flue gas carbon dioxide is potentially a zero-cost method of reducing the amount of carbon dioxide contributed to the atmosphere by fossil fuel-fired power plants. We have identified two major biological performance parameters which can provide sufficient improvement in this technology to render it cost-competitive with other existing CO x mitigation technologies. These are algal growth rate and lipid content. An updated economic analysis shows that growth rate is the more important of the two, and should be the focus of near term research activities. The long term goal of achieving zero cost will require other, non-biological, improvements in the process

  4. The use of flue gas for the growth of microalgal biomass

    Energy Technology Data Exchange (ETDEWEB)

    Zeiler, K.G.; Kadam, K.L.; Heacox, D.A. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1995-11-01

    Capture and utilization of carbon dioxide (CO{sub 2}) by microalgae is a promising technology to help reduce emissions from fossil fuel-fired power plants. Microalgae are of particular interest because of their rapid growth rates and tolerance to varying environmental conditions. Laboratory work is directed toward investigating the effects of simulated flue gas on microalgae, while engineering studies have focused on the economics of the technology. One strain of a green algae, Monoraphidium minutum, has shown excellent tolerance and growth when exposed to simulated flue gas which meets the requirements of the 1990 Clean Air Act Amendments (1990 CAAA). Biomass concentrations of {similar_to}2g/L have been measured in batch culture. Several other microalgae have also shown tolerance to simulated flue gas; however, the growth of these strains is not equivalent to that observed for M. minutum. Coupling the production of biodiesel or other microalgae-derived commodity chemicals with the use of flue gas carbon dioxide is potentially a zero-cost method of reducing the amount of carbon dioxide contributed to the atmosphere by fossil fuel-fired power plants. We have identified two major biological performance parameters which can provide sufficient improvement in this technology to render it cost-competitive with other existing CO{sub x} mitigation technologies. These are algal growth rate and lipid content. An updated economic analysis shows that growth rate is the more important of the two, and should be the focus of near term research activities. The long term goal of achieving zero cost will require other, non-biological, improvements in the process.

  5. The limited contribution of large trees to annual biomass production in an old-growth tropical forest.

    Science.gov (United States)

    Ligot, Gauthier; Gourlet-Fleury, Sylvie; Ouédraogo, Dakis-Yaoba; Morin, Xavier; Bauwens, Sébastien; Baya, Fidele; Brostaux, Yves; Doucet, Jean-Louis; Fayolle, Adeline

    2018-04-16

    Although the importance of large trees regarding biodiversity and carbon stock in old-growth forests is undeniable, their annual contribution to biomass production and carbon uptake remains poorly studied at the stand level. To clarify the role of large trees in biomass production, we used data of tree growth, mortality, and recruitment monitored during 20 yr in 10 4-ha plots in a species-rich tropical forest (Central African Republic). Using a random block design, three different silvicultural treatments, control, logged, and logged + thinned, were applied in the 10 plots. Annual biomass gains and losses were analyzed in relation to the relative biomass abundance of large trees and by tree size classes using a spatial bootstrap procedure. Although large trees had high individual growth rates and constituted a substantial amount of biomass, stand-level biomass production decreased with the abundance of large trees in all treatments and plots. The contribution of large trees to annual stand-level biomass production appeared limited in comparison to that of small trees. This pattern did not only originate from differences in abundance of small vs. large trees or differences in initial biomass stocks among tree size classes, but also from a reduced relative growth rate of large trees and a relatively constant mortality rate among tree size classes. In a context in which large trees are increasingly gaining attention as being a valuable and a key structural characteristic of natural forests, the present study brought key insights to better gauge the relatively limited role of large trees in annual stand-level biomass production. In terms of carbon uptake, these results suggest, as already demonstrated, a low net carbon uptake of old-growth forests in comparison to that of logged forests. Tropical forests that reach a successional stage with relatively high density of large trees progressively cease to be carbon sinks as large trees contribute sparsely or even

  6. Applying Central Composite Design and Response Surface Methodology to Optimize Growth and Biomass Production of Haemophilus influenzae Type b.

    Science.gov (United States)

    Momen, Seyed Bahman; Siadat, Seyed Davar; Akbari, Neda; Ranjbar, Bijan; Khajeh, Khosro

    2016-06-01

    Haemophilus influenzae type b (Hib) is the leading cause of bacterial meningitis, otitis media, pneumonia, cellulitis, bacteremia, and septic arthritis in infants and young children. The Hib capsule contains the major virulence factor, and is composed of polyribosyl ribitol phosphate (PRP) that can induce immune system response. Vaccines consisting of Hib capsular polysaccharide (PRP) conjugated to a carrier protein are effective in the prevention of the infections. However, due to costly processes in PRP production, these vaccines are too expensive. To enhance biomass, in this research we focused on optimizing Hib growth with respect to physical factors such as pH, temperature, and agitation by using a response surface methodology (RSM). We employed a central composite design (CCD) and a response surface methodology to determine the optimum cultivation conditions for growth and biomass production of H. influenzae type b. The treatment factors investigated were initial pH, agitation, and temperature, using shaking flasks. After Hib cultivation and determination of dry biomass, analysis of experimental data was performed by the RSM-CCD. The model showed that temperature and pH had an interactive effect on Hib biomass production. The dry biomass produced in shaking flasks was about 5470 mg/L, which was under an initial pH of 8.5, at 250 rpm and 35° C. We found CCD and RSM very effective in optimizing Hib culture conditions, and Hib biomass production was greatly influenced by pH and incubation temperature. Therefore, optimization of the growth factors to maximize Hib production can lead to 1) an increase in bacterial biomass and PRP productions, 2) lower vaccine prices, 3) vaccination of more susceptible populations, and 4) lower risk of Hib infections.

  7. Growth of filamentous blue-green algae at high temperatures: a source of biomass for renewable fuels

    Energy Technology Data Exchange (ETDEWEB)

    Timourian, H.; Ward, R.L.; Jeffries, T.W.

    1977-08-17

    The growth of filamentous blue-green algae (FBGA) at high temperatures in outdoor, shallow solar ponds is being investigated. The temperature of the 60-m/sup 2/ ponds can be controlled to an average temperature of 45/sup 0/C. The growth of FBGA at high temperatures offers an opportunity, not presently available from outdoor algal ponds or energy farms, to obtain large amounts of biomass. Growth of algae at high temperatures results in higher yields because of increased growth rate, the higher light intensity that can be used before saturating the photosynthetic process, easier maintenance of selected FBGA strains, and fewer predators to decimate culture. Additional advantages of growing FBGA as a source of biomass include: bypassing the limitations of nutrient sources, because FBGA fix their own nitrogen and require only CO/sub 2/ when inorganic nutrients are recycled; toleration of higher salinity and metal ion concentrations; and easier and less expensive harvesting procedures.

  8. Growth and biomass productivity of kenaf (Hibiscus cannabinus, L.) under different agricultural inputs and management practices in central Greece

    NARCIS (Netherlands)

    Danalatos, N.G.; Archontoulis, S.V.

    2010-01-01

    The growth and biomass productivity of kenaf (Hibiscus cannabinus, L.) cultivars Tainung 2 and Everglades 41 were determined under three irrigation applications (low: 25%, moderate: 50% and fully: 100% of maximum evapotranspiration; ETm), four nitrogen dressings (0, 50, 100 and 150 kg hat), two

  9. Biomass and leaf-level gas exchange characteristics of three African savanna C4 grass species under optimum growth conditions

    NARCIS (Netherlands)

    Mantlana, K.B.; Veenendaal, E.M.; Arneth, A.; Grispen, V.; Bonyongo, C.M.; Heitkönig, I.M.A.; Lloyd, J.

    2009-01-01

    C4 savanna grass species, Digitaria eriantha, Eragrostis lehmanniana and Panicum repens, were grown under optimum growth conditions with the aim of characterizing their above- and below-ground biomass allocation and the response of their gas exchange to changes in light intensity, CO2 concentration

  10. Effects of light and biomass partitioning on growth, photosynthesis and carbohydrate content of the seagrass Zostera nolti Hornem.

    NARCIS (Netherlands)

    Olivé, I.; Brun Murillo, F.G.; Vergara, J.J.; Pérez-Lloréns, J.J.

    2007-01-01

    Plants of the seagrass Zostera noltii were cultured in the laboratory (mesocosms) for two weeks to assess the effect of above:below-ground (AG/BG) biomass ratios and light on growth, photosynthesis and chemical composition. Experimental plant units (EPUs) with different proportions between AG and BG

  11. Ex situ growth and biomass of Populus bioenergy crops irrigated and fertilized with landfill leachate

    International Nuclear Information System (INIS)

    Zalesny, Ronald S.; Wiese, Adam H.; Bauer, Edmund O.; Riemenschneider, Donald E.

    2009-01-01

    Merging traditional intensive forestry with waste management offers dual goals of fiber and bioenergy production, along with environmental benefits such as soil/water remediation and carbon sequestration. As part of an ongoing effort to acquire data about initial genotypic performance, we evaluated: (1) the early aboveground growth of trees belonging to currently utilized Populus genotypes subjected to irrigation with municipal solid waste landfill leachate or non-fertilized well water (control), and (2) the above- and below-ground biomass of the trees after 70 days of growth. We determined height, diameter, and number of leaves at 28, 42, 56, and 70 days after planting (DAP), along with stem, leaf, and root dry mass by testing six Populus clones (DN34, DN5, I4551, NC14104, NM2, NM6) grown in a greenhouse in a split-split plot, repeated measures design with two blocks, two treatments (whole-plots), six clones (sub-plots), and four sampling dates (sub-sub-plots, repeated measure). Treatments (leachate, water) were applied every other day beginning 42 DAP. The leachate-treated trees exhibited greater height, diameter, and number of leaves at 56 and 70 DAP (P 0.05). Overall, genotypic responses to the leachate treatment were clone-specific for all traits

  12. Effects of heavy-metal-contaminated soil on growth, phenology and biomass turnover of Hieracium piloselloides

    International Nuclear Information System (INIS)

    Ryser, Peter; Sauder, Wendy R.

    2006-01-01

    The effects of low levels of heavy metals on plant growth, biomass turnover and reproduction were investigated for Hieracium pilosella. Plants were grown for 12 weeks on substrates with different concentrations of heavy metals obtained by diluting contaminated soils with silica sand. To minimize effects of other soil factors, the substrates were limed, fertilized, and well watered. The more metal-contaminated soil the substrate contained, the lower the leaf production rate and the plant mass were, and the more the phenological development was delayed. Flowering phenology was very sensitive to metals. Leaf life span was reduced at the highest and the lowest metal levels, the latter being a result of advanced seed ripening. Even if the effect of low metal levels on plant growth may be small, the delayed and reduced reproduction may have large effects at population, community and ecosystem level, and contribute to rapid evolution of metal tolerance. - Flowering phenology shows a very sensitive response to heavy metal contamination of soils

  13. Nitrogen nutrition of Canna indica: Effects of ammonium versus nitrate on growth, biomass allocation, photosynthesis, nitrate reductase activity and N uptake rates

    DEFF Research Database (Denmark)

    Konnerup, Dennis; Brix, Hans

    2010-01-01

    The effects of inorganic nitrogen (N) source (NH4+, NO3- or both) on growth, biomass allocation, photosynthesis, N uptake rate, nitrate reductase activity and mineral composition of Canna indica were studied in hydroponic culture. The relative growth rates (0.05-0.06 g g-1 d-1), biomass allocation...

  14. Biomass recalcitrance

    DEFF Research Database (Denmark)

    Felby, Claus

    2009-01-01

    Alternative and renewable fuels derived from lignocellulosic biomass offer a promising alternative to conventional energy sources, and provide energy security, economic growth, and environmental benefits. However, plant cell walls naturally resist decomposition from microbes and enzymes - this co......Alternative and renewable fuels derived from lignocellulosic biomass offer a promising alternative to conventional energy sources, and provide energy security, economic growth, and environmental benefits. However, plant cell walls naturally resist decomposition from microbes and enzymes...... - this collective resistance is known as "biomass recalcitrance." Breakthrough technologies are needed to overcome barriers to developing cost-effective processes for converting biomass to fuels and chemicals. This book examines the connection between biomass structure, ultrastructure, and composition......, to resistance to enzymatic deconstruction, with the aim of discovering new cost-effective technologies for biorefineries. It contains chapters on topics extending from the highest levels of biorefinery design and biomass life-cycle analysis, to detailed aspects of plant cell wall structure, chemical treatments...

  15. Microalgae biomass growth using primary treated wastewater as nutrient source and their potential use for lipids production

    Science.gov (United States)

    Frementiti, Anastacia; Aravantinou, Andriana F.; Manariotis, Ioannis D.

    2015-04-01

    The great demand for energy, the rising price of the crude oil and the rapid decrease of the supply of fossil fuels are the main reasons that have increased the interest for the production of fuels from renewable resources. Microalgae are considered to be the most promising new source of biomass and biofuels, since their lipid content in some cases is up to 70%. The microalgal growth and its metabolism processes are essential in wastewater treatment with many economical prospects. The aim of this work was to evaluate the algal production in a laboratory scale open pond. The pond had a working volume of 30 L and was fed with sterilized primary treated wastewater. Chlorococcum sp. was used as a model microalgal. Experiments were conducted under controlled environmental conditions in order to investigate the removal of nutrients, biomass growth, and lipids accumulation in microalgae. Chlorococcum sp. cultures behavior was investigated under batch, fill and draw, and continuous operation mode, at two different radiation intensities (100 and 200 μmol/m2s). The maximum biomass concentration of 630 mg/L was observed with the fill and draw mode. Moreover, the growth rates of microalgal biomass were depended on the influent nutrients concentration. Specifically, the phosphates were the limiting factor for biomass growth in continuous condition; the phosphates removal in this condition, reached a 100%. Chemical demand oxygen (COD) was not removed efficiently by Chlorococcum sp. since it was an autotrophic microalgal with no organic carbon demands for its growth. The lipids content in the dry weight of Chlorococcum sp. ranged from 1 to 9% depending on the concentration of nutrients and the operating conditions.

  16. Selecting and optimizing eco-physiological parameters of Biome-BGC to reproduce observed woody and leaf biomass growth of Eucommia ulmoides plantation in China using Dakota optimizer

    Science.gov (United States)

    Miyauchi, T.; Machimura, T.

    2013-12-01

    In the simulation using an ecosystem process model, the adjustment of parameters is indispensable for improving the accuracy of prediction. This procedure, however, requires much time and effort for approaching the simulation results to the measurements on models consisting of various ecosystem processes. In this study, we tried to apply a general purpose optimization tool in the parameter optimization of an ecosystem model, and examined its validity by comparing the simulated and measured biomass growth of a woody plantation. A biometric survey of tree biomass growth was performed in 2009 in an 11-year old Eucommia ulmoides plantation in Henan Province, China. Climate of the site was dry temperate. Leaf, above- and below-ground woody biomass were measured from three cut trees and converted into carbon mass per area by measured carbon contents and stem density. Yearly woody biomass growth of the plantation was calculated according to allometric relationships determined by tree ring analysis of seven cut trees. We used Biome-BGC (Thornton, 2002) to reproduce biomass growth of the plantation. Air temperature and humidity from 1981 to 2010 was used as input climate condition. The plant functional type was deciduous broadleaf, and non-optimizing parameters were left default. 11-year long normal simulations were performed following a spin-up run. In order to select optimizing parameters, we analyzed the sensitivity of leaf, above- and below-ground woody biomass to eco-physiological parameters. Following the selection, optimization of parameters was performed by using the Dakota optimizer. Dakota is an optimizer developed by Sandia National Laboratories for providing a systematic and rapid means to obtain optimal designs using simulation based models. As the object function, we calculated the sum of relative errors between simulated and measured leaf, above- and below-ground woody carbon at each of eleven years. In an alternative run, errors at the last year (at the

  17. Overexpression of Populus trichocarpa CYP85A3 promotes growth and biomass production in transgenic trees.

    Science.gov (United States)

    Jin, Yan-Li; Tang, Ren-Jie; Wang, Hai-Hai; Jiang, Chun-Mei; Bao, Yan; Yang, Yang; Liang, Mei-Xia; Sun, Zhen-Cang; Kong, Fan-Jing; Li, Bei; Zhang, Hong-Xia

    2017-10-01

    Brassinosteroids (BRs) are essential hormones that play crucial roles in plant growth, reproduction and response to abiotic and biotic stress. In Arabidopsis, AtCYP85A2 works as a bifunctional cytochrome P450 monooxygenase to catalyse the conversion of castasterone to brassinolide, a final rate-limiting step in the BR-biosynthetic pathway. Here, we report the functional characterizations of PtCYP85A3, one of the three AtCYP85A2 homologous genes from Populus trichocarpa. PtCYP85A3 shares the highest similarity with AtCYP85A2 and can rescue the retarded-growth phenotype of the Arabidopsis cyp85a2-2 and tomato d x mutants. Constitutive expression of PtCYP85A3, driven by the cauliflower mosaic virus 35S promoter, increased the endogenous BR levels and significantly promoted the growth and biomass production in both transgenic tomato and poplar. Compared to the wild type, plant height, shoot fresh weight and fruit yield increased 50%, 56% and 43%, respectively, in transgenic tomato plants. Similarly, plant height and stem diameter increased 15% and 25%, respectively, in transgenic poplar plants. Further study revealed that overexpression of PtCYP85A3 enhanced xylem formation without affecting the composition of cellulose and lignin, as well as the cell wall thickness in transgenic poplar. Our finding suggests that PtCYP85A3 could be used as a potential candidate gene for engineering fast-growing trees with improved wood production. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  18. Lipid for biodiesel production from attached growth Chlorella vulgaris biomass cultivating in fluidized bed bioreactor packed with polyurethane foam material.

    Science.gov (United States)

    Mohd-Sahib, Ainur-Assyakirin; Lim, Jun-Wei; Lam, Man-Kee; Uemura, Yoshimitsu; Isa, Mohamed Hasnain; Ho, Chii-Dong; Kutty, Shamsul Rahman Mohamed; Wong, Chung-Yiin; Rosli, Siti-Suhailah

    2017-09-01

    The potential to grow attached microalgae Chlorella vulgaris in fluidized bed bioreactor was materialized in this study, targeting to ease the harvesting process prior to biodiesel production. The proposed thermodynamic mechanism and physical property assessment of various support materials verified polyurethane to be suitable material favouring the spontaneous adhesion by microalgae cells. The 1-L bioreactor packed with only 2.4% (v/v) of 1.00-mL polyurethane foam cubes could achieve the highest attached growth microalgae biomass and lipid weights of 812±122 and 376±37mg, respectively, in comparison with other cube sizes. The maturity of attached growth microalgae biomass for harvesting could also be determined from the growth trend of suspended microalgae biomass. Analysis of FAME composition revealed that the harvested microalgae biomass was dominated by C16-C18 (>60%) and mixture of saturated and mono-unsaturated fatty acids (>65%), satiating the biodiesel standard with adequate cold flow property and oxidative stability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Effects of nutrient ratios and carbon dioxide bio-sequestration on biomass growth of Chlorella sp. in bubble column photobioreactor.

    Science.gov (United States)

    Vo, Hoang-Nhat-Phong; Bui, Xuan-Thanh; Nguyen, Thanh-Tin; Nguyen, Dinh Duc; Dao, Thanh-Son; Cao, Ngoc-Dan-Thanh; Vo, Thi-Kim-Quyen

    2018-08-01

    Photobioreactor technology, especially bubble column configuration, employing microalgae cultivation (e.g., Chlorella sp.), is an ideal man-made environment to achieve sufficient microalgae biomass through its strictly operational control. Nutrients, typically N and P, are necessary elements in the cultivation process, which determine biomass yield and productivity. Specifically, N:P ratios have certain effects on microalgae's biomass growth. It is also attractive that microalgae can sequester CO 2 by using that carbon source for photosynthesis and, subsequently, reducing CO 2 emission. Therefore, this study aims to investigate the effect of N:P ratios on Chlorella sp.'s growth, and to study the dynamic of CO 2 fixation in the bubble column photobioreactor. According to our results, N:P ratio of 15:1 could produce the highest biomass yield (3568 ± 158 mg L -1 ). The maximum algae concentration was 105 × 10 6  cells mL -1 , receiving after 92 h. Chlorella sp. was also able to sequester CO 2 at 28 ± 1.2%, while the specific growth rate and carbon fixation rate were observed at 0.064 h -1 and 68.9 ± 1.91 mg L -1  h -1 , respectively. The types of carbon sources (e.g., organic and inorganic carbon) possessed potential impact on microalgae's cultivation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Effects of different sources of organic waste application on the growth and biomass production of kenaf (hibiscus cannabinus L.)

    International Nuclear Information System (INIS)

    Shahariara, M.S.; Tahsina, S.; Muhammad, S.; Gani, M.N.; Huq, I.

    2012-01-01

    The growth and biomass productivity of kenaf (Hibiscus cannabinus L.) grown with different sources of organic waste viz. sewage sludge, poultry litter, cow dung and rice straw application were observed in a field experiment. Organic wastes were applied at the rate of 5 t/ha and were compared with recommended dose of fertilizers and control. The plants were harvested at 120 days after sowing (at the flowering stage). Different sources of organic wastes had a significant effect (P cow dung>poultry litter > rice straw treatments. Among the four sources of organic wastes, sewage sludge treated plot produced the highest mean biomass of 23.33 t/ha (dry weight basis) which was 14.64% higher than the mean biomass production from control plot. (author)

  1. Effects of different sources of organic waste application on the growth and biomass production of kenaf (hibiscus cannabinus L.)

    International Nuclear Information System (INIS)

    Shahariar, M.S.; Tashin, S.; Gani, N.; Muhammad, S.; Huq, I.

    2012-01-01

    The growth and biomass productivity of kenaf(Hibiscus cannabinus L.) grown with different sources of organic waste viz. sewage sludge, poultry litter, cow dung and rice straw application were observed in a field experiment. Organic wastes were applied at the rate of 5 t/ha and were compared with recommended dose of fertilizers and control. The plants were harvested at 120 days after sowing (at the flowering stage). Different sources of organic wastes had a significant effect (P cow dung>poultry litter> rice straw treatments. Among the four sources of organic wastes, sewage sludge treated plot produced the highest mean biomass of 23.33 t/ha (dry weight basis) which was 14.64% higher than the mean biomass production from control plot. (author)

  2. Lipase Production in Solid-State Fermentation Monitoring Biomass Growth of Aspergillus niger Using Digital Image Processing

    Science.gov (United States)

    Dutra, Julio C. V.; da Terzi, Selma C.; Bevilaqua, Juliana Vaz; Damaso, Mônica C. T.; Couri, Sônia; Langone, Marta A. P.; Senna, Lilian F.

    The aim of this study was to monitor the biomass growth of Aspergillus niger in solid-state fermentation (SSF) for lipase production using digital image processing technique. The strain A. niger 11T53A14 was cultivated in SSF using wheat bran as support, which was enriched with 0.91% (m/v) of ammonium sulfate. The addition of several vegetable oils (castor, soybean, olive, corn, and palm oils) was investigated to enhance lipase production. The maximum lipase activity was obtained using 2% (m/m) castor oil. In these conditions, the growth was evaluated each 24 h for 5 days by the glycosamine content analysis and digital image processing. Lipase activity was also determined. The results indicated that the digital image process technique can be used to monitor biomass growth in a SSF process and to correlate biomass growth and enzyme activity. In addition, the immobilized esterification lipase activity was determined for the butyl oleate synthesis, with and without 50% v/v hexane, resulting in 650 and 120 U/g, respectively. The enzyme was also used for transesterification of soybean oil and ethanol with maximum yield of 2.4%, after 30 min of reaction.

  3. Lipase production in solid-state fermentation monitoring biomass growth of aspergillus niger using digital image processing.

    Science.gov (United States)

    Dutra, Júlio C V; da C Terzi, Selma; Bevilaqua, Juliana Vaz; Damaso, Mônica C T; Couri, Sônia; Langone, Marta A P; Senna, Lilian F

    2008-03-01

    The aim of this study was to monitor the biomass growth of Aspergillus niger in solid-state fermentation (SSF) for lipase production using digital image processing technique. The strain A. niger 11T53A14 was cultivated in SSF using wheat bran as support, which was enriched with 0.91% (m/v) of ammonium sulfate. The addition of several vegetable oils (castor, soybean, olive, corn, and palm oils) was investigated to enhance lipase production. The maximum lipase activity was obtained using 2% (m/m) castor oil. In these conditions, the growth was evaluated each 24 h for 5 days by the glycosamine content analysis and digital image processing. Lipase activity was also determined. The results indicated that the digital image process technique can be used to monitor biomass growth in a SSF process and to correlate biomass growth and enzyme activity. In addition, the immobilized esterification lipase activity was determined for the butyl oleate synthesis, with and without 50% v/v hexane, resulting in 650 and 120 U/g, respectively. The enzyme was also used for transesterification of soybean oil and ethanol with maximum yield of 2.4%, after 30 min of reaction.

  4. Shrub biomass production following simulated herbivory: A test of the compensatory growth hypothesis

    Science.gov (United States)

    Terri B. Teaschner; Timothy E. Fulbright

    2007-01-01

    The objective of this experiment was to test the hypotheses that 1) simulated herbivory stimulates increased biomass production in spiny hackberry (Celtis pallida), but decreases biomass production in blackbrush acacia (Acacia rigidula) compared to unbrowsed plants and 2) thorn density and length increase in blackbrush acacia to a...

  5. Seedling growth and biomass allocation in relation to leaf habit and shade tolerance among 10 temperate tree species.

    Science.gov (United States)

    Modrzyński, Jerzy; Chmura, Daniel J; Tjoelker, Mark G

    2015-08-01

    Initial growth of germinated seeds is an important life history stage, critical for establishment and succession in forests. Important questions remain regarding the differences among species in early growth potential arising from shade tolerance. In addition, the role of leaf habit in shaping relationships underlying shade tolerance-related differences in seedling growth remains unresolved. In this study we examined variation in morphological and physiological traits among seedlings of 10 forest tree species of the European temperate zone varying in shade tolerance and leaf habit (broadleaved winter-deciduous species vs needle-leaved conifers) during a 10-week period. Seeds were germinated and grown in a controlled environment simulating an intermediate forest understory light environment to resolve species differences in initial growth and biomass allocation. In the high-resource experimental conditions during the study, seedlings increased biomass allocation to roots at the cost of leaf biomass independent of shade tolerance and leaf habit. Strong correlations between relative growth rate (RGR), net assimilation rate (NAR), leaf area ratio (LAR), specific leaf area (SLA) and leaf mass fraction (LMF) indicate that physiology and biomass allocation were equally important determinants of RGR as plant structure and leaf morphology among these species. Our findings highlight the importance of seed mass- and seed size-related root morphology (specific root length-SRL) for shade tolerance during early ontogeny. Leaf and plant morphology (SLA, LAR) were more successful in explaining variation among species due to leaf habit than shade tolerance. In both broadleaves and conifers, shade-tolerant species had lower SRL and greater allocation of biomass to stems (stem mass fraction). Light-seeded shade-intolerant species with greater SRL had greater RGR in both leaf habit groups. However, the greatest plant mass was accumulated in the group of heavy-seeded shade

  6. Mechanisms for catalytic carbon nanofiber growth studied by ab initio density functional theory calculations

    DEFF Research Database (Denmark)

    Abild-Pedersen, Frank; Nørskov, Jens Kehlet; Rostrup-Nielsen, Jens

    2006-01-01

    Mechanisms and energetics of graphene growth catalyzed by nickel nanoclusters were studied using ab initio density functional theory calculations. It is demonstrated that nickel step-edge sites act as the preferential growth centers for graphene layers on the nickel surface. Carbon is transported......, and it is argued how these processes may lead to different nanofiber structures. The proposed growth model is found to be in good agreement with previous findings....

  7. Multi-decade biomass dynamics in an old-growth hemlock-northern hardwood forest, Michigan, USA

    Directory of Open Access Journals (Sweden)

    Kerry D. Woods

    2014-09-01

    Full Text Available Trends in living aboveground biomass and inputs to the pool of coarse woody debris (CWD in an undisturbed, old-growth hemlock-northern hardwood forest in northern MI were estimated from multi-decade observations of permanent plots. Growth and demographic data from seven plot censuses over 47 years (1962–2009, combined with one-time measurement of CWD pools, help assess biomass/carbon status of this landscape. Are trends consistent with traditional notions of late-successional forests as equilibrial ecosystems? Specifically, do biomass pools and CWD inputs show consistent long-term trends and relationships, and can living and dead biomass pools and trends be related to forest composition and history? Aboveground living biomass densities, estimated using standard allometric relationships, range from 360–450 Mg/ha among sampled stands and types; these values are among the highest recorded for northeastern North American forests. Biomass densities showed significant decade-scale variation, but no consistent trends over the full study period (one stand, originating following an 1830 fire, showed an aggrading trend during the first 25 years of the study. Even though total above-ground biomass pools are neither increasing nor decreasing, they have been increasingly dominated, over the full study period, by very large (>70 cm dbh stems and by the most shade-tolerant species (Acer saccharum and Tsuga canadensis.CWD pools measured in 2007 averaged 151 m3/ha, with highest values in Acer-dominated stands. Snag densities averaged 27/ha, but varied nearly ten-fold with canopy composition (highest in Tsuga-dominated stands, lowest in Acer-dominated; snags constituted 10–50% of CWD biomass. Annualized CWD inputs from tree mortality over the full study period averaged 1.9–3.2 Mg/ha/yr, depending on stand and species composition. CWD input rates tended to increase over the course of the study. Input rates may be expected to increase over longer

  8. Growth and biomass productivity of Scenedesmus vacuolatus on a twin layer system and a comparison with other types of cultivations.

    Science.gov (United States)

    Carbone, Dora Allegra; Olivieri, Giuseppe; Pollio, Antonino; Gabriele; Melkonian, Michael

    2017-12-01

    Scenedesmus is a genus of microalgae employed for several industrial uses. Industrial cultivations are performed in open ponds or in closed photobioreactors (PBRs). In the last years, a novel type of PBR based on immobilized microalgae has been developed termed porous substrate photobioreactors (PSBR) to achieve significant higher biomass density during cultivation in comparison to classical PBRs. This work presents a study of the growth of Scenedesmus vacuolatus in a Twin Layer System PSBR at different light intensities (600 μmol photons m -2  s -1 or 1000 μmol photons m -2  s -1 ), different types and concentrations of the nitrogen sources (nitrate or urea), and at two CO 2 levels in the gas phase (2% or 0.04% v/v). The microalgal growth was followed by monitoring the attached biomass density as dry weight, the specific growth rate and pigment accumulation. The highest productivity (29 g m -2 d -1 ) was observed at a light intensity of 600 μmol photons m -2  s -1 and 2% CO 2 . The types and concentrations of nitrogen sources did not influence the biomass productivity. Instead, the higher light intensity of 1000 μmol photons m -2  s -1 and an ambient CO 2 concentration (0.04%) resulted in a significant decrease of productivity to 18 and 10-12 g m -2 d -1 , respectively. When compared to the performance of similar cultivation systems (15-30 g m -2 d -1 ), these results indicate that the Twin Layer cultivation System is a competitive technique for intensified microalgal cultivation in terms of productivity and, at the same time, biomass density.

  9. Media arrangement impacts cell growth in anaerobic fixed-bed reactors treating sugarcane vinasse: Structured vs. randomic biomass immobilization.

    Science.gov (United States)

    de Aquino, Samuel; Fuess, Lucas Tadeu; Pires, Eduardo Cleto

    2017-07-01

    This study reports on the application of an innovative structured-bed reactor (FVR) as an alternative to conventional packed-bed reactors (PBRs) to treat high-strength solid-rich wastewaters. Using the FVR prevents solids from accumulating within the fixed-bed, while maintaining the advantages of the biomass immobilization. The long-term operation (330days) of a FVR and a PBR applied to sugarcane vinasse under increasing organic loads (2.4-18.0kgCODm -3 day -1 ) was assessed, focusing on the impacts of the different media arrangements over the production and retention of biomass. Much higher organic matter degradation rates, as well as long-term operational stability and high conversion efficiencies (>80%) confirmed that the FVR performed better than the PBR. Despite the equivalent operating conditions, the biomass growth yield was different in both reactors, i.e., 0.095gVSSg -1 COD (FVR) and 0.066gVSSg -1 COD (PBR), indicating a clear control of the media arrangement over the biomass production in fixed-bed reactors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Influence of abscisic acid on growth, biomass and lipid yield of Scenedesmus quadricauda under nitrogen starved condition.

    Science.gov (United States)

    Sulochana, Sujitha Balakrishnan; Arumugam, Muthu

    2016-08-01

    Scenedesmus quadricauda, accumulated more lipid but with a drastic reduction in biomass yield during nitrogen starvation. Abscisic acid (ABA) being a stress responsible hormone, its effect on growth and biomass with sustainable lipid yield during nitrogen depletion was studied. The result revealed that the ABA level shoots up at 24h (27.21pmol/L) during the onset of nitrogen starvation followed by a sharp decline. The external supplemented ABA showed a positive effect on growth pattern (38×10(6)cells/ml) at a lower concentration. The dry biomass yield is also increasing up to 2.1 fold compared to nitrogen deficient S. quadricauda. The lipid content sustains in 1 and 2μM concentration of ABA under nitrogen-deficient condition. The fatty acid composition of ABA treated S. quadricauda cultures with respect to nitrogen-starved cells showed 11.17% increment in saturated fatty acid content, the desired lipid composition for biofuel application. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. [Microbial biomass and growth kinetics of microorganisms in chernozem soils under different farm land use modes].

    Science.gov (United States)

    Blagodatskiĭ, S A; Bogomolova, I N; Blagodatskaia, E V

    2008-01-01

    The carbon content of microbial biomass and the kinetic characteristics of microbial respiration response to substrate introduction have been estimated for chernozem soils of different farm lands: arable lands used for 10, 46, and 76 years, mowed fallow land, non-mowed fallow land, and woodland. Microbial biomass and the content of microbial carbon in humus (Cmic/Corg) decreased in the following order: soils under forest cenoses-mowed fallow land-10-year arable land-46- and 75-year arable land. The amount of microbial carbon in the long-plowed horizon was 40% of its content in the upper horizon of non-mowed fallow land. Arable soils were characterized by a lower metabolic diversity of microbial community and by the highest portion of microorganisms able to grow directly on glucose introduced into soil. The effects of different scenarios of carbon sequestration in soil on the reserves and activity of microbial biomass are discussed.

  12. Biomass-derived, functional step-growth polymers for coating applications

    NARCIS (Netherlands)

    Noordover, B.A.J.; Duchateau, R.; Koning, C.E.; Benthem, van R.A.T.M.

    2011-01-01

    Performance polymers derived from biomass represent a fascinating and increasingly important field of research, as such macromolecules offer differentiated material properties as compared to conventional polymers from fossil feedstock.1,2 The aim of our research is to understand the chemistry of

  13. Impact of thermal stress on the growth, size-distribution and biomass ...

    African Journals Online (AJOL)

    This paper reports an in-vivo account of the impact of thermal stress on the biomass and sizedistribution of estuarine populations of Pachymelania aurita in Epe Lagoon, Nigeria. Off all physicochemical variables investigated only water temperature was statistically different among study stations. A total of 7626 individuals of ...

  14. Yield and grain quality of spring barley as affected by biomass formation at early growth stages

    Czech Academy of Sciences Publication Activity Database

    Křen, J.; Klem, Karel; Svobodová, I.; Míša, P.; Neudert, L.

    2014-01-01

    Roč. 60, č. 5 (2014), s. 221-227 ISSN 1214-1178 R&D Projects: GA MZe QI111A133 Keywords : Hordeum vulgare L * above-ground biomass * tillering * grain yield formation * grain protein content Subject RIV: EH - Ecology, Behaviour Impact factor: 1.226, year: 2014

  15. Effects of simultaneous ozone exposure and nitrogen loads on carbohydrate concentrations, biomass, and growth of young spruce trees (Picea abies)

    International Nuclear Information System (INIS)

    Thomas, V.F.D.; Braun, S.; Flueckiger, W.

    2005-01-01

    Spruce saplings were grown under different nitrogen fertilization regimes in eight chamberless fumigation systems, which were fumigated with either charcoal-filtered (F) or ambient air (O 3 ). After the third growing season trees were harvested for biomass and non-structural carbohydrate analysis. Nitrogen had an overall positive effect on the investigated plant parameters, resulting in increased shoot elongation, biomass production, fine root soluble carbohydrate concentrations, and also slightly increased starch concentrations of stems and roots. Only needle starch concentrations and fine root sugar alcohol concentrations were decreased. Ozone fumigation resulted in needle discolorations and affected most parameters negatively, including decreased shoot elongation and decreased starch concentrations in roots, stems, and needles. In fine roots, however, soluble carbohydrate concentrations remained unaffected or increased by ozone fumigation. The only significant interaction was an antagonistic effect on root starch concentrations, where higher nitrogen levels alleviated the negative impact of ozone. - Simultaneous ozone fumigation and nitrogen fertilization have no synergistic impacts on carbohydrate concentrations, biomass, or growth of Picea abies saplings

  16. Growth conditions for the biomass yield of two methanol utilizing yeast spp. , Candida sp. and Rhodotorula sp

    Energy Technology Data Exchange (ETDEWEB)

    Hong, S.W.

    1976-01-01

    More than 580 MeOH utilizing yeasts were isolated from samples collected throughout South Korea. Of these, 2 strains showed good biomass yield and were selected and tentatively identified as Candida melinii and Rhodotorula glutinis glutinis. Experiments on growth conditions for these 2 species were performed. Optimum pH was 2.6 for Candida, 5.2 for Rhodotorula, and the temperature optimum was 28 to 30/sup 0/ for both. Maximum biomass yield was 4.32 g/L for Candida and 4.2l g/L for Rhodotorula. Optimum concentrations were (NH/sub 4/)/sub 2/SO/sub 4/ 0.3%, Mg/sup +/ 400 ppM, Fe/sup +/ 10 to 15 ppM for Candida and (NH/sub 4/)/sub 2/SO/sub 4/ 0.3% Mg/sup +/ 600 ppM Ca/sup +/ 2 ppM for Rhodotorula. Biotin stimulated Candida. Protein contents of the dry cell biomass were 39.3% in Candida and 44.0% in Rhodotorula.

  17. Biomass production of intensively grown poplars in the southernmost part of Sweden: Observations of characters, traits and growth potential

    International Nuclear Information System (INIS)

    Christersson, Lars

    2006-01-01

    Observation of possibilities and problems was performed when trying to optimise growing conditions for high biomass production by irrigation and fertilisation in a clone test of poplar on sandy soil in the south of Sweden. One hundred and eight clones of pure Populus trichocarpa and hybrids between P. trichocarpa and P. deltoides were evaluated for growth rate, phenology, quality, frost hardiness and pest resistance. Some fertilisation experiments were performed. In some years, some unfertilised clones produced up to 2 kg m -2 of woody dry biomass. Some fertilised clones produced almost twice as much in the years following fertilisation. Stem canker was the main cause of serious injuries in all hybrids, but pure P. trichocarpa stems were not affected. The cimbicid sawfly (Cimbex lutea) caused damage to the quality of the trees in the form of curved stems of some clones. Winter frost killed top shoots of the hybrids in a year with particularly low winter temperatures with long duration. Summer frost (in June) killed up to 1 m of some young top shoots in some clones in the first 3-4 years. The results are discussed in terms of radiation utilisation efficiency, energy efficient ratio, and water and nutrient use efficiency. The discussion finishes with the conclusion that fertilisation, but not irrigation, can be economically motivated. If irrigation is to be economic, then the main objective of the whole operation should be to produce drinkable water from water polluted by society. Biomass production would then be a bonus

  18. Forest biomass carbon sinks in East Asia, with special reference to the relative contributions of forest expansion and forest growth.

    Science.gov (United States)

    Fang, Jingyun; Guo, Zhaodi; Hu, Huifeng; Kato, Tomomichi; Muraoka, Hiroyuki; Son, Yowhan

    2014-06-01

    Forests play an important role in regional and global carbon (C) cycles. With extensive afforestation and reforestation efforts over the last several decades, forests in East Asia have largely expanded, but the dynamics of their C stocks have not been fully assessed. We estimated biomass C stocks of the forests in all five East Asian countries (China, Japan, North Korea, South Korea, and Mongolia) between the 1970s and the 2000s, using the biomass expansion factor method and forest inventory data. Forest area and biomass C density in the whole region increased from 179.78 × 10(6) ha and 38.6 Mg C ha(-1) in the 1970s to 196.65 × 10(6) ha and 45.5 Mg C ha(-1) in the 2000s, respectively. The C stock increased from 6.9 Pg C to 8.9 Pg C, with an averaged sequestration rate of 66.9 Tg C yr(-1). Among the five countries, China and Japan were two major contributors to the total region's forest C sink, with respective contributions of 71.1% and 32.9%. In China, the areal expansion of forest land was a larger contributor to C sinks than increased biomass density for all forests (60.0% vs. 40.0%) and for planted forests (58.1% vs. 41.9%), while the latter contributed more than the former for natural forests (87.0% vs. 13.0%). In Japan, increased biomass density dominated the C sink for all (101.5%), planted (91.1%), and natural (123.8%) forests. Forests in South Korea also acted as a C sink, contributing 9.4% of the total region's sink because of increased forest growth (98.6%). Compared to these countries, the reduction in forest land in both North Korea and Mongolia caused a C loss at an average rate of 9.0 Tg C yr(-1), equal to 13.4% of the total region's C sink. Over the last four decades, the biomass C sequestration by East Asia's forests offset 5.8% of its contemporary fossil-fuel CO2 emissions. © 2014 John Wiley & Sons Ltd.

  19. Predicting tree biomass growth in the temperate-boreal ecotone: is tree size, age, competition or climate response most important?

    Science.gov (United States)

    Foster, Jane R.; Finley, Andrew O.; D'Amato, Anthony W.; Bradford, John B.; Banerjee, Sudipto

    2016-01-01

    As global temperatures rise, variation in annual climate is also changing, with unknown consequences for forest biomes. Growing forests have the ability to capture atmospheric CO2and thereby slow rising CO2 concentrations. Forests’ ongoing ability to sequester C depends on how tree communities respond to changes in climate variation. Much of what we know about tree and forest response to climate variation comes from tree-ring records. Yet typical tree-ring datasets and models do not capture the diversity of climate responses that exist within and among trees and species. We address this issue using a model that estimates individual tree response to climate variables while accounting for variation in individuals’ size, age, competitive status, and spatially structured latent covariates. Our model allows for inference about variance within and among species. We quantify how variables influence aboveground biomass growth of individual trees from a representative sample of 15 northern or southern tree species growing in a transition zone between boreal and temperate biomes. Individual trees varied in their growth response to fluctuating mean annual temperature and summer moisture stress. The variation among individuals within a species was wider than mean differences among species. The effects of mean temperature and summer moisture stress interacted, such that warm years produced positive responses to summer moisture availability and cool years produced negative responses. As climate models project significant increases in annual temperatures, growth of species likeAcer saccharum, Quercus rubra, and Picea glauca will vary more in response to summer moisture stress than in the past. The magnitude of biomass growth variation in response to annual climate was 92–95% smaller than responses to tree size and age. This means that measuring or predicting the physical structure of current and future forests could tell us more about future C dynamics than growth

  20. Predicting tree biomass growth in the temperate-boreal ecotone: Is tree size, age, competition, or climate response most important?

    Science.gov (United States)

    Foster, Jane R; Finley, Andrew O; D'Amato, Anthony W; Bradford, John B; Banerjee, Sudipto

    2016-06-01

    As global temperatures rise, variation in annual climate is also changing, with unknown consequences for forest biomes. Growing forests have the ability to capture atmospheric CO2 and thereby slow rising CO2 concentrations. Forests' ongoing ability to sequester C depends on how tree communities respond to changes in climate variation. Much of what we know about tree and forest response to climate variation comes from tree-ring records. Yet typical tree-ring datasets and models do not capture the diversity of climate responses that exist within and among trees and species. We address this issue using a model that estimates individual tree response to climate variables while accounting for variation in individuals' size, age, competitive status, and spatially structured latent covariates. Our model allows for inference about variance within and among species. We quantify how variables influence aboveground biomass growth of individual trees from a representative sample of 15 northern or southern tree species growing in a transition zone between boreal and temperate biomes. Individual trees varied in their growth response to fluctuating mean annual temperature and summer moisture stress. The variation among individuals within a species was wider than mean differences among species. The effects of mean temperature and summer moisture stress interacted, such that warm years produced positive responses to summer moisture availability and cool years produced negative responses. As climate models project significant increases in annual temperatures, growth of species like Acer saccharum, Quercus rubra, and Picea glauca will vary more in response to summer moisture stress than in the past. The magnitude of biomass growth variation in response to annual climate was 92-95% smaller than responses to tree size and age. This means that measuring or predicting the physical structure of current and future forests could tell us more about future C dynamics than growth responses

  1. Comparative Secretome Analysis of Trichoderma reesei and Aspergillus niger during Growth on Sugarcane Biomass

    Science.gov (United States)

    Borin, Gustavo Pagotto; Sanchez, Camila Cristina; de Souza, Amanda Pereira; de Santana, Eliane Silva; de Souza, Aline Tieppo; Leme, Adriana Franco Paes; Squina, Fabio Marcio; Buckeridge, Marcos; Goldman, Gustavo Henrique; Oliveira, Juliana Velasco de Castro

    2015-01-01

    Background Our dependence on fossil fuel sources and concern about the environment has generated a worldwide interest in establishing new sources of fuel and energy. Thus, the use of ethanol as a fuel is advantageous because it is an inexhaustible energy source and has minimal environmental impact. Currently, Brazil is the world's second largest producer of ethanol, which is produced from sugarcane juice fermentation. However, several studies suggest that Brazil could double its production per hectare by using sugarcane bagasse and straw, known as second-generation (2G) bioethanol. Nevertheless, the use of this biomass presents a challenge because the plant cell wall structure, which is composed of complex sugars (cellulose and hemicelluloses), must be broken down into fermentable sugar, such as glucose and xylose. To achieve this goal, several types of hydrolytic enzymes are necessary, and these enzymes represent the majority of the cost associated with 2G bioethanol processing. Reducing the cost of the saccharification process can be achieved via a comprehensive understanding of the hydrolytic mechanisms and enzyme secretion of polysaccharide-hydrolyzing microorganisms. In many natural habitats, several microorganisms degrade lignocellulosic biomass through a set of enzymes that act synergistically. In this study, two fungal species, Aspergillus niger and Trichoderma reesei, were grown on sugarcane biomass with two levels of cell wall complexity, culm in natura and pretreated bagasse. The production of enzymes related to biomass degradation was monitored using secretome analyses after 6, 12 and 24 hours. Concurrently, we analyzed the sugars in the supernatant. Results Analyzing the concentration of monosaccharides in the supernatant, we observed that both species are able to disassemble the polysaccharides of sugarcane cell walls since 6 hours post-inoculation. The sugars from the polysaccharides such as arabinoxylan and β-glucan (that compose the most external

  2. Comparative Secretome Analysis of Trichoderma reesei and Aspergillus niger during Growth on Sugarcane Biomass.

    Directory of Open Access Journals (Sweden)

    Gustavo Pagotto Borin

    Full Text Available Our dependence on fossil fuel sources and concern about the environment has generated a worldwide interest in establishing new sources of fuel and energy. Thus, the use of ethanol as a fuel is advantageous because it is an inexhaustible energy source and has minimal environmental impact. Currently, Brazil is the world's second largest producer of ethanol, which is produced from sugarcane juice fermentation. However, several studies suggest that Brazil could double its production per hectare by using sugarcane bagasse and straw, known as second-generation (2G bioethanol. Nevertheless, the use of this biomass presents a challenge because the plant cell wall structure, which is composed of complex sugars (cellulose and hemicelluloses, must be broken down into fermentable sugar, such as glucose and xylose. To achieve this goal, several types of hydrolytic enzymes are necessary, and these enzymes represent the majority of the cost associated with 2G bioethanol processing. Reducing the cost of the saccharification process can be achieved via a comprehensive understanding of the hydrolytic mechanisms and enzyme secretion of polysaccharide-hydrolyzing microorganisms. In many natural habitats, several microorganisms degrade lignocellulosic biomass through a set of enzymes that act synergistically. In this study, two fungal species, Aspergillus niger and Trichoderma reesei, were grown on sugarcane biomass with two levels of cell wall complexity, culm in natura and pretreated bagasse. The production of enzymes related to biomass degradation was monitored using secretome analyses after 6, 12 and 24 hours. Concurrently, we analyzed the sugars in the supernatant.Analyzing the concentration of monosaccharides in the supernatant, we observed that both species are able to disassemble the polysaccharides of sugarcane cell walls since 6 hours post-inoculation. The sugars from the polysaccharides such as arabinoxylan and β-glucan (that compose the most external

  3. The effect of water availability on plastic responses and biomass allocation in early growth traits of Pinus radiata D. Don

    Energy Technology Data Exchange (ETDEWEB)

    Espinoza, S. E.; Magni, C. R.; Martinez, V. A.; Ivkovic, M.

    2013-05-01

    Aim of study: The aim of the study was to assess the effect of water availability on plastic responses and biomass allocation in early growth traits of Pinus radiata D. Don. Area of study: Seedlings of 69 families of P. radiata belonging to five different sites in Central Chile, ranging from coastal range to fothills of the Andes, were grown in controlled conditions to evaluate differences in response to watering. Material and methods: The seedlings were subjected to two watering regimes: well-watered treatment, in which seedlings were watered daily, and water stress treatment in which seedlings were subjected to three cyclic water deficits by watering to container capacity on 12 days cycles each. After twenty-eight weeks root collar diameter, height, shoot dry weight (stem + needles), root dry weight, total dry weight, height/diameter ratio and root/shoot ratio were recorded. Patterns and amounts of phenotypic changes, including changes in biomass allocation, were analyzed. Main results: Families from coastal sites presented high divergence for phenotypic changes, allocating more biomass to shoots, and those families from interior sites presented low phenotypic plasticity, allocating more biomass to roots at the expense of shoots. These changes are interpreted as a plastic response and leads to the conclusion that the local land race of P. radiata in Chile originating from contrasting environments possess distinct morphological responses to water deficit which in turn leads to phenotypic plasticity. Research highlights: Families belonging to sandy soil sites must be considered for tree breeding in dry areas, selecting those with high root: shoot ratio. (Author) 46 refs.

  4. Ab initio calculations and kinetic modeling of thermal conversion of methyl chloride: implications for gasification of biomass

    DEFF Research Database (Denmark)

    Singla, Mallika; Rasmussen, Morten Lund; Hashemi, Hamid

    2018-01-01

    . In the present work, the thermal conversion of CH3Cl under gasification conditions was investigated. A detailed chemical kinetic model for pyrolysis and oxidation of methyl chloride was developed and validated against selected experimental data from the literature. Key reactions of CH2Cl with O2 and C2H4......Limitations in current hot gas cleaning methods for chlorine species from biomass gasification may be a challenge for end use such as gas turbines, engines, and fuel cells, all requiring very low levels of chlorine. During devolatilization of biomass, chlorine is released partly as methyl chloride...... in low-temperature gasification. The present work illustrates how ab initio theory and chemical kinetic modeling can help to resolve emission issues for thermal processes in industrial scale....

  5. Growth responses, biomass partitioning, and nitrogen isotopes of prairie legumes in response to elevated temperature and varying nitrogen source in a growth chamber experiment.

    Science.gov (United States)

    Whittington, Heather R; Deede, Laura; Powers, Jennifer S

    2012-05-01

    Because legumes can add nitrogen (N) to ecosystems through symbiotic fixation, they play important roles in many plant communities, such as prairies and grasslands. However, very little research has examined the effect of projected climate change on legume growth and function. Our goal was to study the effects of temperature on growth, nodulation, and N chemistry of prairie legumes and determine whether these effects are mediated by source of N. We grew seedlings of Amorpha canescens, Dalea purpurea, Lespedeza capitata, and Lupinus perennis at 25/20°C (day/night) or 28/23°C with and without rhizobia and mineral N in controlled-environment growth chambers. Biomass, leaf area, nodule number and mass, and shoot N concentration and δ(15)N values were measured after 12 wk of growth. Both temperature and N-source affected responses in a species-specific manner. Lespedeza showed increased growth and higher shoot N content at 28°C. Lupinus showed decreases in nodulation and lower shoot N concentration at 28°C. The effect of temperature on shoot N concentration occurred only in individuals whose sole N source was N(2)-fixation, but there was no effect of temperature on δ(15)N values in these plants. Elevated temperature enhanced seedling growth of some species, while inhibiting nodulation in another. Temperature-induced shifts in legume composition or nitrogen dynamics may be another potential mechanism through which climate change affects unmanaged ecosystems.

  6. Growth, biomass, and production of two small barbs (Barbus humilis and B. tanapelagius, Cyprinidae) and their role in the food web of Lake Tana (Ethiopia)

    NARCIS (Netherlands)

    Dejen, E.; Vijverberg, J.; Nagelkerke, L.A.J.; Sibbing, F.A.

    2009-01-01

    Growth, biomass and production of two small barbs (Barbus humilis and Barbus tanapelagius) and their role in the food web of Lake Tana were investigated. From length–frequency distribution of trawl monitoring surveys growth coefficient, F' values were estimated at 3.71–4.17 for B. humilis and

  7. Growth, biomass, and production of two small barbs (Barbus humilis and B. tanapelagius, Cyprinidae) and their role in the food web of Lake Tana (Ethiopia)

    NARCIS (Netherlands)

    Dejen, E.; Vijverberg, J.; Nagelkerke, L.A.J.; Sibbing, F.A.

    2009-01-01

    Growth, biomass and production of two small barbs (Barbus humilis and Barbus tanapelagius) and their role in the food web of Lake Tana were investigated. From length–frequency distribution of trawl monitoring surveys growth coefficient, Φ′ values were estimated at 3.71–4.17 for B. humilis and

  8. Effect of growth regulator Kelpak SL on the formation of aboveground biomass of Festulolium braunii (K. Richt. A. Camus

    Directory of Open Access Journals (Sweden)

    Jacek Sosnowski

    2013-07-01

    Full Text Available A study on the cultivation of Festulolium braunii cv. 'Felopa' was carried out using polyurethane rings with a diameter of 36 cm and a height of 40 cm, which were sunk into the ground to a depth of 30 cm and filled with soil material. In this experiment, Kelpak SL was used as a bioregulator. It consists of natural plant hormones such as auxins (11 mg in dm3 and cytokinins (0.03 mg in dm3. The experimental factors were as follows: A1-control; A2 – 20% solution of the growth regulator; A3 – 40% solution; and A4 – 60% solution. The preparation was applied to all three regrowths in the form of spray, at a rate of 3 cm3 ring-1, at the stem elongation stage. The full period of this experiment was in the years 2010–2011. During this time, detailed investigations were carried out on aboveground biomass yield (g DM ring-1, number of shoots (pcs ring-1, leaf blade length (cm, width of the leaf blade base (mm, leaf greenness index (SPAD. The study showed a significant effect of the growth regulator on the formation of Festulolium braunii biomass. However, its highest effectiveness was observed when the 60% solution was applied.

  9. Xylose isomerase improves growth and ethanol production rates from biomass sugars for both Saccharomyces pastorianus and Saccharomyces cerevisiae.

    Science.gov (United States)

    Miller, Kristen P; Gowtham, Yogender Kumar; Henson, J Michael; Harcum, Sarah W

    2012-01-01

    The demand for biofuel ethanol made from clean, renewable nonfood sources is growing. Cellulosic biomass, such as switch grass (Panicum virgatum L.), is an alternative feedstock for ethanol production; however, cellulosic feedstock hydrolysates contain high levels of xylose, which needs to be converted to ethanol to meet economic feasibility. In this study, the effects of xylose isomerase on cell growth and ethanol production from biomass sugars representative of switch grass were investigated using low cell density cultures. The lager yeast species Saccharomyces pastorianus was grown with immobilized xylose isomerase in the fermentation step to determine the impact of the glucose and xylose concentrations on the ethanol production rates. Ethanol production rates were improved due to xylose isomerase; however, the positive effect was not due solely to the conversion of xylose to xylulose. Xylose isomerase also has glucose isomerase activity, so to better understand the impact of the xylose isomerase on S. pastorianus, growth and ethanol production were examined in cultures provided fructose as the sole carbon. It was observed that growth and ethanol production rates were higher for the fructose cultures with xylose isomerase even in the absence of xylose. To determine whether the positive effects of xylose isomerase extended to other yeast species, a side-by-side comparison of S. pastorianus and Saccharomyces cerevisiae was conducted. These comparisons demonstrated that the xylose isomerase increased ethanol productivity for both the yeast species by increasing the glucose consumption rate. These results suggest that xylose isomerase can contribute to improved ethanol productivity, even without significant xylose conversion. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  10. Salinity Reduction and Biomass Accumulation in Hydroponic Growth of Purslane (Portulaca oleracea).

    Science.gov (United States)

    de Lacerda, Laís Pessôa; Lange, Liséte Celina; Costa França, Marcel Giovanni; Zonta, Everaldo

    2015-01-01

    In many of the world's semi-arid and arid regions, the increase in demand for good quality water associated with the gradual and irreversible salinisation of the soil and water have raised the development of techniques that facilitate the safe use of brackish and saline waters for agronomic purposes. This study aimed to evaluate the salinity reduction of experimental saline solutions through the ions uptake capability of purslane (Portulaca oleracea), as well as its biomass accumulation. The hydroponic system used contained three different nutrient solutions composed of fixed concentrations of macro and micronutrients to which three different concentrations of sodium chloride had been added. Two conditions were tested, clipped and intact plants. It was observed that despite there being a notable removal of magnesium and elevated biomass accumulation, especially in the intact plants, purslane did not present the expected removal quantity of sodium and chloride. We confirmed that in the research conditions of the present study, purslane is a saline-tolerant species but accumulation of sodium and chloride was not shown as previously described in the literature.

  11. Assessment of Chlorella vulgaris and indigenous microalgae biomass with treated wastewater as growth culture medium.

    Science.gov (United States)

    Fernández-Linares, Luis C; Guerrero Barajas, Claudia; Durán Páramo, Enrique; Badillo Corona, Jesús A

    2017-11-01

    The aim of the present work was to evaluate the feasibility of microalgae cultivation using secondary treated domestic wastewater. Two Chlorella vulgaris strains (CICESE and UTEX) and an indigenous consortium, were cultivated on treated wastewater enriched with and without the fertilizer Bayfolan®. Biomass production for C. vulgaris UTEX, CICESE and the indigenous consortium grown in treated wastewater was 1.167±0.057, 1.575±0.434 and 1.125±0.250g/L, with a total lipid content of 25.70±1.24, 23.35±3.01and 20.54±1.23% dw, respectively. The fatty acids profiles were mainly composed of C16 and C18. Regardless of the media used, in all three strains unsaturated fatty acids were the main FAME (fatty acids methyl esters) accumulated in a range of 45-62%. An enrichment of treated wastewater with Bayfolan® significantly increased the production of biomass along with an increase in pigments and proteins of ten and threefold, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Explaining biomass growth of tropical canopy trees: the importance of sapwood

    NARCIS (Netherlands)

    Sande, van der M.T.; Zuidema, P.A.; Sterck, F.J.

    2015-01-01

    Tropical forests are important in worldwide carbon (C) storage and sequestration. C sequestration of these forests may especially be determined by the growth of canopy trees. However, the factors driving variation in growth among such large individuals remain largely unclear. We evaluate how crown

  13. A fracture- mechanics calculation of crack growth rate for a gas turbine blade

    International Nuclear Information System (INIS)

    Mirzaei, M.; Karimi, R.

    2002-01-01

    The existence of thermo-mechanical stresses, due to the frequent start-ups and shutdowns of gas turbines. Combined with high working temperatures may cause creep and fatigue failure of the blades. This paper describes a fracture-mechanics life assessment of a gas turbine blade. Initially, the distributions of thermal and mechanical stresses were obtained by using the finite element method. Accordingly; the crack modeling was performed in a high stress region at the suction side surface of the blade. Several crack growth increments were observed and the related crack tip parameters were calculated. Finally; the creep-fatigue crack growth in each cycle was calculated and the total number of start-stop cycles was determined

  14. Analytical evaluation of different carbon sources and growth stimulators on the biomass and lipid production of Chlorella vulgaris – Implications for biofuels

    International Nuclear Information System (INIS)

    Josephine, A.; Niveditha, C.; Radhika, A.; Shali, A. Brindha; Kumar, T.S.; Dharani, G.; Kirubagaran, R.

    2015-01-01

    The key challenges in lipid production from marine microalgae include the selection of appropriate strain, optimization of the culture conditions and enhancement of biolipid yield. This study is aimed at evaluating the optimal harvest time and effect of chlorella growth factor (CGF) extract, carbon sources and phytohormones on the biomass and lipid production in Chlorella vulgaris. CGF, extracted using hot water from Chlorella has been reported to possess various medicinal properties. However, in the present study, for the first time in C. vulgaris, CGF was found as a best growth stimulator by enhancing the biomass level (1.208 kg m −3 ) significantly on day 5. Gibberellin and citrate augmented the biomass by 0.935 kg m −3 and 1.025 kg m −3 . Combination of CGF and phytohormones were more effective than CGF and carbon sources. Analysis of fatty acid methyl esters indicated that the ratio of saturated to unsaturated fatty acids is higher in cytokinin, abscisic acid and CGF, and are also rich in short chain carbon atoms, ideal criteria for biodiesel. Nitrogen starvation favoured synthesis of more unsaturated fatty acids than saturated. This study shows that CGF enhances the biomass and lipid significantly and thus can be used for large scale biomass production. - Highlights: • Optimization studies revealed 7th day to be the ideal period for harvesting Chlorella vulgaris. • Chlorella growth factor extract acted as a chief growth promoting factor of C. vulgaris. • Chlorella growth factor with carbon sources or phytohormones was not effective than chlorella growth factor extract alone. • Cytokinin treatment increased saturated fatty acids level, although the biomass production was not significant

  15. Influence of Inoculation, Nitrogen and Phosphorus Levels on Wheat Growth and Soil Microbial Biomass-N Using 15N Techniques

    International Nuclear Information System (INIS)

    Galal, Y.G.; El-Ghandour, I.A.; Abdel Raouf, A.M.; Osman, M.E.

    2003-01-01

    Pot experiment was carried out with wheat that cultivated in virgin sandy soil and inoculated with Rhizobium (Rh), mycorrhizea (VAM) and mixture of both. The objective of this work was to verify the potential of these inoculum on wheat production, nutrient acquisition and microbial biomass N (MBN) contribution as affected by N and P fertilizers levels. MBN was detected through the fumigation-extraction method. Nitrogen and phosphorus fertilizers were applied at three levels, 0; 25 ppm N and 3.3 ppm P and 50 ppm N and 6.6 ppm P in the form of ( 15 NH 4 ) 2 SO 4 , 5% atom excess and super-phosphate, respectively. The effect of inoculation and chemical fertilizers on dry matter (DM), N and P uptake (shoot and grain) and MBN were traced. The obtained data revealed that the highest DM and N uptake by wheat shoot were recorded with the dual inoculation (Rh + VAM) at the highest level of N and P fertilizers. The highest grain yield was detected with single inoculum of AM fungi while N and P uptake were with dual inoculation at the same rate of fertilizers. Inoculation with Rh either alone or in combination with VAM have a positive and stimulative effect on wheat growth and N and P uptake indicating the possibilities of extending the use of symbiotic microorganisms to be applied with cereals. The fluctuation in the soil microbial biomass N did not gave a chance to recognize, exactly, the impact of inoculation and/or fertilization levels

  16. Assessing the fate of nutrients and carbon in the bioenergy chain through the modeling of biomass growth and conversion.

    Science.gov (United States)

    François, Jessica; Fortin, Mathieu; Patisson, Fabrice; Dufour, Anthony

    2014-12-02

    A forest growth model was coupled to a model of combined heat and power (CHP) production in a gasification plant developed in Aspen Plus. For a given production, this integrated forest-to-energy model made it possible to predict the annual flows in wood biomass, carbon, and nutrients, including N, S, P, and K, from the forest to the air emissions (NOx, SOx, PAH, etc.) and ash flows. We simulated the bioenergy potential of pure even-aged high-forest stands of European beech, an abundant forest type in Northeastern France. Two forest management practices were studied, a standard-rotation and a shorter-rotation scenario, along with two wood utilizations: with or without fine woody debris (FWD) harvesting. FWD harvesting tended to reduce the forested area required to supply the CHP by 15–22% since larger amounts of energy wood were available for the CHP process, especially in the short-rotation scenario. Because less biomass was harvested, the short-rotation scenario with FWD decreased the nutrient exports per hectare and year by 4–21% compared to standard practices but increased the amount of N, S, and P in the CHP process by 2–9%. This increase in the input nutrient flows had direct consequences on the inorganic air emissions, thus leading to additional NOx and SO2 emissions. This model is a valuable tool for assessing the life cycle inventories of the entire bioenergy chain.

  17. Input of biomass in stand-alone small-scale installations for power generation. Calculation of the financial gap

    International Nuclear Information System (INIS)

    Van Tilburg, X.; De Vries, H.J.; Pfeiffer, A.E.; Beekes, M.; Cleijne, J.W.

    2005-09-01

    A number of new initiatives in which bio-oil is used in stand-alone plants for power generation has been reviewed. The question to be answered is whether the reference case for stand alone biomass projects based on burning of wood chips can still be considered representative for the costs and benefits in this category. ECN, in cooperation with KEMA, have determined the financial gap between the costs and benefits of projects in which bio-oil is used in stand alone plants for power generation. The ranges and reference case for bio-oil in stand alone applications show that these projects have a substantially lower financial gap than the current reference case based on wood chips [nl

  18. Radiocarbon Analysis to Calculate New End-Member Values for Biomass Burning Source Samples Specific to the Bay Area

    Science.gov (United States)

    Yoon, S.; Kirchstetter, T.; Fairley, D.; Sheesley, R. J.; Tang, X.

    2017-12-01

    Elemental carbon (EC), also known as black carbon or soot, is an important particulate air pollutant that contributes to climate forcing through absorption of solar radiation and to adverse human health impacts through inhalation. Both fossil fuel combustion and biomass burning, via residential firewood burning, agricultural burning, wild fires, and controlled burns, are significant sources of EC. Our ability to successfully control ambient EC concentrations requires understanding the contribution of these different emission sources. Radiocarbon (14C) analysis has been increasingly used as an apportionment tool to distinguish between EC from fossil fuel and biomass combustion sources. However, there are uncertainties associated with this method including: 1) uncertainty associated with the isolation of EC to be used for radiocarbon analysis (e.g., inclusion of organic carbon, blank contamination, recovery of EC, etc.) 2) uncertainty associated with the radiocarbon signature of the end member. The objective of this research project is to utilize laboratory experiments to evaluate some of these uncertainties, particularly for EC sources that significantly impact the San Francisco Bay Area. Source samples of EC only and a mix of EC and organic carbon (OC) were produced for this study to represent known emission sources and to approximate the mixing of EC and OC that would be present in the atmosphere. These samples include a combination of methane flame soot, various wood smoke samples (i.e. cedar, oak, sugar pine, pine at various ages, etc.), meat cooking, and smoldering cellulose smoke. EC fractions were isolated using a Sunset Laboratory's thermal optical transmittance carbon analyzer. For 14C analysis, samples were sent to Woods Hole Oceanographic Institution for isotope analysis using an accelerated mass spectrometry. End member values and uncertainties for the EC isolation utilizing this method will be reported.

  19. Urban wastewater photobiotreatment with microalgae in a continuously operated photobioreactor: growth, nutrient removal kinetics and biomass coagulation-flocculation.

    Science.gov (United States)

    Mennaa, Fatima Zahra; Arbib, Zouhayr; Perales, José Antonio

    2017-11-03

    The aim of this study was to investigate the growth, nutrient removal and harvesting of a natural microalgae bloom cultivated in urban wastewater in a bubble column photobioreactor. Batch and continuous mode experiments were carried out with and without pH control by means of CO 2 dosage. Four coagulants (aluminium sulphate, ferric sulphate, ferric chloride and polyaluminium chloride (PAC)) and five flocculants (Chemifloc CM/25, FO 4498SH, cationic polymers Zetag (Z8165, Z7550 and Z8160)) were tested to determine the optimal dosage to reach 90% of biomass recovery. The maximum volumetric productivity obtained was 0.11 g SS L -1  d -1 during the continuous mode. Results indicated that the removal of total dissolved nitrogen and total dissolved phosphorous under continuous operation were greater than 99%. PAC, Fe 2 (SO 4 ) 3 and Al 2 (SO 4 ) 3 were the best options from an economical point of view for microalgae harvesting.

  20. A Comparison Study of Machine Learning Based Algorithms for Fatigue Crack Growth Calculation.

    Science.gov (United States)

    Wang, Hongxun; Zhang, Weifang; Sun, Fuqiang; Zhang, Wei

    2017-05-18

    The relationships between the fatigue crack growth rate ( d a / d N ) and stress intensity factor range ( Δ K ) are not always linear even in the Paris region. The stress ratio effects on fatigue crack growth rate are diverse in different materials. However, most existing fatigue crack growth models cannot handle these nonlinearities appropriately. The machine learning method provides a flexible approach to the modeling of fatigue crack growth because of its excellent nonlinear approximation and multivariable learning ability. In this paper, a fatigue crack growth calculation method is proposed based on three different machine learning algorithms (MLAs): extreme learning machine (ELM), radial basis function network (RBFN) and genetic algorithms optimized back propagation network (GABP). The MLA based method is validated using testing data of different materials. The three MLAs are compared with each other as well as the classical two-parameter model ( K * approach). The results show that the predictions of MLAs are superior to those of K * approach in accuracy and effectiveness, and the ELM based algorithms show overall the best agreement with the experimental data out of the three MLAs, for its global optimization and extrapolation ability.

  1. Sclerotial biomass and carotenoid yield of Penicillium sp. PT95 under oxidative growth conditions and in the presence of antioxidant ascorbic acid.

    Science.gov (United States)

    Li, X L; Cui, X H; Han, J R

    2006-09-01

    To determine the effect of oxidative stress and exogenous ascorbic acid on sclerotial biomass and carotenoid yield of Penicillium sp. PT95. In this experiment, high oxidative stress was applied by the inclusion of FeSO(4) in the growth medium and exposure to light. Low oxidative stress was applied by omitting iron from the growth medium and by incubation in the dark. Supplementation of exogenous ascorbic acid (as antioxidant) to the basal medium caused a concentration-dependent delay of sclerotial differentiation (up to 48 h), decrease of sclerotial biomass (up to 40%) and reduction of carotenoid yield (up to 91%). On the contrary, the exogenous ascorbic acid also caused a concentration-dependent decrease of lipid peroxidation in colonies of this fungus. Under high oxidative stress growth condition, the sclerotial biomass and carotenoid yield of PT95 strain in each plate culture reached 305 mg and 32.94 microg, which were 1.23 and 3.71 times higher, respectively, than those at low oxidative stress growth condition. These data prompted us to consider that in order to attain higher sclerotial biomass and pigment yield, the strain PT95 should be grown under high oxidative stress and in the absence of antioxidants. These results suggest that strain PT95 may be used for solid-state fermentation of carotenoid production under high oxidative stress growth conditions.

  2. Landsat Time-series for the Masses: Predicting Wood Biomass Growth from Tree-rings Using Departures from Mean Phenology in Google Earth Engine

    Science.gov (United States)

    Foster, J. R.; D'Amato, A. W.; Itter, M.; Reinikainen, M.; Curzon, M.

    2017-12-01

    The terrestrial carbon cycle is perturbed when disturbances remove leaf biomass from the forest canopy during the growing season. Changes in foliar biomass arise from defoliation caused by insects, disease, drought, frost or human management. As ephemeral disturbances, these often go undetected and their significance to models that predict forest growth from climatic drivers remains unknown. Here, we seek to distinguish the roles of weather vs. canopy disturbance on forest growth by using dense Landsat time-series to quantify departures in mean phenology that in turn predict changes in leaf biomass. We estimated a foliar biomass index (FBMI) from 1984-2016, and predict plot-level wood growth over 28 years on 156 tree-ring monitoring plots in Minnesota, USA. We accessed the entire Landsat archive (sensors 4, 5 & 7) to compute FBMI using Google Earth Engine's cloud computing platform (GEE). GEE allows this pixel-level approach to be applied at any location; a feature we demonstrate with published wood-growth data from flux tower sites. Our Bayesian models predicted biomass changes from tree-ring plots as a function of Landsat FBMI and annual climate data. We expected model parameters to vary by tree functional groups defined by differences in xylem anatomy and leaf longevity, two traits with linkages to phenology, as reported in a recent review. We found that Landsat FBMI was a surprisingly strong predictor of aggregate wood-growth, explaining up to 80% of annual growth variation for some deciduous plots. Growth responses to canopy disturbance varied among tree functional groups, and the importance of some seasonal climate metrics diminished or changed sign when FBMI was included (e.g. fall and spring climatic water deficit), while others remained unchanged (current and lagged summer deficit). Insights emerging from these models can clear up sources of persistent uncertainty and open a new frontier for models of forest productivity.

  3. Biomass potential

    Energy Technology Data Exchange (ETDEWEB)

    Asplund, D [VTT Energy, Espoo (Finland)

    1997-12-31

    Biomass resources of the industrialised countries are enormous, if only a small fraction of set-aside fields were used for energy crops. Forest resources could also be utilised more efficiently than at present for large-scale energy production. The energy content of the annual net growth of the total wood biomass is estimated to be 180 million toe in Europe without the former USSR, and about 50 million toe of that in the EC area, in 1990. Presently, the harvesting methods of forest biomass for energy production are not yet generally competitive. Among the most promising methods are integrated harvesting methods, which supply both raw material to the industry and wood fuel for energy production. Several new methods for separate harvesting of energy wood are being developed in many countries. (orig.)

  4. Biomass potential

    Energy Technology Data Exchange (ETDEWEB)

    Asplund, D. [VTT Energy, Espoo (Finland)

    1996-12-31

    Biomass resources of the industrialised countries are enormous, if only a small fraction of set-aside fields were used for energy crops. Forest resources could also be utilised more efficiently than at present for large-scale energy production. The energy content of the annual net growth of the total wood biomass is estimated to be 180 million toe in Europe without the former USSR, and about 50 million toe of that in the EC area, in 1990. Presently, the harvesting methods of forest biomass for energy production are not yet generally competitive. Among the most promising methods are integrated harvesting methods, which supply both raw material to the industry and wood fuel for energy production. Several new methods for separate harvesting of energy wood are being developed in many countries. (orig.)

  5. Kinetic parameters of biomass growth in a UASB reactor treating wastewater from coffee wet processing (WCWP

    Directory of Open Access Journals (Sweden)

    Claudio Milton Montenegro Campos

    2014-10-01

    Full Text Available This study evaluated the treatment of wastewater from coffee wet processing (WCWP in an anaerobic treatment system at a laboratory scale. The system included an acidification/equalization tank (AET, a heat exchanger, an Upflow Anaerobic Sludge Blanket Reactor (UASB, a gas equalization device and a gas meter. The minimum and maximum flow rates and volumetric organic loadings rate (VOLR were 0.004 to 0.037 m 3 d -1 and 0.14 to 20.29 kgCOD m -3 d -1 , respectively. The kinetic parameters measured during the anaerobic biodegradation of the WCWP, with a minimal concentration of phenolic compounds of 50 mg L - ¹, were: Y = 0.37 mgTVS (mgCODremoved -1 , Kd = 0.0075 d-1 , Ks = 1.504mg L -1 , μmax = 0.2 d -1 . The profile of sludge in the reactor showed total solids (TS values from 22,296 to 55,895 mg L -1 and TVS 11,853 to 41,509 mg L -1 , demonstrating a gradual increase of biomass in the reactor during the treatment, even in the presence of phenolic compounds in the concentration already mentioned.

  6. Effects of precipitation changes on switchgrass photosynthesis, growth, and biomass: A mesocosm experiment

    Science.gov (United States)

    Climate changes, including chronic changes in precipitation amounts, will influence plant physiology and growth. However, such precipitation effects on switchgrass, a major bioenergy crop, have not been well investigated. We conducted a two-year precipitation simulation experiment using large pots...

  7. Assessing wheat yield, Biomass, and water productivity responses to growth stage based irrigation water allocation

    Science.gov (United States)

    Increasing irrigated wheat yields is important to the overall profitability of limited-irrigation cropping systems in western Kansas. A simulation study was conducted to (1) validate APSIM's (Agricultural Production Systems sIMulator) ability to simulate wheat growth and yield in Kansas, and (2) app...

  8. A structurally based analytic model of growth and biomass dynamics in single species stands of conifers

    Science.gov (United States)

    Robin J. Tausch

    2015-01-01

    A theoretically based analytic model of plant growth in single species conifer communities based on the species fully occupying a site and fully using the site resources is introduced. Model derivations result in a single equation simultaneously describes changes over both, different site conditions (or resources available), and over time for each variable for each...

  9. Ex situ growth and biomass of Populus bioenergy crops irrigated and fertilized with landfill leachate

    Science.gov (United States)

    Ronald S. Jr. Zalesny; Adam H. Wiese; Edmund O. Bauer; Donald E. Riemenschneider

    2009-01-01

    Merging traditional intensive forestry with waste management offers dual goals of fiber and bioenergy production, along with environmental benefits such as soil/water remediation and carbon sequestration. As part of an ongoing effort to acquire data about initial genotypic performance, we evaluated: (1) the early aboveground growth of trees belonging to currently...

  10. Influence of mechanical disintegration on the microbial growth of aerobic sludge biomass: A comparative study of ultrasonic and shear gap homogenizers by oxygen uptake measurements.

    Science.gov (United States)

    Divyalakshmi, P; Murugan, D; Sivarajan, M; Saravanan, P; Lajapathi Rai, C

    2015-11-01

    Wastewater treatment plant incorporates physical, chemical and biological processes to treat and remove the contaminants. The main drawback of conventional activated sludge process is the huge production of excess sludge, which is an unavoidable byproduct. The treatment and disposal of excess sludge costs about 60% of the total operating cost. The ideal way to reduce excess sludge production during wastewater treatment is by preventing biomass formation within the aerobic treatment train rather than post treatment of the generated sludge. In the present investigation two different mechanical devices namely, Ultrasonic and Shear Gap homogenizers have been employed to disintegrate the aerobic biomass. This study is intended to restrict the multiplication of microbial biomass and at the same time degrade the organics present in wastewater by increasing the oxidative capacity of microorganisms. The disintegrability on biomass was determined by biochemical methods. Degree of inactivation provides the information on inability of microorganisms to consume oxygen upon disruption. The soluble COD quantifies the extent of release of intra cellular compounds. The participation of disintegrated microorganism in wastewater treatment process was carried out in two identical respirometeric reactors. The results show that Ultrasonic homogenizer is very effective in the disruption of microorganisms leading to a maximum microbial growth reduction of 27%. On the other hand, Shear gap homogenizer does not favor the sludge growth reduction rather it facilitates the growth. This study also shows that for better microbial growth reduction, floc size reduction alone is not sufficient but also microbial disruption is essential. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Growth of binary solid solution single crystals and calculation of melt surface displacement velocity

    International Nuclear Information System (INIS)

    Agamaliyev, Z.A.; Tahirov, V.I.; Hasanov, Z.Y.; Quliyev, A.F.

    2007-01-01

    A binary solid solution single crystal growth method has been worked out. Cylinder feeding alloy with complex content distribution and truncated cone crucible are used. Second component distribution coefficient is more than unit. Content distribution along grown crystal is found by solving continuity equation. After reaching dynamic equilibrium state second component concentration in grown crystal is saturated the value of which is less than the average ona in the feeding alloy. Using the method Ge-Si perfect single crystals has been grown. Calculation method of melt surface displacement velocity has been offered as well

  12. Impact of mine waste dumps on growth and biomass of economically important crops.

    Science.gov (United States)

    Mathiyazhagan, Narayanan; Natarajan, Devarajan

    2012-11-01

    The present study aimed to investigate the effect of magnesite and bauxite waste dumps on growth and biochemical parameters of some edible and economically important plants such as Vigna radiata, V. mungo, V. unguiculata, Eleusine coracana, Cajanus cajan, Pennisetum glaucum, Macrotyloma uniflorum, Oryza sativa, Sorghum bicolour, Sesamum indicum, Ricinus communis, Brassica juncea, Gossypium hirsutum and Jatropha curcas. The growth rate of all the crops was observed in the range of 75 to 100% in magnesite and 15 to 100% in bauxite mine soil. The moisture content of roots and shoots of all the crops were in the range of 24 to 77, 20 to 88% and 42 to 87, 59 to 88% respectively. The height of the crops was in the range of 2.6 to 48 cm in magnesite soil and 3 to 33 cm in bauxite soil. Thus the study shows that both mine soils reflects some physical and biomolecule impact on selected crops.

  13. Diameter Growth, Biological Rotation Age and Biomass of Chinese Fir in Burning and Clearing Site Preparations in Subtropical China

    Directory of Open Access Journals (Sweden)

    Hua Zhou

    2016-08-01

    Full Text Available Sustained forest management of Cunninghamia lanceolata (Chinese fir plantations in subtropical China is restricted by the limited availability of quantitative data. This study combines inventory data and tree-ring analysis of Chinese fir from natural and plantation forests that were subjected to controlled burning or brush clearing site preparations. Inter-annual variation of Chinese fir tree-ring widths were measured for the controlled burning, brush clearing and natural forest sites. The mean annual diametric growth of Chinese fir was 0.56 cm·year−1 for the natural forest, 0.80 cm·year−1 for the brush clearing site and 1.10 cm·year−1 for the controlled burning site. The time needed to reach the minimum cutting/logging diameter of 15 cm was 14 years in the controlled burning site, 19 years in the brush clearing site and >40 years in the natural forest. The biological rotation ages for the burning, cutting and natural forest sites were 15, 26 and >100 years, respectively. The total aboveground biomasses for the burning and clearing sites were 269.8 t·ha−1 and 252 t·ha−1, respectively. These results suggest that the current 25-year cutting cycle greatly underestimates the growth rate of Chinese fir plantations.

  14. A systems biology, whole-genome association analysis of the molecular regulation of biomass growth and composition in Populus deltoides

    Energy Technology Data Exchange (ETDEWEB)

    Kirst, Matias [Univ. of Florida, Gainesville, FL (United States)

    2014-04-14

    Poplars trees are well suited for biofuel production due to their fast growing habit, favorable wood composition and adaptation to a broad range of environments. The availability of a reference genome sequence, ease of vegetative propagation and availability of transformation methods also make poplar an ideal model for the study of wood formation and biomass growth in woody, perennial plants. The objective of this project was to conduct a genome-wide association genetics study to identify genes that regulate bioenergy traits in Populus deltoides (eastern cottonwood). Populus deltoides is a genetically diverse keystone forest species in North America and an important short rotation woody crop for the bioenergy industry. We searched for associations between eight growth and wood composition traits and common and low-frequency single-nucleotide polymorphisms (SNPs) detected by targeted resequencing of 18,153 genes in a population of 391 unrelated individuals. To increase power to detect associations with low-frequency variants, multiple-marker association tests were used in combination with single-marker association tests. Significant associations were discovered for all phenotypes and are indicative that low-frequency polymorphisms contribute to phenotypic variance of several bioenergy traits. These polymorphism are critical tools for the development of specialized plant feedstocks for bioenergy.

  15. A systems biology, whole-genome association analysis of the molecular regulation of biomass growth and composition in Populus deltoides

    Energy Technology Data Exchange (ETDEWEB)

    Kirst, Matias [Univ. of Florida, Gainesville, FL (United States)

    2015-04-15

    Poplars trees are well suited for biofuel production due to their fast growing habit, favorable wood composition and adaptation to a broad range of environments. The availability of a reference genome sequence, ease of vegetative propagation and availability of transformation methods also make poplar an ideal model for the study of wood formation and biomass growth in woody, perennial plants. The objective of this project was to conduct a genome-wide association genetics study to identify genes that regulate bioenergy traits in Populus deltoides (eastern cottonwood). Populus deltoides is a genetically diverse keystone forest species in North America and an important short rotation woody crop for the bioenergy industry. We searched for associations between eight growth and wood composition traits and common and low-frequency single-nucleotide polymorphisms (SNPs) detected by targeted resequencing of 18,153 genes in a population of 391 unrelated individuals. To increase power to detect associations with low-frequency variants, multiple-marker association tests were used in combination with single-marker association tests. Significant associations were discovered for all phenotypes and are indicative that low-frequency polymorphisms contribute to phenotypic variance of several bioenergy traits. These polymorphism are critical tools for the development of specialized plant feedstocks for bioenergy.

  16. A revised mineral nutrient supplement increases biomass and growth rate in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Kropat, Janette; Hong-Hermesdorf, Anne; Casero, David; Ent, Petr; Castruita, Madeli; Pellegrini, Matteo; Merchant, Sabeeha S; Malasarn, Davin

    2011-06-01

    Interest in exploiting algae as a biofuel source and the role of inorganic nutrient deficiency in inducing triacylglyceride (TAG) accumulation in cells necessitates a strategy to efficiently formulate species-specific culture media that can easily be manipulated. Using the reference organism Chlamydomonas reinhardtii, we tested the hypothesis that modeling trace element supplements after the cellular ionome would result in optimized cell growth. We determined the trace metal content of several commonly used Chlamydomonas strains in various culture conditions and developed a revised trace element solution to parallel these measurements. Comparison of cells growing in the revised supplement versus a traditional trace element solution revealed faster growth rates and higher maximum cell densities with the revised recipe. RNA-seq analysis of cultures growing in the traditional versus revised medium suggest that the variation in transcriptomes was smaller than that found between different wild-type strains grown in traditional Hutner's supplement. Visual observation did not reveal defects in cell motility or mating efficiency in the new supplement. Ni²⁺-inducible expression from the CYC6 promoter remained a useful tool, albeit with an increased requirement for Ni²⁺ because of the introduction of an EDTA buffer system in the revised medium. Other advantages include more facile preparation of trace element stock solutions, a reduction in total chemical use, a more consistent batch-to-batch formulation and long-term stability (tested up to 5 years). Under the new growth regime, we analyzed cells growing under different macro- and micronutrient deficiencies. TAG accumulation in N deficiency is comparable in the new medium. Fe and Zn deficiency also induced TAG accumulation, as suggested by Nile Red staining. This approach can be used to efficiently optimize culture conditions for other algal species to improve growth and to assay cell physiology. © 2011 The Authors

  17. A comparative study on the effect of gamma-irradiation on growth and biomass yield in certain fuel-wood species

    International Nuclear Information System (INIS)

    Bandyopadhyay, B.; Nandy, A.K.; Mallick, R.; Chatterjee, A.

    1990-01-01

    A trial was conducted to study a comparative effect of gamma-radiation on the growth behaviour vis-a-vis biomass yield of Acacia nilotica Delite, Leucaena leucocephala (Lam) De Wit and Prosopis chilensis D.C (sub-family Mimosoidae). Dry seeds were exposed to 1, 2, 4, 8 and 16 KR doses of gammaradiation. Irradiat ed seeds were sown in the field along with the control. In case of L. leucocephala the growth of the plants as well as total biomass production increased steadily with increasing doses of irradiation upto 8 KR. In A. nilotica the response was similar to that of L leucocephala, but in this case maximum growth and biomass yield was obtained after 4 KR. On the other hand, P. chilensis did not exhibit a positive response to gammaradiation. Karyotype of the three species was also done. All these observations indicate the greater possibility of the utilization of gammaradiation in increasing biomass production. (author). 12 refs., 2 tabs., 7 figs

  18. The Effect of Fermentation Time with Probiotic Bacteria on Organic Fertilizer as Daphnia magna Cultured Medium towards Nutrient Quality, Biomass Production and Growth Performance Enhancement

    Science.gov (United States)

    Endar Herawati, Vivi; Agung Nugroho, Ristiawan; Pinandoyo; Darmanto, YS; Hutabarat, Johannes

    2018-02-01

    The nutrient quality and growth performance of D. magna are highly depend on the organic fertilizer which is used in its culture medium. The objective of this study was to identify the best fermentation time by using probiotic bacteria on organic fertilizer as mass culture medium to improve its nutrient quality, biomass production, and growth performance. This study was conducted using completely randomized experimental design with five treatments and three repetitions. Organic fertilizers used cultured medium with chicken manure, rejected bread and tofu waste fermented by probiotic bacteria then cultured for 0, 7, 14, 21 and 28 days. The results showed that medium which used 25% chicken manure, 25% tofu waste and 50% rejected bread cultured for 28 days created the highest biomass production, population density and nutrient content of D. magna those are 233,980 ind/L for population density; 134.60 grams for biomass production, 0.574% specific growth rate; 68.06% protein content and 6.91% fat. The highest fatty acid profile is 4.83% linoleic and 3.54% linolenic acid. The highest essential amino acid is 53.94 ppm lysine. In general, the content of ammonia, DO, temperature, and pH during the study were in the good range of D. magna life. The conclusion of this research is medium which used 25% chicken manure, 25% tofu waste and 50% rejected bread cultured for 28 days created the highest biomass production, population and nutrient content of D. magna.

  19. Biomass accumulation rates of Amazonian secondary forest and biomass of old-growth forests from Landsat time series and the Geoscience Laser Altimeter System

    Science.gov (United States)

    E. H. Helmer; M. A. Lefsky; D. A. Roberts

    2009-01-01

    We estimate the age of humid lowland tropical forests in Rondônia, Brazil, from a somewhat densely spaced time series of Landsat images (1975–2003) with an automated procedure, the Threshold Age Mapping Algorithm (TAMA), first described here. We then estimate a landscape-level rate of aboveground woody biomass accumulation of secondary forest by combining forest age...

  20. Evaluation of growth, cell size and biomass of Isochrysis aff. galbana (T-ISO with two LED regimes

    Directory of Open Access Journals (Sweden)

    Miguel Victor Cordoba-Matson

    2013-04-01

    Full Text Available In contrast to crops, there are fewer studies using LED-based light with green microalgae and none cultivating the microalga Isochrysis aff. galbana (T-ISO even though of its importance in marine aquaculture. The objective was to evaluate of white and red LEDs as an alternative source of light to cultivate I. aff. galbana (T-ISO. In order to carry this out white and red LEDs were used with a laboratory built Erlenmeyer-type photobioreactor to determine productivity, cell number and size and biomass composition. Results were compared with standard fluorescent lights of the same light intensity. The culture system consisted of 3 flasks for applying red LEDs and three for white LEDs and 3 control group flasks illuminated with the normal fluorescent lighting at the similar light intensity of ~60 mM m–2 s–1. It was found that the population cell density did not significantly increase with either red LEDs or white LEDs (p > 0.05, if at all. Standard fluorescent lighting (control group showed significant increases in population cell number (p < 0.05. Through microscopic observation cell size was found to be smaller for white LEDS and even smaller for red LEDs compared to fluorescent lighting. Biochemical composition of proteins, carbohydrates and lipids was similar for all light regimes. The authors suggest that the unexpected non-growth I. aff. galbana (T-ISO, a haptophyte microalga, with white and red LEDs is possibly due to fact that to initiate cell growth this microalgae requires other wavelengths (possibly green besides red and blue, to allow other pigments, probably fucoxanthin, to capture light

  1. Effects of Wood Ash Biomass Application on Growth Indices and Chlorophyll Content of Maize and Lima bean Intercrop

    Directory of Open Access Journals (Sweden)

    Rasheedat Ajala

    2017-07-01

    Full Text Available Wood ash generated from wood industries have enormous potential which can be utilized due to its properties which influences soil chemistry and fertility status of tropical acidic soils. Field experiments were conducted on an acidic sandy loam alfisol to investigate the effects of wood ash on the growth indices and chlorophyll content of maize and lima beans intercrop during the late and early seasons of 2014 and 2015 at Akure in the rainforest zone of southwestern Nigeria. The treatments were 100% sole maize with ash, 100% sole maize without ash, 75% maize + 25% lima beans with ash, 75% + 25% lima beans without ash, 50% maize + 50% lima beans with ash, 50% maize + 50% lima beans without ash, 25% maize + 75% lima beans with ash and 25% maize + 75% lima beans without ash. Wood ash was applied at 2.4kg/plot. Wood ash increased chlorophyll content in all amended treatments except in amended 25:75% maize-lima beans intercrop and 25:75% maize –lima beans intercrop without ash, however 75:25% maize-lima beans amended with wood ash significantly (P≥0.05 recorded the highest chlorophyll content. Growth parameters such as plant height, number of leaves, leaf area, leaf area index, leaf length, stem diameter, number of flowers, number of pods, weight of plant and total biomass of amended maize-lima beans intercrop were significantly (P≥0.05 increased by wood ash application. Based on experimental findings, 25:75% maize-lima beans intercrop and 75%:25% maize-lima beans intercrop amended with wood ash was concluded to be more recommendable in the study area.

  2. Effects of citrus pulp, fish by-product and Bacillus subtilis fermentation biomass on growth performance, nutrient digestibility, and fecal microflora of weanling pigs.

    Science.gov (United States)

    Noh, Hyun Suk; Ingale, Santosh Laxman; Lee, Su Hyup; Kim, Kwang Hyun; Kwon, Ill Kyong; Kim, Young Hwa; Chae, Byung Jo

    2014-01-01

    An experiment was conducted to investigate the effects of dietary supplementation with citrus pulp, fish by-product, and Bacillus subtilis fermentation biomass on the growth performance, apparent total tract digestibility (ATTD) of nutrients, and fecal microflora of weanling pigs. A total of 180 weaned piglets (Landrace × Yorkshire × Duroc) were randomly allotted to three treatments on the basis of body weight (BW). There were six replicate pens in each treatment with 10 piglets per pen. Dietary treatments were corn-soybean meal-based basal diet supplemented with 0 (control), 2.5, and 5.0% citrus pulp, fish by-product, and B. subtilis fermentation biomass. The isocaloric and isoproteineous experimental diets were fed in mash form in two phases (d 0 ~ 14, phase I and d 15 ~ 28, phase II). Dietary treatments had significant linear effects on gain to feed ratio (G:F) in all periods, whereas significant linear effects on ATTD of dry matter (DM), gross energy (GE), and ash were only observed in phase I. Piglets fed diet supplemented with 5.0% citrus pulp, fish by-product, and B. subtilis fermentation biomass showed greater (p by-product and B. subtilis fermentation biomass showed greater (p by-product, and B. subtilis fermentation biomass has the potential to improve the feed efficiency, nutrient digestibility, and fecal microflora of weanling pigs.

  3. Effects of anaerobic growth conditions on biomass accumulation, root morphology, and efficiencies of nutrient uptake and utilization in seedlings of some southern coastal plain pine species

    International Nuclear Information System (INIS)

    Topa, M.A.

    1984-01-01

    Seedlings of pond (Pinus serotina (Michx.)), sand (P. clausa (Engelm.) Sarg.), and loblolly pines (P. taeda L., drought-hardy and wet site seed sources) were grown in a non-circulating, continuously-flowing solution culture under anaerobic or aerobic conditions to determine the effects of anaerobics on overall growth, root morphology and efficiencies of nutrient uptake and utilization. Although shoot growth of the 11-week old loblolly and pond pines was not affected by anaerobic treatment, it did significantly reduce root biomass. Sand pine suffered the largest biomass reduction. Flooding tolerance was positively correlated with specific morphological changes which enhanced root internal aeration. Oxygen transport from shoot to the root in anaerobically-grown loblolly and pond pine seedlings was demonstrated via rhizosphere oxidation experiments. Tissue elemental analyses showed that anaerobic conditions interfered with nutrient absorption and utilization. Short-term 32 p uptake experiments with intact seedlings indicated that net absorption decreased because of the reduction in root biomass, since H 2 PO 4 - influx in the anaerobically-grown seedlings was more than twice that of their aerobic counterparts. Sand pine possessed the physiological but not morphological capacity to increase P uptake under anaerobic growth conditions. Pond and wet-site loblolly pine seedlings maintained root growth, perhaps through enhanced internal root aeration - an advantage in field conditions where the phosphorus supply may be limited or highly localized

  4. Sensitivity of growth and biomass allocation patterns to increasing nitrogen: a comparison between ephemerals and annuals in the Gurbantunggut Desert, north-western China.

    Science.gov (United States)

    Zhou, Xiaobing; Zhang, Yuanming; Niklas, Karl J

    2014-02-01

    Biomass accumulation and allocation patterns are critical to quantifying ecosystem dynamics. However, these patterns differ among species, and they can change in response to nutrient availability even among genetically related individuals. In order to understand this complexity further, this study examined three ephemeral species (with very short vegetative growth periods) and three annual species (with significantly longer vegetative growth periods) in the Gurbantunggut Desert, north-western China, to determine their responses to different nitrogen (N) supplements under natural conditions. Nitrogen was added to the soil at rates of 0, 0.5, 1.0, 3.0, 6.0 and 24.0 g N m(-2) year(-1). Plants were sampled at various intervals to measure relative growth rate and shoot and root dry mass. Compared with annuals, ephemerals grew more rapidly, increased shoot and root biomass with increasing N application rates and significantly decreased root/shoot ratios. Nevertheless, changes in the biomass allocation of some species (i.e. Erodium oxyrrhynchum) in response to the N treatment were largely a consequence of changes in overall plant size, which was inconsistent with an optimal partitioning model. An isometric log shoot vs. log root scaling relationship for the final biomass harvest was observed for each species and all annuals, while pooled data of three ephemerals showed an allometric scaling relationship. These results indicate that ephemerals and annuals differ observably in their biomass allocation patterns in response to soil N supplements, although an isometric log shoot vs. log root scaling relationship was maintained across all species. These findings highlight that different life history strategies behave differently in response to N application even when interspecific scaling relationships remain nearly isometric.

  5. Alley cropping of legumes with grasses as forages : Effect of different grass species and row spacing of gliricidia on the growth and biomass production of forages

    Directory of Open Access Journals (Sweden)

    Siti Yuhaeni

    1998-12-01

    Full Text Available A study to evaluate the effect of different grass species and row spacing of gliricidia (Gliricidia sepium on the growth and biomass production of forages in an alley cropping system was conducted in two different agroclimatical zones i.e. Bogor, located at 500 m a .s .l . with an average annual rainfall of 3,112 nun/year and Sukabumi located at 900 m a .s .l . with an average annual rainfall of 1,402 mm/year . Both locations have low N, P, and K content and the soil is classified as acidic. The experimental design used was a split plot design with 3 replicates . The main plots were different grass species i.e. king grass (Pennisetum purpureum x P. typhoides and elephant grass (P. purpureum. The sub plots were the row spacing of gliricidia at 2, 3, 4, 6 m (1 hedgerows and 4 m (2 hedgerows. The results indicated that the growth and biomass production of grasses were significantly affected (P<0 .05 by the treatments in Bogor. The highest biomass productions was obtained from the 2 m row spacing which gave the highest dry matter production of grasses (1 .65 kg/hill and gliricidia (0 .086 kg/tree . In Sukabumi the growth and biomass production of grasses and gliricidia were also significantly affected by the treatments . The highest dry matter production was obtained with 2 m row spacing (dry matter of grasses and gliricidia were 1 .12 kg/hill and 0 .026 kg/tree, respectively . The result further indicated that biomass production of forages increased with the increase in gliricidia population. The alley cropping system wich is suitable for Bogor was the 2 m row spacing of gliricidia intercropped with either king or elephant grass and for Sukabumi 2 and 4 m (2 rows of gliricidia row spacing intercropped with king or elephant grass .

  6. Nutritional value content, biomass production and growth performance of Daphnia magna cultured with different animal wastes resulted from probiotic bacteria fermentation

    Science.gov (United States)

    Endar Herawati, Vivi; Nugroho, R. A.; Pinandoyo; Hutabarat, Johannes

    2017-02-01

    Media culture is an important factor for the growth and quality of Daphnia magna nutrient value. This study has purpose to find the increasing of nutritional content, biomass production and growth performance of D. magna using different animal wastes fermented by probiotic bacteria. This study conducted using completely randomized experimental design with 10 treatments and 3 replicates. Those media used different animal manures such as chicken manure, goat manure and quail manure mixed by rejected bread and tofu waste fermented by probiotic bacteria then cultured for 24 days. The results showed that the media which used 50% chicken manure, 100% rejected bread and 50% tofu waste created the highest biomass production, population and nutrition content of D.magna about 2111788.9 ind/L for population; 342 grams biomass production and 68.85% protein content. The highest fatty acid profile is 6.37% of linoleic and the highest essential amino acid is 22.8% of lysine. Generally, the content of ammonia, DO, temperature, and pH during the study were in the good range of D. magna’s life. This research has conclusion that media used 50% chicken manure, 100% rejected bread and 50% tofu waste created the highest biomass production, population and nutrition content of D. magna.

  7. Negligible impacts of biomass removal on Douglas-fir growth 29 years after outplanting in the northern Rocky Mountains

    Science.gov (United States)

    Woongsoon Jang; Christopher R. Keyes; Deborah S. Page-Dumroese

    2018-01-01

    To investigate the long-term impacts of biomass harvesting on site productivity, we remeasured trees in the 1974 Forest Residues Utilization Research and Development Program at Coram Experimental Forest in western Montana. Three levels (high, medium, and low) of biomass removal intensity combined with broadcast burning treatment were assigned after clearcut in western...

  8. Effects of sample size on estimates of population growth rates calculated with matrix models.

    Directory of Open Access Journals (Sweden)

    Ian J Fiske

    Full Text Available BACKGROUND: Matrix models are widely used to study the dynamics and demography of populations. An important but overlooked issue is how the number of individuals sampled influences estimates of the population growth rate (lambda calculated with matrix models. Even unbiased estimates of vital rates do not ensure unbiased estimates of lambda-Jensen's Inequality implies that even when the estimates of the vital rates are accurate, small sample sizes lead to biased estimates of lambda due to increased sampling variance. We investigated if sampling variability and the distribution of sampling effort among size classes lead to biases in estimates of lambda. METHODOLOGY/PRINCIPAL FINDINGS: Using data from a long-term field study of plant demography, we simulated the effects of sampling variance by drawing vital rates and calculating lambda for increasingly larger populations drawn from a total population of 3842 plants. We then compared these estimates of lambda with those based on the entire population and calculated the resulting bias. Finally, we conducted a review of the literature to determine the sample sizes typically used when parameterizing matrix models used to study plant demography. CONCLUSIONS/SIGNIFICANCE: We found significant bias at small sample sizes when survival was low (survival = 0.5, and that sampling with a more-realistic inverse J-shaped population structure exacerbated this bias. However our simulations also demonstrate that these biases rapidly become negligible with increasing sample sizes or as survival increases. For many of the sample sizes used in demographic studies, matrix models are probably robust to the biases resulting from sampling variance of vital rates. However, this conclusion may depend on the structure of populations or the distribution of sampling effort in ways that are unexplored. We suggest more intensive sampling of populations when individual survival is low and greater sampling of stages with high

  9. Effects of sample size on estimates of population growth rates calculated with matrix models.

    Science.gov (United States)

    Fiske, Ian J; Bruna, Emilio M; Bolker, Benjamin M

    2008-08-28

    Matrix models are widely used to study the dynamics and demography of populations. An important but overlooked issue is how the number of individuals sampled influences estimates of the population growth rate (lambda) calculated with matrix models. Even unbiased estimates of vital rates do not ensure unbiased estimates of lambda-Jensen's Inequality implies that even when the estimates of the vital rates are accurate, small sample sizes lead to biased estimates of lambda due to increased sampling variance. We investigated if sampling variability and the distribution of sampling effort among size classes lead to biases in estimates of lambda. Using data from a long-term field study of plant demography, we simulated the effects of sampling variance by drawing vital rates and calculating lambda for increasingly larger populations drawn from a total population of 3842 plants. We then compared these estimates of lambda with those based on the entire population and calculated the resulting bias. Finally, we conducted a review of the literature to determine the sample sizes typically used when parameterizing matrix models used to study plant demography. We found significant bias at small sample sizes when survival was low (survival = 0.5), and that sampling with a more-realistic inverse J-shaped population structure exacerbated this bias. However our simulations also demonstrate that these biases rapidly become negligible with increasing sample sizes or as survival increases. For many of the sample sizes used in demographic studies, matrix models are probably robust to the biases resulting from sampling variance of vital rates. However, this conclusion may depend on the structure of populations or the distribution of sampling effort in ways that are unexplored. We suggest more intensive sampling of populations when individual survival is low and greater sampling of stages with high elasticities.

  10. Light-optimized growth of cyanobacterial cultures: Growth phases and productivity of biomass and secreted molecules in light-limited batch growth.

    Science.gov (United States)

    Clark, Ryan L; McGinley, Laura L; Purdy, Hugh M; Korosh, Travis C; Reed, Jennifer L; Root, Thatcher W; Pfleger, Brian F

    2018-03-27

    Cyanobacteria are photosynthetic microorganisms whose metabolism can be modified through genetic engineering for production of a wide variety of molecules directly from CO 2 , light, and nutrients. Diverse molecules have been produced in small quantities by engineered cyanobacteria to demonstrate the feasibility of photosynthetic biorefineries. Consequently, there is interest in engineering these microorganisms to increase titer and productivity to meet industrial metrics. Unfortunately, differing experimental conditions and cultivation techniques confound comparisons of strains and metabolic engineering strategies. In this work, we discuss the factors governing photoautotrophic growth and demonstrate nutritionally replete conditions in which a model cyanobacterium can be grown to stationary phase with light as the sole limiting substrate. We introduce a mathematical framework for understanding the dynamics of growth and product secretion in light-limited cyanobacterial cultures. Using this framework, we demonstrate how cyanobacterial growth in differing experimental systems can be easily scaled by the volumetric photon delivery rate using the model organisms Synechococcus sp. strain PCC7002 and Synechococcus elongatus strain UTEX2973. We use this framework to predict scaled up growth and product secretion in 1L photobioreactors of two strains of Synechococcus PCC7002 engineered for production of l-lactate or L-lysine. The analytical framework developed in this work serves as a guide for future metabolic engineering studies of cyanobacteria to allow better comparison of experiments performed in different experimental systems and to further investigate the dynamics of growth and product secretion. Copyright © 2018 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  11. High-EPA Biomass from Nannochloropsis salina Cultivated in a Flat-Panel Photo-Bioreactor on a Process Water-Enriched Growth Medium

    DEFF Research Database (Denmark)

    Safafar, Hamed; Hass, Michael Z.; Møller, Per

    2016-01-01

    salina biomass, with a focus on eicosapentaenoic acid (EPA). Variations in fatty acid composition, lipids, protein, amino acids, tocopherols and pigments were studied and results compared to algae cultivated on F/2 media as reference. Mixed growth media and process water enhanced the nutritional quality...... of Nannochloropsis salina in laboratory scale when compared to algae cultivated in standard F/2 medium. Data from laboratory scale translated to the large scaleusing a 4000 L flat panel photo-bioreactor system. The algae growth rate in winter conditions in Denmark was slow, but results revealed that large...... after 21 days of cultivation. Variations in chemical compositions of Nannochloropsis salina were studied during the course of cultivation. Nannochloropsis salina can be presented as a good candidate for winter time cultivation in Denmark.The resulting biomass is a rich source of EPA and also a good...

  12. Experimental workflow for developing a feed forward strategy to control biomass growth and exploit maximum specific methane productivity of Methanothermobacter marburgensis in a biological methane production process (BMPP

    Directory of Open Access Journals (Sweden)

    Alexander Krajete

    2016-08-01

    Full Text Available Recently, interests for new biofuel generations allowing conversion of gaseous substrate(s to gaseous product(s arose for power to gas and waste to value applications. An example is biological methane production process (BMPP with Methanothermobacter marburgensis. The latter, can convert carbon dioxide (CO2 and hydrogen (H2, having different origins and purities, to methane (CH4, water and biomass. However, these gas converting bioprocesses are tendentiously gas limited processes and the specific methane productivity per biomass amount (qCH4 tends to be low. Therefore, this contribution proposes a workflow for the development of a feed forward strategy to control biomass, growth (rx and qCH4 in a continuous gas limited BMPP. The proposed workflow starts with a design of experiment (DoE to optimize media composition and search for a liquid based limitation to control selectively growth. From the DoE it came out that controlling biomass growth was possible independently of the dilution and gassing rate applied while not affecting methane evolution rates (MERs. This was done by shifting the process from a natural gas limited state to a controlled liquid limited growth. The latter allowed exploiting the maximum biocatalytic activity for methane formation of Methanothermobacter marburgensis. An increase of qCH4 from 42 to 129 mmolCH4 g−1 h−1 was achieved by applying a liquid limitation compare with the reference state. Finally, a verification experiment was done to verify the feeding strategy transferability to a different process configuration. This evidenced the ratio of the fed KH2PO4 to rx (R(FKH2PO4/rx has an appropriate parameter for scaling feeds in a continuous gas limited BMPP. In the verification experiment CH4 was produced in a single bioreactor step at a methane evolution rate (MER of   132 mmolCH4*L−1*h−1 at a CH4 purity of 93 [Vol.%].

  13. Growth, aboveground biomass, and nutrient concentration of young Scots pine and lodgepole pine in oil shale post-mining landscapes in Estonia.

    Science.gov (United States)

    Kuznetsova, Tatjana; Tilk, Mari; Pärn, Henn; Lukjanova, Aljona; Mandre, Malle

    2011-12-01

    The investigation was carried out in 8-year-old Scots pine (Pinus sylvestris L.) and lodgepole pine (Pinus contorta var. latifolia Engelm.) plantations on post-mining area, Northeast Estonia. The aim of the study was to assess the suitability of lodgepole pine for restoration of degraded lands by comparing the growth, biomass, and nutrient concentration of studied species. The height growth of trees was greater in the Scots pine stand, but the tree aboveground biomass was slightly larger in the lodgepole pine stand. The aboveground biomass allocation to the compartments did not differ significantly between species. The vertical distribution of compartments showed that 43.2% of the Scots pine needles were located in the middle layer of the crown, while 58.5% of the lodgepole pine needles were in the lowest layer of the crown. The largest share of the shoots and stem of both species was allocated to the lowest layer of the crown. For both species, the highest NPK concentrations were found in the needles and the lowest in the stems. On the basis of the present study results, it can be concluded that the early growth of Scots pine and lodgepole pine on oil shale post-mining landscapes is similar.

  14. Stochastic modelling of tree architecture and biomass allocation: application to teak (Tectona grandis L. f.), a tree species with polycyclic growth and leaf neoformation.

    Science.gov (United States)

    Tondjo, Kodjo; Brancheriau, Loïc; Sabatier, Sylvie; Kokutse, Adzo Dzifa; Kokou, Kouami; Jaeger, Marc; de Reffye, Philippe; Fourcaud, Thierry

    2018-06-08

    For a given genotype, the observed variability of tree forms results from the stochasticity of meristem functioning and from changing and heterogeneous environmental factors affecting biomass formation and allocation. In response to climate change, trees adapt their architecture by adjusting growth processes such as pre- and neoformation, as well as polycyclic growth. This is the case for the teak tree. The aim of this work was to adapt the plant model, GreenLab, in order to take into consideration both these processes using existing data on this tree species. This work adopted GreenLab formalism based on source-sink relationships at organ level that drive biomass production and partitioning within the whole plant over time. The stochastic aspect of phytomer production can be modelled by a Bernoulli process. The teak model was designed, parameterized and analysed using the architectural data from 2- to 5-year-old teak trees in open field stands. Growth and development parameters were identified, fitting the observed compound organic series with the theoretical series, using generalized least squares methods. Phytomer distributions of growth units and branching pattern varied depending on their axis category, i.e. their physiological age. These emerging properties were in accordance with the observed growth patterns and biomass allocation dynamics during a growing season marked by a short dry season. Annual growth patterns observed on teak, including shoot pre- and neoformation and polycyclism, were reproduced by the new version of the GreenLab model. However, further updating is discussed in order to ensure better consideration of radial variation in basic specific gravity of wood. Such upgrading of the model will enable teak ideotypes to be defined for improving wood production in terms of both volume and quality.

  15. Effects of biofloc promotion on water quality, growth, biomass yield and heterotrophic community in Litopenaeus vannamei (Boone, 1931 experimental intensive cultures

    Directory of Open Access Journals (Sweden)

    Irasema E. Luis-Villaseñor

    2015-08-01

    Full Text Available Six 1.2-m3 tanks were stocked with an initial biomass of 500 g m-3 of Litopenaeus vannamei juveniles (individual weight: 1.0±0.3 g, to evaluate the effect of biofloc promotion on water quality and on shrimp growth and production, and to identify the dominant taxa in the heterotrophic communities present in experimental closed cultures. Feeding was ad libitum twice daily with 35% protein shrimp feed. Three tanks were managed as biofloc technology (BFT systems, adding daily an amount of cornmeal equivalent to 50% of the shrimp feed supplied. The remaining three received only shrimp feed and served as controls. Experiment lasted 21 days. The mean concentrations of P-PO4 3- and inorganic dissolved N species (TAN, N-NO2 -, N-NO3 - were significantly lower (P<0.5 in BFT than in the control. The individual final weight, increase in biomass, food, and protein conversion rates were significantly better in BFT than in the control (P<0.05. The mean N content of the shrimp biomass gained in the BFT cultures was equivalent to 45.7% of the protein-N added as feed, and was significantly higher than the 34.7% recycled into shrimp biomass in the control cultures. Bacterial concentrations were not significantly different. Vibrionaceae dominated in both systems; in both some isolates were potential pathogens, and diversity was higher in the control than in the BFT treatment. The advantages of BFT technology are confirmed by the significantly lower TAN and N-NO2 - concentrations, as well as by the better shrimp performance in terms of growth, biomass yield, and food and protein conversion efficiency.

  16. Characterising willows for biomass and phytoremediation: growth, nitrogen and water use of 14 willow clones under different irrigation and fertilisation regimes

    International Nuclear Information System (INIS)

    Weih, Martin; Nordh, N.-E.

    2002-01-01

    Fourteen clones of willow (Salix spp.) were characterised in terms of growth, nitrogen and water-use efficiency under different irrigation and fertilisation treatments. Cuttings of willow clones, some commercially introduced and others new material, were pot-grown outdoors in Central Sweden under four experimental treatments in a full-factorial design. The experiment covered the period from bud-break until leaf abscission and the experimental conditions included two irrigation and two fertilisation regimes. The growth of the clones was evaluated in terms of relative growth rate and total biomass production of whole plants and shoots. Nitrogen (N) economy was studied by means of N productivity, N accumulation and N losses by leaf abscission. Water economy was analysed with respect to intrinsic water-use efficiency (foliar carbon isotope ratio; δ 13 C) and the capacity of leaves to retain water (relative water content). Significant differences between clones were found in nearly all parameters measured and the clones varied in the responses to the experimental treatments (clone x factor interaction effects). Thus, clone ranking often changed depending on the experimental treatment. The results are discussed with respect to clone selection for different willow applications such as biomass production and phytoremediation, and willow growth performance under different water and nutrient availabilities. The growth-physiological characterisation of young willows in the short term (several months) is regarded as a suitable approach for pre-selection of promising clones prior to extensive field evaluation

  17. Nitrogen Alters Initial Growth, Fine-Root Biomass and Soil Organic Matter Properties of a Eucalyptus dunnii Maiden Plantation in a Recently Afforested Grassland in Southern Brazil

    Directory of Open Access Journals (Sweden)

    Gabriel W. D. Ferreira

    2018-01-01

    Full Text Available Nitrogen (N fertilization effects on Eucalyptus growth and soil carbon (C stocks are still controversial. We set up an N fertilization experiment in southern Brazil to evaluate initial tree growth and changes in soil organic matter (SOM. Four N levels (24–Reference, 36, 48 and 108 kg ha−1 of N were tested and tree growth was assessed during the first two years. Afterwards, representative trees were chosen to evaluate fine-root biomass (FRB and its spatial distribution. Soil was sampled to a 40-cm depth and SOM was fractionated in Particulate (POM and Mineral-Associated Organic Matter (MAOM for C and N content, and δ13C determination. Positive N effect on tree growth was seen only for tree height. N addition resulted in higher FRB. Changes in SOM were more expressive in top-soil layers. Overall, afforestation had positive effects on soil C. Increasing reference N dose resulted in higher C and N content in both SOM fractions. C and N dynamics were tightly correlated, especially in MAOM. Eucalypt-derived C was on average three-fold higher in POM. In summary, we showed that N fertilization may have positive but limited effects on tree growth, nevertheless it enhances fine-root biomass and C and N accumulation in SOM pools.

  18. Growth and biomass production with enhanced {beta}-glucan and dietary fibre contents of Ganoderma australe ATHUM 4345 in a batch-stirred tank bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Papaspyridi, Lefki-Maria; Christakopoulos, Paul [BIOtechMASS Unit, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens (Greece); Katapodis, Petros [BIOtechMASS Unit, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens (Greece); Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, Ioannina (Greece); Gonou-Zagou, Zacharoula; Kapsanaki-Gotsi, Evangelia [Department of Ecology and Systematics, Faculty of Biology, National and Kapodistrian University of Athens, Athens (Greece)

    2011-02-15

    In this study we maximized biomass production by the basidiomycete Ganoderma australe ATHUM 4345, a species of pharmaceutical interest as it is a valuable source of nutraceuticals, including dietary fibers and glucans. We used the Biolog FF MicroPlate to screen 95 different carbon sources for growth monitoring. The pattern of substrate catabolism forms a substrate assimilation fingerprint, which is useful in selecting components for media optimization of maximum biomass production. Response surface methodology, based on the central composite design was applied to explore the optimum concentrations of carbon and nitrogen sources of culture medium in shake flask cultures. When the improved culture medium was tested in a 20-L stirred tank bioreactor, using 13.7 g/L glucose and 30.0 g/L yeast extract, high biomass yields (10.1{+-}0.4 g/L) and productivity of 0.09 g L{sup -1} h{sup -1} were obtained. The yield coefficients for total glucan and dietary fibers on biomass formed were 94.82{+-}6 and 341.15{+-}12.3 mg/g mycelium dry weight, respectively. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Electrifying biomass

    International Nuclear Information System (INIS)

    Kusnierczyk, D.

    2005-01-01

    British Columbia's (BC) energy plan was outlined in this PowerPoint presentation. BC Hydro is the third largest electric utility in Canada with a generating capacity of 11,000 MW, 90 per cent of which is hydro generation. Various independent power project (IPP) biomass technologies were outlined, including details of biogas, wood residue and municipal solid waste facilities. An outline of BC Hydro's overall supply mix was presented, along with details of the IPP supply mix. It was suggested that the cancellation of the Duke Point power project has driven growth in the renewable energy sector. A chart of potential energy contribution by resource type was presented, as well as unit energy cost ranges. Resources included small and large hydro; demand side management; resource smart natural gas; natural gas; coal; wind; geothermal; biomass; wave; and tidal. The acquisition process was reviewed. Details of calls for tenders were presented, and issues concerning bidder responsibility and self-selection were examined. It was observed that wood residue presents a firm source of electricity that is generally local, and has support from the public. In addition, permits for wood residue energy conversion are readily available. However, size limitations, fuel risks, and issues concerning site control may prove to be significant challenges. It was concluded that the success of biomass energy development will depend on adequate access and competitive pricing. tabs., figs

  20. High-EPA Biomass from Nannochloropsis salina Cultivated in a Flat-Panel Photo-Bioreactor on a Process Water-Enriched Growth Medium

    Directory of Open Access Journals (Sweden)

    Hamed Safafar

    2016-07-01

    Full Text Available Nannochloropsis salina was grown on a mixture of standard growth media and pre-gasified industrial process water representing effluent from a local biogas plant. The study aimed to investigate the effects of enriched growth media and cultivation time on nutritional composition of Nannochloropsis salina biomass, with a focus on eicosapentaenoic acid (EPA. Variations in fatty acid composition, lipids, protein, amino acids, tocopherols and pigments were studied and results compared to algae cultivated on F/2 media as reference. Mixed growth media and process water enhanced the nutritional quality of Nannochloropsis salina in laboratory scale when compared to algae cultivated in standard F/2 medium. Data from laboratory scale translated to the large scale using a 4000 L flat panel photo-bioreactor system. The algae growth rate in winter conditions in Denmark was slow, but results revealed that large-scale cultivation of Nannochloropsis salina at these conditions could improve the nutritional properties such as EPA, tocopherol, protein and carotenoids compared to laboratory-scale cultivated microalgae. EPA reached 44.2% ± 2.30% of total fatty acids, and α-tocopherol reached 431 ± 28 µg/g of biomass dry weight after 21 days of cultivation. Variations in chemical compositions of Nannochloropsis salina were studied during the course of cultivation. Nannochloropsis salina can be presented as a good candidate for winter time cultivation in Denmark. The resulting biomass is a rich source of EPA and also a good source of protein (amino acids, tocopherols and carotenoids for potential use in aquaculture feed industry.

  1. Artificial neural network-based model for the prediction of optimal growth and culture conditions for maximum biomass accumulation in multiple shoot cultures of Centella asiatica.

    Science.gov (United States)

    Prasad, Archana; Prakash, Om; Mehrotra, Shakti; Khan, Feroz; Mathur, Ajay Kumar; Mathur, Archana

    2017-01-01

    An artificial neural network (ANN)-based modelling approach is used to determine the synergistic effect of five major components of growth medium (Mg, Cu, Zn, nitrate and sucrose) on improved in vitro biomass yield in multiple shoot cultures of Centella asiatica. The back propagation neural network (BPNN) was employed to predict optimal biomass accumulation in terms of growth index over a defined culture duration of 35 days. The four variable concentrations of five media components, i.e. MgSO 4 (0, 0.75, 1.5, 3.0 mM), ZnSO 4 (0, 15, 30, 60 μM), CuSO 4 (0, 0.05, 0.1, 0.2 μM), NO 3 (20, 30, 40, 60 mM) and sucrose (1, 3, 5, 7 %, w/v) were taken as inputs for the ANN model. The designed model was evaluated by performing three different sets of validation experiments that indicated a greater similarity between the target and predicted dataset. The results of the modelling experiment suggested that 1.5 mM Mg, 30 μM Zn, 0.1 μM Cu, 40 mM NO 3 and 6 % (w/v) sucrose were the respective optimal concentrations of the tested medium components for achieving maximum growth index of 1654.46 with high centelloside yield (62.37 mg DW/culture) in the cultured multiple shoots. This study can facilitate the generation of higher biomass of uniform, clean, good quality C. asiatica herb that can efficiently be utilized by pharmaceutical industries.

  2. The influence of Lasius neoniger (Hymenoptera: Formicidae) on population growth and biomass of Aphis glycines (Hemiptera: Aphididae) in soybeans.

    Science.gov (United States)

    Schwartzberg, Ezra G; Johnson, D W; Brown, G C

    2010-12-01

    In the United States, the soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), are often tended by the aphid-tending ant, Lasius neoniger Emery (Hymenoptera: Formicidae). In this study, we examined the effects of tending by ants on the density and biomass of soybean aphids on soybeans in Kentucky. We performed cage studies that limited access by ants and/or natural enemies. We used a split-plot design with natural enemy access as the main plot and ant attendance as the sub plot. We found that natural enemy access negatively affected aphid population density in the presence of tending ants, seen as a three- to four-fold increase in aphid density when natural enemies were excluded. In addition, we found that ant tending positively affected aphid biomass, both when natural enemies were given access to aphids or when natural enemies were excluded, seen by a two-fold increase in aphid biomass when ants tended aphids, both in the presence or absence of natural enemies. Biomass accumulation is seen as an important measurement for assessing aphid performance, and we argue that aphid-tending by ants can have an influence on natural field populations of soybean aphids. Agronomic practices that affect ant abundance in soybeans may influence the performance and hence pest outbreaks for this economically important pest. © 2010 Entomological Society of America

  3. Leaf area index, biomass carbon and growth rate of radiata pine genetic types and relationships with LiDAR

    Science.gov (United States)

    Peter N. Beets; Stephen Reutebuch; Mark O. Kimberley; Graeme R. Oliver; Stephen H. Pearce; Robert J. McGaughey

    2011-01-01

    Relationships between discrete-return light detection and ranging (LiDAR) data and radiata pine leaf area index (LAI), stem volume, above ground carbon, and carbon sequestration were developed using 10 plots with directly measured biomass and leaf area data, and 36 plots with modelled carbon data. The plots included a range of genetic types established on north- and...

  4. Elementary exact calculations of degree growth and entropy for discrete equations.

    Science.gov (United States)

    Halburd, R G

    2017-05-01

    Second-order discrete equations are studied over the field of rational functions [Formula: see text], where z is a variable not appearing in the equation. The exact degree of each iterate as a function of z can be calculated easily using the standard calculations that arise in singularity confinement analysis, even when the singularities are not confined. This produces elementary yet rigorous entropy calculations.

  5. Effects of sulfur and phosphorus application on the growth, biomass yield and fuel properties of leucaena (Leucaena leucocephala (Lam. de Wit. as bioenergy crop on sandy infertile soil

    Directory of Open Access Journals (Sweden)

    Songyos Chotchutima

    2016-01-01

    Full Text Available A field experiment was conducted to determine the effect of Sulfur (S and Phosphorus (P fertilizer on the growth, biomass production and wood quality of leucaena for use as a bioenergy crop at the Buriram Livestock Research and Testing Station, Pakham, Buriram province, Thailand during 2011–2013. The experiment was arranged in a split plot design with two rates of S fertilizer (0 and 187.5 kg/ha as a main plot and five rates of P (0, 93.75, 187.5, 375 and 750 kg/ha as a sub-plot, with four replications. The results showed that the plant height, stem diameter, total woody stem and biomass yield of leucaena were significantly increased by the application of S, while the leaf yield was not influenced by S addition. The total woody stem and biomass yield were also proportionately greatest with the maximum rate of P (750 kg/ha application. The addition of S did not result in any significant differences in fuel properties, while the maximum rate of P application also showed the best fuel properties among the several rates of P, especially with low Mg and ash contents compared with the control (0 kg/ha.

  6. Growth and content of Spirulina platensis biomass chlorophyll cultivated at different values of light intensity and temperature using different nitrogen sources

    Directory of Open Access Journals (Sweden)

    Eliane Dalva Godoy Danesi

    2011-03-01

    Full Text Available The effects of light intensity and temperature in S. platensis cultivation with potassium nitrate or urea as nitrogen source were investigated, as well as the biomass chlorophyll contents of this cyanobacteria, through the Response Surface Methodology. Experiments were performed at temperatures from 25 to 34.5ºC and light intensities from 15 to 69 µmol photons m-2 s-1, in mineral medium. In cultivations with both sources of nitrogen, KNO3 and urea, statistic evaluation through multiple regression, no interactions of such independent variables were detected in the results of the dependent variables maximum cell concentration, chlorophyll biomass contents, cell and chlorophyll productivities, as well as in the nitrogen-cell conversion factor. In cultivation performed with both sources of nitrogen, it was possible to obtain satisfactory adjustments to relate the dependent variables to the independent variables. The best results were achieved at temperature of 30ºC, at light intensity of 60 µmol photons m-2s-1, for cell growth, with cell productivity of approximately 95 mg L-1 d-1 in cultivations with urea. For the chlorophyll biomass content, the most adequate light intensity was 24 µmol photons m-2 s-1.

  7. Restoration of areas degraded by alluvial sand mining: use of soil microbiological activity and plant biomass growth to assess evolution of restored riparian vegetation.

    Science.gov (United States)

    Venson, Graziela R; Marenzi, Rosemeri C; Almeida, Tito César M; Deschamps-Schmidt, Alexandre; Testolin, Renan C; Rörig, Leonardo R; Radetski, Claudemir M

    2017-03-01

    River or alluvial sand mining is causing a variety of environmental problems in the Itajaí-açú river basin in Santa Catarina State (south of Brazil). When this type of commercial activity degrades areas around rivers, environmental restoration programs need to be executed. In this context, the aim of this study was to assess the evolution of a restored riparian forest based on data on the soil microbial activity and plant biomass growth. A reference site and three sites with soil degradation were studied over a 3-year period. Five campaigns were performed to determine the hydrolysis of the soil enzyme fluorescein diacetate (FDA), and the biomass productivity was determined at the end of the studied period. The variation in the enzyme activity for the different campaigns at each site was low, but this parameter did differ significantly according to the site. Well-managed sites showed the highest biomass productivity, and this, in turn, showed a strong positive correlation with soil enzyme activity. In conclusion, soil enzyme activity could form the basis for monitoring and the early prediction of the success of vegetal restoration programs, since responses at the higher level of biological organization take longer, inhibiting the assessment of the project within an acceptable time frame.

  8. The effect of active forms of silicon on the biomass of agricultural crops during their growth period on technogenically altered soils of the Nikopol Manganese Ore Basin

    Directory of Open Access Journals (Sweden)

    І. V. Wagner

    2017-05-01

    Full Text Available The problem of recovery of technogenically affected soils remains unsolved. Silicon which moves in the “soil – plant” system has been insufficiently studied, though this element takes part in many processes. For assessing the role of silicon compounds, we selected samples of technogenically affected soils of different types in the territory of the research station for land reclamation of Dnіpro State Agrarian-Economic University in the Nikopol Manganese Ore Basin. We conducted a vegetative experiment and a series of laboratory tests with adding SiO2. We chose the following crops: buckwheat (Fagopyrum esculentum Moench, 1794, vetch (Vicia sativa Linnaeus, 1753 and sunflower (Helianthus annuus Linnaeus, 1753. The рН of the studied soils fluctuated between 7.1 to 7.8. The content of available nitrogen and phosphorus in the soils was low, except the content of phosphorus in pedozems. We analyzed 240 samples of plants and measured their biomass. Vetch grew best on sod-lithogenous soils on forest-like lomy soils, buckwheat and sunflower – on sod-lithogenous soils on grey-green clays. The variant of experiment with 0.2% solution of SiO2 was most the efficient during growing all chosen crops on all types of studied soils. After adding amphoteric silicon, the best biomass indicators of vetch and buckwheat were observed on sod-lithogenous soils on forest-like loam, and indicators for sunflower – on sod-lithogenous soils on grey-green clays. After using 0.3% and 0.4% solution of SiO2, a gel film forms, which the seeds have no energy to penetrate and run out. Thus it slows the plant’s growth. An exception was an experiment with pedozems with adding 0.4% solution of SiO2, when the biomass of vetch was 1.5 times greater than in the experiment with 0.2% solution. We observed no similar positive effect in other variants of the experiment. All chosen crops on technogenically affected soils reacted to addition of silicon compounds by increasing

  9. Establishment, Growth and Biomass yield of three Grass species on a degraded Ultisol and their effect on soil loss.

    Directory of Open Access Journals (Sweden)

    2016-11-01

    Full Text Available Erosion is a cause for concern; this is because of its effects on the soil used for both agricultural and non-agricultural purposes. Experiments were carried out to check the establishment, growth and biomass field of 3 tropical plants and their effects on soil loss during 2007 planting season. The treatments comprised 3 grasses viz. Azonopus compressus. Panicum maximum and Andropogon gayanus. The grasses were laid our in the field using a randomized complete block design replicated 4 times. Bare soil was used as the control. The parameters tested were plant height, leaf area index, root density, root establishment and the amount of soil loss using erosion pins. The result showed that Andropogon gayanus has an edge over Panicum maximum and Axonopus compressus with reference to plant height, root establishment, root density and leaf area index. Andropogon gayanus had a higher plant height from 3,6,9 and 12WAP with plant heights of 3.30cm, 3.63cm,3.93cm and 4.30cm representing 15.7%, 19.3% and 28.8% respectively. It was followed by P. maximum while A. compressus maintained the lowest plant height from 3,6,9 and 12 WAP with plant height of 2.83cm, 3.05cm, 3.20cm and 3.45cm respectively. In terms of root density, A. compressus did not have much root density which was 0.02t/ha, also at 12WAP, P. maximum did not have much root density which was 0.06t/ha though it was higher than A. compressus. The trend was the same for A. gayanus whose root density was 0.75t/ha. In terms of leaf area index (LAI, it was shown that at 3WAP and 6WAP, A. compressus had the lowest leaf area index of 58.25 and 65.75 respectively. Also at 9WAP and 12WAP A. compressus had 72.28 and 75.08t/ha respectively. At 3WAP and 6WAP P.maximum had a high leaf area index of 66.60 and 77.25 respectively. A. gayanus at 3WAP and 6WAP had 87.73 gayanus at 3WAP and 6WAP had 87.73 and 90.80 for 9WAP and 12WAP respectively. A. compressus protected the soil, reducing soil loss as a total of 9

  10. Growth, biomass production and photosynthesis of Cenchrus ciliaris L. under Acacia tortilis (Forssk.) Hayne based silvopastoral systems in semi arid tropics.

    Science.gov (United States)

    Mishra, A K; Tiwari, H S; Bhatt, R K

    2010-11-01

    The growth, biomass production and photosynthesis of Cenchrus ciliaris was studied under the canopies of 17 yr old Acacia tortilis trees in semi arid tropical environment. On an average the full grown canopy of A. tortilis at the spacing of 4 x 4 m allowed 55% of total Photosynthetically Active Radiation (PAR) which in turn increased Relative Humidity (RH) and reduced under canopy temperature to -1.75 degrees C over the open air temperature. C. ciliaris attained higher height under the shade of A. tortilis. The tiller production and leaf area index decreased marginally under the shade of tree canopies as compared to the open grown grasses. C. ciliaris accumulated higher chlorophyll a and b under the shade of tree canopies indicating its shade adaptation potential. The assimilatory functions such as rate of photosynthesis, transpiration, stomatal conductance, photosynthetic water use efficiency (PN/TR) and carboxylation efficiency (PN/CINT) decreased under the tree canopies due to low availability of PAR. The total biomass production in term of fresh and dry weight decreased under the tree canopies. On average of 2 yr C. ciliaris had produced 12.78 t ha(-1) green and 3.72 -t ha(-1) dry biomass under the tree canopies of A. tortilis. The dry matter yield reduced to 38% under the tree canopies over the open grown grasses. The A. tortilis + C. ciliaris maintained higher soil moisture, organic carbon content and available N P K for sustainable biomass production for the longer period. The higher accumulation of crude protein, starch, sugar and nitrogen in leaves and stem of C. ciliaris indicates that this grass species also maintained its quality under A. tortilis based silvopastoral system. The photosynthesis and dry matter accumulation are closely associated with available PAR indicating that for sustainable production of this grass species in the silvopasture systems for longer period about 55% or more PAR is required.

  11. Endophyte-assisted promotion of biomass production and metal-uptake of energy crop sweet sorghum by plant-growth-promoting endophyte Bacillus sp. SLS18

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Shenglian; Xu, Taoying; Chen, Liang [Hunan Univ., Changsha (China). College of Environmental Science and Engineering] [and others

    2012-02-15

    The effects of Bacillus sp. SLS18, a plant-growth-promoting endophyte, on the biomass production and Mn/Cd uptake of sweet sorghum (Sorghum bicolor L.), Phytolacca acinosa Roxb., and Solanum nigrum L. were investigated. SLS18 displayed multiple heavy metals and antibiotics resistances. The strain also exhibited the capacity of producing indole-3-acetic acid, siderophores, and 1-aminocyclopropane-1-carboxylic acid deaminase. In pot experiments, SLS18 could not only infect plants effectively but also significantly increase the biomass of the three tested plants in the presence of Mn/Cd. The promoting effect order of SLS18 on the biomass of the tested plants was sweet sorghum > P. acinosa > S. nigrum L. In the presence of Mn (2,000 mg kg{sup -1}) and Cd (50 mg kg{sup -1}) in vermiculite, the total Mn/Cd uptakes in the aerial parts of sweet sorghum, P. acinosa, and S. nigrum L. were increased by 65.2%/40.0%, 55.2%/31.1%, and 18.6%/25.6%, respectively, compared to the uninoculated controls. This demonstrates that the symbiont of SLS18 and sweet sorghum has the potential of improving sweet sorghum biomass production and its total metal uptake on heavy metal-polluted marginal land. It offers the potential that heavy metal-polluted marginal land could be utilized in planting sweet sorghum as biofuel feedstock for ethanol production, which not only gives a promising phytoremediation strategy but also eases the competition for limited fertile farmland between energy crops and food crops. (orig.)

  12. Studies and calculations of transverse emittance growth in proton storage rings

    International Nuclear Information System (INIS)

    Mane, S.R.; Jackson, G.

    1989-01-01

    When high energy storage rings are used to collide beams of particles and antiparticles for high energy physics experiments, it is important to obtain as high an integrated luminosity as possible. Reduction of integrated luminosity can arise from several factors, in particular from growth of the transverse beam sizes (transverse emittances). We have studied the problem of transverse emittance growth in high energy storage rings caused by random dipole noise kicks to the beam. A theoretical formula for the emittance growth rate is derived, and agreement is obtained with experimental measurements where noise of known amplitude and power spectrum was deliberately injected into the Fermilab Tevatron, to kick the beam randomly. In the experiment, phase noise was introduced into the Tevatron rf system, and the measured dependence of horizontal emittance growth on phase noise amplitude is compared against the theoretically derived response. (orig.)

  13. Calculation of vapour bubble growth on the lower generatrix of horizontal tubes

    International Nuclear Information System (INIS)

    Chajka, V.D.

    1987-01-01

    The known models of vapour bubble growth are compared with experimental data. Cinematographic study of vapour formation during water boiling was carried out with elements of horizontal tubes of copper 10, 16, 24, 34 and 70 mm in diameter under the pressure of 100 kPa and specific thermal loadings of 20 and 40 kW/m 2 . According to the experimental data the main volume of vapour phase is occupied by vapour bubbles from the lower part of the horizontal tube. Five stages of vapour bubble growth on the lower generatrix of the horizontal tube: nucleation, growth to the point of breaking off from nucleate centre, the breaking off from the nucleate centre, the tube surface flowing around during floating up, the breaking off from the tube surface, were singled out. The shape of vapour volume varied during the whole period of the bubble growth and it was mainly determined by the horizontal tube diameter. The change of vapour bubble radius in time is the function of the horizontal tube diameter. Comparison of the experimental data with the known models of vapour bubble growth has shown, that every stage of vapour bubble growth on the lower generatrix of the tube is determined by the complex of thermal and hydrodynamic conditions, the effect of which depends on the horizontal tube diameter

  14. The effects of different sewage sludge amendment rates on the heavy metal bioaccumulation, growth and biomass of cucumbers (Cucumis sativus L.).

    Science.gov (United States)

    Eid, Ebrahem M; Alrumman, Sulaiman A; El-Bebany, Ahmed F; Hesham, Abd El-Latif; Taher, Mostafa A; Fawy, Khaled F

    2017-07-01

    When sewage sludge is incorrectly applied, it may adversely impact agro-system productivity. Thus, this study addresses the reaction of Cucumis sativus L. (cucumber) to different amendment rates (0, 10, 20, 30, 40 and 50 g kg -1 ) of sewage sludge in a greenhouse pot experiment, in which the plant growth, heavy metal uptake and biomass were evaluated. A randomized complete block design with six treatments and six replications was used as the experimental design. The soil electrical conductivity, organic matter and Cr, Fe, Zn and Ni concentrations increased, but the soil pH decreased in response to the sewage sludge applications. As approved by the Council of European Communities, all of the heavy metal concentrations in the sewage sludge were less than the permitted limit for applying sewage sludge to land. Generally, applications of sewage sludge of up to 40 g kg -1 resulted in a considerable increase in all of the morphometric parameters and biomass of cucumbers in contrast to plants grown on the control soil. Nevertheless, the cucumber shoot height; root length; number of leaves, internodes and fruits; leaf area; absolute growth rate and biomass decreased in response to 50 g kg -1 of sewage sludge. All of the heavy metal concentrations (except the Cu, Zn and Ni in the roots, Mn in the fruits and Pb in the stems) in different cucumber tissues increased with increasing sewage sludge application rates. However, all of the heavy metal concentrations (except the Cr and Fe in the roots, Fe in the leaves and Cu in the fruits) were within the normal range and did not reach phytotoxic levels. A characteristic of these cucumbers was that all of the heavy metals had a bioaccumulation factor sewage sludge used in this study could be considered for use as a fertilizer in cucumber production systems in Saudi Arabia and can also serve as a substitute method of sewage sludge disposal. Graphical Abstract The effects of different sewage sludge amendment rates on the heavy

  15. New explicit equations for the accurate calculation of the growth and evaporation of hydrometeors by the diffusion of water vapor

    Science.gov (United States)

    Srivastava, R. C.; Coen, J. L.

    1992-01-01

    The traditional explicit growth equation has been widely used to calculate the growth and evaporation of hydrometeors by the diffusion of water vapor. This paper reexamines the assumptions underlying the traditional equation and shows that large errors (10-30 percent in some cases) result if it is used carelessly. More accurate explicit equations are derived by approximating the saturation vapor-density difference as a quadratic rather than a linear function of the temperature difference between the particle and ambient air. These new equations, which reduce the error to less than a few percent, merit inclusion in a broad range of atmospheric models.

  16. Effects of soil type and light on height growth, biomass partitioning, and nitrogen dynamics on 22 species of tropical dry forest tree seedlings: Comparisons between legumes and nonlegumes.

    Science.gov (United States)

    Smith-Martin, Christina M; Gei, Maria G; Bergstrom, Ellie; Becklund, Kristen K; Becknell, Justin M; Waring, Bonnie G; Werden, Leland K; Powers, Jennifer S

    2017-03-01

    The seedling stage is particularly vulnerable to resource limitation, with potential consequences for community composition. We investigated how light and soil variation affected early growth, biomass partitioning, morphology, and physiology of 22 tree species common in tropical dry forest, including eight legumes. Our hypothesis was that legume seedlings are better at taking advantage of increased resource availability, which contributes to their successful regeneration in tropical dry forests. We grew seedlings in a full-factorial design under two light levels in two soil types that differed in nutrient concentrations and soil moisture. We measured height biweekly and, at final harvest, biomass partitioning, internode segments, leaf carbon, nitrogen, δ 13 C, and δ 15 N. Legumes initially grew taller and maintained that height advantage over time under all experimental conditions. Legumes also had the highest final total biomass and water-use efficiency in the high-light and high-resource soil. For nitrogen-fixing legumes, the amount of nitrogen derived from fixation was highest in the richer soil. Although seed mass tended to be larger in legumes, seed size alone did not account for all the differences between legumes and nonlegumes. Both belowground and aboveground resources were limiting to early seedling growth and function. Legumes may have a different regeneration niche, in that they germinate rapidly and grow taller than other species immediately after germination, maximizing their performance when light and belowground resources are readily available, and potentially permitting them to take advantage of high light, nutrient, and water availability at the beginning of the wet season. © 2017 Botanical Society of America.

  17. Calculating second derivatives of population growth rates for ecology and evolution

    NARCIS (Netherlands)

    Shyu, E.; Caswell, H.

    2014-01-01

    Second derivatives of the population growth rate measure the curvature of its response to demographic, physiological or environmental parameters. The second derivatives quantify the response of sensitivity results to perturbations, provide a classification of types of selection and provide one way

  18. Solid biomass barometer

    International Nuclear Information System (INIS)

    Anon.

    2011-01-01

    The primary energy production from solid biomass in the European Union reached 79.3 Mtoe in 2010 which implies a growth rate of 8% between 2009 and 2010. The trend, which was driven deeper by Europe's particularly cold winter of 2009-2010, demonstrates that the economic down-turn failed to weaken the member states' efforts to structure the solid biomass sector. Heat consumption rose sharply: the volume of heat sold by heating networks increased by 18% and reached 6.7 Mtoe and if we consider the total heat consumption (it means with and without recovery via heating networks) the figure is 66 Mtoe in 2010, which amounts to 10.1% growth. The growth of electricity production continued through 2010 (8.3% up on 2009) and rose to 67 TWh but at a slower pace than in 2009 (when it rose by 11.3% on 2008). The situation of the main producer countries: Sweden, Finland, Germany and France is reviewed. It appears that cogeneration unit manufacturers and biomass power plant constructors are the main beneficiaries of the current biomass energy sector boom. There is a trend to replace coal-fired plants that are either obsolete or near their end of life with biomass or multi-fuel plants. These opportunities will enable the industry to develop and further exploit new technologies such as gasification, pyrolysis and torrefaction which will enable biomass to be turned into bio-coal. (A.C.)

  19. Biomass pretreatment

    Science.gov (United States)

    Hennessey, Susan Marie; Friend, Julie; Elander, Richard T; Tucker, III, Melvin P

    2013-05-21

    A method is provided for producing an improved pretreated biomass product for use in saccharification followed by fermentation to produce a target chemical that includes removal of saccharification and or fermentation inhibitors from the pretreated biomass product. Specifically, the pretreated biomass product derived from using the present method has fewer inhibitors of saccharification and/or fermentation without a loss in sugar content.

  20. Discrimination between acute and chronic decline of Central European forests using map algebra of the growth condition and forest biomass fuzzy sets: A case study.

    Science.gov (United States)

    Samec, Pavel; Caha, Jan; Zapletal, Miloš; Tuček, Pavel; Cudlín, Pavel; Kučera, Miloš

    2017-12-01

    Forest decline is either caused by damage or else by vulnerability due to unfavourable growth conditions or due to unnatural silvicultural systems. Here, we assess forest decline in the Czech Republic (Central Europe) using fuzzy functions, fuzzy sets and fuzzy rating of ecosystem properties over a 1×1km grid. The model was divided into fuzzy functions of the abiotic predictors of growth conditions (F pred including temperature, precipitation, acid deposition, soil data and relative site insolation) and forest biomass receptors (F rec including remote sensing data, density and volume of aboveground biomass, and surface humus chemical data). Fuzzy functions were designed at the limits of unfavourable, undetermined or favourable effects on the forest ecosystem health status. Fuzzy sets were distinguished through similarity in a particular membership of the properties at the limits of the forest status margins. Fuzzy rating was obtained from the least difference of F pred -F rec . Unfavourable F pred within unfavourable F rec indicated chronic damage, favourable F pred within unfavourable F rec indicated acute damage, and unfavourable F pred within favourable F rec indicated vulnerability. The model in the 1×1km grid was validated through spatial intersection with a point field of uniform forest stands. Favourable status was characterised by soil base saturation (BS)>50%, BCC/Al>1, C org >1%, MgO>6g/kg, and nitrogen depositionforests had BS humus 46-60%, BCC/Al 9-20 and NDVI≈0.42. Chronic forest damage occurs in areas with low temperatures, high nitrogen deposition, and low soil BS and C org levels. In the Czech Republic, 10% of forests were considered non-damaged and 77% vulnerable, with damage considered acute in 7% of forests and chronic in 5%. The fuzzy model used suggests that improvement in forest health will depend on decreasing environmental load and restoration concordance between growth conditions and tree species composition. Copyright © 2017 Elsevier

  1. Drought induced changes in growth, leaf gas exchange and biomass production in Albizia lebbeck and Cassia siamea seedlings.

    Science.gov (United States)

    Saraswathi, S Gnaana; Paliwal, Kailash

    2011-03-01

    Diurnal trends in net photosynthesis rate (P(N)), stomatal conductance (g(s)), water use efficiency (WUE) and biomass were compared in six-month-old seedlings of Albizia lebbeck and Cassia siamea, under different levels of drought stress. The potted plants were subjected to four varying drought treatment by withholding watering for 7 (D1), 14(D2) and 25 (D3) days. The fourth group (C) was watered daily and treated as unstressed (control). Species differed significantly (p lebbeck. A significant (p lebbeck, r2 = 0.84; C. siamea, r2 = 0.82). Higher WUE was observed in C. siamea (D2, 7.1 +/- 0.18 micromol m(-2) s(-1); D3, 8.39 +/- 0.11 micromol m(-2) s(-1)) than A. lebbeck, (control, 7.58 +/- 0.3 micromol m(-2) s(-1) and D3, 8.12 +/- 0.15 micromol m(-2) s(-1)). The chlorophyll and relative water content (RWC) was more in A. lebbeck than C. siamea. Maximum biomass was produced by A. lebbeckthan C. siamea. From the study, one could conclude that A. lebbeckis better than C. siamea in adopting suitable resource management strategy and be best suited for the plantation programs in the semi-arid dry lands.

  2. Self-consistent calculation of steady-state creep and growth in textured zirconium

    International Nuclear Information System (INIS)

    Tome, C.N.; So, C.B.; Woo, C.H.

    1993-01-01

    Irradiation creep and growth in zirconium alloys result in anisotropic dimensional changes relative to the crystallographic axis in each individual grain. Several methods have been attempted to model such dimensional changes, taking into account the development of intergranular stresses. In this paper, we compare the predictions of several such models, namely the upper-bound, the lower-bound, the isotropic K* self-consistent (analytical) and the fully self-consistent (numerical) models. For given single-crystal creep compliances and growth factors, the polycrystal compliances predicted by the upper- and lower-bound models are unreliable. The predictions of the two self-consistent approaches are usually similar. The analytical isotropic K* approach is simple to implement and can be used to estimate the creep and growth rates of the polycrystal in many cases. The numerical fully self-consistent approach should be used when an accurate prediction of polycrystal creep is required, particularly for the important case of a closed-end internally pressurized tube. In most cases, the variations in grain shape introduce only minor corrections to the behaviour of polycrystalline materials. (author)

  3. Effect of Dose and Oxadiargyl Application Time at the Different Growth Stages on Weed Biomass and Tuber Yield of Potato (Solanum tuberosum L.

    Directory of Open Access Journals (Sweden)

    E. Samadi Kalkhoran

    2016-01-01

    Full Text Available To evaluate the effects of dose and application time of oxadiargyl, as a postemergence herbicide, on weed biomass and tuber yield of potato, a factorial experiment based on randomized complete block design with 3 replications was conducted at Alaroog Research Station at the University of Mohaghegh-Ardabili in 2013. Treatments consisted of oxadiargyl dosages (0, 0.05, 0.1, 0.2, 0.4, 0.6 and 0.8 lit a.i /ha, and its time of applications at different potato growth stages (potato emergence, stolon initiation and potato tuber bulking, weed free treatment was considered as control. Statistical analysis showed that 0.8 lit a.i/ha of oxadiargyl reduced biomass of weed by 66.16 percent. Oxadiargyl application at emergence time resulted in highest percent reduction of weed biomass. Results, also, showed that application 0.8 lit a.i/ha of oxadiargyl, after weed free condition, increased number of seed tuber and total tuber yield by 82.16 and 51.59 percent respectively, but it reduced number of non seed tuber by 43.17 percent. Application of oxadiargyl at emergence time, as compared with the other application times, resulted in highest increase in the number of seed tuber and total tuber yield, but it did not affected number of non seed tubers. Interaction effect of dose by time of oxadiargyl application revealed that using 0.8 lit a.i/ha dose at potato emergence time increased number of edible tubers by 100%. It may be conducted that application of this dose at potato emergence time was highly efficient in controlling weeds and increasing potato tuber yield.

  4. Assessment of the microbial growth potential of slow sand filtrate with the biomass production potential test in comparison with the assimilable organic carbon method.

    Science.gov (United States)

    van der Kooij, Dick; Veenendaal, Harm R; van der Mark, Ed J; Dignum, Marco

    2017-11-15

    Slow sand filtration is the final treatment step at four surface-water supplies in the Netherlands. The microbial growth potential (MGP) of the finished water was measured with the assimilable organic carbon (AOC) method using pure cultures and the biomass production potential (BPP) test. In the BPP test, water samples were incubated untreated at 25 °C and the active-biomass concentration was measured by adenosine tri-phosphate (ATP) analysis. Addition of a river-water inoculum improved the test performance and characteristic growth and maintenance profiles of the water were obtained. The maximum ATP concentration attained within seven days and the cumulative biomass production after 14 days of incubation (BPC 14 , d ng ATP L -1 ) showed highly significant and strong linear relationships with the AOC in the slow sand filtrates. The lowest AOC and BPC 14 levels were observed in the supplies applying dune filtration without ozonation in post treatment, with AOC/TOC = 1.7 ± 0.3 μg acetate-C equivalents mg -1 C and BPC 14 /TOC = 16.3 ± 2.2 d ng ATP mg -1 C, corresponding with 1.2 ± 0.19 ng ATP mg -1 C. These characteristics may represent the lowest specific MGP of natural organic matter achievable by biofiltration at temperatures ≤20 °C. The AOC and BPC 14 concentrations in the slow sand filtrate of the supply treating lake water by ozonation with granular-activated-carbon filtration and slow sand filtration as post treatment increased with decreasing temperature. The BPP test revealed that this slow sand filtrate sampled at 2 °C contained growth-promoting compounds that were not detected with the AOC test. These observations demonstrate the utility of the BPP test for assessing the MGP of drinking water and show the performance limits of biofiltration for MGP reduction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Evaluation of wheat growth, morphological characteristics, biomass yield and quality in Lunar Palace-1, plant factory, green house and field systems

    Science.gov (United States)

    Dong, Chen; Shao, Lingzhi; Fu, Yuming; Wang, Minjuan; Xie, Beizhen; Yu, Juan; Liu, Hong

    2015-06-01

    Wheat (Triticum aestivum L.) is one of the most important agricultural crops in both space such as Bioregenerative Life Support Systems (BLSS) and urban agriculture fields, and its cultivation is affected by several environmental factors. The objective of this study was to investigate the influences of different environmental conditions (BLSS, plant factory, green house and field) on the wheat growth, thousand kernel weight (TKW), harvest index (HI), biomass yield and quality during their life cycle. The results showed that plant height partially influenced by the interaction effects with environment, and this influence decreased gradually with the plant development. It was found that there was no significant difference between the BLSS and plant factory treatments on yields per square, but the yield of green house and field treatments were both lower. TKW and HI in BLSS and plant factory were larger than those in the green house and field. However, grain protein concentration can be inversely correlated with grain yield. Grain protein concentrations decreased under elevate CO2 condition and the magnitude of the reductions depended on the prevailing environmental condition. Conditional interaction effects with environment also influenced the components of straw during the mature stage. It indicated that CO2 enriched environment to some extent was better for inedible biomass degradation and had a significant effect on "source-sink flow" at grain filling stage, which was more beneficial to recycle substances in the processes of the environment regeneration.

  6. The effects of cadmium pulse dosing on physiological traits and growth of the submerged macrophyte Vallisneria spinulosa and phytoplankton biomass: a mesocosm study.

    Science.gov (United States)

    Liu, Hui; Cao, Yu; Li, Wei; Zhang, Zhao; Jeppesen, Erik; Wang, Wei

    2017-06-01

    Pulse inputs of heavy metals are expected to increase with a higher frequency of extreme climate events (heavy rain), leading to stronger erosion of contaminated and fertilized farmland soils to freshwaters, with potentially adverse effects on lake ecosystems. We conducted a 5-month mesocosm study to elucidate the responses of the submerged macrophyte Vallisneria spinulosa and phytoplankton to four different doses of cadmium (Cd): 0 (control), 0.05, 0.5, and 5 g m -2 (CK, I, II, and III, respectively) under mesotrophic conditions. We found that total phosphorus concentrations were larger in the three Cd pulse treatments, whereas total nitrogen concentrations did not differ among the four treatments. The contents of chlorophyll a and soluble sugar in macrophyte leaves decreased in III, and total biomass, ramet number, plant height, and total stolon length of macrophytes were lower in both II and III. In contrast, abundances of the three main phytoplankton taxa-Cyanophyta, Chlorophyta, and Bacillariophyta-did not differ among treatments. Total phytoplankton biomass was, however, marginally lower in CK than in the Cd treatments. We conclude that exposure to strong Cd pulses led to significantly reduced growth of macrophytes, while no obvious effect appeared for phytoplankton.

  7. [Pb(NO3)2 and Pb(CH3COO)2] on growth, biomass and proline in ...

    African Journals Online (AJOL)

    use

    2011-12-14

    Dec 14, 2011 ... Spirulina platensis growth parameters [chlorophyll a (chl a) and dry-wet weight] effects on proline ... between lead accumulation in the test algae and low pH which ... vitamins, antioxidants and immunositimulants for both.

  8. Manipulation of light wavelength at appropriate growth stage to enhance biomass productivity and fatty acid methyl ester yield using Chlorella vulgaris.

    Science.gov (United States)

    Kim, Dae Geun; Lee, Changsu; Park, Seung-Moon; Choi, Yoon-E

    2014-05-01

    LEDs light offer several advantages over the conventional lamps, thereby being considered as the optimal light sources for microalgal cultivation. In this study, various light-emitting diodes (LEDs) especially red and blue color with different light wavelengths were employed to explore the effects of light source on phototrophic cultivation of Chlorella vulgaris. Blue light illumination led to significantly increased cell size, whereas red light resulted in small-sized cell with active divisions. Based on the discovery of the effect of light wavelengths on microalgal biology, we then applied appropriate wavelength at different growth stages; blue light was illuminated first and then shifted to red light. By doing so, biomass and lipid productivity of C. vulgaris could be significantly increased, compared to that in the control. These results will shed light on a novel approach using LED light for microalgal biotechnology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Effect of long-term salinity on the growth and biomass of two non-secretors mangrove plants Rhizophora apiculata and Ceriops tagal

    Science.gov (United States)

    Basyuni, M.; Nuryawan, A.; Yunasfi; Putri, L. A. P.; Baba, S.

    2018-02-01

    The present study describes the effect of long-term salinity on morphological character and biomass content of two non-secretors mangrove plants Rhizophora apiculata and Ceriops tagal. Two mangrove seedlings were grown for six months in 0%, 0.5%, 1.5%, 2.0% and 3.0% salt concentration. The growth of R. apiculata was significantly enhanced by salt with maximal stimulus at 1.5% (equal to 50% natural seawater), and this increase appeared to be attenuated by increasing the salinity concentration above 1.5%. By contrast, the growth of C. tagal thrived up to 0.5% salt concentration. Our findings, therefore, suggested that within the range of treatments used, 1.5% and 0.5%, respectively were the optimal salinity of R. apiculata and C. tagal for growth. The highest leaf area of C. tagal was obtained at 1.5% salinity concentrations and, on the other hand, R. apiculata showed much greater extent. The wet and dry weight of the two seedlings was changed in the same manner as the height of plants upon salt treatment. Our results indicated that R. apiculata was more salt tolerant than C. tagal, which may provide valuable information for mangrove rehabilitation in North Sumatra, Indonesia.

  10. Investigation of Requisites for the Optimal Mycelial Growth of the Lingzhi or Reishi Medicinal Mushroom, Ganoderma lucidum (Agaricomycetes), on Oil Palm Biomass in Malaysia.

    Science.gov (United States)

    Sudheer, Surya; Ali, Asgar; Manickam, Sivakumar

    2016-01-01

    Rigorous research has been carried out regarding the cultivation of Ganoderma lucidum using different agricultural residues. Nevertheless, large-scale cultivation and the separation of active compounds of G. lucidum are still challenges for local farmers. The objective of this study was to evaluate the use of oil palm waste fibers such as empty fruit bunch fibers and mesocarp fibers as effective substrates for the growth of G. lucidum mycelia to study the possibility of solid-state cultivation and to determine the optimum conditions necessary for the growth of mycelia of this mushroom on these waste fibers. Various parameters such as temperature, pH, humidity, and carbon and nitrogen compositions required for the optimum growth of mycelia have been determined. Oil palm fibers are a vivid source of lignocellulose, and their availability in Malaysia is high compared to that of sawdust. G. lucidum is a wood-rotting fungi that can easily decay and utilize this lignocellulose biomass, a major agricultural waste in Malaysia.

  11. Dose-response regressions for algal growth and similar continuous endpoints: Calculation of effective concentrations

    DEFF Research Database (Denmark)

    Christensen, Erik R.; Kusk, Kresten Ole; Nyholm, Niels

    2009-01-01

    We derive equations for the effective concentration giving 10% inhibition (EC10) with 95% confidence limits for probit (log-normal), Weibull, and logistic dose -responsemodels on the basis of experimentally derived median effective concentrations (EC50s) and the curve slope at the central point (50......% inhibition). For illustration, data from closed, freshwater algal assays are analyzed using the green alga Pseudokirchneriella subcapitata with growth rate as the response parameter. Dose-response regressions for four test chemicals (tetraethylammonium bromide, musculamine, benzonitrile, and 4...... regression program with variance weighting and proper inverse estimation. The Weibull model provides the best fit to the data for all four chemicals. Predicted EC10s (95% confidence limits) from our derived equations are quite accurate; for example, with 4-4-(trifluoromethyl)phenoxy-phenol and the probit...

  12. Studies and calculations of transverse emittance growth in high-energy proton storage rings

    International Nuclear Information System (INIS)

    Mane, S.R.; Jackson, G.

    1989-03-01

    In the operation of proton-antiproton colliders, an important goal is to maximize the integrated luminosity. During such operations in the Fermilab Tevatron, the transverse beam emittances were observed to grow unexpectedly quickly, thus causing a serious reduction of the luminosity. We have studied this phenomenon experimentally and theoretically. A formula for the emittance growth rate, due to random dipole kicks, is derived. In the experiment, RF phase noise of known amplitude was deliberately injected into the Tevatron to kick the beam randomly, via dispersion at the RF cavities. Theory and experiment are found to agree reasonably well. We also briefly discuss the problem of quadrupole kicks. 14 refs., 2 figs., 3 tabs

  13. Measuring laves phase particle size and thermodynamic calculating its growth and coarsening behavior in P92 steels

    DEFF Research Database (Denmark)

    Yao, Bing-Yin; Zhou, Rong-Can; Fan, Chang-Xin

    2010-01-01

    The growth of Laves phase particles in three kinds of P92 steels were investigated. Laves phase particles can be easily separated and distinguished from the matrix and other particles by atom number contrast using comparisons of the backscatter electrons (BSE) images and the secondary electrons (SE......) images in scanning electron microscope (SEM). The smaller Laves phase particle size results in higher creep strength and longer creep exposure time at the same conditions. DICTRA software was used to model the growth and coarsening behavior of Laves phase in the three P92 steels. Good agreements were...... attained between measurements in SEM and modeling by DICTRA. Ostwald ripening should be used for the coarsening calculation of Laves phase in P92 steels for time longer than 20000 h and 50000 h at 650°C and 600°C, respectively. © 2010 Chin. Soc. for Elec. Eng....

  14. Growth of Quailbush in Acidic, Metalliferous Desert Mine Tailings: Effect of Azospirillum brasilense Sp6 on Biomass Production and Rhizosphere Community Structure

    Science.gov (United States)

    de-Bashan, Luz E.; Hernandez, Juan-Pablo; Nelson, Karis N.; Bashan, Yoav

    2010-01-01

    Mine tailing deposits in semiarid and arid environments frequently remain devoid of vegetation due to the toxicity of the substrate and the absence of a diverse soil microbial community capable of supporting seed germination and plant growth. The contribution of the plant growth promoting bacterium (PGPB) Azospirillum brasilense Sp6 to the growth of quailbush in compost-amended, moderately acidic, high-metal content mine tailings using an irrigation-based reclamation strategy was examined along with its influence on the rhizosphere bacterial community. Sp6 inoculation resulted in a significant (2.2-fold) increase in plant biomass production. The data suggest that the inoculum successfully colonized the root surface and persisted throughout the 60-day experiment in both the rhizosphere, as demonstrated by excision and sequencing of the appropriate denaturing gradient gel electrophoresis (DGGE) band, and the rhizoplane, as indicated by fluorescent in situ hybridization of root surfaces. Changes in rhizosphere community structure in response to Sp6 inoculation were evaluated after 15, 30, and 60 days using DGGE analysis of 16S rRNA polymerase chain reaction amplicons. A comparison of DGGE profiles using canonical correspondence analysis revealed a significant treatment effect (Sp6-inoculated vs. uninoculated plants vs. unplanted) on bacterial community structure at 15, 30, and 60 days (p<0.05). These data indicate that in an extremely stressed environment such as acid mine tailings, an inoculated plant growth promoting bacterium not only can persist and stimulate plant growth but also can directly or indirectly influence rhizobacterial community development. PMID:20632001

  15. The biomass file

    International Nuclear Information System (INIS)

    2010-01-01

    As biomass represents the main source of renewable energy to reach the 23 per cent objective in terms of energy consumption by 2020, a first article gives a synthetic overview of its definition, its origins, its possible uses, its share in the French energy mix, its role by 2020, strengths and weaknesses for its development, the growth potential of its market, and its implications in terms of employment. A second article outlines the assets of biomass, indicates the share of some crops in biomass energy production, and discusses the development of new resources and the possible energy valorisation of various by-products. Interviews about biomass market and development perspectives are proposed with representatives of institutions, energy industries and professional bodies concerned with biomass development and production. Other articles comments the slow development of biomass-based cogeneration, the coming into operation of a demonstration biomass roasting installation in Pau (France), the development potential of biogas in France, the project of bio natural gas vehicles in Lille, and the large development of biogas in Germany

  16. Effects of simulated root herbivory and fertilizer application on growth and biomass allocation in the clonal perennialSolidago canadensis.

    Science.gov (United States)

    Schmid, B; Miao, S L; Bazzaz, F A

    1990-08-01

    Compensatory growth in response to simulated belowground herbivory was studied in the old-field clonal perennialSolidago canadensis. We grew rootpruned plants and plants with intact root systems in soil with or without fertilizer. For individual current shoots (aerial shoot with rhizome and roots) and for whole clones the following predictions were tested: a) root removal is compensated by increased root growth, b) fertilizer application leads to increased allocation to aboveground plant organs and increased leaf turnover, c) effects of fertilizer application are reduced in rootpruned plants. When most roots (90%) were removed current shoots quickly restored equilibrium between above-and belowground parts by compensatory belowground growth whereas the whole clone responded with reduced aboveground growth. This suggests that parts of a clone which are shared by actively growing shoots act as a buffer that can be used as source of material for compensatory growth in response to herbivory. Current shoots increased aboveground mass and whole clones reduced belowground mass in response to fertilizer application, both leading to increased allocation to aboverground parts. Also with fertilizer application both root-pruned and not root-pruned plants increased leaf and shoot turnover. Unfertilized plants, whether rootpruned or not, showed practically no aboveground growth and very little leaf and shoot turnover. Effects of root removal were as severe or more severe under conditions of high as under conditions of low nutrients, suggesting that negative effects of belowground herbivory are not ameliorated by abundant nutrients. Root removal may negate some effects of fertilizer application on the growth of current shoots and whole clones.

  17. An integrated microalgal growth model and its application to optimize the biomass production of Scenedesmus sp. LX1 in open pond under the nutrient level of domestic secondary effluent.

    Science.gov (United States)

    Wu, Yin-Hu; Li, Xin; Yu, Yin; Hu, Hong-Ying; Zhang, Tian-Yuan; Li, Feng-Min

    2013-09-01

    Microalgal growth is the key to the coupled system of wastewater treatment and microalgal biomass production. In this study, Monod model, Droop model and Steele model were incorporated to obtain an integrated growth model describing the combined effects of nitrogen, phosphorus and light intensity on the growth rate of Scenedesmus sp. LX1. The model parameters were obtained via fitting experimental data to these classical models. Furthermore, the biomass production of Scenedesmus sp. LX1 in open pond under nutrient level of secondary effluent was analyzed based on the integrated model, predicting a maximal microalgal biomass production rate about 20 g m(-2) d(-1). In order to optimize the biomass production of open pond the microalgal biomass concentration, light intensity on the surface of open pond, total depth of culture medium and hydraulic retention time should be 500 g m(-3), 16,000 lx, 0.2 m and 5.2 d in the conditions of this study, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Estimations of bone maturation and calculations of prediction of adult height as tools for the evaluation of growth disorders

    Energy Technology Data Exchange (ETDEWEB)

    Zachmann, M

    1982-03-01

    The methods of estimation of bone maturation (Greulich and Pyle, Tanner et al.) and the possibilities for the calculation of future adult heigth (Bayley and Pinneau, Roche et al., Tanner et al.) are briefly described and their advantages and disadvantages in normal children and in children with growth disorders are discussed. In normal children, all methods provide valuable results, but there are small differences of precision depending on whether the pubertal development is early, average, or late. In pathological conditions, however, as e.g. in precocious puberty or in girls with Turner syndrome, the methods of Roche et al. and of Tanner et al. may overestimate adult height considerably, while that of Bayley and Pinneau remains reasonably accurate. A computerized system, which facilitates the complicated and time-consuming calculations is briefly presented.

  19. A strain of Saccharomyces cerevisiae evolved for fermentation of lignocellulosic biomass displays improved growth and fermentative ability in high solids concentrations and in the presence of inhibitory compounds

    Directory of Open Access Journals (Sweden)

    Hawkins Gary M

    2011-11-01

    Full Text Available Abstract Background Softwoods are the dominant source of lignocellulosic biomass in the northern hemisphere, and have been investigated worldwide as a renewable substrate for cellulosic ethanol production. One challenge to using softwoods, which is particularly acute with pine, is that the pretreatment process produces inhibitory compounds detrimental to the growth and metabolic activity of fermenting organisms. To overcome the challenge of bioconversion in the presence of inhibitory compounds, especially at high solids loading, a strain of Saccharomyces cerevisiae was subjected to evolutionary engineering and adaptation for fermentation of pretreated pine wood (Pinus taeda. Results An industrial strain of Saccharomyces, XR122N, was evolved using pretreated pine; the resulting daughter strain, AJP50, produced ethanol much more rapidly than its parent in fermentations of pretreated pine. Adaptation, by preculturing of the industrial yeast XR122N and the evolved strains in 7% dry weight per volume (w/v pretreated pine solids prior to inoculation into higher solids concentrations, improved fermentation performance of all strains compared with direct inoculation into high solids. Growth comparisons between XR122N and AJP50 in model hydrolysate media containing inhibitory compounds found in pretreated biomass showed that AJP50 exited lag phase faster under all conditions tested. This was due, in part, to the ability of AJP50 to rapidly convert furfural and hydroxymethylfurfural to their less toxic alcohol derivatives, and to recover from reactive oxygen species damage more quickly than XR122N. Under industrially relevant conditions of 17.5% w/v pretreated pine solids loading, additional evolutionary engineering was required to decrease the pronounced lag phase. Using a combination of adaptation by inoculation first into a solids loading of 7% w/v for 24 hours, followed by a 10% v/v inoculum (approximately equivalent to 1 g/L dry cell weight into 17

  20. Growth and enzymatic activity of Leucoagaricus gongylophorus, a mutualistic fungus isolated from the leaf-cutting ant Atta mexicana, on cellulose and lignocellulosic biomass.

    Science.gov (United States)

    Vigueras, G; Paredes-Hernández, D; Revah, S; Valenzuela, J; Olivares-Hernández, R; Le Borgne, S

    2017-08-01

    A mutualistic fungus of the leaf-cutting ant Atta mexicana was isolated and identified as Leucoagaricus gongylophorus. This isolate had a close phylogenetic relationship with L. gongylophorus fungi cultivated by other leaf-cutting ants as determined by ITS sequencing. A subcolony started with ~500 A. mexicana workers could process 2 g day -1 of plant material and generate a 135 cm 3 fungus garden in 160 days. The presence of gongylidia structures of ~35 μm was observed on the tip of the hyphae. The fungus could grow without ants on semi-solid cultures with α-cellulose and microcrystalline cellulose and in solid-state cultures with grass and sugarcane bagasse, as sole sources of carbon. The maximum CO 2 production rate on grass (V max  = 17·5 mg CO 2  L g -1  day -1 ) was three times higher than on sugarcane bagasse (V max  = 6·6 mg CO 2  L g -1 day -1 ). Recoveries of 32·9 mg glucose  g biomass -1 and 12·3 mg glucose  g biomass -1 were obtained from the fungal biomass and the fungus garden, respectively. Endoglucanase activity was detected on carboxymethylcellulose agar plates. This is the first study reporting the growth of L. gongylophorus from A. mexicana on cellulose and plant material. According to the best of our knowledge, this is the first report about the growth of Leucoagaricus gongylophorus, isolated from the colony of the ant Atta mexicana, on semisolid medium with cellulose and solid-state cultures with lignocellulosic materials. The maximum CO 2 production rate on grass was three times higher than on sugarcane bagasse. Endoglucanase activity was detected and it was possible to recover glucose from the fungal gongylidia. The cellulolytic activity could be used to process lignocellulosic residues and obtain sugar or valuable products, but more work is needed in this direction. © 2017 The Society for Applied Microbiology.

  1. Mycophagous growth of Collimonas bacteria in natural soils, impact on fungal biomass turnover and interactions with mycophagous Trichoderma fungi

    NARCIS (Netherlands)

    Höppener-Ogawa, S.; Leveau, J.H.J.; Van Veen, J.A.; De Boer, W.

    2009-01-01

    Bacteria of the genus Collimonas are widely distributed in soils, although at low densities. In the laboratory, they were shown to be mycophagous, that is, they are able to grow at the expense of living hyphae. However, so far the importance of mycophagy for growth and survival of collimonads in

  2. Habitat-specific biomass, survival and growth of rainbow trout (Oncorhynchus mykiss) during summer in a small coastal stream

    Science.gov (United States)

    Bret C. Harvey; Jason L. White; Rodney J. Nakamoto

    2005-01-01

    We observed significant habitat-scale variation in the density, survival, and growth of 811 passive integrated transponder tagged rainbow trout (Oncorhynchus mykiss) enclosed for 63—68 days at natural density in 59 individual habitats (pools and riffles) in a small coastal California stream in summer 2001. The initial habitat-scale...

  3. COMPARISON OF GKS CALCULATED CRITICAL ION TEMPERATURE GRADIENTS AND ITG GROWTH RATES TO DIII-D MEASURED GRADIENTS AND DIFFUSIVITIES

    International Nuclear Information System (INIS)

    BAKER, DR; STAEBLER, GM; PETTY, CC; GREENFIELD, CM; LUCE, TC

    2003-01-01

    OAK-B135 The gyrokinetic equations predict that various drift type waves or modes can be unstable in a tokamak. For some of these modes, such as the ion temperature gradient (ITG) mode and the electron temperature gradient mode, there exists a critical gradient, above which the mode is unstable. Since the existence of unstable modes can cause increased transport, plasmas which are centrally heated tend to increase in temperature gradient until the modes become unstable. Under some conditions the increased transport can fix the gradient at the critical value. here they present a comparison between the measured ion temperature gradients and the critical gradient as calculated by a gyrokinetic linear stability (GKS) code. They also present the maximum linear growth rate as calculated by this code for comparison to experimentally derived transport coefficients. The results show that for low confinement mode (L-mode) discharges, the measured ion temperature gradient is significantly greater than the GKS calculated critical gradient over a large region of the plasma. This is the same region of the plasma where the ion thermal diffusivity is large. For high confinement mode (H-mode) discharges the ion temperature gradient is closer to the critical gradient, but often still greater than the critical gradient over some region. For the best H-mode discharges, the ion temperature is less than or equal to the critical gradient over the whole plasma. In general they find that the position in the plasma where the ion thermal diffusivity starts to increase rapidly is where the maximum linear growth rate is greater than the E x B shearing rate

  4. Effect of indigo dye effluent on the growth, biomass production and phenotypic plasticity of Scenedesmus quadricauda (Chlorococcales).

    Science.gov (United States)

    Chia, Mathias A; Musa, Rilwan I

    2014-03-01

    The effect of indigo dye effluent on the freshwater microalga Scenedesmus quadricauda ABU12 was investigated under controlled laboratory conditions. The microalga was exposed to different concentrations of the effluent obtained by diluting the dye effluent from 100 to 175 times in bold basal medium (BBM). The growth rate of the microalga decreased as indigo dye effluent concentration increased (p Scenedesmus, which means it can be considered an important biomarker for toxicity testing.

  5. Solid biomass barometer

    International Nuclear Information System (INIS)

    Anon.

    2009-01-01

    The economic and financial crisis has not brought solid biomass energy growth to a standstill. Primary energy production in the European Union member states increased in 2008 by 2,3%, which represents a gain of 1,5% million tonnes of oil equivalent over 2007. This growth was particularly marked in electricity production which increased output by 10,8% over 2007, an additional 5,6 TWh. (A.L.B.)

  6. Automated UV-C mutagenesis of Kluyveromyces marxianus NRRL Y-1109 and selection for microaerophilic growth and ethanol production at elevated temperature on biomass sugars.

    Science.gov (United States)

    Hughes, Stephen R; Bang, Sookie S; Cox, Elby J; Schoepke, Andrew; Ochwat, Kate; Pinkelman, Rebecca; Nelson, Danielle; Qureshi, Nasib; Gibbons, William R; Kurtzman, Cletus P; Bischoff, Kenneth M; Liu, Siqing; Cote, Gregory L; Rich, Joseph O; Jones, Marjorie A; Cedeño, David; Doran-Peterson, Joy; Riaño-Herrera, Nestor M; Rodríguez-Valencia, Nelson; López-Núñez, Juan C

    2013-08-01

    The yeast Kluyveromyces marxianus is a potential microbial catalyst for fuel ethanol production from a wide range of biomass substrates. To improve its growth and ethanol yield at elevated temperature under microaerophilic conditions, K. marxianus NRRL Y-1109 was irradiated with UV-C using automated protocols on a robotic platform for picking and spreading irradiated cultures and for processing the resulting plates. The plates were incubated under anaerobic conditions on xylose or glucose for 5 mo at 46 °C. Two K. marxianus mutant strains (designated 7-1 and 8-1) survived and were isolated from the glucose plates. Both mutant strains, but not wild type, grew aerobically on glucose at 47 °C. All strains grew anaerobically at 46 °C on glucose, galactose, galacturonic acid, and pectin; however, only 7-1 grew anaerobically on xylose at 46 °C. Saccharomyces cerevisiae NRRL Y-2403 did not grow at 46 °C on any of these substrates. With glucose as a carbon source, ethanol yield after 3 d at 46 °C was higher for 8-1 than for wild type (0.51 and 0.43 g ethanol/g glucose, respectively). With galacturonic acid as a carbon source, the ethanol yield after 7 d at 46 °C was higher for 7-1 than for wild type (0.48 and 0.34 g ethanol/g galacturonic acid, respectively). These mutant strains have potential application in fuel ethanol production at elevated temperature from sugar constituents of starch, sucrose, pectin, and cellulosic biomass.

  7. A Spatial Model of the Biomass to Energy Cycle

    DEFF Research Database (Denmark)

    Möller, Bernd

    2003-01-01

    by location. This paper aims to contribute to the development of a biomass to energy evaluation and mapping system, using geographical information systems (GIS). A GIS-based in-forest residue model considers forest growth and choice of harvest method. Data from a sawmill survey is used to assess sawmill resi...... and the costs of accumulated amounts of wood residues can now be calculated almost instantly for each location in the country. It is assumed that this approach will facilitate the assessment of future biomass markets....

  8. A new generic plant growth model framework (PMF): Simulating distributed dynamic interaction of biomass production and its interaction with water and nutrients fluxes

    Science.gov (United States)

    Multsch, Sebastian; Kraft, Philipp; Frede, Hans-Georg; Breuer, Lutz

    2010-05-01

    Today, crop models have a widespread application in natural sciences, because plant growth interacts and modifies the environment. Transport processes involve water and nutrient uptake from the saturated and unsaturated zone in the pedosphere. Turnover processes include the conversion of dead root biomass into organic matter. Transpiration and the interception of radiation influence the energy exchange between atmosphere and biosphere. But many more feedback mechanisms might be of interest, including erosion, soil compaction or trace gas exchanges. Most of the existing crop models have a closed structure and do not provide interfaces or code design elements for easy data transfer or process exchange with other models during runtime. Changes in the model structure, the inclusion of alternative process descriptions or the implementation of additional functionalities requires a lot of coding. The same is true if models are being upscaled from field to landscape or catchment scale. We therefore conclude that future integrated model developments would benefit from a model structure that has the following requirements: replaceability, expandability and independency. In addition to these requirements we also propose the interactivity of models, which means that models that are being coupled are highly interacting and depending on each other, i.e. the model should be open for influences from other independent models and react on influences directly. Hence, a model which consists of building blocks seems to be reasonable. The aim of the study is the presentation of the new crop model type, the plant growth model framework, PMF. The software concept refers to an object-oriented approach, which is developed with the Unified Modeling Language (UML). The model is implemented with Python, a high level object-oriented programming language. The integration of the models with a setup code enables the data transfer on the computer memory level and direct exchange of information

  9. High-performance liquid chromatographic quantification of plumbagin from transformed rhizoclones of Plumbago zeylanica L.: inter-clonal variation in biomass growth and plumbagin production.

    Science.gov (United States)

    Nayak, Pranati; Sharma, Mukesh; Behera, Sailesh N; Thirunavoukkarasu, Manikkannan; Chand, Pradeep K

    2015-02-01

    An optimized protocol for induction and establishment of Agrobacterium rhizogenes-mediated hairy root cultures of Plumbago zeylanica L. was developed through selection of suitable explant type and the bacterial strain. The infection of internodal explants from an in vivo plant and leaves of in vitro origin with the A4 strain resulted in the emergence of hairy roots at a transformation frequency of 86.33 and 42.33 %, respectively. Independent transformed root somaclones (rhizoclones) capable of sustained growth were maintained under a low illumination in auxin-free agar-solidified Murashige and Skoog (MS) medium through subcultures at periodic intervals. The presence of pRi T L-DNA rolB or rolC genes and pRi T R-DNA mas2 gene in the transformed rhizoclone genome was ascertained by PCR amplification. Concentrations and type of carbon source, auxin and media strength were optimized for root biomass growth. Five independent rhizoclones each from A4- and LBA9402-transformed root lines were studied for their plumbagin accumulation at different growth phases, using HPLC analysis. The potential for plumbagin biosynthesis was expressed in all the tested rhizoclones, although distinct inter-clonal variations were noted. It was evident that maturation of hairy roots was more important for plumbagin accumulation; slow-growing and early-maturing rhizoclones accumulated more plumbagin compared to fast-growing and late-maturing rhizoclones. A4-induced rhizoclone HRA2B5 was identified as the most superior clone with a higher plumbagin yield potential in comparison with other tested hairy root clones, in vitro-grown non-transformed roots and in vivo roots of naturally occurring P. zeylanica.

  10. Biomass energy

    International Nuclear Information System (INIS)

    Pasztor, J.; Kristoferson, L.

    1992-01-01

    Bioenergy systems can provide an energy supply that is environmentally sound and sustainable, although, like all energy systems, they have an environmental impact. The impact often depends more on the way the whole system is managed than on the fuel or on the conversion technology. The authors first describe traditional biomass systems: combustion and deforestation; health impact; charcoal conversion; and agricultural residues. A discussion of modern biomass systems follows: biogas; producer gas; alcohol fuels; modern wood fuel resources; and modern biomass combustion. The issue of bioenergy and the environment (land use; air pollution; water; socioeconomic impacts) and a discussion of sustainable bioenergy use complete the paper. 53 refs., 9 figs., 14 tabs

  11. Biomass Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Decker, Steve [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Brunecky, Roman [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lin, Chien-Yuan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Amore, Antonella [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wei, Hui [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Chen, Xiaowen [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Tucker, Melvin P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Czernik, Stefan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sluiter, Amie D [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhang, Min [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Magrini, Kimberly A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Himmel, Michael E [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sheehan, John [Formerly NREL; Dayton, David C. [Formerly NREL; Bozell, Joseph J. [Formerly NREL; Adney, William S. [Formerly NREL; Aden, Andy [Formerly NREL; Hames, Bonnie [Formerly NREL; Thomas, Steven R. [Formerly NREL; Bain, Richard L. [Formerly NREL

    2017-08-02

    Biomass constitutes all the plant matter found on our planet, and is produced directly by photosynthesis, the fundamental engine of life on earth. It is the photosynthetic capability of plants to utilize carbon dioxide from the atmosphere that leads to its designation as a 'carbon neutral' fuel, meaning that it does not introduce new carbon into the atmosphere. This article discusses the life cycle assessments of biomass use and the magnitude of energy captured by photosynthesis in the form of biomass on the planet to appraise approaches to tap this energy to meet the ever-growing demand for energy.

  12. Methanol from biomass and hydrogen

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    For Hawaii in the near term, the only liquid fuels indigenous sources will be those that can be made from biomass, and of these, methanol is the most promising. In addition, hydrogen produced by electrolysis can be used to markedly increase the yield of biomass methanol. This paper calculates cost of producing methanol by an integrated system including a geothermal electricity facility plus a plant producing methanol by gasifying biomass and adding hydrogen produced by electrolysis. Other studies cover methanol from biomass without added hydrogen and methanol from biomass by steam and carbon dioxide reforming. Methanol is made in a two-step process: the first is the gasification of biomass by partial oxidation with pure oxygen to produce carbon oxides and hydrogen, and the second is the reaction of gases to form methanol. Geothermal steam is used to generate the electricity used for the electrolysis to produce the added hydrogen

  13. Available forest biomass for new energetic and industrial prospects. Part 1: analysis and synthesis of existing studies compiled at the international level. Part 2: volume calculations. Part 3: economic part. Final report

    International Nuclear Information System (INIS)

    2007-01-01

    Motivated by new energetic constraints and the interest of biomass, the authors report a bibliographical survey of studies concerning the evaluation of the available forest biomass. They comment the geographical and time distribution of the identified and compiled studies. They analyse their different topics. Then, they discuss the various field hypotheses, discuss and comments various resource assessment methodologies. They comment the resource the French forest can be, present a synthesis of the available resource at the regional level according to the different studies. They propose a review of some technical-economical aspects (costs, energy cost, price evolutions, improvement of the wood-energy mobilization). The second part proposes a whole set of volume calculations for different forest types (clusters or plantations of trees, copses, sawmills products), for industry and household consumption. It discusses the available volumes with respect to accessibility, additional available volumes, and possible improvements. The third part analyses, comments and discusses the wood market and wood energetic uses, and the possible supply curves for wood energetic uses by 2016

  14. The biomass

    International Nuclear Information System (INIS)

    Viterbo, J.

    2011-01-01

    Biomass comes mainly from forests and agriculture and is considered as a clean alternative energy that can be valorized as heat, power, bio-fuels and chemical products but its mass production is challenging in terms of adequate technology but also in terms of rethinking the use of lands. Forests can be managed to produce biomass but bio-fuels can also be generated from sea-weeds. Biomass appears very promising but on one hand we have to secure its supplying and assure its economical profitability and on another hand we have to assure a reasonable use of lands and a limited impact on the environment. The contribution of biomass to sustainable development depends on the balance between these 2 ends. (A.C.)

  15. Biomass [updated

    Energy Technology Data Exchange (ETDEWEB)

    Turhollow Jr, Anthony F [ORNL

    2016-01-01

    Biomass resources and conversion technologies are diverse. Substantial biomass resources exist including woody crops, herbaceous perennials and annuals, forest resources, agricultural residues, and algae. Conversion processes available include fermentation, gasification, pyrolysis, anaerobic digestion, combustion, and transesterification. Bioderived products include liquid fuels (e.g. ethanol, biodiesel, and gasoline and diesel substitutes), gases, electricity, biochemical, and wood pellets. At present the major sources of biomass-derived liquid fuels are from first generation biofuels; ethanol from maize and sugar cane (89 billion L in 2013) and biodiesel from vegetable oils and fats (24 billion liters in 2011). For other than traditional uses, policy in the forms of mandates, targets, subsidies, and greenhouse gas emission targets has largely been driving biomass utilization. Second generation biofuels have been slow to take off.

  16. Growth of oleaginous Rhodotorula glutinis in an internal-loop airlift bioreactor by using lignocellulosic biomass hydrolysate as the carbon source.

    Science.gov (United States)

    Yen, Hong-Wei; Chang, Jung-Tzu

    2015-05-01

    The conversion of abundant lignocellulosic biomass (LCB) to valuable compounds has become a very attractive idea recently. This study successfully used LCB (rice straw) hydrolysate as a carbon source for the cultivation of oleaginous yeast-Rhodotorula glutinis in an airlift bioreactor. The lipid content of 34.3 ± 0.6% was obtained in an airlift batch with 60 g reducing sugars/L of LCB hydrolysate at a 2 vvm aeration rate. While using LCB hydrolysate as the carbon source, oleic acid (C18:1) and linoleic acid (C18:2) were the predominant fatty acids of the microbial lipids. Using LCB hydrolysate in the airlift bioreactor at 2 vvm achieved the highest cell mass growth as compared to the agitation tank. Despite the low lipid content of the batch using LCB hydrolysate, this low cost feedstock has the potential of being adopted for the production of β-carotene instead of lipid accumulation in the airlift bioreactor for the cultivation of R. glutinis. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  17. Relationships between coastal bacterioplankton growth rates and biomass production: comparison of leucine and thymidine uptake with single-cell physiological characteristics.

    Science.gov (United States)

    Franco-Vidal, Leticia; Morán, Xosé Anxelu G

    2011-02-01

    Specific growth rates of heterotrophic bacterioplankton have been frequently estimated from in situ bacterial production (BP) to biomass (BB) ratios, using a series of assumptions that may result in serious discrepancies with values obtained from predator-free cultures. Here, we used both types of approaches together with a comprehensive assessment of single-cell physiological characteristics (membrane integrity, nucleic acid content, and active respiration) of coastal bacterioplankton during a complete annual cycle (February 2007-January 2008) in the southern Bay of Biscay off Xixón, Spain. Both leucine and thymidine incorporation rates were used in conjunction with empirical tracer to carbon or cells conversion factors (eCFs) to accurately derive BP. Leu and TdR incorporation rates covaried year-round, as did the corresponding eCFs at 0 and 50 m depth. eCFs peaked in autumn, with mean annual values close to the theoretical ones (3.4 kg C mol Leu(-1) and 2.0 × 10(18) cells mol TdR(-1)). Bacterial abundance (0.2-1.5 × 10(6) cells L(-1)) showed a bimodal distribution with maxima in May and October and minima in March. Live (membrane-intact) cells dominated year-round (79-97%), with high nucleic acid cells (42-88%) and actively respiring bacteria (CTC+, 1-16%) showing distinct surface maxima in April and July, respectively. BB (557-1,558 mg C m(-2)) and BP (7-139 mg C m(-2) day(-1)) presented two distinct peaks in spring and autumn, both of similar size due to a strong upwelling event observed in September. Specific growth rates (0.35-3.8 day(-1)) were one order of magnitude higher in predator-free incubations than bacterial turnover rates derived from integrated BP:BB ratios (0.01-0.16 and 0.01-0.09 day(-1), for Leu and TdR, respectively) and were not correlated, probably due to a significant contribution of low activity cells to total standing stocks. The Leu:TdR molar ratio averaged for the water column (6.6-25.5) decreased significantly with higher integrated

  18. Evaluation of SPOT imagery for the estimation of grassland biomass

    Science.gov (United States)

    Dusseux, P.; Hubert-Moy, L.; Corpetti, T.; Vertès, F.

    2015-06-01

    In many regions, a decrease in grasslands and change in their management, which are associated with agricultural intensification, have been observed in the last half-century. Such changes in agricultural practices have caused negative environmental effects that include water pollution, soil degradation and biodiversity loss. Moreover, climate-driven changes in grassland productivity could have serious consequences for the profitability of agriculture. The aim of this study was to assess the ability of remotely sensed data with high spatial resolution to estimate grassland biomass in agricultural areas. A vegetation index, namely the Normalized Difference Vegetation Index (NDVI), and two biophysical variables, the Leaf Area Index (LAI) and the fraction of Vegetation Cover (fCOVER) were computed using five SPOT images acquired during the growing season. In parallel, ground-based information on grassland growth was collected to calculate biomass values. The analysis of the relationship between the variables derived from the remotely sensed data and the biomass observed in the field shows that LAI outperforms NDVI and fCOVER to estimate biomass (R2 values of 0.68 against 0.30 and 0.50, respectively). The squared Pearson correlation coefficient between observed and estimated biomass using LAI derived from SPOT images reached 0.73. Biomass maps generated from remotely sensed data were then used to estimate grass reserves at the farm scale in the perspective of operational monitoring and forecasting.

  19. Clean energy for development and economic growth: Biomass and other renewable options to meet energy and development needs in poor nations

    Energy Technology Data Exchange (ETDEWEB)

    Lilley, Art; Pandey, Bikash; Karstad, Elsen; Owen, Matthew; Bailis, Robert; Ribot, Jesse; Masera, Omar; Diaz, Rodolpho; Benallou, Abdelahanine; Lahbabi, Abdelmourhit

    2012-10-01

    The document explores the linkages between renewable energy, poverty alleviation, sustainable development, and climate change in developing countries. In particular, the paper places emphasis on biomass-based energy systems. Biomass energy has a number of unique attributes that make it particularly suitable to climate change mitigation and community development applications.

  20. Biomass IGCC

    Energy Technology Data Exchange (ETDEWEB)

    Salo, K; Keraenen, H [Enviropower Inc., Espoo (Finland)

    1997-12-31

    Enviropower Inc. is developing a modern power plant concept based on pressurised fluidized-bed gasification and gas turbine combined cycle (IGCC). The process is capable of maximising the electricity production with a variety of solid fuels - different biomass and coal types - mixed or separately. The development work is conducted on many levels. These and demonstration efforts are highlighted in this article. The feasibility of a pressurised gasification based processes compared to competing technologies in different applications is discussed. The potential of power production from biomass is also reviewed. (orig.) 4 refs.

  1. Biomass IGCC

    Energy Technology Data Exchange (ETDEWEB)

    Salo, K.; Keraenen, H. [Enviropower Inc., Espoo (Finland)

    1996-12-31

    Enviropower Inc. is developing a modern power plant concept based on pressurised fluidized-bed gasification and gas turbine combined cycle (IGCC). The process is capable of maximising the electricity production with a variety of solid fuels - different biomass and coal types - mixed or separately. The development work is conducted on many levels. These and demonstration efforts are highlighted in this article. The feasibility of a pressurised gasification based processes compared to competing technologies in different applications is discussed. The potential of power production from biomass is also reviewed. (orig.) 4 refs.

  2. Modelling tree biomasses in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Repola, J.

    2013-06-01

    Biomass equations for above- and below-ground tree components of Scots pine (Pinus sylvestris L), Norway spruce (Picea abies [L.] Karst) and birch (Betula pendula Roth and Betula pubescens Ehrh.) were compiled using empirical material from a total of 102 stands. These stands (44 Scots pine, 34 Norway spruce and 24 birch stands) were located mainly on mineral soil sites representing a large part of Finland. The biomass models were based on data measured from 1648 sample trees, comprising 908 pine, 613 spruce and 127 birch trees. Biomass equations were derived for the total above-ground biomass and for the individual tree components: stem wood, stem bark, living and dead branches, needles, stump, and roots, as dependent variables. Three multivariate models with different numbers of independent variables for above-ground biomass and one for below-ground biomass were constructed. Variables that are normally measured in forest inventories were used as independent variables. The simplest model formulations, multivariate models (1) were mainly based on tree diameter and height as independent variables. In more elaborated multivariate models, (2) and (3), additional commonly measured tree variables such as age, crown length, bark thickness and radial growth rate were added. Tree biomass modelling includes consecutive phases, which cause unreliability in the prediction of biomass. First, biomasses of sample trees should be determined reliably to decrease the statistical errors caused by sub-sampling. In this study, methods to improve the accuracy of stem biomass estimates of the sample trees were developed. In addition, the reliability of the method applied to estimate sample-tree crown biomass was tested, and no systematic error was detected. Second, the whole information content of data should be utilized in order to achieve reliable parameter estimates and applicable and flexible model structure. In the modelling approach, the basic assumption was that the biomasses of

  3. Liquid biofuels from blue biomass

    DEFF Research Database (Denmark)

    Kádár, Zsófia; Jensen, Annette Eva; Bangsø Nielsen, Henrik

    2011-01-01

    Marine (blue) biomasses, such as macroalgaes, represent a huge unexploited amount of biomass. With their various chemical compositions, macroalgaes can be a potential substrate for food, feed, biomaterials, pharmaceuticals, health care products and also for bioenergy. Algae use seawater as a growth...... medium, light as energy source and they capture CO2 for the synthesis of new organic material, thus can grow on non-agricultural land, without increasing food prices, or using fresh water. Due to all these advantages in addition to very high biomass yield with high carbohydrate content, macroalgaes can...

  4. Effect of biomass concentration on methane oxidation activity using mature compost and graphite granules as substrata.

    Science.gov (United States)

    Xie, S; O'Dwyer, T; Freguia, S; Pikaar, I; Clarke, W P

    2016-10-01

    Reported methane oxidation activity (MOA) varies widely for common landfill cover materials. Variation is expected due to differences in surface area, the composition of the substratum and culturing conditions. MOA per methanotrophic cell has been calculated in the study of natural systems such as lake sediments to examine the inherent conditions for methanotrophic activity. In this study, biomass normalised MOA (i.e., MOA per methanotophic cell) was measured on stabilised compost, a commonly used cover in landfills, and on graphite granules, an inert substratum widely used in microbial electrosynthesis studies. After initially enriching methanotrophs on both substrata, biomass normalised MOA was quantified under excess oxygen and limiting methane conditions in 160ml serum vials on both substrata and blends of the substrata. Biomass concentration was measured using the bicinchoninic acid assay for microbial protein. The biomass normalised MOA was consistent across all compost-to-graphite granules blends, but varied with time, reflecting the growth phase of the microorganisms. The biomass normalised MOA ranged from 0.069±0.006μmol CH4/mg dry biomass/h during active growth, to 0.024±0.001μmol CH4/mg dry biomass/h for established biofilms regardless of the substrata employed, indicating the substrata were equally effective in terms of inherent composition. The correlation of MOA with biomass is consistent with studies on methanotrophic activity in natural systems, but biomass normalised MOA varies by over 5 orders of magnitude between studies. This is partially due to different methods being used to quantify biomass, such as pmoA gene quantification and the culture dependent Most Probable Number method, but also indicates that long term exposure of materials to a supply of methane in an aerobic environment, as can occur in natural systems, leads to the enrichment and adaptation of types suitable for those conditions. Copyright © 2016 Elsevier Ltd. All rights

  5. Biomass Characterization | Bioenergy | NREL

    Science.gov (United States)

    Characterization Biomass Characterization NREL provides high-quality analytical characterization of biomass feedstocks, intermediates, and products, a critical step in optimizing biomass conversion clear, amber liquid Standard Biomass Laboratory Analytical Procedures We maintain a library of

  6. Biomass shock pretreatment

    Science.gov (United States)

    Holtzapple, Mark T.; Madison, Maxine Jones; Ramirez, Rocio Sierra; Deimund, Mark A.; Falls, Matthew; Dunkelman, John J.

    2014-07-01

    Methods and apparatus for treating biomass that may include introducing a biomass to a chamber; exposing the biomass in the chamber to a shock event to produce a shocked biomass; and transferring the shocked biomass from the chamber. In some aspects, the method may include pretreating the biomass with a chemical before introducing the biomass to the chamber and/or after transferring shocked biomass from the chamber.

  7. Pilot-scale continuous recycling of growth medium for the mass culture of a halotolerant Tetraselmis sp. in raceway ponds under increasing salinity: a novel protocol for commercial microalgal biomass production.

    Science.gov (United States)

    Fon Sing, S; Isdepsky, A; Borowitzka, M A; Lewis, D M

    2014-06-01

    The opportunity to recycle microalgal culture medium for further cultivation is often hampered by salinity increases from evaporation and fouling by dissolved and particulate matter. In this study, the impact of culture re-use after electro-flocculation of seawater-based medium on growth and biomass productivity of the halotolerant green algal strain Tetraselmis sp., MUR 233, was investigated in pilot-scale open raceway ponds over 5months. Despite a salinity increase from 5.5% to 12% (w/v) NaCl, Tetraselmis MUR 233 grown on naturally DOC-enriched recycled medium produced 48-160% more ash free dry weight (AFDW) biomass daily per unit pond area than when grown on non-recycled medium. A peak productivity of 37.5±3.1gAFDWm(-2)d(-1) was reached in the recycled medium upon transition from ∼14% to ∼7% NaCl. The combination of high biomass-yielding mixotrophic growth under high salinity has been proven to be a successful sustainable cultivation strategy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Step-growth polymerizing systems of general type “AfiBgi” : calculating the radius of gyration and the g-curve using generating functions and recurrences

    NARCIS (Netherlands)

    Hillegers, L.T.M.E.; Slot, J.J.M.

    2017-01-01

    Step-growth polymerized systems of general type “AfiBgi” are considered. One or more of the monomer species carries at least three reactive groups and thus can act as a branching point in a polymeric molecule. An algorithmic method is presented to calculate the topology-averaged square radius of

  9. Biomass Energy Basics | NREL

    Science.gov (United States)

    Biomass Energy Basics Biomass Energy Basics We have used biomass energy, or "bioenergy" keep warm. Wood is still the largest biomass energy resource today, but other sources of biomass can landfills (which are methane, the main component in natural gas) can be used as a biomass energy source. A

  10. Estimation of Viable Biomass In Wastewater And Activated Sludge By Determination of ATP, Oxygen Utilization Rate And FDA Hydrolysis

    DEFF Research Database (Denmark)

    Jørgensen, Poul-Erik; Eriksen, T.; Jensen, B.K.

    1992-01-01

    ATP content, oxygen utilization rate (OUR) and fluorescein diacetate (FDA) hydrolysis were tested for the ability to express the amount of viable biomass in wastewater and activated sludge. The relationship between biomass and these activity parameters was established in growth cultures made...... with biomass, while FDA hydrolysis in the sludge failed to show any such correlation. Conversion factors of 3 mg ATP/g dw, 300 mg O2/h g dw and 0.4 A/h (mg dw/ml) for ATP, OUR and FDA methods, respectively, were calculated. When the methods were applied for in situ determinations in four different wastewater...... plants, it was found that ATP content and respiration rate estimated viable biomass to range from 81 to 293 mg dw/g SS for raw wastewater and from 67 to 187 mg dw/g SS for activated sludge with a rather weak correlation between ATP and respiration measurements. The FDA hydrolysis estimated viable biomass...

  11. The impact of tree age on biomass growth and carbon accumulation capacity: A retrospective analysis using tree ring data of three tropical tree species grown in natural forests of Suriname.

    Science.gov (United States)

    Köhl, Michael; Neupane, Prem R; Lotfiomran, Neda

    2017-01-01

    The world's forests play a pivotal role in the mitigation of global climate change. By photosynthesis they remove CO2 from the atmosphere and store carbon in their biomass. While old trees are generally acknowledged for a long carbon residence time, there is no consensus on their contribution to carbon accumulation due to a lack of long-term individual tree data. Tree ring analyses, which use anatomical differences in the annual formation of wood for dating growth zones, are a retrospective approach that provides growth patterns of individual trees over their entire lifetime. We developed time series of diameter growth and related annual carbon accumulation for 61 trees of the species Cedrela odorata L. (Meliacea), Hymenaea courbaril L. (Fabacea) and Goupia glabra Aubl. (Goupiacea). The trees grew in unmanaged tropical wet-forests of Suriname and reached ages from 84 to 255 years. Most of the trees show positive trends of diameter growth and carbon accumulation over time. For some trees we observed fluctuating growth-periods of lower growth alternate with periods of increased growth. In the last quarter of their lifetime trees accumulate on average between 39 percent (C. odorata) and 50 percent (G. glabra) of their final carbon stock. This suggests that old-growth trees in tropical forests do not only contribute to carbon stocks by long carbon resistance times, but maintain high rates of carbon accumulation at later stages of their life time.

  12. Growth

    Science.gov (United States)

    John R. Jones; George A. Schier

    1985-01-01

    This chapter considers aspen growth as a process, and discusses some characteristics of the growth and development of trees and stands. For the most part, factors affecting growth are discussed elsewhere, particularly in the GENETICS AND VARIATION chapter and in chapters in PART 11. ECOLOGY. Aspen growth as it relates to wood production is examined in the WOOD RESOURCE...

  13. Part III: Comparing observed growth of selected test organisms in food irradiation studies with growth predictions calculated by ComBase softwares

    International Nuclear Information System (INIS)

    Farkas, J.; Andrassy, E.; Meszaros, L.; Beczner, J.; Polyak-Feher, K.; Gaal, O.; Lebovics, V.K.; Lugasi, A.

    2009-01-01

    As a result of intensive predictive microbiological modelling activities, several computer programs and softwares became available recently for facilitating microbiological risk assessment. Among these tools, the establishment of the ComBase, an international database and its predictive modelling softwares of the Pathogen Modelling Program (PMP) set up by the USDA Eastern Regional Research Center, Wyndmore, PA, and the Food Micromodel/Growth Predictor by the United Kingdom's Institute of Food Research, Norwich, are most important. The authors have used the PMP 6.1 software version of ComBase as a preliminary trial to compare observed growth of selected test organisms in relation to their food irradiation work during recent years within the FAO/IAEA Coordinated Food Irradiation Research Projects (D6.10.23 and D6.20.07) with the predicted growth on the basis of growth models available in ComBase for the same species as those of the authors' test organisms. The results of challenge tests with Listeria monocytogenes inoculum in untreated or irradiated experimental batches of semi-prepared breaded turkey meat steaks (cordon bleu), sliced tomato, sliced watermelon, sliced cantaloupe and sous vide processed mixed vegetables, as well as Staphylococcus aureus inoculum of a pasta product, tortellini, were compared with their respective growth models under relevant environmental conditions. This comparison showed good fits in the case of non-irradiated and high moisture food samples, but growth of radiation survivors lagged behind the predicted values. (author)

  14. An empirical, integrated forest biomass monitoring system

    Science.gov (United States)

    Kennedy, Robert E.; Ohmann, Janet; Gregory, Matt; Roberts, Heather; Yang, Zhiqiang; Bell, David M.; Kane, Van; Hughes, M. Joseph; Cohen, Warren B.; Powell, Scott; Neeti, Neeti; Larrue, Tara; Hooper, Sam; Kane, Jonathan; Miller, David L.; Perkins, James; Braaten, Justin; Seidl, Rupert

    2018-02-01

    The fate of live forest biomass is largely controlled by growth and disturbance processes, both natural and anthropogenic. Thus, biomass monitoring strategies must characterize both the biomass of the forests at a given point in time and the dynamic processes that change it. Here, we describe and test an empirical monitoring system designed to meet those needs. Our system uses a mix of field data, statistical modeling, remotely-sensed time-series imagery, and small-footprint lidar data to build and evaluate maps of forest biomass. It ascribes biomass change to specific change agents, and attempts to capture the impact of uncertainty in methodology. We find that: • A common image framework for biomass estimation and for change detection allows for consistent comparison of both state and change processes controlling biomass dynamics. • Regional estimates of total biomass agree well with those from plot data alone. • The system tracks biomass densities up to 450-500 Mg ha-1 with little bias, but begins underestimating true biomass as densities increase further. • Scale considerations are important. Estimates at the 30 m grain size are noisy, but agreement at broad scales is good. Further investigation to determine the appropriate scales is underway. • Uncertainty from methodological choices is evident, but much smaller than uncertainty based on choice of allometric equation used to estimate biomass from tree data. • In this forest-dominated study area, growth and loss processes largely balance in most years, with loss processes dominated by human removal through harvest. In years with substantial fire activity, however, overall biomass loss greatly outpaces growth. Taken together, our methods represent a unique combination of elements foundational to an operational landscape-scale forest biomass monitoring program.

  15. Investigations on the growth kinetics of Laves phase precipitates in 12% Cr creep-resistant steels: Experimental and DICTRA calculations

    International Nuclear Information System (INIS)

    Prat, O.; Garcia, J.; Rojas, D.; Carrasco, C.; Inden, G.

    2010-01-01

    The growth kinetics of Laves phase precipitates (type Fe 2 W) in the early stage of creep (650 deg. C for 10,000 h) in two 12% Cr ferrite-martensitic steels has been investigated. In one alloy the Laves phase formed on tempering, while in the second alloy the Laves phase precipitated during creep. Kinetic simulations were performed using the software DICTRA. The particle size of the Laves phase was measured on transmission electron microscopy samples. The equilibrium phase fraction of the Laves phase was reached in the first thousand hours. Simulations of particle growth showed good agreement with the experimental results. Competitive growth between M 23 C 6 and the Laves phase showed that M 23 C 6 carbides reached their equilibrium after 12 days, whereas the Laves phase reached equilibrium after 3 months. Simulations of the influence of the interfacial energy and addition of Co, Cu and Si on Laves phase precipitation are presented.

  16. Bio energy: Production of Biomass; Produksjon av biomasse

    Energy Technology Data Exchange (ETDEWEB)

    Noreng, Katrina; Indergaard, Mentz; Liodden, Ole Joergen; Hohle, Erik Eid; Sandberg, Eiliv

    2001-07-01

    This is Chapter 2 of the book ''Bio energy - Environment, technique and market''. Its main sections are: (1) Biomass resources in Norway, (2) The foundation - photosynthesis, (3) Biomass from forestry, (4) Biomass from peat lands, (5) Biomass from agriculture and (6) Biomass from lakes and sea. The exposition largely describes the conditions in Norway, where the use of bio energy can be increased from 15 TWh to 35 TWh using available technology. At present, water-borne heating systems are not extensively used in Norway and 30% of the biomass that is cut in the forests remains there as waste. Using this waste for energy generation would not only contribute to reduce the emission of greenhouse gases, but would often lead to improved forest rejuvenation. Use of a few per thousand of the Norwegian peat lands would produce 2 - 3 TWh. According to calculations, along the coast of Norway, there are at least 15 mill tonnes of kelp and sea tangle and these resources can be utilized in a sustainable way.

  17. Shorea robusta: A sustainable biomass feedstock

    Directory of Open Access Journals (Sweden)

    Vishal Kumar Singh

    2016-09-01

    Full Text Available The biomass feedstock needs to be available in a manner that is sustainable as well as renewable. However, obtaining reliable and cost effective supplies of biomass feedstock produced in a sustainable manner can prove to be difficult. Traditional biomass, mainly in the form of fallen leaves, fuel wood or dried dung, has long been the renewable and sustainable energy source for cooking and heating. Present study accounts for the biomass of fallen leaves of Shorea robusta, also known as sal, sakhua or shala tree, in the campus of BIT Mesra (Ranchi. These leaves are being gathered and burnt rather than being sold commercially. They contain water to varying degrees which affects their energy content. Hence, measurement of moisture content is critical for its biomass assessment. The leaves were collected, weighed, oven dried at 100oC until constant weight, then dry sample was reweighed to calculate the moisture content that has been driven off. By subtraction of moisture content from the initial weight of leaves, biomass was calculated. Using Differential Scanning Calorimeter (DSC the heat content of the leaves was calculated and the elemental analysis of leaf was done by CHNSO elemental analyser. Further, total biomass and carbon content of Sal tree was calculated using allometric equations so as to make a comparison to the biomass stored in dried fallen leaves

  18. Biomass torrefaction mill

    Science.gov (United States)

    Sprouse, Kenneth M.

    2016-05-17

    A biomass torrefaction system includes a mill which receives a raw biomass feedstock and operates at temperatures above 400 F (204 C) to generate a dusty flue gas which contains a milled biomass product.

  19. Changes In Growth Culture FDA Activity Under Changing Growth Conditions

    DEFF Research Database (Denmark)

    Jørgensen, Per Elberg; Eriksen, Thomas Juul; Jensen, Bjørn K.

    1992-01-01

    The FDA hydrolysis capacities and bacterial biomass concentrations (estimated by determination of ATP content) of growth cultures prepared from activated sludge and wastewater, were measured to find out whether the FDA activity would reflect bacterial biomass under different physiological states...... of the bacteria. The FDA activity/ATP ratio was calculated for different concentrations of autoclaved sludge. A faster decay rate of ATP relative to FDA hydrolysis activity was observed, thus causing changes in the ratio. Furthermore, comparison between values obtained from pure cultures and different soils...... revealed differences up to two orders of magnitude of the ratio. Based on these results it was concluded that the FDA activity should not be applied for measurements of viable biomass in environments in which different physiological conditions occur....

  20. Investigations on the growth kinetics of Laves phase precipitates in 12% Cr creep-resistant steels: Experimental and DICTRA calculations

    Energy Technology Data Exchange (ETDEWEB)

    Prat, O. [Max Planck Institute fuer Eisenforschung GmbH, Max Planck Strasse 1, 40237 Duesseldorf (Germany)] [Universidad de Concepcion, Departamento de Ingenieria de Materiales, Edmundo Larenas 270, Concepcion (Chile); Garcia, J., E-mail: jose.garcia@helmholtz-berlin.de [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Rojas, D. [Max Planck Institute fuer Eisenforschung GmbH, Max Planck Strasse 1, 40237 Duesseldorf (Germany); Carrasco, C. [Universidad de Concepcion, Departamento de Ingenieria de Materiales, Edmundo Larenas 270, Concepcion (Chile); Inden, G. [Max Planck Institute fuer Eisenforschung GmbH, Max Planck Strasse 1, 40237 Duesseldorf (Germany)

    2010-10-15

    The growth kinetics of Laves phase precipitates (type Fe{sub 2}W) in the early stage of creep (650 deg. C for 10,000 h) in two 12% Cr ferrite-martensitic steels has been investigated. In one alloy the Laves phase formed on tempering, while in the second alloy the Laves phase precipitated during creep. Kinetic simulations were performed using the software DICTRA. The particle size of the Laves phase was measured on transmission electron microscopy samples. The equilibrium phase fraction of the Laves phase was reached in the first thousand hours. Simulations of particle growth showed good agreement with the experimental results. Competitive growth between M{sub 23}C{sub 6} and the Laves phase showed that M{sub 23}C{sub 6} carbides reached their equilibrium after 12 days, whereas the Laves phase reached equilibrium after 3 months. Simulations of the influence of the interfacial energy and addition of Co, Cu and Si on Laves phase precipitation are presented.

  1. Calculations of shape and stability of menisci in Czochralski growth with tables to determine meniscus heights, maximum heights and capillary constants

    International Nuclear Information System (INIS)

    Uelhoff, W.; Mika, K.

    1975-05-01

    The shape and stability of menisci occurring during Czochralski growth have been studied by means of numerical methods for the case of the free surface. The existence of minimal joining angles is shown, beyond which the growing crystal will separate from the melt. The dependence of the interface height on the joining angle for different crystal diameters was calculated. The maximum stable heights and the corresponding joining angles were determined as a function of crystal diameter. A method for measuring the capillary constant of the melt during Czochralski growth is proposed. The results are compared with known analytical approximations. Limitations of the applications caused by a finite crucible radius or low g values are pointed out. For practical use the following functions have been tabulated: 1) meniscus height in dependence on joining angle and crystal radius, 2) the radius-height-ratio in dependence on radius and angle for the calculation of the capillary constant, 3) the maximum stable height and the corresponding growth angle as a function of crystal radius. (orig.) [de

  2. Phonon thermal conductivity of scandium nitride for thermoelectrics from first-principles calculations and thin-film growth

    DEFF Research Database (Denmark)

    Kerdsongpanya, Sit; Hellman, Olle; Sun, Bo

    2017-01-01

    The knowledge of lattice thermal conductivity of materials under realistic conditions is vitally important since many modern technologies require either high or low thermal conductivity. Here, we propose a theoretical model for determining lattice thermal conductivity, which takes into account......-domain thermoreflectance. Our experimental results show a trend of reduction in lattice thermal conductivity with decreasing domain size predicted by the theoretical model. These results suggest a possibility to control thermal conductivity by microstructural tailoring and provide a predictive tool for the effect...... of the microstructure on the lattice thermal conductivity of materials based on ab initio calculations....

  3. Experimental measurement of the biomass of Olea europaea L ...

    African Journals Online (AJOL)

    The C stock evaluation methodology made in this research and the calculation of biomass expansion factor can be considered as the first scientific contribution in estimating productivity, CO2 sequestration, carbon stocks and yield of olive groves. Key words: Biomass, biomass expansion factor, Intergovernmental Panel on ...

  4. ROE Carbon Storage - Forest Biomass

    Science.gov (United States)

    This polygon dataset depicts the density of forest biomass in counties across the United States, in terms of metric tons of carbon per square mile of land area. These data were provided in spreadsheet form by the U.S. Department of Agriculture (USDA) Forest Service. To produce the Web mapping application, EPA joined the spreadsheet with a shapefile of U.S. county (and county equivalent) boundaries downloaded from the U.S. Census Bureau. EPA calculated biomass density based on the area of each county polygon. These data sets were converted into a single polygon feature class inside a file geodatabase.

  5. Effects of biomass-generated producer gas constituents on cell growth, product distribution and hydrogenase activity of Clostridium carboxidivorans P7{sup T}

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Asma [Oklahoma State University, Stillwater, OK (United States). School of Chemical Engineering; Cateni, Bruno G.; Huhnke, Raymond L. [Oklahoma State University, Stillwater, OK (United States). Department of Biosystems and Agricultural Engineering; Lewis, Randy S. [Brigham Young University, Provo, UT (United States). Chemical Engineering Department

    2006-07-15

    In our previous work, we demonstrated that biomass-generated producer gas can be converted to ethanol and acetic acid using a microbial catalyst Clostridium carboxidivorans P7{sup T}. Results showed that the producer gas (1) induced cell dormancy, (2) inhibited H{sub 2} consumption, and (3) affected the acetic acid/ethanol product distribution. Results of this work showed that tars were the likely cause of cell dormancy and product redistribution and that the addition of a 0.025{mu}m filter in the gas cleanup negated the effects of tars. C. carboxidivorans P7{sup T} can adapt to the tars (i.e. grow) only after prolonged exposure. Nitric oxide, present in the producer gas at 150ppm, is an inhibitor of the hydrogenase enzyme involved in H{sub 2} consumption. We conclude that significant conditioning of the producer gas will be required for the successful coupling of biomass-generated producer gas with fermentation to produce ethanol and acetic acid. (author)

  6. Effects of biomass-generated producer gas constituents on cell growth, product distribution and hydrogenase activity of Clostridium carboxidivorans P7T

    International Nuclear Information System (INIS)

    Ahmed, Asma; Cateni, Bruno G.; Huhnke, Raymond L.; Lewis, Randy S.

    2006-01-01

    In our previous work, we demonstrated that biomass-generated producer gas can be converted to ethanol and acetic acid using a microbial catalyst Clostridium carboxidivorans P7 T . Results showed that the producer gas (1) induced cell dormancy, (2) inhibited H 2 consumption, and (3) affected the acetic acid/ethanol product distribution. Results of this work showed that tars were the likely cause of cell dormancy and product redistribution and that the addition of a 0.025μm filter in the gas cleanup negated the effects of tars. C. carboxidivorans P7 T can adapt to the tars (i.e. grow) only after prolonged exposure. Nitric oxide, present in the producer gas at 150ppm, is an inhibitor of the hydrogenase enzyme involved in H 2 consumption. We conclude that significant conditioning of the producer gas will be required for the successful coupling of biomass-generated producer gas with fermentation to produce ethanol and acetic acid. (author)

  7. Analysis of integrated animal-fish production system under subtropical hill agro ecosystem in India: growth performance of animals, total biomass production and monetary benefit.

    Science.gov (United States)

    Kumaresan, A; Pathak, K A; Bujarbaruah, K M; Vinod, K

    2009-03-01

    The present study assessed the benefits of integration of animals with fish production in optimizing the bio mass production from unit land in subtropical hill agro ecosystem. Hampshire pigs and Khaki Campbell ducks were integrated with composite fish culture. The pig and duck excreta were directly allowed into the pond and no supplementary feed was given to fish during the period of study. The average levels of N, P and K in dried pig and duck manure were 0.9, 0.7 and 0.6 per cent and 1.3, 0.6 and 0.5 per cent, respectively. The average body weight of pig and duck at 11 months age was 90 and 1.74 kg with an average daily weight gain of 333.33 and 6.44 g, respectively. The fish production in pig-fish and duck-fish systems were 2209 and 2964 kg/ha, respectively while the fish productivity in control pond was only 820 kg/ha. The total biomass (animal and fish) production was higher (pfeeding system compared to the traditional system, however the input/output ratio was 1:1.2 and 1:1.55 for commercial and traditional systems, respectively. It was inferred that the total biomass production per unit land was high (pfish were integrated together.

  8. LCA from Biomass Powerplants: from Soil to Electricity

    OpenAIRE

    François , Jessica; Fortin , Mathieu; Patisson , Fabrice; Mauviel , Guillain; Feidt , Michel; Rogaume , Caroline; Rogaume , Yann; Mirgaux , Olivier; Dufour , Anthony

    2013-01-01

    International audience; Biomass is one of the most promising renewable energy. The sustainability of biomass to energy chains needs to be assessed from the soil, including forest management, to the biomass valorization process. A strategy is presented to model the whole life cycle inventory of power production from biomass (beech). The forest growth, management and the wood valorization chain (including pulp, timber, etc., and energy) are modeled by a dedicated platform (called "CAPSIS"). It ...

  9. Biomass treatment method

    Science.gov (United States)

    Friend, Julie; Elander, Richard T.; Tucker, III; Melvin P.; Lyons, Robert C.

    2010-10-26

    A method for treating biomass was developed that uses an apparatus which moves a biomass and dilute aqueous ammonia mixture through reaction chambers without compaction. The apparatus moves the biomass using a non-compressing piston. The resulting treated biomass is saccharified to produce fermentable sugars.

  10. Rheology of concentrated biomass

    Science.gov (United States)

    J.R. Samaniuk; J. Wang; T.W. Root; C.T. Scott; D.J. Klingenberg

    2011-01-01

    Economic processing of lignocellulosic biomass requires handling the biomass at high solids concentration. This creates challenges because concentrated biomass behaves as a Bingham-like material with large yield stresses. Here we employ torque rheometry to measure the rheological properties of concentrated lignocellulosic biomass (corn stover). Yield stresses obtained...

  11. Major Biomass Conference

    Science.gov (United States)

    Top Scientists, Industry and Government Leaders to Gather for Major Biomass Conference America, South America and Europe will focus on building a sustainable, profitable biomass business at the Third Biomass Conference of the Americas in Montreal. Scheduled presentations will cover all biomass

  12. Biomass Feedstocks | Bioenergy | NREL

    Science.gov (United States)

    Feedstocks Biomass Feedstocks Our mission is to enable the coordinated development of biomass generic biomass thermochemical conversion process (over a screened-back map of the United States) showing U.S. Biomass Resources, represented by photos of timber, corn stover, switchgrass, and poplar. All

  13. Integrated resource management of biomass

    International Nuclear Information System (INIS)

    Goodwin, E.R.

    1992-01-01

    An overview is presented of the use of biomass, with emphasis on peat, as an alternative energy source, from an integrated resource management perspective. Details are provided of the volume of the peat resource, economics of peat harvesting, and constraints to peat resource use, which mainly centre on its high water content. Use of waste heat to dry peat can increase the efficiency of peat burning for electric power generation, and new technologies such as gasification and turbo expanders may also find utilization. The burning or gasification of biomass will release no more carbon dioxide to the atmosphere than other fuels, has less sulfur content than solid fuels. The removal of peat reduces methane emissions and allows use of produced carbon dioxide for horticulture and ash for fertilizer, and creates space that may be used for forestry or agricultural biomass growth. 38 refs

  14. Methods for pretreating biomass

    Science.gov (United States)

    Balan, Venkatesh; Dale, Bruce E; Chundawat, Shishir; Sousa, Leonardo

    2017-05-09

    A method for pretreating biomass is provided, which includes, in a reactor, allowing gaseous ammonia to condense on the biomass and react with water present in the biomass to produce pretreated biomass, wherein reactivity of polysaccharides in the biomass is increased during subsequent biological conversion as compared to the reactivity of polysaccharides in biomass which has not been pretreated. A method for pretreating biomass with a liquid ammonia and recovering the liquid ammonia is also provided. Related systems which include a biochemical or biofuel production facility are also disclosed.

  15. Biomass resilience of Neotropical secondary forests.

    Science.gov (United States)

    Poorter, Lourens; Bongers, Frans; Aide, T Mitchell; Almeyda Zambrano, Angélica M; Balvanera, Patricia; Becknell, Justin M; Boukili, Vanessa; Brancalion, Pedro H S; Broadbent, Eben N; Chazdon, Robin L; Craven, Dylan; de Almeida-Cortez, Jarcilene S; Cabral, George A L; de Jong, Ben H J; Denslow, Julie S; Dent, Daisy H; DeWalt, Saara J; Dupuy, Juan M; Durán, Sandra M; Espírito-Santo, Mario M; Fandino, María C; César, Ricardo G; Hall, Jefferson S; Hernandez-Stefanoni, José Luis; Jakovac, Catarina C; Junqueira, André B; Kennard, Deborah; Letcher, Susan G; Licona, Juan-Carlos; Lohbeck, Madelon; Marín-Spiotta, Erika; Martínez-Ramos, Miguel; Massoca, Paulo; Meave, Jorge A; Mesquita, Rita; Mora, Francisco; Muñoz, Rodrigo; Muscarella, Robert; Nunes, Yule R F; Ochoa-Gaona, Susana; de Oliveira, Alexandre A; Orihuela-Belmonte, Edith; Peña-Claros, Marielos; Pérez-García, Eduardo A; Piotto, Daniel; Powers, Jennifer S; Rodríguez-Velázquez, Jorge; Romero-Pérez, I Eunice; Ruíz, Jorge; Saldarriaga, Juan G; Sanchez-Azofeifa, Arturo; Schwartz, Naomi B; Steininger, Marc K; Swenson, Nathan G; Toledo, Marisol; Uriarte, Maria; van Breugel, Michiel; van der Wal, Hans; Veloso, Maria D M; Vester, Hans F M; Vicentini, Alberto; Vieira, Ima C G; Bentos, Tony Vizcarra; Williamson, G Bruce; Rozendaal, Danaë M A

    2016-02-11

    Land-use change occurs nowhere more rapidly than in the tropics, where the imbalance between deforestation and forest regrowth has large consequences for the global carbon cycle. However, considerable uncertainty remains about the rate of biomass recovery in secondary forests, and how these rates are influenced by climate, landscape, and prior land use. Here we analyse aboveground biomass recovery during secondary succession in 45 forest sites and about 1,500 forest plots covering the major environmental gradients in the Neotropics. The studied secondary forests are highly productive and resilient. Aboveground biomass recovery after 20 years was on average 122 megagrams per hectare (Mg ha(-1)), corresponding to a net carbon uptake of 3.05 Mg C ha(-1) yr(-1), 11 times the uptake rate of old-growth forests. Aboveground biomass stocks took a median time of 66 years to recover to 90% of old-growth values. Aboveground biomass recovery after 20 years varied 11.3-fold (from 20 to 225 Mg ha(-1)) across sites, and this recovery increased with water availability (higher local rainfall and lower climatic water deficit). We present a biomass recovery map of Latin America, which illustrates geographical and climatic variation in carbon sequestration potential during forest regrowth. The map will support policies to minimize forest loss in areas where biomass resilience is naturally low (such as seasonally dry forest regions) and promote forest regeneration and restoration in humid tropical lowland areas with high biomass resilience.

  16. Biomass conversion and expansion factors in Douglas-fir stands of different planting density: variation according to individual growth and prediction equations

    International Nuclear Information System (INIS)

    Marziliano, P.A.; Menguzzato, G.; Scuderi, A.; Scalise, C.; Coletta, V.

    2017-01-01

    Aim of study: We built biomass expansion factors (BCEFs) from Douglas-fir felled trees planted with different planting densities to evaluate the differences according tree size and planting density. Area of study: The Douglas-fir plantation under study is located on the northern coastal chain of Calabria (Tyrrhenian side) south Italy. Materials and methods: We derived tree level BCEFs, relative to crown (BCEFc), to stem (BCEFst = basic density, BD) and total above-ground (BCEFt) from destructive measurements carried out in a Douglas-fir plantation where four study plots were selected according to different planting densities (from 833 to 2500 trees per hectare). The measured BCEFs were regressed against diameter at breast height and total height, planting density, site productivity (SP) and their interactions to test the variation of BCEFs. Analysis of variance (ANOVA) and the post hoc Tukey comparison test were used to test differences in BCEFt, BCEFc and in BD between plots with different planting density. Main results: BCEFs decreased with increasing total height and DBH, but large dispersion measures were obtained for any of the compartments in the analysis. An increasing trend with planting density was found for all the analyzed BCEFs, but together with planting density, BCEFs also resulted dependent upon site productivity. BCEFt average values ranged between 1.40 Mg m-3 in planting density with 833 trees/ha (PD833) to 2.09 Mg m-3 in planting density with 2500 trees/ha (PD2500), which are in the range of IPCC prescribed values for Douglas-fir trees. Research highlights: Our results showed that the application of BCEF to estimate forest biomass in stands with different planting densities should explicitly account for the effect of planting density and site productivity.

  17. Biomass conversion and expansion factors in Douglas-fir stands of different planting density: variation according to individual growth and prediction equations

    Energy Technology Data Exchange (ETDEWEB)

    Marziliano, P.A.; Menguzzato, G.; Scuderi, A.; Scalise, C.; Coletta, V.

    2017-11-01

    Aim of study: We built biomass expansion factors (BCEFs) from Douglas-fir felled trees planted with different planting densities to evaluate the differences according tree size and planting density. Area of study: The Douglas-fir plantation under study is located on the northern coastal chain of Calabria (Tyrrhenian side) south Italy. Materials and methods: We derived tree level BCEFs, relative to crown (BCEFc), to stem (BCEFst = basic density, BD) and total above-ground (BCEFt) from destructive measurements carried out in a Douglas-fir plantation where four study plots were selected according to different planting densities (from 833 to 2500 trees per hectare). The measured BCEFs were regressed against diameter at breast height and total height, planting density, site productivity (SP) and their interactions to test the variation of BCEFs. Analysis of variance (ANOVA) and the post hoc Tukey comparison test were used to test differences in BCEFt, BCEFc and in BD between plots with different planting density. Main results: BCEFs decreased with increasing total height and DBH, but large dispersion measures were obtained for any of the compartments in the analysis. An increasing trend with planting density was found for all the analyzed BCEFs, but together with planting density, BCEFs also resulted dependent upon site productivity. BCEFt average values ranged between 1.40 Mg m-3 in planting density with 833 trees/ha (PD833) to 2.09 Mg m-3 in planting density with 2500 trees/ha (PD2500), which are in the range of IPCC prescribed values for Douglas-fir trees. Research highlights: Our results showed that the application of BCEF to estimate forest biomass in stands with different planting densities should explicitly account for the effect of planting density and site productivity.

  18. Biomass a fast growing energy resource

    International Nuclear Information System (INIS)

    Hansen, Ulf

    2003-01-01

    Biomass as an energy resource is as versatile as the biodiversity suggests. The global net primary production, NPP, describes the annual growth of biomass on land and in the seas. This paper focuses on biomass grown on land. A recent estimate for the NPP on land is 120 billion tons of dry matter. How much of this biomass are available for energy purposes? The potential contribution of wood fuel and energy plants from sustainable production is limited to some 5% of NPP, i.e. 6 Bt. One third of the potential is energy forests and energy plantations which at present are not economic. One third is used in rural areas as traditional fuel. The remaining third would be available for modern biomass energy conversion. Biomass is assigned an expanding role as a new resource in the world's energy balance. The EU has set a target of doubling the share of renewable energy sources by 2010. For biomass the target is even more ambitious. The challenge for biomass utilization lies in improving the technology for traditional usage and expanding the role into other areas like power production and transportation fuel. Various technologies for biomass utilization are available among those are combustion, gasification, and liquefaction. Researchers have a grand vision in which the chemical elements in the hydrocarbon molecules of biomass are separated and reformed to yield new tailored fuels and form the basis for a new world economy. The vision of a new energy system based on fresh and fossilized biomass to be engineered into an environmentally friendly and sustainable fuel is a conceivable technical reality. One reason for replacing exhaustible fossil fuels with biomass is to reduce carbon emissions. The most efficient carbon dioxide emission reduction comes from replacing brown coal in a steam-electric unit, due to the efficiency of the thermal cycle and the high carbon intensity of the coal. The smallest emission reduction comes from substituting natural gas. (BA)

  19. Ecosystems and biomass energy

    International Nuclear Information System (INIS)

    Trossero, M.A.

    1995-01-01

    Biomass, particularly fuelwood and charcoal, is one of the main sources of fuel to meet the energy needs of traditional, commercial and industrial activities in developing countries. While it satisfies only about 14% of the world's primary energy needs, in some countries it satisfies up to 80% of those needs. As a result of population growth, urbanization, economic reforms, restructuring and new development targets in most of these countries, new forms of energy and a more intensive use of energy are expected for the years ahead. This additional demand for energy will be met mainly by hydroelectricity, coal and fossil fuels. However, where biomass is available or can be planted, bio fuels can be converted into new forms of energy (electricity and power) and energy carriers (liquid and gaseous fuels) to meet not only the energy needs of the modem sectors but also to maintain a sustainable supply to traditional users. In fact, FAO estimates that biomass could provide nearly three times more energy than it does without affecting the current supply of other commodities and goods such as food, fodder, fuel, timber and non-wood fuel products. The benefits derived from the utilization of biomass as a source of energy are twofold: (a) the task of supplying bio fuels can help to attract new investment, create new employment and income opportunities in rural areas, raise the value of natural resources and preserve the environment and (b) new forms of energy and energy carriers could foster increased production and productivity at the rural and community level, particularly in remote areas where conventional fuels are not easily available at affordable prices. Bioenergy can be easily developed in modular and decentralized schemes and offers many advantages. It could be an inexpensive source of energy, even at present energy prices, and it requires less capital investment for its implementation than alternative solutions. However, there are many disadvantages, too. For

  20. Ecosystems and biomass energy

    Energy Technology Data Exchange (ETDEWEB)

    Trossero, M A [Food and Agriculture Organization of the United Nations (FAO), Rome (Italy)

    1995-12-01

    Biomass, particularly fuelwood and charcoal, is one of the main sources of fuel to meet the energy needs of traditional, commercial and industrial activities in developing countries. While it satisfies only about 14% of the world`s primary energy needs, in some countries it satisfies up to 80% of those needs. As a result of population growth, urbanization, economic reforms, restructuring and new development targets in most of these countries, new forms of energy and a more intensive use of energy are expected for the years ahead. This additional demand for energy will be met mainly by hydroelectricity, coal and fossil fuels. However, where biomass is available or can be planted, bio fuels can be converted into new forms of energy (electricity and power) and energy carriers (liquid and gaseous fuels) to meet not only the energy needs of the modem sectors but also to maintain a sustainable supply to traditional users. In fact, FAO estimates that biomass could provide nearly three times more energy than it does without affecting the current supply of other commodities and goods such as food, fodder, fuel, timber and non-wood fuel products. The benefits derived from the utilization of biomass as a source of energy are twofold: (a) the task of supplying bio fuels can help to attract new investment, create new employment and income opportunities in rural areas, raise the value of natural resources and preserve the environment and (b) new forms of energy and energy carriers could foster increased production and productivity at the rural and community level, particularly in remote areas where conventional fuels are not easily available at affordable prices. Bioenergy can be easily developed in modular and decentralized schemes and offers many advantages. It could be an inexpensive source of energy, even at present energy prices, and it requires less capital investment for its implementation than alternative solutions. However, there are many disadvantages, too. For

  1. A sustainable woody biomass biorefinery.

    Science.gov (United States)

    Liu, Shijie; Lu, Houfang; Hu, Ruofei; Shupe, Alan; Lin, Lu; Liang, Bin

    2012-01-01

    Woody biomass is renewable only if sustainable production is imposed. An optimum and sustainable biomass stand production rate is found to be one with the incremental growth rate at harvest equal to the average overall growth rate. Utilization of woody biomass leads to a sustainable economy. Woody biomass is comprised of at least four components: extractives, hemicellulose, lignin and cellulose. While extractives and hemicellulose are least resistant to chemical and thermal degradation, cellulose is most resistant to chemical, thermal, and biological attack. The difference or heterogeneity in reactivity leads to the recalcitrance of woody biomass at conversion. A selection of processes is presented together as a biorefinery based on incremental sequential deconstruction, fractionation/conversion of woody biomass to achieve efficient separation of major components. A preference is given to a biorefinery absent of pretreatment and detoxification process that produce waste byproducts. While numerous biorefinery approaches are known, a focused review on the integrated studies of water-based biorefinery processes is presented. Hot-water extraction is the first process step to extract value from woody biomass while improving the quality of the remaining solid material. This first step removes extractives and hemicellulose fractions from woody biomass. While extractives and hemicellulose are largely removed in the extraction liquor, cellulose and lignin largely remain in the residual woody structure. Xylo-oligomers, aromatics and acetic acid in the hardwood extract are the major components having the greatest potential value for development. Higher temperature and longer residence time lead to higher mass removal. While high temperature (>200°C) can lead to nearly total dissolution, the amount of sugars present in the extraction liquor decreases rapidly with temperature. Dilute acid hydrolysis of concentrated wood extracts renders the wood extract with monomeric sugars

  2. Living and Dead Aboveground Biomass in Mediterranean Forests: Evidence of Old-Growth Traits in a Quercus pubescens Willd. s.l. Stand

    Directory of Open Access Journals (Sweden)

    Emilio Badalamenti

    2017-05-01

    Full Text Available For a long time, human impact has deeply simplified most of the forest ecosystems of the Mediterranean Basin. Here, forests have seldom had the chance to naturally develop a complex and multilayered structure, to host large and old trees and rich biological communities, approaching old-growth conditions. Also for this reason, limited information is currently available about Mediterranean old-growth forests, particularly with regard to deadwood. The main aim of this work is to help fill this critical knowledge gap. In Sicily (Italy, we identified a Quercus pubescens forest that seemed to show some typical old-growth features. Total living volume (360 m3 ha−1 and basal area (34 m2 ha−1 were, respectively, about 6 and 3 times higher than the averages recorded in the regional forest inventory for this forest type. Deadwood was particularly abundant, exceeding the threshold of 30 m3 ha−1, mainly represented by lying dead elements. Dead to live wood ratio reached 9%, a value close to the threshold of 10% considered for Mediterranean old-growth forests. As the investigated forest showed some typical old-growth traits, it deserves to be fully protected and could be a permanent monitoring area for studying deadwood and stand dynamics in mature Mediterranean stands.

  3. Forest biomass variation in Southernmost Brazil: the impact of Araucaria trees.

    Science.gov (United States)

    Rosenfield, Milena Fermina; Souza, Alexandre F

    2014-03-01

    A variety of environmental and biotic factors determine vegetation growth and affect plant biomass accumulation. From temperature to species composition, aboveground biomass storage in forest ecosystems is influenced by a number of variables and usually presents a high spatial variability. With this focus, the aim of the study was to evaluate the variables affecting live aboveground forest biomass (AGB) in Subtropical Moist Forests of Southern Brazil, and to analyze the spatial distribution of biomass estimates. Data from a forest inventory performed in the State of Rio Grande do Sul, Southern Brazil, was used in the present study. Thirty-eight 1-ha plots were sampled and all trees with DBH > or = 9.5cm were included for biomass estimation. Values for aboveground biomass were obtained using published allometric equations. Environmental and biotic variables (elevation, rainfall, temperature, soils, stem density and species diversity) were obtained from the literature or calculated from the dataset. For the total dataset, mean AGB was 195.2 Mg/ha. Estimates differed between Broadleaf and Mixed Coniferous-Broadleaf forests: mean AGB was lower in Broadleaf Forests (AGB(BF)=118.9 Mg/ha) when compared to Mixed Forests (AGB(MF)=250.3 Mg/ha). There was a high spatial and local variability in our dataset, even within forest types. This condition is normal in tropical forests and is usually attributed to the presence of large trees. The explanatory multiple regressions were influenced mainly by elevation and explained 50.7% of the variation in AGB. Stem density, diversity and organic matter also influenced biomass variation. The results from our study showed a positive relationship between aboveground biomass and elevation. Therefore, higher values of AGB are located at higher elevations and subjected to cooler temperatures and wetter climate. There seems to be an important contribution of the coniferous species Araucaria angustifolia in Mixed Forest plots, as it presented

  4. Hydrothermal Liquefaction of Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.

    2010-12-10

    collaboration with Canada to investigate kelp (seaweed) as a biomass feedstock. The collaborative project includes process testing of the kelp in HydroThermal Liquefaction in the bench-scale unit at PNNL. HydroThermal Liquefaction at PNNL is performed in the hydrothermal processing bench-scale reactor system. Slurries of biomass are prepared in the laboratory from whole ground biomass materials. Both wet processing and dry processing mills can be used, but the wet milling to final slurry is accomplished in a stirred ball mill filled with angle-cut stainless steel shot. The PNNL HTL system, as shown in the figure, is a continuous-flow system including a 1-litre stirred tank preheater/reactor, which can be connected to a 1-litre tubular reactor. The product is filtered at high-pressure to remove mineral precipitate before it is collected in the two high-pressure collectors, which allow the liquid products to be collected batchwise and recovered alternately from the process flow. The filter can be intermittently back-flushed as needed during the run to maintain operation. By-product gas is vented out the wet test meter for volume measurement and samples are collected for gas chromatography compositional analysis. The bio-oil product is analyzed for elemental content in order to calculate mass and elemental balances around the experiments. Detailed chemical analysis is performed by gas chromatography-mass spectrometry and 13-C nuclear magnetic resonance is used to evaluate functional group types in the bio-oil. Sufficient product is produced to allow subsequent catalytic hydroprocessing to produce liquid hydrocarbon fuels. The product bio-oil from hydrothermal liquefaction is typically a more viscous product compared to fast pyrolysis bio-oil. There are several reasons for this difference. The HTL bio-oil contains a lower level of oxygen because of more extensive secondary reaction of the pyrolysis products. There are less amounts of the many light oxygenates derived from the

  5. Increased growth and root Cu accumulation of Sorghum sudanense by endophytic Enterobacter sp. K3-2: Implications for Sorghum sudanense biomass production and phytostabilization.

    Science.gov (United States)

    Li, Ya; Wang, Qi; Wang, Lu; He, Lin-Yan; Sheng, Xia-Fang

    2016-02-01

    Endophytic bacterial strain K3-2 was isolated from the roots of Sorghum sudanense (an bioenergy plant) grown in a Cu mine wasteland soils and characterized. Strain K3-2 was identified as Enterobacter sp. based on 16S rRNA gene sequence analysis. Strain K3-2 exhibited Cu resistance and produced 1-aminocyclopropane-1-carboxylate (ACC) deaminase, indole-3-acetic acid (IAA), siderophores, and arginine decarboxylase. Pot experiments showed that strain K3-2 significantly increased the dry weight and root Cu accumulation of Sorghum sudanense grown in the Cu mine wasteland soils. Furthermore, increase in total Cu uptake (ranging from 49% to 95%) of the bacterial inoculated-Sorghum sudanense was observed compared to the control. Notably, most of Cu (83-86%) was accumulated in the roots of Sorghum sudanense. Furthermore, inoculation with strain K3-2 was found to significantly increase Cu bioconcentration factors and the proportions of IAA- and siderophore-producing bacteria in the root interiors and rhizosphere soils of Sorghum sudanense compared with the control. Significant decrease in the available Cu content was also observed in the rhizosphere soils of the bacterial-inoculated Sorghum sudanense. The results suggest that the endophytic bacterial strain K3-2 may be exploited for promoting Sorghum sudanense biomass production and Cu phytostabilization in the Cu mining wasteland soils. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Automated UV-C mutagenesis of Kluyveromyces marxianus NRRL Y-1109 and selection for microaerophilic growth and ethanol production at elevated temperature on biomass sugars

    Science.gov (United States)

    The yeast Kluyveromyces marxianus is a potential microbial catalyst for producing ethanol from lignocellulosic substrates at elevated temperatures. To improve its growth and ethanol yield under anaerobic conditions, K. marxianus NRRL Y-1109 was irradiated with UV-C, and surviving cells were grown a...

  7. Bioremediation potential, growth and biomass yield of the green seaweed, Ulva lactuca in an integrated marine aquaculture system at the Red Sea coast of Saudi Arabia at different stocking densities and effluent flow rates

    KAUST Repository

    Al-Hafedh, Yousef S.; Alam, Aftab; Buschmann, Alejandro H.

    2014-01-01

    Growth, production and biofiltration rates of seaweed, Ulva lactuca were investigated at two stocking densities (3 kg and 6 kg m-2) and two effluent flow rates (5.4 and 10.8 m3 day-1) to optimize an integrated mariculture system at Saudi Red Sea coast. effluents from fish-rearing tank, stocked with 200 kg fish (Oreochromis spilurus), fed to six seaweed tanks via sedimentation tank. Fish growth (weight gain 1.75 g fish day-1), net production (NP, 10.16 kg m-3) and survival (94.24%) were within acceptable limits. Ulva showed significantly higher (F = 62.62, d.f. 3, 35; P < 0.0001) specific growth rates at lower density compared with higher density and under high flow versus low flow (SGR = 5.78% vs. 2.55% at lower flow and 10.60% vs. 6.26% at higher flow). Biomass yield of Ulva at low- and high-stocking densities (111.11 and 83.2 g wet wt m-2 day-1, respectively) at low flow and (267.44 and 244.19 g wet wt m-2 day-1, respectively) at high flow show that high flow rate and lower density favoured growth. Removal rates of total ammonia nitrogen (TAN) (0.26-0.31 g m-2 day-1) and phosphate phosphorus (0.32-0.41 g m-2 day-1) by U. lactuca were not significantly different (F = 1.9, d.f. 3, 59; P = 0.1394 for TAN and F = 0.29, d.f. 3, 59; P = 0.8324 for phosphates) at both the flow rates and stocking densities. Results show that the effluent flow rate has significant impact over the performance of the seaweed than stocking density.

  8. Bioremediation potential, growth and biomass yield of the green seaweed, Ulva lactuca in an integrated marine aquaculture system at the Red Sea coast of Saudi Arabia at different stocking densities and effluent flow rates

    KAUST Repository

    Al-Hafedh, Yousef S.

    2014-03-19

    Growth, production and biofiltration rates of seaweed, Ulva lactuca were investigated at two stocking densities (3 kg and 6 kg m-2) and two effluent flow rates (5.4 and 10.8 m3 day-1) to optimize an integrated mariculture system at Saudi Red Sea coast. effluents from fish-rearing tank, stocked with 200 kg fish (Oreochromis spilurus), fed to six seaweed tanks via sedimentation tank. Fish growth (weight gain 1.75 g fish day-1), net production (NP, 10.16 kg m-3) and survival (94.24%) were within acceptable limits. Ulva showed significantly higher (F = 62.62, d.f. 3, 35; P < 0.0001) specific growth rates at lower density compared with higher density and under high flow versus low flow (SGR = 5.78% vs. 2.55% at lower flow and 10.60% vs. 6.26% at higher flow). Biomass yield of Ulva at low- and high-stocking densities (111.11 and 83.2 g wet wt m-2 day-1, respectively) at low flow and (267.44 and 244.19 g wet wt m-2 day-1, respectively) at high flow show that high flow rate and lower density favoured growth. Removal rates of total ammonia nitrogen (TAN) (0.26-0.31 g m-2 day-1) and phosphate phosphorus (0.32-0.41 g m-2 day-1) by U. lactuca were not significantly different (F = 1.9, d.f. 3, 59; P = 0.1394 for TAN and F = 0.29, d.f. 3, 59; P = 0.8324 for phosphates) at both the flow rates and stocking densities. Results show that the effluent flow rate has significant impact over the performance of the seaweed than stocking density.

  9. Estimating aboveground tree biomass on forest land in the Pacific Northwest: a comparison of approaches

    Science.gov (United States)

    Xiaoping Zhou; Miles A. Hemstrom

    2009-01-01

    Live tree biomass estimates are essential for carbon accounting, bioenergy feasibility studies, and other analyses. Several models are currently used for estimating tree biomass. Each of these incorporates different calculation methods that may significantly impact the estimates of total aboveground tree biomass, merchantable biomass, and carbon pools. Consequently,...

  10. Bioenergy Project Development and Biomass Supply

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Modern biomass, and the resulting useful forms of bioenergy produced from it, are anticipated by many advocates to provide a significant contribution to the global primary energy supply of many IEA member countries during the coming decades. For non-member countries, particularly those wishing to achieve economic growth as well as meet the goals for sustainable development, the deployment of modern bioenergy projects and the growing international trade in biomass-based energy carriers offer potential opportunities.

  11. Pretreated densified biomass products

    Science.gov (United States)

    Dale, Bruce E; Ritchie, Bryan; Marshall, Derek

    2014-03-18

    A product comprising at least one densified biomass particulate of a given mass having no added binder and comprised of a plurality of lignin-coated plant biomass fibers is provided, wherein the at least one densified biomass particulate has an intrinsic density substantially equivalent to a binder-containing densified biomass particulate of the same given mass and h a substantially smooth, non-flakey outer surface. Methods for using and making the product are also described.

  12. Analytical Methods for Biomass Characterization during Pretreatment and Bioconversion

    Energy Technology Data Exchange (ETDEWEB)

    Pu, Yunqiao [ORNL; Meng, Xianzhi [University of Tennessee, Knoxville (UTK); Yoo, Chang Geun; Li, Mi; Ragauskas, Arthur J [ORNL

    2016-01-01

    Lignocellulosic biomass has been introduced as a promising resource for alternative fuels and chemicals because of its abundance and complement for petroleum resources. Biomass is a complex biopolymer and its compositional and structural characteristics largely vary depending on its species as well as growth environments. Because of complexity and variety of biomass, understanding its physicochemical characteristics is a key for effective biomass utilization. Characterization of biomass does not only provide critical information of biomass during pretreatment and bioconversion, but also give valuable insights on how to utilize the biomass. For better understanding biomass characteristics, good grasp and proper selection of analytical methods are necessary. This chapter introduces existing analytical approaches that are widely employed for biomass characterization during biomass pretreatment and conversion process. Diverse analytical methods using Fourier transform infrared (FTIR) spectroscopy, gel permeation chromatography (GPC), and nuclear magnetic resonance (NMR) spectroscopy for biomass characterization are reviewed. In addition, biomass accessibility methods by analyzing surface properties of biomass are also summarized in this chapter.

  13. Biomass, lasting perspective. Biomassa, een duurzaam perspectief

    Energy Technology Data Exchange (ETDEWEB)

    Knol, M E [Centrum voor Energiebesparing en Schone Technologie,Delft (Netherlands)

    1989-10-01

    The contribution of biomass in a possible sustainable energy future of the Netherlands is discussed. The different types of biomass, their properties and their most effective energy conversion techniques are summarized. At this moment the energy potential of the available biomass is 110 PJ per year. Net energy: 45 PJ per year (= 2% of the energy consumption in the Netherlands). Estimated net energy in 2000 is 60 PJ per year. Scenario calculations for the late 21st century reveal potential and net energy amounts of 350 PJ and 280 PJ per year, respectively. 2 refs., 4 tabs., 1 ill.

  14. Biomass CCS study

    Energy Technology Data Exchange (ETDEWEB)

    Cavezzali, S.

    2009-11-15

    The use of biomass in power generation is one of the important ways in reducing greenhouse gas emissions. Specifically, the cofiring of biomass with coal could be regarded as a common feature to any new build power plant if a sustainable supply of biomass fuel is readily accessible. IEA GHG has undertaken a techno-economic evaluation of the use of biomass in biomass fired and co-fired power generation, using post-combustion capture technology. This report is the result of the study undertaken by Foster Wheeler Italiana.

  15. Growth and biomass allocation of the C4 grasses Brachiaria brizantha and B. humidicola under shade Crescimento e alocação de biomassa nas gramíneas C4 Brachiaria brizantha e B. humidicola sob sombreamento

    Directory of Open Access Journals (Sweden)

    MOACYR BERNARDINO DIAS-FILHO

    2000-12-01

    Full Text Available The growth and biomass allocation responses of the tropical forage grasses Brachiaria brizantha cv. Marandu and B. humidicola were compared for plants grown outdoors, in pots, in full sunlight and those shaded to 30% of full sunlight over a 30day period. The objective was to evaluate the acclimation capacity of these species to low light. Both species were able to quickly develop phenotypic adjustments in response to low light. Specific leaf area and leaf area ratio were higher for low-light plants during the entire experimental period. Low-light plants allocated significantly less biomass to root and more to leaf tissue than high-light plants. However, the biomass allocation pattern to culms was different for the two species under low light: it increased in B. brizantha, but decreased in B. humidicola, probably as a reflection of the growth habits of these species. Relative growth rate and tillering were higher in high-light plants. Leaf elongation rate was significantly increased on both species under low light; however, the difference between treatments was higher in B. brizantha. These results are discussed in relation to the pasture management implications.O crescimento e a alocação de biomassa das gramíneas forrageiras tropicais Brachiaria brizantha cv. Marandu e B. humidicola foram comparados, em plantas cultivadas em vasos, a pleno sol e a 70% de interceptação da luz solar, durante um período de 30 dias. O objetivo foi avaliar a capacidade de aclimatação dessas espécies ao sombreamento. Ambas as espécies mostraram-se capazes de desenvolver rapidamente ajustes fenotípicos em resposta ao sombreamento. A área foliar específica e a razão de área foliar foram maiores durante todo o período experimental, nas plantas cultivadas à sombra. As plantas sombreadas alocaram significativamente menos biomassa nas raízes e mais nas folhas do que as plantas cultivadas à sombra. No entanto, a alocação de biomassa no colmo foi

  16. Developing business in emerging biomass energy markets

    International Nuclear Information System (INIS)

    Kadyszewski, J.

    2005-01-01

    Global market trends for forest products were reviewed in this PowerPoint presentation. The status of biomass energy products in relation to climate change and renewable energy portfolio standards was also examined. It was noted that China has increased investment in processing capacity and has increased imports of raw logs. India has doubled its imports of raw logs. Details of major tropical log producers and consumers were presented. Details of the biomass industry in the United States were presented, as well as data on fuel use at biomass energy plants and biomass energy capacity. An overview of biomass energy in the Russian far east and Siberia was presented, as well as details of activities and opportunities in Brazil and Indonesia. An economic analysis for small dry kilns was presented. Issues concerning boiler capacity in Russian companies for 2001-2005 were discussed. A case study of a biomass project from Congo was presented. It was noted that projects that replace fossil fuels can obtain revenues from the sale of carbon benefits, and that biomass energy offers the most attractive current option for the removal of carbon dioxide (CO 2 ) from the atmosphere. Details of a district heating project in Siberia were presented, and it was noted that in remote regions, costs for heat and power from biomass can be lower than costs from diesel and coal. It was concluded that there will be significant growth for biomass energy systems in the developing world, and that climate change will be an increasingly important element in advancing biomass energy. tabs., figs

  17. High yielding biomass genotypes of willow (Salix spp.) show differences in below ground biomass allocation

    International Nuclear Information System (INIS)

    Cunniff, Jennifer; Purdy, Sarah J.; Barraclough, Tim J.P.; Castle, March; Maddison, Anne L.; Jones, Laurence E.; Shield, Ian F.; Gregory, Andrew S.; Karp, Angela

    2015-01-01

    Willows (Salix spp.) grown as short rotation coppice (SRC) are viewed as a sustainable source of biomass with a positive greenhouse gas (GHG) balance due to their potential to fix and accumulate carbon (C) below ground. However, exploiting this potential has been limited by the paucity of data available on below ground biomass allocation and the extent to which it varies between genotypes. Furthermore, it is likely that allocation can be altered considerably by environment. To investigate the role of genotype and environment on allocation, four willow genotypes were grown at two replicated field sites in southeast England and west Wales, UK. Above and below ground biomass was intensively measured over two two-year rotations. Significant genotypic differences in biomass allocation were identified, with below ground allocation differing by up to 10% between genotypes. Importantly, the genotype with the highest below ground biomass also had the highest above ground yield. Furthermore, leaf area was found to be a good predictor of below ground biomass. Growth environment significantly impacted allocation; the willow genotypes grown in west Wales had up to 94% more biomass below ground by the end of the second rotation. A single investigation into fine roots showed the same pattern with double the volume of fine roots present. This greater below ground allocation may be attributed primarily to higher wind speeds, plus differences in humidity and soil characteristics. These results demonstrate that the capacity exists to breed plants with both high yields and high potential for C accumulation. - Highlights: • SRC willows are a source of biomass and act as carbon (C) sinks. • Biomass allocation was measured in 4 willow genotypes grown in two UK field sites. • The greatest yielding genotype had the greatest below ground biomass at both sites. • Below ground biomass allocation differed by up to 10% between genotypes and 94% between sites. • Environment e.g. wind

  18. Northeastern states sharpen biomass focus

    International Nuclear Information System (INIS)

    Lusk, P.D.

    1993-01-01

    Wood energy use in the northeastern region of the USA currently replaces an estimated annual equivalent of 45--50 million barrels of oil. Including municipal wastes and recovered methane emissions for regional landfills, total biomass contribution to the energy economy is over 70 million barrels of oil equivalent annually. A reasonable consensus suggests wood alone could replace the equivalent of over 300 million barrels of oil each year on a sustainable basis over the next two decades. Beyond energy security, over 60,000 total jobs are now provided in the region by the wood energy industry. Over 375,000 total jobs could be generated by the wood energy industry, about 65,000 in the harvesting, transportation, and end-use operations of the wood energy industry. Biomass producers must be committed to sustainable development by necessity. Sound forest management practices that keep residual stand damage from wood harvesting to a minimum can create positive impacts on the region's forest. When combined with a balanced energy policy, the conditional use of wood energy can play a modest, but significant, role in reducing air emissions. Depletion of traditional energy resources creates open-quotes bubbleclose quotes benefits which will be exhausted after a generation. Sustainable development of biomass can create inexhaustible wealth for generations, and does not pose the risk of sudden ecological disruption. While the choice between policy options is not mutually exclusive, the interrelationship between energy security, economic growth and environmental quality clearly favors biomass. The environmental benefits and the economic growth impacts of biobased products produced by the northeastern states are considerable. The 11 states located in the northeastern USA should intensify their efforts to work with industry and investors to expand markets for industrial biobased products, either produced from local feedstocks or manufactured by companies operating in the region

  19. Biomass accumulation and radiation use efficiency of honey mesquite and eastern red cedar

    International Nuclear Information System (INIS)

    Kiniry, J.R.

    1998-01-01

    Rangeland models that simulate hydrology, soil erosion and nutrient balance can be used to select management systems which maximize profits for producers while they minimize adverse impacts on water quality. Values are needed for parameters that describe the growth of invading woody species in order to allow simulation of their competition with grasses. Three attributes useful for describing and quantifying plant growth are: the potential leaf area index (LAI) or ratio of leaf area divided by ground area; the light extinction coefficient (k) that is used to calculate the fraction of light intercepted by leaves, applying Beer’s law; and the radiation-use efficiency (RUE) or amount of dry biomass produced per unit of intercepted light. Objectives in this study were to measure LAI, k, and RUE for eastern red cedar (Juniperus virginiana L.) and honey mesquite (Prosopis glandulosa Torr. var. glandulosa), without competing plants, as a first step toward simulating their growth. Seedlings were planted in the field at Temple, Texas, USA in early 1992 and kept free of competition from herbaceous plants. During 1993, 1994 and 1995 data were collected on biomass, leaf area and intercepted photosynthetically active radiation (PAR) for individual trees. Both tree species showed exponential biomass increases. At the end of the 1995 growing season, mean LAI values were 1.16 for cedar and 1.25 for mesquite. Mean k values were 0.34 for mesquite and 0.37 for cedar. Radiation use efficiency for aboveground biomass was 1.60±0.17 (mean±standard deviation) g per MJ of intercepted PAR for cedar and 1.61±0.26 for mesquite. The rapid growth in 1995 was accompanied by greater leaf area and thus greater summed intercepted PAR. These values are critical for quantifying growth of these two species. (author)

  20. Modelling of biomass pyrolysis

    International Nuclear Information System (INIS)

    Kazakova, Nadezhda; Petkov, Venko; Mihailov, Emil

    2015-01-01

    Pyrolysis is an essential preliminary step in a gasifier. The first step in modelling the pyrolysis process of biomass is creating a model for the chemical processes taking place. This model should describe the used fuel, the reactions taking place and the products created in the process. The numerous different polymers present in the organic fraction of the fuel are generally divided in three main groups. So, the multistep kinetic model of biomass pyrolysis is based on conventional multistep devolatilization models of the three main biomass components - cellulose, hemicelluloses, and lignin. Numerical simulations have been conducted in order to estimate the influence of the heating rate and the temperature of pyrolysis on the content of the virgin biomass, active biomass, liquid, solid and gaseous phases at any moment. Keywords: kinetic models, pyrolysis, biomass pyrolysis.

  1. Biomass cogeneration: A business assessment

    Science.gov (United States)

    Skelton, J. C.

    1981-11-01

    The biomass cogeneration was reviewed. The business assessment is based in part on discussions with key officials from firms that have adopted biomass cogeneration systems and from organizations such as utilities, state and federal agencies, and banks directly involved in a biomass cogeneration project. The guide is organized into five chapters: biomass cogeneration systems, biomass cogeneration business considerations, biomass cogeneration economics, biomass cogeneration project planning, and case studies.

  2. Synthesis, growth, physicochemical properties and DFT calculations of 2-naphthol substituted Mannich base 1-(morpholino(phenyl) methyl) naphthalen-2-ol: A non linear optical single crystal

    Science.gov (United States)

    Dennis Raj, A.; Jeeva, M.; Shankar, M.; Venkatesa Prabhu, G.; Vimalan, M.; Vetha Potheher, I.

    2017-11-01

    2-Naphthol substituted Mannich base 1-morpholino(phenyl)methyl)naphthalen-2-ol (MPMN), a potential NLO active organic single crystal was developed using acetonitrile as a solvent by slow evaporation method. The experimental and theoretical analysis made towards the exploitation in the field of electro-optic and NLO applications. The cubic structure with non-centrosymmetric space group Cc was confirmed and cell dimensions of the grown crystal were obtained from single crystal X-ray diffraction (XRD) study. The formation of the Csbnd Nsbnd C vibrational band at 1115 cm-1 in Fourier Transform Infra-Red (FTIR) analysis confirms the formation of MPMN compound. The placement of protons and carbons of MPMN were identified from Nuclear Magnetic Resonance Spectroscopy (NMR) analysis. The wide optical absorption window and the lower cutoff wavelength of MPMN show the suitability of the material for the various laser related applications. The presence of dislocations and growth pattern of crystal were analyzed using chemical etching technique. The Second Harmonic Generation (SHG) of MPMN was found to be 1.57 times greater than the standard KDP crystal. The laser damage threshold was measured by using Nd: YAG laser beam passed through the sample and it was found to be 1.006 GW/cm2. The electronic structure of the molecular system and the optical properties were also studied from quantum chemical calculations using Density Functional Theory (DFT) and reported for the first time.

  3. Advanced Biomass Gasification Projects

    Energy Technology Data Exchange (ETDEWEB)

    1997-08-01

    DOE has a major initiative under way to demonstrate two high-efficiency gasification systems for converting biomass into electricity. As this fact sheet explains, the Biomass Power Program is cost-sharing two scale-up projects with industry in Hawaii and Vermont that, if successful, will provide substantial market pull for U.S. biomass technologies, and provide a significant market edge over competing foreign technologies.

  4. Process for treating biomass

    Science.gov (United States)

    Campbell, Timothy J.; Teymouri, Farzaneh

    2018-04-10

    This invention is directed to a process for treating biomass. The biomass is treated with a biomass swelling agent within the vessel to swell or rupture at least a portion of the biomass. A portion of the swelling agent is removed from a first end of the vessel following the treatment. Then steam is introduced into a second end of the vessel different from the first end to further remove swelling agent from the vessel in such a manner that the swelling agent exits the vessel at a relatively low water content.

  5. Energy production from biomass

    International Nuclear Information System (INIS)

    Bestebroer, S.I.

    1995-01-01

    The aim of the task group 'Energy Production from Biomass', initiated by the Dutch Ministry of Economic Affairs, was to identify bottlenecks in the development of biomass for energy production. The bottlenecks were identified by means of a process analysis of clean biomass fuels to the production of electricity and/or heat. The subjects in the process analysis are the potential availability of biomass, logistics, processing techniques, energy use, environmental effects, economic impact, and stimulation measures. Three categories of biomass are distinguished: organic residual matter, imported biomass, and energy crops, cultivated in the Netherlands. With regard to the processing techniques attention is paid to co-firing of clean biomass in existing electric power plants (co-firing in a coal-fired power plant or co-firing of fuel gas from biomass in a coal-fired or natural gas-fired power plant), and the combustion or gasification of clean biomass in special stand-alone installations. 5 figs., 13 tabs., 28 refs

  6. Biomass resources in California

    Energy Technology Data Exchange (ETDEWEB)

    Tiangco, V.M.; Sethi, P.S. [California Energy Commission, Sacramento, CA (United States)

    1993-12-31

    The biomass resources in California which have potential for energy conversion were assessed and characterized through the project funded by the California Energy Commission and the US Department of Energy`s Western Regional Biomass Energy Program (WRBEP). The results indicate that there is an abundance of biomass resources as yet untouched by the industry due to technical, economic, and environmental problems, and other barriers. These biomass resources include residues from field and seed crops, fruit and nut crops, vegetable crops, and nursery crops; food processing wastes; forest slash; energy crops; lumber mill waste; urban wood waste; urban yard waste; livestock manure; and chaparral. The estimated total potential of these biomass resource is approximately 47 million bone dry tons (BDT), which is equivalent to 780 billion MJ (740 trillion Btu). About 7 million BDT (132 billion MJ or 124 trillion Btu) of biomass residue was used for generating electricity by 66 direct combustion facilities with gross capacity of about 800 MW. This tonnage accounts for only about 15% of the total biomass resource potential identified in this study. The barriers interfering with the biomass utilization both in the on-site harvesting, collection, storage, handling, transportation, and conversion to energy are identified. The question whether these barriers present significant impact to biomass {open_quotes}availability{close_quotes} and {open_quotes}sustainability{close_quotes} remains to be answered.

  7. A Model of the Effect of the Microbial Biomass on the Isotherm of the Fermenting Solids in Solid-State Fermentation

    Directory of Open Access Journals (Sweden)

    Barbara Celuppi Marques

    2006-01-01

    Full Text Available We compare isotherms for soybeans and soybeans fermented with Rhizopus oryzae, showing that in solid-state fermentation the biomass affects the isotherm of the fermenting solids. Equations are developed to calculate, for a given overall water content of the fermenting solids, the water contents of the biomass and residual substrate, as well as the water activity. A case study, undertaken using a mathematical model of a well-mixed bioreactor, shows that if water additions are made on the basis of the assumption that fermenting solids have the same isotherm as the substrate itself, poor growth can result since the added water does not maintain the water activity at levels favorable for growth. We conclude that the effect of the microbial biomass on the isotherm of the fermenting solids must be taken into account in mathematical models of solid-state fermentation bioreactors.

  8. Effect of diverse ecological conditions on biomass production of ...

    African Journals Online (AJOL)

    Kangaroo grass native to Australia is known as the best grass to grow on different environmental and soil conditions. Biomass production of any grass is the key factor to estimate that if the grass could fulfill the animal requirements. Biomass production of kangaroo grass was estimated in this study at three growth stages on ...

  9. France looks to biomass

    Energy Technology Data Exchange (ETDEWEB)

    1982-03-22

    France's Solar Energy Commission has announced a series of measures it is backing to increase the country's production of energy from biomass. Following consultations on suitable equipment, it has decided to go ahead with experiments of 15 systems designed to produce methane from animal wastes. Its eventual target is the production of between 1 million and 1.5 million tons per year of oil equivalent (toe) from this source. Secondly, it has launched a tender for the supply of domestic and industrial heating equipment capable of functioning on straw. It has calculated that the amount of straw available for this end use is in the region of 6 million ton per year, equivalent to about 2 million tons per year toe. Finally, tests are to be carried out in 14 different areas to determine the best variety of Jerusalem artichoke for the production of ethanol. Together with the Institut Francais du Petrole the Commission is building a demonstration unit for the production of acetone/butyric acid by fermentation of sugars from Jerusamlem artichoke and beet roots.

  10. Thermodynamic approach to biomass gasification

    International Nuclear Information System (INIS)

    Boissonnet, G.; Seiler, J.M.

    2003-01-01

    The document presents an approach of biomass transformation in presence of steam, hydrogen or oxygen. Calculation results based on thermodynamic equilibrium are discussed. The objective of gasification techniques is to increase the gas content in CO and H 2 . The maximum content in these gases is obtained when thermodynamic equilibrium is approached. Any optimisation action of a process. will, thus, tend to approach thermodynamic equilibrium conditions. On the other hand, such calculations can be used to determine the conditions which lead to an increase in the production of CO and H 2 . An objective is also to determine transformation enthalpies that are an important input for process calculations. Various existing processes are assessed, and associated thermodynamic limitations are evidenced. (author)

  11. Optimization of biomass and dihydroorotase (DHOase) production ...

    African Journals Online (AJOL)

    Growth conditions which maintains DHOase overproduction by Saccharomyces cerevisiae MNJ3 (pMNJ1) and allow sufficient biomass production to ensure DHoase's purification were investigated. We used as basal medium the Yeast Carbon Base (YCB; Difco), especially designed for studies of nitrogen metabolism in ...

  12. Biomass energy development

    International Nuclear Information System (INIS)

    Ng'eny-Mengech, A.

    1990-01-01

    This paper deals more specifically with biomethanation process and non conventional sources of biomass energy such as water hyacinths and vegetable oil hydrocarbon fuels. It highlights socioeconomic issues in biomass energy production and use. The paper also contains greater details on chemical conversion methods and processes of commercial ethanol and methanol production. (author). 291 refs., 6 tabs

  13. 11 Soil Microbial Biomass

    African Journals Online (AJOL)

    186–198. Insam H. (1990). Are the soil microbial biomass and basal respiration governed by the climatic regime? Soil. Biol. Biochem. 22: 525–532. Insam H. D. and Domsch K. H. (1989). Influence of microclimate on soil microbial biomass. Soil Biol. Biochem. 21: 211–21. Jenkinson D. S. (1988). Determination of microbial.

  14. Hydrothermal conversion of biomass

    NARCIS (Netherlands)

    Knezevic, D.

    2009-01-01

    This thesis presents research of hydrothermal conversion of biomass (HTC). In this process, hot compressed water (subcritical water) is used as the reaction medium. Therefore this technique is suitable for conversion of wet biomass/ waste streams. By working at high pressures, the evaporation of

  15. World wide biomass resources

    NARCIS (Netherlands)

    Faaij, A.P.C.

    2012-01-01

    In a wide variety of scenarios, policy strategies, and studies that address the future world energy demand and the reduction of greenhouse gas emissions, biomass is considered to play a major role as renewable energy carrier. Over the past decades, the modern use of biomass has increased

  16. Hydrogen from biomass

    NARCIS (Netherlands)

    Claassen, P.A.M.; Vrije, de G.J.

    2006-01-01

    Hydrogen is generally regarded as the energy carrier of the future. The development of a process for hydrogen production from biomass complies with the policy of the Dutch government to obtain more renewable energy from biomass. This report describes the progress of the BWP II project, phase 2 of

  17. Hydrothermal liquefaction of biomass

    DEFF Research Database (Denmark)

    Toor, Saqib; Rosendahl, Lasse; Rudolf, Andreas

    2011-01-01

    This article reviews the hydrothermal liquefaction of biomass with the aim of describing the current status of the technology. Hydrothermal liquefaction is a medium-temperature, high-pressure thermochemical process, which produces a liquid product, often called bio-oil or bi-crude. During...... the hydrothermal liquefaction process, the macromolecules of the biomass are first hydrolyzed and/or degraded into smaller molecules. Many of the produced molecules are unstable and reactive and can recombine into larger ones. During this process, a substantial part of the oxygen in the biomass is removed...... by dehydration or decarboxylation. The chemical properties of bio-oil are highly dependent of the biomass substrate composition. Biomass constitutes of various components such as protein; carbohydrates, lignin and fat, and each of them produce distinct spectra of compounds during hydrothermal liquefaction...

  18. Biomass power in transition

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, D.K. [Zurn/NEPCO, Redmond, WA (United States)

    1996-12-31

    Electricity production from biomass fuel has been hailed in recent years as an environmentally acceptable energy source that delivers on its promise of economically viable renewable energy. A Wall Street Journal article from three years ago proclaimed wood to be {open_quotes}moving ahead of costly solar panels and wind turbines as the leading renewable energy alternative to air-fouling fossils fuels and scary nuclear plants.{close_quotes} Biomass fuel largely means wood; about 90% of biomass generated electricity comes from burning waste wood, the remainder from agricultural wastes. Biomass power now faces an uncertain future. The maturing of the cogeneration and independent power plant market, restructuring of the electric industry, and technological advances with power equipment firing other fuels have placed biomass power in a competitive disadvantage with other power sources.

  19. Remarks on energetic biomass

    International Nuclear Information System (INIS)

    Mathis, Paul; Pelletier, Georges

    2011-01-01

    The authors report a study of energy biomass by considering its three main sources (forest, agriculture and wastes) and three energy needs (heat, fuel for transports, electricity) in the French national context. After having recalled the various uses of biomass (animal feeding, energy production, materials, chemical products), the authors discuss the characteristics of biomass with respect to other energy sources. Then, they analyse and discuss the various energy needs which biomass could satisfy: heat production (in industry, in the residential and office building sector), fuel for transports, electricity production. They assess and discuss the possible biomass production of its three main sources: forest, agriculture, and wastes (household, agricultural and industrial wastes). They also discuss the opportunities for biogas production and for second generation bio-fuel production

  20. seasonal variation of biomass and secondary production

    African Journals Online (AJOL)

    Preferred Customer

    consimilis was cultured in the laboratory to obtain life history data on duration of embryonic and post-embryonic ... medium. Laboratory duration times were close to biomass turnover rates calculated from field data ... Ethiopian lakes include the work of Seyoum. Mengistou ... water balance of this lake as the static water level.

  1. Biomass CHP Catalog of Technologies

    Science.gov (United States)

    This report reviews the technical and economic characterization of biomass resources, biomass preparation, energy conversion technologies, power production systems, and complete integrated CHP systems.

  2. Design of biomass district heating systems

    International Nuclear Information System (INIS)

    Vallios, Ioannis; Tsoutsos, Theocharis; Papadakis, George

    2009-01-01

    The biomass exploitation takes advantage of the agricultural, forest, and manure residues and in extent, urban and industrial wastes, which under controlled burning conditions, can generate heat and electricity, with limited environmental impacts. Biomass can - significantly - contribute in the energy supplying system, if the engineers will adopt the necessary design changes to the traditional systems and become more familiar with the design details of the biomass heating systems. The aim of this paper is to present a methodology of the design of biomass district heating systems taking into consideration the optimum design of building structure and urban settlement around the plant. The essential energy parameters are presented for the size calculations of a biomass burning-district heating system, as well as for the environmental (i.e. Greenhouse Gas Emissions) and economic evaluation (i.e. selectivity and viability of the relevant investment). Emphasis has been placed upon the technical parameters of the biomass system, the economic details of the boiler, the heating distribution network, the heat exchanger and the Greenhouse Gas Emissions

  3. Biofertilizer potential of residual biomass of Akk (alotropis procera (Ait.))

    International Nuclear Information System (INIS)

    Ahmad, N.

    2016-01-01

    The biofertilizer potential of residual biomass, derived from two parts that is flowers and leaves of Akk,was investigated in terms of its applications as a substrate for phyto-beneficial bacterial growth and subsequent inorganic phosphate solubilizing agent. The residual biomass was obtained after the extraction of antioxidants from the leaves and flowers of Akk using different solvent systems. The treatment with residual biomass of Akk (RBA) significantly (p<0.05) enhanced the growth of Enterobacter sp. Fs-11 and Rhizobium sp. E-11 as compared to control (without residual biomass). Maximum microbial growth in terms of optical density (0.92-1.22) was observed for residual biomass sample extracted with aqueous acetone against the control (0.58-0.68). On the other hand, maximum phosphate solubilization (589.27-611.32 mu g mL-1) was recorded for aqueous ethanol extracted residual biomass while the minimum (246.31-382.15 micro g) for aqueous acetone extracted residual biomass against the control (576.65 micro g mL-1). The present study revealed that the tested RBA can be explored as an effective bio-inoculant to supplement synthetic inorganic phosphate fertilizers. However, some appropriate in-vitro assays should be conducted to optimize and standardize the quantity and mesh size of residual biomass prior to use in biofertilizer production as carrier material. (author)

  4. Modeling of biomass pyrolysis

    International Nuclear Information System (INIS)

    Samo, S.R.; Memon, A.S.; Akhund, M.A.

    1995-01-01

    The fuels used in industry and power sector for the last two decades have become expensive. As a result renewable energy source have been emerging increasingly important, of these, biomass appears to be the most applicable in the near future. The pyrolysis of biomass plays a key role amongst the three major and important process generally encountered in a gas producer, namely, pyrolysis, combustion and reduction of combustion products. Each biomass has its own pyrolysis characteristics and this important parameters must be known for the proper design and efficient operation of a gasification system. Thermogravimetric analysis has been widely used to study the devolatilization of solid fuels, such as biomass. It provides the weight loss history of a sample heated at a predetermined rate as a function of time and temperature. This paper presents the experimental results of modelling the weight loss curves of the main biomass components i.e. cellulose, hemicellulose and lignin. Thermogravimetric analysis of main components of biomass showed that pyrolysis is first order reaction. Furthermore pyrolysis of cellulose and hemicelluloe can be regarded as taking place in two stages, for while lignin pyrolysis is a single stage process. This paper also describes the Thermogravimetric Analysis (TGA) technique to predict the weight retained during pyrolysis at any temperature, for number of biomass species, such as cotton stalk, bagasse ad graoundnut shell. (author)

  5. Economics of multifunctional biomass systems

    International Nuclear Information System (INIS)

    Ignaciuk, A.

    2006-01-01

    for the Bioelectricity sector. The main questions that are dealt within this chapter are: to what extent the multi-product crops increase the potential of bioelectricity production and how do they affect the prices of agricultural commodities. These questions are analyzed in the general equilibrium framework. This line of analysis is chosen because it allows comprising the bottom-up information about multi-productivity with the general setting of the whole economy in an applied computable general equilibrium (AGE) framework. This is important since energy policy responses influence main economic sectors and via feedback effects they influence the whole economy. The impact of climate policies on land use allocation, sectoral production and consumption levels and prices of land, food, electricity and other commodities, including the multiproductivity of crops is assessed. Moreover, this chapter provides an analysis to what extent competition for land can be reduced by using multi-product crops. In Chapter 5, the general equilibrium framework is further explored. The phytoremediation characteristics of willow plantations and forestry, thanks to which contaminated land can be cleaned up, are analyzed. The potentials of additional land for biomass production, which is currently not used due to its poor productivity characteristics or due to its high contamination with heavy metals, are calculated. Such land cannot be used for food production, therefore the analysis of the effects of an increased land quantity for biomass production is performed and an assessment of its impact on the environment and on the economy is done. Moreover, this chapter deals with the question to what extent the competition issues for land can be resolved by using the multifunctional characteristics of biomass and forestry crops. Chapter 6 deals with material substitution and resource cascading. Two different chemicals are dealt with, that are currently produced using fossil fuels; (1) nylon and (2

  6. Biomass in Germany

    International Nuclear Information System (INIS)

    Chapron, Thibaut

    2014-01-01

    This document provides, first, an overview of biomass industry in Germany: energy consumption and renewable energy production, the French and German electricity mix, the 2003-2013 evolution of renewable electricity production and the 2020 forecasts, the biomass power plants, plantations, biofuels production and consumption in Germany. Then, the legal framework of biofuels development in Germany is addressed (financial incentives, tariffs, direct electricity selling). Next, a focus is made on biogas production both in France and in Germany (facilities, resources). Finally, the French-German cooperation in the biomass industry and the research actors are presented

  7. Aerosols from biomass combustion

    Energy Technology Data Exchange (ETDEWEB)

    Nussbaumer, T

    2001-07-01

    This report is the proceedings of a seminar on biomass combustion and aerosol production organised jointly by the International Energy Agency's (IEA) Task 32 on bio energy and the Swiss Federal Office of Energy (SFOE). This collection of 16 papers discusses the production of aerosols and fine particles by the burning of biomass and their effects. Expert knowledge on the environmental impact of aerosols, formation mechanisms, measurement technologies, methods of analysis and measures to be taken to reduce such emissions is presented. The seminar, visited by 50 participants from 11 countries, shows, according to the authors, that the reduction of aerosol emissions resulting from biomass combustion will remain a challenge for the future.

  8. Catalytic biomass pyrolysis process

    Science.gov (United States)

    Dayton, David C.; Gupta, Raghubir P.; Turk, Brian S.; Kataria, Atish; Shen, Jian-Ping

    2018-04-17

    Described herein are processes for converting a biomass starting material (such as lignocellulosic materials) into a low oxygen containing, stable liquid intermediate that can be refined to make liquid hydrocarbon fuels. More specifically, the process can be a catalytic biomass pyrolysis process wherein an oxygen removing catalyst is employed in the reactor while the biomass is subjected to pyrolysis conditions. The stream exiting the pyrolysis reactor comprises bio-oil having a low oxygen content, and such stream may be subjected to further steps, such as separation and/or condensation to isolate the bio-oil.

  9. Biomass for green cement

    Energy Technology Data Exchange (ETDEWEB)

    Cumming, R. [Lafarge Canada Inc., Calgary, AB (Canada)

    2006-07-01

    Lafarge examined the use of waste biomass products in its building materials and provided background information on its operations. Cement kiln infrastructure was described in terms of providing access to shipping, rail and highways; conveying and off-loading equipment; having large storage facilities; and, offering continuous monitoring and stack testing. The presentation identified the advantages and disadvantages of a few different biomass cases such as coal; scrap tires; non-recyclable household waste; and processed biomass. A chart representing landfill diversion rates was presented and the presentation concluded with a discussion of energy recovery and recycling. 1 tab., figs.

  10. Electricity from biomass

    International Nuclear Information System (INIS)

    Price, B.

    1998-11-01

    Electricity from biomass assesses the potential of biomass electricity for displacing other more polluting power sources and providing a relatively clean and ecologically friendly source of energy; discusses its environmental and economic effects, while analysing political and institutional initiatives and constraints; evaluates key factors, such as energy efficiency, economics, decentralisation and political repurcussions; considers the processes and technologies employed to produce electricity from biomass; and discusses the full range of incentives offered to producers and potential producers and the far-reaching implications it could have for industry, society and the environment. (author)

  11. Biomass and Volume Yield in Mature Hybrid Poplar Plantations on Temperate Abandoned Farmland

    Directory of Open Access Journals (Sweden)

    Benoit Truax

    2014-12-01

    Full Text Available In this study, we developed clone-specific allometric relationships, with the objective of calculating volume and biomass production after 13 years in 8 poplar plantations, located across an environmental gradient, and composed of 5 unrelated hybrid poplar clones. Allometry was found to be very similar for clones MxB-915311, NxM-3729 and DNxM-915508, all having P. maximoviczii parentage. Clones DxN-3570 and TxD-3230 also had a similar allometry; for a given DBH they have a lower stem volume, stem biomass and branch biomass than P. maximoviczii hybrids. Strong Site × Clone interactions were observed for volume and woody biomass growth, with DxN and TxD hybrids only productive on low elevation fertile sites, whereas P. maximovizcii hybrids were also very productive on higher elevation sites with moderate to high soil fertility. At the site level (5 clones mean, yield reached 27.5 and 22.7 m3/ha/yr. on the two best sites (high fertility and low elevation, confirming the great potential of southern Québec (Canada for poplar culture. The productivity gap between the most and least productive sites has widened from year 8 to year 13, highlighting the need for high quality abandoned farmland site selection in terms of climate and soil fertility. Although clone selection could optimize yield across the studied environmental gradient, it cannot fully compensate for inadequate site selection.

  12. Microbial biodiesel production from oil palm biomass hydrolysate using marine Rhodococcus sp. YHY01.

    Science.gov (United States)

    Bhatia, Shashi Kant; Kim, Junyoung; Song, Hun-Seok; Kim, Hyun Joong; Jeon, Jong-Min; Sathiyanarayanan, Ganesan; Yoon, Jeong-Jun; Park, Kyungmoon; Kim, Yun-Gon; Yang, Yung-Hun

    2017-06-01

    The effect of various biomass derived inhibitors (i.e. furfural, hydroxymethylfurfural (HMF), vanillin, 4-hydroxy benzaldehyde (4-HB) and acetate) was investigated for fatty acid accumulation in Rhodococcus sp. YHY 01. Rhodococcus sp. YHY01 was able to utilize acetate, vanillin, and 4-HB for biomass production and fatty acid accumulation. The IC 50 value for furfural (3.1mM), HMF (3.2mM), vanillin (2.0mM), 4-HB (2.7mM) and acetate (3.7mM) was calculated. HMF and vanillin affect fatty acid composition and increase saturated fatty acid content. Rhodococcus sp. YHY 01 cultured with empty fruit bunch hydrolysate (EFBH) as the main carbon source resulted in enhanced biomass (20%) and fatty acid productivity (37%), in compression to glucose as a carbon source. Overall, this study showed the beneficial effects of inhibitory molecules on growth and fatty acid production, and support the idea of biomass hydrolysate utilization for biodiesel production by avoiding complex efforts to remove inhibitory compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Sustainable Elastomers from Renewable Biomass.

    Science.gov (United States)

    Wang, Zhongkai; Yuan, Liang; Tang, Chuanbing

    2017-07-18

    Sustainable elastomers have undergone explosive growth in recent years, partly due to the resurgence of biobased materials prepared from renewable natural resources. However, mounting challenges still prevail: How can the chemical compositions and macromolecular architectures of sustainable polymers be controlled and broadened? How can their processability and recyclability be enabled? How can they compete with petroleum-based counterparts in both cost and performance? Molecular-biomass-derived polymers, such as polymyrcene, polymenthide, and poly(ε-decalactone), have been employed for constructing thermoplastic elastomers (TPEs). Plant oils are widely used for fabricating thermoset elastomers. We use abundant biomass, such as plant oils, cellulose, rosin acids, and lignin, to develop elastomers covering a wide range of structure-property relationships in the hope of delivering better performance. In this Account, recent progress in preparing monomers and TPEs from biomass is first reviewed. ABA triblock copolymer TPEs were obtained with a soft middle block containing a soybean-oil-based monomer and hard outer blocks containing styrene. In addition, a combination of biobased monomers from rosin acids and soybean oil was formulated to prepare triblock copolymer TPEs. Together with the above-mentioned approaches based on block copolymers, multigraft copolymers with a soft backbone and rigid side chains are recognized as the first-generation and second-generation TPEs, respectively. It has been recently demonstrated that multigraft copolymers with a rigid backbone and elastic side chains can also be used as a novel architecture of TPEs. Natural polymers, such as cellulose and lignin, are utilized as a stiff, macromolecular backbone. Cellulose/lignin graft copolymers with side chains containing a copolymer of methyl methacrylate and butyl acrylate exhibited excellent elastic properties. Cellulose graft copolymers with biomass-derived polymers as side chains were

  14. Algal biofuels from urban wastewaters: maximizing biomass yield using nutrients recycled from hydrothermal processing of biomass.

    Science.gov (United States)

    Selvaratnam, T; Pegallapati, A K; Reddy, H; Kanapathipillai, N; Nirmalakhandan, N; Deng, S; Lammers, P J

    2015-04-01

    Recent studies have proposed algal cultivation in urban wastewaters for the dual purpose of waste treatment and bioenergy production from the resulting biomass. This study proposes an enhancement to this approach that integrates cultivation of an acidophilic strain, Galdieria sulphuraria 5587.1, in a closed photobioreactor (PBR); hydrothermal liquefaction (HTL) of the wet algal biomass; and recirculation of the nutrient-rich aqueous product (AP) of HTL to the PBR to achieve higher biomass productivity than that could be achieved with raw wastewater. The premise is that recycling nutrients in the AP can maintain optimal C, N and P levels in the PBR to maximize biomass growth to increase energy returns. Growth studies on the test species validated growth on AP derived from HTL at temperatures from 180 to 300°C. Doubling N and P concentrations over normal levels in wastewater resulted in biomass productivity gains of 20-25% while N and P removal rates also doubled. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Termisk forgasning af biomasse

    DEFF Research Database (Denmark)

    Henriksen, Ulrik Birk

    2005-01-01

    The title of this Ph.D. thesis is: Thermal Gasification of Biomass. Compilation of activities in the ”Biomass Gasification Group” at Technical University of Denmark (DTU). This thesis gives a presentation of selected activities in the Biomass Gasification Group at DTU. The activities are related...... to thermal gasification of biomass. Focus is on gasification for decentralised cogeneration of heat and power, and on related research on fundamental processes. In order to insure continuity of the presentation the other activities in the group, have also been described. The group was started in the late...... of these activities has been fruitful. The two- stage gasifier was developed for gasification aiming at decentralised cogeneration of heat and power. The development ranged from lap-top scale equipment to a fully automatic plant with more than 2000 hours of operation. Compared to most other gasification processes...

  16. Biomass_Master

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Biomass data found in this data set are broken into four regions of the Northeast US Continental Shelf Large Marine Ecosystem: Gulf of Maine, Georges Bank,...

  17. Biomass for bioenergy

    DEFF Research Database (Denmark)

    Bentsen, Niclas Scott

    Across the range of renewable energy resources, bioenergy is probably the most complex, as using biomass to support energy services ties into a number of fields; climate change, food production, rural development, biodiversity and environmental protection. Biomass offer several options...... for displacing fossil resources and is perceived as one of the main pillars of a future low-carbon or no-carbon energy supply. However, biomass, renewable as it is, is for any relevant, time horizon to be considered a finite resource as it replenishes at a finite rate. Conscientious stewardship of this finite...... the undesirable impacts of bioenergy done wrong. However, doing bioenergy right is a significant challenge due to the ties into other fields of society. Fundamentally plant biomass is temporary storage of solar radiation energy and chemically bound energy from nutrients. Bioenergy is a tool to harness solar...

  18. Hydrothermal liquefaction of biomass

    DEFF Research Database (Denmark)

    Toor, Saqib; Rosendahl, Lasse; Hoffmann, Jessica

    2014-01-01

    Biomass is one of the most abundant sources of renewable energy, and will be an important part of a more sustainable future energy system. In addition to direct combustion, there is growing attention on conversion of biomass into liquid en-ergy carriers. These conversion methods are divided...... into biochemical/biotechnical methods and thermochemical methods; such as direct combustion, pyrolysis, gasification, liquefaction etc. This chapter will focus on hydrothermal liquefaction, where high pressures and intermediate temperatures together with the presence of water are used to convert biomass...... into liquid biofuels, with the aim of describing the current status and development challenges of the technology. During the hydrothermal liquefaction process, the biomass macromolecules are first hydrolyzed and/or degraded into smaller molecules. Many of the produced molecules are unstable and reactive...

  19. 2007 Biomass Program Overview

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-10-27

    The Biomass Program is actively working with public and private partners to meet production and technology needs. With the corn ethanol market growing steadily, researchers are unlocking the potential of non-food biomass sources, such as switchgrass and forest and agricultural residues. In this way, the Program is helping to ensure that cost-effective technologies will be ready to support production goals for advanced biofuels.

  20. Timber volume and aboveground live tree biomass estimations for landscape analyses in the Pacific Northwest

    Science.gov (United States)

    Xiaoping Zhou; Miles A. Hemstrom

    2010-01-01

    Timber availability, aboveground tree biomass, and changes in aboveground carbon pools are important consequences of landscape management. There are several models available for calculating tree volume and aboveground tree biomass pools. This paper documents species-specific regional equations for tree volume and aboveground live tree biomass estimation that might be...

  1. Biomass feedstock analyses

    Energy Technology Data Exchange (ETDEWEB)

    Wilen, C.; Moilanen, A.; Kurkela, E. [VTT Energy, Espoo (Finland). Energy Production Technologies

    1996-12-31

    The overall objectives of the project `Feasibility of electricity production from biomass by pressurized gasification systems` within the EC Research Programme JOULE II were to evaluate the potential of advanced power production systems based on biomass gasification and to study the technical and economic feasibility of these new processes with different type of biomass feed stocks. This report was prepared as part of this R and D project. The objectives of this task were to perform fuel analyses of potential woody and herbaceous biomasses with specific regard to the gasification properties of the selected feed stocks. The analyses of 15 Scandinavian and European biomass feed stock included density, proximate and ultimate analyses, trace compounds, ash composition and fusion behaviour in oxidizing and reducing atmospheres. The wood-derived fuels, such as whole-tree chips, forest residues, bark and to some extent willow, can be expected to have good gasification properties. Difficulties caused by ash fusion and sintering in straw combustion and gasification are generally known. The ash and alkali metal contents of the European biomasses harvested in Italy resembled those of the Nordic straws, and it is expected that they behave to a great extent as straw in gasification. Any direct relation between the ash fusion behavior (determined according to the standard method) and, for instance, the alkali metal content was not found in the laboratory determinations. A more profound characterisation of the fuels would require gasification experiments in a thermobalance and a PDU (Process development Unit) rig. (orig.) (10 refs.)

  2. Intensive biomass harvesting in forests - what about the carbon balance?

    International Nuclear Information System (INIS)

    Berg, Bjoern; Johansson, Maj-Britt

    1998-08-01

    The use of biofuels is considered to be CO 2 -neutral. This means that the use of forest biomass for fuel does not add more CO 2 to the atmosphere than what has been taken up over a stand age by photosynthesis. However, the biomass that may be harvested only contains part of the CO 2 immobilized through fixation during the growth of the forest stand. A fraction of the produced biomass will always decompose on and in the soil, in part producing humus and in part CO 2 . To this fraction belongs the litter formed during the period of stand growth, e.g. the annual foliar litterfall. The decomposition of both foliar litter and green needles have been shown to follow an asymptotic function, meaning that the decomposition approaches a limit value. This means that recalcitrant remains are left. The decomposition of felling residues have been assumed to follow the same function. The obvious question is how the amount of humus is affected by removal of felling residues. In an investigation of humus storage in five stands of Norway spruce in south Sweden limit values were estimated for the decomposition of local spruce needle litter giving a variation from 63 to 85 per cent. With the use of these limit values and the amount of litterfall the accumulation of humus was estimated. These calculations showed that there is a growth of the humus layer in the period of stand growth. The rate of humus accumulation varied among the stands and on the average a theoretical humus accumulation of about 42 tons per hectare was estimated for a stand age of 60 years. This amount of already accumulated humus is not affected by harvests of remains from thinnings or clearcuts. If, on the other hand the felling residues are not removed that means that the amount of humus should increase. Experiments with soil scarification showed that for litter buried under plowed-up mineral soil the decomposition went further than in soil not scarified. The estimated limit value was on the average about 40 per

  3. Switchgrass a valuable biomass crop for energy

    CERN Document Server

    2012-01-01

    The demand of renewable energies is growing steadily both from policy and from industry which seeks environmentally friendly feed stocks. The recent policies enacted by the EU, USA and other industrialized countries foresee an increased interest in the cultivation of energy crops; there is clear evidence that switchgrass is one of the most promising biomass crop for energy production and bio-based economy and compounds. Switchgrass: A Valuable Biomass Crop for Energy provides a comprehensive guide to  switchgrass in terms of agricultural practices, potential use and markets, and environmental and social benefits. Considering this potential energy source from its biology, breed and crop physiology to its growth and management to the economical, social and environmental impacts, Switchgrass: A Valuable Biomass Crop for Energy brings together chapters from a range of experts in the field, including a foreword from Kenneth P. Vogel, to collect and present the environmental benefits and characteristics of this a ...

  4. Biomass energy: Another driver of land acquisitions?

    Energy Technology Data Exchange (ETDEWEB)

    Cotula, Lorenzo; Finnegan, Lynn; MacQueen, Duncan

    2011-08-15

    As governments in the global North look to diversify their economies away from fossil fuel and mitigate climate change, plans for biomass energy are growing fast. These are fuelling a sharp rise in the demand for wood, which, for some countries, could outstrip domestic supply capacity by as much as 600 per cent. It is becoming clear that although these countries will initially look to tap the temperate woodlands of developed countries, there are significant growth rate advantages that may lead them to turn to the tropics and sub-tropics to fill their biomass gap in the near future. Already there is evidence of foreign investors acquiring land in Africa, South America and Southeast Asia to establish tree plantations for biomass energy. If left unchecked, these trends could increase pressures on land access and food security in some of the world's poorest countries and communities.

  5. Final Harvest of Above-Ground Biomass and Allometric Analysis of the Aspen FACE Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Mark E. Kubiske

    2013-04-15

    The Aspen FACE experiment, located at the US Forest Service Harshaw Research Facility in Oneida County, Wisconsin, exposes the intact canopies of model trembling aspen forests to increased concentrations of atmospheric CO2 and O3. The first full year of treatments was 1998 and final year of elevated CO2 and O3 treatments is scheduled for 2009. This proposal is to conduct an intensive, analytical harvest of the above-ground parts of 24 trees from each of the 12, 30 m diameter treatment plots (total of 288 trees) during June, July & August 2009. This above-ground harvest will be carefully coordinated with the below-ground harvest proposed by D.F. Karnosky et al. (2008 proposal to DOE). We propose to dissect harvested trees according to annual height growth increment and organ (main stem, branch orders, and leaves) for calculation of above-ground biomass production and allometric comparisons among aspen clones, species, and treatments. Additionally, we will collect fine root samples for DNA fingerprinting to quantify biomass production of individual aspen clones. This work will produce a thorough characterization of above-ground tree and stand growth and allocation above ground, and, in conjunction with the below ground harvest, total tree and stand biomass production, allocation, and allometry.

  6. Climate mitigation comparison of woody biomass systems with the inclusion of land-use in the reference fossil system

    International Nuclear Information System (INIS)

    Haus, S.; Gustavsson, L.; Sathre, R.

    2014-01-01

    While issues of land-use have been considered in many direct analyses of biomass systems, little attention has heretofore been paid to land-use in reference fossil systems. Here we address this limitation by comparing forest biomass systems to reference fossil systems with explicit consideration of land-use in both systems. We estimate and compare the time profiles of greenhouse gas (GHG) emission and cumulative radiative forcing (CRF) of woody biomass systems and reference fossil systems. A life cycle perspective is used that includes all significant elements of both systems, including GHG emissions along the full material and energy chains. We consider the growth dynamics of forests under different management regimes, as well as energy and material substitution effects of harvested biomass. We determine the annual net emissions of CO 2 , N 2 O and CH 4 for each system over a 240-year period, and then calculate time profiles of CRF as a proxy measurement of climate change impact. The results show greatest potential for climate change mitigation when intensive forest management is applied in the woody biomass system. This methodological framework provides a tool to help determine optimal strategies for managing forests so as to minimize climate change impacts. The inclusion of land-use in the reference system improves the accuracy of quantitative projections of climate benefits of biomass-based systems. - Highlights: • We analyze the dynamics of GHG emissions from woody biomass and fossil systems. • With a life cycle perspective, we account for forest land-use in both systems. • Replacing more carbon intensive fossil fuels gives greater climate benefit. • Increasing the intensity of forest management gives greater climate benefit. • Methodological choices in defining temporal system boundaries are important

  7. Biomass estimation as a function of vertical forest structure and forest height: potential and limitations for radar remote sensing

    OpenAIRE

    Torano Caicoya, Astor; Kugler, Florian; Papathanassiou, Kostas; Biber, Peter; Pretzsch, Hans

    2010-01-01

    One common method to estimate biomass is measuring forest height and applying allometric equations to get forest biomass. Conditions like changing forest density or changing forest structure bias the allometric relations or biomass estimation fails completely. Remote sensing systems like SAR or LIDAR allow to measure vertical structure of forests. In this paper it is investigated whether vertical structure is sensitive to biomass. For this purpose vertical biomass profiles were calculated usi...

  8. Allometric Models to Predict Aboveground Woody Biomass of Black Locust (Robinia pseudoacacia L. in Short Rotation Coppice in Previous Mining and Agricultural Areas in Germany

    Directory of Open Access Journals (Sweden)

    Christin Carl

    2017-09-01

    Full Text Available Black locust is a drought-resistant tree species with high biomass productivity during juvenility; it is able to thrive on wastelands, such as former brown coal fields and dry agricultural areas. However, research conducted on this species in such areas is limited. This paper aims to provide a basis for predicting tree woody biomass for black locust based on tree, competition, and site variables at 14 sites in northeast Germany that were previously utilized for mining or agriculture. The study areas, which are located in an area covering 320 km × 280 km, are characterized by a variety of climatic and soil conditions. Influential variables, including tree parameters, competition, and climatic parameters were considered. Allometric biomass models were employed. The findings show that the most important parameters are tree and competition variables. Different former land utilizations, such as mining or agriculture, as well as growth by cores or stumps, significantly influenced aboveground woody biomass production. The new biomass models developed as part of this study can be applied to calculate woody biomass production and carbon sequestration of Robinia pseudoacacia L. in short rotation coppices in previous mining and agricultural areas.

  9. Green Gasification Technology for Wet Biomass

    Directory of Open Access Journals (Sweden)

    W. H. Chong

    2010-12-01

    Full Text Available The world now is facing two energy related threats which are lack of sustainable, secure and affordable energy supplies and the environmental damage acquired in producing and consuming ever-increasing amount of energy. In the first decade of the twenty-first century, increasing energy prices reminds us that an affordable energy plays an important role in economic growth and human development. To overcome the abovementioned problem, we cannot continue much longer to consume finite reserves of fossil fuels, the use of which contributes to global warming. Preferably, the world should move towards more sustainable energy sources such as wind energy, solar energy and biomass. However, the abovementioned challenges may not be met solely by introduction of sustainable energy forms. We also need to use energy more efficiently. Developing and introducing more efficient energy conversion technologies is therefore important, for fossil fuels as well as renewable fuels. This assignment addresses the question how biomass may be used more efficiently and economically than it is being used today. Wider use of biomass, a clean and renewable feedstock may extend the lifetime of our fossil fuels resources and alleviate global warming problems. Another advantage of using of biomass as a source of energy is to make developed countries less interdependent on oil-exporting countries, and thereby reduce political tension. Furthermore, the economies of agricultural regions growing energy crops benefit as new jobs are created. Keywords: energy, gasification, sustainable, wet biomass

  10. Study on new biomass energy systems

    Science.gov (United States)

    1992-03-01

    A biomass energy total system is proposed, and its feasibility is studied. It is the system in which liquid fuel is produced from eucalyptuses planted in the desert area in Australia for production of biomass resource. Eucalyptus tree planting aims at a growth amount of 40 cu m/ha. per year and a practical application area of 45,000ha. CO2 fixation in the biomass plantation becomes 540,000 tons at a 12 ton/ha. rate. Assuming that 0.55 ton of liquid fuel is produced from 1 ton of biomass, a petrochemical plant having a production of 2.5 million bbl/year per unit (equivalent to the fuel used in the 100,000kW class power plant) is needed. Moreover, survey is made on practicality of diesel substitution fuel by esterification of palm oil, and a marked effect of reduction in soot/smoke and particulates in exhaust gas is confirmed. The biomass conversion process technology and the technology for afforestation at the arid land and irrigation are important as future subjects, and the technology development using a bench plant and a pilot plant is needed.

  11. Biomass pyrolysis for chemicals

    Energy Technology Data Exchange (ETDEWEB)

    De Wild, P.

    2011-07-15

    The problems associated with the use of fossil fuels demand a transition to renewable sources (sun, wind, water, geothermal, biomass) for materials and energy where biomass provides the only renewable source for chemicals. In a biorefinery, biomass is converted via different technologies into heat, power and various products. Here, pyrolysis (thermal degradation without added oxygen) of lignocellulosic biomass can play an important role, because it leads to an array of useful chemicals. Examples are furfural and acetic acid from hemicellulose, levoglucosan from cellulose and phenols and biochar from lignin. Since the three major biomass polymers hemicellulose, cellulose and lignin possess dissimilar thermal stabilities and reactivities, type and amount of degradation products are tunable by proper selection of the pyrolysis conditions. To determine if step-wise pyrolysis would be suitable for the production of chemicals, staged degasification of lignocellulosic biomass was studied. Due to limited yields, a hot pressurized water pre-treatment (aquathermolysis) followed by pyrolysis was subsequently developed as an improved version of a staged approach to produce furfural and levoglucosan from the carbohydrate fraction of the biomass. Lignin is the only renewable source for aromatic chemicals. Lignocellulosic biorefineries for bio-ethanol produce lignin as major by-product. The pyrolysis of side-streams into valuable chemicals is of prime importance for a profitable biorefinery. To determine the added-value of lignin side-streams other than their use as fuel for power, application research including techno-economic analysis is required. In this thesis, the pyrolytic valorisation of lignin into phenols and biochar was investigated and proven possible.

  12. Declination Calculator

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Declination is calculated using the current International Geomagnetic Reference Field (IGRF) model. Declination is calculated using the current World Magnetic Model...

  13. Interpretation of the vacancy-ordering controlled growth morphology of Hg5In2Te8 precipitates in Hg3In2Te6 single crystals by TEM observation and crystallographic calculation

    International Nuclear Information System (INIS)

    Sun, Jie; Fu, Li; Liu, Hongwei; Ringer, S.P.; Liu, Zongwen

    2015-01-01

    Graphical abstract: The growth morphology and detailed crystallography of Hg 5 In 2 Te 8 precipitates in Hg 3 In 2 Te 6 matrix to has been interpreted by means of transmission electron microscopy and invariant element deformation model. Three crystallographic equivalent variants of Hg 5 In 2 Te 8 precipitates in Hg 3 In 2 Te 6 matrix were found to have different growth directions and habit planes. Such growth morphology is fully attributed to the lattice shrinkage induced by vacancy ordering under high temperature in Hg 5 In 2 Te 8 . Through near coincident site lattice and invariant strain calculation, the morphology and crystallographic features of the precipitate has been successfully interpreted. - Highlights: • The growth morphology of Hg 5 In 2 Te 8 precipitates in Hg 3 In 2 Te 6 was observed by TEM. • Near-CSL calculation show 0.7577% lattice shrinkage of Hg 5 In 2 Te 8 at high temperature. • All the involved factors have inverse relationship with the move speed of interface. • The calculated crystallography features of Hg 5 In 2 Te 8 agree well with the TEM results. - Abstract: Generally, the crystal growth morphology in liquid or vapor was controlled by chemical potential, while that in solid solute was restricted by 3D strain matching between matrix and secondary phase. It is already known that the growth and evolution of the morphology of secondary phase during the solid phase transformation are highly determined by the variation of interface energy induced by lattice mismatch. In this work, the growth morphology and crystallography of Hg 5 In 2 Te 8 precipitates in Hg 3 In 2 Te 6 matrix were investigated by means of transmission electron microscopy (TEM). It was found that the growth of Hg 5 In 2 Te 8 precipitates displayed an unusual growth morphology which contain three crystallographically equivalent variants with different growth directions in Hg 3 In 2 Te 6 matrix, suggesting a slight lattice constant variation of Hg 5 In 2 Te 8 precipitate

  14. Biomass energy resource enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Grover, P D [Indian Institute of Technology, New Delhi (India)

    1995-12-01

    The demand for energy in developing countries is expected to increase to at least three times its present level within the next 25 years. If this demand is to be met by fossil fuels, an additional 2 billion tonnes of crude oil or 3 billion tonnes of coal would be needed every year. This consumption pattern, if allowed to proceed, would add 10 billion tonnes of CO{sub 2}, to the global atmosphere each year, with its attendant risk of global warming. Therefore, just for our survival, it is imperative to progressively replace fossil fuels by biomass energy resources and to enhance the efficiency of use of the latter. Biomass is not only environmentally benign but is also abundant. It is being photosynthesised at the rate of 200 billion tonnes of carbon every year, which is equivalent to 10 times the world`s present demand for energy. Presently, biomass energy resources are highly under-utilised in developing countries; when they are used it is through combustion, which is inefficient and causes widespread environmental pollution with its associated health hazards. Owing to the low bulk density and high moisture content of biomass, which make it difficult to collect, transport and store, as well as its ash-related thermochemical properties, its biodegradability and seasonal availability, the industrial use of biomass is limited to small and (some) medium-scale industries, most of which are unable to afford efficient but often costly energy conversion systems. Considering these constraints and the need to enhance the use base, biomass energy technologies appropriate to developing countries have been identified. Technologies such as briquetting and densification to upgrade biomass fuels are being adopted as conventional measures in some developing countries. The biomass energy base can be enhanced only once these technologies have been shown to be viable under local conditions and with local raw materials, after which they will multiply on their own, as has been the case

  15. Biomass energy resource enhancement

    International Nuclear Information System (INIS)

    Grover, P.D.

    1995-01-01

    The demand for energy in developing countries is expected to increase to at least three times its present level within the next 25 years. If this demand is to be met by fossil fuels, an additional 2 billion tonnes of crude oil or 3 billion tonnes of coal would be needed every year. This consumption pattern, if allowed to proceed, would add 10 billion tonnes of CO 2 , to the global atmosphere each year, with its attendant risk of global warming. Therefore, just for our survival, it is imperative to progressively replace fossil fuels by biomass energy resources and to enhance the efficiency of use of the latter. Biomass is not only environmentally benign but is also abundant. It is being photosynthesised at the rate of 200 billion tonnes of carbon every year, which is equivalent to 10 times the world's present demand for energy. Presently, biomass energy resources are highly under-utilised in developing countries; when they are used it is through combustion, which is inefficient and causes widespread environmental pollution with its associated health hazards. Owing to the low bulk density and high moisture content of biomass, which make it difficult to collect, transport and store, as well as its ash-related thermochemical properties, its biodegradability and seasonal availability, the industrial use of biomass is limited to small and (some) medium-scale industries, most of which are unable to afford efficient but often costly energy conversion systems. Considering these constraints and the need to enhance the use base, biomass energy technologies appropriate to developing countries have been identified. Technologies such as briquetting and densification to upgrade biomass fuels are being adopted as conventional measures in some developing countries. The biomass energy base can be enhanced only once these technologies have been shown to be viable under local conditions and with local raw materials, after which they will multiply on their own, as has been the case

  16. Lignocellulosic Biomass Pretreatment Using AFEX

    Science.gov (United States)

    Balan, Venkatesh; Bals, Bryan; Chundawat, Shishir P. S.; Marshall, Derek; Dale, Bruce E.

    Although cellulose is the most abundant organic molecule, its susceptibility to hydrolysis is restricted due to the rigid lignin and hemicellulose protection surrounding the cellulose micro fibrils. Therefore, an effective pretreatment is necessary to liberate the cellulose from the lignin-hemicellulose seal and also reduce cellulosic crystallinity. Some of the available pretreatment techniques include acid hydrolysis, steam explosion, ammonia fiber expansion (AFEX), alkaline wet oxidation, and hot water pretreatment. Besides reducing lignocellulosic recalcitrance, an ideal pretreatment must also minimize formation of degradation products that inhibit subsequent hydrolysis and fermentation. AFEX is an important pretreatment technology that utilizes both physical (high temperature and pressure) and chemical (ammonia) processes to achieve effective pretreatment. Besides increasing the surface accessibility for hydrolysis, AFEX promotes cellulose decrystallization and partial hemicellulose depolymerization and reduces the lignin recalcitrance in the treated biomass. Theoretical glucose yield upon optimal enzymatic hydrolysis on AFEX-treated corn stover is approximately 98%. Furthermore, AFEX offers several unique advantages over other pretreatments, which include near complete recovery of the pretreatment chemical (ammonia), nutrient addition for microbial growth through the remaining ammonia on pretreated biomass, and not requiring a washing step during the process which facilitates high solid loading hydrolysis. This chapter provides a detailed practical procedure to perform AFEX, design the reactor, determine the mass balances, and conduct the process safely.

  17. Seaweed and Biomass production

    Science.gov (United States)

    Nadiradze, K. T.

    2016-02-01

    The Black Sea has a sensitive ecosystem, vulnerable to the potential impacts by climate, water quality, pollution and etc. Successfully restoring and sustaining healthy Black Sea aqua cultural farming will require concreted action by private sector, civil society, farmer organizations and other stakeholders. But to achieve agri-environmental goals at scale, well-organized policy goals, framework and strategy for Sea Agriculture Green energy, Algae Biomass, Sapropel Production, aquacultures farming are essential for Georgian Farmers. But we must recognizes the most sustainable and at least risky farming systems will be those that build in aqua cultural, environmental, and social management practices resilient to climate ch ange and other risks and shocks evident in Georgia and whole in a Black Sea Basin Countries. Black Sea has more than 600 kinds of seaweeds; these species contain biologically active substances also present in fish - vitamins and omega fatty acids. The task is to specify how Black Sea seaweeds can be used in preparing nutrition additives, medicines and cosmetic products. As elsewhere around the world, governments, civil society, and the private sector in Georgia should work together to develop and implement `Blue Economy' and Green Growth strategies to generate equitable, sustainable economic development through strengthening Sea Agriculture. We are very interested to develop Black Sea seaweed plantation ad farming for multiply purposes fo r livestock as food additives, for human as great natural source of iodine as much iodine are released by seaweeds into the atmosphere to facilitate the development of better models or aerosol formation and atmospheric chemistry. It is well known, that earth's oceans are thought to have absorbed about one quarter of the CO2 humans pumped into the atmosphere over the past 20 years. The flip side of this process is that, as they absorb co2, oceans also become more acidic with dramatic consequences for sea life

  18. Solid biomass barometer 2011

    International Nuclear Information System (INIS)

    2012-01-01

    The winter of 2011 was exceptionally mild, even in Northern Europe, with unusually warm temperatures. As a result the demand for firewood and solid biomass fuel was low. The European Union's primary energy production from solid biomass contracted by 2.9% slipping to 78.8 Mtoe. The first 4 countries are Germany (11.690 Mtoe), France (9.223 Mtoe), Sweden (8.165 Mtoe) and Finland (7.476 Mtoe) and when the production is relative to the population the first 4 countries become: Finland (1.391 toe/inhab.), Sweden (0.867 toe/inhab.), Latvia (0.784 toe/inhab.) and Estonia (0.644 toe/inhab.). Solid biomass electricity production continued to grow, driven by the additional take-up of biomass co-firing, to reach 72.800 TWh at the end of 2011, it means +2.6% compared to 2010. The energy policy of various states concerning solid biomass is analyzed

  19. Burning of biomass waste

    International Nuclear Information System (INIS)

    Holm Christensen, B.; Evald, A.; Buelow, K.

    1997-01-01

    The amounts of waste wood from the Danish wood processing industry available for the energy market has been made. Furthermore a statement of residues based on biomass, including waste wood, used in 84 plants has been made. The 84 plants represent a large part of the group of purchasers of biomass. A list of biomass fuel types being used or being potential fuels in the future has been made. Conditions in design of plants of importance for the environmental impact and possibility of changing between different biomass fuels are illustrated through interview of the 84 plants. Emissions from firing with different types of residues based on biomass are illustrated by means of different investigations described in the literature of the composition of fuels, of measured emissions from small scale plants and full scale plants, and of mass balance investigations where all incoming and outgoing streams are analysed. An estimate of emissions from chosen fuels from the list of types of fuels is given. Of these fuels can be mentioned residues from particle board production with respectively 9% and 1% glue, wood pellets containing binding material with sulphur and residues from olive production. (LN)

  20. Root biomass, turnover and net primary productivity of a coffee agroforestry system in Costa Rica: effects of soil depth, shade trees, distance to row and coffee age.

    Science.gov (United States)

    Defrenet, Elsa; Roupsard, Olivier; Van den Meersche, Karel; Charbonnier, Fabien; Pastor Pérez-Molina, Junior; Khac, Emmanuelle; Prieto, Iván; Stokes, Alexia; Roumet, Catherine; Rapidel, Bruno; de Melo Virginio Filho, Elias; Vargas, Victor J; Robelo, Diego; Barquero, Alejandra; Jourdan, Christophe

    2016-08-21

    In Costa Rica, coffee (Coffea arabica) plants are often grown in agroforests. However, it is not known if shade-inducing trees reduce coffee plant biomass through root competition, and hence alter overall net primary productivity (NPP). We estimated biomass and NPP at the stand level, taking into account deep roots and the position of plants with regard to trees. Stem growth and root biomass, turnover and decomposition were measured in mixed coffee/tree (Erythrina poeppigiana) plantations. Growth ring width and number at the stem base were estimated along with stem basal area on a range of plant sizes. Root biomass and fine root density were measured in trenches to a depth of 4 m. To take into account the below-ground heterogeneity of the agroforestry system, fine root turnover was measured by sequential soil coring (to a depth of 30 cm) over 1 year and at different locations (in full sun or under trees and in rows/inter-rows). Allometric relationships were used to calculate NPP of perennial components, which was then scaled up to the stand level. Annual ring width at the stem base increased up to 2·5 mm yr -1 with plant age (over a 44-year period). Nearly all (92 %) coffee root biomass was located in the top 1·5 m, and only 8 % from 1·5 m to a depth of 4 m. Perennial woody root biomass was 16 t ha -1 and NPP of perennial roots was 1·3 t ha -1 yr -1 Fine root biomass (0-30 cm) was two-fold higher in the row compared with between rows. Fine root biomass was 2·29 t ha -1 (12 % of total root biomass) and NPP of fine roots was 2·96 t ha -1 yr -1 (69 % of total root NPP). Fine root turnover was 1·3 yr -1 and lifespan was 0·8 years. Coffee root systems comprised 49 % of the total plant biomass; such a high ratio is possibly a consequence of shoot pruning. There was no significant effect of trees on coffee fine root biomass, suggesting that coffee root systems are very competitive in the topsoil. © The Author 2016. Published by Oxford University Press on

  1. Biomass ash utilization

    Energy Technology Data Exchange (ETDEWEB)

    Bristol, D.R.; Noel, D.J.; O`Brien, B. [HYDRA-CO Operations, Inc., Syracuse, NY (United States); Parker, B. [US Energy Corp., Fort Fairfield, ME (United States)

    1993-12-31

    This paper demonstrates that with careful analysis of ash from multiple biomass and waste wood fired power plants that most of the ash can serve a useful purpose. Some applications require higher levels of consistency than others. Examples of ash spreading for agricultural purposes as a lime supplement for soil enhancement in Maine and North Carolina, as well as a roadbase material in Maine are discussed. Use of ash as a horticultural additive is explored, as well as in composting as a filtering media and as cover material for landfills. The ash utilization is evaluated in a framework of environmental responsibility, regulations, handling and cost. Depending on the chemical and physical properties of the biomass derived fly ash and bottom ash, it can be used in one or more applications. Developing a program that utilizes ash produced in biomass facilities is environmentally and socially sound and can be financially attractive.

  2. Biomass Deconstruction and Recalcitrance

    DEFF Research Database (Denmark)

    Zhang, Heng

    This thesis is about the use of an agricultural residue as a feedstock for fermentable sugars to be used for second generation (2G) bioethanol. The main focus of this thesis work is upon the recalcitrance of different anatomical fractions of wheat straw. Biomass recalcitrance is a collective...... of lignocellulosic biomass’ degradability, a high throughput screening (HTS) platform was developed for combined thermochemical pretreatment and enzymatic degradation in Copenhagen laboratory during this thesis work. The platform integrates an automatized biomass grinding and dispensing system, a pressurized heating...... system, a plate incubator and a high performance liquid chromatography (HPLC) system. In comparison with the reported HTS platforms, the Copenhagen platform is featured by the fully automatic biomass sample preparation system, the bench-scale hydrothermal pretreatment setup, and precise sugar measurement...

  3. Biomass co-firing

    DEFF Research Database (Denmark)

    Yin, Chungen

    2013-01-01

    Co-firing biomass with fossil fuels in existing power plants is an attractive option for significantly increasing renewable energy resource utilization and reducing CO2 emissions. This chapter mainly discusses three direct co-firing technologies: pulverized-fuel (PF) boilers, fluidized-bed combus......Co-firing biomass with fossil fuels in existing power plants is an attractive option for significantly increasing renewable energy resource utilization and reducing CO2 emissions. This chapter mainly discusses three direct co-firing technologies: pulverized-fuel (PF) boilers, fluidized......-bed combustion (FBC) systems, and grate-firing systems, which are employed in about 50%, 40% and 10% of all the co-firing plants, respectively. Their basic principles, process technologies, advantages, and limitations are presented, followed by a brief comparison of these technologies when applied to biomass co...

  4. YEAR 2 BIOMASS UTILIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Christopher J. Zygarlicke

    2004-11-01

    This Energy & Environmental Research Center (EERC) Year 2 Biomass Utilization Final Technical Report summarizes multiple projects in biopower or bioenergy, transportation biofuels, and bioproducts. A prototype of a novel advanced power system, termed the high-temperature air furnace (HITAF), was tested for performance while converting biomass and coal blends to energy. Three biomass fuels--wood residue or hog fuel, corn stover, and switchgrass--and Wyoming subbituminous coal were acquired for combustion tests in the 3-million-Btu/hr system. Blend levels were 20% biomass--80% coal on a heat basis. Hog fuel was prepared for the upcoming combustion test by air-drying and processing through a hammer mill and screen. A K-Tron biomass feeder capable of operating in both gravimetric and volumetric modes was selected as the HITAF feed system. Two oxide dispersion-strengthened (ODS) alloys that would be used in the HITAF high-temperature heat exchanger were tested for slag corrosion rates. An alumina layer formed on one particular alloy, which was more corrosion-resistant than a chromia layer that formed on the other alloy. Research activities were completed in the development of an atmospheric pressure, fluidized-bed pyrolysis-type system called the controlled spontaneous reactor (CSR), which is used to process and condition biomass. Tree trimmings were physically and chemically altered by the CSR process, resulting in a fuel that was very suitable for feeding into a coal combustion or gasification system with little or no feed system modifications required. Experimental procedures were successful for producing hydrogen from biomass using the bacteria Thermotoga, a deep-ocean thermal vent organism. Analytical procedures for hydrogen were evaluated, a gas chromatography (GC) method was derived for measuring hydrogen yields, and adaptation culturing and protocols for mutagenesis were initiated to better develop strains that can use biomass cellulose. Fly ash derived from

  5. Northeast Regional Biomass Program

    Energy Technology Data Exchange (ETDEWEB)

    O' Connell, R.A.

    1991-11-01

    The management structure and program objectives for the Northeast Regional Biomass Program (NRBP) remain unchanged from previous years. Additional funding was provided by the Bonneville Power Administration Regional Biomass Program to continue the publication of articles in the Biologue. The Western Area Power Administration and the Council of Great Lakes Governors funded the project Characterization of Emissions from Burning Woodwaste''. A grant for the ninth year was received from DOE. The Northeast Regional Biomass Steering Committee selected the following four projects for funding for the next fiscal year. (1) Wood Waste Utilization Conference, (2) Performance Evaluation of Wood Systems in Commercial Facilities, (3) Wood Energy Market Utilization Training, (4) Update of the Facility Directory.

  6. Northeast Regional Biomass Program

    International Nuclear Information System (INIS)

    O'Connell, R.A.

    1991-11-01

    The management structure and program objectives for the Northeast Regional Biomass Program (NRBP) remain unchanged from previous years. Additional funding was provided by the Bonneville Power Administration Regional Biomass Program to continue the publication of articles in the Biologue. The Western Area Power Administration and the Council of Great Lakes Governors funded the project ''Characterization of Emissions from Burning Woodwaste''. A grant for the ninth year was received from DOE. The Northeast Regional Biomass Steering Committee selected the following four projects for funding for the next fiscal year. (1) Wood Waste Utilization Conference, (2) Performance Evaluation of Wood Systems in Commercial Facilities, (3) Wood Energy Market Utilization Training, (4) Update of the Facility Directory

  7. Aerosols from biomass combustion

    Energy Technology Data Exchange (ETDEWEB)

    Nussbaumer, T.

    2001-07-01

    This report is the proceedings of a seminar on biomass combustion and aerosol production organised jointly by the International Energy Agency's (IEA) Task 32 on bio energy and the Swiss Federal Office of Energy (SFOE). This collection of 16 papers discusses the production of aerosols and fine particles by the burning of biomass and their effects. Expert knowledge on the environmental impact of aerosols, formation mechanisms, measurement technologies, methods of analysis and measures to be taken to reduce such emissions is presented. The seminar, visited by 50 participants from 11 countries, shows, according to the authors, that the reduction of aerosol emissions resulting from biomass combustion will remain a challenge for the future.

  8. Demographic controls of aboveground forest biomass across North America.

    Science.gov (United States)

    Vanderwel, Mark C; Zeng, Hongcheng; Caspersen, John P; Kunstler, Georges; Lichstein, Jeremy W

    2016-04-01

    Ecologists have limited understanding of how geographic variation in forest biomass arises from differences in growth and mortality at continental to global scales. Using forest inventories from across North America, we partitioned continental-scale variation in biomass growth and mortality rates of 49 tree species groups into (1) species-independent spatial effects and (2) inherent differences in demographic performance among species. Spatial factors that were separable from species composition explained 83% and 51% of the respective variation in growth and mortality. Moderate additional variation in mortality (26%) was attributable to differences in species composition. Age-dependent biomass models showed that variation in forest biomass can be explained primarily by spatial gradients in growth that were unrelated to species composition. Species-dependent patterns of mortality explained additional variation in biomass, with forests supporting less biomass when dominated by species that are highly susceptible to competition (e.g. Populus spp.) or to biotic disturbances (e.g. Abies balsamea). © 2016 John Wiley & Sons Ltd/CNRS.

  9. Remote Characterization of Biomass Measurements: Case Study of Mangrove Forests

    Science.gov (United States)

    Fatoyinbo, Temilola E.

    2010-01-01

    Accurately quantifying forest biomass is of crucial importance for climate change studies. By quantifying the amount of above and below ground biomass and consequently carbon stored in forest ecosystems, we are able to derive estimates of carbon sequestration, emission and storage and help close the carbon budget. Mangrove forests, in addition to providing habitat and nursery grounds for over 1300 animal species, are also an important sink of biomass. Although they only constitute about 3% of the total forested area globally, their carbon storage capacity -- in forested biomass and soil carbon -- is greater than that of tropical forests (Lucas et al, 2007). In addition, the amount of mangrove carbon -- in the form of litter and leaves exported into offshore areas is immense, resulting in over 10% of the ocean's dissolved organic carbon originating from mangroves (Dittmar et al, 2006) The measurement of forest above ground biomass is carried out on two major scales: on the plot scale, biomass can be measured using field measurements through allometric equation derivation and measurements of forest plots. On the larger scale, the field data are used to calibrate remotely sensed data to obtain stand-wide or even regional estimates of biomass. Currently, biomass can be calculated using average stand biomass values and optical data, such as aerial photography or satellite images (Landsat, Modis, Ikonos, SPOT, etc.). More recent studies have concentrated on deriving forest biomass values using radar (JERS, SIR-C, SRTM, Airsar) and/or lidar (ICEsat/GLAS, LVIS) active remote sensing to retrieve more accurate and detailed measurements of forest biomass. The implementation of a generation of new active sensors (UAVSar, DesdynI, Alos/Palsar, TerraX) has prompted the development of new tecm'liques of biomass estimation that use the combination of multiple sensors and datasets, to quantify past, current and future biomass stocks. Focusing on mangrove forest biomass estimation

  10. Biomass co-firing for Delta Electricity

    International Nuclear Information System (INIS)

    Anon

    2014-01-01

    Electricity generator Delta Electricity has implemented a biomass co-firing program at its Vales Point power station on the Central Coast to reduce its reliance on coal and emissions of CO 2 . The program comprises two parts: direct co-firing with coal of up to 5% biomass; and development of Continuous Biomass Converter (CBC) technology with the Crucible Group to remove technology constraints and enable much higher rates of biomass co-firing. It is talking industrial scale tests. Delta increased biomass co-firing in 2013/14 to 32,000 tonnes, up from just 3,000 tonnes the previous year, and conducted biochar co-firing trials at a rate equivalent to 400,000 tonnes per annum to demonstrate the potential of CBC technology. It reduced CO 2 emissions in 2013/14 by more than 32,000 tonnes. 'Legislation and regulations define biomass as renewable,' said Delta Electricity sustainability manager Justin Flood. 'By preferring biomass over coal, the carbon in the coal is not burnt and remains locked up.' One biomass source is wood waste that would normally go to landfill, but the primary driver of Delta's recent increase in co-firing is sawmill residues. 'Previously there was a higher value market for the residues for paper pulp. However, when that market evaporated the timber industry was left with a sizable problem in terms of what to do with its residues and the loss of revenue,' said Flood. The way greenhouse gas accounting is conducted in Australia, with carbon emissions based on site activities, makes it difficult to undertake a life cycle assessment of the program. 'However, some of the international studies looking at this issue have concluded that the net carbon emissions of the biomass system are significantly lower than the coal system because of the uptake of carbon during biomass growth,' said Flood. Delta identified two challenges, sourcing the feedstock and that biomass conversion to electricity is slightly less

  11. The weight of nations: an estimation of adult human biomass

    Directory of Open Access Journals (Sweden)

    Walpole Sarah

    2012-06-01

    Full Text Available Abstract Background The energy requirement of species at each trophic level in an ecological pyramid is a function of the number of organisms and their average mass. Regarding human populations, although considerable attention is given to estimating the number of people, much less is given to estimating average mass, despite evidence that average body mass is increasing. We estimate global human biomass, its distribution by region and the proportion of biomass due to overweight and obesity. Methods For each country we used data on body mass index (BMI and height distribution to estimate average adult body mass. We calculated total biomass as the product of population size and average body mass. We estimated the percentage of the population that is overweight (BMI > 25 and obese (BMI > 30 and the biomass due to overweight and obesity. Results In 2005, global adult human biomass was approximately 287 million tonnes, of which 15 million tonnes were due to overweight (BMI > 25, a mass equivalent to that of 242 million people of average body mass (5% of global human biomass. Biomass due to obesity was 3.5 million tonnes, the mass equivalent of 56 million people of average body mass (1.2% of human biomass. North America has 6% of the world population but 34% of biomass due to obesity. Asia has 61% of the world population but 13% of biomass due to obesity. One tonne of human biomass corresponds to approximately 12 adults in North America and 17 adults in Asia. If all countries had the BMI distribution of the USA, the increase in human biomass of 58 million tonnes would be equivalent in mass to an extra 935 million people of average body mass, and have energy requirements equivalent to that of 473 million adults. Conclusions Increasing population fatness could have the same implications for world food energy demands as an extra half a billion people living on the earth.

  12. Biomass living energy

    International Nuclear Information System (INIS)

    2005-01-01

    Any energy source originating from organic matter is biomass, which even today is the basic source of energy for more than a quarter of humanity. Best known for its combustible properties, biomass is also used to produce biofuels. This information sheet provides also information on the electricity storage from micro-condensers to hydroelectric dams, how to save energy facing the increasing of oil prices and supply uncertainties, the renewable energies initiatives of Cork (Ireland) and the Switzerland european energy hub. (A.L.B.)

  13. Biomass stoves in dwellings

    DEFF Research Database (Denmark)

    Luis Teles de Carvalho, Ricardo

    and analyzed in this session. Experimental results regarding the performance of biomass combustion stoves and the effects of real-life practices in terms of thermal efficiency, particulate and gaseous emissions will be addressed. This research is based on the development of a new testing approach that combines...... laboratory and field measurements established in the context of the implications of the upcoming eco-design directive. The communication will cover technical aspects concerning the operating performance of different types of biomass stoves and building envelopes, in order to map the ongoing opportunities...

  14. Method for pretreating lignocellulosic biomass

    Science.gov (United States)

    Kuzhiyil, Najeeb M.; Brown, Robert C.; Dalluge, Dustin Lee

    2015-08-18

    The present invention relates to a method for pretreating lignocellulosic biomass containing alkali and/or alkaline earth metal (AAEM). The method comprises providing a lignocellulosic biomass containing AAEM; determining the amount of the AAEM present in the lignocellulosic biomass; identifying, based on said determining, the amount of a mineral acid sufficient to completely convert the AAEM in the lignocellulosic biomass to thermally-stable, catalytically-inert salts; and treating the lignocellulosic biomass with the identified amount of the mineral acid, wherein the treated lignocellulosic biomass contains thermally-stable, catalytically inert AAEM salts.

  15. Alcohol Fermentation and Biomass formation from xylose, glucose ...

    African Journals Online (AJOL)

    Cerevisiae (LB-7) was the slowest in growth and utilization of xylose into biomass (economic conversion coefficient of 0.03), while K3 showed fastest utilization of xylose (coefficient 0.76). For the production of ethanol, the fastest growth and assimilation of glucose was recorded by Pa. tannophilus (P1) (coefficient 0.56) ...

  16. Influence of crude glycerol on the biomass and lipid content of microalgae

    International Nuclear Information System (INIS)

    Choi, Hee-Jeong; Yu, Sung-Whan

    2015-01-01

    The growth of the algae Chlorella vulgaris, Botryococcus braunii and Scenedesmus sp. under mixotrophic conditions in the presence of different concentrations of crude glycerol was evaluated with the objective of increasing the biomass growth and algal oil content. A high biomass concentration was characteristic of these strains when grown on crude glycerol compared to autotrophic growth, and 5 g/L glycerol yielded the highest biomass concentration for these strains. Mixotrophic conditions improved both the growth of the microalgae and the accumulation of triacylglycerols (TAGs). The maximum amount of TAGs in the algae biomass was obtained in the 5 g/L glycerol growth medium. The fatty acid profiles of the oil for the cultures met the necessary requirements and the strains are promising resources for biofuel production. Keywords: biomass; glycerol; microalgae; mixotrophic; oil content

  17. Using straw hydrolysate to cultivate Chlorella pyrenoidosa for high-value biomass production and the nitrogen regulation for biomass composition.

    Science.gov (United States)

    Zhang, Tian-Yuan; Wang, Xiao-Xiong; Wu, Yin-Hu; Wang, Jing-Han; Deantes-Espinosa, Victor M; Zhuang, Lin-Lan; Hu, Hong-Ying; Wu, Guang-Xue

    2017-11-01

    Heterotrophic cultivation of Chlorella pyrenoidosa based on straw substrate was proposed as a promising approach in this research. The straw pre-treated by ammonium sulfite method was enzymatically hydrolyzed for medium preparation. The highest intrinsic growth rate of C. pyrenoidosa reached to 0.097h -1 in hydrolysate medium, which was quicker than that in glucose medium. Rising nitrogen concentration could significantly increase protein content and decrease lipid content in biomass, meanwhile fatty acids composition kept stable. The highest protein and lipid content in microalgal biomass reached to 62% and 32% under nitrogen excessive and deficient conditions, respectively. Over 40% of amino acids and fatty acids in biomass belonged to essential amino acids (EAA) and essential fatty acids (EFA), which were qualified for high-value uses. This research revealed the rapid biomass accumulation property of C. pyrenoidosa in straw hydrolysate medium and the effectiveness of nitrogen regulation to biomass composition at heterotrophic condition. Copyright © 2017. Published by Elsevier Ltd.

  18. Biomass Conversion Factsheet

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-06-05

    To efficiently convert algae, diverse types of cellulosic biomass, and emerging feedstocks into renewable fuels, the U.S. Department of Energy (DOE) supports research, development, and demonstration of technologies. This research will help ensure that these renewable fuels are compatible with today’s vehicles and infrastructure.

  19. Energy from aquatic biomass

    International Nuclear Information System (INIS)

    Aresta, M.; Dibenedetto, A.

    2009-01-01

    Aquatic biomass is considered as a second (or third) generation option for the production of bio fuels. The best utilization for energy purposes is not its direct combustion. Several technologies are available for the extraction of compounds that may find application for the production of gaseous fuels (biogas, dihydrogen) or liquid fuels (ethanol, bio oil, biodiesel). [it

  20. Activated carbon from biomass

    Science.gov (United States)

    Manocha, S.; Manocha, L. M.; Joshi, Parth; Patel, Bhavesh; Dangi, Gaurav; Verma, Narendra

    2013-06-01

    Activated carbon are unique and versatile adsorbents having extended surface area, micro porous structure, universal adsorption effect, high adsorption capacity and high degree of surface reactivity. Activated carbons are synthesized from variety of materials. Most commonly used on a commercial scale are cellulosic based precursors such as peat, coal, lignite wood and coconut shell. Variation occurs in precursors in terms of structure and carbon content. Coir having very low bulk density and porous structure is found to be one of the valuable raw materials for the production of highly porous activated carbon and other important factor is its high carbon content. Exploration of good low cost and non conventional adsorbent may contribute to the sustainability of the environment and offer promising benefits for the commercial purpose in future. Carbonization of biomass was carried out in a horizontal muffle furnace. Both carbonization and activation were performed in inert nitrogen atmosphere in one step to enhance the surface area and to develop interconnecting porosity. The types of biomass as well as the activation conditions determine the properties and the yield of activated carbon. Activated carbon produced from biomass is cost effective as it is easily available as a waste biomass. Activated carbon produced by combination of chemical and physical activation has higher surface area of 2442 m2/gm compared to that produced by physical activation (1365 m2/gm).

  1. Pyrolysis of chitin biomass

    DEFF Research Database (Denmark)

    Qiao, Yan; Chen, Shuai; Liu, Ying

    2015-01-01

    The thermal degradation of chitin biomass with various molecular structures was investigated by thermogravimetric analysis (TG), and the gaseous products were analyzed by connected mass spectroscopy (MS). The chemical structure and morphology of char residues collected at 750°C using the model...

  2. The UK biomass industry

    International Nuclear Information System (INIS)

    Billins, P.

    1998-01-01

    A brief review is given of the development of the biomass industry in the UK. Topics covered include poultry litter generation of electricity, gasification plants fuelled by short-rotation coppice, on-farm anaerobic digestion and specialized combustion systems, e.g. straw, wood and other agricultural wastes. (UK)

  3. Forest Biomass Mapping From Lidar and Radar Synergies

    Science.gov (United States)

    Sun, Guoqing; Ranson, K. Jon; Guo, Z.; Zhang, Z.; Montesano, P.; Kimes, D.

    2011-01-01

    The use of lidar and radar instruments to measure forest structure attributes such as height and biomass at global scales is being considered for a future Earth Observation satellite mission, DESDynI (Deformation, Ecosystem Structure, and Dynamics of Ice). Large footprint lidar makes a direct measurement of the heights of scatterers in the illuminated footprint and can yield accurate information about the vertical profile of the canopy within lidar footprint samples. Synthetic Aperture Radar (SAR) is known to sense the canopy volume, especially at longer wavelengths and provides image data. Methods for biomass mapping by a combination of lidar sampling and radar mapping need to be developed. In this study, several issues in this respect were investigated using aircraft borne lidar and SAR data in Howland, Maine, USA. The stepwise regression selected the height indices rh50 and rh75 of the Laser Vegetation Imaging Sensor (LVIS) data for predicting field measured biomass with a R(exp 2) of 0.71 and RMSE of 31.33 Mg/ha. The above-ground biomass map generated from this regression model was considered to represent the true biomass of the area and used as a reference map since no better biomass map exists for the area. Random samples were taken from the biomass map and the correlation between the sampled biomass and co-located SAR signature was studied. The best models were used to extend the biomass from lidar samples into all forested areas in the study area, which mimics a procedure that could be used for the future DESDYnI Mission. It was found that depending on the data types used (quad-pol or dual-pol) the SAR data can predict the lidar biomass samples with R2 of 0.63-0.71, RMSE of 32.0-28.2 Mg/ha up to biomass levels of 200-250 Mg/ha. The mean biomass of the study area calculated from the biomass maps generated by lidar- SAR synergy 63 was within 10% of the reference biomass map derived from LVIS data. The results from this study are preliminary, but do show the

  4. Catalytic Gasification of Lignocellulosic Biomass

    NARCIS (Netherlands)

    Chodimella, Pramod; Seshan, Kulathuiyer; Schlaf, Marcel; Zhang, Z. Conrad

    2015-01-01

    Gasification of lignocellulosic biomass has attracted substantial current research interest. Various possible routes to convert biomass to fuels have been explored. In the present chapter, an overview of the gasification processes and their possible products are discussed. Gasification of solid

  5. Biomass Feedstock National User Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Bioenergy research at the Biomass Feedstock National User Facility (BFNUF) is focused on creating commodity-scale feed-stocks from native biomass that meet the needs...

  6. Entrained Flow Gasification of Biomass

    DEFF Research Database (Denmark)

    Qin, Ke

    The present Ph. D. thesis describes experimental and modeling investigations on entrained flow gasification of biomass and an experimental investigation on entrained flow cogasification of biomass and coal. A review of the current knowledge of biomass entrained flow gasification is presented....... Biomass gasification experiments were performed in a laboratory-scale atmospheric pressure entrained flow reactor with the aim to investigate the effects of operating parameters and biomass types on syngas products. A wide range of operating parameters was involved: reactor temperature, steam/carbon ratio......, excess air ratio, oxygen concentration, feeder gas flow, and residence time. Wood, straw, and lignin were used as biomass fuels. In general, the carbon conversion was higher than 90 % in the biomass gasification experiments conducted at high temperatures (> 1200 °C). The biomass carbon...

  7. Enzymes for improved biomass conversion

    Science.gov (United States)

    Brunecky, Roman; Himmel, Michael E.

    2016-02-02

    Disclosed herein are enzymes and combinations of the enzymes useful for the hydrolysis of cellulose and the conversion of biomass. Methods of degrading cellulose and biomass using enzymes and cocktails of enzymes are also disclosed.

  8. Biomass from the Brazilian raining forest; Biomassa das florestas amazonicas brasileiras

    Energy Technology Data Exchange (ETDEWEB)

    Fearnside, Philip M [Instituto Nacional de Pesquisas da Amazonia (INPA), Manaus, AM (Brazil)

    1994-12-31

    This work summarizes the existing knowledge about biomass in the Brazilian area of the Amazon jungle and presents a calculation for the average total biomass in virgin forests. The results are presented. The results are higher than those presently accepted. The reasons for the discrepancy in the calculated and presently used value are presented and discussed 64 refs., 8 tabs.

  9. Aspects of using biomass as energy source for power generation

    Directory of Open Access Journals (Sweden)

    Tîrtea Raluca-Nicoleta

    2017-07-01

    Full Text Available Biomass represents an important source of renewable energy in Romania with about 64% of the whole available green energy. Being a priority for the energy sector worldwide, in our country the development stage is poor compared to solar and wind energy. Biomass power plants offer great horizontal economy development, local and regional economic growth with benefic effects on life standard. The paper presents an analysis on biomass to power conversion solutions compared to fossil fuels using two main processes: combustion and gasification. Beside the heating value, which can be considerably higher for fossil fuels compared to biomass, a big difference between fossil fuels and biomass can be observed in the sulphur content. While the biomass sulphur content is between 0 and approximately 1%, the sulphur content of coal can reach 4%. Using coal in power plants requires important investments in installations of flue gas desulfurization. If limestone is used to reduce SO2 emissions, then additional carbon dioxide moles will be released during the production of CaO from CaCO3. Therefore, fossil fuels not only release a high amount of carbon dioxide through burning, but also through the caption of sulphur dioxide, while biomass is considered CO2 neutral. Biomass is in most of the cases represented by residues, so it is a free fuel compared to fossil fuels. The same power plant can be used even if biomass or fossil fuels is used as a feedstock with small differences. The biomass plant could need a drying system due to high moisture content of the biomass, while the coal plant will need a desulfurization installation of flue gas and additional money will be spent with fuel purchasing.

  10. Carbon Fiber from Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Milbrandt, Anelia [Clean Energy Manufacturing Analysis Center, Godlen, CO (United States); Booth, Samuel [Clean Energy Manufacturing Analysis Center, Godlen, CO (United States)

    2016-09-01

    Carbon fiber (CF), known also as graphite fiber, is a lightweight, strong, and flexible material used in both structural (load-bearing) and non-structural applications (e.g., thermal insulation). The high cost of precursors (the starting material used to make CF, which comes predominately from fossil sources) and manufacturing have kept CF a niche market with applications limited mostly to high-performance structural materials (e.g., aerospace). Alternative precursors to reduce CF cost and dependence on fossil sources have been investigated over the years, including biomass-derived precursors such as rayon, lignin, glycerol, and lignocellulosic sugars. The purpose of this study is to provide a comprehensive overview of CF precursors from biomass and their market potential. We examine the potential CF production from these precursors, the state of technology and applications, and the production cost (when data are available). We discuss their advantages and limitations. We also discuss the physical properties of biomass-based CF, and we compare them to those of polyacrylonitrile (PAN)-based CF. We also discuss manufacturing and end-product considerations for bio-based CF, as well as considerations for plant siting and biomass feedstock logistics, feedstock competition, and risk mitigation strategies. The main contribution of this study is that it provides detailed technical and market information about each bio-based CF precursor in one document while other studies focus on one precursor at a time or a particular topic (e.g., processing). Thus, this publication allows for a comprehensive view of the CF potential from all biomass sources and serves as a reference for both novice and experienced professionals interested in CF production from alternative sources.

  11. Validating Community-Led Forest Biomass Assessments.

    Science.gov (United States)

    Venter, Michelle; Venter, Oscar; Edwards, Will; Bird, Michael I

    2015-01-01

    The lack of capacity to monitor forest carbon stocks in developing countries is undermining global efforts to reduce carbon emissions. Involving local people in monitoring forest carbon stocks could potentially address this capacity gap. This study conducts a complete expert remeasurement of community-led biomass inventories in remote tropical forests of Papua New Guinea. By fully remeasuring and isolating the effects of 4,481 field measurements, we demonstrate that programmes employing local people (non-experts) can produce forest monitoring data as reliable as those produced by scientists (experts). Overall, non-experts reported lower biomass estimates by an average of 9.1%, equivalent to 55.2 fewer tonnes of biomass ha(-1), which could have important financial implications for communities. However, there were no significant differences between forest biomass estimates of expert and non-expert, nor were there significant differences in some of the components used to calculate these estimates, such as tree diameter at breast height (DBH), tree counts and plot surface area, but were significant differences between tree heights. At the landscape level, the greatest biomass discrepancies resulted from height measurements (41%) and, unexpectedly, a few large missing trees contributing to a third of the overall discrepancies. We show that 85% of the biomass discrepancies at the tree level were caused by measurement taken on large trees (DBH ≥50 cm), even though they consisted of only 14% of the stems. We demonstrate that programmes that engage local people can provide high-quality forest carbon data that could help overcome barriers to reducing forest carbon emissions in developing countries. Nonetheless, community-based monitoring programmes should prioritise reducing errors in the field that lead to the most important discrepancies, notably; overcoming challenges to accurately measure large trees.

  12. Research and evaluation of biomass resources/conversion/utilization systems. Biomass allocation model. Volume 1: Test and appendices A & B

    Science.gov (United States)

    Stringer, R. P.; Ahn, Y. K.; Chen, H. T.; Helm, R. W.; Nelson, E. T.; Shields, K. J.

    1981-08-01

    A biomass allocation model was developed to show the most profitable combination of biomass feedstocks, thermochemical conversion processes, and fuel products to serve the seasonal conditions in a regional market. This optimization model provides a tool for quickly calculating which of a large number of potential biomass missions is the most profitable mission. Other components of the system serve as a convenient storage and retrieval mechanism for biomass marketing and thermochemical conversion processing data. The system can be accessed through the use of a computer terminal, or it could be adapted to a microprocessor. A User's Manual for the system is included. Biomass derived fuels included in the data base are the following: medium Btu gas, low Btu gas, substitute natural gas, ammonia, methanol, electricity, gasoline, and fuel oil.

  13. Effects of pH value on growth morphology of LaPO{sub 4} nanocrystals: investigated from experiment and theoretical calculations

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoyan; Zhang, Zhongju [Ocean University of China, College of Chemistry and Chemical Engineering, Qingdao (China); Zhang, Luo; Wang, Xin [Ocean University of China, Institute of Material Science and Engineering, Qingdao (China)

    2016-05-15

    The morphologies of the materials have strong effects on their performance in particular applications. In our experiment, we synthesized LaPO{sub 4} successfully by the typical hydrothermal method in acidic conditions. The morphologies, preferred orientation and crystal facets are characterized by scanning electron microscopy, selected-area electron diffraction and high-resolution transmission electron microscopy. Combining the experimental findings, the surface energies of two major surfaces, (110) and (031) planes, were calculated using density functional theory methods. The theoretical calculations on the slabs surface energies were performed to simulate the shape of nanoparticles by the Wulff construction. The experimental results indicate that LaPO{sub 4} prepared in this work shows rodlike structure. The equilibrium shape of clava with large length-diameter ratio is achieved. With increasing hydrogen ion concentration in solutions, the morphologies present as sticks and their length-diameter ratios tend bigger, which is consistent with experimental results to a great extent. (orig.)

  14. MODIS Based Estimation of Forest Aboveground Biomass in China

    Science.gov (United States)

    Sun, Yan; Wang, Tao; Zeng, Zhenzhong; Piao, Shilong

    2015-01-01

    Accurate estimation of forest biomass C stock is essential to understand carbon cycles. However, current estimates of Chinese forest biomass are mostly based on inventory-based timber volumes and empirical conversion factors at the provincial scale, which could introduce large uncertainties in forest biomass estimation. Here we provide a data-driven estimate of Chinese forest aboveground biomass from 2001 to 2013 at a spatial resolution of 1 km by integrating a recently reviewed plot-level ground-measured forest aboveground biomass database with geospatial information from 1-km Moderate-Resolution Imaging Spectroradiometer (MODIS) dataset in a machine learning algorithm (the model tree ensemble, MTE). We show that Chinese forest aboveground biomass is 8.56 Pg C, which is mainly contributed by evergreen needle-leaf forests and deciduous broadleaf forests. The mean forest aboveground biomass density is 56.1 Mg C ha−1, with high values observed in temperate humid regions. The responses of forest aboveground biomass density to mean annual temperature are closely tied to water conditions; that is, negative responses dominate regions with mean annual precipitation less than 1300 mm y−1 and positive responses prevail in regions with mean annual precipitation higher than 2800 mm y−1. During the 2000s, the forests in China sequestered C by 61.9 Tg C y−1, and this C sink is mainly distributed in north China and may be attributed to warming climate, rising CO2 concentration, N deposition, and growth of young forests. PMID:26115195

  15. MODIS Based Estimation of Forest Aboveground Biomass in China.

    Science.gov (United States)

    Yin, Guodong; Zhang, Yuan; Sun, Yan; Wang, Tao; Zeng, Zhenzhong; Piao, Shilong

    2015-01-01

    Accurate estimation of forest biomass C stock is essential to understand carbon cycles. However, current estimates of Chinese forest biomass are mostly based on inventory-based timber volumes and empirical conversion factors at the provincial scale, which could introduce large uncertainties in forest biomass estimation. Here we provide a data-driven estimate of Chinese forest aboveground biomass from 2001 to 2013 at a spatial resolution of 1 km by integrating a recently reviewed plot-level ground-measured forest aboveground biomass database with geospatial information from 1-km Moderate-Resolution Imaging Spectroradiometer (MODIS) dataset in a machine learning algorithm (the model tree ensemble, MTE). We show that Chinese forest aboveground biomass is 8.56 Pg C, which is mainly contributed by evergreen needle-leaf forests and deciduous broadleaf forests. The mean forest aboveground biomass density is 56.1 Mg C ha-1, with high values observed in temperate humid regions. The responses of forest aboveground biomass density to mean annual temperature are closely tied to water conditions; that is, negative responses dominate regions with mean annual precipitation less than 1300 mm y-1 and positive responses prevail in regions with mean annual precipitation higher than 2800 mm y-1. During the 2000s, the forests in China sequestered C by 61.9 Tg C y-1, and this C sink is mainly distributed in north China and may be attributed to warming climate, rising CO2 concentration, N deposition, and growth of young forests.

  16. MODIS Based Estimation of Forest Aboveground Biomass in China.

    Directory of Open Access Journals (Sweden)

    Guodong Yin

    Full Text Available Accurate estimation of forest biomass C stock is essential to understand carbon cycles. However, current estimates of Chinese forest biomass are mostly based on inventory-based timber volumes and empirical conversion factors at the provincial scale, which could introduce large uncertainties in forest biomass estimation. Here we provide a data-driven estimate of Chinese forest aboveground biomass from 2001 to 2013 at a spatial resolution of 1 km by integrating a recently reviewed plot-level ground-measured forest aboveground biomass database with geospatial information from 1-km Moderate-Resolution Imaging Spectroradiometer (MODIS dataset in a machine learning algorithm (the model tree ensemble, MTE. We show that Chinese forest aboveground biomass is 8.56 Pg C, which is mainly contributed by evergreen needle-leaf forests and deciduous broadleaf forests. The mean forest aboveground biomass density is 56.1 Mg C ha-1, with high values observed in temperate humid regions. The responses of forest aboveground biomass density to mean annual temperature are closely tied to water conditions; that is, negative responses dominate regions with mean annual precipitation less than 1300 mm y-1 and positive responses prevail in regions with mean annual precipitation higher than 2800 mm y-1. During the 2000s, the forests in China sequestered C by 61.9 Tg C y-1, and this C sink is mainly distributed in north China and may be attributed to warming climate, rising CO2 concentration, N deposition, and growth of young forests.

  17. Romania biomass energy. Country study

    Energy Technology Data Exchange (ETDEWEB)

    Burnham, M; Easterly, J L; Mark, P E; Keller, A [DynCorp, Alexandria, VA (United States)

    1995-12-01

    The present report was prepared under contract to UNIDO to conduct a case study of biomass energy use and potential in Romania. The purpose of the case study is to provide a specific example of biomass energy issues and potential in the context of the economic transition under way in eastern Europe. The transition of Romania to a market economy is proceeding at a somewhat slower pace than in other countries of eastern Europe. Unfortunately, the former regime forced the use of biomass energy with inadequate technology and infrastructure, particularly in rural areas. The resulting poor performance thus severely damaged the reputation of biomass energy in Romania as a viable, reliable resource. Today, efforts to rejuvenate biomass energy and tap into its multiple benefits are proving challenging. Several sound biomass energy development strategies were identified through the case study, on the basis of estimates of availability and current use of biomass resources; suggestions for enhancing potential biomass energy resources; an overview of appropriate conversion technologies and markets for biomass in Romania; and estimates of the economic and environmental impacts of the utilization of biomass energy. Finally, optimal strategies for near-, medium- and long-term biomass energy development, as well as observations and recommendations concerning policy, legislative and institutional issues affecting the development of biomass energy in Romania are presented. The most promising near-term biomass energy options include the use of biomass in district heating systems; cofiring of biomass in existing coal-fired power plants or combined heat and power plants; and using co-generation systems in thriving industries to optimize the efficient use of biomass resources. Mid-term and long-term opportunities include improving the efficiency of wood stoves used for cooking and heating in rural areas; repairing the reputation of biogasification to take advantage of livestock wastes

  18. Romania biomass energy. Country study

    International Nuclear Information System (INIS)

    Burnham, M.; Easterly, J.L.; Mark, P.E.; Keller, A.

    1995-01-01

    The present report was prepared under contract to UNIDO to conduct a case study of biomass energy use and potential in Romania. The purpose of the case study is to provide a specific example of biomass energy issues and potential in the context of the economic transition under way in eastern Europe. The transition of Romania to a market economy is proceeding at a somewhat slower pace than in other countries of eastern Europe. Unfortunately, the former regime forced the use of biomass energy with inadequate technology and infrastructure, particularly in rural areas. The resulting poor performance thus severely damaged the reputation of biomass energy in Romania as a viable, reliable resource. Today, efforts to rejuvenate biomass energy and tap into its multiple benefits are proving challenging. Several sound biomass energy development strategies were identified through the case study, on the basis of estimates of availability and current use of biomass resources; suggestions for enhancing potential biomass energy resources; an overview of appropriate conversion technologies and markets for biomass in Romania; and estimates of the economic and environmental impacts of the utilization of biomass energy. Finally, optimal strategies for near-, medium- and long-term biomass energy development, as well as observations and recommendations concerning policy, legislative and institutional issues affecting the development of biomass energy in Romania are presented. The most promising near-term biomass energy options include the use of biomass in district heating systems; cofiring of biomass in existing coal-fired power plants or combined heat and power plants; and using co-generation systems in thriving industries to optimize the efficient use of biomass resources. Mid-term and long-term opportunities include improving the efficiency of wood stoves used for cooking and heating in rural areas; repairing the reputation of biogasification to take advantage of livestock wastes

  19. Biomass energy: Sustainable solution for greenhouse gas emission

    Science.gov (United States)

    Sadrul Islam, A. K. M.; Ahiduzzaman, M.

    2012-06-01

    Biomass is part of the carbon cycle. Carbon dioxide is produced after combustion of biomass. Over a relatively short timescale, carbon dioxide is renewed from atmosphere during next generation of new growth of green vegetation. Contribution of renewable energy including hydropower, solar, biomass and biofuel in total primary energy consumption in world is about 19%. Traditional biomass alone contributes about 13% of total primary energy consumption in the world. The number of traditional biomass energy users expected to rise from 2.5 billion in 2004 to 2.6 billion in 2015 and to 2.7 billion in 2030 for cooking in developing countries. Residential biomass demand in developing countries is projected to rise from 771 Mtoe in 2004 to 818 Mtoe in 2030. The main sources of biomass are wood residues, bagasse, rice husk, agro-residues, animal manure, municipal and industrial waste etc. Dedicated energy crops such as short-rotation coppice, grasses, sugar crops, starch crops and oil crops are gaining importance and market share as source of biomass energy. Global trade in biomass feedstocks and processed bioenergy carriers are growing rapidly. There are some drawbacks of biomass energy utilization compared to fossil fuels viz: heterogeneous and uneven composition, lower calorific value and quality deterioration due to uncontrolled biodegradation. Loose biomass also is not viable for transportation. Pelletization, briquetting, liquefaction and gasification of biomass energy are some options to solve these problems. Wood fuel production is very much steady and little bit increase in trend, however, the forest land is decreasing, means the deforestation is progressive. There is a big challenge for sustainability of biomass resource and environment. Biomass energy can be used to reduce greenhouse emissions. Woody biomass such as briquette and pellet from un-organized biomass waste and residues could be used for alternative to wood fuel, as a result, forest will be saved and

  20. Biomass gasification in the Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    Van der Drift, A. [ECN Biomass and Energy Efficiency, Petten (Netherlands)

    2013-07-15

    This reports summarizes the activities, industries, and plants on biomass gasification in the Netherlands. Most of the initiatives somehow relate to waste streams, rather than clean biomass, which may seem logic for a densely populated country as the Netherlands. Furthermore, there is an increasing interest for the production of SNG (Substitute Natural Gas) from biomass, both from governments and industry.

  1. Multi-functional biomass systems

    NARCIS (Netherlands)

    Dornburg, Veronika

    2004-01-01

    Biomass can play a role in mitigating greenhouse gas emissions by substituting conventional materials and supplying biomass based fuels. Main reason for the low share of biomass applications in Europe is their often-high production costs, among others due to the relatively low availability of

  2. Background information for the SER Energy Agreement for Sustainable Growth calculations. Sectors Industry, Agriculture and Horticulture; Achtergronddocument bij doorrekening Energieakkoord. Sectoren industrie en land- en tuinbouw

    Energy Technology Data Exchange (ETDEWEB)

    Wetzels, W. [ECN Beleidsstudies, Petten (Netherlands)

    2013-09-01

    On September 4, 2013, representatives of employers' associations, trade union federations, environmental organizations, the Dutch government and civil society have signed an Energy Agreement for Sustainable Growth. ECN and PBL have been asked to evaluate this agreement. This report gives background information on the evaluation of the measures aimed at improving energy efficiency in industry and agriculture [Dutch] Op 4 september 2013 is het 'Energieakkoord voor duurzame groei' getekend. ECN en PBL zijn gevraagd het akkoord te beoordelen en door te rekenen. Dit rapport dient als achtergronddocument bij de doorrekening van de maatregelen gericht op energiebesparing in de industrie en land- en tuinbouw.

  3. Performance of STICS model to predict rainfed corn evapotranspiration and biomass evaluated for 6 years between 1995 and 2006 using daily aggregated eddy covariance fluxes and ancillary measurements.

    Science.gov (United States)

    Pattey, Elizabeth; Jégo, Guillaume; Bourgeois, Gaétan

    2010-05-01

    Verifying the performance of process-based crop growth models to predict evapotranspiration and crop biomass is a key component of the adaptation of agricultural crop production to climate variations. STICS, developed by INRA, was part of the models selected by Agriculture and Agri-Food Canada to be implemented for environmental assessment studies on climate variations, because of its built-in ability to assimilate biophysical descriptors such as LAI derived from satellite imagery and its open architecture. The model prediction of shoot biomass was calibrated using destructive biomass measurements over one season, by adjusting six cultivar parameters and three generic plant parameters to define two grain corn cultivars adapted to the 1000-km long Mixedwood Plains ecozone. Its performance was then evaluated using a database of 40 years-sites of corn destructive biomass and yield. In this study we evaluate the temporal response of STICS evapotranspiration and biomass accumulation predictions against estimates using daily aggregated eddy covariance fluxes. The flux tower was located in an experimental farm south of Ottawa and measurements carried out over corn fields in 1995, 1996, 1998, 2000, 2002 and 2006. Daytime and nighttime fluxes were QC/QA and gap-filled separately. Soil respiration was partitioned to calculate the corn net daily CO2 uptake, which was converted into dry biomass. Out of the six growing seasons, three (1995, 1998, 2002) had water stress periods during corn grain filling. Year 2000 was cool and wet, while 1996 had heat and rainfall distributed evenly over the season and 2006 had a wet spring. STICS can predict evapotranspiration using either crop coefficients, when wind speed and air moisture are not available, or resistance. The first approach provided higher prediction for all the years than the resistance approach and the flux measurements. The dynamic of evapotranspiration prediction of STICS was very good for the growing seasons without

  4. Biomass Compositional Analysis Laboratory Procedures | Bioenergy | NREL

    Science.gov (United States)

    Biomass Compositional Analysis Laboratory Procedures Biomass Compositional Analysis Laboratory Procedures NREL develops laboratory analytical procedures (LAPs) for standard biomass analysis. These procedures help scientists and analysts understand more about the chemical composition of raw biomass

  5. Biomass Data | Geospatial Data Science | NREL

    Science.gov (United States)

    Biomass Data Biomass Data These datasets detail the biomass resources available in the United Coverage File Last Updated Metadata Biomethane Zip 72.2 MB 10/30/2014 Biomethane.xml Solid Biomass Zip 69.5

  6. Fiscal 1998 research report. Research on energy conversion technology using biomass resources; 1998 nendo chosa hokokusho. Biomass shigen wo genryo to suru energy henkan gijutsu ni kansuru chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Feasibility study was made on construction of the new energy production system by thermochemical conversion or combination of thermochemical and biological conversions of agricultural, fishery and organic waste system biomass resources. This report first outlines types and characteristics of biomass over the world, proposes the classification method of biomass from the viewpoint of biomass energy use, and shows the introduction scenario of biomass energy. The energy potential is calculated of agricultural waste, forestry waste and animal waste as the most promising biomass energy resources, and the biomass energy potential of energy plantation is estimated. The present and future of biochemical energy conversion technologies are viewed. The present and future of thermochemical energy conversion technologies are also viewed. Through evaluation of every conversion technology, the difference in feature between each conversion technology was clarified, and the major issues for further R and D were showed. (NEDO)

  7. Comment calculer le contenu énergétique des produits d'origine pétrolière et de leurs substituts d'origine charbonnière ou végétale How to Calculate the Energy Content of Products of Petroleum Origin and of Their Substitutes from Coal Or Biomass

    Directory of Open Access Journals (Sweden)

    Leprince P.

    2006-11-01

    Full Text Available Le contenu énergétique des produits pétroliers issus du raffinage, des produits de vapocraquage de naphta et de quelques produits de la pétrochimie, a été calculé en prenant en considération, la dépense énergétique entre coproduits ou sous-produits d'une même transformation, les variantes de procédés et l'effet des divers modes de fourniture d'énergie nécessaire à la transformation considérée. The energy content of petroleum products coming from refining, of naphta steam-cracking products and of various petrochemical products is calculated by taking into consideration the energy expenditure between the coproducts or by products from the same transformation, the different processes and the effect of different ways in which to supply the energy required for the transformation being considered.

  8. Biomass torrefaction: A promising pretreatment technology for biomass utilization

    Science.gov (United States)

    Chen, ZhiWen; Wang, Mingfeng; Ren, Yongzhi; Jiang, Enchen; Jiang, Yang; Li, Weizhen

    2018-02-01

    Torrefaction is an emerging technology also called mild pyrolysis, which has been explored for the pretreatment of biomass to make the biomass more favorable for further utilization. Dry torrefaction (DT) is a pretreatment of biomass in the absence of oxygen under atmospheric pressure and in a temperature range of 200-300 degrees C, while wet torrrefaction (WT) is a method in hydrothermal or hot and high pressure water at the tempertures within 180-260 degrees C. Torrrefied biomass is hydrophobic, with lower moisture contents, increased energy density and higher heating value, which are more comparable to the characteristics of coal. With the improvement in the properties, torrefied biomass mainly has three potential applications: combustion or co-firing, pelletization and gasification. Generally, the torrefaction technology can accelerate the development of biomass utilization technology and finally realize the maximum applications of biomass energy.

  9. The influence of water stress on biomass and N accumulation, N partitioning between above and below ground parts and on N rhizodeposition during reproductive growth of pea (Pisum sativum L.)

    DEFF Research Database (Denmark)

    Mahieu, S.; Germont, Florent; Aveline, A.

    2009-01-01

    are estimated. Moreover, grain legume crops are largely influenced by water stress while the world area exposed to drought periods may increase in the coming years due to global warming. This work aims to quantify biomass and N accumulation, N partitioning between above and below ground parts and N...... rhizodeposition by a pea (Pisum sativum L.) when influenced by water stress. In a controlled environment, pea plants were exposed to a severe drought or not stressed, either at flowering or during pod filling. N rhizodeposition was measured using the split root method and plants were harvested at the end...... of flowering (59 days after sowing, DAS 59), at the end of the drought period applied during pod filling (DAS 74) and at maturity (DAS 101). Water stress strongly affected pea dry weight and N accumulation. In both stressed treatments, nodule biomass and N content were reduced by about 65% in the absence...

  10. Biosorption of copper and zinc by immobilised and free algal biomass, and the effects of metal biosorption on the growth and cellular structure of Chlorella sp.and Chlamydomonas sp.isolated from rivers in Penang, Malaysia

    Institute of Scientific and Technical Information of China (English)

    W.O.Wan Maznah; A.T. Al-Fawwaz; Misni Surif

    2012-01-01

    In this study,the biosorption of copper and zinc ions by Chlorella sp.and Chlamydomonas sp.isolated from local environments in Malaysia was investigated in a batch system and by microscopic analyses.Under optimal biosorption conditions,the biosorption capacity of Chlorella sp.for copper and zinc ions was 33.4 and 28.5 mg/g,respectively,after 6 hr of biosorption in an immobilised system.Batch experiments showed that the biosorption capacity of algal biomass immobilised in the form of sodium alginate beads was higher than that of the free biomass.Scanning electron microscopy and energy-dispersive X-ray spectroscopy analyses revealed that copper and zinc were mainly sorbed at the cell surface during biosorption.Exposure to 5 mg/L of copper and zinc affected both the chlorophyll content and cell count of the algal cells after the first 12 hr of contact time.

  11. Biomass electric technologies: Status and future development

    International Nuclear Information System (INIS)

    Bain, R.L.; Overend, R.P.

    1992-01-01

    At the present time, there axe approximately 6 gigawatts (GWe) of biomass-based, grid-connected electrical generation capacity in the United States. This capacity is primarily combustion-driven, steam-turbine technology, with the great majority of the plants of a 5-50 megawatt (MW) size and characterized by heat rates of 14,770-17,935 gigajoules per kilowatt-hour (GJ/kWh) (14,000-17,000 Btu/kWh or 18%-24% efficiency), and with installed capital costs of $1,300-$1,500/kW. Cost of electricity for existing plants is in the $0.065-$O.08/kWh range. Feedstocks are mainly waste materials; wood-fired systems account for 88% of the total biomass capacity, followed by agricultural waste (3%), landfill gas (8%), and anaerobic digesters (1%). A significant amount of remote, non-grid-connected, wood-fired capacity also exists in the paper and wood products industry. This chapter discusses biomass power technology status and presents the strategy for the U.S. Department of Energy (DOE) Biomass Power Program for advancing biomass electric technologies to 18 GWe by the year 2010, and to greater than 100 GWe by the year 2030. Future generation systems will be characterized by process efficiencies in the 35%-40% range, by installed capital costs of $770-$900/kW, by a cost of electricity in the $0.04-$O.05/kWh range, and by the use of dedicated fuel-supply systems. Technology options such as integrated gasification/gas-turbine systems, integrated pyrolysis/gas-turbine systems, and innovative direct-combustion systems are discussed, including present status and potential growth. This chapter also presents discussions of the U.S. utility sector and the role of biomass-based systems within the industry, the potential advantages of biomass in comparison to coal, and the potential environmental impact of biomass-based electricity generation

  12. Sustainable biomass production for energy in Sri Lanka

    International Nuclear Information System (INIS)

    Perera, K.K.C.K.; Rathnasiri, P.G.; Sugathapala, A.G.T.

    2003-01-01

    The present study concentrates mainly on the estimation of land availability for biomass production and the estimation of sustainable biomass production potential for energy. The feasible surplus land area available for bioenergy plantation is estimated assuming two land availability scenarios (Scenarios 1 and 2) and three biomass demand scenarios (IBD Scenario, SBD Scenario and FBD Scenario). Scenario 1 assumes that 100% of the surplus area available in base year 1997 will be suitable for plantation without considering population growth and food production and that 75% of this surplus land is feasible for plantation. Scenario 2 assumes that future food requirement will grow by 20% and the potential surplus area will be reduced by that amount. The incremental biomass demand scenario (IBD Scenario) assumes that only the incremental demand for biomass in the year 2010 with respect to the base year 1997 has to be produced from new plantation. The sustainable biomass demand scenario (SBD Scenario) assumes that the total sustainable supply of biomass in 1997 is deducted from the future biomass demand in 2010 and only the balance is to be met by new plantation. The full biomass demand scenario (FBD Scenario) assumes that the entire projected biomass demand of the year 2010 needs to be produced from new plantation. The total feasible land area for the scenarios IBD-1, 1BD-2, SBD-1, SBD-2, FBD-1 and FBD-2 are approximately 0.96, 0.66, 0.80, 0.94, 0.60 and 0.30 Mha, respectively. Biomass production potential is estimated by selecting appropriate plant species, plantation spacing and productivity level. The results show that the total annual biomass production in the country could vary from 2 to 9.9 Mt. With the production option (i.e. 1.5 mx1.5 m spacing plantation with fertilizer application) giving the highest yield, the total biomass production for energy under IBD Scenario would be 9.9 Mt yr -1 for Scenario 1 and 6.7 Mt yr -1 for Scenario 2. Under SBD Scenario, the

  13. High Pressure Biomass Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Pradeep K [Georgia Tech Research Corporation, Atlanta, GA (United States)

    2016-07-29

    According to the Billion Ton Report, the U.S. has a large supply of biomass available that can supplement fossil fuels for producing chemicals and transportation fuels. Agricultural waste, forest residue, and energy crops offer potential benefits: renewable feedstock, zero to low CO2 emissions depending on the specific source, and domestic supply availability. Biomass can be converted into chemicals and fuels using one of several approaches: (i) biological platform converts corn into ethanol by using depolymerization of cellulose to form sugars followed by fermentation, (ii) low-temperature pyrolysis to obtain bio-oils which must be treated to reduce oxygen content via HDO hydrodeoxygenation), and (iii) high temperature pyrolysis to produce syngas (CO + H2). This last approach consists of producing syngas using the thermal platform which can be used to produce a variety of chemicals and fuels. The goal of this project was to develop an improved understanding of the gasification of biomass at high pressure conditions and how various gasification parameters might affect the gasification behavior. Since most downstream applications of synags conversion (e.g., alcohol synthesis, Fischer-Tropsch synthesis etc) involve utilizing high pressure catalytic processes, there is an interest in carrying out the biomass gasification at high pressure which can potentially reduce the gasifier size and subsequent downstream cleaning processes. It is traditionally accepted that high pressure should increase the gasification rates (kinetic effect). There is also precedence from coal gasification literature from the 1970s that high pressure gasification would be a beneficial route to consider. Traditional approach of using thermogravimetric analyzer (TGA) or high-pressure themogravimetric analyzer (PTGA) worked well in understanding the gasification kinetics of coal gasification which was useful in designing high pressure coal gasification processes. However

  14. Effects of replacing fish oil with microalgae biomass (Schizochytrium spp) as a source of n-3 LC-PUFA to Atlantic salmon (Salmo salar) on growth performance, fillet quality and fatty acid composition

    OpenAIRE

    Mizambwa, Hellen Edward

    2017-01-01

    Low levels of EFA in fish feed as a result of changes in diet composition brings a need of finding a novel ingredient that will supplement Essential Fatty Acids (EFA) in fish feed. Microalgae have ability of producing omega-3 polyunsaturated fatty acids (PUFA) and for that are predicted to be a reliable feed ingredients in replacing fish oil in the near future. Main objective of present study was to evaluate effects of replacing fish oil (FO) with microalgae biomass (Schizochytrium spp.) (AA)...

  15. Assessment of forest nutrient pools in view of biomass potentials - a case study from Austria oak stands

    Science.gov (United States)

    Yan, S.; Bruckman, V. J.; Glatzel, G.; Hochbichler, E.

    2012-04-01

    As one of the renewable energy forms, bio-energy could help to relieve the pressure which is caused by growing global energy demand. In Austria, large area of forests, traditional utilization of biomass and people's desire to live in a sound environment have supported the positive development of bio-energy. Soil nutrient status is in principle linked with the productivity of the aboveground biomass. This study focuses on K, Ca and Mg pools in soils and aboveground biomass in order to learn more on the temporal dynamics of plant nutrients as indicators for biomass potentials in Quercus dominated forests in northeastern Austria. Three soil types (according to WRB: eutric cambisol, calcic chernozem and haplic luvisol) were considered representative for the area and sampled. We selected nine Quercus petraea dominated permanent plots for this study. Exchangeable cations K, Ca and Mg in the soils were quantified in our study plots. Macronutrients pools of K, Ca and Mg in aboveground biomass were calculated according to inventory data and literature review. The exchangeable cations pool in the top 50 cm of the soil were 882 - 1,652 kg ha-1 for K, 2,661 to 16,510 kg ha-1 for Ca and 320 - 1,850 kg ha-1 for Mg. The nutrient pool in aboveground biomass ranged from 29 to 181 kg ha-1 for K, from 56 to 426 kg ha-1 for Ca and from 4 to 26 kg ha-1 for Mg. The underground exchangeable pools of K, Ca and Mg are generally 10, 22 and 58 times higher than aboveground biomass nutrient pools. Our results showed that the nutrient pools in the mineral soil are sufficient to support the tree growth. The levels of soil nutrients in particular K, Ca and Mg in our study areas are reasonably high and do not indicate the necessity for additional fertilization under current silvicultural practices and biomass extraction rate. The forest in our study areas is in favorable condition to supply biomass as raw material for energy utilization.

  16. CONTAIN calculations

    International Nuclear Information System (INIS)

    Scholtyssek, W.

    1995-01-01

    In the first phase of a benchmark comparison, the CONTAIN code was used to calculate an assumed EPR accident 'medium-sized leak in the cold leg', especially for the first two days after initiation of the accident. The results for global characteristics compare well with those of FIPLOC, MELCOR and WAVCO calculations, if the same materials data are used as input. However, significant differences show up for local quantities such as flows through leakages. (orig.)

  17. Algal growth inhibition test results of 425 organic chemical substances

    DEFF Research Database (Denmark)

    Kusk, Kresten Ole; Christensen, Anne Munch; Nyholm, Niels

    2018-01-01

    The toxicity towards the algal species Pseudokirchneriella subcapitata of 425 organic chemical substances was tested in a growth inhibition test. Precautions were taken to prevent loss of the compounds from the water phase and the test system (closed test system, low biomass, shorter test duration......, silanized glass) and to keep pH constant by applying a higher alkalinity. Chemical phase distribution was modelled taking ionization, volatilisation, and adsorption to glass and biomass into consideration. If the modelled water concentration was below 90% of the nominal concentration the calculated EC...... values were corrected accordingly. The model helped to identify substances, where the calculated water concentration was too uncertain. Substances covering a wide range of physical-chemical properties and different modes of action were tested. Median effect concentrations (EC50) lower than 1000 mg/L were...

  18. Biomass production from electricity using ammonia as an electron carrier in a reverse microbial fuel cell.

    Directory of Open Access Journals (Sweden)

    Wendell O Khunjar

    Full Text Available The storage of renewable electrical energy within chemical bonds of biofuels and other chemicals is a route to decreasing petroleum usage. A critical challenge is the efficient transfer of electrons into a biological host that can covert this energy into high energy organic compounds. In this paper, we describe an approach whereby biomass is grown using energy obtained from a soluble mediator that is regenerated electrochemically. The net result is a separate-stage reverse microbial fuel cell (rMFC that fixes CO₂ into biomass using electrical energy. We selected ammonia as a low cost, abundant, safe, and soluble redox mediator that facilitated energy transfer to biomass. Nitrosomonas europaea, a chemolithoautotroph, was used as the biocatalyst due to its inherent capability to utilize ammonia as its sole energy source for growth. An electrochemical reactor was designed for the regeneration of ammonia from nitrite, and current efficiencies of 100% were achieved. Calculations indicated that overall bioproduction efficiency could approach 2.7±0.2% under optimal electrolysis conditions. The application of chemolithoautotrophy for industrial bioproduction has been largely unexplored, and results suggest that this and related rMFC platforms may enable biofuel and related biochemical production.

  19. Nitrogen removal in maturation waste stabilisation ponds via biological uptake and sedimentation of dead biomass.

    Science.gov (United States)

    Camargo Valero, M A; Mara, D D; Newton, R J

    2010-01-01

    In this work a set of experiments was undertaken in a pilot-scale WSP system to determine the importance of organic nitrogen sedimentation on ammonium and total nitrogen removals in maturation ponds and its seasonal variation under British weather conditions, from September 2004 to May 2007. The nitrogen content in collected sediment samples varied from 4.17% to 6.78% (dry weight) and calculated nitrogen sedimentation rates ranged from 273 to 2868 g N/ha d. High ammonium removals were observed together with high concentrations of chlorophyll-a in the pond effluent. Moreover, chlorophyll-a had a very good correlation with the corresponding increment of VSS (algal biomass) and suspended organic nitrogen (biological nitrogen uptake) in the maturation pond effluents. Therefore, when ammonium removal reached its maximum, total nitrogen removal was very poor as most of the ammonia taken up by algae was washed out in the pond effluent in the form of suspended solids. After sedimentation of the dead algal biomass, it was clear that algal-cell nitrogen was recycled from the sludge layer into the pond water column. Recycled nitrogen can either be taken up by algae or washed out in the pond effluent. Biological (mainly algal) uptake of inorganic nitrogen species and further sedimentation of dead biomass (together with its subsequent mineralization) is one of the major mechanisms controlling in-pond nitrogen recycling in maturation WSP, particularly when environmental and operational conditions are favourable for algal growth.

  20. Solid biomass barometer

    International Nuclear Information System (INIS)

    Anon.

    2006-01-01

    The European (EU 25) wish to substitute solid biomass origin energy consumption (principally wood and wood waste, but also straw, crop harvest residues, vegetal and animal waste) for a part of that of fossil fuel origin (petrol, gas and coal) is beginning to pay off. 58,7 million tons oil equivalent (Mtoe) of solid biomass was produced in 2005, i.e. a 3.1 Mtoe increase with respect to 2004. Production of primary energy coming from direct combustion of renewable municipal solid waste in incineration plants should also be added on to this figure. The 0,2 Mtoe increase in this production with respect to 2004 brings valorization of this type of waste up to 5,3 Mtoe in 2005. (author)

  1. Biomass goes to waste

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, J. (CPL Scientific Ltd., Newbury (United Kingdom))

    1994-08-01

    Currently the two most suitable words to describe the biomass energy industry are waste and recycling. However, there are several ways of looking at this. The first is a literal one. This reflects the current changes which are taking place in waste treatment as a consequence of new environmental initiatives. These are predicted to intensify as and when new Community Directives come into force through national legislation within the European Union (EU). At the same time biomass, in the true sense, both goes to waste as crops are not used and generates waste in terms of resources as uneconomic ventures are funded for political reasons. The net result is a depleted industry, in some sectors, and one based on false hopes in others. At the same time there is also some clarity emerging in respect of end use, with most activities focussing on decentralised electricity generation and the formation of liquid transport fuels. (Author)

  2. Biomass Maps | Geospatial Data Science | NREL

    Science.gov (United States)

    Biomass Maps Biomass Maps These maps illustrate the biomass resource in the United States by county . Biomass feedstock data are analyzed both statistically and graphically using a geographic information Data Science Team. Solid Biomass Resources Map of Total Biomass Resources in the United States Solid

  3. BIOMASS newsletter. No. 7

    International Nuclear Information System (INIS)

    Torres, Carlos

    1999-06-01

    The International Atomic Energy Agency Programme on Biosphere Modelling and Assessment (BIOMASS) Newsletter has been launched with general objectives of providing an international focal point in the area of biosphere assessment modelling, developing methods for analysis of radionuclide transfer in the biosphere for use in radiological assessment, improving modelling methods, and developing international consensus on biosphere modelling philosophies, approaches and parameter values. The main themes included in the Newsletter include radioactive waste disposal (reference biosphere), environmental releases and biosphere processes

  4. BIOMASS newsletter. No. 8

    International Nuclear Information System (INIS)

    Torres, Carlos

    2000-01-01

    The International Atomic Energy Agency Programme on Biosphere Modelling and Assessment (BIOMASS) Newsletter has been launched with general objectives of providing an international focal point in the area of biosphere assessment modelling, developing methods for analysis of radionuclide transfer in the biosphere for use in radiological assessment, improving modelling methods, and developing international consensus on biosphere modelling philosophies, approaches and parameter values. The main themes included in the Newsletter include radioactive waste disposal (reference biosphere), environmental releases and biosphere processes

  5. BIOMASS newsletter. No. 6

    International Nuclear Information System (INIS)

    Torres, Carlos

    1999-01-01

    The International Atomic Energy Agency Programme on Biosphere Modelling and Assessment (BIOMASS) Newsletter has been launched with general objectives of providing an international focal point in the area of biosphere assessment modelling, developing methods for analysis of radionuclide transfer in the biosphere for use in radiological assessment, improving modelling methods, and developing international consensus on biosphere modelling philosophies, approaches and parameter values. The main themes included in the Newsletter include radioactive waste disposal (reference biosphere), environmental releases and biosphere processes

  6. BIOMASS newsletter. No. 5

    International Nuclear Information System (INIS)

    Torres, Carlos

    1998-07-01

    The International Atomic Energy Agency Programme on Biosphere Modelling and Assessment (BIOMASS) Newsletter has been launched with general objectives of providing an international focal point in the area of biosphere assessment modelling, developing methods for analysis of radionuclide transfer in the biosphere for use in radiological assessment, improving modelling methods, and developing international consensus on biosphere modelling philosophies, approaches and parameter values. The main themes included in the Newsletter include radioactive waste disposal (reference biosphere), environmental releases and biosphere processes

  7. BIOMASS newsletter. No. 2

    International Nuclear Information System (INIS)

    Torres, Carlos

    1996-12-01

    The International Atomic Energy Agency Programme on Biosphere Modelling and Assessment (BIOMASS) Newsletter has been launched with general objectives of providing an international focal point in the area of biosphere assessment modelling, developing methods for analysis of radionuclide transfer in the biosphere for use in radiological assessment, improving modelling methods, and developing international consensus on biosphere modelling philosophies, approaches and parameter values. The main themes included in the Newsletter include radioactive waste disposal (reference biosphere), environmental releases and biosphere processes

  8. BIOMASS newsletter. No. 3

    International Nuclear Information System (INIS)

    Torres, Carlos

    1997-07-01

    The International Atomic Energy Agency Programme on Biosphere Modelling and Assessment (BIOMASS) Newsletter has been launched with general objectives of providing an international focal point in the area of biosphere assessment modelling, developing methods for analysis of radionuclide transfer in the biosphere for use in radiological assessment, improving modelling methods, and developing international consensus on biosphere modelling philosophies, approaches and parameter values. The main themes included in the Newsletter include radioactive waste disposal (reference biosphere), environmental releases and biosphere processes

  9. BIOMASS newsletter. No. 4

    International Nuclear Information System (INIS)

    Torres, Carlos

    1998-01-01

    The International Atomic Energy Agency Programme on Biosphere Modelling and Assessment (BIOMASS) Newsletter has been launched with general objectives of providing an international focal point in the area of biosphere assessment modelling, developing methods for analysis of radionuclide transfer in the biosphere for use in radiological assessment, improving modelling methods, and developing international consensus on biosphere modelling philosophies, approaches and parameter values. The main themes included in the Newsletter include radioactive waste disposal (reference biosphere), environmental releases and biosphere processes

  10. Biomass for electricity

    International Nuclear Information System (INIS)

    Barbucci, P.; Neri, G.; Trebbi, G.

    1995-01-01

    This paper describes the activities carried out at ENEL-Thermal research center to develop technologies suitable to convert biomass into power with high conversion efficiency: a demonstration project, Energy Farm, to build an Integrated Gasification Combined Cycle (IGCC) plant fed by wood chips; a demonstration plant for converting wood chips into oil by thermal conversion (pyrolysis oil); combustion tests of different oils produced by thermal conversion. 3 figs., 1 tab

  11. Hydrolysis of biomass material

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Andrew J.; Orth, Rick J.; Franz, James A.; Alnajjar, Mikhail

    2004-02-17

    A method for selective hydrolysis of the hemicellulose component of a biomass material. The selective hydrolysis produces water-soluble small molecules, particularly monosaccharides. One embodiment includes solubilizing at least a portion of the hemicellulose and subsequently hydrolyzing the solubilized hemicellulose to produce at least one monosaccharide. A second embodiment includes solubilizing at least a portion of the hemicellulose and subsequently enzymatically hydrolyzing the solubilized hemicellulose to produce at least one monosaccharide. A third embodiment includes solubilizing at least a portion of the hemicellulose by heating the biomass material to greater than 110.degree. C. resulting in an aqueous portion that includes the solubilized hemicellulose and a water insoluble solids portion and subsequently separating the aqueous portion from the water insoluble solids portion. A fourth embodiment is a method for making a composition that includes cellulose, at least one protein and less than about 30 weight % hemicellulose, the method including solubilizing at least a portion of hemicellulose present in a biomass material that also includes cellulose and at least one protein and subsequently separating the solubilized hemicellulose from the cellulose and at least one protein.

  12. Commercial Biomass Syngas Fermentation

    Directory of Open Access Journals (Sweden)

    James Daniell

    2012-12-01

    Full Text Available The use of gas fermentation for the production of low carbon biofuels such as ethanol or butanol from lignocellulosic biomass is an area currently undergoing intensive research and development, with the first commercial units expected to commence operation in the near future. In this process, biomass is first converted into carbon monoxide (CO and hydrogen (H2-rich synthesis gas (syngas via gasification, and subsequently fermented to hydrocarbons by acetogenic bacteria. Several studies have been performed over the last few years to optimise both biomass gasification and syngas fermentation with significant progress being reported in both areas. While challenges associated with the scale-up and operation of this novel process remain, this strategy offers numerous advantages compared with established fermentation and purely thermochemical approaches to biofuel production in terms of feedstock flexibility and production cost. In recent times, metabolic engineering and synthetic biology techniques have been applied to gas fermenting organisms, paving the way for gases to be used as the feedstock for the commercial production of increasingly energy dense fuels and more valuable chemicals.

  13. Ethanol from lignocellulosic biomasses

    International Nuclear Information System (INIS)

    Ricci, E.; Viola, E.; Zimbardi, F.; Braccio, G.; Cuna, D.

    2001-01-01

    In this report are presented results achieved on the process optimisation of bioethanol production from wheat straw, carried out within the ENEA's project of biomass exploitation for renewable energy. The process consists of three main steps: 1) biomass pretreatment by means of steam explosion; 2) enzymatic hydrolysis of the cellulose fraction; 3) fermentation of glucose. To perform the hydrolysis step, two commercial enzymatic mixtures have been employed, mainly composed by β-glucosidase (cellobiase), endo-glucanase and exo-glucanase. The ethanologenic yeast Saccharomyces cerevisiae has been used to ferment the glucose in he hydrolyzates. Hydrolysis yield of 97% has been obtained with steam exploded wheat straw treated at 220 0 C for 3 minutes and an enzyme to substrate ratio of 4%. It has been pointed out the necessity of washing with water the pretreated what straw, in order to remove the biomass degradation products, which have shown an inhibition effect on the yeast. At the best process conditions, a fermentation yield of 95% has been achieved. In the Simultaneous Saccharification and Fermentation process, a global conversion of 92% has been obtained, which corresponds to the production of about 170 grams of ethanol per kilogram of exploded straw [it

  14. Potential of Biomass for Energy. Market Survey Portugal

    International Nuclear Information System (INIS)

    2007-03-01

    The objective of this market survey is to provide information about the biomass sector in Portugal, relevant to mainly small and medium-sized enterprises (SME) in the Netherlands that are interested to strengthen their position in that sector. Much knowledge could be gathered from conversations with the partners of Sunergy, the company responsible for this survey. Sunergy is producing bio-diesel, and considering further investments in the solid biomass sector, and therefore well familiar with the developments. Other interviews were held with representatives of the Government (DGGE), association of forestry owners (AFLOPS), a biomass trading SME (Sobioen), the leading environmental NGO (Quercus), and an association representing the paper- and pulp industry (CELPA). Chapter 1 is a general introduction on biomass. Chapter 2 gives the background of the Portuguese energy sector and the relative importance of renewable and biomass energies within this market. Some prospects for future developments of the different renewable sources are given. Portugal's energy sector is dominated by a small number of players, which are introduced. Also the current policies and incentives (subsidies) are presented. In Chapter 3 the focus is on the Portuguese biomass sector, presenting the current use of biomass in each of the subsectors: transport, electricity and heat, and an overview of the policy framework specifically for biomass. Chapter 4 is a literature review of the market for existing and potential biomass resources, including demand, supply and other characteristics. Chapter 5 synthesizes the previous chapters. Also an overview of key drivers and key constraints for growth of this sector is given, leading to conclusions regarding the opportunities for Dutch companies. Finally, further information on how to proceed once the interest for Portugal's biomass sector is vested is listed at the end of Chapter 5

  15. The current state of the California biomass energy industry

    International Nuclear Information System (INIS)

    Morris, G.P.

    1994-01-01

    During the decade of the 1980s the California biomass energy industry grew from a few isolated facilities located mostly at pulp mills into the largest biomass energy industry in the world. Currently, more than fifty biomass powered electricity generating facilities provide the state with some 850 Megawatts (MW) of generating capacity, most of it interconnected to the state's electric utility systems. Each year, more than ten million tons of wood and agricultural wastes in the state are converted into fuel, rather than being disposed of using conventional, environmentally costly methods like open burning and landfill burial. As the 1980s began, the California biomass energy industry was in a nascent state. Optimism was blooming within the wood-products and agricultural sectors of California, who foresaw an opportunity to turn costly wastes into profits. At the same time, the independent energy industry itself was being launched. Interest in biomass energy development was spreading to the engineering and construction industries and the financial community as well. A great variety of firms and individuals were engaged in the development of biomass power plants and biomass fuel sources. The second half of the 1980s saw the fruits of the developmental activity that began in the first half of the decade. Biomass energy facilities were entering construction and coming on-line in increasing numbers, and the demand for biomass fuels was increasing in step. As the decade was coming to an end, biomass fuel supplies were hard put to meet the demand, yet a huge number of new facilities entered operation in 1990. This extreme growth spurt of new generating capacity caused a fuel crisis and a shake-out in the industry just as it was entering full-scale operation. The Crisis of Success had been reached. More recently an equilibrium has been achieved in which fuel prices are at levels that produce adequate supplies, while allowing profitable operations at the power plants

  16. Biofuel from "humified" biomass

    Science.gov (United States)

    Kpogbemabou, D.; Lemée, L.; Amblès, A.

    2009-04-01

    In France, 26% of the emissions of greenhouse effect gas originate from transportation which depends for 87% on fossil fuels. Nevertheless biofuels can contribute to the fight against climate change while reducing energetic dependence. Indeed biomass potentially represents in France 30 Mtoe a year that is to say 15% national consumption. But 80% of these resources are made of lignocellulosic materials which are hardly exploitable. First-generation biofuels are made from sugar, starch, vegetable oil, or animal fats. Due to their competition with human food chain, first-generation biofuels could lead to food shortages and price rises. At the contrary second-generation biofuel production can use a variety of non food crops while using the lignocellulosic part of biomass [1]. Gasification, fermentation and direct pyrolysis are the most used processes. However weak yields and high hydrogen need are limiting factors. In France, the National Program for Research on Biofuels (PNRB) aims to increase mobilizable biomass resource and to develop lignocellulosic biomass conversion. In this context, the LIGNOCARB project studies the liquefaction of biodegraded biomass in order to lower hydrogen consumption. Our aim was to develop and optimize the biodegradation of the biomass. Once the reactor was achieved, the influence of different parameters (starting material, aeration, moisture content) on the biotransformation process was studied. The monitored parameters were temperature, pH and carbon /nitrogen ratio. Chemical (IHSS protocol) and biochemical (van Soest) fractionations were used to follow the maturity ("humic acid"/"fulvic acid" ratio) and the biological stability (soluble, hemicelluloses, celluloses, lignin) of the organic matter (OM). In example, the increase in lignin can be related to the stabilization since the OM becomes refractory to biodegradation whereas the increase in the AH/AF ratio traduces "humification". However, contrarily to the composting process, we do

  17. Mathematical modeling and experimental validation of Phaeodactylum tricornutum microalgae growth rate with glycerol addition

    Energy Technology Data Exchange (ETDEWEB)

    Morais, Keli Cristiane Correia; Ribeiro, Robert Luis Lara; Santos, Kassiana Ribeiro dos; Mariano, Andre Bellin [Mariano Center for Research and Development of Sustainable Energy (NPDEAS), Curitiba, PR (Brazil); Vargas, Jose Viriato Coelho [Departament of Mechanical Engineering, Federal University of Parana (UFPR) Curitiba, PR (Brazil)

    2010-07-01

    The Brazilian National Program for Bio fuel Production has been encouraging diversification of feedstock for biofuel production. One of the most promising alternatives is the use of microalgae biomass for biofuel production. The cultivation of microalgae is conducted in aquatic systems, therefore microalgae oil production does not compete with agricultural land. Microalgae have greater photosynthetic efficiency than higher plants and are efficient fixing CO{sub 2}. The challenge is to reduce production costs, which can be minimized by increasing productivity and oil biomass. Aiming to increase the production of microalgae biomass, mixotrophic cultivation, with the addition of glycerol has been shown to be very promising. During the production of biodiesel from microalgae there is availability of glycerol as a side product of the transesterification reaction, which could be used as organic carbon source for microalgae mixotrophic growth, resulting in increased biomass productivity. In this paper, to study the effect of glycerol in experimental conditions, the batch culture of the diatom Phaeodactylum tricornutum was performed in a 2-liter flask in a temperature and light intensity controlled room. During 16 days of cultivation, the number of cells per ml was counted periodically in a Neubauer chamber. The calculation of dry biomass in the control experiment (without glycerol) was performed every two days by vacuum filtration. In the dry biomass mixotrophic experiment with glycerol concentration of 1.5 M, the number of cells was assessed similarly in the 10{sup th} and 14{sup th} days of cultivation. Through a volume element methodology, a mathematical model was written to calculate the microalgae growth rate. It was used an equation that describes the influence of irradiation and concentration of nutrients in the growth of microalgae. A simulation time of 16 days was used in the computations, with initial concentration of 0.1 g l{sup -1}. In order to compare

  18. Astronaut observations of global biomass burning

    International Nuclear Information System (INIS)

    Wood, C.A.; Nelson, R.

    1991-01-01

    One of the most fundamental inputs for understanding and modeling possible effects of biomass burning is knowledge of the size of the area burned. Because the burns are often very large and occur on all continents (except Antarctica), observations from space are essential. Information is presented in this chapter on another method for monitoring biomass burning, including immediate and long-term effects. Examples of astronaut photography of burning during one year give a perspective of the widespread occurrence of burning and the variety of biological materials that are consumed. The growth of burning in the Amazon region is presented over 15 years using smoke as a proxy for actual burning. Possible climate effects of smoke palls are also discussed

  19. Structures, stability, magnetic moments and growth strategies of the Fe_nN (n = 1–7) clusters: All-electron density functional theory calculations

    International Nuclear Information System (INIS)

    Li, Zhi; Zhao, Zhen

    2017-01-01

    The geometries, electronic properties, magnetic moments and growth strategies of the Fe_nN (n = 1–7) clusters are investigated using all-electron density functional theory. The results show that N doping significantly distorts the Fe_n clusters. Fe_4N and Fe_6N clusters are more stable structures than other considered Fe_nN clusters. Local peaks of HOMO-LUMO gap curve are found at n = 3, 7, implying that the chemical stability of the Fe_3N and Fe_7N clusters is higher. Fe_2N, Fe_4N and Fe_6N clusters have larger magnetic moments compared to other considered Fe_nN (n = 1–7) clusters. It can be seen that the Fe_5 clusters are easier to adsorb a Fe atom while the Fe_4 clusters are easier to adsorb a N atom. The considered Fe_mN clusters prefer to adsorb a Fe atom and larger Fe_mN clusters are easier to grow. - Highlights: • The structural stability of the Fe_4N and Fe_6N clusters is higher. • The chemical stability of the Fe_3N and Fe_7N clusters is higher. • Fe_5 clusters are easier to adsorb a Fe atom while Fe_4 clusters are easier to adsorb a N atom. • Fe_nN clusters prefer to adsorb a Fe atom.

  20. Renewable energy--traditional biomass vs. modern biomass

    International Nuclear Information System (INIS)

    Goldemberg, Jose; Teixeira Coelho, Suani

    2004-01-01

    Renewable energy is basic to reduce poverty and to allow sustainable development. However, the concept of renewable energy must be carefully established, particularly in the case of biomass. This paper analyses the sustainability of biomass, comparing the so-called 'traditional' and 'modern' biomass, and discusses the need for statistical information, which will allow the elaboration of scenarios relevant to renewable energy targets in the world

  1. Matching species and sites for biomass plantations in Hawaii

    International Nuclear Information System (INIS)

    Phillips, V.D.; Takahashi, P.K.; Singh, D.; Khan, M.A.

    1991-01-01

    Two methods for matching species and sites for biomass plantations in Hawaii were utilized to estimate biomass yields and production costs for Eucalyptus grandis, Eucalyptus saligna, and Leucaena leucocephala. The 'analogous site' method matches the environmental conditions, including soil, rainfall, temperature, and insolation parameters, of well-characterized experimental biomass research sites which produce known yields of these species with similar land areas, or with those areas that can be made similar through soil amendments and improvement, where no field trials exist. The result is the identification of sites with biomass growth, yield, and cost performances which are analogous to the experimental site. The 'regression model' method relates known site-specific biomass productivity with environmental and soil conditions and management practices developed from sites featuring widely different and distinct environmental conditions. Equations then enable the prediction of biomass performance and production costs for each species at any location statewide. The analytical results, using a geographical information system database and the above methods, are presented in map form to expedite the site selection process which indicates expected biomass yield and cost for several fast-growing tropical hardwood species in Hawaii

  2. LIGNOCELLULOSIC BIOMASS AFTER EXPLOSIVE AUTOHYDROLYSIS AS SUBSTRATE TO BUTANOL OBTAINING

    Directory of Open Access Journals (Sweden)

    Tigunova

    2016-08-01

    Full Text Available The aim of the work was investigation of the effect of the explosive autohydrolysis on lignocellulosic biomass (saving, switchgrass biomass for consequent use as a substrate to produce biofuels such as butanol. Butanol-producing strains, switchgrass Panicum virgatum L. biomass and its components after autohydrolysis were used in study. The thermobaric pressure pretreatment of lignocellulosic biomass was carried out using specially designed equipment. The effect of explosive autohydrolysis on lignocellulosic biomass for further use in producing biofuels using microbial conversion was studied. Components of lignocellulosic biomass were fractionated after undergoing thermobaric treatment. The possibility of using different raw material components after using explosive autohydrolysis processing to produce biobutanol was found. Products of switchgrass biomass autohydrolysis were shown to need further purification before fermentation from furfural formed by thermobaric pretreatment and inhibiting the growth of microorganisms. The ability of strains of the genus Clostridium to use cellulose as a substrate for fermentation was proved. It was found that using explosive autohydrolysis pretreatment to savings allowed boosting the butanol accumulation by 2 times.

  3. Assessment of potential biomass energy production in China towards 2030 and 2050

    Science.gov (United States)

    Zhao, Guangling

    2018-01-01

    The objective of this paper is to provide a more detailed picture of potential biomass energy production in the Chinese energy system towards 2030 and 2050. Biomass for bioenergy feedstocks comes from five sources, which are agricultural crop residues, forest residues and industrial wood waste, energy crops and woody crops, animal manure, and municipal solid waste. The potential biomass production is predicted based on the resource availability. In the process of identifying biomass resources production, assumptions are made regarding arable land, marginal land, crops yields, forest growth rate, and meat consumption and waste production. Four scenarios were designed to describe the potential biomass energy production to elaborate the role of biomass energy in the Chinese energy system in 2030. The assessment shows that under certain restrictions on land availability, the maximum potential biomass energy productions are estimated to be 18,833 and 24,901 PJ in 2030 and 2050.

  4. Structures, stability, magnetic moments and growth strategies of the Fe{sub n}N (n = 1–7) clusters: All-electron density functional theory calculations

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhi, E-mail: lizhi81723700@163.com [School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan, 114051 (China); Zhao, Zhen [School of Chemistry and Life Science, Anshan Normal University, Anshan, 114007 (China)

    2017-02-01

    The geometries, electronic properties, magnetic moments and growth strategies of the Fe{sub n}N (n = 1–7) clusters are investigated using all-electron density functional theory. The results show that N doping significantly distorts the Fe{sub n} clusters. Fe{sub 4}N and Fe{sub 6}N clusters are more stable structures than other considered Fe{sub n}N clusters. Local peaks of HOMO-LUMO gap curve are found at n = 3, 7, implying that the chemical stability of the Fe{sub 3}N and Fe{sub 7}N clusters is higher. Fe{sub 2}N, Fe{sub 4}N and Fe{sub 6}N clusters have larger magnetic moments compared to other considered Fe{sub n}N (n = 1–7) clusters. It can be seen that the Fe{sub 5} clusters are easier to adsorb a Fe atom while the Fe{sub 4} clusters are easier to adsorb a N atom. The considered Fe{sub m}N clusters prefer to adsorb a Fe atom and larger Fe{sub m}N clusters are easier to grow. - Highlights: • The structural stability of the Fe{sub 4}N and Fe{sub 6}N clusters is higher. • The chemical stability of the Fe{sub 3}N and Fe{sub 7}N clusters is higher. • Fe{sub 5} clusters are easier to adsorb a Fe atom while Fe{sub 4} clusters are easier to adsorb a N atom. • Fe{sub n}N clusters prefer to adsorb a Fe atom.

  5. Biomass production for direct generation of energy

    International Nuclear Information System (INIS)

    1992-01-01

    In continuing its activities for the formation of public opinion the Deutsche Farming Association) held a colloquium in 1991 on the issue of biomass production and combustion. Its aim was to gather all current knowledge on this issue and, for the first time, to make a comprehensive appraisal of it. The following aspects were dealt with: Abatement of atmospheric pollution, ecologically oriented production, nature conservation, organisation of decentralized power plant operating corporations, state of the art in combustion technology, operational calculations and, not least, agrarin-political framework conditions. The meeting yielded important statements on remarkable innovations in the area of ecological biomass production and for its utilization as an energy source together with the conventional energy sources of oil, gas, coal and nuclear energy. (orig.) [de

  6. Spatial variation and prediction of forest biomass in a heterogeneous landscape

    Institute of Scientific and Technical Information of China (English)

    S.Lamsal; D.M.Rizzo; R.K.Meentemeyer

    2012-01-01

    Large areas assessments of forest biomass distribution are a challenge in heterogeneous landscapes,where variations in tree growth and species composition occur over short distances.In this study,we use statistical and geospatial modeling on densely sampled forest biomass data to analyze the relative importance of ecological and physiographic variables as determinants of spatial variation of forest biomass in the environmentally heterogeneous region of the Big Sur,California.We estimated biomass in 280 forest plots (one plot per 2.85 km2) and measured an array of ecological (vegetation community type,distance to edge,amount of surrounding non-forest vegetation,soil properties,fire history) and physiographic drivers (elevation,potential soil moisture and solar radiation,proximity to the coast) of tree growth at each plot location.Our geostatistical analyses revealed that biomass distribution is spatially structured and autocorrelated up to 3.1 km.Regression tree (RT) models showed that both physiographic and ecological factors influenced biomass distribution.Across randomly selected sample densities (sample size 112 to 280),ecological effects of vegetation community type and distance to forest edge,and physiographic effects of elevation,potentialsoil moisture and solar radiation were the most consistent predictors of biomass.Topographic moisture index and potential solar radiation had a positive effect on biomass,indicating the importance of topographicallymediated energy and moisture on plant growth and biomass accumulation.RT model explained 35% of the variation in biomass and spatially autocorrelated variation were retained in regession residuals.Regression kriging model,developed from RT combined with kriging of regression residuals,was used to map biomass across the Big Sur.This study demonstrates how statistical and geospatial modeling can be used to discriminate the relative importance of physiographic and ecologic effects on forest biomass and develop

  7. Energy conversion of biomass in coping with global warming

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, Shin-ya; Ogi, Tomoko; Minowa, Tomoaki [National Inst. for Resources and Environment, Tsukuba, Ibaraki (Japan)

    1993-12-31

    The main purpose of the present paper is to propose energy conversion technologies of biomass in coping with global warming. Among thermochemical conversion, liquid fuel production by high pressure process is mainly introduced. Biomass is a term used to describe materials of biological origin, either purpose-grown or arising as by-products, residues or wastes from forestry, agriculture and food processing. Such biomass is a renewable energy sources dependent on solar energy. Through photosynthesis, plants converts carbon dioxide into organic materials used in their growth. Energy can be recovered from the plant materials by several processes, the simplest way is burning in air. As far as biomass is used in this way, there is no atmospheric accumulation of carbon dioxide making no effect on the Greenhouse Effect, provided that the cycle of regrowth and burning is sustained.

  8. Solid biomass barometer

    International Nuclear Information System (INIS)

    Anon.

    2007-01-01

    Primary energy production from solid biomass (wood, wood waste and other solid vegetal and animal materials) reached 62,4 million tons oil equivalent (Mtoe) in 2006, i-e 3,1 more than in 2005. The primary energy coming from the direct combustion of renewable origin solid urban waste in incineration unit scan also be added to this figure. In 2006 this represented a production of 5,3 Mtoe, i-e 0,1 Mtoe more than in 2005. (author)

  9. Biomass Energy Generation Project

    Energy Technology Data Exchange (ETDEWEB)

    Olthoff, Edward [Cedar Falls Utilities, Cedar Falls, IA (United States)

    2017-05-15

    The Municipal Electric Utility of the City of Cedar Falls (dba Cedar Fals Utilities or CFU) received a congressionally directed grant funded through DOE-EERE to run three short (4 hour) duration test burns and one long (10 days) duration test burn to test the viability of renewable fuels in Streeter Station Boiler #6, a stoker coal fired electric generation unit. The long test burn was intended to test supply chain assumptions, optimize boiler combustion and assess the effects of a longer duration burn of biomass on the boiler.

  10. THE BREAKEVEN POINT GIVEN LIMIT COST USING BIOMASS CHP PLANT

    Directory of Open Access Journals (Sweden)

    Paula VOICU

    2015-06-01

    Full Text Available Biomass is a renewable source, non-fossil, from which can be obtained fuels, which can be used in power generation systems. The main difference of fossil fuels is the availability biomass in nature and that it is in continue "reproduction". The use its enable the use of materials that could be destined destruction, as a source of energy "renewable", though result with many ecological values. In this paper we will study, applying a calculation model in view optimal sizing of the cogeneration plant based on biomass, biomass cost limit for the net present value is zero. It will consider that in cogeneration systems and in heating peak systems using biomass. After applying the mathematical model for limit value of biomass cost will determine the nominal optimal coefficient of cogeneration, for which discounted net revenue value is zero. Optimal sizing of CHP plants based on using biomass will be given by optimum coefficient of cogeneration determined following the application of the proposed mathematical model.

  11. Predictive modeling of biomass production by Chlorella vulgaris in a draft-tube airlift photobioreactor

    Directory of Open Access Journals (Sweden)

    Mohsen Mansouri

    2017-04-01

    Full Text Available The objective of this study was to investigate the growth rate of Chlorella vulgaris for CO2 biofixation and biomass production. Six mathematical growth models (Logistic, Gompertz, modified Gompertz, Baranyi, Morgan and Richards were used to evaluate the biomass productivity in continuous processes and to predict the following parameters of cell growth: lag phase duration (λ, maximum specific growth rate (μmax, and maximum cell concentration (Xmax. The low root-mean-square error (RMSE and high regression coefficients (R2 indicated that the models employed were well fitted to the experiment data and it could be regarded as enough to describe biomass production. Using statistical and physiological significance criteria, the Baranyi model was considered the most appropriate for quantifying biomass growth. The biological variables of this model are as follows: μmax=0.0309 h−1, λ=100 h, and Xmax=1.82 g/L.

  12. Burnout calculation

    International Nuclear Information System (INIS)

    Li, D.

    1980-01-01

    Reviewed is the effect of heat flux of different system parameters on critical density in order to give an initial view on the value of several parameters. A thorough analysis of different equations is carried out to calculate burnout is steam-water flows in uniformly heated tubes, annular, and rectangular channels and rod bundles. Effect of heat flux density distribution and flux twisting on burnout and storage determination according to burnout are commended [ru

  13. Reaction pathways of model compounds of biomass-derived oxygenates on Fe/Ni bimetallic surfaces

    Science.gov (United States)

    Yu, Weiting; Chen, Jingguang G.

    2015-10-01

    Controlling the activity and selectivity of converting biomass-derivatives to fuels and valuable chemicals is critical for the utilization of biomass feedstocks. There are primarily three classes of non-food competing biomass, cellulose, hemicellulose and lignin. In the current work, glycolaldehyde, furfural and acetaldehyde are studied as model compounds of the three classes of biomass-derivatives. Monometallic Ni(111) and monolayer (ML) Fe/Ni(111) bimetallic surfaces are studied for the reaction pathways of the three biomass surrogates. The ML Fe/Ni(111) surface is identified as an efficient surface for the conversion of biomass-derivatives from the combined results of density functional theory (DFT) calculations and temperature programmed desorption (TPD) experiments. A correlation is also established between the optimized adsorption geometry and experimental reaction pathways. These results should provide helpful insights in catalyst design for the upgrading and conversion of biomass.

  14. Ash Properties of Alternative Biomass

    DEFF Research Database (Denmark)

    Capablo, Joaquin; Jensen, Peter Arendt; Pedersen, Kim Hougaard

    2009-01-01

    analysis into three main groups depending upon their ash content of silica, alkali metal, and calcium and magnesium. To further detail the biomass classification, the relative molar ratio of Cl, S, and P to alkali were included. The study has led to knowledge on biomass fuel ash composition influence...... on ash transformation, ash deposit flux, and deposit chlorine content when biomass fuels are applied for suspension combustion....

  15. Biomass in Latin America -- overview

    International Nuclear Information System (INIS)

    Park, W.R.

    1993-01-01

    The paper discusses the interest of the Organization of American States as a participant in this hemispheric conference on biomass, provides an introduction to the Latin American experience in biomass energy through open-quotes snapshotsclose quotes of various country activities, and concludes with a discussion of four conditions that form strong incentives for new north/south and south/north ventures in the biomass energy and chemical arena in this hemisphere

  16. Evaluation of social and environment effect of using biomass energy

    International Nuclear Information System (INIS)

    Alighardashi, A.; Adl, M.; Karbasi, A.R.; Naeiji, K.

    2001-01-01

    Biomass is one of the most important sources for clean and renewable energy. International studies show that potential of power generation from biomass has been equal of amount of electricity generated from all centralized sources in the world at 1993. this paper considers social and environmental effects of biomass energy utilization instead of fossil fuels. This study is performed in several sections; destruction of natural resources, emission of pollutants, creation of new job opportunities and public welfare. In each section, some of world experiences and statistics are mentioned. Estimated and calculated results for Iran have been presented. In public welfare section, security cost in different Iranian energy consumption sections have been considered and resulted fuel savings due to biomass energy consumption, are mentioned in detail

  17. Energy from biomass: An overview

    International Nuclear Information System (INIS)

    Van der Toorn, L.J.; Elliott, T.P.

    1992-01-01

    Attention is paid to the effect of the use of energy from biomass on the greenhouse effect. An overview is given of the aspects of forest plantation, carbon dioxide fixation and energy from biomass, in particular with regard to the potential impact of the use of biomass energy on the speed of accumulation of carbon in the atmosphere. A simple model of the carbon cycle to illustrate the geochemical, biological and antropogenic characteristics of the cycle is presented and briefly discussed. Biomass, which is appropriate for energy applications, can be subdivided into three categories: polysaccharides, vegetable oils, and lignocellulosis. The costs for the latter are discussed. Three important options to use biomass as a commercial energy source are solid fuels, liquid fuels, and power generation. For each option the value of energy (on a large-scale level) is compared to the costs of several types of biomass. Recent evaluation of new techniques show that small biomass conversion plants can realize an electricity efficiency of 40%, with capitalized costs far below comparable conventional biomass conversion plants. One of the policy instruments to stimulate the use of biomass as an energy source is the carbon levy, in which the assumed external costs to reduce carbon dioxide emission are expressed. Political and administrative feasibility are important factors in the decision making with regard to carbon storage and energy plantations. 6 figs

  18. Biomass for energy. Danish solutions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    Information is given on a number of typical and recently established plants of all types and sizes, for converting the main Danish biomass resources (manures, straw and wood derived from agricultural activities and forestry)into energy. Danish biomass resources and energy and environmental policies are described. In Denmark there is a very wide range of technologies for converting biomass into energy, and these are clarified. In addition, performance data from a number of plants fuelled with biomass fuels are presented. The course of further developments within this field is suggested. The text is illustrated with a considerable number of coloured photographs and also with graphs and diagrams. (ARW)

  19. Pipelines : moving biomass and energy

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A. [Alberta Univ., Edmonton, AB (Canada). Dept. of Mechanical Engineering

    2006-07-01

    Moving biomass and energy through pipelines was presented. Field sourced biomass utilization for fuel was discussed in terms of competing cost factors; economies of scale; and differing fuel plant sizes. The cost versus scale in a bioenergy facility was illustrated in chart format. The transportation cost of biomass was presented as it is a major component of total biomass processing cost and is in the typical range of 25-45 per cent of total processing costs for truck transport of biomass. Issues in large scale biomass utilization, scale effects in transportation, and components of transport cost were identified. Other topics related to transportation issues included approaches to pipeline transport; cost of wood chips in pipeline transport; and distance variable cost of transporting wood chips by pipeline. Practical applications were also offered. In addition, the presentation provided and illustrated a model for an ethanol plant supplied by truck transport as well as a sample configuration for 19 truck based ethanol plants versus one large facility supplied by truck plus 18 pipelines. Last, pipeline transport of bio-oil and pipeline transport of syngas was discussed. It was concluded that pipeline transport can help in reducing congestion issues in large scale biomass utilization and that it can offer a means to achieve large plant size. Some current research at the University of Alberta on pipeline transport of raw biomass, bio-oil and hydrogen production from biomass for oil sands and pipeline transport was also presented. tabs., figs.

  20. Estimating Swedish biomass energy supply

    International Nuclear Information System (INIS)

    Johansson, J.; Lundqvist, U.

    1999-01-01

    Biomass is suggested to supply an increasing amount of energy in Sweden. There have been several studies estimating the potential supply of biomass energy, including that of the Swedish Energy Commission in 1995. The Energy Commission based its estimates of biomass supply on five other analyses which presented a wide variation in estimated future supply, in large part due to differing assumptions regarding important factors. In this paper, these studies are assessed, and the estimated potential biomass energy supplies are discusses regarding prices, technical progress and energy policy. The supply of logging residues depends on the demand for wood products and is limited by ecological, technological, and economic restrictions. The supply of stemwood from early thinning for energy and of straw from cereal and oil seed production is mainly dependent upon economic considerations. One major factor for the supply of willow and reed canary grass is the size of arable land projected to be not needed for food and fodder production. Future supply of biomass energy depends on energy prices and technical progress, both of which are driven by energy policy priorities. Biomass energy has to compete with other energy sources as well as with alternative uses of biomass such as forest products and food production. Technical progress may decrease the costs of biomass energy and thus increase the competitiveness. Economic instruments, including carbon taxes and subsidies, and allocation of research and development resources, are driven by energy policy goals and can change the competitiveness of biomass energy

  1. Liquid fuel from biomass

    International Nuclear Information System (INIS)

    Breinholt, T.; Gylling, M.; Parsby, M.; Meyer Henius, U.; Sander Nielsen, B.

    1992-09-01

    Various options for Danish production of liquid motor fuels from biomass have been studied in the context of the impact of EEC new common agricultural policy on prices and production quantities of crops, processes and production economy, restraints concerning present and future markets in Denmark, environmental aspects, in particular substitution of fossil fuels in the overall production and end-use, revenue loss required to assure competition with fossil fuels and national competence in business, industry and research. The options studied are rapeseed oil and derivates, ethanol, methanol and other thermo-chemical conversion products. The study shows that the combination of fuel production and co-generation of heat and electricity carried out with energy efficiency and utilization of surplus electricity is important for the economics under Danish conditions. Considering all aspects, ethanol production seems most favorable but in the long term, pyrolyses with catalytic cracking could be an interesting option. The cheapest source of biomass in Denmark is straw, where a considerable amount of the surplus could be used. Whole crop harvested wheat on land otherwise set aside to be fallow could also be an important source for ethanol production. Most of the options contribute favorably to reductions of fossil fuel consumption, but variations are large and the substitution factor is to a great extent dependent on the individual case. (AB) (32 refs.)

  2. Communal biomass conversion plants

    International Nuclear Information System (INIS)

    1991-06-01

    The Coordinating Committee set up by the Danish government in 1986 were given the responsibility of investigating the potentials for biomass conversion plants in Denmark, especially in relation to agricultural, environmental and energy aspects. The results of the Committee's plan of management for this project are presented. This main report covers 13 background reports which deal with special aspects in detail. The report describes the overall plan of management, the demonstration and follow-up programme and the individual biogas demonstration plants. Information gained from these investigations is presented. The current general status, (with emphasis on the technical and economical aspects) and the prospects for the future are discussed. The interest other countries have shown in Danish activities within the field of biogas production is described, and the possibilities for Danish export of technology and know-how in this relation are discussed. It is claimed that Denmark is the first country that has instigated a coordinated development programme for biomass conversion plants. (AB) 24 refs

  3. Biomass and territory

    International Nuclear Information System (INIS)

    Leca, Christel; Regnier, Yannick; Couturier, Christian; Cousin, Stephane; Defaye, Serge; Jilek, Wolfgang; Merle, Sophie; Le Treis, Marc; Jacques, Dominique; Gauthier, Alice; Formerg, Thomas; Duffes, Thomas; Bellanger, Delphine; Nguyen, Elodie

    2012-01-01

    As the biomass sector is growing, several questions are raised regarding the durability of the use of wood as energy source: risk of forest over-exploitation, impact of particles on health, oversized projects without any relationship with local interests, controversy on carbon assessment, massive imports of pellets without real guarantee of durability. A first article addresses the role of French local communities, and identifies six main regions with different characteristics. The example of the Austrian region of Styria is discussed where the share of renewable energies has reached 26,5% (61% of biomass including paper mill wastes). Opportunities and limitations of the development of the agro-fuel sector are briefly discussed. The case of the city of Aubenas is commented (heat network supplied by wood). The issue of short circuit supply is discussed. Other articles outline how air quality is an asset for wood energy, discuss which kind of wood is adapted to an environment-friendly heating, the need to promote wood energy, the importance of the empowerment of local communities, the perspective of a new law on heat, the need to review mechanisms supporting cogeneration, and the role of the French rural network (Reseau Rural Francais) to support rural actors of the wood energy sector

  4. Nitrogen cycling in an integrated biomass for energy system

    International Nuclear Information System (INIS)

    Moorhead, K.K.

    1986-01-01

    A series of experiments was conducted to evaluate N cycling in three components of an integrated biomass for energy system, i.e. water hyacinth production, anaerobic digestion in hyacinth biomass, and recycling of digester effluent and sludge. Plants assimilated 50 to 90% of added N in hyacinth production systems. Up to 28% of the total plant N was contained in hyacinth detritus. Nitrogen loading as plant detritus into hyacinth ponds was 92 to 148 kg N ha -1 yr -1 . Net mineralization of plant organic 15 N during anaerobic digestion was 35 and 70% for water hyacinth plants with low and high N content, respectively. Approximately 20% of the 15 N was recovered in the digested sludge while the remaining 15 N was recovered in the effluent. Water hyacinth growth in digester effluents was affected by electrical conductivity and 15 NH 4 + -N concentration. Addition of water hyacinth biomass to soil resulted in decomposition of 39 to 50% of added C for fresh plant biomass and 19 to 23% of added C for digested biomass sludge. Only 8% of added 15 N in digested sludges was mineralized to 15 NO 3 - -N despite differences in initial N content. In contrast, 3 and 33% of added 15 N in fresh biomass with low and high N content, respectively, was recovered as 15 NO 3 - -N. Total 15 N recovery after anaerobic digestion ranged from 70 to 100% of the initial plant biomass 15 N. Total N recovery by sludge and effluent recycling in the integrated biomass for energy system was 48 to 60% of the initial plant biomass 15 N

  5. Root diseases, climate change and biomass productivity

    International Nuclear Information System (INIS)

    Warren, G.R.; Cruickshank, M.

    2004-01-01

    Tree growth and yield in eastern boreal spruce fir forests are both greatly affected by root and butt rots. These pests are also prevalent in western coniferous species and boreal-sub-boreal forests. Infections are difficult to detect, but reduced growth, tree mortality, wind throw and scaled butt cull contribute to considerable forest gaps. Harvesting and stand tending practices in second growth stands are creating conditions for increased incidence. Tree stress is one of the major factors affecting the spread of root disease. It is expected that climate change will create abnormal stress conditions that will further compound the incidence of root disease. A comparison was made between natural and managed stands, including harvesting and stand practices such as commercial thinning. Studies of Douglas-fir forests in British Columbia were presented, with results indicating that managed forests contain one third to one half less carbon biomass than unmanaged forests. It was concluded that root diseases must be recognized and taken into account in order to refine and improve biomass estimates, prevent overestimation of wood supply models and avoid potential wood fibre losses. 40 refs., 2 figs.

  6. Response of biomass and nitrogen yield of white clover to radiation and atmospheric CO2 concentration

    International Nuclear Information System (INIS)

    Manderscheid, R.; Bender, J.; Schenk, U.; Weigel, H.J.

    1997-01-01

    The objectives of the present study were to test (i) whether the effect of season-long CO 2 enrichment on plant dry matter production of white clover (Trifolium repens cv. Karina) depends on the temperature or can solely be explained by changes in radiation use efficiency, and (ii) whether the atmospheric CO 2 concentration affects the relationship between tissue %N and plant biomass. Plants were grown in pots with adequate nutrient and water supply and were exposed to ambient and above ambient CO 2 concentrations (approximately +80 ppm, +160 ppm, +280 ppm) in open-top chambers for two seasons. Nitrogen fertilizer was given only before the experiment started to promote N 2 fixation. Plants were clipped to a height of 5 cm, when the canopy had reached a height of about 20 cm and when the CO 2 effect had not been diminished due to self-shading of the leaves. Photon exposure (400–700 nm) measured above the canopy was linearly related to the above ground biomass, the leaf area index and the nitrogen yield (r 2 > 0.94). The slopes of the curves depended on the CO 2 concentration. Since most of the radiation (>90%) was absorbed by the foliage, the slopes were used to calculate the CO 2 effect on the radiation use efficiency of biomass production, which is shown to increase curvilinearly between 380 and 660 ppm CO 2 from 2.7 g MJ −1 to 3.9 g MJ −1 . CO 2 enrichment increased above ground biomass by increasing the leaf number, the individual leaf weight and the leaf area; specific leaf weight was not affected. The relative CO 2 response varied between harvests; there was a slight but not significant positive relationship with mean daytime temperature. At the beginning of the season, plant nitrogen concentration in the above ground biomass was decreased by CO 2 enrichment. However, at later growth stages, when the plants depended solely on N 2 fixation, nitrogen concentration was found to be increased when the nitrogen concentration value was adjusted for the decrease

  7. Vegetal and animal biomass; Les biomasses vegetales et animales

    Energy Technology Data Exchange (ETDEWEB)

    Combarnous, M. [Bordeaux-1 Univ., Lab. Energetique et Phenomenes de Transfert, UMR CNRS ENSAM, 33 - Talence (France)

    2005-07-01

    This presentation concerns all types of biomass of the earth and the seas and the relative implicit consumptions. After an evaluation of the food needs of the human being, the author discusses the solar energy conversion, the energetic flux devoted to the agriculture production, the food chain and the biomass. (A.L.B.)

  8. Detailed modelling of biomass pyrolysis: biomass structure and composition

    International Nuclear Information System (INIS)

    Hugony, F.; Migliavacca, G.; Faravelli, T.; Ranzi, E.

    2007-01-01

    The research routes followed in the field of numerical modelling development for biomass devolatilization are here summarised. In this first paper a wide introduction concerning the description of the chemical nature of the main classes of compounds which constitute biomasses is reported, it is the starting point for the subsequent description of the developed models, described in the companion paper [it

  9. Biomass energy development in California: Accomplishments and challenges

    International Nuclear Information System (INIS)

    Miller, W.G.

    1994-01-01

    The recent and rapid growth of biomass power development in California has created the largest contiguous biomass fueled electrical generating capacity in U.S. This growth has been fostered by resource availability, federal (PURPA) incentives, and the entrepeneurial response of independent power producers. California's environment has benefited from reduced air emissions, wildfire suppression, landfill reduction and the sequestering of carbon. The state has benefited economically through capital investment, employment for several thousand, and the generation of over $100 million in state and local tax revenues. Along with the benefits have come serious challenges brought about largely due to changes in the utility and regulatory environment. These changes threaten the continued existence and economic viability of the developed biomass power industry in California and threatens to establish national precedents. Specific issues are identified and recommended actions are presented

  10. Bioenergetics of growth and lipid production in Chlamydomonas reinhardtii

    International Nuclear Information System (INIS)

    Küçük, Kübra; Tevatia, Rahul; Sorgüven, Esra; Demirel, Yaşar; Özilgen, Mustafa

    2015-01-01

    The study of thermodynamic aspects of the lipid, e.g., raw material for biodiesel, production in microalgae is important, as the non-lipid producing biological activities of the algal cultivation consume part of the solar energy captured during photosynthesis in expense of the exergetic efficiency of the lipid production process. The cultivation of Chlamydomonas reinhardtii (a unicellular biflagellate fresh-water microalga) is modeled as a three-step chemical mechanism representing growth, respiration, and lipid production. Further, the comprehensive thermodynamic analysis of these mechanisms is presented. The cumulative degree of perfection of the cellular proliferation, after excluding the lipid synthesis, fluctuates with no trend around 0.52 ± 0.19. The exergy analysis has indicated that C. reinhardtii prefers to maximize the lipid production when it is difficult to generate new cells. Under batch production of algal biomass, the highest heat and exergy loss per unit biomass production are accountable under the most favorable biological growth conditions, whereas the highest exergetic efficiency of the lipid production accounted under the least favorable growth conditions, which is in line with the previous studies. - Highlights: • Biomass, lipid production and respiration modeled as three-step chemical reaction. • CDP (cumulative degree of perfection) is calculated based on the model. • The CDP of the algae, after excluding the lipids, is about 0.52 ± 0.19. • Chlamydomonas reinhardtii maximized lipid production when it was difficult to grow

  11. System and process for biomass treatment

    Science.gov (United States)

    Dunson, Jr., James B; Tucker, III, Melvin P; Elander, Richard T; Lyons, Robert C

    2013-08-20

    A system including an apparatus is presented for treatment of biomass that allows successful biomass treatment at a high solids dry weight of biomass in the biomass mixture. The design of the system provides extensive distribution of a reactant by spreading the reactant over the biomass as the reactant is introduced through an injection lance, while the biomass is rotated using baffles. The apparatus system to provide extensive assimilation of the reactant into biomass using baffles to lift and drop the biomass, as well as attrition media which fall onto the biomass, to enhance the treatment process.

  12. Perceptions of Agriculture Teachers Regarding Education about Biomass Production in Iowa

    Science.gov (United States)

    Han, Guang; Martin, Robert A.

    2015-01-01

    With the growth of biorenewable energy, biomass production has become an important segment in the agriculture industry (Iowa Energy Center, 2013). A great workforce will be needed for this burgeoning biomass energy industry (Iowa Workforce Development, n. d.). Instructional topics in agricultural education should take the form of problems and…

  13. A lifetime perspective of biomass allocation in Quercus pubescens trees in a dry, alpine valley

    NARCIS (Netherlands)

    Slot, M.; Janse-ten Klooster, S.H.; Sterck, F.J.; Sass-Klaassen, U.; Zweifel, R.

    2012-01-01

    Plasticity of biomass allocation is a key to growth and survival of trees exposed to variable levels of stress in their lifetime. Most of our understanding of dynamic biomass allocation comes from seedling studies, but plasticity may be different in mature trees. We used stem analysis to reconstruct

  14. Energy potential of fruit tree pruned biomass in Croatia

    Energy Technology Data Exchange (ETDEWEB)

    Bilandzija, N.; Voca, N.; Kricka, T.; Martin, A.; Jurisic, V.

    2012-11-01

    The world's most developed countries and the European Union (EU) deem that the renewable energy sources should partly substitute fossil fuels and become a bridge to the utilization of other energy sources of the future. This paper will present the possibility of using pruned biomass from fruit cultivars. It will also present the calculation of potential energy from the mentioned raw materials in order to determine the extent of replacement of non-renewable sources with these types of renewable energy. One of the results of the intensive fruit-growing process, in post pruning stage, is large amount of pruned biomass waste. Based on the calculated biomass (kg ha{sup 1}) from intensively grown woody fruit crops that are most grown in Croatia (apple, pear, apricots, peach and nectarine, sweet cherry, sour cherry, prune, walnut, hazelnut, almond, fig, grapevine, and olive) and the analysis of combustible (carbon 45.55-49.28%, hydrogen 5.91-6.83%, and sulphur 0.18-0.21%) and non-combustible matters (oxygen 43.34-46.6%, nitrogen 0.54-1.05%, moisture 3.65-8.83%, ashes 1.52-5.39%) with impact of lowering the biomass heating value (15.602-17.727 MJ kg{sup 1}), the energy potential of the pruned fruit biomass is calculated at 4.21 PJ. (Author) 31 refs.

  15. Digital Biomass Accumulation Using High-Throughput Plant Phenotype Data Analysis.

    Science.gov (United States)

    Rahaman, Md Matiur; Ahsan, Md Asif; Gillani, Zeeshan; Chen, Ming

    2017-09-01

    Biomass is an important phenotypic trait in functional ecology and growth analysis. The typical methods for measuring biomass are destructive, and they require numerous individuals to be cultivated for repeated measurements. With the advent of image-based high-throughput plant phenotyping facilities, non-destructive biomass measuring methods have attempted to overcome this problem. Thus, the estimation of plant biomass of individual plants from their digital images is becoming more important. In this paper, we propose an approach to biomass estimation based on image derived phenotypic traits. Several image-based biomass studies state that the estimation of plant biomass is only a linear function of the projected plant area in images. However, we modeled the plant volume as a function of plant area, plant compactness, and plant age to generalize the linear biomass model. The obtained results confirm the proposed model and can explain most of the observed variance during image-derived biomass estimation. Moreover, a small difference was observed between actual and estimated digital biomass, which indicates that our proposed approach can be used to estimate digital biomass accurately.

  16. Biomass production efficiency controlled by management in temperate and boreal ecosystems

    Science.gov (United States)

    Campioli, M.; Vicca, S.; Luyssaert, S.; Bilcke, J.; Ceschia, E.; Chapin, F. S., III; Ciais, P.; Fernández-Martínez, M.; Malhi, Y.; Obersteiner, M.; Olefeldt, D.; Papale, D.; Piao, S. L.; Peñuelas, J.; Sullivan, P. F.; Wang, X.; Zenone, T.; Janssens, I. A.

    2015-11-01

    Plants acquire carbon through photosynthesis to sustain biomass production, autotrophic respiration and production of non-structural compounds for multiple purposes. The fraction of photosynthetic production used for biomass production, the biomass production efficiency, is a key determinant of the conversion of solar energy to biomass. In forest ecosystems, biomass production efficiency was suggested to be related to site fertility. Here we present a database of biomass production efficiency from 131 sites compiled from individual studies using harvest, biometric, eddy covariance, or process-based model estimates of production. The database is global, but dominated by data from Europe and North America. We show that instead of site fertility, ecosystem management is the key factor that controls biomass production efficiency in terrestrial ecosystems. In addition, in natural forests, grasslands, tundra, boreal peatlands and marshes, biomass production efficiency is independent of vegetation, environmental and climatic drivers. This similarity of biomass production efficiency across natural ecosystem types suggests that the ratio of biomass production to gross primary productivity is constant across natural ecosystems. We suggest that plant adaptation results in similar growth efficiency in high- and low-fertility natural systems, but that nutrient influxes under managed conditions favour a shift to carbon investment from the belowground flux of non-structural compounds to aboveground biomass.

  17. Biomass burning in Africa: As assessment of annually burned biomass

    International Nuclear Information System (INIS)

    Delmas, R.A.; Loudjani, P.; Podaire, A.; Menaut, J.C.

    1991-01-01

    It is now established that biomass burning is the dominant phenomenon that controls the atmospheric chemistry in the tropics. Africa is certainly the continent where biomass burning under various aspects and processes is the greatest. Three different types of burnings have to be considered-bush fires in savanna zones which mainly affect herbaceous flora, forest fires due to forestation for shifting agriculture or colonization of new lands, and the use of wood as fuel. The net release of carbon resulting from deforestation is assumed to be responsible for about 20% of the CO 2 increase in the atmosphere because the burning of forests corresponds to a destorage of carbon from the biospheric reservoir. The amount of reactive of greenhouse gases emitted by biomass burning is directly proportional, through individual emission factors, to the biomass actually burned. This chapter evaluates the biomass annually burned on the African continent as a result of the three main burning processes previously mentioned

  18. ALTENER - Biomass event in Finland

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    The publication contains the lectures held in the Biomass event in Finland. The event was divided into two sessions: Fuel production and handling, and Co-combustion and gasification sessions. Both sessions consisted of lectures and the business forum during which the companies involved in the research presented themselves and their research and their equipment. The fuel production and handling session consisted of following lectures and business presentations: AFB-NETT - business opportunities for European biomass industry; Wood waste in Europe; Wood fuel production technologies in EU- countries; new drying method for wood waste; Pellet - the best package for biofuel - a view from the Swedish pelletmarket; First biomass plant in Portugal with forest residue fuel; and the business forum of presentations: Swedish experiences of willow growing; Biomass handling technology; Chipset 536 C Harvester; KIC International. The Co-combustion and gasification session consisted of following lectures and presentations: Gasification technology - overview; Overview of co-combustion technology in Europe; Modern biomass combustion technology; Wood waste, peat and sludge combustion in Enso Kemi mills and UPM-Kymmene Rauma paper mill; Enhanced CFB combustion of wood chips, wood waste and straw in Vaexjoe in Sweden and Grenaa CHP plant in Denmark; Co-combustion of wood waste; Biomass gasification projects in India and Finland; Biomass CFB gasifier connected to a 350 MW{sub t}h steam boiler fired with coal and natural gas - THERMIE demonstration project in Lahti (FI); Biomass gasification for energy production, Noord Holland plant in Netherlands and Arbre Energy (UK); Gasification of biomass in fixed bed gasifiers, Wet cleaning and condensing heat recovery of flue gases; Combustion of wet biomass by underfeed grate boiler; Research on biomass and waste for energy; Engineering and consulting on energy (saving) projects; and Research and development on combustion of solid fuels

  19. ALTENER - Biomass event in Finland

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The publication contains the lectures held in the Biomass event in Finland. The event was divided into two sessions: Fuel production and handling, and Co-combustion and gasification sessions. Both sessions consisted of lectures and the business forum during which the companies involved in the research presented themselves and their research and their equipment. The fuel production and handling session consisted of following lectures and business presentations: AFB-NETT - business opportunities for European biomass industry; Wood waste in Europe; Wood fuel production technologies in EU- countries; new drying method for wood waste; Pellet - the best package for biofuel - a view from the Swedish pelletmarket; First biomass plant in Portugal with forest residue fuel; and the business forum of presentations: Swedish experiences of willow growing; Biomass handling technology; Chipset 536 C Harvester; KIC International. The Co-combustion and gasification session consisted of following lectures and presentations: Gasification technology - overview; Overview of co-combustion technology in Europe; Modern biomass combustion technology; Wood waste, peat and sludge combustion in Enso Kemi mills and UPM-Kymmene Rauma paper mill; Enhanced CFB combustion of wood chips, wood waste and straw in Vaexjoe in Sweden and Grenaa CHP plant in Denmark; Co-combustion of wood waste; Biomass gasification projects in India and Finland; Biomass CFB gasifier connected to a 350 MW{sub t}h steam boiler fired with coal and natural gas - THERMIE demonstration project in Lahti (FI); Biomass gasification for energy production, Noord Holland plant in Netherlands and Arbre Energy (UK); Gasification of biomass in fixed bed gasifiers, Wet cleaning and condensing heat recovery of flue gases; Combustion of wet biomass by underfeed grate boiler; Research on biomass and waste for energy; Engineering and consulting on energy (saving) projects; and Research and development on combustion of solid fuels

  20. Biomass Scenario Model | Energy Analysis | NREL

    Science.gov (United States)

    Biomass Scenario Model Biomass Scenario Model The Biomass Scenario Model (BSM) is a unique range of lignocellulosic biomass feedstocks into biofuels. Over the past 25 years, the corn ethanol plant matter (lignocellulosic biomass) to fermentable sugars for the production of fuel ethanol

  1. Biomass Energy | Climate Neutral Research Campuses | NREL

    Science.gov (United States)

    Biomass Energy Biomass Energy Biomass from local sources can be key to a campus climate action plan biomass may fit into your campus climate action plan. Campus Options Considerations Sample Project Related biomass fuels for energy does not add to the net amount of carbon in the atmosphere. This is because the

  2. Reliability calculations

    International Nuclear Information System (INIS)

    Petersen, K.E.

    1986-03-01

    Risk and reliability analysis is increasingly being used in evaluations of plant safety and plant reliability. The analysis can be performed either during the design process or during the operation time, with the purpose to improve the safety or the reliability. Due to plant complexity and safety and availability requirements, sophisticated tools, which are flexible and efficient, are needed. Such tools have been developed in the last 20 years and they have to be continuously refined to meet the growing requirements. Two different areas of application were analysed. In structural reliability probabilistic approaches have been introduced in some cases for the calculation of the reliability of structures or components. A new computer program has been developed based upon numerical integration in several variables. In systems reliability Monte Carlo simulation programs are used especially in analysis of very complex systems. In order to increase the applicability of the programs variance reduction techniques can be applied to speed up the calculation process. Variance reduction techniques have been studied and procedures for implementation of importance sampling are suggested. (author)

  3. Calculator calculus

    CERN Document Server

    McCarty, George

    1982-01-01

    How THIS BOOK DIFFERS This book is about the calculus. What distinguishes it, however, from other books is that it uses the pocket calculator to illustrate the theory. A computation that requires hours of labor when done by hand with tables is quite inappropriate as an example or exercise in a beginning calculus course. But that same computation can become a delicate illustration of the theory when the student does it in seconds on his calculator. t Furthermore, the student's own personal involvement and easy accomplishment give hi~ reassurance and en­ couragement. The machine is like a microscope, and its magnification is a hundred millionfold. We shall be interested in limits, and no stage of numerical approximation proves anything about the limit. However, the derivative of fex) = 67.SgX, for instance, acquires real meaning when a student first appreciates its values as numbers, as limits of 10 100 1000 t A quick example is 1.1 , 1.01 , 1.001 , •••• Another example is t = 0.1, 0.01, in the functio...

  4. Maintenance-energy-dependent dynamics of growth and poly(3-hydroxybutyrate) [P(3HB)] production by Azohydromonas lata MTCC 2311 using simple and renewable carbon substrates

    OpenAIRE

    Zafar,M.; Kumar,S.; Kumar,S.; Dhiman,A. K.; Park,H.-S.

    2014-01-01

    The dynamics of microbial growth and poly(3-hydroxybutyrate) [P(3HB)] production in growth/ non-growth phases of Azhohydromonas lata MTCC 2311 were studied using a maintenance-energy-dependent mathematical model. The values of calculated model kinetic parameters were: m s1 = 0.0005 h-1, k = 0.0965, µmax = 0.25 h-1 for glucose; m s1 = 0.003 h-1, k = 0.1229, µmax = 0.27 h-1 for fructose; and m s1 = 0.0076 h-1, k = 0.0694, µmax = 0.25 h-1 for sucrose. The experimental data of biomass growth, sub...

  5. Slow growth rates of Amazonian trees: Consequences for carbon cycling

    Science.gov (United States)

    Vieira, Simone; Trumbore, Susan; Camargo, Plinio B.; Selhorst, Diogo; Chambers, Jeffrey Q.; Higuchi, Niro; Martinelli, Luiz Antonio

    2005-01-01

    Quantifying age structure and tree growth rate of Amazonian forests is essential for understanding their role in the carbon cycle. Here, we use radiocarbon dating and direct measurement of diameter increment to document unexpectedly slow growth rates for trees from three locations spanning the Brazilian Amazon basin. Central Amazon trees, averaging only ≈1mm/year diameter increment, grow half as fast as those from areas with more seasonal rainfall to the east and west. Slow growth rates mean that trees can attain great ages; across our sites we estimate 17-50% of trees with diameter >10 cm have ages exceeding 300 years. Whereas a few emergent trees that make up a large portion of the biomass grow faster, small trees that are more abundant grow slowly and attain ages of hundreds of years. The mean age of carbon in living trees (60-110 years) is within the range of or slightly longer than the mean residence time calculated from C inventory divided by annual C allocation to wood growth (40-100 years). Faster C turnover is observed in stands with overall higher rates of diameter increment and a larger fraction of the biomass in large, fast-growing trees. As a consequence, forests can recover biomass relatively quickly after disturbance, whereas recovering species composition may take many centuries. Carbon cycle models that apply a single turnover time for carbon in forest biomass do not account for variations in life strategy and therefore may overestimate the carbon sequestration potential of Amazon forests. PMID:16339903

  6. Seagrass Biomass and Productivity in Seaweed and Non-Seaweed ...

    African Journals Online (AJOL)

    Seagrass beds are often subjected to stress resulting from natural and human activities. In this study, the shoot density, biomass and growth characteristics of Thalassia hemprichii and Enhalus acoroides were measured to assess the impact of seaweed farming activities on seagrass meadows at Marumbi, Chwaka Bay and ...

  7. Production of Saccharomyces cerevisiae biomass in papaya extract ...

    African Journals Online (AJOL)

    Extracts of papaya fruit were used as substrate for single cell protein (SCP) production using Saccharomyces cerevisiae. A 500 g of papaya fruit was extracted with different volumes of sterile distilled water. Extraction with 200 mL of sterile distilled water sustained highest cell growth. Biochemical analysis of dry biomass ...

  8. Experimental study of the production of biomass by Sacharomyces ...

    African Journals Online (AJOL)

    SERVER

    2008-04-17

    Apr 17, 2008 ... h-1 exceeds by far the maximum specific growth rate of the yeast under aerobic condition as obtained ... use for bread-making, a staple food for large section of ..... mental yield of biomass may be inaccurate measurement.

  9. The characteristics of biomass production, lipid accumulation and ...

    African Journals Online (AJOL)

    Glucose was the optimal carbon source for mixotrophic cultivation of C. vulgaris and the effects of glucose content on the alga growth under mixotrophic conditions were considerable because lower glucose content (1 g/l) promoted the production of biomass and photosynthetic pigments; higher glucose contents (>5 g/l) ...

  10. Estimating annual bole biomass production using uncertainty analysis

    Science.gov (United States)

    Travis J. Woolley; Mark E. Harmon; Kari B. O' Connell

    2007-01-01

    Two common sampling methodologies coupled with a simple statistical model were evaluated to determine the accuracy and precision of annual bole biomass production (BBP) and inter-annual variability estimates using this type of approach. We performed an uncertainty analysis using Monte Carlo methods in conjunction with radial growth core data from trees in three Douglas...

  11. Modeling population dynamics and woody biomass of Alaska coastal forest

    Science.gov (United States)

    Randy L. Peterson; Jingjing Liang; Tara M. Barrett

    2014-01-01

    Alaska coastal forest, 6.2 million ha in size, has been managed in the past mainly through clearcutting. Declining harvest and dwindling commercial forest resources over the past 2 decades have led to increased interest in management of young-growth stands and utilization of woody biomass for bioenergy. However, existing models to support these new management systems...

  12. Economic feasibility of CHP facilities fueled by biomass from unused agriculture land: Case of Croatia

    International Nuclear Information System (INIS)

    Pfeifer, Antun; Dominković, Dominik Franjo; Ćosić, Boris; Duić, Neven

    2016-01-01

    Highlights: • Potential of unused agricultural land for biomass and fruit production is assessed. • Technical and energy potential of biomass from SRC and fruit pruning is calculated. • Economic feasibility of CHP plants utilizing biomass from SRC is presented for Croatia. • Sensitivity analysis and recommendations for shift toward feasibility are provided. - Abstract: In this paper, the energy potential of biomass from growing short rotation coppice on unused agricultural land in the Republic of Croatia is used to investigate the feasibility of Combined Heat and Power (CHP) facilities fueled by such biomass. Large areas of agricultural land that remain unused for food crops, represent significant potential for growing biomass that could be used for energy. This biomass could be used to supply power plants of up to 15 MW_e in accordance with heat demands of the chosen locations. The methodology for regional energy potential assessment was elaborated in previous work and is now used to investigate the conditions in which such energy facilities could be feasible. The overall potential of biomass from short rotation coppice cultivated on unused agricultural land in the scenarios with 30% of the area is up to 10 PJ/year. The added value of fruit trees pruning biomass represents an incentive for the development of fruit production on such agricultural land. Sensitivity analysis was conducted for several parameters: cost of biomass, investment costs in CHP systems and combined change in biomass and technology cost.

  13. OUT Success Stories: Biomass Gasifiers

    International Nuclear Information System (INIS)

    Jones, J.

    2000-01-01

    The world's first demonstration of an efficient, low-pressure biomass gasifier capable of producing a high-quality fuel is now operating in Vermont. The gasifier converts 200 tons of solid biomass per day into a clean-burning gas with a high energy content for electricity generation

  14. Fundamentals of Biomass pellet production

    DEFF Research Database (Denmark)

    Holm, Jens Kai; Henriksen, Ulrik Birk; Hustad, Johan Einar

    2005-01-01

    Pelletizing experiments along with modelling of the pelletizing process have been carried out with the aim of understanding the fundamental physico-chemical mechanisms that control the quality and durability of biomass pellets. A small-scale California pellet mill (25 kg/h) located with the Biomass...

  15. Fusion characterization of biomass ash

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Teng [State Key Laboratory ofMultiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Zhongguancun North Second Street, Beijing 100190 (China); Sino-Danish Center for Education and Research, Beijing, 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Fan, Chuigang; Hao, Lifang [State Key Laboratory ofMultiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Zhongguancun North Second Street, Beijing 100190 (China); Li, Songgeng, E-mail: sgli@ipe.ac.cn [State Key Laboratory ofMultiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Zhongguancun North Second Street, Beijing 100190 (China); Song, Wenli [State Key Laboratory ofMultiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Zhongguancun North Second Street, Beijing 100190 (China); Lin, Weigang [State Key Laboratory ofMultiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Zhongguancun North Second Street, Beijing 100190 (China); Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark)

    2016-08-20

    Highlights: • A novel method is proposed to analyze fusion characteristics of biomass ash. • T{sub m} can represent the severe melting temperature of biomass ash. • Compared with AFT, TMA is the better choice to analyze the fusion characteristics of biomass ash. - Abstract: The ash fusion characteristics are important parameters for thermochemical utilization of biomass. In this research, a method for measuring the fusion characteristics of biomass ash by Thermo-mechanical Analyzer, TMA, is described. The typical TMA shrinking ratio curve can be divided into two stages, which are closely related to ash melting behaviors. Several characteristics temperatures based on the TMA curves are used to assess the ash fusion characteristics. A new characteristics temperature, T{sub m}, is proposed to represent the severe melting temperature of biomass ash. The fusion characteristics of six types of biomass ash have been measured by TMA. Compared with standard ash fusibility temperatures (AFT) test, TMA is more suitable for measuring the fusion characteristics of biomass ash. The glassy molten areas of the ash samples are sticky and mainly consist of K-Ca-silicates.

  16. Forest biomass-based energy

    Science.gov (United States)

    Janaki R. R. Alavalapati; Pankaj Lal; Andres Susaeta; Robert C. Abt; David N. Wear

    2013-01-01

    Key FindingsHarvesting woody biomass for use as bioenergy is projected to range from 170 million to 336 million green tons by 2050, an increase of 54 to 113 percent over current levels.Consumption projections for forest biomass-based energy, which are based on Energy Information Administration projections, have a high level of...

  17. Refining fast pyrolysis of biomass

    NARCIS (Netherlands)

    Westerhof, Roel Johannes Maria

    2011-01-01

    Pyrolysis oil produced from biomass is a promising renewable alternative to crude oil. Such pyrolysis oil has transportation, storage, and processing benefits, none of which are offered by the bulky, inhomogeneous solid biomass from which it originates. However, pyrolysis oil has both a different

  18. Woody biomass logistics [Chapter 14

    Science.gov (United States)

    Robert Keefe; Nathaniel Anderson; John Hogland; Ken Muhlenfeld

    2014-01-01

    The economics of using woody biomass as a fuel or feedstock for bioenergy applications is often driven by logistical considerations. Depending on the source of the woody biomass, the acquisition cost of the material is often quite low, sometimes near zero. However, the cost of harvesting, collection, processing, storage, and transportation from the harvest site to end...

  19. Biomass plantations - energy farming

    Energy Technology Data Exchange (ETDEWEB)

    Paul, S.

    1981-02-01

    Mounting oil import bills in India are restricting her development programmes by forcing the cutting down of the import of other essential items. But the countries of the tropics have abundant sunlight and vast tracts of arable wastelands. Energy farming is proposed in the shape of energy plantations through forestry or energy cropping through agricultural media, to provide power fuels for transport and the industries and also to provide fuelwoods for the domestic sector. Short rotation cultivation is discussed and results are given of two main species that are being tried, ipil-ipil and Casuarina. Evaluations are made on the use of various crops such as sugar cane, cassava and kenaf as fuel crops together with hydrocarbon plants and aquatic biomass. (Refs. 20)

  20. Communal biomass conversion plants

    International Nuclear Information System (INIS)

    Holm-Nielsen, J.B.; Huntingford, S.; Halberg, N.

    1993-03-01

    The aim was to show the agricultural advantages of farmers being in connection with Communal Biogas Plant. Whether a more environmentally protectire distribution of plant nutrients from animal manure takes place through a biogas plants distribution system, whether the nitrogen in the digested slurry is better utilized and whether the connection results in slurry transportation-time reduction, are discussed. The average amount of nitrogen from animal manure used per hectare was reduced. The area of manure distribution was larger. The nitrogen efficiency was increased when using digested slurry and purchase of N mineral fertilizer decreased, resulting in considerable reduction in nitrogen leaching. The amount of slurry delivered to the local storage tanks was approximately 45 per cent of the total amount treated on the biogas plant. Conditions of manure transport improved greatly as this was now the responsibility of the communal biomass conversion plant administrators. (AB) (24 refs.)