WorldWideScience

Sample records for biomass flash pyrolysis

  1. Environmental control technology for biomass flash pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Harkness, J.B.L.; Doctor, R.D.; Seward, W.H.

    1980-01-01

    The rapid commercialization of biomass gasification and pyrolysis technologies will raise questions concerning the environmental impacts of these systems and the associated costs for appropriate control technologies. This study concentrates on characterizing the effluent emissions and control technologies for a dual fluid-bed pyrolysis unit run by Arizona State University, Tempe, Arizona. The ASU system produces a raw product gas that is passed through a catalytic liquefaction system to produce a fuel comparable to No. 2 fuel oil. Argonne National Laboratory is conducting a program that will survey several biomass systems to standardize the sampling techniques, prioritize standard analyses and develop a data base so that environmental issues later may be addressed before they limit or impede the commercialization of biomass gasification and pyrolysis technologies. Emissions will be related to both the current and anticipated emissions standards to generate material balances and set design parameters for effluent treatment systems. This will permit an estimate to be made of the capital and operating costs associated with these technologies.

  2. Flash co-pyrolysis of biomass with plastic waste

    Energy Technology Data Exchange (ETDEWEB)

    T. Cornelissen; S. Schreurs; G. Reggers; R. Carleer; J. Yperman [Hasselt University, Diepenbeek (Belgium). Lab of Applied Chemistry

    2007-07-01

    The Global Warming, the Kyoto Protocol and the emission of greenhouse gasses such as CO{sub 2} are the topics of environmental pleadings. The world's energy supply is limited due to the depletion of fossil fuels, which are still the most important energy sources consumed. The development of new and renewable energies is the key to change. The flash pyrolysis of biomass is a promising route for the production of solid, liquid and gaseous products. A high liquid production requires very low vapour residence time to minimise secondary reactions. Flash co-pyrolytic techniques, at low temperature, provide an alternative way to dispose and convert waste (like plastics) and biomass into high value feedstock. The specific benefits of this method potentially include: the reduction of the volume of the waste, the recovery of chemicals and the replacement of fossil fuels. Co-pyrolysing of PLA (although a biologically degradable polymer, polylactic acid), with biomass (such as willow) may be an alternative waste treatment option. This research indicates that during the flash co-pyrolysis of PLA and willow (even when contaminated with high amounts of heavy metals) a synergy is attained, resulting in a higher yield of bio-oil with a lower water content. 10 refs., 1 fig.

  3. Combustion Properties of Biomass Flash Pyrolysis Oils: Final Project Report

    Energy Technology Data Exchange (ETDEWEB)

    C. R. Shaddix; D. R. Hardesty

    1999-04-01

    Thermochemical pyrolysis of solid biomass feedstocks, with subsequent condensation of the pyrolysis vapors, has been investigated in the U.S. and internationally as a means of producing a liquid fuel for power production from biomass. This process produces a fuel with significantly different physical and chemical properties from traditional petroleum-based fuel oils. In addition to storage and handling difficulties with pyrolysis oils, concern exists over the ability to use this fuel effectively in different combustors. The report endeavors to place the results and conclusions from Sandia's research into the context of international efforts to utilize pyrolysis oils. As a special supplement to this report, Dr. Steven Gust, of Finland's Neste Oy, has provided a brief assessment of pyrolysis oil combustion research efforts and commercialization prospects in Europe.

  4. Flash Pyrolysis and Fractional Pyrolysis of Oleaginous Biomass in a Fluidized-bed Reactor

    Science.gov (United States)

    Urban, Brook

    Thermochemical conversion methods such as pyrolysis have the potential for converting diverse biomass feedstocks into liquid fuels. In particular, bio-oil yields can be maximized by implementing flash pyrolysis to facilitate rapid heat transfer to the solids along with short vapor residence times to minimize secondary degradation of bio-oils. This study first focused on the design and construction of a fluidized-bed flash pyrolysis reactor with a high-efficiency bio-oil recovery unit. Subsequently, the reactor was used to perform flash pyrolysis of soybean pellets to assess the thermochemical conversion of oleaginous biomass feedstocks. The fluidized bed reactor design included a novel feed input mechanism through suction created by flow of carrier gas through a venturi which prevented plugging problems that occur with a more conventional screw feeders. In addition, the uniquely designed batch pyrolysis unit comprised of two tubes of dissimilar diameters. The bottom section consisted of a 1" tube and was connected to a larger 3" tube placed vertically above. At the carrier gas flow rates used in these studies, the feed particles remained fluidized in the smaller diameter tube, but a reduction in carrier gas velocity in the larger diameter "disengagement chamber" prevented the escape of particles into the condensers. The outlet of the reactor was connected to two Allihn condensers followed by an innovative packed-bed dry ice condenser. Due to the high carrier gas flow rates in fluidized bed reactors, bio-oil vapors form dilute aerosols upon cooling which that are difficult to coalesce and recover by traditional heat exchange condensers. The dry ice condenser provided high surface area for inertial impaction of these aerosols and also allowed easy recovery of bio-oils after natural evaporation of the dry ice at the end of the experiments. Single step pyrolysis was performed between 250-610°C with a vapor residence time between 0.3-0.6s. At 550°C or higher, 70% of

  5. FLASH PYROLYSIS OF BIOMASS PARTICLES IN FLUIDIZED BED FOR BIO-OIL PRODUCTION

    Institute of Scientific and Technical Information of China (English)

    Shurong Wang; Mengxiang Fang; Chunjiang Yu; Zhongyang Luo; Kefa Cen

    2005-01-01

    Biomass utilization could relieve the pressure caused by conventional energy shortage and environmental pollution. Advantage should be taken of the abundant biomass in China as clean energy source to substitute for traditional fossil fuels. At present, flash pyrolysis appears to be an efficient method to produce high yields of liquids that could either be directly used as fuel or converted to other valuable chemicals. Experiments were carried out of pyrolyzing biomass particles in a hot dense fluidized bed of sand to obtain high-quality bio-oil. Among four kinds of biomass species adopted in our experiment, Padauk Wood had the best characteristics in producing bio-oil. GC-MS analysis showed bio-oil to be a complex mixture consisting of many compounds. Furthermore, an integrated model was proposed to reveal how temperature influences biomass pyrolysis. Computation indicated that biomass particles underwent rapid heating before pyrolysis.

  6. Catalytic Flash Pyrolysis of Biomass Using Different Types of Zeolite and Online Vapor Fractionation

    KAUST Repository

    Imran, Ali

    2016-03-11

    Bio-oil produced from conventional flash pyrolysis has poor quality and requires expensive upgrading before it can be used as a transportation fuel. In this work, a high quality bio-oil has been produced using a novel approach where flash pyrolysis, catalysis and fractionation of pyrolysis vapors using two stage condensation are combined in a single process unit. A bench scale unit of 1 kg/h feedstock capacity is used for catalytic pyrolysis in an entrained down-flow reactor system equipped with two-staged condensation of the pyrolysis vapor. Zeolite-based catalysts are investigated to study the effect of varying acidities of faujasite Y zeolites, zeolite structures (ZSM5), different catalyst to biomass ratios and different catalytic pyrolysis temperatures. Low catalyst/biomass ratios did not show any significant improvements in the bio-oil quality, while high catalyst/biomass ratios showed an effective deoxygenation of the bio-oil. The application of zeolites decreased the organic liquid yield due to the increased production of non-condensables, primarily hydrocarbons. The catalytically produced bio-oil was less viscous and zeolites were effective at cracking heavy molecular weight compounds in the bio-oil. Acidic zeolites, H-Y and H-ZSM5, increased the desirable chemical compounds in the bio-oil such as phenols, furans and hydrocarbon, and reduced the undesired compounds such as acids. On the other hand reducing the acidity of zeolites reduced some of the undesired compounds in the bio-oil such as ketones and aldehydes. The performance of H-Y was superior to that of the rest of zeolites studied: bio-oil of high chemical and calorific value was produced with a high organic liquid yield and low oxygen content. H-ZSM5 was a close competitor to H-Y in performance but with a lower yield of bio-oil. Online fractionation of catalytic pyrolysis vapors was employed by controlling the condenser temperature and proved to be a successful process parameter to tailor the

  7. High quality bio-oil from catalytic flash pyrolysis of lignocellulosic biomass over alumina-supported sodium carbonate

    KAUST Repository

    Imran, Ali

    2014-11-01

    Performance of a novel alumina-supported sodium carbonate catalyst was studied to produce a valuable bio-oil from catalytic flash pyrolysis of lignocellulosic biomass. Post treatment of biomass pyrolysis vapor was investigated in a catalyst fixed bed reactor at the downstream of the pyrolysis reactor. In-situ catalytic upgrading of biomass pyrolysis vapor was conducted in an entrained flow pyrolysis reactor by feeding a premixed feedstock of the catalyst and biomass. Na2CO3/gamma-Al2O3 was very effective for de-oxygenation of the pyrolysis liquid and oxygen content of the bio-oil was decreased from 47.5 wt.% to 16.4 wt.%. An organic rich bio-oil was obtained with 5.8 wt.% water content and a higher heating value of 36.1 MJ/kg. Carboxylic acids were completely removed and the bio-oil had almost a neutral pH. This bio-oil of high calorific low, low water and oxygen content may be an attractive fuel precursor. In-situ catalytic upgrading of biomass pyrolysis vapor produced a very similar quality bio-oil compared to post treatment of pyrolysis vapors, and shows the possible application of Na2CO3/gamma-Al2O3 in a commercial type reactor system such as a fluidized bed reactor. (C) 2014 Elsevier B.V. All rights reserved.

  8. Flash co-pyrolysis of biomass with polylactic acid. Part 1: Influence on bio-oil yield and heating value

    Energy Technology Data Exchange (ETDEWEB)

    T. Cornelissen; J. Yperman; G. Reggers; S. Schreurs; R. Carleer [Hasselt University, Diepenbeek (Belgium). Laboratory of Applied Chemistry

    2008-06-15

    High amounts of water present in bio-oil are one of the major drawbacks for its utilisation as a fuel. One technology that shows the potential to satisfy the demand for bio-oil with a reduced water content is the flash co-pyrolysis of biomass with polylactic acid, PLA. The influence of PLA on the pyrolysis of willow is investigated with a semi-continuous home-built pyrolysis reactor. Flash co-pyrolysis of willow/PLA blends (10:1, 3:1, 1:1 and 1:2) show synergetic interaction. A higher bio-oil yield and a lower water content as a function of the willow/PLA ratios are obtained. Among the tested blends, the 1:2 willow/PLA blend shows the most pronounced synergy: a reduction in the production of pyrolytic water of almost 28%, accompanied by an increase of more than 37% in the production of water-free bio-oil. Additionally, PLA shows to have a positive influence on the energetic value of the bio-oil produced and on the resulting energy recuperation. 23 refs., 7 figs., 4 tabs.

  9. Flash pyrolysis at high temperature of ligno-cellulosic biomass and its components - production of synthesis gas; Pyrolyse flash a haute temperature de la biomasse ligno-cellulosique et de ses composes - production de gaz de synthese

    Energy Technology Data Exchange (ETDEWEB)

    Couhert, C

    2007-11-15

    Pyrolysis is the first stage of any thermal treatment of biomass and governs the formation of synthesis gas for the production of electricity, hydrogen or liquid fuels. The objective of this work is to establish a link between the composition of a biomass and its pyrolysis gas. We study experimental flash pyrolysis and fix the conditions in which quantities of gas are maximal, while aiming at a regime without heat and mass transfer limitations (particles about 100 {mu}m): temperature of 950 C and residence time of about 2 s. Then we try to predict gas yields of any biomass according to its composition, applicable in this situation where thermodynamic equilibrium is not reached. We show that an additivity law does not allow correlating gas yields of a biomass with fractions of cellulose, hemi-cellulose and lignin contained in this biomass. Several explanations are suggested and examined: difference of pyrolytic behaviour of the same compound according to the biomass from which it is extracted, interactions between compounds and influence of mineral matter. With the aim of industrial application, we study pyrolysis of millimetric and centimetric size particles, and make a numerical simulation of the reactions of pyrolysis gases reforming. This simulation shows that the choice of biomass affects the quantities of synthesis gas obtained. (author)

  10. Biomass to fuels : Upgrading of flash pyrolysis oil by reactive distillation using a high boiling alcohol and acid catalysts

    NARCIS (Netherlands)

    Mahfud, F.H.; Melian Cabrera, I.V.; Manurung, R.M.; Heeres, H.J.

    2007-01-01

    We here report our studies on the upgrading of flash pyrolysis oil using an improved alcohol treatment method. The method consists of treating pyrolysis oil with a high boiling alcohol like n-butanol in the presence of a (solid) acid catalyst at 323-353 K under reduced pressure (<10 kPa). Using this

  11. Modelling solid-convective flash pyrolysis of straw and wood in the Pyrolysis Centrifuge Reactor

    DEFF Research Database (Denmark)

    Bech, Niels; Larsen, Morten Boberg; Jensen, Peter Arendt

    2009-01-01

    Less than a handful of solid-convective pyrolysis reactors for the production of liquid fuel from biomass have been presented and for only a single reactor a detailed mathematical model has been presented. In this article we present a predictive mathematical model of the pyrolysis process...... in the Pyrolysis Centrifuge Reactor, a novel solid-convective flash pyrolysis reactor. The model relies on the original concept for ablative pyrolysis of particles being pyrolysed through the formation of an intermediate liquid compound which is further degraded to form liquid organics, char, and gas. To describe...... that the reacting particle continuously shed the formed char layer....

  12. Refining fast pyrolysis of biomass

    NARCIS (Netherlands)

    Westerhof, Roel Johannes Maria

    2011-01-01

    Pyrolysis oil produced from biomass is a promising renewable alternative to crude oil. Such pyrolysis oil has transportation, storage, and processing benefits, none of which are offered by the bulky, inhomogeneous solid biomass from which it originates. However, pyrolysis oil has both a different co

  13. Flash co-pyrolysis of biomass with polyhydroxybutyrate: Part 1. Influence on bio-oil yield, water content, heating value and the production of chemicals

    Energy Technology Data Exchange (ETDEWEB)

    T. Cornelissen; M. Jans; J. Yperman; G. Reggers; S. Schreurs; R. Carleer [Hasselt University, Diepenbeek (Belgium). Laboratory of Applied Chemistry

    2008-09-15

    Bio-oil obtained via flash pyrolysis shows potential to be applied as a renewable fuel. However, bio-oil often contains high amounts of water, which is a major drawback for its application. The influence of a biopolymer - polyhydroxybutyrate (PHB) on the pyrolysis of willow is investigated using a semi-continuous home-built pyrolysis reactor. The flash co-pyrolysis of willow/PHB blends (w/w ratio 7:1, 3:1, 2:1 and 1:1) clearly shows particular merits: a synergetic increase in pyrolysis yield, a synergetic reduction of the water content in bio-oil, an increase in heating value, and a production of easily separable chemicals. The occurrence of synergetic interactions is observed based on a comparison between the actual pyrolysis results of the willow/PHB blends, the theoretical pyrolysis results calculated from the reference pyrolysis experiments (pure willow and pure PHB) and their respective w/w ratio. The co-pyrolysis of 1:1 willow/PHB shows the best overall results. 24 refs., 9 figs., 5 tabs.

  14. Bio-oil from Flash Pyrolysis of Agricultural Residues

    DEFF Research Database (Denmark)

    Ibrahim, Norazana

    -oil was around 525 °C to 550 °C for all straw moisture contents. It was investigated how differences in biomass composition influence pyrolysis products yields and the composition of char and bio-oils. Details about this investigation are explained in Paper II (Chapter 3). The used pine wood had a low ash...... at reactor temperatures ranging from 475 to 575 oC. It was observed that the formation of char and gas is affected by the biomass alkali content. Increasing biomass alkali content caused an increased feedstock conversion at low temperature, a lower maximum liquid organic yield temperature and a lower maximum......This thesis describes the production of bio-oils from flash pyrolysis of agricultural residues, using a pyrolysis centrifugal reactor (PCR). By thermal degradation of agricultural residues in the PCR, a liquid oil, char and non-condensable gases are produced. The yield of each fraction...

  15. Coal flash pyrolysis. 5. Pyrolysis in an atmosphere of methane

    Energy Technology Data Exchange (ETDEWEB)

    Calkins, W.H.; Bonifaz, C.

    1984-12-01

    Flash pyrolysis of coal at temperatures above 700/sup 0/C and in the presence of methane produces substantially more ethylene and other low molecular weight hydrocarbons than are produced by pyrolysis of coal in the presence of nitrogen alone. Evidence is presented to show that the increase is due to pyrolysis of the methane quite independently of the coal, except with the possible catalysis by the coal, coke or mineral matter in the coal ash. This is contrary to recent reports in the literature.

  16. Economic assessment of flash co-pyrolysis of short rotation coppice and biopolymer waste streams.

    Science.gov (United States)

    Kuppens, T; Cornelissen, T; Carleer, R; Yperman, J; Schreurs, S; Jans, M; Thewys, T

    2010-12-01

    The disposal problem associated with phytoextraction of farmland polluted with heavy metals by means of willow requires a biomass conversion technique which meets both ecological and economical needs. Combustion and gasification of willow require special and costly flue gas treatment to avoid re-emission of the metals in the atmosphere, whereas flash pyrolysis mainly results in the production of (almost) metal free bio-oil with a relatively high water content. Flash co-pyrolysis of biomass and waste of biopolymers synergistically improves the characteristics of the pyrolysis process: e.g. reduction of the water content of the bio-oil, more bio-oil and less char production and an increase of the HHV of the oil. This research paper investigates the economic consequences of the synergistic effects of flash co-pyrolysis of 1:1 w/w ratio blends of willow and different biopolymer waste streams via cost-benefit analysis and Monte Carlo simulations taking into account uncertainties. In all cases economic opportunities of flash co-pyrolysis of biomass with biopolymer waste are improved compared to flash pyrolysis of pure willow. Of all the biopolymers under investigation, polyhydroxybutyrate (PHB) is the most promising, followed by Eastar, Biopearls, potato starch, polylactic acid (PLA), corn starch and Solanyl in order of decreasing profits. Taking into account uncertainties, flash co-pyrolysis is expected to be cheaper than composting biopolymer waste streams, except for corn starch. If uncertainty increases, composting also becomes more interesting than flash co-pyrolysis for waste of Solanyl. If the investment expenditure is 15% higher in practice than estimated, the preference for flash co-pyrolysis compared to composting biopolymer waste becomes less clear. Only when the system of green current certificates is dismissed, composting clearly is a much cheaper processing technique for disposing of biopolymer waste.

  17. Chapter 8: Biomass Pyrolysis Oils

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, Robert L.; Baldwin, Robert M.; Arbogast, Stephen; Bellman, Don; Paynter, Dave; Wykowski, Jim

    2016-09-06

    Fast pyrolysis is heating on the order of 1000 degrees C/s in the absence of oxygen to 40-600 degrees C, which causes decomposition of the biomass. Liquid product yield from biomass can be as much as 80% of starting dry weight and contains up to 75% of the biomass energy content. Other products are gases, primarily carbon monoxide, carbon dioxide, and methane, as well as solid char and ash. Residence time in the reactor is only 0.5-2 s so that relatively small, low-capital-cost reactors can be used. The low capital cost combined with greenhouse gas emission reductions relative to petroleum fuels of 50-95% makes pyrolysis an attractive process. The pyrolysis liquids have been investigated as a refinery feedstock and as stand-alone fuels. Utilization of raw pyrolysis oil has proven challenging. The organic fraction is highly corrosive because of its high organic acid content. High water content lowers the net heating value and can increase corrosivity. It can be poorly soluble in petroleum or petroleum products and can readily absorb water. Distillation residues can be as high as 50%, viscosity can be high, oils can exhibit poor stability in storage, and they can contain suspended solids. The ignition quality of raw pyrolysis oils is poor, with cetane number estimates ranging from 0 to 35, but more likely to be in the lower end of that range. While the use of raw pyrolysis oils in certain specific applications with specialized combustion equipment may be possible, raw oils must be significantly upgraded for use in on-highway spark-ignition (SI) and compression-ignition (CI) engines. Upgrading approaches most often involve catalytic hydrodeoxygenation, one of a class of reactions known as hydrotreating or hydroprocessing. This chapter discusses the properties of raw and upgraded pyrolysis oils, as well as the potential for integrating biomass pyrolysis with a petroleum refinery to significantly reduce the hydroprocessing cost.

  18. Flash pyrolysis fuel oil: BIO-POK

    Energy Technology Data Exchange (ETDEWEB)

    Gust, S. [Neste Oy, Porvoo (Finland)

    1995-12-31

    Flash pyrolysis oil from Ensyn Tech., Canada and Union Fenosa, Spain was combusted with simple pressure atomisation equipment commonly used with light fuel oils in intermediate size (0.1-1 MW) boilers. With a number of modifications to the combustion system, carbon monoxide (CO) and nitrous oxide (NO{sub x}) could be reduced to acceptable levels: CO < 30 ppm and NO{sub x} < 140 ppm. Particulate emissions which were initially very high (Bacharach 4-5) were reduced (Bach. 2-3) by system changes but are still higher than from light fuel oil (Bach. <1). The modifications to the combustion system were: acid resistant progressive cavity pump, higher oil preheat temperature and higher oil pressure than for light fuel oils, refractory section between burner and boiler warmed up to at least 800 deg C. In addition, it was necessary to store pyrolysis oil samples under inert conditions to prevent oxidation and to rinse nozzles with alcohol after shutdown to prevent coking. The complexity and cost of these system modifications are considered to be too great for current grades of flash pyrolysis oil to be sold as a light fuel oil replacement. Improvements to fuel quality will be necessary. The main improvements are lowering of viscosity and improving of stability

  19. Pyrolysis of chitin biomass

    DEFF Research Database (Denmark)

    Qiao, Yan; Chen, Shuai; Liu, Ying

    2015-01-01

    The thermal degradation of chitin biomass with various molecular structures was investigated by thermogravimetric analysis (TG), and the gaseous products were analyzed by connected mass spectroscopy (MS). The chemical structure and morphology of char residues collected at 750°C using the model...

  20. Production of bio-oils from wood by flash pyrolysis; Herstellung von Bio-Oelen aus Holz in einer Flash-Pyrolyseanlage

    Energy Technology Data Exchange (ETDEWEB)

    Meier, D.; Ollesch, T. [Bundesforschungsanstalt fuer Forst- und Holzwirtschaft, Hamburg (Germany). Inst. fuer Holzchemie und Chemische Technologie des Holzes; Gerdes, C.; Kaminsky, W. [Hamburg Univ. (Germany). Inst. fuer Technische und Makromolekulare Chemie (ITMCh)

    1998-09-01

    Flash pyrolysis is a medium-temperature process (around 475 C) in which biomass is heated up rapidly in the absence of oxygen. The pyrolysis products are cooled down rapidly, condensing into a reddish-brown liquid with around half the calorific value of a conventional heating oil. In contrast to conventional charcoal production, flash pyrolysis is a modern process whose process parameters enure high liquid yields. Modern fluidized-bed reactors for flash pyrolysis of biomass tend to have high heating rates and short times of residue. In the `Hamburg process`, fluidized-bed reactors are used successfully for pyrolysis of plastics. A flash pyrolysis plant for biomass treatment was constructed in cooperation with Hamburg University with funds provided by the `Bundesstiftung Umwelt`. This contribution describes the first series of experiments, mass balances and oil analyses using beech wood as material to be pyrolyzed. (orig./SR) [Deutsch] Flash-Pyrolyse ist ein Mitteltemperatur-Prozess (ca. 475 C), in dem Biomasse unter Sauerstoffausschluss sehr schnell erhitzt wird. Die entstehenden Pyrolyseprodukte werden schnell abgekuehlt und kondensieren zu einer roetlich-braunen Fluessigkeit, die etwa die Haelfte des Heizwertes eines konventionellen Heizoeles besitzt. Flash-Pyrolyse ist, im Gegensatz zur konventionellen Holzverkohlung, ein modernes Verfahren, dessen spezielle Verfahrensparameter hohe Fluessigausbeuten ermoeglichen. Hohe Aufheizraten, verbunden mit kurzen Verweilzeiten, werden mit stationaeren Wirbelbettreaktoren erzielt die gegenwaertig vorwiegend fuer die Flash-Pyrolyse von Biomasse eingesetzt werden. Im `Hamburger Verfahren` haben sich Wirbelbettreaktoren im Bereich der Kunststoffpyrolyse bewaehrt. Daher wurde in Zusammenarbeit mit der Universitaet Hamburg und finanzieller Foerderung der Bundesstiftung Umwelt eine Flash-Pyrolyseanlage fuer Biomasse gebaut: In dieser Arbeit werden erste Versuchsreihen, Massenbilanzen und Oelanalysen aus der Pyrolyse von

  1. Flash pyrolysis fuel oil: bio-pok

    Energy Technology Data Exchange (ETDEWEB)

    Gust, S. [Neste Oy, Porvoo (Finland)

    1997-12-01

    Samples of flash pyrolysis liquid produced by Union Fenosa, Spain from pine and straw and samples produced by Ensyn of Canada from mixed hardwoods were combusted with simple pressure atomization equipment commonly used with light fuel oils in intermediate size (0.1-1 MW) boilers. With a number of modifications to the combustion system, carbon monoxide (CO) and nitrous oxide (NO{sub x}) could be reduced to acceptable levels: CO < 30 ppm and NO{sub x} < 140 ppm. Particulate emissions which were initially very high (Bacharach 4-5) were reduced (Bach. 2-3) by system improvements but are still higher than from light fuel oil (Bach. <1). The modifications to the combustion system were: refractory section between burner and boiler, acid resistant progressive cavity pump, higher liquid preheat temperature and higher pressure than for light fuel oils. The main problems with pyrolysis liquids concerns their instability or reactivity. At temperatures above 100 deg C they begin to coke, their viscosity increases during storage and oxygen from air causes skin formation. This requires that special handling procedures are developed for fuel storage, delivery and combustion systems. (orig.)

  2. Flash pyrolysis properties of algae and lignin residue

    DEFF Research Database (Denmark)

    Trinh, Ngoc Trung; Jensen, Peter Arendt; Sørensen, Hanne Risbjerg

    A fast pyrolysis study on lignin and macroalgae (non-conventional biomass) and wood and straw (conventional biomass) were carried out in a pyrolysis centrifugal reactor. The product distributions and energy recoveries were measured and compared among these biomasses. The fast pyrolysis of macroal......A fast pyrolysis study on lignin and macroalgae (non-conventional biomass) and wood and straw (conventional biomass) were carried out in a pyrolysis centrifugal reactor. The product distributions and energy recoveries were measured and compared among these biomasses. The fast pyrolysis...... of macroalgae showed a promising result with on yield of 54 wt% dry ash free basis (daf) and 78% energy recovery in the bio-oil. The physiochemical properties of the bio-oils were characterized with respect to higher heating value, molecular mass distribution, viscosity, pH, density and elemental compositions...

  3. Dissolved phosphorus speciation of flash carbonization, slow pyrolysis, and fast pyrolysis biochars

    Science.gov (United States)

    Pyrolysis of waste biomass is a promising technology to produce sterile and renewable organic phosphorus fertilizers. Systematic studies are necessary to understand how different pyrolysis platforms influence the chemical speciation of dissolved (bioavailable) phosphorus. This study employed solut...

  4. Experimental and Modelling Studies of Biomass Pyrolysis

    Institute of Scientific and Technical Information of China (English)

    Ka Leung Lam; Adetoyese Olajire Oyedu~; Chi Wai Hui

    2012-01-01

    The analysis on the feedstock pyrolysis characteristic and the impacts of process parameters on pyrolysis outcomes can assist in the designing, operating and optimizing pyrolysis processes. This work aims to utilize both experimental and modelling approaches to perform the analysis on three biomass feedstocks--wood sawdust, bamboo shred and Jatropha Curcas seed cake residue, and to provide insights for the design_and operation of pyro-lysis processes. For the experimental part, the study investigated the effect of heating rate, final pyrolysis tempera- ture and sample size on pyrolysis using common thermal analysis techniques. For the modelling part, a transient mathematical model that integrates the feedstock characteristic from the experimental study was used to simulate the pyrolysis progress of selected biomass feedstock particles for reactor scenarios. The model composes of several sub-models that describe pyrolysis kinetic and heat flow, particle heat transfer, particle shrinking and reactor opera-tion. With better understanding of the effects of process conditions and feedstock characteristics on pyrolysis through both experimental and modelling studies, this work discusses on the considerations of and interrelation between feedstock size, pyrolysis energy usage, processing time and product quality for the design and operation of pyrolysis processes.

  5. Development of advanced technologies for biomass pyrolysis

    Science.gov (United States)

    Xu, Ran

    The utilization of biomass resources as a renewable energy resource is of great importance in responding to concerns over the protection of the environment and the security of energy supply. This PhD research focuses on the investigation of the conversion of negative value biomass residues into value-added fuels through flash pyrolysis. Pyrolysis Process Study. A pilot plant bubbling fluidized bed pyrolyzer has been set up and extensively used to thermally crack various low or negative value agricultural, food and biofuel processing residues to investigate the yields and quality of the liquid [bio-oil] and solid (bio-char] products. Another novel aspect of this study is the establishment of an energy balance from which the thermal self-sustainability of the pyrolysis process can be assessed. Residues such as grape skins and mixture of grape skins and seeds, dried distiller's grains from bio-ethanol plants, sugarcane field residues (internal bagasse, external and whole plant) have been tested. The pyrolysis of each residue has been carried out at temperatures ranging from 300 to 600°C and at different vapor residence times, to determine its pyrolysis behavior including yields and the overall energy balance. The thermal sustainability of the pyrolysis process has been estimated by considering the energy contribution of the product gases and liquid bio-oll in relation to the pyrolysis heat requirements. The optimum pyrolysis conditions have been identified in terms of maximizing the liquid blo-oil yield, energy density and content of the product blo-oil, after ensuring a self-sustainable process by utilizing the product gases and part of char or bio-oil as heat sources. Adownflow pyrolyzer has also been set up. Preliminary tests have been conducted using much shorter residence times. Bio-oil Recovery. Bio-oil recovery from the pyrolysis unit includes condensation followed by demisting. A blo-oil cyclonic condensing system is designed A nearly tangential entry forces

  6. Catalytic fast pyrolysis of lignocellulosic biomass

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Changjun; Wang, Huamin; Karim, Ayman M.; Sun, Junming; Wang, Yong

    2014-11-21

    Increasing energy demand, especially in the transportation sector, and soaring CO2 emissions necessitate the exploitation of renewable sources of energy. Despite the large variety of new energy Q3 carriers, liquid hydrocarbon still appears to be the most attractive and feasible form of transportation fuel taking into account the energy density, stability and existing infrastructure. Biomass is an abundant, renewable source of energy; however, utilizing it in a cost-effective way is still a substantial challenge. Lignocellulose is composed of three major biopolymers, namely cellulose, hemicellulose and lignin. Fast pyrolysis of biomass is recognized as an efficient and feasible process to selectively convert lignocellulose into a liquid fuel—bio-oil. However bio-oil from fast pyrolysis contains a large amount of oxygen, distributed in hundreds of oxygenates. These oxygenates are the cause of many negative properties, such as low heating values, high corrosiveness, high viscosity, and instability; they also greatly Q4 limit the application of bio-oil particularly as transportation fuel. Hydrocarbons derived from biomass are most attractive because of their high energy density and compatibility with the existing infrastructure. Thus, converting lignocellulose into transportation fuels via catalytic fast pyrolysis has attracted much attention. Many studies related to catalytic fast pyrolysis of biomass have been published. The main challenge of this process is the development of active and stable catalysts that can deal with a large variety of decomposition intermediates from lignocellulose. This review starts with the current understanding of the chemistry in fast pyrolysis of lignocellulose and focuses on the development of catalysts in catalytic fast pyrolysis. Recent progress in the experimental studies on catalytic fast pyrolysis of biomass is also summarized with the emphasis on bio-oil yields and quality.

  7. In Situ Flash Pyrolysis of Straw

    DEFF Research Database (Denmark)

    Bech, Niels

    aske og reducere logistikomkostningerne ville gøre denne alternative energikilde betydelig mere attraktiv. Disse mål kan nås med in situ flash pyrolyse, hvor halm bliver omdannet til bio-olie i marken og koks efterlades på jorden for at forbedre jordstrukturen og tilføre mineraler. Hovedformålene med...... dette Innovations Ph.d. projekt var at understøtte udviklingen af en reaktor til in situ flash pyrolyse, konstruere et mindre stationært pilotanlæg, karakterisere og teste halm bio-olie som flydende brændstof samt udvikle en forretningsplan for kommercialisering af de opnåede resultater. Yderligere var...... det ønsket at undersøge flash pyrolyse af halm generelt og udvikle et værktøj, der kunne modellere den udviklede reaktors opførsel. De eksperimentelle resultater udgør den første rapporterede systematiske undersøgelse af halm flash pyrolyse i en ablativ (solid convective) reaktor. Modellering af...

  8. Treatment of Lignin and Waste residues by Flash Pyrolysis

    DEFF Research Database (Denmark)

    Jensen, Peter Arendt; Trinh, Ngoc Trung; Dam-Johansen, Kim

    Lignin, sewage sludge and macroalg ae (nonconventional biomasses) fast pyrolysis properties has been studied through experimental investigations on a la boratory Pyrolysis Centrifugal Reactor (PCR) and a model on lignin pyrolysis have been developed. Fu rthermore the nonconventional biomass...... ethanol plant a bio-oil can be produced with oil yields of 36% (daf) and an oil en ergy recovery of 45%. This is a relatively low bio-oil yield compared to other feedstock’s, however, it may increase the value of the lignin residual product, such that the lignin char is used for combustion on the ethanol...... plant, and the bio-oil is sold for use on heavy oil burners. The macroalgae is a promising feedstock w ith a high bio-oil yield of 54 wt% daf and an energy recovery of 76 % in the liquid oil. Detailed characteriza tion of the pyrolysis products in the form of bio-oil, gas and char has been performed...

  9. TG-FTIR analysis of biomass pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Bassilakis, R.; Carangelo, R.M.; Wojtowicz, M.A. [Advanced Fuel Research Inc., Hartford, CT (United States)

    2001-10-09

    A great need exists for comprehensive biomass-pyrolysis models that could predict yields and evolution patterns of selected volatile products as a function of feedstock characteristics and process conditions. A thermogravimetric analyzer coupled with Fourier transform infrared analysis of evolving products (TG-FTIR) can provide useful input to such models in the form of kinetic information obtained under low heating rate conditions. In this work, robust TG-FTIR quantification routes were developed for infrared analysis of volatile products relevant to biomass pyrolysis. The analysis was applied to wheat straw, three types of tobacco (Burley, Oriental, and Bright) and three biomass model compounds (xylan, chlorogenic acid, and D-glucose). Product yields were compared with literature data, and species potentially quantifiable by FT-IR are reviewed. Product-evolution patterns are reported for all seven biomass samples. 41 refs., 7 figs., 2 tabs.

  10. Combustion, pyrolysis, gasification, and liquefaction of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Reed, T.B.

    1980-09-01

    All the products now obtained from oil can be provided by thermal conversion of the solid fuels biomass and coal. As a feedstock, biomass has many advantages over coal and has the potential to supply up to 20% of US energy by the year 2000 and significant amounts of energy for other countries. However, it is imperative that in producing biomass for energy we practice careful land use. Combustion is the simplest method of producing heat from biomass, using either the traditional fixed-bed combustion on a grate or the fluidized-bed and suspended combustion techniques now being developed. Pyrolysis of biomass is a particularly attractive process if all three products - gas, wood tars, and charcoal - can be used. Gasification of biomass with air is perhaps the most flexible and best-developed process for conversion of biomass to fuel today, yielding a low energy gas that can be burned in existing gas/oil boilers or in engines. Oxygen gasification yields a gas with higher energy content that can be used in pipelines or to fire turbines. In addition, this gas can be used for producing methanol, ammonia, or gasoline by indirect liquefaction. Fast pyrolysis of biomass produces a gas rich in ethylene that can be used to make alcohols or gasoline. Finally, treatment of biomass with high pressure hydrogen can yield liquid fuels through direct liquefaction.

  11. Mechanisms of flash pyrolysis of ether lipids isolated from the green microalga Botryococcus braunii race

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Gelin, F.; Gatellier, J-P.L.A.; Metzger, P.; Derenne, S.; Largeau, C.; Leeuw, J.W. de

    1993-01-01

    Two types of ether lipids isolated from the microalga Botryococcus braunii have been subjected to flash pyrolysis. The pyrolysis products were separated and analyzed by GC/MS. The nature and distribution of the pyrolysis compounds gave clues to the different mechanisms involved in the pyrolysis of e

  12. Fast pyrolysis of biomass at high temperatures

    DEFF Research Database (Denmark)

    Trubetskaya, Anna

    content affected the char yield stronger than the heating rates and differences in the plant cell wall compounds between 600 and 3000K s-1. The heat treatment temperature affected more the herbaceous biomass char yield compared with wood. The differences in the char yield for particle size fractions...... pyrolysis at high temperatures plays a significant role in the overall combustion process since the biomass type, the reaction kinetics and heat transfer rates during pyrolysis influence the volatile gas release. The solid residue yield and its properties in suspension firing, including particle size...... to investigate the effects of operating parameters and biomass types on yields of char and soot, their chemistry and morphology as well as their reactivity using thermogravimetric analysis. The experimental study was focused on the influence of a wide range of operating parameters including heat treatment...

  13. Methods for deoxygenating biomass-derived pyrolysis oil

    Energy Technology Data Exchange (ETDEWEB)

    Brandvold, Timothy A.

    2015-07-14

    Methods for deoxygenating a biomass-derived pyrolysis oil are provided. A method comprising the steps of diluting the biomass-derived pyrolysis oil with a phenolic-containing diluent to form a diluted pyoil-phenolic feed is provided. The diluted pyoil-phenolic feed is contacted with a deoxygenating catalyst in the presence of hydrogen at hydroprocessing conditions effective to form a low-oxygen biomass-derived pyrolysis oil effluent.

  14. Flash flow pyrolysis: mimicking flash vacuum pyrolysis in a high-temperature/high-pressure liquid-phase microreactor environment.

    Science.gov (United States)

    Cantillo, David; Sheibani, Hassan; Kappe, C Oliver

    2012-03-02

    Flash vacuum pyrolysis (FVP) is a gas-phase continuous-flow technique where a substrate is sublimed through a hot quartz tube under high vacuum at temperatures of 400-1100 °C. Thermal activation occurs mainly by molecule-wall collisions with contact times in the region of milliseconds. As a preparative method, FVP is used mainly to induce intramolecular high-temperature transformations leading to products that cannot easily be obtained by other methods. It is demonstrated herein that liquid-phase high-temperature/high-pressure (high-T/p) microreactor conditions (160-350 °C, 90-180 bar) employing near- or supercritical fluids as reaction media can mimic the results obtained using preparative gas-phase FVP protocols. The high-T/p liquid-phase "flash flow pyrolysis" (FFP) technique was applied to the thermolysis of Meldrum's acid derivatives, pyrrole-2,3-diones, and pyrrole-2-carboxylic esters, producing the expected target heterocycles in high yields with residence times between 10 s and 10 min. The exact control over flow rate (and thus residence time) using the liquid-phase FFP method allows a tuning of reaction selectivities not easily achievable using FVP. Since the solution-phase FFP method does not require the substrate to be volatile any more--a major limitation in classical FVP--the transformations become readily scalable, allowing higher productivities and space-time yields compared with gas-phase protocols. Differential scanning calorimetry measurements and extensive DFT calculations provided essential information on pyrolysis energy barriers and the involved reaction mechanisms. A correlation between computed activation energies and experimental gas-phase FVP (molecule-wall collisions) and liquid-phase FFP (molecule-molecule collisions) pyrolysis temperatures was derived.

  15. 用废弃生物质快速生产生物燃油新工艺及转锥式裂解装置设计%Study on Fast Producting Bio-fuel-oil New Technology and Designon ZKR500 Rotating Cone Reactor for Flash Pyrolysis/Liquefaction of Biomass

    Institute of Scientific and Technical Information of China (English)

    王述洋; 谭文英; 陈爱军

    2000-01-01

    研究探讨了一种能够将废弃生物质快速液化转换成生物质液化燃油的新技术方法,并研究设计出适用于该工艺的关键设备"ZKR-500型转锥式废弃生物质快速裂解液化反应器"·%A new process for fast producing bio-fuel-oil by solid biomass and design of the key equipment of the process ZKR500 Rotating Cone Reactor for Flash Pyrolysis Liquefaction of Biomass were studied in the paper.

  16. Methods for deoxygenating biomass-derived pyrolysis oil

    Energy Technology Data Exchange (ETDEWEB)

    Baird, Lance Awender; Brandvold, Timothy A.

    2015-06-30

    Methods for deoxygenating a biomass-derived pyrolysis oil are provided. A method for deoxygenating a biomass-derived pyrolysis oil comprising the steps of combining a biomass-derived pyrolysis oil stream with a heated low-oxygen-pyoil diluent recycle stream to form a heated diluted pyoil feed stream is provided. The heated diluted pyoil feed stream has a feed temperature of about 150.degree. C. or greater. The heated diluted pyoil feed stream is contacted with a first deoxygenating catalyst in the presence of hydrogen at first hydroprocessing conditions effective to form a low-oxygen biomass-derived pyrolysis oil effluent.

  17. Production and characterization of bio-oil from catalytic biomass pyrolysis

    Directory of Open Access Journals (Sweden)

    Antonakou Eleni V.

    2006-01-01

    Full Text Available Biomass flash pyrolysis is a very promising thermochemical process for the production of bio-fuels and/or chemicals. However, large-scale applications are still under careful consideration, because of the high bio-liquid upgrading cost. In this paper the production of bio-liquids from biomass flash pyrolysis in a single stage catalytic process is being investigated using a novel once through fluid bed reactor. This biomass pyrolysis unit was constructed in Chemical Process Engineering Research Institute and comprises of a catalyst regenerator, a biomass-vibrating hopper, a fluidization reactor (that consists of an injector and a riser reactor, a product stripper along with a hot cyclone and a filter housing and finally a product condensation/recovery section. The unit can process up to 20 g/min. of biomass (50-800 mm and can circulate up to 300 g/min. of catalyst or inert material. The experiments performed in the pilot plant showed that the unit operates without problems and with satisfactory mass balances in a wide range of experimental conditions both in the absence and presence of catalyst. With the incorporation of an FCC catalyst in the pyrolysis, the physical properties of the bio-oil produced changed, while more stable bio-oil was produced. .

  18. Pyrolysis Model of Single Biomass Pellet in Downdraft Gasifier

    Institute of Scientific and Technical Information of China (English)

    薛爱军; 潘继红; 田茂诚; 伊晓璐

    2016-01-01

    By coupling the heat transfer equation with semi-global chemical reaction kinetic equations, a one-dimensional, unsteady mathematical model is developed to describe the pyrolysis of single biomass pellet in the pyrolysis zone of downdraft gasifier. The simulation results in inert atmosphere and pyrolysis zone agree well with the published experimental results. The pyrolysis of biomass pellets in pyrolysis zone is investigated, and the results show that the estimated convective heat transfer coefficient and emissivity coefficient are suitable. The mean pyro-lysis time is 15.22%, shorter than that in inert atmosphere, and the pellet pyrolysis process in pyrolysis zone belongs to fast pyrolysis. Among the pyrolysis products, tar yield is the most, gas the second, and char the least. During pyrolysis, the temperature change near the center is contrary to that near the surface. Pyrolysis gradually moves inwards layer by layer. With the increase of pyrolysis temperature and pellet diameter, the total pyrolysis time, tar yield, char yield and gas yield change in different ways. The height of pyrolysis zone is calculated to be 1.51—3.51 times of the characteristic pellet diameter.

  19. Co - pyrolysis of biomass and Polish lignite

    Energy Technology Data Exchange (ETDEWEB)

    Kordylewski, Wlodzimierz; Stojanowska, Grazyna [Politechnika Wroclawska, Wroclaw (Poland); Jones, Jenny [Univ. of Leeds (United Kingdom). Energy and Resources Research Inst.

    2006-01-15

    The paper presents results of studies of the chemical decomposition of coal, biomass and their blends during low rate heating gasification in atmosphere of air or nitrogen. Polish lignite (Turow), sawdust of pine and blends of these two fuels have been used in the research and it has been investigated the influence of ion exchanged calcium on their pyrolysis. The primary products of devolatilization provided important information for understanding subsequently the leading to toxic organic compounds and synergistic effects of these fuels. The influence of blending ratio and influence of calcium catalysts was discussed.

  20. Production of bio-oil with flash pyrolysis; Biooeljyn tuotanto flash-pyrolyysillae ja sen poltto

    Energy Technology Data Exchange (ETDEWEB)

    Nyroenen, T. [Vapo Oy, Jyvaeskylae (Finland)

    1997-12-01

    The target of the R and D work is to study the production of bio-oils using Flash-pyrolysis technology and utilisation of the bio-oil in oil-fuelled boilers. The PDU-unit was installed at VTT Energy in Otaniemi in April 1996. The first test were carried out in June. In the whole project Vapo Oy is responsible for: acquiring the 20 kg/h PDU-device for development; follow up of the engine tests; the investment of 5 MW demonstration plant; to carry on the boiler and engine tests with Finnish bio-oils. (orig.)

  1. Pyrolysis of biomass to produce fuels and chemical feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Yaman, Serdar E-mail: yamans@itu.edu.tr

    2004-03-01

    This review presents the summary of new studies on pyrolysis of biomass to produce fuels and chemical feedstocks. A number of biomass species, varying from woody and herbaceous biomass to municipal solid waste, food processing residues and industrial wastes, were subjected to different pyrolysis conditions to obtain liquid, gas and solid products. The results of various biomass pyrolysis investigations connected with the chemical composition and some properties of the pyrolysis products as a result of the applied pyrolysis conditions were combined. The characteristics of the liquid products from pyrolysis were examined, and some methods, such as catalytic upgrading or steam reforming, were considered to improve the physical and chemical properties of the liquids to convert them to economic and environmentally acceptable liquid fuels or chemical feedstocks. Outcomes from the kinetic studies performed by applying thermogravimetric analysis were also presented.

  2. Pyrolysis of biomass to produce fuels and chemical feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Serdar Yaman [Istanbul Technical University (Turkey). Chemical Engineering Dept.

    2004-03-01

    This review presents the summary of new studies on pyrolysis of biomass to produce fuels and chemical feedstocks. A number of biomass species, varying from woody and herbaceous biomass to municipal solid waste, food processing residues and industrial wastes, were subjected to different pyrolysis conditions to obtain liquid, gas and solid products. The results of various biomass pyrolysis investigations connected with the chemical composition and some properties of the pyrolysis products as a result of the applied pyrolysis conditions were combined. The characteristics of the liquid products from pyrolysis were examined, and some methods, such as catalytic upgrading or steam reforming, were considered to improve the physical and chemical properties of the liquids to convert them to economic and environmentally acceptable liquid fuels or chemical feedstocks. Outcomes from the kinetic studies performed by applying thermogravimetric analysis were also presented. (author)

  3. Regulation for Optimal Liquid Products during Biomass Pyrolysis: A Review

    Science.gov (United States)

    Wang, F.; Hu, L. J.; Zheng, Y. W.; Huang, Y. B.; Yang, X. Q.; Liu, C.; Kang, J.; Zheng, Z. F.

    2016-08-01

    The liquid product obtained from biomass pyrolysis is very valuable that it could be used for extraction of chemicals as well as for liquid fuel. The desire goal is to obtain the most bio-oil with desired higher heating value (HHV), high physicochemical stability. The yields and chemical composition of products from biomass pyrolysis are closely related to the feedstock, pyrolysis parameters and catalysts. Current researches mainly concentrated on the co-pyrolysis of different biomass and introduce of novel catalysts as well as the combined effect of catalysts and pyrolysis parameters. This review starts with the chemical composition of biomass and the fundamental parameters and focuses on the influence of catalysts on bio-oil. What is more, the pyrolysis facilities at commercial scales were also involved. The classic researches and the current literature about the yield and composition of products (mainly liquid products) are summarized.

  4. Microwave-assisted pyrolysis of biomass for liquid biofuels production

    DEFF Research Database (Denmark)

    Yin, Chungen

    2012-01-01

    Production of 2nd-generation biofuels from biomass residues and waste feedstock is gaining great concerns worldwide. Pyrolysis, a thermochemical conversion process involving rapid heating of feedstock under oxygen-absent condition to moderate temperature and rapid quenching of intermediate products......, is an attractive way for bio-oil production. Various efforts have been made to improve pyrolysis process towards higher yield and quality of liquid biofuels and better energy efficiency. Microwave-assisted pyrolysis is one of the promising attempts, mainly due to efficient heating of feedstock by ‘‘microwave...... dielectric heating’’ effects. This paper presents a state-of-the-art review of microwave-assisted pyrolysis of biomass. First, conventional fast pyrolysis and microwave dielectric heating is briefly introduced. Then microwave-assisted pyrolysis process is thoroughly discussed stepwise from biomass...

  5. Effect of Catalytic Pyrolysis Conditions Using Pulse Current Heating Method on Pyrolysis Products of Wood Biomass

    Directory of Open Access Journals (Sweden)

    Sensho Honma

    2014-01-01

    Full Text Available The influence of catalysts on the compositions of char and pyrolysis oil obtained by pyrolysis of wood biomass with pulse current heating was studied. The effects of catalysts on product compositions were analyzed using GC-MS and TEM. The compositions of some aromatic compounds changed noticeably when using a metal oxide species as the catalyst. The coexistence or dissolution of amorphous carbon and iron oxide was observed in char pyrolyzed at 800°C with Fe3O4. Pyrolysis oil compositions changed remarkably when formed in the presence of a catalyst compared to that obtained from the uncatalyzed pyrolysis of wood meal. We observed a tendency toward an increase in the ratio of polyaromatic hydrocarbons in the pyrolysis oil composition after catalytic pyrolysis at 800°C. Pyrolysis of biomass using pulse current heating and an adequate amount of catalyst is expected to yield a higher content of specific polyaromatic compounds.

  6. Fuel and fuel blending components from biomass derived pyrolysis oil

    Science.gov (United States)

    McCall, Michael J.; Brandvold, Timothy A.; Elliott, Douglas C.

    2012-12-11

    A process for the conversion of biomass derived pyrolysis oil to liquid fuel components is presented. The process includes the production of diesel, aviation, and naphtha boiling point range fuels or fuel blending components by two-stage deoxygenation of the pyrolysis oil and separation of the products.

  7. Activated carbon from flash pyrolysis of eucalyptus residue

    Directory of Open Access Journals (Sweden)

    Grima-Olmedo C

    2016-09-01

    Full Text Available Forestry waste (eucalyptus sp was converted into activated carbon by initial flash pyrolysis followed carbonization and CO2 activation. These residues were obtained from a pilot plant in Spain that produces biofuel, the biochar represented 10–15% in weight. It was observed that the highest activation was achieved at a temperature of 800 °C, the specific surface increased with time but, on the contrary, high loss of matter was observed. At 600 °C, although there was an important increase of the specific surface and the volume of micropores, at this temperature it was observed that the activation time was not an influential parameter. Finally, at 400 °C it was observed that the activation process was not very significant. Assessing the average pore diameter it was found that the lowest value corresponded to the activation temperature of 600 °C, which indicated the development of microporosity. When the activation temperature increases up to 800 °C the pore diameter increased developing mesoporosity.

  8. Activated carbon from flash pyrolysis of eucalyptus residue.

    Science.gov (United States)

    Grima-Olmedo, C; Ramírez-Gómez, Á; Gómez-Limón, D; Clemente-Jul, C

    2016-09-01

    Forestry waste (eucalyptus sp) was converted into activated carbon by initial flash pyrolysis followed carbonization and CO2 activation. These residues were obtained from a pilot plant in Spain that produces biofuel, the biochar represented 10-15% in weight. It was observed that the highest activation was achieved at a temperature of 800 °C, the specific surface increased with time but, on the contrary, high loss of matter was observed. At 600 °C, although there was an important increase of the specific surface and the volume of micropores, at this temperature it was observed that the activation time was not an influential parameter. Finally, at 400 °C it was observed that the activation process was not very significant. Assessing the average pore diameter it was found that the lowest value corresponded to the activation temperature of 600 °C, which indicated the development of microporosity. When the activation temperature increases up to 800 °C the pore diameter increased developing mesoporosity.

  9. Pyrolysis of biomass briquettes, modelling and experimental verification

    NARCIS (Netherlands)

    van der Aa, B; Lammers, G; Beenackers, AACM; Kopetz, H; Weber, T; Palz, W; Chartier, P; Ferrero, GL

    1998-01-01

    Carbonisation of biomass briquettes was studied using a dedicated single briquette carbonisation reactor. The reactor enabled continuous measurement of the briquette mass and continuous measurement of the radial temperature profile in the briquette. Furthermore pyrolysis gas production and compositi

  10. Power production from biomass II with special emphasis on gasification and pyrolysis R and DD

    Energy Technology Data Exchange (ETDEWEB)

    Sipilae, K.; Korhonen, M. [eds.] [VTT Energy, Espoo (Finland). Energy Production Technologies

    1996-12-31

    The Seminar on Power Production from Biomass II with special emphasis on gasification and pyrolysis R and DD, was organized by VTT Energy on 27 - 28 March 1995 in Espoo, Finland. All seminar speakers were invited in order to give a high-level overview of the achievements of biomass combustion, gasification and flash pyrolysis technologies. The sessions included presentations by all key industrial entrepreneurs in the field. The poster session was open to all groups interested. Globally bioenergy covers about 3 % of the primary energy consumption. Locally it has a significant role in many countries like in Finland, where bioenergy covers almost 15 % and peat 5 % of primary energy consumption. Today`s cost-effective heat and power production is based on industrial wood residues and spent cooking liquors in relatively large industrial units or municipal heating and power stations. Agricultural residues like straw and especially energy crops are becoming more interesting in co-utilization with other biomasses or fossil fuels. The seminar successfully displayed the status of present technologies as well as development targets for new gasification and flash pyrolysis technologies in the coming years. The many industrial participants showed that there are growing business possibilities in many countries all over the world. The proceedings include the most oral presentations given at the Seminar and also abstracts of poster presentations. (orig.)

  11. Biocrude from biomass: pyrolysis of cottonseed cake

    Energy Technology Data Exchange (ETDEWEB)

    Ozbay, N. [Anadolu University, Bilecik (Turkey). Bozuyuk Vocational School; Putun, A.E.; Uzun, B.B.; Putun, E. [Anadolu University, Bilecik (Turkey). Dept. of Chemical Engineering

    2001-11-01

    Fixed-bed pyrolysis experiments have been conducted on a sample of cottonseed cake to determine the possibility of being a potential source of renewable fuels and chemicals feedstocks, in two different reactors, namely a tubular and a Heinze retort. Pyrolysis atmosphere and pyrolysis temperature effects on the pyrolysis product yields and chemical composition have been investigated. The maximum oil yield of 29.68% was obtained in N{sub 2} atmosphere at a pyrolysis temperature of 550{sup o}C with a heating rate of 7{sup o}C min{sup -1} in a tubular reactor. (author)

  12. Pyrolysis of fast-growing aquatic biomass -Lemna minor (duckweed): Characterization of pyrolysis products.

    Science.gov (United States)

    Muradov, Nazim; Fidalgo, Beatriz; Gujar, Amit C; T-Raissi, Ali

    2010-11-01

    The aim of this work was to conduct the experimental study of pyrolysis of fast-growing aquatic biomass -Lemna minor (commonly known as duckweed) with the emphasis on the characterization of main products of pyrolysis. The yields of pyrolysis gas, pyrolytic oil (bio-oil) and char were determined as a function of pyrolysis temperature and the sweep gas (Ar) flow rate. Thermogravimetric/differential thermogravimetric (TG/DTG) analyses of duckweed samples in inert (helium gas) and oxidative (air) atmosphere revealed differences in the TG/DTG patterns obtained for duckweed and typical plant biomass. The bio-oil samples produced by duckweed pyrolysis at different reaction conditions were analyzed using GC-MS technique. It was found that pyrolysis temperature had minor effect on the bio-oil product slate, but exerted major influence on the relative quantities of the individual pyrolysis products obtained. While, the residence time of the pyrolysis vapors had negligible effect on the yield and composition of the duckweed pyrolysis products.

  13. Flash pyrolysis of jatropha oil cake in electrically heated fluidized bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Raja, S. Antony; Kennedy, Z. Robert; Pillai, B.C.; Lee, C. Lindon Robert [School of Mechanical Sciences, Karunya University, Coimbatore, Tamil Nadu 641114 (India)

    2010-07-15

    Fluidized bed flash pyrolysis experiments have been conducted on a sample of jatropha oil cake to determine particularly the effects of particle size, pyrolysis temperature and nitrogen gas flow rate on the pyrolysis yields. The particle size, nitrogen gas flow rate and temperature of jatropha oil cake were varied from 0.3 to 1.18 mm, 1.25 to 2.4 m{sup 3}/h and 350 to 550 C. The maximum oil yield of 64.25 wt% was obtained at a nitrogen gas flow rate of 1.75 m{sup 3}/h, particle size of 0.7-1.0 mm and pyrolysis temperature of 500 C. The calorific value of pyrolysis oil was found to be 19.66 MJ/kg. The pyrolysis gas can be used as a gaseous fuel. (author)

  14. Pyrolysis of microalgal biomass in carbon dioxide environment.

    Science.gov (United States)

    Cho, Seong-Heon; Kim, Ki-Hyun; Jeon, Young Jae; Kwon, Eilhann E

    2015-10-01

    This work mechanistically investigated the influence of CO2 in the thermo-chemical process of microalgal biomass (Chlorella vulgaris and Microcystis aeruginosa) to achieve a fast virtuous cycle of carbon via recovering energy. This work experimentally justified that the influence of CO2 in pyrolysis of microalgal biomass could be initiated at temperatures higher than 530 °C, which directly led to the enhanced generation of syngas. For example, the concentration of CO from pyrolysis of M. aeruginosa increased up to ∼ 3000% at 670 °C in the presence of CO2. The identified universal influence of CO2 could be summarized by the expedited thermal cracking of VOCs evolved from microalgal biomass and by the unknown reaction between VOCs and CO2. This identified effectiveness of CO2 was different from the Boudouard reaction, which was independently occurred with dehydrogenation. Thus, microalgal biomass could be a candidate for the thermo-chemical process (pyrolysis and gasification).

  15. Co-pyrolysis characteristic of biomass and bituminous coal.

    Science.gov (United States)

    Li, Shuaidan; Chen, Xueli; Liu, Aibin; Wang, Li; Yu, Guangsuo

    2015-03-01

    Co-pyrolysis characteristics of biomass and bituminous coal have been studied in this work. The temperature was up to 900°C with the heating rates of 10, 15, 20, 25 and 30°C/min. Rice straw, saw dust, microcrystalline cellulose, lignin and Shenfu bituminous coal were chosen as samples. Six different biomass ratios were used. The individual thermal behavior of each sample was obtained. The experimental weight fractions of the blended samples and the calculated values were compared. The results show that the weight fractions of the blended samples behave differently with calculated ones during the co-pyrolysis process. With the increasing biomass ratio, relative deviations between experimental weight fractions and calculated ones are larger. H/C molar ratio, heat transfer properties of biomass would affect to the interaction between biomass and coal. The maximum degradation rates are slower than the calculated ones. The activation energy distributions also changed by adding some biomass into coal.

  16. Flash pyrolysis, a process for utilizing contaminated wood; Flash-Pyrolyse - eine Moeglichkeit der stofflichen Verwertung von kontaminiertem Holz

    Energy Technology Data Exchange (ETDEWEB)

    Meier, D.; Wehlte, S.; Faix, O. [Bundesforschungsanstalt fuer Forst- und Holzwirtschaft, Hamburg (Germany). Inst. fuer Holzchemie und Chemische Technologie des Holzes

    1996-12-31

    Flash pyrolysis of wood treated with common pesticides poses no technical probelms. Product yields, with a maximum oil yield at 475 C, are similar to those of untreated wood. Most of the heavy metals are retained by the coal while a small part aheres to the coal layer of the sand bed. The resulting pyrolysis oil contains neither chromium nor copper. (orig) [Deutsch] Die Flash-Pyrolyse der mit den gaengigsten Schutzmitteln behandelten Hoelzer bereitet verfahrenstechnisch keine Probleme. Auch die Produktausbeuten, mit einem oelmaximum bei 475 C, aehneln denen von naturbelassenem Holz. Der groesste Teil der Schwermetalle wurde an die Kohle gebunden, ein geringer Teil blieb auf der Kohleschicht des Sandes haften. Im Hauptprodukt Pyrolyseoel konnten weder Chrom noch Kupfer nachgewiesen werden. (orig)

  17. Additives initiate selective production of chemicals from biomass pyrolysis.

    Science.gov (United States)

    Leng, Shuai; Wang, Xinde; Wang, Lei; Qiu, Huizhe; Zhuang, Guilin; Zhong, Xing; Wang, Jianguo; Ma, Fengyun; Liu, Jingmei; Wang, Qiang

    2014-03-01

    To improve chemicals selectivity under low temperature, a new method that involves the injection of additives into biomass pyrolysis is introduced. This method allows biomass pyrolysis to achieve high selectivity to chemicals under low temperature (300°C), while nothing was obtained in typical pyrolysis under 300°C. However, by using the new method, the first liquid drop emerged at the interval between 140°C and 240°C. Adding methanol to mushroom scrap pyrolysis obtained high selectivity to acetic acid (98.33%), while adding ethyl acetate gained selectivity to methanol (65.77%) in bagasse pyrolysis and to acetone (72.51%) in corncob pyrolysis. Apart from basic chemicals, one high value-added chemical (2,3-dihydrobenzofuran) was also detected, which obtained the highest selectivity (10.33%) in corncob pyrolysis through the addition of ethyl acetate. Comparison of HZSM-5 and CaCO3 catalysis showed that benzene emerged in the liquid because of the larger degree of cracking and hydrodeoxygenation over HZSM-5.

  18. Methods and apparatuses for deoxygenating biomass-derived pyrolysis oil

    Energy Technology Data Exchange (ETDEWEB)

    Baird, Lance Awender; Brandvold, Timothy A.

    2015-10-20

    Embodiments of methods and apparatuses for deoxygenating a biomass-derived pyrolysis oil are provided. In one example, a method comprises the steps of separating a low-oxygen biomass-derived pyrolysis oil effluent into a low-oxygen-pyoil organic phase stream and an aqueous phase stream. Phenolic compounds are removed from the aqueous phase stream to form a phenolic-rich diluent recycle stream. A biomass-derived pyrolysis oil stream is diluted and heated with the phenolic-rich diluent recycle stream to form a heated diluted pyoil feed stream. The heated diluted pyoil feed stream is contacted with a deoxygenating catalyst in the presence of hydrogen to deoxygenate the heated diluted pyoil feed stream.

  19. Specialists' workshop on fast pyrolysis of biomass

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    This workshop brought together most of those who are currently working in or have published significant findings in the area of fast pyrolysis of biomass or biomass-derived materials, with the goal of attaining a better understanding of the dominant mechanisms which produce olefins, oxygenated liquids, char, and tars. In addition, background papers were given in hydrocarbon pyrolysis, slow pyrolysis of biomass, and techniques for powdered-feedstock preparation in order that the other papers did not need to introduce in depth these concepts in their presentations for continuity. In general, the authors were requested to present summaries of experimental data with as much interpretation of that data as possible with regard to mechanisms and process variables such as heat flux, temperatures, partial pressure, feedstock, particle size, heating rates, residence time, etc. Separate abstracts have been prepared of each presentation for inclusion in the Energy Data Base. (DMC)

  20. Gluconic acid from biomass fast pyrolysis oils: specialty chemicals from the thermochemical conversion of biomass.

    Science.gov (United States)

    Santhanaraj, Daniel; Rover, Marjorie R; Resasco, Daniel E; Brown, Robert C; Crossley, Steven

    2014-11-01

    Fast pyrolysis of biomass to produce a bio-oil followed by catalytic upgrading is a widely studied approach for the potential production of fuels from biomass. Because of the complexity of the bio-oil, most upgrading strategies focus on removing oxygen from the entire mixture to produce fuels. Here we report a novel method for the production of the specialty chemical, gluconic acid, from the pyrolysis of biomass. Through a combination of sequential condensation of pyrolysis vapors and water extraction, a solution rich in levoglucosan is obtained that accounts for over 30% of the carbon in the bio-oil produced from red oak. A simple filtration step yields a stream of high-purity levoglucosan. This stream of levoglucosan is then hydrolyzed and partially oxidized to yield gluconic acid with high purity and selectivity. This combination of cost-effective pyrolysis coupled with simple separation and upgrading could enable a variety of new product markets for chemicals from biomass.

  1. Bio-oil from Flash Pyrolysis of Agricultural Residues

    DEFF Research Database (Denmark)

    Ibrahim, Norazana

    bio-oils. Mainly the influence of feedstock type (wheat straw, rice husk and pine wood), feedstock water content and reactor temperature on the yield of char, bio-oil and gas were investigated. The storage stability of bio-oils with respect to changes in viscosity, water content and pH were...... liquid organics yield. In addition, the chemical compositions of the bio-oils and the chars of the investigated feedstocks were also analyzed. The utilization of the pyrolysis oil in static combustion equipments such as boilers and turbine have shown that the suitability of the pyrolysis oil...... to substitute fossil fuel. However, several limitations still arise due to the instability of the pyrolysis oil that may cause problems with transport and storage. Pyrolysis oil contains more than hundred of chemical compounds and has a wide range of volatility (different boiling points). The stability...

  2. Low oxygen biomass-derived pyrolysis oils and methods for producing the same

    Science.gov (United States)

    Marinangeli, Richard; Brandvold, Timothy A; Kocal, Joseph A

    2013-08-27

    Low oxygen biomass-derived pyrolysis oils and methods for producing them from carbonaceous biomass feedstock are provided. The carbonaceous biomass feedstock is pyrolyzed in the presence of a catalyst comprising base metal-based catalysts, noble metal-based catalysts, treated zeolitic catalysts, or combinations thereof to produce pyrolysis gases. During pyrolysis, the catalyst catalyzes a deoxygenation reaction whereby at least a portion of the oxygenated hydrocarbons in the pyrolysis gases are converted into hydrocarbons. The oxygen is removed as carbon oxides and water. A condensable portion (the vapors) of the pyrolysis gases is condensed to low oxygen biomass-derived pyrolysis oil.

  3. Current issues and future directions in pyrolysis of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Preto, F. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Energy Technology Centre

    2005-02-01

    Biomass is a diverse grouping of low energy content, low density and high moisture heterogenous materials. An overview of pyrolysis processes and procedures was presented with a list of potential applications for industrial processes and power generation. The chemical energy content of various fuels was presented and with the advantages of pyrolysis with reference to improved transport, handling and storage. Details of technical requirements were outlined along with some of the undesirable characteristics of biofuel including the highly corrosive nature of the fuel, pungency, high solids content, immiscibility with hydrocarbon fuels and the fact that over time, chemical composition shifts, resulting in increased viscosity and decreased volatility. Various issues concerning pyrolysis regarding current technologies, composition and standards, applications and biorefinery feedstock were summarized. A flow chart presenting the conversion of biomass to biofuel was provided. Various reactor types were also overviewed and included such as fluidized beds, transport, heated augers, vacuum pyrolysis and ablative and rotating cones. Details of pilot plants in Erie and Renfrew, Ontario were provided along with details of a plant in Alabama operating entirely on chicken litter. Various specifications for pyrolysis oils were presented. A chart of biofuel composition in mass fractions was provided, with an accompanying list of commonly quoted pyrolysis oil properties. A series of biofuel combustion tests conducted at CANMET Energy Technology Centre (CETC) in Ottawa were described. Photographs of the pre-test refractory were exhibited. Details of current research on drying kiln applications were outlined. The suitability of pyrolytic biofuel for producing microemulsion fuels was discussed. A biorefinery model was included. Challenges to biomass pyrolysis include feed preparation, scale-up issues, heat transfer to reactor rates, char separation, liquid collection, liquid quality

  4. Fast pyrolysis of biomass thermally pretreated by torrefaction

    Science.gov (United States)

    Torrefied biomass samples were produced from hardwood and switchgrass pellets using the biochar experimenter’s kit (BEK) reactor and analyzed for their utility as pretreated feedstock for biofuels production via fast pyrolysis. The energy efficiency for the BEK torrefaction process with propane gas ...

  5. Catalytic upgrading of biomass pyrolysis vapours using Faujasite zeolite catalysts

    NARCIS (Netherlands)

    Nguyen, T.S.; Zabeti, M.; Lefferts, L.; Brem, G.; Seshan, K.

    2012-01-01

    Bio-oil produced via fast pyrolysis of biomass has the potential to be processed in a FCC (fluid catalytic cracking) unit to generate liquid fuel. However, this oil requires a significant upgrade to become an acceptable feedstock for refinery plants due to its high oxygen content. One promising rout

  6. Experimental investigation of flash pyrolysis oil droplet combustion

    DEFF Research Database (Denmark)

    Ibrahim, Norazana; Jensen, Peter A.; Dam-Johansen, Kim;

    2013-01-01

    The aim of this work is to investigate and compare the combustion behaviour of a single droplet of pyrolysis oil derived from wheat straw and heavy fossil oil in a single droplet combustion chamber. The initial oil droplet diameters were in between 500 μm to 2500 μm. The experiments were performed...... at a temperature ranging between 1000 and 1400°C with an initial gas velocity of 1.6 m/s and oxygen concentration of 3%. The evolution of combustion of bio-oil droplets was recorded by a digital video camera. It was observed that the combustion behaviour of pyrolysis oil droplet differ from the heavy oil in terms...... both of ignition, devolatilisation and char oxidation. The pyrolysis oil is more difficult to ignite and has a shorter devolatilisation time and a longer char oxidation time. Copyright © 2013, AIDIC Servizi S.r.l....

  7. Stabilization of biomass-derived pyrolysis oils

    NARCIS (Netherlands)

    Venderbosch, R. H.; Ardiyanti, A. R.; Wildschut, J.; Oasmaa, A.; Heeres, H. J.

    2010-01-01

    BACKGROUND: Biomass is the only renewable feedstock containing carbon, and therefore the only alternative to fossil-derived crude oil derivatives. However, the main problems concerning the application of biomass for biofuels and bio-based chemicals are related to transport and handling, the limited

  8. An analytical model for pyrolysis of a single biomass particle

    Institute of Scientific and Technical Information of China (English)

    Mehdi Bidabadi; Mohammad Rastegar Moghaddam; Seyed Alireza Mostafavi; Farzad Faraji Dizaji; Hossein Beidaghy Dizaji

    2015-01-01

    Decreasing in emissions of greenhouse gases to confront the global warming needs to replace fossil fuels as the main doer of the world climate changes by renewable and clean fuels produced from biomass like wood waste which is neutral on the amount of CO2. An analytical and engineering model for pyrolysis process of a single biomass particle has been presented. Using a two-stage semi global kinetic model which includes both primary and secondary reactions, the effects of parameters like shape and size of particle as well as porosity on the particle temperature profile and product yields have been investigated. Comparison of the obtained results with experimental data shows that our results are in a reasonable agreement with previous researchers’ works. Finally, a sensitivity analysis is done to determine the importance of each parameter on pyrolysis of a single biomass particle which is affected by many constant parameters.

  9. Kinetics study on biomass pyrolysis for fuel gas production

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Kinetic knowledge is of great importance in achieving good control of the pyrolysis and gasification process and optimising system design. An overall kinetic pyrolysis scheme is therefore addressed here. The kinetic modelling incorporates the following basic steps: the degradation of the virgin biomass materials into primary products (tar, gas and semi-char), the decomposition of primary tar into secondary products and the continuous interaction between primary gas and char. The last step is disregarded completely by models in the literature. Analysis and comparison of predicted results from different kinetic schemes and experimental data on our fixed bed pyrolyser yielded very positive evidence to support our kinetic scheme.

  10. Kinetics study on biomass pyrolysis for fuel gas production

    Institute of Scientific and Technical Information of China (English)

    陈冠益; 方梦祥; ANDRIES,J.; 骆仲泱; SPLIETHOFF,H.; 岑可法

    2003-01-01

    Kinetic knowledge is of great importance in achieving good control of the pyrolysis and gasification process and optimising system design. An overall kinetic pyrolysis scheme is therefore addressed here. The ki-netic modelling incorporates the following basic steps: the degradation of the virgin biomass materials into pri-mary products ( tar, gas and semi-char), the decomposition of primary tar into secondary products and the continuous interaction between primary gas and char. The last step is disregarded completely by models in the literature. Analysis and comparison of predicted results from different kinetic schemes and experimental data on our fixed bed pyrolyser yielded very positive evidence to support our kinetic scheme.

  11. Catalytic flash pyrolysis of oil-impregnated-wood and jatropha cake using sodium based catalysts

    KAUST Repository

    Imran, Ali

    2015-11-24

    Catalytic pyrolysis of wood with impregnated vegetable oil was investigated and compared with catalytic pyrolysis of jatropha cake making use of sodium based catalysts to produce a high quality bio-oil. The catalytic pyrolysis was carried out in two modes: in-situ catalytic pyrolysis and post treatment of the pyrolysis vapors. The in-situ catalytic pyrolysis was carried out in an entrained flow reactor system using a premixed feedstock of Na2CO3 and biomass and post treatment of biomass pyrolysis vapor was conducted in a downstream fixed bed reactor of Na2CO3/γ-Al2O3. Results have shown that both Na2CO3 and Na2CO3/γ-Al2O3 can be used for the production of a high quality bio-oil from catalytic pyrolysis of oil-impregnated-wood and jatropha cake. The catalytic bio-oil had very low oxygen content, water content as low as 1wt.%, a neutral pH, and a high calorific value upto 41.8MJ/kg. The bio-oil consisted of high value chemical compounds mainly hydrocarbons and undesired compounds in the bio-oil were either completely removed or considerably reduced. Increasing the triglycerides content (vegetable oil) in the wood enhanced the formation of hydrocarbons in the bio-oil. Post treatment of the pyrolysis vapor over a fixed bed of Na2CO3/γ-Al2O3 produced superior quality bio-oil compared to in-situ catalytic pyrolysis with Na2CO3. This high quality bio-oil may be used as a precursor in a fractionating process for the production of alternative fuels. © 2015 Elsevier B.V.

  12. On-line catalytic upgrading of biomass fast pyrolysis products

    Institute of Scientific and Technical Information of China (English)

    LU Qiang; ZHU XiFeng; LI WenZhi; ZHANG Ying; CHEN DengYu

    2009-01-01

    Pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) was employed to achieve fast pyrolysis of biomass and on-line analysis of the pyrolysis vapors. Four biomass materials (poplar wood, fir wood, cotton straw and rice husk) were pyrolyzed to reveal the difference among their products. Moreover, catalytic cracking of the pyrolysis vapors from cotton straw was performed by using five catalysts, including two microporous zeolites (HZSM-5 and HY) and three mesoporous catalysts (ZrO2&TiO2, SBA-15 and AI/SBA-15). The results showed that the distribution of the pyrolytic products from the four materials differed a little from each other, while catalytic cracking could significantly alter the pyrolytic products. Those important primary pyrolytic products such as levoglucosen, hydroxyacetaldehyde and 1-hydroxy-2-propanone were decreased greatly after catalysis. The two microporous zeolites were ef-fective to generate high yields of hydrocarbons, while the three mesoporous materials favored the formation of furan, furfural and other furan compounds, as well as acetic acid.

  13. Apparatuses and methods for deoxygenating biomass-derived pyrolysis oil

    Energy Technology Data Exchange (ETDEWEB)

    Kalnes, Tom N.

    2015-12-29

    Apparatuses and methods for deoxygenating a biomass-derived pyrolysis oil are provided herein. In one example, the method comprises of dividing a feedstock stream into first and second feedstock portions. The feedstock stream comprises the biomass-derived pyrolysis oil and has a temperature of about 60.degree. C. or less. The first feedstock portion is combined with a heated organic liquid stream to form a first heated diluted pyoil feed stream. The first heated diluted pyoil feed stream is contacted with a first deoxygenating catalyst in the presence of hydrogen to form an intermediate low-oxygen pyoil effluent. The second feedstock portion is combined with the intermediate low-oxygen pyoil effluent to form a second heated diluted pyoil feed stream. The second heated diluted pyoil feed stream is contacted with a second deoxygenating catalyst in the presence of hydrogen to form additional low-oxygen pyoil effluent.

  14. Novel applications of biomass wet pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Sillanpaa, M. [Lappeenranta Univ. of Technology (Finland)], email: mika.sillanpaa@lut.fi

    2012-07-01

    Production of carbonaceous material from unconventional wet biomass sources by thermal processing offers interesting novel opportunities and application possibilities in different fields. Thermal treatment at low temperatures refers to torrefication in general. Disadvantage in this technique is that biomass has to be dried first which consumes a lot energy and time and limits use of biomass materials widely. In wetpyrolysis (hydrothermal carbonization, HTC), biomass source can be wetter, like wood, household wastes, manure or industrial wastewater sludge. Reaction takes place in water environment at higher temperature (180-250 deg C) and pressure which is self-generated. Typically reaction system is high pressure reactor also called autoclave. Comparing to torrefaction HTC produces more solid yield, water soluble organic compounds but formation is low during reaction. Properties of the product can be easily modified by changing reaction conditions, utilization of additives or catalysts. Novel materials obtained by this technique will be used in different applications in water treatment and it will be also interesting to compare purification efficiency of these materials to activated carbon.

  15. Structural and Compositional Transformations of Biomass Chars during Fast Pyrolysis

    DEFF Research Database (Denmark)

    Trubetskaya, Anna; Steibel, Markus; Spliethoff, Hartmut

    In this work the physical and chemical transformations of biomass chars during fast pyrolysis, considered as a 2nd stage of combustion, has been investigated. Seven biomasses containing different amount of ash and organic components were reacted at up to 1673 K with high heating rates in a wire......-mesh reactor and the resulting chars were retrieved. In order to obtain information on the structural and compositional transformations of the biomass chars, samples were subjected to elemental analysis, scanning electron microcopy with EDX and Raman spectrometry. The results show that there are significant...... changes in both the organic and inorganic constituents of the chars.Under high heating rates (> 100 K/s) char particles underwent different types of melting and pores of different size were developed in dependency on the temperature and biomass composition. The Si-rich rice husks char did not show any...

  16. Processes for washing a spent ion exchange bed and for treating biomass-derived pyrolysis oil, and apparatuses for treating biomass-derived pyrolysis oil

    Science.gov (United States)

    Baird, Lance Awender; Brandvold, Timothy A.

    2015-11-24

    Processes and apparatuses for washing a spent ion exchange bed and for treating biomass-derived pyrolysis oil are provided herein. An exemplary process for washing a spent ion exchange bed employed in purification of biomass-derived pyrolysis oil includes the step of providing a ion-depleted pyrolysis oil stream having an original oxygen content. The ion-depleted pyrolysis oil stream is partially hydrotreated to reduce the oxygen content thereof, thereby producing a partially hydrotreated pyrolysis oil stream having a residual oxygen content that is less than the original oxygen content. At least a portion of the partially hydrotreated pyrolysis oil stream is passed through the spent ion exchange bed. Water is passed through the spent ion exchange bed after passing at least the portion of the partially hydrotreated pyrolysis oil stream therethrough.

  17. Pyrolysis Strategies for Effective Utilization of Lignocellulosic and Algal Biomass

    Science.gov (United States)

    Maddi, Balakrishna

    Pyrolysis is a processing technique involving thermal degradation of biomass in the absence of oxygen. The bio-oils obtained following the condensation of the pyrolysis vapors form a convenient starting point for valorizing the major components of lignocellulosic as well as algal biomass feed stocks for the production of fuels and value-added chemicals. Pyrolysis can be implemented on whole biomass or on residues left behind following standard fractionation methods. Microalgae and oil seeds predominantly consist of protein, carbohydrate and triglycerides, whereas lignocellulose is composed of carbohydrates (cellulose and hemicellulose) and lignin. The differences in the major components of these two types of biomass will necessitate different pyrolysis strategies to derive the optimal benefits from the resulting bio-oils. In this thesis, novel pyrolysis strategies were developed that enable efficient utilization of the bio-oils (and/or their vapors) from lignocellulose, algae, as well as oil seed feed stocks. With lignocellulosic feed stocks, pyrolysis of whole biomass as well as the lignin residue left behind following well-established pretreatment and saccharification (i.e., depolymerization of cellulose and hemicellulose to their monomeric-sugars) of the biomass was studied with and without catalysts. Following this, pyrolysis of (lipid-deficient) algae and lignocellulosic feed stocks, under similar reactor conditions, was performed for comparison of product (bio-oil, gas and bio-char) yields and composition. In spite of major differences in component bio-polymers, feedstock properties relevant to thermo-chemical conversions, such as overall C, H and O-content, C/O and H/C molar ratio as well as calorific values, were found to be similar for algae and lignocellulosic material. Bio-oil yields from algae and some lignocellulosic materials were similar; however, algal bio-oils were compositionally different and contained several N-compounds (most likely from

  18. Influence of Partial Combustion on Rapid Pyrolysis of Wood Biomass

    Science.gov (United States)

    Yasuda, Hajime; Yamada, Osamu; Kaiho, Mamoru; Shinagawa, Takuya; Matsui, Satoshi; Iwasaki, Toshihiko; Shimada, Sohei

    A batch reactor was made and used in this work. In an actual rapid pyrolyzer/gasifier, each biomass is thrown into high temperature zone in the reactor. In order to simulate the reaction occurred in a fluidized bed rapid pyrolyzer/gasifier, the reactor was designed to inject samples into reaction zone directly and to control the reaction time optionally. Rapid pyrolysis of wood biomasses, such as Konara, bagasse, and EFB (Empty Fruit Bunch), was carried out at 1073K in nitrogen with the reaction time range of 2-20s. Difference in product distribution with varying reaction time was observed apparently among Konara, bagasse, and EFB. The difference in the reactivity among sorts of biomass should be considered even when their elemental composition and/or components ratio are similar. Rapid pyrolysis of wood biomass (Japanese cedar) with small amount of oxygen as gasification agent was also carried out. The amount of product gas was decreased through 1s to 2s and the decreasing rate was higher with increase in the amount of oxygen.

  19. Biomass to hydrogen via fast pyrolysis and catalytic steam reforming

    Energy Technology Data Exchange (ETDEWEB)

    Chornet, E.; Wang, D.; Montane, D. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1995-09-01

    Fast pyrolysis of biomass results in a pyrolytic oil which is a mixture of (a) carbohydrate-derived acids, aldehydes and polyols, (b) lignin-derived substituted phenolics, and (c) extractives-derived terpenoids and fatty acids. The conversion of this pyrolysis oil into H{sub 2} and CO{sub 2} is thermodynamically favored under appropriate steam reforming conditions. Our efforts have focused in understanding the catalysis of steam reforming which will lead to a successful process at reasonable steam/carbon ratios arid process severities. The experimental work, carried out at the laboratory and bench scale levels, has centered on the performance of Ni-based catalysts using model compounds as prototypes of the oxygenates present in the pyrolysis oil. Steam reforming of acetic acid, hydroxyacetaldehyde, furfural and syringol has been proven to proceed rapidly within a reasonable range of severities. Time-on-stream studies are now underway using a fixed bed barometric pressure reactor to ascertain the durability of the catalysts and thus substantiate the scientific and technical feasibility of the catalytic reforming option. Economic analyses are being carried out in parallel to determine the opportunity zones for the combined fast pyrolysis/steam reforming approach. A discussion on the current state of the project is presented.

  20. Flash pyrolysis of sunflower oil cake for production of liquid fuels

    Energy Technology Data Exchange (ETDEWEB)

    Yorgun, S.; Sensoez, S. [Department of Chemical Engineering, Faculty of Engineering, Osmangazi University, 26480 Eskisehir (Turkey); Kockar, O.M. [Department of Chemical Engineering, Faculty of Engineering, Anadolu University, 26470 Eskisehir (Turkey)

    2001-06-01

    Flash pyrolysis experiments of sunflower (Helianthus annuus L.) press oil cake were performed in a tubular transport reactor at atmospheric pressure under nitrogen atmosphere. The effects of pyrolysis temperature, particle size and sweep gas flow rate on the yields of products were investigated. The temperature of pyrolysis, particle size and sweep gas flow rate were varied in the ranges 450-700C, D{sub p}<0.224, 0.224-0.425, 0.425-0.850 mm and 25-600 cm{sup 3} min{sup -1}, respectively. The maximum oil yield of ca. 45% was obtained at a pyrolysis temperature of 550C, with the sweep gas flow rate of 300 cm{sup 3} min{sup -1} and particle size of 0.425-0.850 mm. The elemental analysis and calorific value of the pyrolysis oil were determined, and then the chemical composition of the oil was investigated using chromatographic and spectroscopic techniques (1H NMR, IR, column chromatography and GC). The chemical characterization has shown that the oil obtained from sunflower oil cake can be used as a renewable fuel and chemical feedstock.

  1. Value added liquid products from waste biomass pyrolysis using pretreatments.

    Science.gov (United States)

    Das, Oisik; Sarmah, Ajit K

    2015-12-15

    Douglas fir wood, a forestry waste, was attempted to be converted into value added products by pretreatments followed by pyrolysis. Four different types of pretreatments were employed, namely, hot water treatment, torrefaction, sulphuric acid and ammonium phosphate doping. Subsequently, pyrolysis was done at 500°C and the resulting bio-oils were analysed for their chemical composition using Karl Fischer titration, thermogravimetry, ion exchange, and gas chromatography. Pretreatment with acid resulted in the highest yield of bio-oil (~60%). The acid and salt pretreatments were responsible for drastic reduction in the lignin oligomers and enhancement of water content in the pyrolytic liquid. The quantity of xylose/mannose reduced as a result of pretreatments. Although, the content of fermentable sugars remained similar across all the pretreatments, the yield of levoglucosan increased. Pretreatment of the biomass with acid yielded the highest amount of levoglucosan in the bio-oil (13.21%). The acid and salt pretreatments also elevated the amount of acetic acid in the bio-oils. Addition of acid and salt to the biomass altered the interaction of cellulose-lignin in the pyrolysis regime. Application of pretreatments should be based on the intended end use of the liquid product having a desired chemical composition.

  2. High quality fuel gas from biomass pyrolysis with calcium oxide.

    Science.gov (United States)

    Zhao, Baofeng; Zhang, Xiaodong; Chen, Lei; Sun, Laizhi; Si, Hongyu; Chen, Guanyi

    2014-03-01

    The removal of CO2 and tar in fuel gas produced by biomass thermal conversion has aroused more attention due to their adverse effects on the subsequent fuel gas application. High quality fuel gas production from sawdust pyrolysis with CaO was studied in this paper. The results of pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) experiments indicate that the mass ratio of CaO to sawdust (Ca/S) remarkably affects the behavior of sawdust pyrolysis. On the basis of Py-GC/MS results, one system of a moving bed pyrolyzer coupled with a fluid bed combustor has been developed to produce high quality fuel gas. The lower heating value (LHV) of the fuel gas was above 16MJ/Nm(3) and the content of tar was under 50mg/Nm(3), which is suitable for gas turbine application to generate electricity and heat. Therefore, this technology may be a promising route to achieve high quality fuel gas for biomass utilization.

  3. Membrane Fractionation of Biomass Fast Pyrolysis Oil and Impact of its Presence on a Petroleum Gas Oil Hydrotreatment Fractionnement membranaire d’une huile de pyrolyse flash et impact de sa présence sur l’hydrotraitement d’un gazole atmosphérique

    Directory of Open Access Journals (Sweden)

    Pinheiro A.

    2013-09-01

    Full Text Available In order to limit the greenhouse effect causing climate change and reduce the needs of the transport sector for petroleum oils, transformation of lignocellulosic biomass is a promising alternative route to produce automotive fuels, chemical intermediates and energy. Gasification and liquefaction of biomass resources are the two main routes that are under investigation to convert biomass into biofuels. In the case of the liquefaction, due to the unstability of the liquefied products, one solution can be to perform a specific hydrotreatment of fast pyrolysis bio-oils with petroleum cuts in existing petroleum refinery system. With this objective, previous studies [Pinheiro et al. (2009 Energy Fuels 23, 1007-1014; Pinheiro et al. (2011 Energy Fuels 25, 804-812] have been carried out to investigate the impact of oxygenated model compounds on a Straight Run Gas Oil (SRGO hydrotreatment using a CoMo catalyst. The authors have demonstrated that the main inhibiting effects are induced from CO and CO2 produced during hydrodeoxygenation of esters and carboxylic acids. To go further, cotreatment of a fast pyrolysis oil with the same SRGO as used in the previous. studies was investigated in this present work. Firstly the bio-oil was separated into four fractions by membrane fractionation using 400 and 220 Da molecular weight cut-off membranes. The bio-oil and its fractions were analyzed by spectroscopic and chromatographic techniques. Then, one fraction (i.e. fraction enriched in compounds with molecular weight from 220 to 400 Da was mixed with the SRGO and co-treated. Despite some experimental difficulties mainly due to the emulsion instability, the hydrotreatment was successful. An inhibition has been observed on the hydro treating reactions of the SRGO in presence of the bio-oil fraction. The measurement of the CO/CO2/CH4 molar flowrate at the reactor outlet showed that the inhibition was due to the presence of CO and CO2 coming from HDO rather than to

  4. Thermal decomposition and gasification of biomass pyrolysis gases using a hot bed of waste derived pyrolysis char.

    Science.gov (United States)

    Al-Rahbi, Amal S; Onwudili, Jude A; Williams, Paul T

    2016-03-01

    Chars produced from the pyrolysis of different waste materials have been investigated in terms of their use as a catalyst for the catalytic cracking of biomass pyrolysis gases during the two-stage pyrolysis-gasification of biomass. The chars were produced from the pyrolysis of waste tyres, refused derived fuel and biomass in the form of date stones. The results showed that the hydrocarbon tar yields decreased significantly with all the char materials used in comparison to the non-char catalytic experiments. For example, at a cracking temperature of 800°C, the total product hydrocarbon tar yield decreased by 70% with tyre char, 50% with RDF char and 9% with biomass date stones char compared to that without char. There was a consequent increase in total gas yield. Analysis of the tar composition showed that the content of phenolic compounds decreased and polycyclic aromatic hydrocarbons increased in the product tar at higher char temperatures.

  5. Screening acidic zeolites for catalytic fast pyrolysis of biomass and its components

    Science.gov (United States)

    Zeolites have been shown to effectively promote cracking reactions during pyrolysis resulting in highly deoxygenated and hydrocarbon-rich compounds and stable pyrolysis oil product. Py/GC-MS was employed to study the catalytic fast pyrolysis of lignocellulosic biomass samples comprising oak, corn...

  6. INTEGRATED PYROLYSIS COMBINED CYCLE BIOMASS POWER SYSTEM CONCEPT DEFINITION

    Energy Technology Data Exchange (ETDEWEB)

    Eric Sandvig; Gary Walling; Robert C. Brown; Ryan Pletka; Desmond Radlein; Warren Johnson

    2003-03-01

    Advanced power systems based on integrated gasification/combined cycles (IGCC) are often presented as a solution to the present shortcomings of biomass as fuel. Although IGCC has been technically demonstrated at full scale, it has not been adopted for commercial power generation. Part of the reason for this situation is the continuing low price for coal. However, another significant barrier to IGCC is the high level of integration of this technology: the gas output from the gasifier must be perfectly matched to the energy demand of the gas turbine cycle. We are developing an alternative to IGCC for biomass power: the integrated (fast) pyrolysis/ combined cycle (IPCC). In this system solid biomass is converted into liquid rather than gaseous fuel. This liquid fuel, called bio-oil, is a mixture of oxygenated organic compounds and water that serves as fuel for a gas turbine topping cycle. Waste heat from the gas turbine provides thermal energy to the steam turbine bottoming cycle. Advantages of the biomass-fueled IPCC system include: combined cycle efficiency exceeding 37 percent efficiency for a system as small as 7.6 MW{sub e}; absence of high pressure thermal reactors; decoupling of fuel processing and power generation; and opportunities for recovering value-added products from the bio-oil. This report provides a technical overview of the system including pyrolyzer design, fuel clean-up strategies, pyrolysate condenser design, opportunities for recovering pyrolysis byproducts, gas turbine cycle design, and Rankine steam cycle. The report also reviews the potential biomass fuel supply in Iowa, provide and economic analysis, and present a summery of benefits from the proposed system.

  7. Chaos Transfer in Fluidized Beds Accompanied with Biomass Pyrolysis

    Institute of Scientific and Technical Information of China (English)

    唐松涛; 李定凯; 吕子安; 沈幼庭

    2003-01-01

    Experiments of biomass pyrolysis were carried out in a fiuidized bed, and dynamic signals of pressure and temperature were recorded. Correlation dimension was employed to characterize the chaotic behavior of pressure and temperature signals. Both pressure and temperature signals exhibit chaotic behavior, and the chaotic behavior of temperature signals is always weaker than that of pressure signals. Chaos transfer theory was advanced to explain the above phenomena. The discussion on the algorithm of the correlation dimension shows that the distance definition based on rhombic neighborhood is a better choice than the traditional one based on spherical neighborhood. The former provides a satisfactory result in a much shorter time.

  8. Fast pyrolysis of biomass : an experimental study on mechanisms influencing yield and composition of the products

    NARCIS (Netherlands)

    Hoekstra, Elly

    2011-01-01

    Pyrolysis oil originating from biomass has the potential to replace ‘crude fossil oil’ and to produce fuels and chemicals in a more sustainable way. The favorable perspective of fast pyrolysis as biomass pre-treatment step is directly related to the production of a liquid as main product and the sig

  9. Direct Numerical Simulation of biomass pyrolysis and combustion with gas phase reactions

    NARCIS (Netherlands)

    Aswasthi, A.; Kuerten, J.G.M.; Geurts, B.J.

    2016-01-01

    We present Direct Numerical Simulation of biomass pyrolysis and combustion in a turbulent channel flow. The model includes simplified models for biomass pyrolysis and char combustion along with a model for particle tracking. The gas phase is modelled as a mixture of reacting gas species. The gas-pa

  10. Novel sorbent materials for environmental remediation via Pyrolysis of biomass

    Science.gov (United States)

    Zabaniotou, Anastasia

    2013-04-01

    One of the major challenges facing society at this moment is the transition from a non-sustainable, fossil resources-based economy to a sustainable bio-based economy. By producing multiple products, a biorefinery can take advantage of the differences in biomass components and intermediates and maximize the value derived from the biomass feedstock. The high-value products enhance profitability, the high-volume fuel helps meet national energy needs, and the power production reduces costs and avoids greenhouse-gas emissions From pyrolysis, besides gas and liquid products a solid product - char, is derived as well. This char contains the non converted carbon and can be used for activated carbon production and/or as additive in composite material production. Commercially available activated carbons are still considered expensive due to the use of non-renewable and relatively expensive starting material such as coal. The present study describes pyrolysis as a method to produce high added value carbon materials such as activated carbons (AC) from agricultural residues pyrolysis. Olive kernel has been investigated as the precursor of the above materials. The produced activated carbon was characterized by proximate and ultimate analyses, BET method and porosity estimation. Furthermore, its adsorption of pesticide compound in aqueous solution by was studied. Pyrolysis of olive kernel was conducted at 800 oC for 45min in a fixed reactor. For the production of the activated carbon the pyrolytic char was physically activated under steam in the presence of CO2 at 970oC for 3 h in a bench scale reactor. The active carbons obtained from both scales were characterized by N2 adsorption at 77 K, methyl-blue adsorption (MB adsorption) at room temperature and SEM analysis. Surface area and MB adsorption were found to increase with the degree of burn-off. The surface area of the activated carbons was found to increase up to 1500 m2/g at a burn-off level of 60-65wt.%, while SEM analysis

  11. Fast microwave assisted pyrolysis of biomass using microwave absorbent.

    Science.gov (United States)

    Borges, Fernanda Cabral; Du, Zhenyi; Xie, Qinglong; Trierweiler, Jorge Otávio; Cheng, Yanling; Wan, Yiqin; Liu, Yuhuan; Zhu, Rongbi; Lin, Xiangyang; Chen, Paul; Ruan, Roger

    2014-03-01

    A novel concept of fast microwave assisted pyrolysis (fMAP) in the presence of microwave absorbents was presented and examined. Wood sawdust and corn stover were pyrolyzed by means of microwave heating and silicon carbide (SiC) as microwave absorbent. The bio-oil was characterized, and the effects of temperature, feedstock loading, particle sizes, and vacuum degree were analyzed. For wood sawdust, a temperature of 480°C, 50 grit SiC, with 2g/min of biomass feeding, were the optimal conditions, with a maximum bio-oil yield of 65 wt.%. For corn stover, temperatures ranging from 490°C to 560°C, biomass particle sizes from 0.9mm to 1.9mm, and vacuum degree lower than 100mmHg obtained a maximum bio-oil yield of 64 wt.%. This study shows that the use of microwave absorbents for fMAP is feasible and a promising technology to improve the practical values and commercial application outlook of microwave based pyrolysis.

  12. Numerical Study of Pyrolysis of Biomass in Fluidized Beds

    Science.gov (United States)

    Bellan, Josette; Lathouwers, Danny

    2003-01-01

    A report presents a numerical-simulation study of pyrolysis of biomass in fluidized-bed reactors, performed by use of the mathematical model described in Model of Fluidized Bed Containing Reacting Solids and Gases (NPO-30163), which appears elsewhere in this issue of NASA Tech Briefs. The purpose of the study was to investigate the effect of various operating conditions on the efficiency of production of condensable tar from biomass. The numerical results indicate that for a fixed particle size, the fluidizing-gas temperature is the foremost parameter that affects the tar yield. For the range of fluidizing-gas temperatures investigated, and under the assumption that the pyrolysis rate exceeds the feed rate, the optimum steady-state tar collection was found to occur at 750 K. In cases in which the assumption was not valid, the optimum temperature for tar collection was found to be only slightly higher. Scaling up of the reactor was found to exert a small negative effect on tar collection at the optimal operating temperature. It is also found that slightly better scaling is obtained by use of shallower fluidized beds with greater fluidization velocities.

  13. Investigation of waste biomass co-pyrolysis with petroleum sludge using a response surface methodology.

    Science.gov (United States)

    Hu, Guangji; Li, Jianbing; Zhang, Xinying; Li, Yubao

    2017-05-01

    The treatment of waste biomass (sawdust) through co-pyrolysis with refinery oily sludge was carried out in a fixed-bed reactor. Response surface method was applied to evaluate the main and interaction effects of three experimental factors (sawdust percentage in feedstock, temperature, and heating rate) on pyrolysis oil and char yields. It was found that the oil and char yields increased with sawdust percentage in feedstock. The interaction between heating rate and sawdust percentage as well as between heating rate and temperature was significant on the pyrolysis oil yield. The higher heating value of oil originated from sawdust during co-pyrolysis at a sawdust/oily sludge ratio of 3:1 increased by 5 MJ/kg as compared to that during sawdust pyrolysis alone, indicating a synergistic effect of co-pyrolysis. As a result, petroleum sludge can be used as an effective additive in the pyrolysis of waste biomass for improving its energy recovery.

  14. Perspective on Catalytic Hydrodeoxygenation of Biomass Pyrolysis Oils: Essential Roles of Fe-based Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Yongchun; Hensley, Alyssa; McEwen, Jean-Sabin; Wang, Yong

    2016-06-27

    Catalytic fast pyrolysis is the most promising approach for biofuel production, due to its simple process and versatility to handle lignocellulosic biomass feedstocks with varying and complex compositions. Compared with in situ catalytic fast pyrolysis, ex situ catalytic pyrolysis has the flexibility of optimizing the pyrolysis step and catalytic process individually to improve the quality of pyrolysis oil (stability, oxygen content, acid number, etc.) and to maximize the carbon efficiency in the conversion of biomass to pyrolysis oil. Hydrodeoxygenation is one of the key catalytic functions in ex situ catalytic fast pyrolysis. Recently, Fe-based catalysts have been reported to exhibit superior catalytic properties in hydrodeoxygenation of model compounds in pyrolysis oil, which potentially makes the ex situ pyrolysis of biomass commercially viable due to the abundance and low cost of Fe. Here, we briefly summarize the recent progress on Fe-based catalysts for hydrodeoxygenation of biomass, and provide perspectives on how to further improve Fe-based catalysts (activity and stability) for their potential applications in the emerging area of biomass conversion.

  15. Modelling of pyrolysis of coal-biomass blends using thermogravimetric analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sadhukhan, A.K.; Gupta, P.; Goyal, T.; Saha, R.K. [National Institute for Technology, Durgapur (India).

    2008-11-15

    The primary objective of this work was to develop an appropriate model to explain the co-pyrolysis behaviour of lignite coal-biomass blends with different proportions using a thermogravimetric analyzer. A new parallel-series kinetic model was proposed to predict the pyrolysis behaviour of biomass over the entire pyrolysis regime, while a kinetic model similar to that of Anthony and Howard (Anthony, D.B., Howard, J.B., 1976. Coal devolatilization and hydrogasification. AIChE Journal 22(4), 625-656) was used for pyrolysis of coal. Analysis of mass loss history of blends showed an absence of synergistic effect between coal and biomass. Co-pyrolysis mass-loss profiles of the blends were predicted using the estimated kinetic parameters of coal and biomass. Excellent agreement was found between the predicted and the experimental results.

  16. Low temperature microwave-assisted vs conventional pyrolysis of various biomass feedstocks

    Institute of Scientific and Technical Information of China (English)

    Peter Shuttleworth; Vitaliy Budarin; Mark Gronnow; James H. Clark; Rafael Luque

    2012-01-01

    A comparison between conventional pyrolysis and a novel developed low-temperature microwave-assisted pyrolysis methodology has been performed for the valorisation of a range of biomass feedstocks including waste residues.Microwave pyrolysis was found to efficiently deliver comparable evolution of bio-gases in the system as compared with conventional pyrolysis at significantly reduced temperatures (120-180 ℃ vs 250-400 ℃).The gas obtained from microwave-assistet pyrolysis was found to contain CO2,CH4 and CO as major components as well as other related chemicals (e.g.acids,aldehydes,alkanes) which were obtained in different proportions depending on the selected feedstock.

  17. Spontaneous Aerosol Ejection: Origin of Inorganic Particles in Biomass Pyrolysis.

    Science.gov (United States)

    Teixeira, Andrew R; Gantt, Rachel; Joseph, Kristeen E; Maduskar, Saurabh; Paulsen, Alex D; Krumm, Christoph; Zhu, Cheng; Dauenhauer, Paul J

    2016-06-08

    At high thermal flux and temperatures of approximately 500 °C, lignocellulosic biomass transforms to a reactive liquid intermediate before evaporating to condensable bio-oil for downstream upgrading to renewable fuels and chemicals. However, the existence of a fraction of nonvolatile compounds in condensed bio-oil diminishes the product quality and, in the case of inorganic materials, catalyzes undesirable aging reactions within bio-oil. In this study, ablative pyrolysis of crystalline cellulose was evaluated, with and without doped calcium, for the generation of inorganic-transporting aerosols by reactive boiling ejection from liquid intermediate cellulose. Aerosols were characterized by laser diffraction light scattering, inductively coupled plasma spectroscopy, and high-speed photography. Pyrolysis product fractionation revealed that approximately 3 % of the initial feed (both organic and inorganic) was transported to the gas phase as aerosols. Large bubble-to-aerosol size ratios and visualization of significant late-time ejections in the pyrolyzing cellulose suggest the formation of film bubbles in addition to the previously discovered jet formation mechanism.

  18. Biomarker distributions in asphaltenes and kerogens analyzed by flash pyrolysis-gas chromatograph-mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Van Graas, G.

    1986-01-01

    Biomarker distributions in a suite of asphaltenes and kerogens have been analyzed by flash pyrolysis directly coupled to a GCMS system. Attention has been focussed on biomarkers of the sterane and triterpane types. The sample suite under investigation consists of sediments with different kerogen types and some crude oils. Biomarker distributions in the pyrolysates have been compared with the free biomarkers in the corresponding saturated hydrocarbon fractions. The analyses show significant differences between the distributions of the free biomarkers and those in the pyrolysates. The latter have lower amounts of steranes while diasteranes are absent or present at low concentrations only. In the triterpane traces a shift of maximum intensity from C/sub 30/ (free compounds) to C/sub 27//C/sub 29/ is observed. Furthermore, the pyrolysates contain a set of triterpanes that are present in the saturated hydrocarbon fractions. The observed differences between pyrolysates and free hydrocarbons can be explained partly by the processes occurring during pyrolysis such as bond rupture and subsequent stabilization of primary pyrolysis products. To a certain extent these differences also show that maturation processes occurring in sediments have effects on free biomarker molecules different from those on molecules that are enclosed in a macromolecular matrix (kerogen or asphaltenes). Differences between biomarker distributions of asphaltene and kerogen pyrolysates are relatively small. A comparison with the pyrolysates from extracted whole sediments suggests that these differences are mainly caused by interactions between the organic material and the mineral matrix during pyrolysis. Oil asphaltenes behave differently from sediment asphaltenes as their pyrolysates are more similar to the corresponding saturated hydrocarbon fractions, i.e. the differences described above are observed to a much smaller extent.

  19. Finding the chemistry in biomass pyrolysis: Millisecond chemical kinetics and visualization

    Science.gov (United States)

    Krumm, Christoph

    Biomass pyrolysis is a promising thermochemical method for producing fuels and chemicals from renewable sources. Development of a fundamental understanding of biomass pyrolysis chemistry is difficult due to the multi-scale and multi-phase nature of the process; biomass length scales span 11 orders of magnitude and pyrolysis phenomena include solid, liquid, and gas phase chemistry in addition to heat and mass transfer. These complexities have a significant effect on chemical product distributions and lead to variability between reactor technologies. A major challenge in the study of biomass pyrolysis is the development of kinetic models capable of describing hundreds of millisecond-scale reactions of biomass into lower molecular weight products. In this work, a novel technique for studying biomass pyrolysis provides the first- ever experimental determination of kinetics and rates of formation of the primary products from cellulose pyrolysis, providing insight into the millisecond-scale chemical reaction mechanisms. These findings highlight the importance of heat and mass transport limitations for cellulose pyrolysis chemistry and are used to identify the length scales at which transport limitations become relevant during pyrolysis. Through this technique, a transition is identified, known as the reactive melting point, between low and high temperature depolymerization. The transition between two mechanisms of cellulose decompositions unifies the mechanisms that govern low temperature char formation, intermediate pyrolysis conditions, and high temperature gas formation. The conditions under which biomass undergoes pyrolysis, including modes of heat transfer, have been shown to significantly affect the distribution of biorenewable chemical and fuel products. High-speed photography is used to observe the liftoff of initially crystalline cellulose particles when impinged on a heated surface, known as the Leidenfrost effect for room-temperature liquids. Order

  20. Influence of minerals and added calcium on the pyrolysis and co-pyrolysis of coal and biomass

    Energy Technology Data Exchange (ETDEWEB)

    Stojanowska, G.; Jones, J.M. [Wroclaw University of Technology, Wroclaw (Poland)

    2005-09-01

    The pyrolysis behaviour was studied of two types of biomass (pine and wheat) and a Polish lignite (Turow) in the presence of minerals and ion-exchanged calcium using a variety of laboratory-scale methods including pyrolysis-gas chromatography-mass spectrometry (py-GC-MS) and thermogravimetric analysis coupled to a FTIR spectrometer (TGA-FTIR). The degree of catalysis displayed by the calcium during pyrolysis of the ion-exchanged samples varied with the fuel used. Significant catalysis by calcium was observed in pyrolysis of pine, but only a small effect was seen for wheat and very little for coal. The inherent minerals also play a catalytic role in all the samples studied, but potassium is by far the most important in the pyrolysis of the raw wheat straw. The gases and light volatiles are influenced by the presence of catalytic metal. For catalysed pyrolysis of pine, a shift was seen in the gas evolution profiles of all monitored species (H{sub 2}O, CO, CO{sub 2}, methane, formaldehyde, acetaldehyde, formic acid and acetic acid) and the shape of the profiles of the volatile organics and methane also changed. In addition, new peaks were seen in the pyrolysis-GC-MS of the ion-exchanged pine, indicative of a different pyrolysis mechanism. In TGA experiments of co-pyrolysis, a lower char yield was measured from pine/coal mixtures than expected on an additive basis. However, the presence of calcium in one fuel did not appear to catalyse pyrolysis in the other fuel.

  1. Fuel-N Evolution during the Pyrolysis of Industrial Biomass Wastes with High Nitrogen Content

    Directory of Open Access Journals (Sweden)

    Kunio Yoshikawa

    2012-12-01

    Full Text Available In this study, sewage sludge and mycelial waste from antibiotic production were pyrolyzed in a batch scale fixed-bed reactor as examples of two kinds of typical industrial biomass wastes with high nitrogen content. A series of experiments were conducted on the rapid pyrolysis and the slow pyrolysis of these wastes in the temperature range from 500–800 °C to investigate the Fuel-N transformation behavior among pyrolysis products. The results showed that Fuel-N conversion to Char-N intimately depended on the pyrolysis temperature and the yield of Char-N reduced with the increase of the pyrolysis temperature. Under the same pyrolysis conditions, Tar-N production mainly depended on complex properties of the different biomasses, including volatile matter, nitrogen content and biomass functional groups. HCN was the predominant NOx precursor in the rapid pyrolysis of biomass, whereas in the slow pyrolysis of mycelial waste, more NH3 was produced than HCN due to the additional NH3 formation through the hydrogenation reaction of Char-N, HCN and H radicals. At the same time, some part of the char was analyzed by Fourier Transform infrared spectroscopy (FTIR to get more information on the nitrogen functionality changes and the tar was also characterized by Gas Chromatography and Mass Spectrometry (GCMS to identify typical nitrogenous tar compounds. Finally, the whole nitrogen distribution in products was discussed.

  2. A granular-biomass high temperature pyrolysis model based on the Darcy flow

    Science.gov (United States)

    Guan, Jian; Qi, Guoli; Dong, Peng

    2015-03-01

    We established a model for the chemical reaction kinetics of biomass pyrolysis via the high-temperature thermal cracking of liquid products. We divided the condensable volatiles into two groups, based on the characteristics of the liquid prdoducts., tar and biomass oil. The effects of temperature, residence time, particle size, velocity, pressure, and other parameters on biomass pyrolysis and high-temperature tar cracking were investigated numerically, and the results were compared with experimental data. The simulation results showed a large endothermic pyrolysis reaction effect on temperature and the reaction process. The pyrolysis reaction zone had a constant temperature period in several layers near the center of large biomass particles. A purely physical heating process was observed before and after this period, according to the temperature index curve.

  3. Pyrolysis as a key process in biomass combustion and thermochemical conversion

    Directory of Open Access Journals (Sweden)

    Gvero Petar M.

    2016-01-01

    Full Text Available Biomass is a fuel with a highly volatile content and due to that, pyrolysis as a part of the combustion process, has a dominant role in the overall process development, as well as on final products and the process efficiency. It is of key importance to investigate the influence of the process parameters; as temperature, furnace/reactor environment, fuel properties, type, particle size, geometry, and the structure of the pyrolysis process has an influence regards the design of the combustion/pyrolysis equipment and the final products of the processes. This paper gives some results of the investigation’s related to this problem, mainly focussing on wooden biomass as the most important biomass type, as well as a comparison with relevant documented literature. Besides that, pyrolysis based technologies are one of the key directions in synthetic fuels production based on biomass. Biomass pyrolysis process parameters are crucial in reactor design as well as the quantity and quality of the final products. This paper provides discussion dedicated to this aspect with a focus on slow pyrolysis, targeting charcoal as the key product, and fast pyrolysis, targeting synthetic gas as the key product.

  4. Flash Pyrolysis Study of M2TNR (M: Carbohydrazide or Semicarbazide) by T-jump/FTIR Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    SUN Yuan-Hua; ZHANG Tong-Lai; ZHANG Jian-Guo; QIAO Xiao-Jing; YANG Li

    2006-01-01

    Flash pyrolysis of (CHZ)2TNR and (SCZ)2TNR was conducted by T-jump/FTIR spectroscopy under 0.1 MPa Ar atmosphere. The results show that eleven IR-active gas products obtained during flash pyrolysis process of the two title compounds are NO, CO, HCN, NH3, NO2, N2O, HNCO, HNO2, CO2, H2O and HCHO, of which NO and CO are the main gas products. The molar fraction of the individual product in the pyrolysis gas mixture was described as a function of time. At least some of the NO2, N2O and H2O can result from the oxidization reaction of NH3 during flash pyrolysis of (CHZ)2TNR. It can be concluded that the two compounds are not worthy of further in-depth consideration of the adoption in detonators as eco-friendly primary explosive, and should not be used as gas generation composition of automobile crash airbag system taking into account the toxicity.

  5. Flash Pyrolysis Study of MnTC and NiCT by Using T-Jump/FTIR Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    SUN Yuan-hua; ZHANG Tong-lai; ZHANG Jian-guo; QIAO Xiao-jing; YANG Li

    2007-01-01

    Flash pyrolysis of MnTC( [ Mn2 (TNR) 2 ( CHZ)2 (H2O)4 ]·2H2O) and NiCT( [ Ni(CHZ)3 ] ( TNR)·5H2O) is conducted by using T-jump/FTIR spectroscopy under 0.1 MPa Ar atmosphere.The mole fractions of the individual products in the pyrolysis gas mixture are described as a function of time.Results show that NiCT appears to produce more N2O,NH3 and HONO upon flash pyrolysis,thus secondary oxidation reduction reactions may take place to a certain extent during its thermal decomposition,which in turn leads to unsteady combustion and possibly to failure of the device.While H2O and CO2 are the major two gas products of flash pyrolysis of MnTC,it warrants further in-depth trials for the adoption in detonators as eco-friendly and chemically compatible primary explosive.The two compounds both liberate volatile metal carbonate,oxide and isocyanate compounds.

  6. Comparative study on pyrolysis of lignocellulosic and algal biomass using a thermogravimetric and a fixed-bed reactor.

    Science.gov (United States)

    Yuan, Ting; Tahmasebi, Arash; Yu, Jianglong

    2015-01-01

    Pyrolysis characteristics of four algal and lignocellulosic biomass samples were studied by using a thermogravimetric analyzer (TGA) and a fixed-bed reactor. The effects of pyrolysis temperature and biomass type on the yield and composition of pyrolysis products were investigated. The average activation energy for pyrolysis of biomass samples by FWO and KAS methods in this study were in the range of 211.09-291.19kJ/mol. CO2 was the main gas component in the early stage of pyrolysis, whereas H2 and CH4 concentrations increased with increasing pyrolysis temperature. Bio-oil from Chlorellavulgaris showed higher content of nitrogen containing compounds compared to lignocellulosic biomass. The concentration of aromatic organic compounds such as phenol and its derivatives were increased with increasing pyrolysis temperature up to 700°C. FTIR analysis results showed that with increasing pyrolysis temperature, the concentration of OH, CH, CO, OCH3, and CO functional groups in char decreased sharply.

  7. Recent progress on biomass co-pyrolysis conversion into high-quality bio-oil.

    Science.gov (United States)

    Hassan, H; Lim, J K; Hameed, B H

    2016-12-01

    Co-pyrolysis of biomass with abundantly available materials could be an economical method for production of bio-fuels. However, elimination of oxygenated compounds poses a considerable challenge. Catalytic co-pyrolysis is another potential technique for upgrading bio-oils for application as liquid fuels in standard engines. This technique promotes the production of high-quality bio-oil through acid catalyzed reduction of oxygenated compounds and mutagenic polyaromatic hydrocarbons. This work aims to review and summarize research progress on co-pyrolysis and catalytic co-pyrolysis, as well as their benefits on enhancement of bio-oils derived from biomass. This review focuses on the potential of plastic wastes and coal materials as co-feed in co-pyrolysis to produce valuable liquid fuel. This paper also proposes future directions for using this technique to obtain high yields of bio-oils.

  8. Biomass valorisation by staged degasification A new pyrolysis-based thermochemical conversion option to produce value-added chemicals from lignocellulosic biomass

    NARCIS (Netherlands)

    de Wild, P. J.; den Uil, H.; Reith, J. H.; Kiel, J. H. A.; Heeres, H. J.

    2009-01-01

    Pyrolysis of lignocellulosic biomass leads to an array Of useful solid, liquid and gaseous products. Staged degasification is a pyrolysis-based conversion route to generate value-added chemicals from biomass. Because of different thermal stabilities of the main biomass constituents hemicellulose. ce

  9. Hybrid-renewable processes for biofuels production: concentrated solar pyrolysis of biomass residues

    Energy Technology Data Exchange (ETDEWEB)

    George, Anthe [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Geier, Manfred [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dedrick, Daniel E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-01

    The viability of thermochemically-derived biofuels can be greatly enhanced by reducing the process parasitic energy loads. Integrating renewable power into biofuels production is one method by which these efficiency drains can be eliminated. There are a variety of such potentially viable "hybrid-renewable" approaches; one is to integrate concentrated solar power (CSP) to power biomass-to-liquid fuels (BTL) processes. Barriers to CSP integration into BTL processes are predominantly the lack of fundamental kinetic and mass transport data to enable appropriate systems analysis and reactor design. A novel design for the reactor has been created that can allow biomass particles to be suspended in a flow gas, and be irradiated with a simulated solar flux. Pyrolysis conditions were investigated and a comparison between solar and non-solar biomass pyrolysis was conducted in terms of product distributions and pyrolysis oil quality. A novel method was developed to analyse pyrolysis products, and investigate their stability.

  10. Upgrading the rice husk char obtained by flash pyrolysis for the production of amorphous silica and high quality activated carbon.

    Science.gov (United States)

    Alvarez, Jon; Lopez, Gartzen; Amutio, Maider; Bilbao, Javier; Olazar, Martin

    2014-10-01

    The overall valorization of rice husk char obtained by flash pyrolysis in a conical spouted bed reactor (CSBR) has been studied in a two-step process. Thus, silica has been recovered in a first step and the remaining carbon material has been subjected to steam activation. The char samples used in this study have been obtained by continuous flash pyrolysis in a conical spouted bed reactor at 500°C. Extraction with Na2CO3 allows recovering 88% of the silica contained in the rice husk char. Activation of the silica-free rice husk char has been carried out in a fixed bed reactor at 800°C using steam as activating agent. The porous structure of the activated carbons produced includes a combination of micropores and mesopores, with a BET surface area of up to 1365m(2)g(-1) at the end of 15min.

  11. Flash pyrolysis of forestry residues from the Portuguese Central Inland Region within the framework of the BioREFINA-Ter project.

    Science.gov (United States)

    Amutio, Maider; Lopez, Gartzen; Alvarez, Jon; Moreira, Rui; Duarte, Gustavo; Nunes, Joao; Olazar, Martin; Bilbao, Javier

    2013-02-01

    The feasibility of the valorization by flash pyrolysis of forest shrub wastes, namely bushes (Cytisus multiflorus, Spartium junceum, Acacia dealbata and Pterospartum tridentatum) has been studied in a conical spouted bed reactor operating at 500 °C, with a continuous biomass feed and char removal. High bio-oil yields in the 75-80 wt.% range have been obtained for all of the materials, with char yields between 16 and 23 wt.% and low gas yields (4-5 wt.%). Bio-oils are composed mainly of water (accounting for a concentration in the 34-40 wt.% range in the bio-oil), phenols, ketones, acids and furans, with lower contents of saccharides, aldehydes and alcohols. Although their composition depends on the raw material, the compounds are similar to those obtained with more conventional feedstocks.

  12. Product Characterization and Kinetics of Biomass Pyrolysis in a Three-Zone Free-Fall Reactor

    Directory of Open Access Journals (Sweden)

    Natthaya Punsuwan

    2014-01-01

    Full Text Available Pyrolysis of biomass including palm shell, palm kernel, and cassava pulp residue was studied in a laboratory free-fall reactor with three separated hot zones. The effects of pyrolysis temperature (250–1050°C and particle size (0.18–1.55 mm on the distribution and properties of pyrolysis products were investigated. A higher pyrolysis temperature and smaller particle size increased the gas yield but decreased the char yield. Cassava pulp residue gave more volatiles and less char than those of palm kernel and palm shell. The derived solid product (char gave a high calorific value of 29.87 MJ/kg and a reasonably high BET surface area of 200 m2/g. The biooil from palm shell is less attractive to use as a direct fuel, due to its high water contents, low calorific value, and high acidity. On gas composition, carbon monoxide was the dominant component in the gas product. A pyrolysis model for biomass pyrolysis in the free-fall reactor was developed, based on solving the proposed two-parallel reactions kinetic model and equations of particle motion, which gave excellent prediction of char yields for all biomass precursors under all pyrolysis conditions studied.

  13. Release and transformation of chlorine and potassium during pyrolysis of KCl doped biomass

    DEFF Research Database (Denmark)

    Wang, Yang; Wu, Hao; Sárossy, Zsuzsa

    2017-01-01

    The formation of CH3Cl and the transformation of chlorine and potassium during pyrolysis of biomass were investigated. Model biomass compounds (cellulose, xylan, lignin and pectin) and pine wood doped with KCl were pyrolysed in a TGA at different heating rates (10–1000 °C/min), temperatures (300...

  14. Thermal behavior of the major constituents of some agricultural biomass residues during pyrolysis and combustion

    Energy Technology Data Exchange (ETDEWEB)

    Yaman, S.; Haykiri-Acma, H. [Istanbul Technical Univ., Istanbul (Turkey). Dept. of Chemical Engineering, Chemical and Metallurgical Engineering Faculty

    2006-07-01

    The importance of woody agricultural waste as a renewable energy source was discussed with reference to its low cost, abundance, and carbon dioxide neutrality. Direct combustion of biomass waste fuels is not recommended due to its low density, high moisture content and low calorific energy. Rather, thermal conversion processes such as pyrolysis, gasification or carbonization are preferred for biomass. The performance and the energy recovery potentials of these processes depend on the process conditions as well as the physical and chemical properties of the biomass species. Therefore, the structure and components of biomass must be known. In this study, agricultural biomass samples of almond shell, walnut shell, hazelnut shell, rapeseed, olive residue, and tobacco waste were first analytically treated to remove extractive matter to obtain extractive-free samples. Specific analytic procedures were then applied to biomass samples in order to isolate their individual biomass constituents such as lignin and holocellulose. Untreated biomass samples and their isolated constituents were exposed to non-isothermal pyrolysis and combustion processes in a thermogravimetric analyzer. Pyrolysis experiments were conducted under dynamic nitrogen atmospheres of 40 mL-min, while dynamic dry air atmosphere with the same flow rate was applied in the combustion experiments. The study showed that the pyrolysis and combustion characteristics of the biomass samples differed depending on their properties. Aliphatic and oxygen rich holocellulose and cellulose were found to be the reactive components in biomass. Lignin was more stable during thermal processes. When extractive matter from the biomass samples was removed, pyrolysis at lower temperatures was terminated. 10 refs., 4 tabs., 3 figs.

  15. Co-pyrolysis of Chinese lignite and biomass in a vacuum reactor.

    Science.gov (United States)

    Yang, Xiao; Yuan, Chengyong; Xu, Jiao; Zhang, Weijiang

    2014-12-01

    A vacuum fixed bed reactor was applied to pyrolyze lignite, biomass (rice husk) and their blend with high temperature (900 °C) and low heating rate (10 °C/min). Pyrolytic products were kept in the vacuum reactor during the whole pyrolysis process, guaranteeing a long contact time (more than 2 h) for their interactions. Remarkable synergetic effects were observed. Addition of biomass obviously influenced the tar and char yields, gas volume yield, gas composition, char structure and tar composition during co-pyrolysis. It was highly possible that char gasification, gaseous phase interactions, and secondary tar cracking were facilitated when lignite and biomass were co-pyrolyzed.

  16. Numerical simulation of vortex pyrolysis reactors for condensable tar production from biomass

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.S.; Bellan, J. [California Inst. of Tech., Pasadena, CA (United States). Jet Propulsion Lab.

    1998-08-01

    A numerical study is performed in order to evaluate the performance and optimal operating conditions of vortex pyrolysis reactors used for condensable tar production from biomass. A detailed mathematical model of porous biomass particle pyrolysis is coupled with a compressible Reynolds stress transport model for the turbulent reactor swirling flow. An initial evaluation of particle dimensionality effects is made through comparisons of single- (1D) and multi-dimensional particle simulations and reveals that the 1D particle model results in conservative estimates for total pyrolysis conversion times and tar collection. The observed deviations are due predominantly to geometry effects while directional effects from thermal conductivity and permeability variations are relatively small. Rapid ablative particle heating rates are attributed to a mechanical fragmentation of the biomass particles that is modeled using a critical porosity for matrix breakup. Optimal thermal conditions for tar production are observed for 900 K. Effects of biomass identity, particle size distribution, and reactor geometry and scale are discussed.

  17. Production of bio-oil with flash pyrolysis and the combustion of it; Biooeljyn tuotanto flashpyrolyysillae ja sen poltto

    Energy Technology Data Exchange (ETDEWEB)

    Nyroenen, T. [Vapo Oy, Jyvaeskylae (Finland)

    1995-12-31

    The target of the research is to study the production of bio-oils using flash-pyrolysis and utilization of the bio-oil in oil-fueled boilers. The PDU-device was ordered in December 1994. The device was tested in Canada in the beginning of March 1996. The device will be mounted in Otaniemi in the research unit of VTT Energy. The device will by equipped, if possible, with a hot-filtering device in order to improve the purity and the quality of the oil. The capacity of the PDU-device is 20 kg/h of dry biomass of about 10 wt-% DS-content, with particle size less than 6 mm. The actual tests will be made in autumn 1996. The investment costs of the PDU are about 2.5 million FIM. The Canadian funding of the project is about 50 %. It has been planned that within the research project of Vapo oy, about 50 - 100 tons of bio-oil will be acquired from Canada for the engine tests carried out by Wartsilae Diesel, and the project will be responsible for planning and operation of the PDU and the demonstration plants. About 50 tons of wood-oil was received from Canada in January 1996 for the engine tests, the results of which will be reported separately by Wartsilae Diesel. The present costs of the tasks are about 1.2 million FIM, but the main part of the costs will be formed in 1996-1997

  18. Catalytic flash pyrolysis of oil-impregnated-wood and jatropha cake using sodium based catalysts

    NARCIS (Netherlands)

    Ali Imran, A.; Bramer, E.A.; Seshan, K.; Brem, G.

    2016-01-01

    Catalytic pyrolysis of wood with impregnated vegetable oil was investigated and compared with catalytic pyrolysis of jatropha cake making use of sodium based catalysts to produce a high quality bio-oil. The catalytic pyrolysis was carried out in two modes: in-situ catalytic pyrolysis and post treatm

  19. Catalytic hydroprocessing of fast pyrolysis oils: Impact of biomass feedstock on process efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, Daniel; Westover, Tyler; Howe, Daniel; Deutch, Steve; Starace, Anne; Emerson, Rachel; Hernandez, Sergio; Santosa, Daniel; Lukins, Craig; Kutnyakov, Igor

    2017-01-01

    We report here on an experimental study to produce refinery-ready fuel blendstocks via catalytic hydrodeoxygenation (upgrading) of pyrolysis oil using several biomass feedstocks and various blends. Blends were tested along with the pure materials to determine the effect of blending on product yields and qualities. Within experimental error, oil yields from fast pyrolysis and upgrading are shown to be linear functions of the blend components. Switchgrass exhibited lower fast pyrolysis and upgrading yields than the woody samples, which included clean pine, oriented strand board (OSB), and a mix of pinon and juniper (PJ). The notable exception was PJ, for which the poor upgrading yield of 18% was likely associated with the very high viscosity of the PJ fast pyrolysis oil (947 cp). The highest fast pyrolysis yield (54% dry basis) was obtained from clean pine, while the highest upgrading yield (50%) was obtained from a blend of 80% clean pine and 20% OSB (CP8OSB2). For switchgrass, reducing the fast pyrolysis temperature to 450 degrees C resulted in a significant increase to the pyrolysis oil yield and reduced hydrogen consumption during hydrotreating, but did not directly affect the hydrotreating oil yield. The water content of fast pyrolysis oils was also observed to increase linearly with the summed content of potassium and sodium, ranging from 21% for clean pine to 37% for switchgrass. Multiple linear regression models demonstrate that fast pyrolysis is strongly dependent upon the contents lignin and volatile matter as well as the sum of potassium and sodium.

  20. Electrical properties of BaZrO3 ceramic synthesized by flash pyrolysis process

    Science.gov (United States)

    Saini, Deepash S.; Bhattacharya, D.

    2016-04-01

    Barium Zirconate (BaZrO3) nanoparticles are synthesized by flash pyrolysis combustion process. Rietveld refinement of XRD pattern of calcined powder at 900 °C, 1100 °C and sintered at 1600 °C describes that a single-phase compound is formed of an Pm-3m cubic crystal structure with a lattice constant a = 4.19102, 4.192693, and 4.195276 Å respectively. Crystallize size of calcined powder at 900 °C, 1100 °C and sintered at 1600 °C is found 34.28, 37.7 and 47.14 nm respectively using Scherrer formula. The FESEM image of sintered pellet at 1600 °C for 4 h describes porous nature of the sample. The Nyquist plots indicate the dominant grain boundary effect in electrical processes in the sample. A decrease in the bulk resistance with increasing temperature demonstrates a semiconducting behavior. The temperature dependent relaxation and conduction mechanism brief involvements of different types of the charge species in the 250 to 500 °C temperature region as studied at different frequencies over 100 Hz to 1 MHz.

  1. Characteristics of hydrogen sulphide released from coal and biomass blends during co-pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Shang Lin-lin; Cheng Shi-qing; Zhang Hai-qing; Yin Bing-yi [Shandong University, Jinan (China). College of Energy and Power Engineering

    2007-10-15

    Thermal gravimetric analysis, gas chromatography and mass spectroscopy were used to study the characteristics of hydrogen sulphide released from the co-pyrolysis of biomass and coal blends. The effects of biomass on the hydrogen sulphide gas released from coal pyrolysis were studied. Results show that when the coal is blended with biomass the quantity of hydrogen sulphide released is affected. During the process of coal pyrolysis hydrogen sulphide is released in the temperature range 100-490{sup o}C but in the process of co-pyrolysis of coal with biomass it is released earlier, during the temperature range 200-490{sup o}C. This is because biomass is pyrolyzed earlier than coal. Abundant active methyl radicals and hydrogen are released providing hydrogen to combine with sulphur. The quantity of hydrogen sulphide is decreased with small proportions of biomass and increased with larger proportions. This is due to the accelerated effect of hydrogenation and the desulphurization effect of alkali metals in biomass. 8 refs., 1 tab.

  2. Co-pyrolysis of low rank coals and biomass: Product distributions

    Energy Technology Data Exchange (ETDEWEB)

    Soncini, Ryan M; Means, Nicholas C; Weiland, Nathan T

    2013-10-01

    Pyrolysis and gasification of combined low rank coal and biomass feeds are the subject of much study in an effort to mitigate the production of green house gases from integrated gasification combined cycle (IGCC) systems. While co-feeding has the potential to reduce the net carbon footprint of commercial gasification operations, the effects of co-feeding on kinetics and product distributions requires study to ensure the success of this strategy. Southern yellow pine was pyrolyzed in a semi-batch type drop tube reactor with either Powder River Basin sub-bituminous coal or Mississippi lignite at several temperatures and feed ratios. Product gas composition of expected primary constituents (CO, CO{sub 2}, CH{sub 4}, H{sub 2}, H{sub 2}O, and C{sub 2}H{sub 4}) was determined by in-situ mass spectrometry while minor gaseous constituents were determined using a GC-MS. Product distributions are fit to linear functions of temperature, and quadratic functions of biomass fraction, for use in computational co-pyrolysis simulations. The results are shown to yield significant nonlinearities, particularly at higher temperatures and for lower ranked coals. The co-pyrolysis product distributions evolve more tar, and less char, CH{sub 4}, and C{sub 2}H{sub 4}, than an additive pyrolysis process would suggest. For lignite co-pyrolysis, CO and H{sub 2} production are also reduced. The data suggests that evolution of hydrogen from rapid pyrolysis of biomass prevents the crosslinking of fragmented aromatic structures during coal pyrolysis to produce tar, rather than secondary char and light gases. Finally, it is shown that, for the two coal types tested, co-pyrolysis synergies are more significant as coal rank decreases, likely because the initial structure in these coals contains larger pores and smaller clusters of aromatic structures which are more readily retained as tar in rapid co-pyrolysis.

  3. Atmospheric Hydrodeoxygenation of Biomass Fast Pyrolysis Vapor by MoO3

    DEFF Research Database (Denmark)

    Zhou, Guofeng; Jensen, Peter Arendt; Le, Duy Michael

    2016-01-01

    MoO3 has been tested as a catalyst in hydrodeoxygenation (HDO) of both model compounds (acetone and guaiacol) and real biomass pyrolysis vapors under atmospheric pressure. The pyrolysis vapor was obtained by fast pyrolysis of wood or lignin in a continuous fast pyrolysis reactor at a fixed...... temperature of 500 °C, and it subsequently passed through a downstream, close coupled, fixed bed reactor containing the MoO3 catalyst. The influences of the catalyst temperature and the concentration of H2 on the HDO of the pyrolysis vapors were investigated. The level of HDO of the biomass pyrolysis vapors......, which is inactive in HDO. The catalyst experienced severe reduction at temperatures higher than 400 °C. The yields of coke relative to the fed biomass were in the range of 3–4 wt %daf for lignin and 5–6 wt %daf for wood. Compared to untreated bio-oil the upgraded lignin organic liquid showed improved...

  4. Characterization of biomass fast pyrolysis. Advantages and drawbacks of different possible criteria

    Energy Technology Data Exchange (ETDEWEB)

    Lede, Jacques [LRGP-CNRS-INPL, 1, rue Grandville, BP 20451, Nancy Cedex (France); Authier, Olivier [LRGP-CNRS-INPL, 1, rue Grandville, BP 20451, Nancy Cedex (France); EDF-R and D, Departement Mecanique des Fluides, Energies et Environnement, 6, quai Watier, BP 49, Chatou Cedex (France)

    2011-09-15

    The literature shows that different possible criteria are used for defining biomass fast pyrolysis. On the basis of a simplified modeling of a cellulose (biomass model compound) particle pyrolysis, the present paper points out that the most often considered parameters (i.e., temperature and heating rate) are inappropriate. They are very difficult to define and measure, and according to their definitions, important errors can be made (kinetic measurements and reactor scaling up). Other possible parameters are also examined such as particle initial size, available heat flux density, heat transfer coefficient, and products elimination efficiency. In order to be able to compare different experimental conditions on a similar basis, it is shown that at the biomass sample level, fast pyrolysis is favoured (enhancement of bio-oil fractions) if two necessary conditions are simultaneously fulfilled. They include high external heat transfer coefficient and efficient products removal. (orig.)

  5. Torrefaction of agriculture straws and its application on biomass pyrolysis poly-generation.

    Science.gov (United States)

    Chen, Yingquan; Yang, Haiping; Yang, Qing; Hao, Hongmeng; Zhu, Bo; Chen, Hanping

    2014-03-01

    This study investigated the properties of corn stalk and cotton stalk after torrefaction, and the effects of torrefaction on product properties obtained under the optimal condition of biomass pyrolysis polygeneration. The color of the torrefied biomass chars darkened, and the grindability was upgraded, with finer particles formed and grinding energy consumption reduced. The moisture and oxygen content significantly decreased whereas the carbon content increased considerably. It was found that torrefaction had different effects on the char, liquid oil and biogas from biomass pyrolysis polygeneration. Compared to raw straws, the output of chars from pyrolysis of torrefied straws increased and the quality of chars as a solid fuel had no significant change, while the output of liquid oil and biogas decreased. The liquid oil contained more concentrated phenols with less water content below 40wt.%, and the biogas contained more concentrated H2 and CH4 with higher LHV up to 15MJ/nm(3).

  6. Waste management of tar water from pyrolysis and gasification of biomass in biogas reactors

    Energy Technology Data Exchange (ETDEWEB)

    Mogensen, A.S.; Schmidt, J.E.; Angelidaki, R.; Ahring, B.K.

    1998-08-01

    The digestion and detoxification of pyrolysis condensate and wet oxidised pyrolysis condensate was studied in different reactor systems: combined anaerobic and denitrifying UASB reactors, conventional UASB reactors and CSTR`s. The pyrolysis condensate and the wet oxidised condensate have a biogas potential of 190 m{sup 3}/ton VS, and the low amount of suspended solids is allowing the waste water to be treated in the UASB reactor as well as in the CSTR. The pyrolysis condensate could successfully be degraded in a CSTR in a 5% concentration when co-digested with manure, and the wet oxidised pyrolysis condensate could be degraded when added at a concentration of 30%. The UASB reactor was preferred over the CSTR since the xenobiotic compounds present in the waste water might easily be absorbed in the co-substrate required when using the CSTR technology. Consequently, decreased degradation of xenobiotics would be observed in the CSTR. A combined anaerobic and denitrifying UASB reactor was successfully digesting 5.5% of wet oxidised pyrolysis condensate, but further loading increments deteriorated the anaerobic digestion process. However, when a UASB reactor was fed with pyrolysis condensate (up to 100%) good reactor operation was observed indicating that the waste could be used as substrate in the biogas process, even in very high concentrations. The detoxification of pyrolysis condensate was further studied and the toxicity of pyrolysis condensate was decreased more than 77 times in the UASB reactor that was operating on 100% pyrolysis condensate. Phenol, methyl and dimethyl phenols along with methoxyphenols were shown to be degraded within the rector systems. Degradation rates for phenol and substituted phenols were determined indicating that the biomass was selective towards the substrates. Maximum growth rates and half saturation constants for phenol, 4-Methylphenol and 2-Methoxy-4-methylphenol were determined in batch experiments. A UASB reactor concept was further

  7. Acetic acid recovery from fast pyrolysis oil. An exploratory study on liquid-liquid reactive extraction using aliphatic tertiary amines

    NARCIS (Netherlands)

    Mahfud, F. H.; van Geel, F. P.; Venderbosch, R. H.; Heeres, H. J.

    2008-01-01

    Flash pyrolysis oil or Bio-oil (BO), obtained by flash pyrolysis of lignocellulosic biomass, is very acidic in nature. The major component responsible for this acidity is acetic acid, present in levels up to 2-10 wt%. Here, we report an exploratory study on BO upgrading by reactive extraction of ace

  8. Co-pyrolysis of biomass and coal in a free fall reactor

    Energy Technology Data Exchange (ETDEWEB)

    Li Zhang; Shaoping Xu; Wei Zhao; Shuqin Liu [Dalian University of Technology, Dalian (China). State Key Laboratory of Fine Chemicals, Department of Chemical Engineering

    2007-02-15

    An experimental study on co-pyrolysis of biomass and coal was performed in a free fall reactor under atmospheric pressure with nitrogen as balance gas. The coal sample selected was Dayan lignite, while the biomass used was legume straw. The operation temperature was over a range of 500-700{sup o}C, and the blending ratio of biomass in mixtures was varied between 0 and 100 wt.%. The results indicated that there exist synergetic effects in the co-pyrolysis of biomass and coal. Under the higher blending ratio conditions, the char yields are lower than the theoretical values calculated on pyrolysis of each individual fuel, and consequently the liquid yields are higher. Moreover, the experimental results showed that the compositions of the gaseous products from blended samples are not all in accordance with those of their parent fuels. The CO{sub 2} reactivities of the chars obtained from the co-pyrolysis under the higher blending ratio (around 70 wt.%) conditions are about twice as high as those of coal char alone, even higher than those of biomass alone. 24 refs., 6 figs.,1 tab.

  9. Analytical Investigations of Kinetic and Heat Transfer in Slow Pyrolysis of a Biomass Particle

    Directory of Open Access Journals (Sweden)

    S.J Ojolo

    2013-06-01

    Full Text Available The utilization of biomass for heat and power generation has aroused the interest of most researchers especially those of energy .In converting solid fuel to a usable form of energy,pyrolysis plays an integral role. Understanding this very important phenomenon in the thermochemical conversion processes and representing it with appropriate mathematical models is vital in the design of pyrolysis reactors and biomass gasifiers. Therefore, this study presents analytical solutions to the kinetic and the heat transfer equations that describe the slow pyrolysis of a biomass particle. The effects of Biot number, temperature and residence time on biomass particle decomposition were studied. The results from the proposed analytical models are in good agreement with the reported experimental results. The developed analytical solutions to the heat transfer equations which have been stated to be “analytically involved” showed average percentageerror and standard deviations 0.439 and 0.103 from the experimental results respectively as compared with previous model in literature which gives average percentage error and standard deviations 0.75 and 0.106 from the experimental results respectively. This work is of great importance in the design of some pyrolysis reactors/units and in the optimal design of the biomass gasifiers.

  10. Production of methanol from biomass waste via pyrolysis.

    Science.gov (United States)

    Kamarudin, S K; Shamsul, N S; Ghani, J A; Chia, S K; Liew, H S; Samsudin, A S

    2013-02-01

    The production of methanol from agricultural, forestry, livestock, poultry, and fishery waste via pyrolysis was investigated. Pyrolysis was conducted in a tube furnace at 450-500 °C. Sugarcane bagasse showed the methanol production (5.93 wt.%), followed by roots and sawdust with 4.36 and 4.22 wt.%, respectively. Animal waste offered the lowest content of methanol, as only 0.46, 0.80, and 0.61 wt.% were obtained from fishery, goat, and cow waste, respectively. It was also observed that the percentage of methanol increased with an increase in volatile compounds while the percentage of ethanol increased with the percentage of ash and fix carbon. The data indicate that, pyrolysis is a means for production of methanol and ethanol after further optimization of the process and sample treatment.

  11. STEPWISE ISOTHERMAL FAST PYROLYSIS (SIFP OF BIOMASS PART I. SIFP OF PINE SAWDUST

    Directory of Open Access Journals (Sweden)

    Patricia López Rivilli

    2011-05-01

    Full Text Available Pyrolysis of pine wood sawdust was carried out using stepwise isothermal fast pyrolysis (SIFP, focusing on the search of reaction conditions to obtain chemicals in good yields from biomass. SIFP consists of successive isothermal fast pyrolysis reactions, where solid products obtained in the previous isothermal fast pyrolysis become the substrate of the subsequent reaction at a higher temperature. This article reports results obtained by SIFP of pine sawdust between 200 and 600°C using 100°C intervals under vacuum (0.2 mm, using nitrogen as carrier gas. Both sets of reactions made it possible to obtain most of the compounds that have been previously described in conventional fast pyrolysis experiments; however this system produces a smaller number of chemical compounds in each isothermal FP, making it easier to obtain determined chemicals with industrial or research value. Maximum yield of liquid products occurred at 300°C, giving around 30% of bio-oil, which contained mainly phenols and furan derivatives. Liquid-Liquid extraction led to a rich mixture of phenol derivatives. Results showed that SIFP is an interesting technique to obtain enriched fractions of products derived from biomass pyrolysis.

  12. Influences of Temperature and Coal Particle Size on the Flash Pyrolysis of Coal in a Fast-entrained Bed

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The experiments on the flash pyrolysis of a lignite were carried out in a fast-entrained bed reactor as a basic study on a so-called 'coal topping process'. The investigation focused on the effects of pyrolysis temperature and coal particle size on the product distribution and composition. The experimental results show that an increase in the pyrolysis temperature results in a higher yield of gaseous products while a larger particle size leads to a decrease of the liquid yield. An optimum temperature for the liquid yield was found to be 650 ℃. A certain amount of phenol groups was found in the liquid products, which may be used to produce high-valued fine chemicals. The FTIR analyses of the coal and chars show that aliphatic structures in the chars are gradually replaced by aromatic structures with the increasing of pyrolysis temperature and coal particle size. The results of this study provide fundamental data and optimal conditions to maximize light oils yields for the coal topping process.

  13. Low-Order Modeling of Internal Heat Transfer in Biomass Particle Pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Wiggins, Gavin M.; Ciesielski, Peter N.; Daw, C. Stuart

    2016-06-16

    We present a computationally efficient, one-dimensional simulation methodology for biomass particle heating under conditions typical of fast pyrolysis. Our methodology is based on identifying the rate limiting geometric and structural factors for conductive heat transport in biomass particle models with realistic morphology to develop low-order approximations that behave appropriately. Comparisons of transient temperature trends predicted by our one-dimensional method with three-dimensional simulations of woody biomass particles reveal good agreement, if the appropriate equivalent spherical diameter and bulk thermal properties are used. We conclude that, for particle sizes and heating regimes typical of fast pyrolysis, it is possible to simulate biomass particle heating with reasonable accuracy and minimal computational overhead, even when variable size, aspherical shape, anisotropic conductivity, and complex, species-specific internal pore geometry are incorporated.

  14. Study on biomass catalytic pyrolysis for production of bio-gasoline by on-line FTIR

    Institute of Scientific and Technical Information of China (English)

    Chang Bo Lu; Jian Zhong Yao; Wei Gang Lin; Wen Li Song

    2007-01-01

    The pyrolysis of biomass is a promising way for production of bio-gasoline if the stability and quality problems of the bio-crudeoil can be solved by catalytic cracking and reforming. In this paper, an on-line infrared spectrum was used to study the characteristics of catalytic pyrolysis with the following preliminary results. The removal of C=O of organic acid is more difficult than that of aldehydes and ketones. HUSY/γ-Al2O3 and REY/γ-Al2O3 catalysts exhibited better deoxygenating activities while HZSM-5/γ-Al2O3 catalyst exhibited preferred selectivities for production of iso-alkanes and aromatics. Finally, possible mechanisms of biomass catalytic pyrolysis are discussed as well.

  15. Online upgrading of organic vapors from the fast pyrolysis of biomass

    Institute of Scientific and Technical Information of China (English)

    LI Hong-yu; YAN Yong-jie; REN Zheng-wei

    2008-01-01

    The online upgrading process that combined the fast pyrolysis of biomass and catalytic cracking of bio-oil was developed to produce a high quality liquid product from the biomass. The installation consisted of a fluidized bed reactor for pyrolysis and a packed bed reactor for upgrading. The proper pyrolysis processing conditions with a temperature of 500℃ and a flow rate of 4m3·h-1 were determined in advance. Under such conditions, the effects of temperature and weight hourly space velocity (WHSV) on both the liquid yields and the oil qualities of the online catalytic cracking process were investigated. The results showed that such a combined process had the superiority of increasing the liquid yield and improving the product quality over the separate processes. Furthermore, when the temperature was 500℃, with a WHSV of 3h-1, the liquid yield reached the maximum and the oxygenic compounds also decreased obviously.

  16. Study on pyrolysis characteristics of lignocellulosic biomass impregnated with ammonia source.

    Science.gov (United States)

    Li, Kai; Zhu, Changpeng; Zhang, Liqiang; Zhu, Xifeng

    2016-06-01

    The current study presents the pyrolysis characteristics of rice husk impregnated with different kinds of ammonia source (ammonium acetate, urea, ammonium sulfate and ammonium dihydrogen phosphate) in a fixed bed reactor. The introduction of ammonia source in pyrolysis process achieved the conversation from carbonyl compounds to nitrogenous heterocyclic compounds. The liquid product of urea-impregnated biomass has higher content of nitrogenous heterocyclic compounds (8.35%) and phenols (30.4%). For ammonium sulfate and ammonium dihydrogen phosphate-impregnated biomass, the quantity of compounds in liquid products reduces remarkably, and the gas products are rich in CO and H2. All the solid products of pyrolysis have great potential application in biochar-based fertilizer and activated carbon for their high N content.

  17. Thermal processing of biomass natural fibre wastes by pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Anton R.; Williams, Paul T. [Leeds Univ., Dept. of Fuel and Energy, Leeds (United Kingdom)

    2003-07-01

    Waste biomass material in the form of natural fibres used in the production of textile products were examined for their potential to produce activated carbon by physical activation. The five biomass types were hemp, flax, jute, coir and abaca. Each biomass was pyrolysed in a fixed bed reactor and the char characterized. The char was subsequently, activated with steam in a char activation reactor. The surface area and porosity of the derived activated carbon was determined. Surface areas of between 770 and 879 m{sup 2} g{sup -1} were achieved. The yield of activated carbon was mostly less than 20 wt% of the original biomass. The five biomass samples were also pyrolysed in a thermogravimetric analyser. The thermal degradation of the biomass samples were discussed in terms of the thermal degradation of the main components of the biomass, cellulose, hemicellulose and lignin. (Author)

  18. Thermal behavior and kinetic study for catalytic co-pyrolysis of biomass with plastics.

    Science.gov (United States)

    Zhang, Xuesong; Lei, Hanwu; Zhu, Lei; Zhu, Xiaolu; Qian, Moriko; Yadavalli, Gayatri; Wu, Joan; Chen, Shulin

    2016-11-01

    The present study aims to investigate the thermal decomposition behaviors and kinetics of biomass (cellulose/Douglas fir sawdust) and plastics (LDPE) in a non-catalytic and catalytic co-pyrolysis over ZSM-5 catalyst by using a thermogravimetric analyzer (TGA). It was found that there was a positive synergistic interaction between biomass and plastics according to the difference of weight loss (ΔW), which could decrease the formation of solid residue at the end of the experiment. The first order reaction model well fitted for both non-catalytic and catalytic co-pyrolysis of biomass with plastics. The activation energy (E) of Cellulose-LDPE-Catalyst and DF-LDPE-Catalyst are only 89.51 and 54.51kJ/mol, respectively. The kinetics analysis showed that adding catalyst doesn't change the decomposition mechanism. As a result, the kinetic study on catalytic co-pyrolysis of biomass with plastics was suggested that the catalytic co-pyrolysis is a promising technique that can significantly reduce the energy input.

  19. Plate reactor as an analysis tool for rapid pyrolysis of biomass

    NARCIS (Netherlands)

    Sepman, A. V.; de Goey, L. P. H.

    2011-01-01

    This work presents a study of the performance of the modified plate reactor by rapid pyrolysis experiments with different biomass samples (MDF, bark pine and Avicel cellulose). The use of the plate instead of a grid allowed us to achieve a more homogeneous temperature distribution across the plate a

  20. Sustainability: The capacity of smokeless biomass pyrolysis for energy production, global carbon capture and sequestration

    Science.gov (United States)

    Application of modern smokeless biomass pyrolysis for biochar and biofuel production is potentially a revolutionary approach for global carbon capture and sequestration at gigatons of carbon (GtC) scales. A conversion of about 7% of the annual terrestrial gross photosynthetic product (120 GtC y-1) i...

  1. Method and a Mobile Unit for Collecting Biomass

    DEFF Research Database (Denmark)

    2011-01-01

    A method for collecting biomass, such as straw, and for producing a pyrolysis liquid, such as oil or tar, from the biomass, comprises the step of collecting the biomass from a growth site, e.g. a field, by means of a mobile unit. The biomass is continuously fed into a pyrolysis apparatus (200......) accommodated by the mobile unit, as the mobile unit is moved across the growth site. While the biomass is processed in the pyrolysis apparatus, further biomass is simultaneously being collected. The pyrolysis apparatus may be a flash pyrolysis or fast pyrolysis apparatus relying on centrifugal forces...... for forcing biomass towards a reactive surface in a pyrolysis reactor. The mobile unit may be self-propelled....

  2. A Short Historical Review of Fast Pyrolysis of Biomass Une brève revue historique de la pyrolyse rapide de la biomasse

    Directory of Open Access Journals (Sweden)

    Radlein D.

    2013-10-01

    Full Text Available In this short review, we survey the historical progress of fast pyrolysis technologies for thermochemical liquefaction of biomass to produce so-called "bio-oil". Our focus is on the potential applications of bio-oil as a liquid fuel for heat and power generation. We point out some of the inherent properties of bio-oil that create difficulties standing in the way of these applications. Finally, we take a brief look at some processes that aim to valorize bio-oil by conversion to higher value liquid fuel products. Dans cette revue nous nous proposons de dresser un rappel historique des progrès relatifs aux technologies de liquéfaction thermochimiques par pyrolyse rapide, encore appelée pyrolyse flash, de la biomasse pour produire ce que l’on appelle communément une "bio-huile". Nous insisterons sur ses applications comme combustible liquide pour la production de chaleur et d’électricité. Nous ferons ressortir quelques propriétés spécifiques aux bio-huiles qui peuvent créer des difficultés d’usage. Nous terminerons par un bref aperçu de quelques procédés permettant de valoriser la bio-huile en carburants liquides de plus forte valeur ajoutée.

  3. Direct Numerical Simulation of biomass pyrolysis and combustion with gas phase reactions

    Science.gov (United States)

    Awasthi, A.; Kuerten, J. G. M.; Geurts, B. J.

    2016-09-01

    We present Direct Numerical Simulation of biomass pyrolysis and combustion in a turbulent channel flow. The model includes simplified models for biomass pyrolysis and char combustion along with a model for particle tracking. The gas phase is modelled as a mixture of reacting gas species. The gas-particle interactions for mass, momentum, and energy exchange are included by two-way coupling terms. The effect of two-way coupling on the conversion time of biomass particles is found noticeable for particle volume fractions > 10-5. We also observe that at constant volume fraction the effect of two-way coupling increases as the particle size is reduced, due to the higher total heat exchange area in case of smaller particles. The inclusion of gas phase homogeneous reactions in the DNS model decreases the biomass pyrolysis time due to higher gas temperatures. In contrast, including gas phase reactions increases the combustion time of biomass due to the lower concentration of oxygen at the particle surface.

  4. Fast Pyrolysis of Biomass Residues in a Twin-screw Mixing Reactor.

    Science.gov (United States)

    Funke, Axel; Richter, Daniel; Niebel, Andreas; Dahmen, Nicolaus; Sauer, Jörg

    2016-09-09

    Fast pyrolysis is being increasingly applied in commercial plants worldwide. They run exclusively on woody biomass, which has favorable properties for conversion with fast pyrolysis. In order to increase the synergies of food production and the energetic and/or material use of biomass, it is desirable to utilize residues from agricultural production, e.g., straw. The presented method is suitable for converting such a material on an industrial scale. The main features are presented and an example of mass balances from the conversion of several biomass residues is given. After conversion, fractionated condensation is applied in order to retrieve two condensates - an organic-rich and an aqueous-rich one. This design prevents the production of fast pyrolysis bio-oil that exhibits phase separation. A two phase bio-oil is to be expected because of the typically high ash content of straw biomass, which promotes the production of water of reaction during conversion. Both fractionated condensation and the use of biomass with high ash content demand a careful approach for establishing balances. Not all kind of balances are both meaningful and comparable to other results from the literature. Different balancing methods are presented, and the information that can be derived from them is discussed.

  5. Influence of pyrolysis conditions on the structure and gasification reactivity of biomass chars

    Energy Technology Data Exchange (ETDEWEB)

    E. Cetin; B. Moghtaderi; R. Gupta; T.F. Wall [University of Newcastle, Callaghan, NSW (Australia). Discipline of Chemical Engineering, Faculty of Engineering and Built Environment, School of Engineering

    2004-11-01

    The physical and chemical structure as well as gasification reactivities of chars generated from several biomass species (i.e. pinus radiata, eucalyptus maculata and sugar cane bagasse) were studied to gain insight into the role of heating rate and pressure on the gasification characteristics of biomass chars. Char samples were generated in a suite of reactors including a wire mesh reactor, a tubular reactor, and a drop tube furnace. Scanning electron microscopy analysis, X-ray diffractometry, digital cinematography and surface area analysis were employed to determine the impact of operating conditions on the char structure. The global gasification reactivities of char samples were also determined for a range of pressures between 1 and 20 bar using pressurised thermogravimetric analysis technique. Char reactivities were found to increase with increasing pyrolysis heating rates and decreasing pyrolysis pressure. It was found that under high heating rates the char particles underwent plastic deformation (i.e. melted) developing a structure different to that of the virgin biomass. Pressure was also found to influence the physical and chemical structures of char particles. The difference in the gasification reactivities of biomass chars at pressure was found to correlate well with the effect of pyrolysis pressure on the graphitisation process in the biomass char structure. 29 refs., 18 figs., 2 tabs.

  6. Tar Production from Biomass Pyrolysis in a Fluidized Bed Reactor: A Novel Turbulent Multiphase Flow Formulation

    Science.gov (United States)

    Bellan, J.; Lathouwers, D.

    2000-01-01

    A novel multiphase flow model is presented for describing the pyrolysis of biomass in a 'bubbling' fluidized bed reactor. The mixture of biomass and sand in a gaseous flow is conceptualized as a particulate phase composed of two classes interacting with the carrier gaseous flow. The solid biomass is composed of three initial species: cellulose, hemicellulose and lignin. From each of these initial species, two new solid species originate during pyrolysis: an 'active' species and a char, thus totaling seven solid-biomass species. The gas phase is composed of the original carrier gas (steam), tar and gas; the last two species originate from the volumetric pyrolysis reaction. The conservation equations are derived from the Boltzmann equations through ensemble averaging. Stresses in the gaseous phase are the sum of the Newtonian and Reynolds (turbulent) contributions. The particulate phase stresses are the sum of collisional and Reynolds contributions. Heat transfer between phases, and heat transfer between classes in the particulate phase is modeled, the last resulting from collisions between sand and biomass. Closure of the equations must be performed by modeling the Reynolds stresses for both phases. The results of a simplified version (first step) of the model are presented.

  7. Mild hydrothermal conditioning prior to torrefaction and slow pyrolysis of low-value biomass.

    Science.gov (United States)

    Van Poucke, R; Nachenius, R W; Agbo, K E; Hensgen, F; Bühle, L; Wachendorf, M; Ok, Y S; Tack, F M G; Prins, W; Ronsse, F; Meers, E

    2016-10-01

    The aim of this research was to establish whether hydrothermal conditioning and subsequent thermochemical processing via batch torrefaction or slow pyrolysis may improve the fuel quality of grass residues. A comparison in terms of fuel quality was made of the direct thermochemical processing of the feedstock versus hydrothermal conditioning as a pretreatment prior to thermochemical processing. Hydrothermal conditioning reduced ash content, and particularly nitrogen, potassium and chlorine contents in the biomass. The removal of volatile organic matter associated with thermochemical processes can increase the HHV to levels of volatile bituminous coal. However, slow pyrolysis only increased the HHV of biomass provided a low ash content (<6%) feedstock was used. In conclusion, hydrothermal conditioning can have a highly positive influence on the efficiency of thermochemical processes for upgrading low-value (high-ash) biomass to a higher quality fuel.

  8. Computational fluid dynamics modelling of biomass fast pyrolysis in fluidised bed reactors, focusing different kinetic schemes.

    Science.gov (United States)

    Ranganathan, Panneerselvam; Gu, Sai

    2016-08-01

    The present work concerns with CFD modelling of biomass fast pyrolysis in a fluidised bed reactor. Initially, a study was conducted to understand the hydrodynamics of the fluidised bed reactor by investigating the particle density and size, and gas velocity effect. With the basic understanding of hydrodynamics, the study was further extended to investigate the different kinetic schemes for biomass fast pyrolysis process. The Eulerian-Eulerian approach was used to model the complex multiphase flows in the reactor. The yield of the products from the simulation was compared with the experimental data. A good comparison was obtained between the literature results and CFD simulation. It is also found that CFD prediction with the advanced kinetic scheme is better when compared to other schemes. With the confidence obtained from the CFD models, a parametric study was carried out to study the effect of biomass particle type and size and temperature on the yield of the products.

  9. A review of the toxicity of biomass pyrolysis liquids formed at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Diebold, J P [Thermalchemie, Inc., Lakewood, CO (United States)

    1997-04-01

    The scaleup of biomass fast pyrolysis systems to large pilot and commercial scales will expose an increasingly large number of personnel to potential health hazards, especially during the evaluation of the commercial use of the pyrolysis condensates. Although the concept of fast pyrolysis to optimize liquid products is relatively new, low-temperature pyrolysis processes have been used over the aeons to produce charcoal and liquid by-products, e.g., smoky food flavors, food preservatives, and aerosols containing narcotics, e.g., nicotine. There are a number of studies in the historical literature that concern the hazards of acute and long-term exposure to smoke and to the historical pyrolysis liquids formed at low temperatures. The reported toxicity of smoke, smoke food flavors, and fast pyrolysis oils is reviewed. The data found for these complex mixtures suggest that the toxicity may be less than that of the individual components. It is speculated that there may be chemical reactions that take place that serve to reduce the toxicity during aging. 81 refs.

  10. Catalytic gasification of char from co-pyrolysis of coal and biomass

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wenkui [State key Laboratory of Multi-phase Complex system, the Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100080 (China); Graduate University, Chinese Academy of Sciences, Beijing 100080 (China); Song, Wenli; Lin, Weigang [State key Laboratory of Multi-phase Complex system, the Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100080 (China)

    2008-09-15

    The catalytic gasification of char from co-pyrolysis of coal and wheat straw was studied. Alkali metal salts, especially potassium salts, are considered as effective catalysts for carbon gasification by steam and CO{sub 2}, while too expensive for industry application. The herbaceous type of biomass, which has a high content of potassium, may be used as an inexpensive source of catalyst by co-processing with coal. The reactivity of chars from co-pyrolysis of coal and straw was experimentally examined. The chars were prepared in a spout-entrained reactor with different ratios of coal to straw. The gasification characteristics of chars were measured by thermogravimetric analysis (TGA). The co-pyrolysis chars revealed higher gasification reactivity than that of char from coal, especially at high level of carbon conversion. The influence of the alkali in the char and the pyrolysis temperature on the reactivity of co-pyrolysis char was investigated. The experimental results show that the co-pyrolysis char prepared at 750 C have the highest alkali concentration and reactivity. (author)

  11. Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Susanne B.; Valkenburt, Corinne; Walton, Christie W.; Elliott, Douglas C.; Holladay, Johnathan E.; Stevens, Don J.; Kinchin, Christopher; Czernik, Stefan

    2009-02-25

    The purpose of this study is to evaluate a processing pathway for converting biomass into infrastructure-compatible hydrocarbon biofuels. This design case investigates production of fast pyrolysis oil from biomass and the upgrading of that bio-oil as a means for generating infrastructure-ready renewable gasoline and diesel fuels. This study has been conducted using similar methodology and underlying basis assumptions as the previous design cases for ethanol. The overall concept and specific processing steps were selected because significant data on this approach exists in the public literature. The analysis evaluates technology that has been demonstrated at the laboratory scale or is in early stages of commercialization. The fast pyrolysis of biomass is already at an early stage of commercialization, while upgrading bio-oil to transportation fuels has only been demonstrated in the laboratory and at small engineering development scale. Advanced methods of pyrolysis, which are under development, are not evaluated in this study. These may be the subject of subsequent analysis by OBP. The plant is designed to use 2000 dry metric tons/day of hybrid poplar wood chips to produce 76 million gallons/year of gasoline and diesel. The processing steps include: 1.Feed drying and size reduction 2.Fast pyrolysis to a highly oxygenated liquid product 3.Hydrotreating of the fast pyrolysis oil to a stable hydrocarbon oil with less than 2% oxygen 4.Hydrocracking of the heavy portion of the stable hydrocarbon oil 5.Distillation of the hydrotreated and hydrocracked oil into gasoline and diesel fuel blendstocks 6. Hydrogen production to support the hydrotreater reactors. The "as received" feedstock to the pyrolysis plant will be "reactor ready". This development will likely further decrease the cost of producing the fuel. An important sensitivity is the possibility of co-locating the plant with an existing refinery. In this case, the plant consists only of the first three steps: feed

  12. Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Susanne B.; Valkenburt, Corinne; Walton, Christie W.; Elliott, Douglas C.; Holladay, Johnathan E.; Stevens, Don J.; Kinchin, Christopher; Czernik, Stefan

    2009-02-28

    The purpose of this study is to evaluate a processing pathway for converting biomass into infrastructure-compatible hydrocarbon biofuels. This design case investigates production of fast pyrolysis oil from biomass and the upgrading of that bio-oil as a means for generating infrastructure-ready renewable gasoline and diesel fuels. This study has been conducted using the same methodology and underlying basis assumptions as the previous design cases for ethanol. The overall concept and specific processing steps were selected because significant data on this approach exists in the public literature. The analysis evaluates technology that has been demonstrated at the laboratory scale or is in early stages of commercialization. The fast pyrolysis of biomass is already at an early stage of commercialization, while upgrading bio-oil to transportation fuels has only been demonstrated in the laboratory and at small engineering development scale. Advanced methods of pyrolysis, which are under development, are not evaluated in this study. These may be the subject of subsequent analysis by OBP. The plant is designed to use 2000 dry metric tons/day of hybrid poplar wood chips to produce 76 million gallons/year of gasoline and diesel. The processing steps include: 1.Feed drying and size reduction 2.Fast pyrolysis to a highly oxygenated liquid product 3.Hydrotreating of the fast pyrolysis oil to a stable hydrocarbon oil with less than 2% oxygen 4.Hydrocracking of the heavy portion of the stable hydrocarbon oil 5.Distillation of the hydrotreated and hydrocracked oil into gasoline and diesel fuel blendstocks 6. Hydrogen production to support the hydrotreater reactors. The “as received” feedstock to the pyrolysis plant will be “reactor ready.” This development will likely further decrease the cost of producing the fuel. An important sensitivity is the possibility of co-locating the plant with an existing refinery. In this case, the plant consists only of the first three steps

  13. Power production from biomass III. Gasification and pyrolysis R and D and D for industry

    Energy Technology Data Exchange (ETDEWEB)

    Sipilae, K.; Korhonen, M. [eds.] [VTT Energy, Espoo (Finland). New Energy Technologies

    1999-07-01

    The Seminar on Power Production from Biomass III. Gasification and Pyrolysis R and D and D for Industry, was held on 14-15 September 1998 in Espoo. The seminar was organised by VTT Energy in co-operation with the University of Groningen, EU-Thermie Programme and Technology Development Centre, Finland (Tekes). Overviews of current activities on power production from biomass and wastes in Europe and in the United States were given, and all European and U. S. demonstration projects on biomass gasification were presented. In Europe, the target is to produce additional 90 Mtoe/a of bioenergy for the market by 2010. This is a huge challenge for the bioenergy sector, including biomass production and harvesting, conversion technology, energy companies, and end users. In USA, U.S. Department of Energy is promoting the Biomass Power Programme to encourage and assist industry in the development and validation of renewable, biomass-based electricity generation systems, the objective being to double the present use of 7 000 MW biomass power by the year 2010. The new Finnish PROGAS Programme initiated by VTT was also introduced. Several gasification projects are today on the demonstration stage prior to entering the commercial level. Pyrolysis technologies are not yet on the demonstration stage on the energy market. Bio-oils can easily be transported, stored and utilised in existing boiler and diesel plants. The proceedings include the presentations given by the keynote speakers and other invited speakers, as well as some extended poster presentations. (orig.)

  14. Physical characterization of biomass-based pyrolysis liquids. Application of standard fuel oil analyses

    Energy Technology Data Exchange (ETDEWEB)

    Oasmaa, A.; Leppaemaeki, E.; Koponen, P.; Levander, J.; Tapola, E. [VTT Energy, Espoo (Finland). Energy Production Technologies

    1997-12-31

    The main purpose of the study was to test the applicability of standard fuel oil methods developed for petroleum-based fuels to pyrolysis liquids. In addition, research on sampling, homogeneity, stability, miscibility and corrosivity was carried out. The standard methods have been tested for several different pyrolysis liquids. Recommendations on sampling, sample size and small modifications of standard methods are presented. In general, most of the methods can be used as such but the accuracy of the analysis can be improved by minor modifications. Fuel oil analyses not suitable for pyrolysis liquids have been identified. Homogeneity of the liquids is the most critical factor in accurate analysis. The presence of air bubbles may disturb in several analyses. Sample preheating and prefiltration should be avoided when possible. The former may cause changes in the composition and structure of the pyrolysis liquid. The latter may remove part of organic material with particles. The size of the sample should be determined on the basis of the homogeneity and the water content of the liquid. The basic analyses of the Technical Research Centre of Finland (VTT) include water, pH, solids, ash, Conradson carbon residue, heating value, CHN, density, viscosity, pourpoint, flash point, and stability. Additional analyses are carried out when needed. (orig.) 53 refs.

  15. Valorization of selected biomass and wastes by co-pyrolysis with coal

    Energy Technology Data Exchange (ETDEWEB)

    Moliner, R.; Lazaro, M.J.; Suelves, I.; Blesa, M.J. [Inst. of Carboquimica (CSIC), Zaragoza (Spain)

    2004-07-01

    Implementation of a more sensible energy-environmental policy should include a 'green alliance of biomass and coal to pursue eco-friendly technologies for co-utilizing biomass and other opportunity fuels with coal or natural gas'. This article discusses two parallel cases of copyolysis of coal with biomass or wastes. In the first case, smokeless fuel briquettes are prepared with a low-rank coal and biomass byproducts such as olive stones and sawdust. Additives to improve the mechanical properties and the sulfur retention in ash are used. The briquettes showed good mechanical properties and slow, uniform, smokeless combustion. In the second case, petroleum residua and waste lubrication oils are used to produce chemicals and energy by co-pyrolysis with coal. It has been shown that co-pyrolysis in the presence of coal char selectively promotes transfer of hydrogen from the parent material to the gas and liquid products, concentrating carbon in the remaining char. Split-off hydrogen from carbon is enhanced when the primary co-pyrolysis products are submitted to thermocatalytic decomposition in a subsequent catalytic step. This process represents an attractive route for the production of carbon dioxide free hydrogen from hydrocarbons, whatever their origin. 34 refs., 5 figs., 4 tabs.

  16. A CFD model for biomass fast pyrolysis in fluidized-bed reactors

    Science.gov (United States)

    Xue, Qingluan; Heindel, T. J.; Fox, R. O.

    2010-11-01

    A numerical study is conducted to evaluate the performance and optimal operating conditions of fluidized-bed reactors for fast pyrolysis of biomass to bio-oil. A comprehensive CFD model, coupling a pyrolysis kinetic model with a detailed hydrodynamics model, is developed. A lumped kinetic model is applied to describe the pyrolysis of biomass particles. Variable particle porosity is used to account for the evolution of particle physical properties. The kinetic scheme includes primary decomposition and secondary cracking of tar. Biomass is composed of reference components: cellulose, hemicellulose, and lignin. Products are categorized into groups: gaseous, tar vapor, and solid char. The particle kinetic processes and their interaction with the reactive gas phase are modeled with a multi-fluid model derived from the kinetic theory of granular flow. The gas, sand and biomass constitute three continuum phases coupled by the interphase source terms. The model is applied to investigate the effect of operating conditions on the tar yield in a fluidized-bed reactor. The influence of various parameters on tar yield, including operating temperature and others are investigated. Predicted optimal conditions for tar yield and scale-up of the reactor are discussed.

  17. Non-isothermal Kinetics of Pyrolysis of Three Kinds of Fresh Biomass

    Institute of Scientific and Technical Information of China (English)

    MIN Fan-fei; ZHANG Ming-xu; CHEN Qing-ru

    2007-01-01

    The pyrolysis kinetics of three different kinds of fresh biomass (grass: triple A, wheat straw, com straw) in nitrogen flow were studied by thermogravimetric analysis at five different heating rates. The kinetic parameters of the pyrolysis process were calculated using the method of Ozawa-Flynn-Wall and the mechanism of reactions were investigated using the method of Popescu. It was found that the values of activation energy varied in different temperature ranges. The pyrolysis processes are well described by the models of Zhuravlev (Zh) and valid for diffusion-controlled between 200℃ and 280℃, by Ginstling-Brounshtein (G-B), valid for diffusion-control between 280℃ and 310℃, for first-order chemical reaction between 310℃ and 350℃, by Zhuravlev (Zh) valid for diffusion-control between 350℃ and 430℃ and by the one-way transport model when temperatures are over 430℃.

  18. Effect of fast pyrolysis conditions on biomass solid residues at high temperatures

    DEFF Research Database (Denmark)

    Trubetskaya, Anna; Jensen, Peter Arendt; Jensen, Anker Degn

    2016-01-01

    Fast pyrolysis of wood and straw was conducted in a drop tube furnace (DTF) and compared with corresponding data from a wire mesh reactor (WMR) to study the influence of temperature (1000-1400)°C, biomass origin (pinewood, beechwood, wheat straw, alfalfa straw), and heating rate (103 °C/s, 104 °C....../s) on the char yield and morphology. Scanning electron microscopy (SEM), elemental analysis, and ash compositional analysis were applied to characterize the effect of operational conditions on the solid residues (char, soot) and gaseous products. The char yield from fast pyrolysis in the DTF setup was 3 to 7......% (daf) points lower than in the WMR. During fast pyrolysis pinewood underwent drastic morphological transformations, whereas beechwood and straw samples retained the original porous structure of the parental fuel with slight melting on the surface. The particle size of Danish wheat straw char decreased...

  19. Effects of biomass type, blend composition, and co-pyrolysis temperature on hybrid coal quality

    Science.gov (United States)

    Sasongko, Dwiwahju; Wulandari, Winny; Rubani, Inga Shaffira; Rusydiansyah, Rifqi

    2017-01-01

    An experimental study on co-pyrolysis of coal with biomass wastes to produce hybrid coal was conducted to investigate the effects of important process variables, namely biomass type (rice husk and sawdust), blend composition, and co-pyrolysis temperature on the quality of hybrid coal. The experiments were carried out using a vertical tubular furnace equipped with temperature controller to maintain the co-pyrolysis reactor at a given temperature. Nitrogen gas was introduced into the furnace to create an inert environment preventing the sample from burning. A known mass of solid sample consisting of manually granulated blend of coal and biomass with binder in spherical shape was contained in a basket made of stainless sieve. After a given residence time, the sample was taken from the furnace. The blend sample prior to experiment and the produced hybrid coal were then characterized for its proximate analysis, ultimate analysis and calorific value. Experimental findings suggested that by increasing co-pyrolysis temperature from 200 to 400 °C, the calorific value of hybrid coal will increase by 14.5-17.7% to be 5585-7060 kcal/kg. It was also showed that 30% increase in the biomass content in the fuel blend would produce a hybrid coal that emitting up to 25.9% less in CO2 when used for combustion, although its calorific value decreased down to 8% compared to the biomass blend. It is shown that hybrid coal obtained from this study is comparable in calorific value to bituminous coal, thus suitable for power plant while being more environmentally friendly.

  20. Using pyrolytic acid leaching as a pretreatment step in a biomass fast pyrolysis plant: process design and economic evaluation

    NARCIS (Netherlands)

    Oudenhoven, S.R.G; Ham, van der A.G.J.; Berg, van den H.; Westerhof, R.J.M.; Kersten, S.R.A.

    2016-01-01

    Removing alkali and alkaline earth metals (AAEMs) from biomass, with pyrolytic acids, before pyrolysis leads to increased organic oil and sugar yields. These pyrolytic acids are produced and concentrated within the pyrolysis process itself. The purpose of this paper was to evaluate under which condi

  1. Hydrothermal carbonization of biomass residuals: A comparative review of the chemistry, processes and applications of wet and dry pyrolysis

    Science.gov (United States)

    This paper reviews chemistry, processes and application of hydrothermcally carbonized biomass wastes. Potential feedstock for the hydrothermal carbonization (HTC) includes variety of the non-traditional renewable wet agricultural and municipal waste streams. Pyrolysis and HTC show a comparable calor...

  2. Co-pyrolysis of wood biomass and synthetic polymers mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Sharypov, V.I.; Beregovtsova, N.G.; Kuznetsov, B.N.; Baryshnikov, S.V. [Institute of Chemistry and Chemical Technology SB RAS, K. Marx Str., Krasnoyarsk 660049 (Russian Federation); Cebolla, V.L. [Instituto de Carboquimica, CSIC, Zaragoza (Spain); Weber, J.V.; Collura, S.; Finqueneisel, G.; Zimny, T. [Laboratoire de Chimie et Applications, Universite de Metz, IUT, rue V. Demange, 57500 Saint Avold (France)

    2006-06-01

    The pyrolysis in a hydrogen atmosphere of pine wood and synthetic polymers (polyethylene and polypropylene) mixtures was studied in a rotating autoclave. The effects of reaction temperature, wood/polymers mixture composition and catalysts, on the mixtures conversion into liquids and gases were established and discussed. The used catalysts were pyrrhotite and haematite materials activated by mechanochemical treatment. In the co-liquefaction processes the interaction between fragments of wood and polymers thermal decomposition took place. This results in non-additive increase of the wood/polymers conversion degree by 10-15wt.% and of the yield of distillate fractions by 14-19wt.%. Iron ore materials were found catalytically active in the process of hydropyrolysis of wood/polymers mixtures. By using these catalysts a significant increase of the distillable liquids amounts (by 14-21wt.%) and a sharp decrease of olefins and cycloparaffins content (by approximately two to three times) were observed. (author)

  3. Diffusion of Biomass Pyrolysis Products in H-ZSM-5 by Molecular Dynamics Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Bu, Lintao; Nimlos, Mark R.; Robichaud, David J.; Kim, Seonah

    2017-01-12

    Diffusion of biomass pyrolysis vapors and their upgraded products is an essential catalytic property of zeolites during catalytic fast pyrolysis and likely plays a critical role in the selectivity of these catalysts. Characterizing the diffusivities of representative biofuel molecules is critical to understand shape selectivity and interpret product distribution. Yet, experimental measurements on the diffusivities of oxygenated biofuel molecules at pyrolysis temperatures are very limited in the literature. As an alternative approach, we conducted MD simulations to measure the diffusion coefficients of several selected molecules that are representative of biomass pyrolysis vapors, namely water, methanol, glycolaldehyde, and toluene in H-ZSM-5 zeolite. The results show the diffusion coefficients calculated via MD simulations are consistent with available NMR measurements at room temperature. The effect of molecular weight and molecular critical diameter on the diffusivity among the chosen model compounds is also examined. Furthermore, we have characterized the diffusivities of representative biofuel molecules, namely xylene isomers, in H-ZSM-5. Our calculations determined that the ratio of the diffusion coefficients for xylene isomers is p-xylene:o-xylene:m-xylene almost equal to 83:3:1 at 700 K. Additionally, our results also demonstrate the different diffusivity between p-xylene and toluene is due to the molecular orientations when the molecules diffuse along the channels in H-ZSM-5 and provide deep insight into the effect of molecular orientation on its diffusivity.

  4. Study of the co-pyrolysis of biomass and plastic wastes

    Energy Technology Data Exchange (ETDEWEB)

    Paradela, Filipe; Pinto, Filomena; Gulyurtlu, Ibrahim; Cabrita, Isabel [INETI-DEECA, Lisbon (Portugal); Lapa, Nuno [UNL-FCT, GDEH-UBiA, Caparica (Portugal)

    2009-02-15

    This work aimed to study the recovery of two types of waste by the process of pyrolysis. The obtained results show that the adding of a plastic mix improves the overall efficiency of the slow pyrolysis of pine. Therefore, it was possible to achieve higher liquid yields and less solid product than in the classic slow pyrolysis carbonization of biomass. The obtained liquids showed heating values similar to that of heating fuel oil. The gas products had energetic contents superior to that of producer gas, and the obtained solid fractions showed heating values higher than some coals. There were also identified some typical products of fast biomass pyrolysis used as raw material in several industries. The effects of experimental conditions in product yield and composition were also studied. The parameters that showed higher influence were (with its increase): reaction time on gas product composition (increase of the alkane content) and on liquid composition (increase in aromatics content); reaction temperature on product yield (decrease of liquid yield with increase of solids and gases) and on gas product composition (increase in alkane content); initial pressure on liquid composition (increase in the aromatics content) and mainly the pine content of the initial mixture on products yield (increase of gas and solid yield with a decrease in liquids) and on the gas product composition (favouring CO and CO{sub 2} formation). (orig.)

  5. Understanding the stability of pyrolysis tars from biomass in a view point of free radicals.

    Science.gov (United States)

    He, Wenjing; Liu, Qingya; Shi, Lei; Liu, Zhenyu; Ci, Donghui; Lievens, Caroline; Guo, Xiaofen; Liu, Muxin

    2014-03-01

    Fast pyrolysis of biomass has attracted increasing attention worldwide to produce bio-tars that can be upgraded into liquid fuels and chemicals. However, the bio-tars are usually poor in quality and stability and are difficult to be upgraded. To better understand the nature of the bio-tars, this work reveals radical concentration of tars derived from pyrolysis of two kinds of biomass. The tars were obtained by condensing the pyrolysis volatiles in 3s. It shows that the tars contain large amounts of radicals, at a level of 10(16)spins/g, and are able to generate more radicals at temperatures of 573K or higher, reaching a level of 10(19)spins/g at 673K in less than 30min. The radical generation in the tar samples is attributed to the formation of THF insoluble matters (coke), which also contain radicals. The radical concentrations of the aqueous liquids obtained in pyrolysis are also studied.

  6. Chemical and physical characterisation of biomass-based pyrolysis oils. Literature view

    Energy Technology Data Exchange (ETDEWEB)

    Fagernaes, L. [VTT Energy, Espoo (Finland). Energy Production Technologies

    1995-12-31

    Biomass-based pyrolysis oils are complex mixtures of mainly organic compounds and water. The determination of their physical and chemical properties and chemical composition is a challenge for researchers. Characterisation of biomass pyrolysis oils has been studied at many universities in North America and Europe in the 1980s and 1990s. The existing literature on the analytical methods used for these oils is reviewed in this report. For characterising the chemical composition, the bio-oils have first been mainly fractionated into different classes. Solvent extraction and adsorption chromatography are the most general methods used. In adsorption chromatography, the oils have been fractionated into different hydrocarbon and polar fractions. The fractions obtained have been analysed with various chromatographic and spectroscopic methods. Gas chromatography/mass spectrometry (GC/MS) technique is the analytical method most widely used and well adaptable for the fractions. For high-molecular-mass and highly polar compounds liquid chromatographic (LC) techniques as well as infrared (FT-IR) and nuclear magnetic resonance (1H NMR and 13C NMR) spectroscopies are more suitable due to the low volatility of pyrolysis oils. For whole pyrolysis oils, LC techniques, primarily size exclusion chromatography and FT-IR and FT-NMR spectroscopies have proved to be useful methods

  7. H2CAP - Hydrogen assisted catalytic biomass pyrolysis for green fuels

    DEFF Research Database (Denmark)

    Arndal, Trine Marie Hartmann; Høj, Martin; Jensen, Peter Arendt

    2014-01-01

    that can be used to upgrade the crude bio-oil to fuel-grade oil. The development of the HDO process is challenged by rapid catalyst deactivation, instability of the pyrolysis oil, poorly investigated reaction conditions and a high complexity and variability of the input oil composition. However, continuous...... catalytic hydropyrolysis coupled with downstream HDO of the pyrolysis vapors before condensation shows promise (Figure 1). A bench scale experimental setup will be constructed for the continuous conversion of solid biomass (100g /h) to low oxygen, fuel-grade bio-oil. The aim is to provide a proof......-of-concept for the proposed process(Figure 1), to understand the reaction mechanisms of HDO, to develop highly active and durable catalysts for hydropyrolysis and HDO and to optimize the operating conditions; all in order to develop a sustainable production of green transportation fuels from biomass.To support the process...

  8. Intrinsic activation: the relationship between biomass inorganic content and porosity formation during pyrolysis.

    Science.gov (United States)

    Stratford, James P; Hutchings, Tony R; de Leij, Frans A A M

    2014-05-01

    The utility of pyrolytic carbons is closely related to their porosity and surface area, there is a clear benefit to the development of biomass pyrolysis processes which produce highly porous carbons. The results presented in this work demonstrate that by using biomass precursors with high inorganic content along with specified process conditions, carbons can be consistently produced with specific surface areas between 900 and 1600 m(2)/g. Results from 12 different source materials show that the formation of increased porosity in pyrolytic carbons is strongly associated with the presence of inorganic elements in the precursors including: magnesium, potassium and sulfur. It was found that pyrolysis of macro-algae can produce especially high specific surface area carbons (mean: 1500 m(2)/g), without externally applied activating agents. Using cheap readily available agricultural residues such as oilseed rape straw, pyrolytic carbons can be produced with specific surface areas of around 950 m(2)/g.

  9. Pyrolysis of oil palm empty fruit bunch biomass pellets using multimode microwave irradiation.

    Science.gov (United States)

    Salema, Arshad Adam; Ani, Farid Nasir

    2012-12-01

    Oil palm empty fruit bunch pellets were subjected to pyrolysis in a multimode microwave (MW) system (1 kW and 2.45 GHz frequency) with and without the MW absorber, activated carbon. The ratio of biomass to MW absorber not only affected the temperature profiles of the EFB but also pyrolysis products such as bio-oil, char, and gas. The highest bio-oil yield of about 21 wt.% was obtained with 25% MW absorber. The bio-oil consisted of phenolic compounds of about 60-70 area% as detected by GC-MS and confirmed by FT-IR analysis. Ball lightning (plasma arc) occurred due to residual palm oil in the EFB biomass without using an MW absorber. The bio-char can be utilized as potential alternative fuel because of its heating value (25 MJ/kg).

  10. Release of Chlorine and Sulfur during Biomass Torrefaction and Pyrolysis

    DEFF Research Database (Denmark)

    Saleh, Suriyati Binti; Flensborg, Julie Pauline; Shoulaifar, Tooran Khazraie

    2014-01-01

    -forming elements were torrefied/pyrolyzed in the temperature range of 150-500 degrees C. The relative release of chlorine and sulfur was calculated based on mass balance and analysis of the biomass before and after torrefaction. In selected cases, measurement of methyl chloride (CH3Cl) in the gas from straw...

  11. Prediction of pyrolysis kinetic parameters from biomass constituents based on simplex-lattice mixture design☆

    Institute of Scientific and Technical Information of China (English)

    Panusit Sungsuk; Sasiporn Chayaporn; Sasithorn Sunphorka; Prapan Kuchonthara; Pornpote Piumsomboon; Benjapon Chalermsinsuwan

    2016-01-01

    The aim of this study is to determine the effect of the main chemical components of biomass:cel ulose, hemicel-lulose and lignin, on chemical kinetics of biomass pyrolysis. The experiments were designed based on a simplex-lattice mixture design. The pyrolysis was observed by using a thermogravimetric analyzer. The curves obtained from the employed analytical method fit the experimental data (R2 N 0.9). This indicated that this method has the potential to determine the kinetic parameters such as the activation energy (Ea), frequency factor (A) and re-action order (n) for each point of the experimental design. The results obtained from the simplex-lattice mixture design indicated that cellulose had a significant effect on Ea and A, and the interaction between cellulose and lignin had an important effect on the reaction order, n. The proposed models were then proved to be useful for predicting pyrolysis behavior in real biomass and so could be used as a simple approximation for predicting the overall trend of chemical reaction kinetics.

  12. Production of hydrogen from biomass by catalytic steam reforming of fast pyrolysis oil

    Energy Technology Data Exchange (ETDEWEB)

    Czernik, S.; Wang, D.; Chornet, E. [National Renewable Energy Lab., Golden, CO (United States). Center for Renewable Chemical Technologies and Materials

    1998-08-01

    Hydrogen is the prototype of the environmentally cleanest fuel of interest for power generation using fuel cells and for transportation. The thermochemical conversion of biomass to hydrogen can be carried out through two distinct strategies: (a) gasification followed by water-gas shift conversion, and (b) catalytic steam reforming of specific fractions derived from fast pyrolysis and aqueous/steam processes of biomass. This paper presents the latter route that begins with fast pyrolysis of biomass to produce bio-oil. This oil (as a whole or its selected fractions) can be converted to hydrogen via catalytic steam reforming followed by a water-gas shift conversion step. Such a process has been demonstrated at the bench scale using model compounds, poplar oil aqueous fraction, and the whole pyrolysis oil with commercial Ni-based steam reforming catalysts. Hydrogen yields as high as 85% have been obtained. Catalyst initial activity can be recovered through regeneration cycles by steam or CO{sub 2} gasification of carbonaceous deposits.

  13. Catalytic Pyrolysis of Biomass with Fe/La/SBA-15 Catalyst using TGA–FTIR Analysis

    Directory of Open Access Journals (Sweden)

    Yuli Zhang

    2014-07-01

    Full Text Available Biomass pyrolysis or gasification can convert low-energy density biomass into a high-energy density gaseous fuel. In this paper, pyrolysis of pine sawdust with and without the addition of a catalyst was investigated using a thermogravimetric analyzer coupled with Fourier transform infrared spectroscopy (TGA-FTIR. The effects of modified SBA-15 catalysts on the formation characteristics of CO, CO2, and CH4 were studied. The two prepared catalysts, La/SBA-15 and Fe/La/SBA-15, retained the hexagonal order of the SBA-15 material and showed high thermal stability in the temperature range of the TGA-FTIR experiments. The results showed that the pyrolysis behavior of biomass is remarkably improved in the presence of La/SBA-15 and Fe/La/SBA-15 catalysts. The modified SBA-15 materials favored thermal cracking of macromolecular substances, resulting in an apparent decrease in the tar and coke fraction, an increase in the yield of light gases, and much higher gas production. Meanwhile, a significant increase in CH4 led to a much higher energy density gaseous product.

  14. NOx and N2O precursors from biomass pyrolysis: nitrogen transformation from amino acid.

    Science.gov (United States)

    Ren, Qiangqiang; Zhao, Changsui

    2012-04-01

    Large quantities of NO(x) and N(2)O emissions can be produced from biomass burning. Understanding nitrogen behavior during biomass pyrolysis is crucial. Nitrogen in biomass is mainly in forms of proteins (amino acids). Phenylalanine, aspartic acid, and glutamic acid were used as the model compounds for the nitrogen in biomass. Release behavior tests of nitrogen species from the three amino acids during pyrolysis in argon and gasification with O(2) and CO(2) were performed using a thermogravimetric analyzer (TGA) coupled with a Fourier transform infrared (FTIR) spectrometer. The results indicate that although the influence of oxygen and CO(2) in the atmosphere on nitrogen behavior is different for the amino acids, it is interesting to find some phenomenon in common. The presence of oxygen promotes NO and HNCO formation for all the three amino acids; HCN and HNCO formation are suppressed by introduced CO(2) for all the three amino acids. This can reveal the N-conversion mechanism from biomass in depth under the same conditions.

  15. Pyrolysis kinetics of coking coal mixed with biomass under non-isothermal and isothermal conditions.

    Science.gov (United States)

    Jeong, Ha Myung; Seo, Myung Won; Jeong, Sang Mun; Na, Byung Ki; Yoon, Sang Jun; Lee, Jae Goo; Lee, Woon Jae

    2014-03-01

    To investigate the kinetic characteristics of coking coal mixed with biomass during pyrolysis, thermogravimetric (TG) and thermo-balance reactor (TBR) analyses were conducted under non-isothermal and isothermal condition. Yellow poplar as a biomass (B) was mixed with weak coking coal (WC) and hard coking coal (HC), respectively. The calculated activation energies of WC/B blends were higher than those of HC/B blends under non-isothermal and isothermal conditions. The coal/biomass blends show increased reactivity and decreased activation energy with increasing biomass blend ratio, regardless of the coking properties of the coal. The different char structures of the WC/B and HC/B blends were analyzed by BET and SEM.

  16. Influence of fast pyrolysis conditions on yield and structural transformation of biomass chars

    DEFF Research Database (Denmark)

    Trubetskaya, Anna; Jensen, Peter Arendt; Jensen, Anker Degn

    2015-01-01

    this value a similar biomass char yield was obtained. The potassium content affected the char yield stronger than other minerals, while the distribution of the three major biomass constituents (cellulose, hemicellulose, lignin) affected the char yield only to a minor degree. Moreover, it was found...... that the heat treatment temperature had a larger influence on the char yield than the heating rate. Scanning electron microscopy indicated different types of biomass char plasticization influenced by the applied temperatures, heating rates, particle sizes and holding times, except for the rice husk char......Fast pyrolysis of biomass (wood, straw, rice husk) and its major components (cellulose, hemicellulose, lignin) was conducted in a wire mesh reactor. The aim of this study was to understand the influence of temperature (350-1400 ° C), heating rate (10-3000 ° C/s), particle size (0.05-2 mm...

  17. Effect of pyrolysis conditions and composition on the char structure and char yield of biomass chars

    DEFF Research Database (Denmark)

    Trubetskaya, Anna; Steibel, Markus; Spliethoff, Hartmut

    The char yield as well as physical and chemical structure of chars generated from different types of biomass divided into five different particle size fractions from 50μm to 1mm were studied to better understand the influences of holding time, final temperatures and heating rates on the pyrolysis...... characteristics of biomass chars. An additional study of the char phase-organic transformation was conducted on the biomass organic matter. Char samples were generated in a wire-mesh reactor up to 1400°C, and with the heating rates between 10 K/s and 3000 K/s. The results were compared with the data gained from...... slow (10 K/min) and fast heating (600 K/min) by thermogravimetric analysis (TGA). Scanning electron microscopy (SEM/EDS), elementary analysis and Fourier transform infrared spectroscopy (FTIR) were conducted to determine the effect of operating conditions and the biomass composition on the char...

  18. The effects of torrefaction on compositions of bio-oil and syngas from biomass pyrolysis by microwave heating.

    Science.gov (United States)

    Ren, Shoujie; Lei, Hanwu; Wang, Lu; Bu, Quan; Chen, Shulin; Wu, Joan; Julson, James; Ruan, Roger

    2013-05-01

    Microwave pyrolysis of torrefied Douglas fir sawdust pellet was investigated to determine the effects of torrefaction on the biofuel production. Compared to the pyrolysis of raw biomass, the increased concentrations of phenols and sugars and reduced concentrations of guaiacols and furans were obtained from pyrolysis of torrefied biomass, indicating that torrefaction as a pretreatment favored the phenols and sugars production. Additionally, about 3.21-7.50 area% hydrocarbons and the reduced concentration of organic acids were obtained from pyrolysis of torrefied biomass. Torrefaction also altered the compositions of syngas by reducing CO2 and increasing H2 and CH4. The syngas was rich in H2, CH4, and CO implying that the syngas quality was significantly improved by torrefaction process.

  19. Microwave-assisted catalytic pyrolysis of lignocellulosic biomass for production of phenolic-rich bio-oil.

    Science.gov (United States)

    Mamaeva, Alisa; Tahmasebi, Arash; Tian, Lu; Yu, Jianglong

    2016-07-01

    Catalytic microwave pyrolysis of peanut shell (PT) and pine sawdust (PS) using activated carbon (AC) and lignite char (LC) for production of phenolic-rich bio-oil and nanotubes was investigated in this study. The effects of process parameters such as pyrolysis temperature and biomass/catalyst ratio on the yields and composition of pyrolysis products were investigated. Fast heating rates were achieved under microwave irradiation conditions. Gas chromatography-mass spectrometry (GC-MS) analysis of bio-oil showed that activated carbon significantly enhanced the selectivity of phenolic compounds in bio-oil. The highest phenolics content in the bio-oil (61.19 %(area)) was achieved at 300°C. The selectivity of phenolics in bio-oil was higher for PT sample compared to that of PS. The formation of nanotubes in PT biomass particles was observed for the first time in biomass microwave pyrolysis.

  20. Experimental Studies on Municipal Solid Waste and Biomass Pyrolysis

    OpenAIRE

    Becidan, Michaël

    2007-01-01

    The introduction of this thesis (Chapters 1-9) presents the broader picture of waste management and thermal treatments (situation, trends and novel concepts) with a strong focus on nitrogen (N) in Chapter 6 (a summary of this chapter can be found on page 42). A new insight on N-functionalities is presented, mostly based on plant physiology publications widely ignored by the bioenergy world. N in biomass is found in a variety of chemical compounds and not only in protein compounds. An extensiv...

  1. Biomass pyrolysis: Thermal decomposition mechanisms of furfural and benzaldehyde

    Science.gov (United States)

    Vasiliou, AnGayle K.; Kim, Jong Hyun; Ormond, Thomas K.; Piech, Krzysztof M.; Urness, Kimberly N.; Scheer, Adam M.; Robichaud, David J.; Mukarakate, Calvin; Nimlos, Mark R.; Daily, John W.; Guan, Qi; Carstensen, Hans-Heinrich; Ellison, G. Barney

    2013-09-01

    The thermal decompositions of furfural and benzaldehyde have been studied in a heated microtubular flow reactor. The pyrolysis experiments were carried out by passing a dilute mixture of the aromatic aldehydes (roughly 0.1%-1%) entrained in a stream of buffer gas (either He or Ar) through a pulsed, heated SiC reactor that is 2-3 cm long and 1 mm in diameter. Typical pressures in the reactor are 75-150 Torr with the SiC tube wall temperature in the range of 1200-1800 K. Characteristic residence times in the reactor are 100-200 μsec after which the gas mixture emerges as a skimmed molecular beam at a pressure of approximately 10 μTorr. Products were detected using matrix infrared absorption spectroscopy, 118.2 nm (10.487 eV) photoionization mass spectroscopy and resonance enhanced multiphoton ionization. The initial steps in the thermal decomposition of furfural and benzaldehyde have been identified. Furfural undergoes unimolecular decomposition to furan + CO: C4H3O-CHO (+ M) → CO + C4H4O. Sequential decomposition of furan leads to the production of HC≡CH, CH2CO, CH3C≡CH, CO, HCCCH2, and H atoms. In contrast, benzaldehyde resists decomposition until higher temperatures when it fragments to phenyl radical plus H atoms and CO: C6H5CHO (+ M) → C6H5CO + H → C6H5 + CO + H. The H atoms trigger a chain reaction by attacking C6H5CHO: H + C6H5CHO → [C6H6CHO]* → C6H6 + CO + H. The net result is the decomposition of benzaldehyde to produce benzene and CO.

  2. Biomass pyrolysis: thermal decomposition mechanisms of furfural and benzaldehyde.

    Science.gov (United States)

    Vasiliou, AnGayle K; Kim, Jong Hyun; Ormond, Thomas K; Piech, Krzysztof M; Urness, Kimberly N; Scheer, Adam M; Robichaud, David J; Mukarakate, Calvin; Nimlos, Mark R; Daily, John W; Guan, Qi; Carstensen, Hans-Heinrich; Ellison, G Barney

    2013-09-14

    The thermal decompositions of furfural and benzaldehyde have been studied in a heated microtubular flow reactor. The pyrolysis experiments were carried out by passing a dilute mixture of the aromatic aldehydes (roughly 0.1%-1%) entrained in a stream of buffer gas (either He or Ar) through a pulsed, heated SiC reactor that is 2-3 cm long and 1 mm in diameter. Typical pressures in the reactor are 75-150 Torr with the SiC tube wall temperature in the range of 1200-1800 K. Characteristic residence times in the reactor are 100-200 μsec after which the gas mixture emerges as a skimmed molecular beam at a pressure of approximately 10 μTorr. Products were detected using matrix infrared absorption spectroscopy, 118.2 nm (10.487 eV) photoionization mass spectroscopy and resonance enhanced multiphoton ionization. The initial steps in the thermal decomposition of furfural and benzaldehyde have been identified. Furfural undergoes unimolecular decomposition to furan + CO: C4H3O-CHO (+ M) → CO + C4H4O. Sequential decomposition of furan leads to the production of HC≡CH, CH2CO, CH3C≡CH, CO, HCCCH2, and H atoms. In contrast, benzaldehyde resists decomposition until higher temperatures when it fragments to phenyl radical plus H atoms and CO: C6H5CHO (+ M) → C6H5CO + H → C6H5 + CO + H. The H atoms trigger a chain reaction by attacking C6H5CHO: H + C6H5CHO → [C6H6CHO]* → C6H6 + CO + H. The net result is the decomposition of benzaldehyde to produce benzene and CO.

  3. Investigation of biomasses and chars obtained from pyrolysis of different biomasses with solid-state 13C and 23Na nuclear magnetic resonance spectroscopy

    NARCIS (Netherlands)

    Link, S.; Arvelakis, S.; Spliethoff, H.; Waard, de P.; Samoson, A.

    2008-01-01

    A number of biomass samples (reed, pine pellets, Douglas fir wood chips, wheat straw, peach stones, and olive residue), pretreated biomass samples (leached wheat straw, leached peach stones, and leached olive residue), as well as their chars obtained by pyrolysis using different heating rates (5, 10

  4. Biomass pyrolysis for biochar or energy applications? A life cycle assessment.

    Science.gov (United States)

    Peters, Jens F; Iribarren, Diego; Dufour, Javier

    2015-04-21

    The application of biochar as a soil amendment is a potential strategy for carbon sequestration. In this paper, a slow pyrolysis system for generating heat and biochar from lignocellulosic energy crops is simulated and its life-cycle performance compared with that of direct biomass combustion. The use of the char as biochar is also contrasted with alternative use options: cofiring in coal power plants, use as charcoal, and use as a fuel for heat generation. Additionally, the influence on the results of the long-term stability of the biochar in the soil, as well as of biochar effects on biomass yield, is evaluated. Negative greenhouse gas emissions are obtained for the biochar system, indicating a significant carbon abatement potential. However, this is achieved at the expense of lower energy efficiency and higher impacts in the other assessed categories when compared to direct biomass combustion. When comparing the different use options of the pyrolysis char, the most favorable result is obtained for char cofiring substituting fossil coal, even assuming high long-term stability of the char. Nevertheless, a high sensitivity to biomass yield increase is found for biochar systems. In this sense, biochar application to low-quality soils where high yield increases are expected would show a more favorable performance in terms of global warming.

  5. Gasification and pyrolysis of different biomasses in lab scale system: A comparative study

    Directory of Open Access Journals (Sweden)

    Gądek W.

    2016-01-01

    Full Text Available Gasification and pyrolysis are very promising technologies for clean energy production especially from low rank fuels. Biomass and wastes with high chlorine, alkali and even heavy metals content are fuels preferential for thermal utilization. However, several problems during combustion in conventional steam boilers occurs e.g. slagging, fouling, chlorine corrosion, boiler efficiency deterioration. New efficient and cost effective technologies are needed, even in small-scale applications. The main objective of this work was to compare the thermochemical behaviour and process parameters effects of different biomass under air gasification and pyrolysis conditions. Three important fuels for European power industry were selected: woody biomass and two residual biomass, such as oat straw and dried citrus wastes. In order to evaluate the possibility to use different feedstocks or to combine and/or integrate them in thermochemical processes, a comparison among typical and untypical feedstocks is needed. Tests performed on small scale fixed bed reactor show the gas yield, its composition and LHV parameter. The results were performed in Royal Institute of Technology (KTH in Sweden during BRISK program (Biofuels Research Infrastructure for Sharing Knowledge.

  6. Tar reduction in pyrolysis vapours from biomass over a hot char bed.

    Science.gov (United States)

    Gilbert, P; Ryu, C; Sharifi, V; Swithenbank, J

    2009-12-01

    The behaviour of pyrolysis vapours over char was investigated in order to maximise tar conversion for the development of a new fixed bed gasifier. Wood samples were decomposed at a typical pyrolysis temperature (500 degrees C) and the pyrolysis vapours were then passed directly through a tar cracking zone in a tubular reactor. The product yields and properties of the condensable phases and non-condensable gases were studied for different bed lengths of char (0-450 mm), temperatures (500-800 degrees C), particle sizes (10 and 15 mm) and nitrogen purge rates (1.84-14.70 mm/s). The carbon in the condensable phases showed about 66% reduction by a 300 mm long char section at 800 degrees C, compared to that for pyrolysis at 500 degrees C. The amount of heavy condensable phase decreased with increasing temperature from about 18.4 wt% of the biomass input at 500 degrees C to 8.0 wt% at 800 degrees C, forming CO, H(2) and other light molecules. The main mode of tar conversion was found to be in the vapour phase when compared to the results without the presence of char. The composition of the heavy condensable phase was simplified into much fewer secondary and tertiary tar components at 800 degrees C. Additional measures were required to maximise the heterogeneous effect of char for tar reduction.

  7. Investigations into the characteristics of oils produced from co-pyrolysis of biomass and tire

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Qing; Jin, Li' e [Institute of Chemical Engineering and Technology, Taiyuan University of Technology, 030024 China (China); Key Laboratory for Coal Science and Technology of Shanxi Province and Ministry of Education, Taiyuan University of Technology, 030024 China (China); Bao, Weiren; Lv, Yongkang [Key Laboratory for Coal Science and Technology of Shanxi Province and Ministry of Education, Taiyuan University of Technology, 030024 China (China)

    2009-03-15

    Co-pyrolysis of wood biomass and waste tire with such catalysts as SBA-15, MCM-41 and HZSM-5 was carried out in a fixed-bed reactor. The influences of the mixture composition on liquid yield and characteristics of the oil were investigated. The properties of the oil were determined by gel permeation chromatograph (GPC), elemental analyzer (EA), thermal analyzer (TA), densimeter, ubbelohde viscosimeter and compared with that of diesel oil 0. The contents of the polycyclic aromatic hydrocarbons (PAHs) in the oils were also determined by gas chromatograph (GC). The result shows that co-pyrolysis is in favor of inhibiting the formation of polycyclic aromatic hydrocarbons (PAHs) produced from tire. There exist a hydrogen transfer and a synthetic effect during co-pyrolysis of the biomass and tire. They improve the quality of the oil. SBA-15 as a catalyst is more significant than MCM-41 or HZSM-5 for reducing the density and viscosity of the oil and it can effectively decompose some large molecular compounds into small ones. (author)

  8. Optimization of Biofuel and Biochar Production from the Slow Pyrolysis of Biomass

    Science.gov (United States)

    Fang, J.; Gao, B.; Nsf Reu in Water Resources

    2010-12-01

    Slow pyrolysis was performed on biomass samples (i.e., energy cane and air potato) to determine the most energy efficient conditions for producing biofuel and biochar. The potential of air potato as a source of fuel and char was also investigated. Dry biomass samples of 10, 15 and 20 g were heated in a reactor at a final temperatures of 300, 450, or 600 °C, and the minimum amount of time required to complete pyrolysis was recorded. Maximum biochar yield was obtained at 300°C for both energy cane and air potato at all masses, and maximum bio-oil yield was obtained at 450°C for all samples. Pyrolysis required the least amount of time at 450°C. Bio-oil yields for air potato were slightly lower than that of energy cane, while biochar yield was slightly higher. Since air potato showed similar product yields to energy cane, this indicates it has potential to be a good feedstock for biofuel and biochar productions.

  9. Selective production of chemicals from biomass pyrolysis over metal chlorides supported on zeolite.

    Science.gov (United States)

    Leng, Shuai; Wang, Xinde; Cai, Qiuxia; Ma, Fengyun; Liu, Yue'e; Wang, Jianguo

    2013-12-01

    Direct biomass conversion into chemicals remains a great challenge because of the complexity of the compounds; hence, this process has attracted less attention than conversion into fuel. In this study, we propose a simple one-step method for converting bagasse into furfural (FF) and acetic acid (AC). In this method, bagasse pyrolysis over ZnCl2/HZSM-5 achieved a high FF and AC yield (58.10%) and a 1.01 FF/AC ratio, but a very low yield of medium-boiling point components. However, bagasse pyrolysis using HZSM-5 alone or ZnCl2 alone still remained large amounts of medium-boiling point components or high-boiling point components. The synergistic effect of HZSM-5 and ZnCl2, which combines pyrolysis, zeolite cracking, and Lewis acid-selective catalysis results in highly efficient bagasse conversion into FF and AC. Therefore, our study provides a novel, simple method for directly converting biomass into high-yield useful chemical.

  10. Pyrolysis in the Countries of the North Sea Region: Potentially available quantities of biomass waste for biochar production

    NARCIS (Netherlands)

    Kolk, van der J.W.H.; Zwart, K.B.

    2013-01-01

    One of the objectives of the Interreg IVB project Biochar: Climate Saving Soils is to assess the amount of available biomass that could be used for the production of biochar. In this publication the authors give an impression of the amounts of biomass available for pyrolysis.

  11. Report - Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case

    Energy Technology Data Exchange (ETDEWEB)

    Jones, S. B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Valkenburg, C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Walton, C. W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Elliott, D. C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Holladay, J. E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stevens, D. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kinchin, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Czernik, S. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2009-02-01

    The purpose of this design case study is to evaluate a processing pathway for converting biomass into infrastructure-compatible hydrocarbon biofuels. This design case investigates production of fast pyrolysis oil from biomass and the upgrading of that bio-oil as a means for generating infrastructure-ready renewable gasoline and diesel fuels.

  12. Biomass-to-hydrogen via fast pyrolysis and catalytic steam reforming

    Energy Technology Data Exchange (ETDEWEB)

    Chornet, E.; Wang, D.; Czernik, S. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1996-10-01

    Pyrolysis of lignocellulosic biomass and reforming the pyroligneous oils is being studied as a strategy for producing hydrogen. Novel technologies for the rapid pyrolysis of biomass have been developed in the past decade. They provide compact and efficient systems to transform biomass into vapors that are condensed to oils, with yields as high as 75-80 wt.% of the anhydrous biomass. This {open_quotes}bio-oil{close_quotes} is a mixture of aldehydes, alcohols, acids, oligomers from the constitutive carbohydrates and lignin, and some water derived from the dehydration reactions. Hydrogen can be produced by reforming the bio-oil or its fractions with steam. A process of this nature has the potential to be cost competitive with conventional means of producing hydrogen. The reforming facility can be designed to handle alternate feedstocks, such as natural gas and naphtha, if necessary. Thermodynamic modeling of the major constituents of the bio-oil has shown that reforming is possible within a wide range of temperatures and steam-to-carbon ratios. Existing catalytic data on the reforming of oxygenates have been studied to guide catalyst selection. Tests performed on a microreactor interfaced with a molecular beam mass spectrometer showed that, by proper selection of the process variables: temperature, steam-to-carbon ratio, gas hourly space velocity, and contact time, almost total conversion of carbon in the feed to CO and CO{sub 2} could be obtained. These tests also provided possible reaction mechanisms where thermal cracking competes with catalytic processes. Bench-scale, fixed bed reactor tests demonstrated high hydrogen yields from model compounds and carbohydrate-derived pyrolysis oil fractions. Reforming bio-oil or its fractions required proper dispersion of the liquid to avoid vapor-phase carbonization of the feed in the inlet to the reactor. A special spraying nozzle injector was designed and successfully tested with an aqueous fraction of bio-oil.

  13. Effect of Cellulose, Hemi-cellulose and Lignin Compositions in Woody and Grass Biomass on Pyrolysis Process

    Science.gov (United States)

    Okumura, Yukihiko; Okada, Takuya; Okazaki, Ken

    This paper reports on the pyrolysis process of various biomass materials in a thermobalance. In particular, the primary yields of total volatiles, tar and non-condensable gases, together with the composition of non-condensable gases, are measured as a function of temperature. The use of a high-intensity infrared heating source, in conjunction with a non-absorbing carrier gas (viz. argon), is reported to reduce the significance of secondary gas-phase pyrolysis reactions. The results indicate that the pyrolysis process of wood and grass biomass (tar and gas evolution process) is greatly affected by the main composition (cellulose, hemicellulose and lignin) and the linear trends with atomic H/C ratio are observed in the tar yield, total volatile yield CO, CO2 and CH4 yields. The volatile yields of wood and grass biomass are predicted based only on the values of ultimate analysis of the biomass.

  14. Styrene recovery from polystyrene by flash pyrolysis in a conical spouted bed reactor.

    Science.gov (United States)

    Artetxe, Maite; Lopez, Gartzen; Amutio, Maider; Barbarias, Itsaso; Arregi, Aitor; Aguado, Roberto; Bilbao, Javier; Olazar, Martin

    2015-11-01

    Continuous pyrolysis of polystyrene has been studied in a conical spouted bed reactor with the main aim of enhancing styrene monomer recovery. Thermal degradation in a thermogravimetric analyser was conducted as a preliminary study in order to apply this information in the pyrolysis in the conical spouted bed reactor. The effects of temperature and gas flow rate in the conical spouted bed reactor on product yield and composition have been determined in the 450-600°C range by using a spouting velocity from 1.25 to 3.5 times the minimum one. Styrene yield is strongly influenced by both temperature and gas flow rate, with the maximum yield being 70.6 wt% at 500°C and a gas velocity twice the minimum one.

  15. Biomass pyrolysis: use of some agricultural wastes for alternative fuel production

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Lygia Maestri; Santos, Larissa Cardoso; Vieira, Paula Fraga; Parreira, Priciane Martins; Henrique, Humberto Molinar, E-mail: lygiamk@gmail.com, E-mail: larinha_cardoso@yahoo.com.br, E-mail: paulavieira88@gmail.com, E-mail: priciane.mp@bol.com.br, E-mail: humberto@ufu.br [Universidade Federal de Uberlandia (UFU), MG (Brazil). Faculdade de Engenharia Quimica

    2009-07-01

    The use of biomass for energy generation has aroused great attention and interest because of the global climate changes, environmental pollution and reduction of availability of fossil energy. This study deals with pyrolysis of four agricultural wastes (sawdust, sugarcane straw, chicken litter and cashew nut shell) in a fixed bed pyrolytic reactor. The yields of char, liquid and gas were quantified at 300, 400, 500, 600 and 700 deg C and the temperature and pressure effects were investigated. Pyrolytic liquids produced were separated into aqueous and oil phases. XRF spectroscopy was used for qualitative and quantitative elemental analysis of the liquids and solids produced at whole temperature range. Calorific value analysis of liquids and solids were also performed for energy content evaluation. Experimental results showed sawdust, sugarcane straw and cashew nut waste have very good potential for using in pyrolysis process for alternative fuel production. (author)

  16. A Reacting-Shrinking Core Model for Pyrolysis and Combustion of a Single Biomass Particle

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, Alfredo L.; Avila, Claudio R.; Garcia, Ximena A. (Dept. of Chemical Engineering, Univ. of Concepcion (Chile)). e-mail: algordon@udec.cl

    2008-10-15

    Consecutive heating and pyrolysis of the solid due to incident heat flow represented by a shrinking reacting core approximation and combustion, described by a shrinking unreacting core description, allow modeling the combustion of a cylindrical biomass particle. A bi-dimensional approach (radial and axial) describes mass and heat balances and first order kinetics characterizes the reaction rates. A finite differences algorithm numerically solved the model. Results showed good agreement with available experimental data. The parameter analysis for the pyrolysis step shows high sensibility to the kinetic constants, the incident heat flow, the initial moisture and particle size. Parameters with a significant effect on combustion are the concentration and effective diffusivity of the oxidizing agent in the atmosphere around the reaction surface

  17. Biomass Catalytic Pyrolysis on Ni/ZSM-5: Effects of Nickel Pretreatment and Loading

    Energy Technology Data Exchange (ETDEWEB)

    Yung, Matthew M.; Starace, Anne K.; Mukarakate, Calvin; Crow, Allison M.; Leshnov, Marissa A.; Magrini, Kimberly A.

    2016-07-21

    In this work, Ni/ZSM-5 catalysts with varied nickel loadings were evaluated for their ability to produce aromatic hydrocarbons by upgrading of pine pyrolysis vapors. The effect of catalyst pretreatment by hydrogen reduction was also investigated. Results indicate that the addition of nickel increases the yield of aromatic hydrocarbons while simultaneously increasing the conversion of oxygenates, relative to ZSM-5, and these effects are more pronounced with increasing nickel loading. Additionally, while initial activity differences were observed between the oxidized and reduced forms of nickel on ZSM-5 (i.e., NiO/ZSM-5 versus Ni/ZSM-5), the activity of both catalysts converges with increasing time on stream. These reaction results coupled with characterization of pristine and spent catalysts suggest that the catalysts reach similar active states during catalytic pyrolysis, regardless of pretreatment, as NiO undergoes in situ reduction to Ni by biomass pyrolysis vapors. This reduction of NiO to Ni was confirmed by reaction results and characterization by NH3 temperature-programmed desorption, temperature-programmed reduction, and X-ray diffraction. This finding is significant in that the ability to reduce or eliminate the need for a pre-reaction H2 reduction of Ni-modified zeolite catalysts could reduce process complexity and operating costs in a biorefinery-based vapor-phase upgrading process to produce biomass-derived fuels and chemicals. The ability to monitor catalyst activity in real time with a molecular beam mass spectrometer used to measure uncondensed, hot pyrolysis vapors allows for an improved understanding of the mechanism for improved activity with Ni addition to ZSM-5, which is attributed to the ability to prevent deactivation by deposition of coke and capping of zeolite micropores.

  18. Reforming Biomass Derived Pyrolysis Bio-oil Aqueous Phase to Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Mukarakate, Calvin; Evans, Robert J.; Deutch, Steve; Evans, Tabitha; Starace, Anne K.; ten Dam, Jeroen; Watson, Michael J.; Magrini, Kim

    2017-01-07

    Fast pyrolysis and catalytic fast pyrolysis (CFP) of biomass produce a liquid product stream comprised of various classes of organic compounds having different molecule size and polarity. This liquid, either spontaneously in the case of catalytic fast pyrolysis or by water addition for the non-catalytic process separates into a non-polar organic-rich fraction and a highly polar water-rich fraction. The organic fraction can be used as a blendstock or feedstock for further processing in a refinery while, in the CFP process design, the aqueous phase is currently sent to wastewater treatment, which results in a loss of residual biogenic carbon present in this stream. This work focuses on the catalytic conversion of the biogenic carbon in pyrolysis aqueous phase streams to produce hydrocarbons using a vertical micro-reactor coupled to a molecular beam mass spectrometer (MBMS). The MBMS provides real-time analysis of products while also tracking catalyst deactivation. The catalyst used in this work was HZSM-5, which upgraded the oxygenated organics in the aqueous fraction to fuels comprising small olefins and aromatic hydrocarbons. During processing the aqueous bio-oil fraction the HZSM-5 catalyst exhibited higher activity and coke resistance than those observed in similar experiments using biomass or whole bio-oils. Reduced coking is likely due to ejection of coke precursors from the catalyst pores that was enhanced by excess process water available for steam stripping. The water reacted with coke precursors to form phenol, methylated phenols, naphthol, and methylated naphthols. Conversion data shows that up to 40 wt% of the carbon in the feed stream is recovered as hydrocarbons.

  19. Biomass Catalytic Pyrolysis with Ni Based Catalyst to Produce Hydrogen Rich Gas

    Institute of Scientific and Technical Information of China (English)

    WANG Mingfeng; LIU Min; XU Xiwei; LI Bosong; ZHANG Qiang; JIAN Enchen

    2010-01-01

    Hydrogen rich gas was produced using rice husk as biomass material on the continuous biomass pyrolysis apparatus which consisted of continuous pyrolysis reactor and secondary catalytic cracking reactor. Ni based catalysts of different Ni/Al mass ratio and calcined temperature were prepared by impregnating method. The catalysts were characterized by X-ray diffraction (XRD),scan electron microscope (SEM) and FT-IR Spectrometer (FT-IR). Ni based catalyst showed good selectivity for H2 production from biomass. Catalysts prepared under different conditions had little influence on the yields of three states products when used at the same cracking temperature. Ni/Al mass ratio played an important role in products selectivity. However, the content of NiO increased further when Ni/Al mass ratio values reached 0.7 : 10, and the yield of H2 slightly increased. Hydrogen yield was greatly impacted by calcined temperature. Catalyst calcined at 550"C performed best. When the catalyst was calcined at high temperature, NiO in the catalyst transformed into NiAl2O4, and the acid site also changed, which caused the deactivation of the catalyst. The hydrogen yield increased with the cracking temperature. The highest stable yield of hydrogen was about 30% without increasing with the cracking temperature.

  20. Kinetic Model of Biomass Pyrolysis Based on Three-component Independent Parallel First-order Reactions

    Institute of Scientific and Technical Information of China (English)

    王新运; 万新军; 陈明强; 王君

    2012-01-01

    The pyrolysis behavior of two kinds of typical biomass (pine wood and cotton stalk) was studied in nitrogen atmosphere at various heating rates by thermogravimetric analysis (TGA).The pyrolysis process can be divided into three stages:evolution of moisture (<200 ℃),devolatilization (200~400 ℃) and carbonization (>400 ℃).The comparison of DTG curves of two biomass materials show that the higher the hemicellulose content of biomass,the more evident the shoulder peak of DTG curve.The weight loss process of two materials was simulated by the kinetic model assuming cellulose,hemicellulose and lignin pyrolyzing independently and in parallel,obeying first-order reactions.The pyrolysis kinetic parameters corresponding to the three components were estimated by the nonlinear least square algorithm.The results show that their fitting curves are in good agreement with the experimental data.Their activation energy values for pine wood and cotton stalk are in the range of 188~215,90~102,29~49 and 187~214,95~101,30~38 kJ/mol,respectively.The corresponding pre-exponential factors are in the range of 1.8×1015~2.0×1016,1.6×107~7.1×108,9.3×101~l.5×103 and 1.2× 1015~6.7×1017,1.2× 108~1.4×109,1.4× 102~4.6× 102 min-1,respectively.In addition,the activation energy of cellulose and lignin increased and their contributions to volatile tended to fall,whereas the activation energy of herricellulose decreased and its contribution to volatile tended to rise with increasing of heating rate.

  1. Optimization of the pyrolysis process for the production of a biomass derived reducing agent and hydrogen-rich gases

    OpenAIRE

    Adrados López de Viñaspre, Aitziber

    2014-01-01

    221 p. [EN] This thesis is devoted to the optimization of the biomass pyrolysis process for the simultaneous production of bioreducing agents and high value gases. The thesis is part of the existing collaborative research work between the Befesa Steel R&D S.L. Company and the Chemical and Environmental Engineering Department of the Faculty of Engineering of Bilbao. This company was interested in developing the pyrolysis process at large scale to produce biocoke to be used as reducing agent...

  2. Development of Ni-Based Catalysts for Steam Reforming of Tar Derived from Biomass Pyrolysis

    Institute of Scientific and Technical Information of China (English)

    Dalin LI; Yoshinao NAKAGAWA; Keiichi TOMISHIGE

    2012-01-01

    Nickel catalysts are effective for the steam reforming of tar derived from biomass pyrolysis,but the improvement is needed in terms of activity,stability,suppression of coke deposition and aggregation,and regeneration.Our recent development of Ni-based catalysts for the steam reforming of tar is reviewed including the modification with CeO2 (or MnO),trace Pt,and MgO.The role of additives such as CeO2,MnO,Pt,and MgO is also discussed.

  3. Prediction of product distribution in fine biomass pyrolysis in fluidized beds based on proximate analysis.

    Science.gov (United States)

    Kim, Sung Won

    2015-01-01

    A predictive model was satisfactorily developed to describe the general trends of product distribution in fluidized beds of lignocellulosic biomass pyrolysis. The model was made of mass balance based on proximate analysis and an empirical relationship with operating parameters including fluidization hydrodynamics. The empirical relationships between product yields and fluidization conditions in fluidized bed pyrolyzers were derived from the data of this study and literature. The gas and char yields showed strong functions of temperature and vapor residence time in the pyrolyzer. The yields showed a good correlation with fluidization variables related with hydrodynamics and bed mixing. The predicted product yields based on the model well accorded well with the experimental data.

  4. Relations between flash pyrolysis reactivity and oil/gas products from coals of different rank; Sekitankado no kotonaru shushu no sekitan no flash pyrolysis hannosei to gas oyobi eki seiseibutsu no kankei

    Energy Technology Data Exchange (ETDEWEB)

    Nonaka, T.; Kishino, M.; Sakanishi, K.; Korai, Y.; Mochida, I. [Kyushu University, Fukuoka (Japan). Institute of Advanced Material Study

    1996-10-28

    Curie point flash pyrolysis (FP) reactivity was studied experimentally using three kinds of coals with different coal ranks such as Yallourn brown coal, Tanitoharum sub-bituminous coal and Wandoan sub-bituminous coal. Experiment was performed using a curie point pyrolyzer in carrier gas of 20ml/min in gas flow rate at 450, 590 and 740{degree}C for 5sec. The experimental results were as follows. Each gas component obviously increased at 450-590{degree}C, however, C4-C6 gases drastically decreased at 590-740{degree}C accompanying reduction of the whole gas quantity. All of each polar component remarkably increased at 450-590{degree}C. Yallourn brown coal with high Owt%, in particular, contained a large amount of alkyl-hydroxybenzene group. The amount of cresol of all of three coal specimens also increased at 740{degree}C. It was thus suggested that this is coal constituent molecules derived from cutting of methylene-ether bridged bond by higher-temperature FP. 8 refs., 5 figs., 3 tabs.

  5. Experimental Gasification of Biomass in an Updraft Gasifier with External Recirculation of Pyrolysis Gases

    Directory of Open Access Journals (Sweden)

    Adi Surjosatyo

    2014-01-01

    Full Text Available The updraft gasifier is a simple type of reactor for the gasification of biomass that is easy to operate and has high conversion efficiency, although it produces high levels of tar. This study attempts to observe the performance of a modified updraft gasifier. A modified updraft gasifier that recirculates the pyrolysis gases from drying zone back to the combustion zone and gas outlet at reduction zone was used. In this study, the level of pyrolysis gases that returned to the combustion zone was varied, and as well as measurements of gas composition, lower heating value and tar content. The results showed that an increase in the amount of pyrolysis gases that returned to the combustion zone resulted in a decrease in the amount of tar produced. An increase in the amount of recirculated gases tended to increase the concentrations of H2 and CH4 and reduce the concentration of CO with the primary (gasification air flow held constant. Increasing the primary air flow tended to increase the amount of CO and decrease the amount of H2. The maximum of lower heating value was 4.9 MJ/m3.

  6. Leaching behaviour and ecotoxicity evaluation of chars from the pyrolysis of forestry biomass and polymeric materials.

    Science.gov (United States)

    Bernardo, M; Mendes, S; Lapa, N; Gonçalves, M; Mendes, B; Pinto, F; Lopes, H

    2014-09-01

    The main objective of this study was to assess the environmental risk of chars derived from the pyrolysis of mixtures of pine, plastics, and scrap tires, by studying their leaching potential and ecotoxicity. Relationships between chemical composition and ecotoxicity were established to identify contaminants responsible for toxicity. Since metallic contaminants were the focus of the present study, an EDTA washing step was applied to the chars to selectively remove metals that can be responsible for the observed toxicity. The results indicated that the introduction of biomass to the pyrolysis feedstock enhanced the acidity of chars and promote the mobilisation of inorganic compounds. Chars resulting from the pyrolysis of blends of pine and plastics did not produce ecotoxic eluates. A relationship between zinc concentrations in eluates and their ecotoxicity was found for chars obtained from mixtures with tires. A significant reduction in ecotoxicity was found when the chars were treated with EDTA, which was due to a significant reduction in zinc in chars after EDTA washing.

  7. Catalytic Deoxygenation of Biomass Pyrolysis Vapors to Improve Bio-oil Stability

    Energy Technology Data Exchange (ETDEWEB)

    Dayton, David C. [RTI International, Research Triangle Park, NC (United States)

    2016-12-22

    The President’s Advanced Energy Initiative called for a change in the way Americans fuel their vehicles to promote improved energy security. Increasing biofuels production from domestic lignocellulosic resources requires advanced technology development to achieve the aggressive targets set forth to reduce motor gasoline consumption by 20% in ten years (by 2017). The U.S. Department of Energy (USDOE) Office of the Biomass Program (currently Bioenergy Technologies Office) is actively funding research and development in both biochemical and thermochemical conversion technologies to accelerate the deployment of biofuels technologies in the near future to meet the goals of the Advanced Energy Initiative. Thermochemical conversion technology options include both gasification and pyrolysis to enable the developing lignocellulosic biorefineries and maximize biomass resource utilization for production of biofuels.

  8. A review of catalytic microwave pyrolysis of lignocellulosic biomass for value-added fuel and chemicals.

    Science.gov (United States)

    Morgan, Hervan Marion; Bu, Quan; Liang, Jianghui; Liu, Yujing; Mao, Hanping; Shi, Aiping; Lei, Hanwu; Ruan, Roger

    2017-04-01

    Lignocellulosic biomass is an abundant renewable resource and can be efficiently converted into bio-energy by a bio-refinery. From the various techniques available for biomass thermo-chemical conversion; microwave assisted pyrolysis (MAP) seems to be the very promising. The principles of microwave technology were reviewed and the parameters for the efficient production of bio-oil using microwave technology were summarized. Microwave technology by itself cannot efficiently produce high quality bio-oil products, catalysts are used to improve the reaction conditions and selectivity for valued products during MAP. The catalysts used to optimize MAP are revised in the development of this article. The origins for bio-oils that are phenol rich or hydrocarbon rich are reviewed and their experimental results were summarized. The kinetics of MAP is discussed briefly in the development of the article. Future prospects and scientific development of MAP are also considered in the development of this article.

  9. Integrated supply chain design for commodity chemicals production via woody biomass fast pyrolysis and upgrading.

    Science.gov (United States)

    Zhang, Yanan; Hu, Guiping; Brown, Robert C

    2014-04-01

    This study investigates the optimal supply chain design for commodity chemicals (BTX, etc.) production via woody biomass fast pyrolysis and hydroprocessing pathway. The locations and capacities of distributed preprocessing hubs and integrated biorefinery facilities are optimized with a mixed integer linear programming model. In this integrated supply chain system, decisions on the biomass chipping methods (roadside chipping vs. facility chipping) are also explored. The economic objective of the supply chain model is to maximize the profit for a 20-year chemicals production system. In addition to the economic objective, the model also incorporates an environmental objective of minimizing life cycle greenhouse gas emissions, analyzing the trade-off between the economic and environmental considerations. The capital cost, operating cost, and revenues for the biorefinery facilities are based on techno-economic analysis, and the proposed approach is illustrated through a case study of Minnesota, with Minneapolis-St. Paul serving as the chemicals distribution hub.

  10. Modeling the influence of potassium content and heating rate on biomass pyrolysis

    DEFF Research Database (Denmark)

    Trubetskaya, Anna; Surup, Gerrit; Shapiro, Alexander

    2017-01-01

    This study presents a combined kinetic and particle model that describes the effect of potassium and heating rate during the fast pyrolysis of woody and herbaceous biomass. The model calculates the mass loss rate, over a wide range of operating conditions relevant to suspension firing. The shrink......This study presents a combined kinetic and particle model that describes the effect of potassium and heating rate during the fast pyrolysis of woody and herbaceous biomass. The model calculates the mass loss rate, over a wide range of operating conditions relevant to suspension firing....... The shrinking particle model considers internal and external heat transfer limitations and incorporates catalytic effects of potassium on the product yields. Modeling parameters were tuned with experimentally determined char yields at high heating rates (>200 K s−1) using a wire mesh reactor, a single particle...... burner, and a drop tube reactor. The experimental data demonstrated that heating rate and potassium content have significant effects on the char yield. The importance of shrinkage on the devolatilization time becomes greater with increasing particle size, but showed little influence on the char yields....

  11. Renewable hydrocarbons for jet fuels from biomass and plastics via microwave-induced pyrolysis and hydrogenation processes

    Science.gov (United States)

    Zhang, Xuesong

    This dissertation aims to enhance the production of aromatic hydrocarbons in the catalytic microwave-induced pyrolysis, and maximize the production of renewable cycloalkanes for jet fuels in the hydrogenation process. In the process, ZSM-5 catalyst as the highly efficient catalyst was employed for catalyzing the pyrolytic volatiles from thermal decomposition of cellulose (a model compound of lignocellulosic biomass). A central composite experiment design (CCD) was used to optimize the product yields as a function of independent factors (e.g. catalytic temperature and catalyst to feed mass ratio). The low-density polyethylene (a mode compound of waste plastics) was then carried out in the catalytic microwave-induced pyrolysis in the presence of ZSM-5 catalyst. Thereafter, the catalytic microwave-induced co-pyrolysis of cellulose with low-density polyethylene (LDPE) was conducted over ZSM-5 catalyst. The results showed that the production of aromatic hydrocarbons was significantly enhanced and the coke formation was also considerably reduced comparing with the catalytic microwave pyrolysis of cellulose or LDPE alone. Moreover, practical lignocellulosic biomass (Douglas fir sawdust pellets) was converted into aromatics-enriched bio-oil by catalytic microwave pyrolysis. The bio-oil was subsequently hydrogenated by using the Raney Ni catalyst. A liquid-liquid extraction step was implemented to recover the liquid organics and remove the water content. Over 20% carbon yield of liquid product regarding lignocellulosic biomass was obtained. Up to 90% selectivity in the liquid product belongs to jet fuel range cycloalkanes. As the integrated processes was developed, catalytic microwave pyrolysis of cellulose with LDPE was conducted to improve aromatic production. After the liquid-liquid extraction by the optimal solvent (n-heptane), over 40% carbon yield of hydrogenated organics based on cellulose and LDPE were achieved in the hydrogenation process. As such, real

  12. Thermogravimetric characteristics and kinetic of plastic and biomass blends co-pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Limin; Wang, Yiping; Huang, Qunwu; Cai, Junqing [School of Chemistry and Chemical engineering, Tianjin University, Weijin Road No. 92, Tianjin 300072 (China)

    2006-11-15

    Co-pyrolytic behaviours of plastic/biomass mixtures were investigated using a thermogravimetric analyser under heating rate of 20 {sup o}C/min from room temperature to 650 {sup o}C. The biomass sample selected was Chinese pine wood sawdust, while high density polyethylene (HDPE), low density polyethylene (LDPE) and polypropylene were selected as plastic samples. Results obtained from this comprehensive investigation indicated that plastic was decomposed in the temperature range 438-521 {sup o}C, while the thermal degradation temperature of biomass is 292-480 {sup o}C. The difference of weight loss ({delta}W) between experimental and theoretical ones, calculated as algebraic sums of those from each separated component, is about 6-12% at 530-650 {sup o}C. These experimental results indicate a significant synergistic effect during plastic and biomass co-pyrolysis at the high temperature region. In addition, a kinetic analysis was performed to fit thermogravimetric data, the global processes being considered as one to three consecutive first order reactions. A reasonable fit to the experimental data was obtained for all materials and their blends. (author)

  13. Successful scaling-up of self-sustained pyrolysis of oil palm biomass under pool-type reactor.

    Science.gov (United States)

    Idris, Juferi; Shirai, Yoshihito; Andou, Yoshito; Mohd Ali, Ahmad Amiruddin; Othman, Mohd Ridzuan; Ibrahim, Izzudin; Yamamoto, Akio; Yasuda, Nobuhiko; Hassan, Mohd Ali

    2016-02-01

    An appropriate technology for waste utilisation, especially for a large amount of abundant pressed-shredded oil palm empty fruit bunch (OFEFB), is important for the oil palm industry. Self-sustained pyrolysis, whereby oil palm biomass was combusted by itself to provide the heat for pyrolysis without an electrical heater, is more preferable owing to its simplicity, ease of operation and low energy requirement. In this study, biochar production under self-sustained pyrolysis of oil palm biomass in the form of oil palm empty fruit bunch was tested in a 3-t large-scale pool-type reactor. During the pyrolysis process, the biomass was loaded layer by layer when the smoke appeared on the top, to minimise the entrance of oxygen. This method had significantly increased the yield of biochar. In our previous report, we have tested on a 30-kg pilot-scale capacity under self-sustained pyrolysis and found that the higher heating value (HHV) obtained was 22.6-24.7 MJ kg(-1) with a 23.5%-25.0% yield. In this scaled-up study, a 3-t large-scale procedure produced HHV of 22.0-24.3 MJ kg(-1) with a 30%-34% yield based on a wet-weight basis. The maximum self-sustained pyrolysis temperature for the large-scale procedure can reach between 600 °C and 700 °C. We concluded that large-scale biochar production under self-sustained pyrolysis was successfully conducted owing to the comparable biochar produced, compared with medium-scale and other studies with an electrical heating element, making it an appropriate technology for waste utilisation, particularly for the oil palm industry.

  14. Biological mineral range effects on biomass conversion to aromatic hydrocarbons via catalytic fast pyrolysis over HZSM-5

    Science.gov (United States)

    A set of 20 biomass samples, comprising 10 genotypes of switchgrass, sorghum and miscanthus grown in two different soils with high and low poultry manure input conditions, and having a wide biological range of mineral content, were subjected to catalytic fast pyrolysis (CFP) over HZMS-5 using py-G...

  15. Biomass Conversion to Produce Hydrocarbon Liquid Fuel Via Hot-vapor Filtered Fast Pyrolysis and Catalytic Hydrotreating.

    Science.gov (United States)

    Wang, Huamin; Elliott, Douglas C; French, Richard J; Deutch, Steve; Iisa, Kristiina

    2016-12-25

    Lignocellulosic biomass conversion to produce biofuels has received significant attention because of the quest for a replacement for fossil fuels. Among the various thermochemical and biochemical routes, fast pyrolysis followed by catalytic hydrotreating is considered to be a promising near-term opportunity. This paper reports on experimental methods used 1) at the National Renewable Energy Laboratory (NREL) for fast pyrolysis of lignocellulosic biomass to produce bio-oils in a fluidized-bed reactor and 2) at Pacific Northwest National Laboratory (PNNL) for catalytic hydrotreating of bio-oils in a two-stage, fixed-bed, continuous-flow catalytic reactor. The configurations of the reactor systems, the operating procedures, and the processing and analysis of feedstocks, bio-oils, and biofuels are described in detail in this paper. We also demonstrate hot-vapor filtration during fast pyrolysis to remove fine char particles and inorganic contaminants from bio-oil. Representative results showed successful conversion of biomass feedstocks to fuel-range hydrocarbon biofuels and, specifically, the effect of hot-vapor filtration on bio-oil production and upgrading. The protocols provided in this report could help to generate rigorous and reliable data for biomass pyrolysis and bio-oil hydrotreating research.

  16. Fast Pyrolysis of Tropical Biomass Species and Influence of Water Pretreatment on Product Distributions.

    Science.gov (United States)

    Morgan, Trevor James; Turn, Scott Q; Sun, Ning; George, Anthe

    2016-01-01

    The fast pyrolysis behaviour of pretreated banagrass was examined at four temperatures (between 400 and 600 C) and four residence times (between ~1.2 and 12 s). The pretreatment used water washing/leaching to reduce the inorganic content of the banagrass. Yields of bio-oil, permanent gases and char were determined at each reaction condition and compared to previously published results from untreated banagrass. Comparing the bio-oil yields from the untreated and pretreated banagrass shows that the yields were greater from the pretreated banagrass by 4 to 11 wt% (absolute) at all reaction conditions. The effect of pretreatment (i.e. reducing the amount of ash, and alkali and alkali earth metals) on pyrolysis products is: 1) to increase the dry bio-oil yield, 2) to decrease the amount of undetected material, 3) to produce a slight increase in CO yield or no change, 4) to slightly decrease CO2 yield or no change, and 5) to produce a more stable bio-oil (less aging). Char yield and total gas yield were unaffected by feedstock pretreatment. Four other tropical biomass species were also pyrolyzed under one condition (450°C and 1.4 s residence time) for comparison to the banagrass results. The samples include two hardwoods: leucaena and eucalyptus, and two grasses: sugarcane bagasse and energy-cane. A sample of pretreated energy-cane was also pyrolyzed. Of the materials tested, the best feedstocks for fast pyrolysis were sugarcane bagasse, pretreated energy cane and eucalyptus based on the yields of 'dry bio-oil', CO and CO2. On the same basis, the least productive feedstocks are untreated banagrass followed by pretreated banagrass and leucaena.

  17. Fast Pyrolysis of Tropical Biomass Species and Influence of Water Pretreatment on Product Distributions.

    Directory of Open Access Journals (Sweden)

    Trevor James Morgan

    Full Text Available The fast pyrolysis behaviour of pretreated banagrass was examined at four temperatures (between 400 and 600 C and four residence times (between ~1.2 and 12 s. The pretreatment used water washing/leaching to reduce the inorganic content of the banagrass. Yields of bio-oil, permanent gases and char were determined at each reaction condition and compared to previously published results from untreated banagrass. Comparing the bio-oil yields from the untreated and pretreated banagrass shows that the yields were greater from the pretreated banagrass by 4 to 11 wt% (absolute at all reaction conditions. The effect of pretreatment (i.e. reducing the amount of ash, and alkali and alkali earth metals on pyrolysis products is: 1 to increase the dry bio-oil yield, 2 to decrease the amount of undetected material, 3 to produce a slight increase in CO yield or no change, 4 to slightly decrease CO2 yield or no change, and 5 to produce a more stable bio-oil (less aging. Char yield and total gas yield were unaffected by feedstock pretreatment. Four other tropical biomass species were also pyrolyzed under one condition (450°C and 1.4 s residence time for comparison to the banagrass results. The samples include two hardwoods: leucaena and eucalyptus, and two grasses: sugarcane bagasse and energy-cane. A sample of pretreated energy-cane was also pyrolyzed. Of the materials tested, the best feedstocks for fast pyrolysis were sugarcane bagasse, pretreated energy cane and eucalyptus based on the yields of 'dry bio-oil', CO and CO2. On the same basis, the least productive feedstocks are untreated banagrass followed by pretreated banagrass and leucaena.

  18. Fast Pyrolysis of Tropical Biomass Species and Influence of Water Pretreatment on Product Distributions

    Science.gov (United States)

    Morgan, Trevor James; Turn, Scott Q.; Sun, Ning; George, Anthe

    2016-01-01

    The fast pyrolysis behaviour of pretreated banagrass was examined at four temperatures (between 400 and 600 C) and four residence times (between ~1.2 and 12 s). The pretreatment used water washing/leaching to reduce the inorganic content of the banagrass. Yields of bio-oil, permanent gases and char were determined at each reaction condition and compared to previously published results from untreated banagrass. Comparing the bio-oil yields from the untreated and pretreated banagrass shows that the yields were greater from the pretreated banagrass by 4 to 11 wt% (absolute) at all reaction conditions. The effect of pretreatment (i.e. reducing the amount of ash, and alkali and alkali earth metals) on pyrolysis products is: 1) to increase the dry bio-oil yield, 2) to decrease the amount of undetected material, 3) to produce a slight increase in CO yield or no change, 4) to slightly decrease CO2 yield or no change, and 5) to produce a more stable bio-oil (less aging). Char yield and total gas yield were unaffected by feedstock pretreatment. Four other tropical biomass species were also pyrolyzed under one condition (450°C and 1.4 s residence time) for comparison to the banagrass results. The samples include two hardwoods: leucaena and eucalyptus, and two grasses: sugarcane bagasse and energy-cane. A sample of pretreated energy-cane was also pyrolyzed. Of the materials tested, the best feedstocks for fast pyrolysis were sugarcane bagasse, pretreated energy cane and eucalyptus based on the yields of 'dry bio-oil', CO and CO2. On the same basis, the least productive feedstocks are untreated banagrass followed by pretreated banagrass and leucaena. PMID:26978265

  19. Interaction between biomass and different rank coals during co-pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Haykiri-Acma, H.; Yaman, S. [Istanbul Technical University, Chemical and Metallurgical Engineering Faculty, Chemical Engineering Department, 34469 Maslak, Istanbul (Turkey)

    2010-01-15

    Effects of biomass on the pyrolytic decomposition of different rank coals were investigated by non-isothermal Thermogravimetric Analysis (TGA) method from ambient to 900 C with a heating rate of 40 C/min under nitrogen. Hazelnut shell (HS) which is a woody biomass species was added as much as 10 wt% to coals such as peat, lignite, bituminous coal, and anthracite to obtain coal/biomass blends for co-pyrolysis runs. Effects of HS present in the blends were evaluated regarding the apparent decomposition rates and the char yields. It was found that the addition of thermally reactive HS led to some increases in the volatilization rates of coals especially at temperatures below 500 C. Besides, the char yields revealed unexpected variations in case of low rank coals. Although, HS addition did not play significant role on the char yields of bituminous coal and anthracite, considerable deviations from the theoretical char yields were detected in the case of peat and lignites. The presence of HS led to increasing char weight for peat, while the char weights for lignites decreased seriously. These variations were interpreted, and it can be concluded that these variations cannot be explained by simple additive behavior, and the existence of synergistic interactions should be taken into account. (author)

  20. Direct Reduction of High-phosphorus Oolitic Hematite Ore Based on Biomass Pyrolysis

    Institute of Scientific and Technical Information of China (English)

    Dong-bo HUANG; Yan-bing ZONG; Ru-fei WEI; Wei GAO; Xiao-ming LIU

    2016-01-01

    Direct reduction of high-phosphorus oolitic hematite ore based on biomass pyrolysis gases (CO,H2 ,and CH4 ),tar,and char was conducted to investigate the effects of reduction temperature,iron ore-biomass mass ratio, and reduction time on the metallization rate.In addition,the effect of particle size on the dephosphorization and iron recovery rate was studied by magnetic separation.It was determined that the metallization rate of the hematite ore could reach 99.35% at iron ore-biomass mass ratio of 1∶0.6,reduction temperature of 1 100 ℃,and reduction time of 5 5 min.The metallization rate and the aggregation degree of iron particles increase with the increase of reduction temperature.The particle size of direct reduced iron (DRI)has a great influence on the quality of the iron concentrate during magnetic separation.The separation degree of slag and iron was improved by the addition of 1 5 mass% sodi-um carbonate.DRI with iron grade of 89.11%,iron recovery rate of 83.47%,and phosphorus content of 0.28% can be obtained when ore fines with particle size of -10μm account for 78.15%.

  1. Role of Brønsted acid in selective production of furfural in biomass pyrolysis.

    Science.gov (United States)

    Zhang, Haiyan; Liu, Xuejun; Lu, Meizhen; Hu, Xinyue; Lu, Leigang; Tian, Xiaoning; Ji, Jianbing

    2014-10-01

    In this work, the role of Brønsted acid for furfural production in biomass pyrolysis on supported sulfates catalysts was investigated. The introduction of Brønsted acid was shown to improve the degradation of polysaccharides to intermediates for furfural, which did not work well when only Lewis acids were used in the process. Experimental results showed that CuSO4/HZSM-5 catalyst exhibited the best performance for furfural (28% yield), which was much higher than individual HZSM-5 (5%) and CuSO4 (6%). The optimum reaction conditions called for the mass ratio of CuSO4/HZSM-5 to be 0.4 and the catalyst/biomass mass ratio to be 0.5. The recycled catalyst exhibited low productivity (9%). Analysis of the catalysts by Py-IR revealed that the CuSO4/HZSM-5 owned a stronger Brønsted acid intensity than HZSM-5 or the recycled CuSO4/HZSM-5. Therefore, the existence of Brønsted acid is necessary to achieve a more productive degradation of biomass for furfural.

  2. Fast co-pyrolysis of biomass and lignite in a micro fluidized bed reactor analyzer.

    Science.gov (United States)

    Mao, Yebing; Dong, Lei; Dong, Yuping; Liu, Wenping; Chang, Jiafu; Yang, Shuai; Lv, Zhaochuan; Fan, Pengfei

    2015-04-01

    The co-pyrolysis characteristic of biomass and lignite were investigated in a Micro Fluidized Bed Reaction Analyzer under isothermal condition. The synergetic effect was evaluated by comparing the experimental gas yields and distributions with the calculated values, and iso-conversional method was used to calculate the kinetic parameters of formation of each gas component. The results showed that synergetic effect was manifested in co-pyrolysis. For the range of conversion investigated, the activation energies for H2, CH4, CO and CO2 were 72.90 kJ/mol, 43.90 kJ/mol, 18.51 kJ/mol and 13.44 kJ/mol, respectively; the reactions for CH4 and CO2 conformed to 2 order chemical reaction model, and for H2 and CO conformed to 1.5 order chemical reaction model; the pre-exponential factors for CH4, CO2, H2 and CO were 249.0 S(-1), 5.290 S(-1), 237.4 S(-1) and 2.693 S(-1), respectively. The discrepancy of the kinetic parameters implied that there were different pathways for forming the different gas.

  3. KINETIC STUDY OF COAL AND BIOMASS CO-PYROLYSIS USING THERMOGRAVIMETRY

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ping; Hedges, Sheila; Chaudharib, Kiran; Turtonb, Richard

    2013-10-29

    The objectives of this study are to investigate thermal behavior of coal and biomass blends in inert gas environment at low heating rates and to develop a simplified kinetic model using model fitting techniques based on TGA experimental data. Differences in thermal behavior and reactivity in co-pyrolysis of Powder River Basin (PRB) sub-bituminous coal and pelletized southern yellow pine wood sawdust blends at low heating rates are observed. Coal/wood blends have higher reactivity compared to coal alone in the lower temperature due to the high volatile matter content of wood. As heating rates increase, weight loss rates increase. The experiment data obtained from TGA has a better fit with proposed two step first order reactions model compared single first order reaction model.

  4. Supported molybdenum oxides as effective catalysts for the catalytic fast pyrolysis of lignocellulosic biomass

    Energy Technology Data Exchange (ETDEWEB)

    Murugappan, Karthick; Mukarakate, Calvin; Budhi, Sridhar; Shetty, Manish; Nimlos, Mark R.; Román-Leshkov, Yuriy

    2016-01-01

    The catalytic fast pyrolysis (CFP) of pine was investigated over 10 wt% MoO3/TiO2 and MoO3/ZrO2 at 500 degrees C and H2 pressures =0.75 bar. The product distributions were monitored in real time using a molecular beam mass spectrometer (MBMS). Both supported MoO3 catalysts show different levels of deoxygenation based on the cumulative biomass to MoO3 mass ratio exposed to the catalytic bed. For biomass to MoO3 mass ratios <1.5, predominantly olefinic and aromatic hydrocarbons are produced with no detectable oxygen-containing species. For ratios =1.5, partially deoxygenated species comprised of furans and phenols are observed, with a concomitant decrease of olefinic and aromatic hydrocarbons. For ratios =5, primary pyrolysis vapours break through the bed, indicating the onset of catalyst deactivation. Product quantification with a tandem micropyrolyzer-GCMS setup shows that fresh supported MoO3 catalysts convert ca. 27 mol% of the original carbon into hydrocarbons comprised predominantly of aromatics (7 C%), olefins (18 C%) and paraffins (2 C%), comparable to the total hydrocarbon yield obtained with HZSM-5 operated under similar reaction conditions. Post-reaction XPS analysis on supported MoO3/ZrO2 and MoO3/TiO2 catalysts reveal that ca. 50% of Mo surface species exist in their partially reduced forms (i.e., Mo5+ and Mo3+), and that catalyst deactivation is likely associated to coking.

  5. Preparation of liquid chemical feedstocks by co-pyrolysis of electronic waste and biomass without formation of polybrominated dibenzo-p-dioxins.

    Science.gov (United States)

    Liu, Wu-Jun; Tian, Ke; Jiang, Hong; Zhang, Xue-Song; Yang, Guang-Xi

    2013-01-01

    The co-pyrolysis of waste electrical and electronic equipments (WEEEs) and waste biomass to obtain pyrolysis-oil, a liquid fuel or chemical feedstock, was carried out in the present work. The pyrolysis-oil yield of co-pyrolysis reached 62.3% which was significantly higher than those of pyrolysis of WEEEs and biomass alone (i.e., 53.1% for WEEEs and 46.3% for biomass), suggesting that synergistic effects of the WEEEs and biomass happened during the co-pyrolysis process. The pyrolysis-oil mainly contained aromatic compounds, including many aromatic hydrocarbons. More than 90 wt.% of bromides were enriched in pyrolysis-oil and char, which is easily to be recovered by further treatments, and no polybrominated dibenzo-p-dioxins and furans (PBDD/Fs) were detected in all products which may be attributed to the blocking of PBDD/Fs generation under special reductive environment of pyrolysis. This work provided a green and environmentally friendly approach for the disposal of the WEEEs as well as resource recovery.

  6. Self-heating co-pyrolysis of excessive activated sludge with waste biomass: energy balance and sludge reduction.

    Science.gov (United States)

    Ding, Hong-Sheng; Jiang, Hong

    2013-04-01

    In this work, co-pyrolysis of sludge with sawdust or rice husk was investigated. The results showed that the co-pyrolysis technology could be used to dispose of the excessive activated sludge without external energy input. The results also demonstrated that no obvious synergistic effect occurred except for heat transfer in the co-pyrolysis if the co-feeding biomass and sludge had similar thermogravimetric characteristics. The experimental results combined with calculation showed that adding sawdust accounting for 49.6% of the total feedstock or rice husk accounting for 74.7% could produce bio-oil to keep the energy balance of the co-pyrolysis system and self-heat it. The sludge from solar drying bed can be further reduced by 38.6% and 35.1% by weight when co-pyrolyzed with rice husk and sawdust, respectively. This study indicates that sludge reduction without external heat supply through co-pyrolysis of sludge with waste biomass is practically feasible.

  7. Pyrolysis kinetic and product analysis of different microalgal biomass by distributed activation energy model and pyrolysis-gas chromatography-mass spectrometry.

    Science.gov (United States)

    Yang, Xuewei; Zhang, Rui; Fu, Juan; Geng, Shu; Cheng, Jay Jiayang; Sun, Yuan

    2014-07-01

    To assess the energy potential of different microalgae, Chlorella sorokiniana and Monoraphidium were selected for studying the pyrolytic behavior at different heating rates with the analytical method of thermogravimetric analysis (TG), distributed activation energy model (DAEM) and pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS). Results presented that Monoraphidium 3s35 showed superiority for pyrolysis at low heating rate. Calculated by DAEM, during the conversion rate range from 0.1 to 0.7, the activation energies of C. sorokiniana 21 were much lower than that of Monoraphidium 3s35. Both C. sorokiniana 21 and Monoraphidium 3s35 can produce certain amount (up to 20.50%) of alkane compounds, with 9-Octadecyne (C18H34) as the primary compound. Short-chain alkanes (C7-C13) with unsaturated carbon can be released in the pyrolysis at 500°C for both microalgal biomass. It was also observed that the pyrolysis of C. sorokiniana 21 released more alcohol compounds, while Monoraphidium 3s35 produced more saccharides.

  8. Change of physical and chemical properties of the solid phase during biomass pyrolysis; Aenderung der physikalisch-chemischen Eigenschaften des Feststoffs waehrend der Biomassepyrolyse

    Energy Technology Data Exchange (ETDEWEB)

    Klose, Wolfgang [Kassel Univ. (Germany). Inst. fuer Thermische Energietechnik; Rincon, Sonia; Gomez, Alexander [Universidad Nacional de Colombia, Bogota (Colombia). Dept. de Ingenieria Mecanica y Mecatronica

    2009-01-15

    The effects of the final pyrolysis temperature on the development of the chemical composition and on the porosity of biomass undergoing pyrolysis are investigated through experiments in a thermobalance at laboratory scale of grams. Changes in the grain size of individual particles of biomass during pyrolysis are also investigated as a function of temperature in a microscope equipped with heating and camera. Oil palm shells are selected as raw materials due to their availability as biomass residue and their physical and chemical characteristics. These experiments are important for reactor design purposes in the field of thermochemical conversion, offering important information for the mathematical modelling of the processes. (orig.)

  9. Biomass fast pyrolysis in a fluidized bed reactor under N2, CO2, CO, CH4 and H2 atmospheres.

    Science.gov (United States)

    Zhang, Huiyan; Xiao, Rui; Wang, Denghui; He, Guangying; Shao, Shanshan; Zhang, Jubing; Zhong, Zhaoping

    2011-03-01

    Biomass fast pyrolysis is one of the most promising technologies for biomass utilization. In order to increase its economic potential, pyrolysis gas is usually recycled to serve as carrier gas. In this study, biomass fast pyrolysis was carried out in a fluidized bed reactor using various main pyrolysis gas components, namely N(2), CO(2), CO, CH(4) and H(2), as carrier gases. The atmosphere effects on product yields and oil fraction compositions were investigated. Results show that CO atmosphere gave the lowest liquid yield (49.6%) compared to highest 58.7% obtained with CH(4). CO and H(2) atmospheres converted more oxygen into CO(2) and H(2)O, respectively. GC/MS analysis of the liquid products shows that CO and CO(2) atmospheres produced less methoxy-containing compounds and more monofunctional phenols. The higher heating value of the obtained bio-oil under N(2) atmosphere is only 17.8 MJ/kg, while that under CO and H(2) atmospheres increased to 23.7 and 24.4 MJ/kg, respectively.

  10. TG-FTIR pyrolysis of coal and secondary biomass fuels: Determination of pyrolysis kinetic parameters for main species and NOx precursors

    Energy Technology Data Exchange (ETDEWEB)

    W. de Jong; G. Di Nola; B.C.H. Venneker; H. Spliethoff; M.A. Wojtowicz [Delft University of Technology, Delft (Netherlands). Process and Energy Department, Energy Technology Section

    2007-10-15

    Co-firing of secondary biomass fuels with coal in coal-fired pulverized fuel boilers is facing increased application in large-scale power production. Fundamental knowledge on the thermochemical behavior of biomass and waste fuels is still lacking, especially regarding the release of the fuel bound nitrogen. Characterization of chicken litter (CL), biomass mix (BM) and meat and bone meal (MBM) and an HV coal blend was performed using TG-FTIR analysis. Three heating rate profiles were applied (10, 30 and 100{sup o}C/min), with a final temperature of 900 {sup o}C. NH{sub 3} was found to be the major gaseous N-product, while HCN and HNCO were also released in substantial amounts. Kinetic parameters for the pyrolysis of biomass fuels were obtained using a model based on parallel first-order reactions with a Gaussian distribution of activation energies. Input files for the coal FG-DVC (functional group-devolatilization, vaporization, cross-linking) and FG-BioMass pyrolysis models were prepared. The fit of model parameters to TG-FTIR product-evolution data was found to be generally good, but the model-predicted yields for some species did not fit experimental data at all heating rates equally well. This problem can be overcome by improvements in the FG-BioMass model. The results of this study can be used to have an improved input of initial pyrolysis in CFD modeling of co-fired boilers. 45 refs., 5 figs., 8 tabs.

  11. Pyrolysis and gasification of biomass in a two-stage bluid bed gasification unit; Pyrolyse og forgasning af biomasse i en to-trins fluid bed forgasser

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, M.W.; Henriksen, U. [Danmarks Tekniske Universitet (Denmark); Houmoeller, S. [dk-TEKNIK (Denmark)

    1997-07-01

    A new two-stage atmospheric bubbling fluid bed pyrolysis and gasification unit has been developed to convert straw and wood into a gas to be combusted in engines used for combined heat and power production. The unit combines the known two-stage process based on the fixed bed principle developed at the Department of Energy Engineering at the Technical University of Denmark, with the more compact and easy-to-scale fluid bed technique. The advantages of this combined concept is a relatively simple and easy to scale plant able to convert a wide range of fuels and producing a clean gas with extremely low tar content. Even straw can be converted which is of great importance in Denmark. The first stage, the pyrolysis unit, has been tested extensively as a means of pre-treating the biomass before co-combusting straw with fossil fuels in power plant boilers and it can eliminate the traditional corrosion problems on the boilers. The fluid bed pyrolysis unit converts the biomass into two fractions: A gas fraction to be combusted in the power plant boiler and a solids fraction, containing the major part of alkali and chlorine, to be converted otherwise. The gas fraction contains up to 75 percent of the energy of the input biomass. The idea is to avoid feeding the harmful components as potassium, sodium and chlorine present in the biomass into the boiler, as these components can cause corrosion damages to the super heater, but still supply the boiler with most of the biomass energy. This paper presents the concluded work on the co-combustion unit and the first results on the two-stage fluid bed pyrolysis and gasification unit. (EG)

  12. Techno-Economic Analysis of Biomass Fast Pyrolysis to Transportation Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Wright, M. M.; Satrio, J. A.; Brown, R. C.; Daugaard, D. E.; Hsu, D. D.

    2010-11-01

    This study develops techno-economic models for assessment of the conversion of biomass to valuable fuel products via fast pyrolysis and bio-oil upgrading. The upgrading process produces a mixture of naphtha-range (gasoline blend stock) and diesel-range (diesel blend stock) products. This study analyzes the economics of two scenarios: onsite hydrogen production by reforming bio-oil, and hydrogen purchase from an outside source. The study results for an nth plant indicate that petroleum fractions in the naphtha distillation range and in the diesel distillation range are produced from corn stover at a product value of $3.09/gal ($0.82/liter) with onsite hydrogen production or $2.11/gal ($0.56/liter) with hydrogen purchase. These values correspond to a $0.83/gal ($0.21/liter) cost to produce the bio-oil. Based on these nth plant numbers, product value for a pioneer hydrogen-producing plant is about $6.55/gal ($1.73/liter) and for a pioneer hydrogen-purchasing plant is about $3.41/gal ($0.92/liter). Sensitivity analysis identifies fuel yield as a key variable for the hydrogen-production scenario. Biomass cost is important for both scenarios. Changing feedstock cost from $50-$100 per short ton changes the price of fuel in the hydrogen production scenario from $2.57-$3.62/gal ($0.68-$0.96/liter).

  13. Analytical Model for Predicting the Heat Loss Effect on the Pyrolysis of Biomass Particles

    Institute of Scientific and Technical Information of China (English)

    Alireza Rahbari; Fatemeh Ebrahiminasab; Mehdi Bidabadi

    2013-01-01

    This paper presents the combined influence of heat-loss and radiation on the pyrolysis of biomass parti-cles by considering the structure of one-dimensional, laminar and steady state flame propagation in uniformly pre-mixed wood particles. The assumed flame structure consists of a broad preheat-vaporization zone where the rate of gas-phase chemical reaction is small, a thin reaction zone composed of three regions:gas, tar and char combustion where convection and the vaporization rate of the fuel particles are small, and a broad convection zone. The analy-sis is performed in the asymptotic limit, where the value of the characteristic Zeldovich number is large and the equivalence ratio is larger than unity (i.e. u 1ϕ ≥ ). The principal attention is made on the determination of a non-linear burning velocity correlation. Consequently, the impacts of radiation, heat loss and particle size as the de-termining factors on the flame temperature and burning velocity of biomass particles are declared in this research.

  14. Bio-oil production via fast pyrolysis of biomass residues from cassava plants in a fluidised-bed reactor.

    Science.gov (United States)

    Pattiya, Adisak

    2011-01-01

    Biomass residues from cassava plants, namely cassava stalk and cassava rhizome, were pyrolysed in a fluidised-bed reactor for production of bio-oil. The aims of this work were to investigate the yields and properties of pyrolysis products produced from both feedstocks as well as to identify the optimum pyrolysis temperature for obtaining the highest organic bio-oil yields. Results showed that the maximum yields of the liquid bio-oils derived from the stalk and rhizome were 62 wt.% and 65 wt.% on dry basis, respectively. The pyrolysis temperatures that gave highest bio-oil yields for both feedstocks were in the range of 475-510 °C. According to the analysis of the bio-oils properties, the bio-oil derived from cassava rhizome showed better quality than that derived from cassava stalk as the former had lower oxygen content, higher heating value and better storage stability.

  15. One-Dimensional Biomass Fast Pyrolysis Model with Reaction Kinetics Integrated in an Aspen Plus Biorefinery Process Model

    Energy Technology Data Exchange (ETDEWEB)

    Humbird, David; Trendewicz, Anna; Braun, Robert; Dutta, Abhijit

    2017-01-27

    A biomass fast pyrolysis reactor model with detailed reaction kinetics and one-dimensional fluid dynamics was implemented in an equation-oriented modeling environment (Aspen Custom Modeler). Portions of this work were detailed in previous publications; further modifications have been made here to improve stability and reduce execution time of the model to make it compatible for use in large process flowsheets. The detailed reactor model was integrated into a larger process simulation in Aspen Plus and was stable for different feedstocks over a range of reactor temperatures. Sample results are presented that indicate general agreement with experimental results, but with higher gas losses caused by stripping of the bio-oil by the fluidizing gas in the simulated absorber/condenser. This integrated modeling approach can be extended to other well-defined, predictive reactor models for fast pyrolysis, catalytic fast pyrolysis, as well as other processes.

  16. Low-temperature co-pyrolysis of a low-rank coal and biomass to prepare smokeless fuel briquettes

    Energy Technology Data Exchange (ETDEWEB)

    Blesa, M.J.; Miranda, J.L.; Moliner, R.; Izquierdo, M.T. [Instituto de Carboquimica CSIC, P.O. Box 589, 50080 Zaragoza (Spain); Palacios, J.M. [Instituto de Catalisis y Petroleoquimica CSIC, Cantoblanco, 28049 Madrid (Spain)

    2003-12-01

    Smokeless fuel briquettes have been prepared with low-rank coal and biomass. These raw materials have been mixed in different ratios and have been pyrolysed at 600C with the aim to reduce both the volatile matter and the sulphur content, and to increase the high calorific value (HCV). The co-pyrolysis of coal and biomass has shown a synergetic effect. The biomass favours the release of hydrogen sulphide during the thermal treatment. This fact can be explained in terms of the hydrogen-donor character of the biomass. Moreover, the optimisation of the amount of binder and the influence of different types of biomass in the blend have been studied with respect to the mechanical properties of the briquettes (impact resistance, compression strength and abrasion). Briquettes prepared with sawdust (S) present better mechanical properties than those with olive stones (O) because of its fibrous texture.

  17. Biomass fast pyrolysis in fluidized bed : product cleaning by in-situ filtration

    NARCIS (Netherlands)

    Wang, Xiaoquan

    2006-01-01

    This thesis is dedicated to the subject of fast pyrolysis in a fluid bed reactor. A large part of the work is related to reactor design aspects of fast pyrolysis, a subject that has not been considered sufficiently. Past research efforts were focussed mainly on the kinetics of wood pyrolysis and the

  18. Synergistic effect on thermal behavior during co-pyrolysis of lignocellulosic biomass model components blend with bituminous coal.

    Science.gov (United States)

    Wu, Zhiqiang; Wang, Shuzhong; Zhao, Jun; Chen, Lin; Meng, Haiyu

    2014-10-01

    Co-thermochemical conversion of lignocellulosic biomass and coal has been investigated as an effective way to reduce the carbon footprint. Successful evaluating on thermal behavior of the co-pyrolysis is prerequisite for predicting performance and optimizing efficiency of this process. In this paper, pyrolysis and kinetics characteristics of three kinds of lignocellulosic biomass model components (cellulose, hemicellulose, and lignin) blended with a kind of Chinese bituminous coal were explored by thermogravimetric analyzer and Kissinger-Akahira-Sunose method. The results indicated that the addition of model compounds had different synergistic effects on thermal behavior of the bituminous coal. The cellulose showed positive synergistic effects on the thermal decomposition of the coal bituminous coal with lower char yield than calculated value. For hemicellulose and lignin, whether positive or negative synergistic was related to the mixed ratio and temperature range. The distribution of the average activation energy values for the mixtures showed nonadditivity performance.

  19. Carbon dioxide assisted sustainability enhancement of pyrolysis of waste biomass: A case study with spent coffee ground.

    Science.gov (United States)

    Cho, Dong-Wan; Cho, Seong-Heon; Song, Hocheol; Kwon, Eilhann E

    2015-01-01

    This work mainly presents the influence of CO2 as a reaction medium in the thermo-chemical process (pyrolysis) of waste biomass. Our experimental work mechanistically validated two key roles of CO2 in pyrolysis of biomass. For example, CO2 expedited the thermal cracking of volatile organic compounds (VOCs) evolved from the thermal degradation of spent coffee ground (SCG) and reacted with VOCs. This enhanced thermal cracking behavior and reaction triggered by CO2 directly led to the enhanced generation of CO (∼ 3000%) in the presence of CO2. As a result, this identified influence of CO2 also directly led to the substantial decrease (∼ 40-60%) of the condensable hydrocarbons (tar). Finally, the morphologic change of biochar was distinctive in the presence of CO2. Therefore, a series of the adsorption experiments with dye were conducted to preliminary explore the physico-chemical properties of biochar induced by CO2.

  20. Effect of Fast Pyrolysis Conditions on the Biomass Solid Residues at High Temperatures (1000-1400°C)

    DEFF Research Database (Denmark)

    Trubetskaya, Anna; Jensen, Anker D.; Jensen, Peter Arendt

    Fast pyrolysis of wood and straw was conducted in a drop tube furnace (DTF) and compared with the experimental work on the wire-mesh reactor (WMR) to study the influence of temperature (1000-1400°C), biomass origin (softwood, hardwood, grass) and heating rate (1000°C/s, 10^4 °C/s) on the char yield...... to the parental fuel, whereas alfalfa straw char particle size remained unaltered with the higher temperatures. In this study, the retained shape of beechwood and herbaceous biomass samples is related to the presence of extractives and formation of silicates. Soot yield from herbaceous fuels occurs lower than...... and morphology. Scanning electron microscopy (SEM/EDS), elementary analysis, CAMSIZER XT, ash compositional analysis were applied to characterize the effect of operational conditions on the solid and gas products. Char yield from fast pyrolysis in the DFT setup was 2 to 6 % (daf) lower than in the WMR apparatus...

  1. Flash pyrolysis of coal-solvent slurry prepared from the oxidized coal and the coal dissolved in solvent; Ichibu yokaishita sanka kaishitsutan slurry no jinsoku netsubunkai

    Energy Technology Data Exchange (ETDEWEB)

    Maki, T.; Mae, K.; Okutsu, H.; Miura, K. [Kyushu University, Fukuoka (Japan). Faculty of Engineering

    1996-10-28

    In order to develop a high-efficiency coal pyrolysis method, flash pyrolysis was experimented on slurry prepared by using liquid-phase oxidation reformed coal and a methanol-based solvent mixture. Australian Morwell coal was used for the experiment. The oxidized coal, into which carboxyl groups have been introduced, has the condensation structure relaxed largely, and becomes highly fluid slurry by means of the solvent. Char production can be suppressed by making the oxidation-pretreated coal into slurry, resulting in drastically improved pyrolytic conversion. The slurry was divided into dissolved solution, dried substance, extracted residue, and residual slurry, which were pyrolized independently. The dissolved solution showed very high conversion. Improvement in the conversion is contributed by separating the dissolved substances (coal macromolecules) at molecular levels, coagulating the molecules, suppressing cross-link formation, and reducing molecular weight of the dissolved substances. Oxidized coal can be dissolved to 80% or higher by using several kinds of mixed solvents. As a result of the dissolution, a possibility was suggested on pyrolysis which is easy in handling and high in conversion. 7 refs., 6 figs., 2 tabs.

  2. Pyrolysis-GC-MS analysis of the formation and degradation stages of charred residues from lignocellulosic biomass

    OpenAIRE

    González-Vila, Francisco Javier; Tinoco, Pilar; Almendros Martín, Gonzalo; Martín Martínez, Francisco

    2001-01-01

    The structural transformations undergone by lignocellulosic biomass (freeze-dried rye grass, Lolium rigidum) subjected to progressive isothermal heating (burning at 350°C under oxidizing conditions for 30, 45, 60, 75, and 90 s) have been monitored by Curie-point pyrolysis-gas chromatographymass spectrometry (Py-GC-MS). The pyrograms suggest that even charred residues after severe heating (carbon loss ca. 50%) still contain substantial concentrations of some resistant plant structural componen...

  3. Comparative investigations into pyrolysis of biomass and brown coal. Material balance and heat requirement in correlation with fuel properties; Vergleichende Untersuchungen zur Pyrolyse von Biomasse und Braunkohle. Stoffbilanzen und Waermebedarf in Korrelation mit Rohstoffeigenschaften

    Energy Technology Data Exchange (ETDEWEB)

    Reichel, D.; Klinger, M.; Krzack, S.; Meyer, B. [Technische Univ. Bergakademie Freiberg (Germany)

    2011-02-15

    Prediction of product distribution and composition for biomass and coal pyrolysis using thermodynamic simulation software is actually not possible or works not deficiently. Consistent data for pyrolysis product distribution and composition are a basic requirement for the implementation of pyrolysis in models representing thermochemical conversion of biogenous and fossil fuels as well as for the creation of detailed material and energy balances and the evaluation of such processes. Investigations into the pyrolysis behaviour of different biomass materials (wood, straw, silage) and German brown coals (Lusatia, Rhineland) in dependence on process temperature have been done in a lab scale device. Based on the obtained results, material and heat balances have been created taking all pyrolysis products into consideration. To obtain additional information about pyrolysis heat requirement investigations using a TG-DSC thermogravimetric analyser have been carried out. Differences between biomass and brown coal are found especially within the distribution of nitrogen, oxygen and carbon to the pyrolysis products. For the herbaceous biomass a heat release was detected regarding to the energy balance, while spruce wood possesses a relatively constant endothermic heat of reaction in the overall temperature range. This arises from the release of volatile components produced during cellulose decomposition. In the case of brown coal pyrolysis the products show a lower chemically bonded energy than the raw material. The obtained tendencies could be partly confirmed with the DSC investigations. (orig.)

  4. Modeling of biomass to hydrogen via the supercritical water pyrolysis process

    Energy Technology Data Exchange (ETDEWEB)

    Divilio, R.J. [Combustion Systems Inc., Silver Spring, MD (United States)

    1998-08-01

    A heat transfer model has been developed to predict the temperature profile inside the University of Hawaii`s Supercritical Water Reactor. A series of heat transfer tests were conducted on the University of Hawaii`s apparatus to calibrate the model. Results of the model simulations are shown for several of the heat transfer tests. Tests with corn starch and wood pastes indicated that there are substantial differences between the thermal properties of the paste compared to pure water, particularly near the pseudo critical temperature. The assumption of constant thermal diffusivity in the temperature range of 250 to 450 C gave a reasonable prediction of the reactor temperatures when paste is being fed. A literature review is presented for pyrolysis of biomass in water at elevated temperatures up to the supercritical range. Based on this review, a global reaction mechanism is proposed. Equilibrium calculations were performed on the test results from the University of Hawaii`s Supercritical Water Reactor when corn starch and corn starch and wood pastes were being fed. The calculations indicate that the data from the reactor falls both below and above the equilibrium hydrogen concentrations depending on test conditions. The data also indicates that faster heating rates may be beneficial to the hydrogen yield. Equilibrium calculations were also performed to examine the impact of wood concentration on the gas mixtures produced. This calculation showed that increasing wood concentrations favors the formation of methane at the expense of hydrogen.

  5. Liquid–Liquid Equilibrium Measurements for Model Systems Related to Catalytic Fast Pyrolysis of Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Jasperson, Louis V.; McDougal, Rubin J.; Diky, Vladimir; Paulechka, Eugene; Chirico, Robert D.; Kroenlein, Kenneth; Iisa, Kristiina; Dutta, Abhijit

    2017-01-12

    We report liquid-liquid mutual solubilities for binary aqueous mixtures involving 2-, 3-, and 4-ethylphenol, 2-, 3-, and 4-methoxyphenol, benzofuran, and 1H-indene for the temperature range (300 < T/K < 360). Measurements in the water-rich phase for (2-ethylphenol + water) were extended to T = 440 K to facilitate comparison with literature values. Liquid-liquid equilibrium tie-line determinations were made for four ternary systems involving (water + toluene) mixed with a third component; phenol, 3-ethylphenol, 4-methoxyphenol, or 2,4-dimethylphenol. Literature values at higher temperatures are available for the three (ethylphenol + water) systems, and, in general, good agreement is seen. The ternary system (water + toluene + phenol) has been studied previously with inconsistent results reported in the literature, and one report is shown to be anomalous. All systems are modeled with the predictive methods NIST-Modified-UNIFAC and NIST-COSMO-SAC, with generally good success in the temperature range of interest (300 < T/K < 360). This work is part of a larger project on the testing and development of predictive phase equilibrium models for compound types occurring in catalytic fast pyrolysis of biomass, and background information for the larger project is provided.

  6. Fast Pyrolysis of Biomass in a Spout-fluidized Bed Reactor--Analysis of Composition and Combustion Characteristics of Liquid Product from Biomass

    Institute of Scientific and Technical Information of China (English)

    陈明强; 王君; 王新运; 张学才; 张素平; 任铮伟; 颜涌捷

    2006-01-01

    In order to gain insight into the fast pyrolysis mechanism of biomass and the relationship between bio-oil composition and pyrolysis reaction conditions, to assess the possibility for the raw bio-oil to be used as fuel, and to evaluate the concept of spout-fluidized bed reactor as the reactor for fast pyrolysis of biomass to prepare fuel oil, the composition and combustion characteristics of bio-oil prepared in a spout-fluidized bed reactor with a designed maximum capacity 5 kg/h of sawdust as feeding material, were investigated by GC-MS and thermogravimetry. 14 aromatic series chemicals were identified. The thermogravimetric analysis indicated that the bio-oil was liable to combustion, the combustion temperature increased with the heating rate, and only minute ash was generated when it burned. The kinetics of the combustion reaction was studied and the kinetic parameters were calculated by both Ozawa-Flynn-Wall and Popsecu methods. The results agree well with each other. The most probable combustion mechanism functions determined by Popescu method are f(α)=k(1-α)2(400~406 ℃), f(α)=1/2k(1-α)3 (406~416 ℃) and f( α)=2k(1-α)3/2 (416~430 ℃) respectively.

  7. Kinetic and energy production analysis of pyrolysis of lignocellulosic biomass using a three-parallel Gaussian reaction model.

    Science.gov (United States)

    Chen, Tianju; Zhang, Jinzhi; Wu, Jinhu

    2016-07-01

    The kinetic and energy productions of pyrolysis of a lignocellulosic biomass were investigated using a three-parallel Gaussian distribution method in this work. The pyrolysis experiment of the pine sawdust was performed using a thermogravimetric-mass spectroscopy (TG-MS) analyzer. A three-parallel Gaussian distributed activation energy model (DAEM)-reaction model was used to describe thermal decomposition behaviors of the three components, hemicellulose, cellulose and lignin. The first, second and third pseudocomponents represent the fractions of hemicellulose, cellulose and lignin, respectively. It was found that the model is capable of predicting the pyrolysis behavior of the pine sawdust. The activation energy distribution peaks for the three pseudo-components were centered at 186.8, 197.5 and 203.9kJmol(-1) for the pine sawdust, respectively. The evolution profiles of H2, CH4, CO, and CO2 were well predicted using the three-parallel Gaussian distribution model. In addition, the chemical composition of bio-oil was also obtained by pyrolysis-gas chromatography/mass spectrometry instrument (Py-GC/MS).

  8. Catalytic fast co-pyrolysis of biomass and food waste to produce aromatics: Analytical Py-GC/MS study.

    Science.gov (United States)

    Zhang, Bo; Zhong, Zhaoping; Min, Min; Ding, Kuan; Xie, Qinglong; Ruan, Roger

    2015-01-01

    In this study, catalytic fast co-pyrolysis (co-CFP) of corn stalk and food waste (FW) was carried out to produce aromatics using quantitative pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS), and ZSM-5 zeolite in the hydrogen form was employed as the catalyst. Co-CFP temperature and a parameter called hydrogen to carbon effective ratio (H/C(eff) ratio) were examined for their effects on the relative content of aromatics. Experimental results showed that co-CFP temperature of 600 °C was optimal for the formation of aromatics and other organic pyrolysis products. Besides, H/C(eff) ratio had an important influence on product distribution. The yield of total organic pyrolysis products and relative content of aromatics increased non-linearly with increasing H/C(eff) ratio. There was an apparent synergistic effect between corn stalk and FW during co-CFP process, which promoted the production of aromatics significantly. Co-CFP of biomass and FW was an effective method to produce aromatics and other petrochemicals.

  9. Product Chemistry and Process Efficiency of Biomass Torrefaction, Pyrolysis and Gasification Studied by High-Throughput Techniques and Multivariate Analysis

    Science.gov (United States)

    Xiao, Li

    Despite the great passion and endless efforts on development of renewable energy from biomass, the commercialization and scale up of biofuel production is still under pressure and facing challenges. New ideas and facilities are being tested around the world targeting at reducing cost and improving product value. Cutting edge technologies involving analytical chemistry, statistics analysis, industrial engineering, computer simulation, and mathematics modeling, etc. keep integrating modern elements into this classic research. One of those challenges of commercializing biofuel production is the complexity from chemical composition of biomass feedstock and the products. Because of this, feedstock selection and process optimization cannot be conducted efficiently. This dissertation attempts to further evaluate biomass thermal decomposition process using both traditional methods and advanced technique (Pyrolysis Molecular Beam Mass Spectrometry). Focus has been made on data base generation of thermal decomposition products from biomass at different temperatures, finding out the relationship between traditional methods and advanced techniques, evaluating process efficiency and optimizing reaction conditions, comparison of typically utilized biomass feedstock and new search on innovative species for economical viable feedstock preparation concepts, etc. Lab scale quartz tube reactors and 80il stainless steel sample cups coupled with auto-sampling system were utilized to simulate the complicated reactions happened in real fluidized or entrained flow reactors. Two main high throughput analytical techniques used are Near Infrared Spectroscopy (NIR) and Pyrolysis Molecular Beam Mass Spectrometry (Py-MBMS). Mass balance, carbon balance, and product distribution are presented in detail. Variations of thermal decomposition temperature range from 200°C to 950°C. Feedstocks used in the study involve typical hardwood and softwood (red oak, white oak, yellow poplar, loblolly pine

  10. Fast Pyrolysis of Biomass in a Fluidized Bed Reactor: In Situ Filtering of the Vapors

    NARCIS (Netherlands)

    Hoekstra, Elly; Hogendoorn, Kees J.A.; Wang, Xiaoquan; Westerhof, Roel J.M.; Kersten, Sascha R.A.; Swaaij, van Wim P.M.; Groeneveld, Michiel J.

    2009-01-01

    A system to remove in situ char/ash from hot pyrolysis vapors has been developed and tested at the University of Twente. The system consists of a continuous fluidized bed reactor (0.7 kg/h) with immersed filters (wire mesh, pore size 5 μm) for extracting pyrolysis vapors. Integration of the filter s

  11. Bio-flex obtained from pyrolysis of biomass as fuel; Bio-flex obtido da pirolise de biomassa como combustivel

    Energy Technology Data Exchange (ETDEWEB)

    Mesa Perez, Juan Miguel; Viltre Rodriguez, Roberto Alfonso; Marin Mesa, Henry Ramon [Bioware Tecnologia, Campinas, SP (Brazil); Rocha, Jose Dilcio [Universidade Estadual de Campinas (NIPE/UNICAMP), SP (Brazil). Nucleo Interdisciplinar de Planejamento Energetico; Samaniego, Manuel Raul Pelaez [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Planejamento de Sistemas Energeticos; Cortez, Luis Augusto Barbosa [Universidade Estadual de Campinas (FEAGRI/UNICAMP), SP (Brazil). Fac. de Engenharia Agricola

    2006-07-01

    This paper describes the BIOWARE experience in the bio fuel production from biomass residues. Fast pyrolysis of a mixture of sugar cane trash and elephant grass carried out in a fluidized bed reactor with capacity of 200 kg/h dry feed (12% w/w). The co-products particulate charcoal, acid extract, and bio-oil were obtained. The fast pyrolysis pilot plant PPR-200 belonged to UNICAMP and is operated by BIOWARE personnel. This paper presents the chemical rote to bio-flex production (a kind of bio diesel from acid esterification) from pyrolytic carboxylic acids. Both ethanol and methanol were used as reactant but higher yields were found with methanol. (author)

  12. Beneficial synergetic effect on gas production during co-pyrolysis of sewage sludge and biomass in a vacuum reactor.

    Science.gov (United States)

    Zhang, Weijiang; Yuan, Chengyong; Xu, Jiao; Yang, Xiao

    2015-05-01

    A vacuum fixed bed reactor was used to pyrolyze sewage sludge, biomass (rice husk) and their blend under high temperature (900°C). Pyrolytic products were kept in the vacuum reactor during the whole pyrolysis process, guaranteeing a long contact time (more than 2h) for their interactions. Remarkable synergetic effect on gas production was observed. Gas yield of blend fuel was evidently higher than that of both parent fuels. The syngas (CO and H2) content and gas lower heating value (LHV) were obviously improved as well. It was highly possible that sewage sludge provided more CO2 and H2O during co-pyrolysis, promoting intense CO2-char and H2O-char gasification, which benefited the increase of gas yield and lower heating value. The beneficial synergetic effect, as a result, made this method a feasible one for gas production.

  13. Monitoring `Renewable fuels`. Gasification and pyrolysis of biomass. Second situation report; Monitoring ``Nachwachsende Rohstoffe``. Vergasung und Pyrolyse von Biomasse. Zweiter Sachstandsbericht

    Energy Technology Data Exchange (ETDEWEB)

    Roesch, C.; Wintzer, D.

    1997-04-01

    The second situation report deals with gasification and pyrolysis as means of improving the energetic utilisation of wood and strawlike biomass and with various possibilities of utilising the gas produced in these processes. It also presents different gasification techniques, measures for gas purification, and ways of utilising gas for electricity generation. Out of the wide range of possible process combinations for producing energy from biomass the report only deals more closely with a few concepts that appear very promising from today`s viewpoint. Working from the current state and perspectives of technical development and from prospective operating conditions and potential market chances of pyrolysis and gasification the report deliberates on the future orientation of research, development, and demonstration activities. (orig./SR) [Deutsch] Im zweiten Sachstandsbericht werden die Vergasung und Pyrolyse zur besseren energetischen Nutzung von Holz und halmartiger Biomasse und verschiedene Moeglichkeiten zur Verwertung des dabei erzeugten Gases betrachtet. Es werden unterschiedliche Vergasungstechniken, Massnahmen zur Gasreinigung und Arten der Gasnutzung zur Stromgewinnung dargestellt. Aus der Vielzahl an moeglichen Kombinationen werden einige, aus gegenwaertiger Sichtweise besonders vielversprechende Konzepte zur Energieerzeugung ueber die Biomassevergasung naeher ausgefuehrt. Ausgehend vom Stand und von den Perspektiven der technischen Entwicklungen sowie den Einsatzbedingungen und potentiellen Marktchancen werden Schlussfolgerungen fuer die zukuenftige Ausrichtung im Bereich Forschung, Entwicklung und Demonstration Anstrengungen gezogen. (orig./SR)

  14. Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels: Fast Pyrolysis and Hydrotreating Bio-Oil Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Susanne B.; Meyer, Pimphan A.; Snowden-Swan, Lesley J.; Padmaperuma, Asanga B.; Tan, Eric; Dutta, Abhijit; Jacobson, Jacob; Cafferty, Kara

    2013-11-01

    This report describes a proposed thermochemical process for converting biomass into liquid transportation fuels via fast pyrolysis followed by hydroprocessing of the condensed pyrolysis oil. As such, the analysis does not reflect the current state of commercially-available technology but includes advancements that are likely, and targeted to be achieved by 2017. The purpose of this study is to quantify the economic impact of individual conversion targets to allow a focused effort towards achieving cost reductions.

  15. Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels: Fast Pyrolysis and Hydrotreating Bio-oil Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Jones, S.; Meyer, P.; Snowden-Swan, L.; Padmaperuma, A.; Tan, E.; Dutta, A.; Jacobson, J.; Cafferty, K.

    2013-11-01

    This report describes a proposed thermochemical process for converting biomass into liquid transportation fuels via fast pyrolysis followed by hydroprocessing of the condensed pyrolysis oil. As such, the analysis does not reflect the current state of commercially-available technology but includes advancements that are likely, and targeted to be achieved by 2017. The purpose of this study is to quantify the economic impact of individual conversion targets to allow a focused effort towards achieving cost reductions.

  16. Stepwise Isothermal Fast Pyrolysis (SIFP of Biomass. Part III. SIFP of Olive Oil Industry Wastes

    Directory of Open Access Journals (Sweden)

    Nadia S. Luna

    2013-11-01

    Full Text Available Pyrolysis of olive oil industry wastes was carried out using stepwise isothermal fast pyrolysis (SIFP. SIFP consists of a succession of isothermal fast pyrolysis reactions in which the solid products obtained from the previous isothermal fast pyrolysis reaction become the substrates for subsequent reactions at higher temperatures. This article reports the results obtained from the SIFP of olive oil residue carried out between the temperatures of 300 and 500 °C using 100 °C intervals under reduced pressure (200 mm Hg. The maximum yield of liquid products occurred at 300 °C and consisted of around 35% bio-oil, which contained mainly phenols, furans, and fatty acid methyl esters (FAME. At 400 and 500 °C, FAME, which is derived from residual olive oil, was the major product.

  17. The effect of a sweeping gas flow rate on the fast pyrolysis of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Gercel, H.F.

    2002-07-01

    Sunflower (Helianthus annus L.)-pressed bagasse pyrolysis experiments were performed in a fixed-bed tubular reactor. The effects of nitrogen flow rate and final pyrolysis temperature on the pyrolysis product yields and chemical compositions have been investigated. The maximum bio-oil yield of 46.62 wt% was obtained in a nitrogen atmosphere with a nitrogen flow rate of 25 cm{sup 3}min{sup -1} and at a pyrolysis temperature of 550{sup o}C with a heating rate of 300{sup o}C min{sup -1}. The chemical characterization showed that the oil obtained from sunflower-pressed bagasse may be potentially valuable as fuel and chemical feedstocks. (author)

  18. Design, fabrication, operation and Aspen simulation of oil shale pyrolysis and biomass gasification process using a moving bed downdraft reactor

    Science.gov (United States)

    Golpour, Hassan

    Energy is the major facilitator of the modern life. Every developed and developing economy requires access to advanced sources of energy to support its growth and prosperity. Declining worldwide crude oil reserves and increasing energy needs has focused attention on developing existing unconventional fossil fuels like oil shale and renewable resources such as biomass. Sustainable, renewable and reliable resources of domestically produced biomass comparing to wind and solar energy is a sensible motivation to establish a small-scale power plant using biomass as feed to supply electricity demand and heat for rural development. The work in Paper I focuses on the possibility of water pollution from spent oil shale which should be studied before any significant commercial production is attempted. In Paper II, the proposed Aspen models for oil shale pyrolysis is to identify the key process parameters for the reactor and optimize the rate of production of syncrude from oil shale. The work in Paper III focuses on (1) Design and operation of a vertical downdraft reactor, (2) Establishing an optimum operating methodology and parameters to maximize syngas production through process testing. Finally in Paper IV, a proposed Aspen model for biomass gasification simulates a real biomass gasification system discussed in Paper III.

  19. Pyrolysis of biomass and refuse-derived fuel performance in laboratory scale batch reactor

    Directory of Open Access Journals (Sweden)

    Kluska Jacek

    2014-03-01

    Full Text Available The results of pyrolysis of pine chips and refuse derived fuel fractions are presented. The experiments were carried out in a pilot pyrolysis reactor. The feedstock was analyzed by an elemental analyzer and the X-ray fluorescence spectrometer to determine the elemental composition. To find out optimum conditions for pyrolysis and mass loss as a function of temperature the thermogravimetric analysis was applied. Gases from the thermogravimetric analysis were directed to the infrared spectrometer using gas-flow cuvette to online analysis of gas composition. Chemical composition of the produced gas was measured using gas chromatography with a thermal conductivity detector and a flame ionization detector. The product analysis also took into account the mass balance of individual products.

  20. Effect of Temperature in Fluidized Bed Fast Pyrolysis of Biomass: Oil Quality Assessment in Test Units

    NARCIS (Netherlands)

    Westerhof, R.J.M.; Brilman, D.W.F.; Swaaij, van W.P.M.; Kersten, S.R.A.

    2010-01-01

    Pine wood was pyrolyzed in a 1 kg/h fluidized bed fast pyrolysis reactor that allows a residence time of pine wood particles up to 25 min. The reactor temperature was varied between 330 and 580 °C to study the effect on product yields and oil composition. Apart from the physical−chemical analysis, a

  1. Evaluation of Brazilian biomasses as potential feedstocks for fuel production via fast pyrolysis

    Science.gov (United States)

    The utilization of lignocellulosic materials to generate energy is constantly expanding around the world. In addition to the well-known biofuels such as ethanol and biodiesel, advanced biofuels obtained by thermochemical conversion routes have been explored, including pyrolysis oil, biochar and syng...

  2. Production of aromatic hydrocarbons via catalytic pyrolysis of biomass over fe-modified HZSM-5 zeolites

    Science.gov (United States)

    Iron modified HZSM-5 catalysts were prepared by partial ion exchange of NH4ZSM-5 with Fe (II) at three different loadings (1.4, 2.8 and 4.2 wt%), and their effectiveness for producing aromatic hydrocarbons from cellulose, cellobiose, lignin and switchgrass by catalytic pyrolysis were screened using ...

  3. Chemical and ecotoxicological properties of three bio-oils from pyrolysis of biomasses.

    Science.gov (United States)

    Campisi, Tiziana; Samorì, Chiara; Torri, Cristian; Barbera, Giuseppe; Foschini, Anna; Kiwan, Alisar; Galletti, Paola; Tagliavini, Emilio; Pasteris, Andrea

    2016-10-01

    In view of the potential use of pyrolysis-based technologies, it is crucial to understand the environmental hazards of pyrolysis-derived products, in particular bio-oils. Here, three bio-oils were produced from fast pyrolysis of pine wood and intermediate pyrolysis of corn stalk and poultry litter. They were fully characterized by chemical analysis and tested for their biodegradability and their ecotoxicity on the crustacean Daphnia magna and the green alga Raphidocelis subcapitata. These tests were chosen as required by the European REACH regulation. These three bio-oils were biodegradable, with 40-60% of biodegradation after 28 days, and had EC50 values above 100mgL(-1) for the crustacean and above 10mgL(-1) for the alga, showing low toxicity to the aquatic life. The toxic unit approach was applied to verify whether the observed toxicity could be predicted from the data available for the substances detected in the bio-oils. The predicted values largely underestimated the experimental values.

  4. Effect of biomass ash in catalytic fast pyrolysis of pine wood

    NARCIS (Netherlands)

    Yildiz, G.; Ronsse, F.; Venderbosch, R.H.; Duren, van R.; Kersten, S.R.A.; Prins, W.

    2015-01-01

    Fast pyrolysis experiments of pine wood have been performed in a continuously operated mechanically stirred bed reactor at 500 °C. The effects of the pine wood ash were studied by comparing non-catalytic and catalytic experiments (using a ZSM-5 based catalyst) with their ash-added counterparts. To s

  5. Release of K, Cl, and S during Pyrolysis and Combustion of High-Chlorine Biomass

    DEFF Research Database (Denmark)

    Johansen, Joakim Myung; Jakobsen, Jon Geest; Frandsen, Flemming

    2011-01-01

    ranging from 500 to 1150 °C, under both pyrolysis and combustion atmospheres. The volatilized material was quantified by means of mass balances based on char and ash elemental analysis, compared to a corresponding feedstock fuel analysis. Close relations between the observed K and Cl release are found...

  6. Volatilisation of alkali and alkaline earth metallic species during the pyrolysis of biomass: differences between sugar cane bagasse and cane trash.

    Science.gov (United States)

    Keown, Daniel M; Favas, George; Hayashi, Jun-ichiro; Li, Chun-Zhu

    2005-09-01

    Sugar cane bagasse and cane trash were pyrolysed in a novel quartz fluidised-bed/fixed-bed reactor. Quantification of the Na, K, Mg and Ca in chars revealed that pyrolysis temperature, heating rate, valence and biomass type were important factors influencing the volatilisation of these alkali and alkaline earth metallic (AAEM) species. Pyrolysis at a slow heating rate (approximately 10 K min(-1)) led to minimal (often biomass samples. Fast heating rates (>1000 K s(-1)), encouraging volatile-char interactions with the current reactor configuration, resulted in the volatilisation of around 80% of Na, K, Mg and Ca from bagasse during pyrolysis at 900 degrees C. Similar behaviour was observed for monovalent Na and K with cane trash, but the volatilisation of Mg and Ca from cane trash was always restricted. The difference in Cl content between bagasse and cane trash was not sufficient to fully explain the difference in the volatilisation of Mg and Ca.

  7. Acetylene from the co-pyrolysis of biomass and waste tires or coal in the H{sub 2}/Ar plasma

    Energy Technology Data Exchange (ETDEWEB)

    Bao, W.; Cao, Q.; Lv, Y.; Chang, L. [Taiyuan University of Technology, Taiyuan (China)

    2008-07-01

    Acetylene from carbon-containing materials via plasma pyrolysis is not only simple but also environmentally friendly. In this article, the acetylene produced from co-pyrolyzing biomass with waste tire or coal under the conditions of H{sub 2}/Ar DC arc plasma jet was investigated. The experimental results showed that the co-pyrolysis of mixture with biomass and waste tire or coal can improve largely the acetylene relative volume fraction (RVF) in gaseous products and the corresponding yield of acetylene. The change trends for the acetylene yield of plasma pyrolysis from mixture with raw sample properties were the same as relevant RVF. But the yield change trend with feeding rate is different from its RVF. The effects of the feeding rate of raw materials and the electric current of plasmatron on acetylene formation are also discussed.

  8. Pilot-Scale Biorefinery: Sustainable Transport Fuels from Biomass and Algal Residues via Integrated Pyrolysis, Catalytic Hydroconversion and Co-processing with Vacuum Gas Oil

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Olarte, M. V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hart, T. R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-07-21

    Beginning in 2010, UOP, along with the Department of Energy and other project partners, designed a pathway for an integrated biorefinery to process solid biomass into transportation fuel blendstocks. The integrated biorefinery (IBR) would convert second generation feedstocks into pyrolysis oil which would then be upgraded into fuel blendstocks without the limitations of traditional biofuels.

  9. Reactivities of acid and/or tetralin pretreated Wandoan coal for a Curie point flash pyrolysis; Sanzen shori, tetralin yobaimae shori Wandoan tan no kyusoku netsubunkai

    Energy Technology Data Exchange (ETDEWEB)

    Kishino, M.; Sakanishi, K.; Korai, Y.; Mochida, I. [Kyushu University, Fukuoka (Japan). Institute of Advanced Material Study

    1996-10-28

    Discussions were given on effects of acid pretreatment and tetralin swelling in Wandoan coal on a Curie point flash pyrolysis (which used a Curie point pyrolyzer). Residue yield loss effects were obtained at 3.9% in hydrochloric acid pretreatment, and 6.2% in acetic acid pretreatment. The effects of tetralin swelling pretreatment were compared in the similar manner in terms of the residue yield loss. The effects were 4.0% in untreated coal, 2.0% in the hydrochloric acid pretreatment, and 0.6% in the acetic acid pretreatment. It is thought that components that can be activated by acetic acid have already been activated, but the remaining components would not be activated by tetralin. Average microporosity (area) in the remaining particle as a whole shows very little difference both in acetic acid pretreated coal and untreated coal. However, with the acetic acid pretreatment, pores smaller than 4{mu}m{sup 2} disappeared, and pores as large as 205 to 411{mu}m{sup 2} increased largely. This phenomenon was observed as an increase in foaming degree under microscopic observation, even if the average microporosity remains equal. Thermoplasticity of the coal increased, and so did volatilization reactivity as a result of the acetic acid pretreatment, resulting in appearance of a large number of large pores. 6 refs., 2 figs., 2 tabs.

  10. Mechanism of waste biomass pyrolysis: Effect of physical and chemical pre-treatments

    Energy Technology Data Exchange (ETDEWEB)

    Das, Oisik [Department of Biological Systems Engineering, Washington State University, Pullman 99164-6120, WA (United States); Department of Civil and Environmental Engineering, University of Auckland, Auckland 1142 (New Zealand); Sarmah, Ajit K., E-mail: a.sarmah@auckland.ac.nz [Department of Civil and Environmental Engineering, University of Auckland, Auckland 1142 (New Zealand)

    2015-12-15

    To impart usability in waste based biomass through thermo-chemical reactions, several physical and chemical pre-treatments were conducted to gain an insight on their mode of action, effect on the chemistry and the change in thermal degradation profiles. Two different waste biomasses (Douglas fir, a softwood and hybrid poplar, a hardwood) were subjected to four different pre-treatments, namely, hot water pre-treatment, torrefaction, acid (sulphuric acid) and salt (ammonium phosphate) doping. Post pre-treatments, the changes in the biomass structure, chemistry, and thermal makeup were studied through electron microscopy, atomic absorption/ultra violet spectroscopy, ion exchange chromatography, and thermogravimetry. The pre-treatments significantly reduced the amounts of inorganic ash, extractives, metals, and hemicellulose from both the biomass samples. Furthermore, hot water and torrefaction pre-treatment caused mechanical disruption in biomass fibres leading to smaller particle sizes. Torrefaction of Douglas fir wood yielded more solid product than hybrid poplar. Finally, the salt pre-treatment increased the activation energies of the biomass samples (especially Douglas fir) to a great extent. Thus, salt pre-treatment was found to bestow thermal stability in the biomass. - Highlights: • Pre-treatments reduce ash, extractives, alkalines and hemicellulose from biomass. • Torrefaction of Douglas fir yields more solid product than hybrid poplar. • Salt pretreatment significantly increases the activation energy of biomass. • Acid and salt pretreatment bestows thermal stability in biomass.

  11. Pyrolysis-GC-MS analysis of the formation and degradation stages of charred residues from lignocellulosic biomass.

    Science.gov (United States)

    González-Vila, F J; Tinoco, P; Almendros, G; Martin, F

    2001-03-01

    The structural transformations undergone by lignocellulosic biomass (freeze-dried rye grass, Lolium rigidum) subjected to progressive isothermal heating (burning at 350 degrees C under oxidizing conditions for 30, 45, 60, 75, and 90 s) have been monitored by Curie-point pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS). The pyrograms suggest that even charred residues after severe heating (carbon loss ca. 50%) still contain substantial concentrations of some resistant plant structural components. Several trends were observed when monitoring the relative concentrations of the different groups of pyrolysis compounds released during successive charring stages: (i) the tetrapyrrole moiety of chlorophylls is rapidly destroyed as indicated by the decreasing yields of pyrroles and pyrrolines, whereas the phytol backbone is comparatively more resistant, leading to phytadienes after dehydration and reduction; (ii) the increasing yields of imidazoles from progressively heated samples (maximum at 45 s stage) suggest accumulation of newly formed nitrogen-containing compounds that may survive natural fires; (iii) the lignin backbone shows a relative resistance, the yields of aromatic products pointing to progressive demethoxylation; and, (iv) a selective accumulation of recalcitrant alkyl material occurred, which is interpreted as the result of thermal condensation of hydrocarbons and fatty acids into macromolecular materials in the charred residue. In terms of the intensity of the isothermal heating, the yields of the different classes of alkyl compounds follow the order phytadienes < fatty acids < alkanes < wax esters < sterols.

  12. Intermediate pyrolysis of biomass energy pellets for producing sustainable liquid, gaseous and solid fuels.

    Science.gov (United States)

    Yang, Y; Brammer, J G; Mahmood, A S N; Hornung, A

    2014-10-01

    This work describes the use of intermediate pyrolysis system to produce liquid, gaseous and solid fuels from pelletised wood and barley straw feedstock. Experiments were conducted in a pilot-scale system and all products were collected and analysed. The liquid products were separated into an aqueous phase and an organic phase (pyrolysis oil) under gravity. The oil yields were 34.1 wt.% and 12.0 wt.% for wood and barley straw, respectively. Analysis found that both oils were rich in heterocyclic and phenolic compounds and have heating values over 24 MJ/kg. The yields of char for both feedstocks were found to be about 30 wt.%, with heating values similar to that of typical sub-bituminous class coal. Gas yields were calculated to be approximately 20 wt.%. Studies showed that both gases had heating values similar to that of downdraft gasification producer gas. Analysis on product energy yields indicated the process efficiency was about 75%.

  13. Universal model of slow pyrolysis technology producing biochar and heat from standard biomass needed for the techno-economic assessment.

    Science.gov (United States)

    Klinar, Dušan

    2016-04-01

    Biochar as a soil amendment and carbon sink becomes in last period one of the vast, interesting product of slow pyrolysis. Simplest and most used industrial process arrangement is a production of biochar and heat at the same time. Proposed mass and heat balance model consist of heat consumers (heat demand side) and heat generation-supply side. Direct burning of all generated uncondensed volatiles from biomass provides heat. Calculation of the mass and heat balance of both sides reveals the internal distribution of masses and energy inside process streams and units. Thermodynamic calculations verified not only the concept but also numerical range of the results. The comparisons with recent published scientific and vendors data prove its general applicability and reliability. The model opens the possibility for process efficiency innovations. Finally, the model was adapted to give more investors favorable results and support techno-economic assessments entirely.

  14. Tailoring ZSM-5 Zeolites for the Fast Pyrolysis of Biomass to Aromatic Hydrocarbons

    DEFF Research Database (Denmark)

    Hoff, Thomas C.; Gardner, David W.; Thilakaratne, Rajeeva

    2016-01-01

    The production of aromatic hydrocarbons from cellulose by zeolite-catalyzed fast pyrolysis involves a complex reaction network sensitive to the zeolite structure, crystallinity, elemental composition, porosity, and acidity. The interplay of these parameters under the reaction conditions represents...... a major roadblock that has hampered significant improvement in catalyst design for over a decade. Here, we studied commercial and laboratory-synthesized ZSM-5 zeolites and combined data from 10 complementary characterization techniques in an attempt to identify parameters common to high...

  15. Effect of Fast Pyrolysis Conditions on Structural Transformation and Reactivity of Herbaceous Biomasses at High Temperatures

    DEFF Research Database (Denmark)

    Trubetskaya, Anna; Jensen, Anker D.; Jensen, Peter Arendt

    Fast pyrolysis of wheat straw and rice husks was carried out in an entrained-flow reactor (EFR) and compared with the results from the wire-mesh reactor (WMR) in terms of the char yield at high-temperatures (1000-1500°C) to study the effect of heating rate, final temperature, ash content and part......Fast pyrolysis of wheat straw and rice husks was carried out in an entrained-flow reactor (EFR) and compared with the results from the wire-mesh reactor (WMR) in terms of the char yield at high-temperatures (1000-1500°C) to study the effect of heating rate, final temperature, ash content...... and particle size on the char yield. X-ray diffractometry (XRD), N-adsorption (BET), scanning electron microscopy (SEM), particle size analysis (CAMSIZER XT), nuclear magnetic resonance spectroscopy (29Si NMR; 13C NMR) and electron spinning resonance spectroscopy (ESR) were conducted to investigate the effect...... of organic and inorganic matter on the char structural transformations. The results indicate no influence of the free radicals on char reactivity and burnout. The formation of free radicals in fast pyrolysis is related to the differences in the ash composition, namely presence of K+ ions in the wheat straw...

  16. Upgrading of bio-oil from the pyrolysis of biomass over the rice husk ash catalysts

    Science.gov (United States)

    Sutrisno, B.; Hidayat, A.

    2016-11-01

    The pyrolysis oils are complex mixtures of organic compounds that exhibit a wide spectrum of chemical functionality, and generally contain some water. Their direct use as fuels may present some difficulties due to their high viscosity, poor heating value, corrosiveness and instability. For possible future use as replacements for hydrocarbon chemical feedstocks and fuels, the liquids will require considerable upgrading to improve its characteristics. By esterification of the bio oil as the upgrading method, the properties of the bio-oil could be improved. In the paper, the upgrading of a bio-oil obtained by pyrolysis was studied over rice husk ash catalysts. The raw bio-oil was produced by pyrolysis of rice husk.From the experiment results, it can be concluded that the densities of upgraded bio-oil were reduced from 1.24 to 0.95 g.cm-3, and the higherheating value increased from 16.0 to 27.2 MJ/kg and the acidity of upgraded bio-oil was also alleviated from 2.3 to 4.4. The results of gas chromatography-mass spectrometry (GC-MS) and FT-IR analysis showed that the ester compounds in the upgraded bio-oil increased. It is possible to improve the properties of bio-oil by esterifying the raw bio-oil.

  17. Experimental Study on Low Temperature Pyrolysis of Biomass%生物质低温热解炭化特性的实验研究

    Institute of Scientific and Technical Information of China (English)

    王秦超; 卢平; 黄震; 陈丹丹; 夏良燕; 郝江涛

    2012-01-01

    采用固定床和螺旋式2种实验装置,以稻秆、桑树枝、杨树枝和竹子等4种生物质为研究对象,在热解温度为250~300℃、停留时间为10~30min条件下进行生物质低温热解炭化特性的实验研究.结果表明:与生物质原料相比,生物质炭的表观体积缩小,外形收缩,颜色有不同程度加深,O/C质量比下降,热值得到大幅度提高,疏水性和研磨特性得到显著改善.随着热解温度和停留时间的增加,固体产物质量收率不断降低,较高的热解温度有利于气体的生成.桑树枝炭和稻秆炭的质量收率和能量收率随着热解温度的升高不断降低,且在相同热解条件下,生物质的能量收率始终高于质量收率.随着热解温度和停留时间的增加,生物质炭的能量密度不断增加;较低热解温度时,停留时间越长,生物质炭的能量密度增幅越大,但在较高热解温度下,停留时间对生物质炭能量密度增加的效果并不明显.%The low temperature pyrolysis characteristics of four kinds of biotnass, named rice straw (RS), mulberry branch (MB), poplar branch (PB) and bamboo (BM), were carried out in fixed-bed type or screw-type pyrolysis reactor at pyrolysis temperature of 250~300℃ and residence time of 10~30min. Results indicated that compared with raw biomass, the apparent volume of biomass chars are decreased and shrunk, and their color are more brownish; The values of O/C mass ratio are decreased, and lower heating values increase significantly; Meanwhile, hydrophobic and grindability of biomass chars are also improved remarkably. The mass yield of biomass char decrease with the increasing of the pyrolysis temperature and residence time, and the high pyrolysis temperature is favorable to generate gaseous product. The mass and energy yields of MB and RS chars decrease with the increasing of pyrolysis temperature and residence time, and the energy yield of biomass is always higher than its mass

  18. Mechanism of waste biomass pyrolysis: Effect of physical and chemical pre-treatments.

    Science.gov (United States)

    Das, Oisik; Sarmah, Ajit K

    2015-12-15

    To impart usability in waste based biomass through thermo-chemical reactions, several physical and chemical pre-treatments were conducted to gain an insight on their mode of action, effect on the chemistry and the change in thermal degradation profiles. Two different waste biomasses (Douglas fir, a softwood and hybrid poplar, a hardwood) were subjected to four different pre-treatments, namely, hot water pre-treatment, torrefaction, acid (sulphuric acid) and salt (ammonium phosphate) doping. Post pre-treatments, the changes in the biomass structure, chemistry, and thermal makeup were studied through electron microscopy, atomic absorption/ultra violet spectroscopy, ion exchange chromatography, and thermogravimetry. The pre-treatments significantly reduced the amounts of inorganic ash, extractives, metals, and hemicellulose from both the biomass samples. Furthermore, hot water and torrefaction pre-treatment caused mechanical disruption in biomass fibres leading to smaller particle sizes. Torrefaction of Douglas fir wood yielded more solid product than hybrid poplar. Finally, the salt pre-treatment increased the activation energies of the biomass samples (especially Douglas fir) to a great extent. Thus, salt pre-treatment was found to bestow thermal stability in the biomass.

  19. Research progresses on removal of tar in biomass pyrolysis%生物质热解焦油脱除方法研究进展

    Institute of Scientific and Technical Information of China (English)

    吴悠; 赵立欣; 孟海波; 丛宏斌; 姚宗路; 侯书林

    2016-01-01

    Tar in biomass pyrolysis can not only reduce pyrolysis efficiency,impact equipment operation,but also harm human health. Based on the introduction of characteristics and harms of biomass pyrolysis tar and the comparatively analysis of features and application prospects of different processes for tar removal(such as:Venturi process,cyclone separator process,electric tar catcher process,high-temperature pyrolysis process and catalytic cracking process), it is pointed that the tar removal efficiency can be significantly improved by the combined tar-removal process,and the key points for future research of biomass pyrolysis tar removal technologies are as follows:finding recyclable organic solvent for wet tar-removal and developing economic,efficient and long-life catalyst.%生物质热解焦油的产生不仅降低了热解效率,影响设备运行,更危害着人类健康。通过介绍生物质热解焦油的特性及危害、对比分析目前各种不同除焦方法(文丘里法、旋风分离法、电捕焦法、高温裂解法和催化裂解法)的特点及应用前景,得出采用多种方法组合的形式进行联合除焦可显著提高焦油脱除效率。寻找用于湿法除焦的可再生利用的有机溶剂,开发经济、高效、长寿命的催化剂将成为生物质热解焦油脱除技术开发的重点。

  20. Life Cycle Assessment of high ligno-cellulosic biomass pyrolysis coupled with anaerobic digestion.

    Science.gov (United States)

    Righi, Serena; Bandini, Vittoria; Marazza, Diego; Baioli, Filippo; Torri, Cristian; Contin, Andrea

    2016-07-01

    A Life Cycle Assessment is conducted on pyrolysis coupled to anaerobic digestion to treat corn stovers and to obtain bioenergy and biochar. The analysis takes into account the feedstock treatment process, the fate of products and the indirect effects due to crop residue removal. The biochar is considered to be used as solid fuel for coal power plants or as soil conditioner. All results are compared with a corresponding fossil-fuel-based scenario. It is shown that the proposed system always enables relevant primary energy savings of non-renewable sources and a strong reduction of greenhouse gases emissions without worsening the abiotic resources depletion. Conversely, the study points out that the use of corn stovers for mulch is critical when considering acidification and eutrophication impacts. Therefore, removal of corn stovers from the fields must be planned carefully.

  1. Polycyclic aromatic hydrocarbons (PAHs) in bio-crudes from induction-heating pyrolysis of biomass wastes.

    Science.gov (United States)

    Tsai, Wen-Tien; Mi, Hsiao-Hsuan; Chang, Yuan-Ming; Yang, Shyh-Yu; Chang, Jeng-Hung

    2007-03-01

    The aim of this work was to prepare the bio-crudes from agricultural wastes (i.e., rice straw, rice husk, sugarcane bagasse and coconut shell) by using induction-heating pyrolysis at specified conditions. The quantitative analysis of 21 priority pollutant polycyclic aromatic hydrocarbons (PAHs) in bio-crudes examined using gas chromatography/mass spectrometry (GC/MS) revealed that the PAHs in bio-crudes were primarily dominant in the low molecular weight (LMW) PAHs, including naphthalene (1.10-2.45 mg/L) and acenaphthene (0.72-7.61 mg/L). However, by considering carcinogenic potency, the bio-crudes from rice husk and sugarcane bagasse contained higher contents of benzo[a]pyrene (BaP) (0.52 and 0.92 mg/L, respectively) as compared to those from rice straw and coconut shell.

  2. An approach for upgrading biomass and pyrolysis product quality using a combination of aqueous phase bio-oil washing and torrefaction pretreatment.

    Science.gov (United States)

    Chen, Dengyu; Cen, Kehui; Jing, Xichun; Gao, Jinghui; Li, Chen; Ma, Zhongqing

    2017-06-01

    Bio-oil undergoes phase separation because of poor stability. Practical application of aqueous phase bio-oil is challenging. In this study, a novel approach that combines aqueous phase bio-oil washing and torrefaction pretreatment was used to upgrade the biomass and pyrolysis product quality. The effects of individual and combined pretreatments on cotton stalk pyrolysis were studied using TG-FTIR and a fixed bed reactor. The results showed that the aqueous phase bio-oil washing pretreatment removed metals and resolved the two pyrolysis peaks in the DTG curve. Importantly, it increased the bio-oil yield and improved the pyrolysis product quality. For example, the water and acid content of bio-oil decreased significantly along with an increase in phenol formation, and the heating value of non-condensable gases improved, and these were more pronounced when combined with torrefaction pretreatment. Therefore, the combined pretreatment is a promising method, which would contribute to the development of polygeneration pyrolysis technology.

  3. Biomass Pyrolysis in a Fluidized Bed Reactor. Part 2: Experimental Validation of Model Results

    NARCIS (Netherlands)

    Wang, Xiaoquan; Kersten, Sascha R.A.; Prins, Wolter; Swaaij, van Wim P.M.

    2005-01-01

    Various types of cylindrical biomass particles (pine, beech, bamboo, demolition wood) have been pyrolyzed in a batch-wise operated fluid bed laboratory setup. Conversion times, product yields, and product compositions were measured as a function of the particle size (0.7−17 mm), the vapor's residenc

  4. Effects of several types of biomass fuels on the yield, nanostructure and reactivity of soot from fast pyrolysis at high temperatures

    DEFF Research Database (Denmark)

    Trubetskaya, Anna; Jensen, Peter Arendt; Jensen, Anker Degn;

    2016-01-01

    This study presents the effect of biomass origin on the yield, nanostructure and reactivity of soot. Soot was produced from wood and herbaceous biomass pyrolysis at high heating rates and at temperatures of 1250 and 1400 °C in a drop tube furnace. The structure of solid residues was characterized...... demonstrated differences in alkali content, particle size and nanostructure. Potassium was incorporated in the soot matrix and significantly influenced soot reactivity. Pinewood soot particles produced at 1250 °C had a broader particle size range (27.2–263 nm) compared to beechwood soot (33.2–102 nm) and wheat...

  5. Slow pyrolysis for rural small biomass energy by joint project developments of Brazil and Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Kampegowda, Rajesh; Chandayot, Pongchan [Asian University, Chonburi (Thailand)], email: rkempegowda@asianust.ac.th; Pannirselvam, Pagandai V.; Humberto, Maricy; Santos, Joao Matias [Universidade Federal do Rio Grande do Norte (DEQ/UFRN), Natal, RN (Brazil). Dept. de Engenharia Quimica. Grupo de Pesquisa em Engenharia de Custos], email: pannirbr@gmail.com

    2008-07-01

    The efficiency for carbonization by slow pyrolysis is still low in the current method studied using rice straw in Thailand and cashewnut shell in Brazil, however direct heating process yields better char yield of 17% as compared to indirect heating with 15% process using horizontal metal drum kiln.where as vertical kiln were mainly used in Brazil. Higher yield is made possible from Brasilian cashew nut shell to make oil and char. Carbon and energy balance was also carried out and the results were compared for the direct and indirect process. Burning by indirect draft gives better results like more char, faster process. Direct draft gives less char, but higher quality (higher C and H2). Also a lot of straw is left unburnt in the direct draft kiln, because of bad temperature distribution and flow inside. The kiln design is found to be more suitable for indirect draft rather than direct draft. Both methods still give rice straw charcoal that has low calorific value with an output char LHV of 4337 kcal/kg as compared to fresh rice straw of 3412 kcal/kg. In the direct heating method output char is enriched to 45% with a still unburnt rice straw left out as compared to indirect heating method with carbon enrichment of 39%. There is a loss of 13% of carbon through the ash in the both the methods. The carbon content in the condensate is in the order of 18.5% for the indirect process as compared to 13.9% in the direct process due to less exhaust and carbon enrichment inside the kiln. There is a loss of 43% of carbon in the exhaust from indirect heating process as compared to direct heating process which is reduced to 26%. The energy balance predicts a heat loss of 14% in exhaust gases. A practical small scale slow pyrolysis project was developed to meet rural energy and heat requirements. to make the clean energy from waste resources possible by the joint project. (author)

  6. High-yield harvest of nanofibers/mesoporous carbon composite by pyrolysis of waste biomass and its application for high durability electrochemical energy storage.

    Science.gov (United States)

    Liu, Wu-Jun; Tian, Ke; He, Yan-Rong; Jiang, Hong; Yu, Han-Qing

    2014-12-02

    Disposal and recycling of the large scale biomass waste is of great concern. Themochemically converting the waste biomass to functional carbon nanomaterials and bio-oil is an environmentally friendly apporach by reducing greenhouse gas emissions and air pollution caused by open burning. In this work, we reported a scalable, "green" method for the synthesis of the nanofibers/mesoporous carbon composites through pyrolysis of the Fe(III)-preloaded biomass, which is controllable by adjustment of temperature and additive of catalyst. It is found that the coupled catalytic action of both Fe and Cl species is able to effectively catalyze the growth of the carbon nanofibers on the mesoporous carbon and form magnetic nanofibers/mesoporous carbon composites (M-NMCCs). The mechanism for the growth of the nanofibers is proposed as an in situ vapor deposition process, and confirmed by the XRD and SEM results. M-NMCCs can be directly used as electrode materials for electrochemical energy storage without further separation, and exhibit favorable energy storage performance with high EDLC capacitance, good retention capability, and excellent stability and durability (more than 98% capacitance retention after 10,000 cycles). Considering that biomass is a naturally abundant and renewable resource (over billions tons biomass produced every year globally) and pyrolysis is a proven technique, M-NMCCs can be easily produced at large scale and become a sustainable and reliable resource for clean energy storage.

  7. Utilization of CO2 and biomass char derived from pyrolysis of Dunaliella salina: the effects of steam and catalyst on CO and H2 gas production.

    Science.gov (United States)

    Yang, Chao; Jia, Lishan; Su, Shuai; Tian, Zhongbiao; Song, Qianqian; Fang, Weiping; Chen, Changping; Liu, Guangfa

    2012-04-01

    Biomass char, by-product of Dunaliella salina pyrolysis at a final pyrolysis temperature of 500°C, was used as feedstock material in this study. The reactions of biomass char with CO(2) were performed in a fixed-bed reactor to evaluate the effect of temperature and steam on the CO(2) conversion, CO yield and gas composition. The CO(2) conversion and CO yield without steam and catalyst reached about 61.84% and 0.99mol/(mol CO(2)) at 800°C, respectively. Steam and high temperature led to high CO(2) conversion. A new approach for improving H(2) was carried out by using biomass char and Au/Al(2)O(3) catalyst, which combined steam gasification of biomass char and water gas shift reaction, and the H(2) concentration was 1.8 times higher than without catalyst. The process not only mitigated CO(2) emission and made use of residual biomass char, but also created renewable source.

  8. Pyrolysis of wetland biomass waste: Potential for carbon sequestration and water remediation.

    Science.gov (United States)

    Cui, Xiaoqiang; Hao, Hulin; He, Zhenli; Stoffella, Peter J; Yang, Xiaoe

    2016-05-15

    Management of biomass waste is crucial to the efficiency and sustainable operation of constructed wetlands. In this study, biochars were prepared using the biomass of 22 plant species from constructed wetlands and characterized by BET-N2 surface area analysis, FTIR, TGA, SEM, EDS, and elemental compositions analysis. Biochar yields ranged from 32.78 to 49.02%, with mesopores dominating the pore structure of most biochars. The biochars had a R50 recalcitrance index of class C and the carbon sequestration potential of 19.4-28%. The aquatic plant biomass from all the Chinese constructed wetlands if made into biochars has the potential to sequester 11.48 Mt carbon yr(-1) in soils over long time periods, which could offset 0.4% of annual CO2 emissions from fossil fuel combustion in China. In terms of adsorption capacity for selected pollutants, biochar derived from Canna indica plant had the greatest adsorption capacity for Cd(2+) (98.55 mg g(-1)) and NH4(+) (7.71 mg g(-1)). Whereas for PO4(3-), Hydrocotyle verticillata derived biochar showed the greatest adsorption capacities (2.91 mg g(-1)). The results from this present study demonstrated that wetland plants are valuable feedstocks for producing biochars with potential application for carbon sequestration and contaminant removal in water remediation.

  9. 烘焙预处理对生物质热解的影响%Torrefaction Pretreatment on the Pyrolysis Performances of Biomass

    Institute of Scientific and Technical Information of China (English)

    江洋; 张会岩; 邵珊珊; 肖睿

    2015-01-01

    Sawdust pretreatment of torrefaction followed by the pyrolysis or catalytic pyrolysis of its productwas conducted in a tube furnace. The effects of torrefaction temperature on vapor distributions and product distributions of pyrolysis were studied. The yields of acetic acid,guaiacols and aromatics before and after torrefaction were com-pared. The results show that the selectivity of pyrolysis products can be effectively improved when the torrefaction temperature is 250,℃ with HZSM-5 catalyst. The yields of toluene and xylene are nearly twice that with original biomass,while the yields of acetic acid and guaiacols decrease obviouslycompared with that with original biomass in catalytic pyrolysis process.%在管式炉中对木屑进行烘焙,对其产物进行热解和催化热解研究。考察了不同温度下烘焙挥发物析出特性以及烘焙预处理对生物质热解的影响,重点比较了烘焙后乙酸、愈创木酚类和芳烃催化热解产率的变化规律。结果表明,烘焙温度为250,℃时,在HZSM-5催化剂作用下能有效改善热解产物的选择性,甲苯和二甲苯产率达到未烘焙生物质的近2倍,而乙酸和大部分愈创木酚类产物的产率较原生物质催化热解产率有明显降低。

  10. 生物质炭催化裂解焦油的性能研究%Study on biomass char on catalytic pyrolysis performance of tar

    Institute of Scientific and Technical Information of China (English)

    尤占平; 由世俊; 李宪莉; 焦永刚; 韩鹏

    2011-01-01

    In a tubular reactor,the catalytic performance of biomass char on tar cracking were studied. Dolomite and quartz sand were also tested for the comparison. Through analysis and comparisons on conversion rate of tar, pyrolysis products, pyrolysis gas composition and kinetic parameters, it could be known that biomass char, as the catalyst of tar, could realize the highest conversion rate of tar, the largest proportion of gas in pyrolysis products, the more proportion of combustible gas in pyrolysis gases and the lowest kinetic parameters among three catalytic materials used in the study. The catalytic performance of biomass char is significantly superior than that of quartz sand and slightly better than that of dolomite, so it is an efficient catalyst for tar cracking.%采用管式反应器研究了生物质炭作为焦油裂解催化剂的性能,选用白云石和石英砂作对比试验.通过对焦油转换率、裂解产物、裂解气气体组分和动力学参数的分析对比可知:在所选用的3种材料中,生物质炭作为催化剂的焦油转化率最高,裂解产物中气体所占比重最大,且可燃气体的组分较高,反应动力学参数最小.生物质炭的催化性能显著高于石英砂,稍好于白云石,是一种高效的焦油裂解催化剂.

  11. Methods and apparatuses for preparing upgraded pyrolysis oil

    Science.gov (United States)

    Brandvold, Timothy A; Baird, Lance Awender; Frey, Stanley Joseph

    2013-10-01

    Methods and apparatuses for preparing upgraded pyrolysis oil are provided herein. In an embodiment, a method of preparing upgraded pyrolysis oil includes providing a biomass-derived pyrolysis oil stream having an original oxygen content. The biomass-derived pyrolysis oil stream is hydrodeoxygenated under catalysis in the presence of hydrogen to form a hydrodeoxygenated pyrolysis oil stream comprising a cyclic paraffin component. At least a portion of the hydrodeoxygenated pyrolysis oil stream is dehydrogenated under catalysis to form the upgraded pyrolysis oil.

  12. 生物质热解炭化的关键影响因素分析%Analysis on influence factors of biomass pyrolysis carbonization

    Institute of Scientific and Technical Information of China (English)

    王茹; 侯书林; 赵立欣; 孟海波; 田宜水

    2013-01-01

    随着能源消耗需求的增加,气候变化对环境的不利影响等问题的出现,生物质热解炭化技术作为发展可再生能源的重要措施,得到世界范围内越来越多的关注.文章综合分析了生物质原料(种类、粒径、全水分)、热解反应参数(热解温度、升温速率、热解压力、反应气氛、反应时间)以及催化剂等因素对热解炭化过程及产物生物炭的影响,认为目前的热解炭化技术在合理选择工艺参数、能源消耗等方面的研究还不够深入,并提出了相关建议,以期为热解炭化技术的产业化发展提供思路.%As the increase of energy consumption demand and adverse effects of climate change on the environment,etc,the biomass pyrolysis carbonization technology as an important measure for the development of renewable energy has got more and more attention in the worldwide.This article provides comprehensive analysis on the biomass raw materials (type,particle size,total moisture),pyrolysis reaction parameters (pyrolysis temperature,heating rate,pyrolysis pressure,reaction atmosphere,reaction time) and the influence of catalyst on the pyrolysis carbonization process and biological carbon product.It was found that the current pyrolysis carbonization technology does not go far enough on the rational choice of process parameters and energy consumption.And some suggestions was provided for the development of pyrolysis carbonization technology industrialization.

  13. Two-step fast microwave-assisted pyrolysis of biomass for bio-oil production using microwave absorbent and HZSM-5 catalyst.

    Science.gov (United States)

    Zhang, Bo; Zhong, Zhaoping; Xie, Qinglong; Liu, Shiyu; Ruan, Roger

    2016-07-01

    A novel technology of two-step fast microwave-assisted pyrolysis (fMAP) of corn stover for bio-oil production was investigated in the presence of microwave absorbent (SiC) and HZSM-5 catalyst. Effects of fMAP temperature and catalyst-to-biomass ratio on bio-oil yield and chemical components were examined. The results showed that this technology, employing microwave, microwave absorbent and HZSM-5 catalyst, was effective and promising for biomass fast pyrolysis. The fMAP temperature of 500°C was considered the optimum condition for maximum yield and best quality of bio-oil. Besides, the bio-oil yield decreased linearly and the chemical components in bio-oil were improved sequentially with the increase of catalyst-to-biomass ratio from 1:100 to 1:20. The elemental compositions of bio-char were also determined. Additionally, compared to one-step fMAP process, two-step fMAP could promote the bio-oil quality with a smaller catalyst-to-biomass ratio.

  14. Microwave drying of biomass and its effect on pyrolysis characteristics%生物质微波干燥及其对热解的影响

    Institute of Scientific and Technical Information of China (English)

    王贤华; 陈汉平; 张世红; 朱波; 杨海平

    2011-01-01

    通过与常规热风干燥方式比较,研究生物质微波干燥过程及其对热解的影响,以探索在生物质快速热解液化工艺中采用微波干燥技术进行原料预处理的可行性.干燥实验表明,微波炉的干燥速率明显大于烘箱(5倍以上),同时在微波快速干燥过程中,原料内部的孔隙结构得到了改善.热天平上干燥样品的热解表明,微波干燥处理有利于生物质的热解,特别是纤维素和半纤维素的热解,并且能在一定程度上抑制生物油蒸汽的二次裂解反应,从而使实际流化床热解液化装置中的生物油产率有所提高.研究表明,将微波干燥技术用于生物质热解液化的原料预处理过程在技术上和经济上均具有可行性.%The influence of microwave drying on the pyrolysis of biomass was investigated compared with conventional air drying. The aim of this work is to seek the feasibility of using microwave drying technique in fast pyrolysis of biomass during pretreatment of the feedstock. The drying tests show that the drying rate of microwave oven is far faster than that of electrical oven. The inner pore characteristics of dried biomass are improved at higher drying rate. The thermogravimetric and kinetic analysis indicate that the microwave drying treatment promote the decomposition of biomass, especially cellulose and hemicellulose, and prevent the secondary reactions of primary vapor to a certain extent at the same time. As a result, the yield of bio-oil from biomass pyrolysis in a fluidized-bed reactor increases slightly. Thus microwave drying is a technically and economically feasible pretreatment method for fast pyrolysis of biomass and more in-depth works are needed to be carried out next step.

  15. Continuous pyrolysis of biomass feedstocks in rotary kiln convertors. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Henry, Jr, H. H.; Kimzey, J. R.; Turpin, J. L.; MacCallum, R. N.

    1979-08-30

    The biomass research program at the University of Arkansas has developed three experimental projects or tasks for the attainment of its objectives. They are: (1) utilization of the existing full scale convertor for testing and data acquisition at Jonesboro, Arkansas; (2) development of a scale model rotary pyrolytic convertor (bench scale research kiln); and (3) development of analytical laboratory services for the analysis of feedstocks and products, and for basic pyrolytic process studies. The project at Jonesboro, Arkansas, which aimed at testing the Angelo convertor concept through heat and material balances over the available range of operations, could not completely achieve this objective because of the severe mechanical and structural deficiencies in the full scale convertor. A limited number of data have been taken in spite of the deficiencies of the machine. The scale model rotary kiln has been the most successful of the three projects. The kiln has been completed as planned and successfully operated with a number of feedstock materials. Good qualitative data have been obtained on conversion rate capacities, charcoal yields, and off gas combustion product temperatures. In all, about one hundred test runs were made in the scale model kiln. About 90% of the results expected were attained. The laboratory services project was designed to provide analytical testing for the other two projects and to do basic studies in biomass material conversion processes. The project delivered the testing services, but was severely restricted in the area of basic studies because of the failure of the main instrument, the gas chromatograph, to operate successfully. In all it is estimated that this project attained about 80% of its expected goals.

  16. Co-pyrolysis of lignite and sugar beet pulp

    Energy Technology Data Exchange (ETDEWEB)

    Yilgin, M.; Deveci Duranay, N.; Pehlivan, D. [Firat University, Chemical Engineering Department, 23279 Elazig (Turkey)

    2010-05-15

    Today, worldwide studies have been undertaken on the biomass usage and co-conversion of biomass and coal to seek out alternative fuels for supplying energy in an environmental friendly way. The objective of this work is to study co-pyrolysis of lignite and sugar beet pulp in 50/50 (wt./wt.) ratio of blend pellets, to elucidate their thermal behaviour under pyrolysis conditions and to assess major decomposition products in terms of their yields. A special chamber, which has enabled very fast heating rates, was used in the pyrolysis experiments carried at 600 C. The results were interpreted in the light of liquid, solid and gaseous yields, resulting from thermal decomposition, and kinetics of thermogravimetric analysis. Proximate volatile matter and ash contents of the blends were different compared to those found by using individual values. Sugar beet pulp decomposed faster within a relatively narrow temperature range than lignite and underwent a significant shrinkage during pyrolysis. It was found that the chars left behind after the flash pyrolysis of these pellets at 600 C have substantial amounts of volatile matter that would evolve upon further heating. (author)

  17. Development of a modified independent parallel reactions kinetic model and comparison with the distributed activation energy model for the pyrolysis of a wide variety of biomass fuels.

    Science.gov (United States)

    Sfakiotakis, Stelios; Vamvuka, Despina

    2015-12-01

    The pyrolysis of six waste biomass samples was studied and the fuels were kinetically evaluated. A modified independent parallel reactions scheme (IPR) and a distributed activation energy model (DAEM) were developed and their validity was assessed and compared by checking their accuracy of fitting the experimental results, as well as their prediction capability in different experimental conditions. The pyrolysis experiments were carried out in a thermogravimetric analyzer and a fitting procedure, based on least squares minimization, was performed simultaneously at different experimental conditions. A modification of the IPR model, considering dependence of the pre-exponential factor on heating rate, was proved to give better fit results for the same number of tuned kinetic parameters, comparing to the known IPR model and very good prediction results for stepwise experiments. Fit of calculated data to the experimental ones using the developed DAEM model was also proved to be very good.

  18. Feedstock Supply System Design and Economics for Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels Conversion Pathway: Fast Pyrolysis and Hydrotreating Bio-Oil Pathway "The 2017 Design Case"

    Energy Technology Data Exchange (ETDEWEB)

    Kevin L. Kenney; Kara G. Cafferty; Jacob J. Jacobson; Ian J. Bonner; Garold L. Gresham; J. Richard Hess; William A. Smith; David N. Thompson; Vicki S. Thompson; Jaya Shankar Tumuluru; Neal Yancey

    2014-01-01

    The U.S. Department of Energy promotes the production of liquid fuels from lignocellulosic biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass sustainable supply, logistics, conversion, and overall system sustainability. As part of its involvement in this program, Idaho National Laboratory (INL) investigates the feedstock logistics economics and sustainability of these fuels. Between 2000 and 2012, INL quantified and the economics and sustainability of moving biomass from the field or stand to the throat of the conversion process using conventional equipment and processes. All previous work to 2012 was designed to improve the efficiency and decrease costs under conventional supply systems. The 2012 programmatic target was to demonstrate a biomass logistics cost of $55/dry Ton for woody biomass delivered to fast pyrolysis conversion facility. The goal was achieved by applying field and process demonstration unit-scale data from harvest, collection, storage, preprocessing, handling, and transportation operations into INL’s biomass logistics model.

  19. Modelling of pyrolysis of peat and biomass under combustion and gasification; Pyrolyysimalli turpeen ja biomassan poltolle ja kaasutukselle

    Energy Technology Data Exchange (ETDEWEB)

    Raiko, R.; Haukka, P.; Vehmaan-Kreula, M. [Tampere Univ. of Technology (Finland). Energy and Process Technology

    1997-10-01

    In the model developed during the research the chemical kinetics of pyrolysis is described with `the two competing reactions model`. Heat transfer in particle consists of convection and conduction. With the help of the model all the kinetic parameters of the two pyrolysis reactions are fitted with measured values. Also simple correlations for pyrolysis of peat under fluidized bed and pulverised flame conditions are given. The effect of the heating rate can be taken into account by using two competing Arrhenius-type reactions. In this model pyrolysis is modelled by using two reactions; one for the low temperature level and the other for the high temperature level. Both of these reactions consume the same unreacted fuel and this model is able to describe the pyrolysis at different temperature levels. Pyrolysis takes place in the heating stage of the particle before heterogeneous combustion and therefore temperature and density profiles inside the particle have to be solved simultaneously. The energy and mass balance equations of the particle form a set of partial differential equations (PDE), which is solved numerically by using so called method of lines, by converting PDE into a set of ordinary differential equations (ODE). The final solution of ODEs is received by using LSODE algorithm of Hindmash. An user friendly interface for the pyrolysis model is programmed by using Visual Basic enabling convenient variation of the conditions and observation of the results

  20. 生物质组分热解气化特性研究现状%Research status on gasification and pyrolysis characteristics of biomass components

    Institute of Scientific and Technical Information of China (English)

    蒋林宏; 俞海淼

    2015-01-01

    In order to improve the heating value of the gaseous product and decrease the yield of tar from the pyrolysis and gasification of biomass,the pyrolysis and gasification characteristics of biomass components are investigated widely.The effects of the alkali, temperature,pressure,and heating rate on the pyrolysis and gasification are summarized. The effects of cellulose,hemicellulose,lignin and the interactions between them on the gasification and pyrolysis are also discussed.Besides those,the effects of the interactions among three components,the difference among the biomass model compounds,and the chemical structure of the biomass on the gasification characteristics require some further investigations on the foundation of the two components experiments.At last,the single variable controlled experiments are proposed to study the effect of the single factor.%为了提升生物质气化气热值,减少焦油产率,越来越多的研究者开始试图从生物质组分的角度对热解气化特性进行探索。概述了碱金属、温度、压力、升温速率在热解气化过程中对生物质组分造成的影响,以及纤维素、半纤维素、木质素、萃取物和组分间相互作用对生物质热解气化过程造成的影响。提出了在二组分相互作用研究的基础上,应继续开展三组分相互作用的实验研究,以及生物质模化物和生物质原料化学结构差异对生物质原料热解气化特性的影响。此外,提出了采用单变量对照实验方法研究单变量的作用大小。

  1. Pilot-Scale Biorefinery: Sustainable Transport Fuels from Biomass via Integrated Pyrolysis and Catalytic Hydroconversion - Wastewater Cleanup by Catalytic Hydrothermal Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Olarte, Mariefel V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hart, Todd R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-06-19

    DOE-EE Bioenergy Technologies Office has set forth several goals to increase the use of bioenergy and bioproducts derived from renewable resources. One of these goals is to facilitate the implementation of the biorefinery. The biorefinery will include the production of liquid fuels, power and, in some cases, products. The integrated biorefinery should stand-alone from an economic perspective with fuels and power driving the economy of scale while the economics/profitability of the facility will be dependent on existing market conditions. UOP LLC proposed to demonstrate a fast pyrolysis based integrated biorefinery. Pacific Northwest National Laboratory (PNNL) has expertise in an important technology area of interest to UOP for use in their pyrolysis-based biorefinery. This CRADA project provides the supporting technology development and demonstration to allow incorporation of this technology into the biorefinery. PNNL developed catalytic hydrothermal gasification (CHG) for use with aqueous streams within the pyrolysis biorefinery. These aqueous streams included the aqueous phase separated from the fast pyrolysis bio-oil and the aqueous byproduct streams formed in the hydroprocessing of the bio-oil to finished products. The purpose of this project was to demonstrate a technically and economically viable technology for converting renewable biomass feedstocks to sustainable and fungible transportation fuels. To demonstrate the technology, UOP constructed and operated a pilot-scale biorefinery that processed one dry ton per day of biomass using fast pyrolysis. Specific objectives of the project were to: The anticipated outcomes of the project were a validated process technology, a range of validated feedstocks, product property and Life Cycle data, and technical and operating data upon which to base the design of a full-scale biorefinery. The anticipated long-term outcomes from successful commercialization of the technology were: (1) the replacement of a significant

  2. Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels. Thermochemical Research Pathways with In Situ and Ex Situ Upgrading of Fast Pyrolysis Vapors

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, A.; Sahir, A.; Tan, E.; Humbird, D.; Snowden-Swan, L. J.; Meyer, P.; Ross, J.; Sexton, D.; Yap, R.; Lukas, J.

    2015-03-01

    This report was developed as part of the U.S. Department of Energy’s Bioenergy Technologies Office’s efforts to enable the development of technologies for the production of infrastructurecompatible, cost-competitive liquid hydrocarbon fuels from biomass. Specifically, this report details two conceptual designs based on projected product yields and quality improvements via catalyst development and process integration. It is expected that these research improvements will be made within the 2022 timeframe. The two conversion pathways detailed are (1) in situ and (2) ex situ upgrading of vapors produced from the fast pyrolysis of biomass. While the base case conceptual designs and underlying assumptions outline performance metrics for feasibility, it should be noted that these are only two of many other possibilities in this area of research. Other promising process design options emerging from the research will be considered for future techno-economic analysis.

  3. 生物质快速热解气相成分析出规律%STUDY ON RELEASE BEHAVIOR OF GAS COMPONENTS OF BIOMASS IN FAST PYROLYSIS

    Institute of Scientific and Technical Information of China (English)

    吴少华; 栾积毅; 孙锐; 姚娜

    2009-01-01

    利用恒温沉降炉对秸秆、稻壳、木屑及一种烟煤煤粉在900、1000、1100℃ 3个温度进行了快速热解试验,对4种燃料在快速热解过程中气相成分析出的规律进行了研究.生物质成分中高的挥发分、氧、H/C决定了其快速热解会取得比煤粉高的气相产率,木屑的气相产物产量最多,秸秆次之,稻壳最低.4种燃料热解气相产物中的主要成分是CO、H_2、CO_2、CH_4,少量的G_2H_4、C_2H_6、NO、HCN、COS,生物质和煤粉在快速热解及短的停留时间内,其析出的氮前驱物为HCN.快速热解析出的气相成分产量及组分分布与燃料种类、热解温度、热解停留时间相关.几种物料共同的规律是随停留时间的延长,气相产物的量不断地增加,当气相产物的产量趋于平稳时,相应的气相产物的各组分趋于恒定,这一停留时间标志着热解过程的结束,相同温度条件下煤粉的热解速率要慢于3种生物质.%The release behavior of gas components of straw、rice husk、sawdust and bituminous coal was investigated in a drop tube deposition furnace at fast pyrolysis temperature of 900、1000、1100℃ . The volatile, oxygen and H/C of biomass components was higher than that of bituminous coal, which determins a higher gas yield in the fast pyrolysis. The gas yield of sawdust is the greatest, that of straw is the second and that of rice husk is minimum. The main components of pyrolysis gas is CO, H_2, CO_2 and CH_4, while other components, such as C_2H_4、NO、HCN、COS are relatively less. HCN is the nitrogen precursors in short residence time for fast pyrolysis. The gas yield and compsition in the fast pyrolysis are related to the fuel types, pyrolysis temperature and residence time. The common law for several fuel are as follows: when the residence time increased and the gas yield stabilized, the corresponding components of gas product tend to be constant. This time can be considered as the end of

  4. One-pot synthesis of carbon supported calcined-Mg/Al layered double hydroxides for antibiotic removal by slow pyrolysis of biomass waste

    Science.gov (United States)

    Tan, Xiaofei; Liu, Shaobo; Liu, Yunguo; Gu, Yanling; Zeng, Guangming; Cai, Xiaoxi; Yan, Zhili; Yang, Chunping; Hu, Xinjiang; Chen, Bo

    2016-12-01

    A biochar supported calcined-Mg/Al layered double hydroxides composite (CLDHs/BC) was synthesized by a one-pot slow pyrolysis of LDHs preloaded bagasse biomass. Multiple characterizations of the product illustrated that the calcined-Mg/Al layered double hydroxides (CLDHs) were successfully coated onto the biochar in slow pyrolysis of pre-treated biomass. The as-synthesized CLDHs/BC could efficiently remove antibiotic tetracycline from aqueous solutions. The coating of CLDHs significantly increased the adsorption ability of biochar, and CLDHs/BC exhibited more than 2 times higher adsorption capacity than that of the pristine biochar (BC) in the tested pH range. The maximum adsorption capacity of CLDHs/BC for tetracycline was 1118.12 mg/g at 318 K. The experimental results suggested that the interaction with LDHs on biochar played a dominant role in tetracycline adsorption, accompanied with π–π interaction and hydrogen bond. This study provides a feasible and simple approach for the preparation of high-performance material for antibiotics contaminated wastewater treatment in a cost-effective way.

  5. 几种生物质热解特性的对比分析%Comparison analysis of pyrolysis characteristics for several kinds of biomass

    Institute of Scientific and Technical Information of China (English)

    李艾霖; 袁婷; 余江龙

    2015-01-01

    Thermo-gravimetric analysis and fixed bed reactor were used to carry out biomass pyroly-sis experiment of peanut shell, pine needle, chlorella and corncob.The experimental results show that the yield of tar from biomass pyrolysis by fixed bed is chlorella >pine needle >peanut shell >corn-cob.The components of tar were analyzed by GC-MS.%利用热重分析仪和固定床反应器对花生壳、松针、小球藻和玉米芯四种生物质进行热解实验,结果表明,固定床热解生物质焦油产率大小顺序为:小球藻>松针>花生壳>玉米芯。并利用气质联用( GC-MS)分析仪对焦油组分进行分析,实验结果可为从生物质焦油中提取精细化工制品技术的研发提供理论依据。

  6. 生物质快速热解液化技术研究进展%Progresses in Fast Pyrolysis of Biomass to Liquid Fuel

    Institute of Scientific and Technical Information of China (English)

    朱锡锋; 李明

    2013-01-01

    总结了生物质热解液化技术在原料预处理、热解工艺和生物油精制3个方面的最新研究成果.在原料预处理方面,介绍了干燥、烘焙、压缩成型和酸洗4种方法;在热解工艺方面,列举了国内外具有代表性的热解反应器类型,重点介绍了催化热解和混合热解两种新工艺;在生物油精制方面,介绍了包括催化加氢、催化裂解、催化酯化和乳化等几种常用的生物油精制方法,并分析了各精制技术发展的关键问题.%The recent progresses in raw materials pretreatment,pyrolytic process and biooil upgrading for the fast pyrolysis of biomass to liquid fuel were reviewed.In the raw materials pretreatment,drying,torrefaction,compression moulding and acid-washing were introduced.In the pyrolytic process,typical fast pyrolysis reactors are enumerated and two novel pyrolytic processes,namely fast catalytic pyrolysis and co-liquefaction of both biomass and coal,were discussed.Finally,some upgrading methods were discussed,which included catalytic hydroprocessing,catalytic cracking,catalytic esterification,and emulsification with diesel.The key problems involved in these upgrading methods were also analyzed.

  7. Biomass fast pyrolysis for bio-oil production in a fluidized bed reactor under hot flue atmosphere.

    Science.gov (United States)

    Li, Ning; Wang, Xiang; Bai, Xueyuan; Li, Zhihe; Zhang, Ying

    2015-10-01

    Fast pyrolysis experiments of corn stalk were performed to investigate the optimal pyrolysis conditions of temperature and bed material for maximum bio-oil production under flue gas atmosphere. Under the optimized pyrolysis conditions, furfural residue, xylose residue and kelp seaweed were pyrolyzed to examine their yield distributions of products, and the physical characteristics of bio-oil were studied. The best flow rate of the flue gas at selected temperature is obtained, and the pyrolysis temperature at 500 degrees C and dolomite as bed material could give a maximum bio-oil yield. The highest bio-oil yield of 43.3% (W/W) was achieved from corn stalk under the optimal conditions. Two main fractions were recovered from the stratified bio-oils: light oils and heavy oils. The physical properties of heavy oils from all feedstocks varied little. The calorific values of heavy oils were much higher than that of light oils. The pyrolysis gas could be used as a gaseous fuel due to a relatively high calorific value of 6.5-8.5 MJ/m3.

  8. Comments on 'Organic sulphur compounds produced by flash pyrolysis of Timhadit oil shale' by M. Ishiwatari, H. Sakashita, T. Tatsumi and H-O. Tominaga

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.

    1991-01-01

    Since we have analysed three different stratigraphic units of the Timhadit oil shale for sulphur compounds by means of pyrolysis-gas chromatography (Eglinton and Sinninghe DamstC, unpublished results), we believe that the identification by Ishiwatari et al. is not correct. In a recent paper we demon

  9. 煤与生物质共热解的协同作用研究进展%Progress in Research on Synergetic Effect of Coal and Biomass Co-pyrolysis

    Institute of Scientific and Technical Information of China (English)

    张雪; 白雪峰; 樊慧娟

    2011-01-01

    作为洁净的可再生能源,生物质的合理利用可以有效地解决能源短缺和环境污染问题.生物质与煤的共热解是生物质利用的重要途径.生物质与煤在共热解过程中的相互作用机制是研究的重要课题.对近年来生物质和煤的共热解研究中是否具有协同作用进行了综述,为生物质与煤的共热解应用提供参考和依据.%As a clean renewable energy resource, the reasonable application of biomass can solve the problems of energy shortage and environmental pollution effectively. The co-pyrolysis of coal-biomass blends is a technological option for taking advantage of biomass resources on a large scale. The interaction mechanism of the process of the co-pyrolysis of coal-biomass blends is an important research subject. Whether the synergy effects exist during the co-pyrolysis process is mainly reviewed in this paper, and some references for the co-pyrolysis of coal-biomass blends are provided.

  10. Catalytic coal conversion support: use of laser flash-pyrolysis for structural analysis. Progress report, April 15, 1979-September 30, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Verzino, Jr, W J; Rofer-DePoorter, C K; Hermes, R E

    1982-03-01

    Untreated Fruitland subbituminous coal and Fruitland coal treated with several gasification catalysts were pyrolyzed with both Nd-glass and CO/sub 2/ lasers (1.06-..mu..m and 10.6-..mu..m wavelengths, respectively) to give both gaseous and intermediate-molecular weight products, which were analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). The catalysts used were AlCl/sub 3/, K/sub 2/H/sub 2/Sb/sub 2/O/sub 7/, CoCl/sub 2/, PbCl/sub 2/, Pb(NO/sub 3/)/sub 2/, Na/sub 2/Pb(OH)/sub 6/, Na/sub 2/MoO/sub 4/, NiCl/sub 2/, K/sub 2/CO/sub 3/, KHCO/sub 3/, Na/sub 2/CO/sub 3/, NaHCO/sub 3/, Na/sub 2/Ti/sub 3/O/sub 7/, NaVO/sub 3/, ZnCl/sub 2/, and NaZn(OH)/sub 3/. Gaseous products were analyzed from the Nd-glass laser pyrolysis; of the various catalysts, ZnCl/sub 2/ was found to affect N/sub 2/ production during pyrolysis most significantly. Intermediate products were analyzed from the CO/sub 2/ laser pyrolysis; product distribution was found to depend upon particle size (and consequent thermal history in pyrolysis) as well as on catalyst and heat treatment. Pyrolysis products could not be correlated in a statistically reliable way with coal or char structure. A supercritical extraction method with a Soxhlet extractor inside a pressure vessel was developed for liquid CO/sub 2/ as extractant. Gases evolved during processing of the coal-catalyst mixtures were analyzed by GC for several of the catalysts.

  11. Effects of biomass particle size on yield and composition of pyrolysis bio-oil derived from Chinese tallow tree (Triadica Sebifera L. and energy cane (Saccharum complex in an inductively heated reactor

    Directory of Open Access Journals (Sweden)

    Gustavo Aguilar

    2015-12-01

    Full Text Available In the face of fluctuating petroleum costs and a growing demand for energy, the need for an alternative and sustainable energy source has increased. A viable solution for this problem can be attained by using thermochemical conversion, pyrolysis, of existing biomass sources for the production of liquid fuels. This study focuses on the effect that biomass particle size has on the conversion of biomass into liquid pyrolysis oil. Energy cane and Chinese tallow tree biomass were pyrolyzed at 550 ℃. The particle size ranges studied were < 0.5, 0.5 to 1.4, 1.4 to 2.4 and, 2.4 to 4.4 mm. The results indicate that the range from 0.5-1.4 mm is a better range for optimizing bio-oil production while keeping water content low.

  12. FTIR analysis of the char produced by pyrolysis of four kinds of biomass%四种生物质热解半焦的FTIR红外分析

    Institute of Scientific and Technical Information of China (English)

    王靖; 张安东; 易维明; 付鹏

    2015-01-01

    生物质热解液化是目前生物质能利用的方式之一。为了研究生物质热解过程中各组分的裂解变化规律,利用傅里叶红外光谱仪分别对300℃、400℃、500℃、600℃下制备的玉米秸秆、棉杆、松木屑和稻壳的热解半焦进行了分析。实验结果表明:随着热解温度升高,生物质内部[-O H ]、[-C H ]、[-C O -]等官能团不断减少,温度在300℃~400℃之间时变化最为剧烈,当温度超过400℃以后,反应逐渐趋于缓和。%Biomass pyrolytic liquefaction technology is one of the main ways of biomass energy utilization .In order to study the pyrolysis mechanism of various components of biomass in the pyrolysis process ,fourier transform infrared spectroscopy (FTIR) was used to study the chemical structure of chars obtained from corn straw stalk ,cotton stalk ,pine sawdust and rice husk in the range from 300℃ to 600 ℃ .Experimental results showed that as the temperature increased , functional groups [ - OH ] , [ - CH ] , [ - CO - ] , etc . reduced sharply between 300℃and 400℃ ,and then the reactions became slower when temperature was higher than 400 ℃ .

  13. Catalytic pyrolysis-gc/ms of spirulina: evaluation of a highly proteinaceous biomass source for production of fuels and chemicals

    Science.gov (United States)

    Pyrolysis of microalgae offers a pathway towards the production of compounds derived from the thermal decomposition of triglycerides, proteins as well as lignocelluloses and their combinations thereof. When catalytically induced, this could lead to the production of fuels and chemicals including aro...

  14. 生物质热解气部分氧化的数值模拟%Numerical Simulation of Biomass Pyrolysis Gas Reaction Under Partial Oxidation Environment

    Institute of Scientific and Technical Information of China (English)

    苏毅; 罗永浩; 陈祎; 吴文广; 陈亮; 王芸; 赵善辉

    2011-01-01

    为研究生物质热解气在部分氧化条件下的反应特性,更好地预测气相产物的反应行为,建立一个管流反应区内的热解气部分氧化反应模型.选用苯酚,甲苯,苯,萘4种物质作为焦油模型化合物,小分子气体由CO、CO2、CH4、H2、N2和O2组成.搭建一个连续性实验台用以验证模型.结果显示,模型对于小分子气体的变化趋势能够较准确地预测,但定量预测仍存在一定的误差:对于焦油总最及变化趋势方面较为准确.与实验结果相比,该模型能够定性地反映生物质热解气部分氧化条件下的反应规律.%A numerical model was built to investigate the reaction property of biomass pyrolysis gas under partial oxidation environment. Phenol, toluene, benzene and naphthalene were selected as tar model compound. It is assumed that biomass pyrolysis gas consists of CO, CO2, CH4, H2, N2, O2 and model tar compounds. A continuous test rig was built in order to verify the model. Results show that, for small molecular gases, model could accurately predict their variation tendency, but the quantity is not accurate. For tar compounds, the prediction of trends and quantity are more accurate. Therefore, the proposed model could qualitatively reflect the partial oxidation of biomass pyrolysis reaction, and its quantitative agreement is also reasonable.

  15. 邯钢高炉喷吹煤粉的快速热解机制%Flash Pyrolysis of Pulverized Injection Coal at Hansteel

    Institute of Scientific and Technical Information of China (English)

    刘然; 高永亮; 王杏娟; 吕庆; 杜林森; 王竹民

    2012-01-01

    Aimed at increasing pulverized coal injection at Handan Steel,the pyrolysis of coal in raceway was simulated.The coal of CL and DW were selected and the decomposition rate was calculated by plasma pyrolysis.Gas products were analyzed by gas chromatography and morphology of residues were observed by scanning electron microscopy(SEM).The results show that CL and DW decomposition rate is 43.10% and 52.04% respectively and gas products of coal after plasma pyrolysis,which are different from general pyrolysis,consist of CO,H2,CH4,C2H2 and small content of C2H4,etc.Pyrolysis product has changed evidently,particle size become smaller.The vesicular structure occurs in coal grains when DW is added in the sample,which makes the specific surface area of coal grain increase.The solid carbon combustion ratio in tuyeres can be enhanced,which will provide the theoretical basis for pulverized coal combustion rate.%为了提高邯钢高炉喷吹煤比,模拟煤粉在高炉内的热解。以邯钢喷吹用长治煤(以下简称CL)和大湾煤(以下简称DW)为原料,采用等离子体进行快速热解,计算反应后煤粉的分解率,利用气相色谱仪对气体产物进行分析以及用扫描电镜(SEM)观察反应产物的形貌特征。试验结果表明,CL和DW的分解率分别为43.10%和52.04%,气相产物主要为CO、H2、CH4、C2H2及少量C2H4等气体,热解产物的粒径减小,形貌发生明显变化。在CL煤的基础上配加不同比例的DW后,煤粉颗粒出现了孔状结构,因此可以提高炉内风口回旋区固定碳颗粒的燃烧率,为提高煤粉燃烧率提供理论依据。

  16. 热解过程中生物质半焦比热容的测定%Determination of specific heat capacity of biomass char during pyrolysis

    Institute of Scientific and Technical Information of China (English)

    陈群; 庞任重; 陈熙; 杨锐明; 禚玉群; 陈昌和

    2014-01-01

    The specific heat capacities of chars during primary pyrolysis of biomass with different conversion and the heat capacities of virgin biomass were determined.The ratio method was employed to measure the specific heat capacities of two biomass samples and their pyrolyzed chars through thermogravimetry and differential scanning calorimetry ( TG-DSC).A mathematical model was developed to calculate values of specific heat of chars.The results show that the specific heat capacitei s of the two biomass samples and their derived chars increase linearly within 60~200℃.The values oft he specific heat capacity fo the chars are lower than those fo the virgin biomass samples.The specific heat of chars decreases as the extent of pyrolysis increases.The calculated specific heat capacities from the developed mathematical model are quite close to those me asured by TG-DSC analyses eb twe n 150~200℃.%采用热重-差示量热扫描法( TG-DSC)测量了生物质和一次热解焦炭及不同转化率下半焦的比热容,建立了计算半焦比热容的数学模型并与实验测量结果进行了对比。结果表明,生物质样品和热解焦炭的比热容在60~200℃随温度升高而线性增大。生物质焦炭的比热容低于生物质样品的比热容,从60℃时的1.2 J/(g· K)增大到200℃附近的1.8~2.0 J/(g· K)。生物质半焦比热容随热解转化率的提高而降低。由半焦比热容数学模型计算得到的结果在接近150~200℃时与实验测定的半焦比热容数值基本一致。

  17. Kinetics Analysis of Coconut Shell Pyrolysis

    Institute of Scientific and Technical Information of China (English)

    LIU; Xue-mei; JIANG; Jian-chun; SUN; Kang; XU; Fan; XU; Yu

    2012-01-01

    [Objective] The paper aimed to study kinetics analysis of coconut shell pyrolysis. [Method] Thermo gravimetric analysis was used to study the pyrolysis characteristic of coconut shell at different pyrolysis rates (5, 10, 20 K/min). [Result] The pyrolysis process included 3 stages, water loss, pyrolysis, and thermal condensation. The pyrolysis process can be described through first-order reaction model. With the increasing pyrolysis rate, activation energy in the first stage rose, but activation energy in the second stage reduced. [Conclusion] The study provided theoretical basis for the promotion and application of biomass energy.

  18. Uncatalysed and potassium-catalysed pyrolysis of the cell-wall constituents of biomass and their model compounds

    Energy Technology Data Exchange (ETDEWEB)

    Nowakowski, Daniel J.; Jones, Jenny M. [Energy and Resources Research Institute, School of Process, Environmental and Materials Engineering (SPEME), University of Leeds, Leeds, LS2 9JT (United Kingdom)

    2008-09-15

    Cell-wall components (cellulose, hemicellulose (oat spelt xylan), lignin (Organosolv)), and model compounds (levoglucosan (an intermediate product of cellulose decomposition) and chlorogenic acid (structurally similar to lignin polymer units)) have been investigated to probe in detail the influence of potassium on their pyrolysis behaviours as well as their uncatalysed decomposition reaction. Cellulose and lignin were pretreated to remove salts and metals by hydrochloric acid, and this dematerialized sample was impregnated with 1% of potassium as potassium acetate. Levoglucosan, xylan and chlorogenic acid were mixed with CH{sub 3}COOK to introduce 1% K. Characterisation was performed using thermogravimetric analysis (TGA) and differential thermal analysis (DTA). In addition to the TGA pyrolysis, pyrolysis-gas chromatography-mass spectrometry (PY-GC-MS) analysis was introduced to examine reaction products. Potassium-catalysed pyrolysis has a huge influence on the char formation stage and increases the char yields considerably (from 7.7% for raw cellulose to 27.7% for potassium impregnated cellulose; from 5.7% for raw levoglucosan to 20.8% for levoglucosan with CH{sub 3}COOK added). Major changes in the pyrolytic decomposition pathways were observed for cellulose, levoglucosan and chlorogenic acid. The results for cellulose and levoglucosan are consistent with a base catalysed route in the presence of the potassium salt which promotes complete decomposition of glucosidic units by a heterolytic mechanism and favours its direct depolymerization and fragmentation to low molecular weight components (e.g. acetic acid, formic acid, glyoxal, hydroxyacetaldehyde and acetol). Base catalysed polymerization reactions increase the char yield. Potassium-catalysed lignin pyrolysis is very significant: the temperature of maximum conversion in pyrolysis shifts to lower temperature by 70 K and catalysed polymerization reactions increase the char yield from 37% to 51%. A similar trend

  19. Preparation and characterization of nanostructured metal oxides for application to biomass upgrading Polar (111) metal oxide surfaces for pyrolysis oil upgrading and lignin depolymerization

    Science.gov (United States)

    Finch, Kenneth

    2013-01-01

    Pyrolysis oil, or bio-oil, is one of the most promising methods to upgrade a variety of biomass to transportation fuels. Moving toward a more "green" catalytic process requires heterogeneous catalysis over homogeneous catalysis to avoid extraction solvent waste. Nanoscale catalysts are showing great promise due to their high surface area and unusual surfaces. Base catalyzed condensation reactions occur much quicker than acid catalyzed condensation reactions. However, MgO is slightly soluble in water and is susceptible to degradation by acidic environments, similar to those found in fast-pyrolysis oil. Magnesium oxide (111) has a highly active Lewis base surface, which can catalyze Claisen-Schmidt condensation reactions in the organic phase. It has been shown previously that carbon coating a catalyst, such as a metal oxide, provides integrity while leaving the catalytic activity intact. Here, carbon-coated MgO(111) will be discussed with regards to synthesis, characterization and application to bio-oil upgrading through model compounds. Raman spectroscopy and HR-TEM are used to characterize the thickness and carbon-bonding environment of the carbon coating. Propanal self-condensation reactions have been conducted in the aqueous phase with varying amounts of acetic acid present. Quantitative analysis by gas chromatography was completed to determine the catalytic activity of CC-MgO(111). ICP-OES analysis has been conducted to measure the magnesium concentration in the product solution and give insight into the leaching of the catalyst into the reaction solution.

  20. Optimization and characterization of bio-oil produced by microwave assisted pyrolysis of oil palm shell waste biomass with microwave absorber.

    Science.gov (United States)

    Mushtaq, Faisal; Abdullah, Tuan Amran Tuan; Mat, Ramli; Ani, Farid Nasir

    2015-08-01

    In this study, solid oil palm shell (OPS) waste biomass was subjected to microwave pyrolysis conditions with uniformly distributed coconut activated carbon (CAC) microwave absorber. The effects of CAC loading (wt%), microwave power (W) and N2 flow rate (LPM) were investigated on heating profile, bio-oil yield and its composition. Response surface methodology based on central composite design was used to study the significance of process parameters on bio-oil yield. The coefficient of determination (R(2)) for the bio-oil yield is 0.89017 indicating 89.017% of data variability is accounted to the model. The largest effect on bio-oil yield is from linear and quadratic terms of N2 flow rate. The phenol content in bio-oil is 32.24-58.09% GC-MS area. The bio-oil also contain 1,1-dimethyl hydrazine of 10.54-21.20% GC-MS area. The presence of phenol and 1,1-dimethyl hydrazine implies that the microwave pyrolysis of OPS with carbon absorber has the potential to produce valuable fuel products.

  1. Investigation on the quality of bio-oil produced through fast pyrolysis of biomass-polymer waste mixture

    Science.gov (United States)

    Jourabchi, S. A.; Ng, H. K.; Gan, S.; Yap, Z. Y.

    2016-06-01

    A high-impact poly-styrene (HIPS) was mixed with dried and ground coconut shell (CS) at equal weight percentage. Fast pyrolysis was carried out on the mixture in a fixed bed reactor over a temperature range of 573 K to 1073 K, and a nitrogen (N2) linear velocity range of 7.8x10-5 m/s to 6.7x10-2 m/s to produce bio-oil. Heat transfer and fluid dynamics of the pyrolysis process inside the reactor was visualised by using Computational Fluid Dynamics (CFD). The CFD modelling was validated by experimental results and they both indicated that at temperature of 923 K and N2 linear velocity of 7.8x10-5 m/s, the maximum bio-oil yield of 52.02 wt% is achieved.

  2. Catalytic Upgrading of Biomass Fast Pyrolysis Vapors with Nano Metal Oxides: An Analytical Py-GC/MS Study

    Directory of Open Access Journals (Sweden)

    Qiang Lu

    2010-11-01

    Full Text Available Fast pyrolysis of poplar wood followed with catalytic cracking of the pyrolysis vapors was performed using analytical pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS. The catalysts applied in this study were nano MgO, CaO, TiO2, Fe2O3, NiO and ZnO. These catalysts displayed different catalytic capabilities towards the pyrolytic products. The catalysis by CaO significantly reduced the levels of phenols and anhydrosugars, and eliminated the acids, while it increased the formation of cyclopentanones, hydrocarbons and several light compounds. ZnO was a mild catalyst, as it only slightly altered the pyrolytic products. The other four catalysts all decreased the linear aldehydes dramatically, while the increased the ketones and cyclopentanones. They also reduced the anhydrosugars, except for NiO. Moreover, the catalysis by Fe2O3 resulted in the formation of various hydrocarbons. However, none of these catalysts except CaO were able to greatly reduce the acids.

  3. CFD analysis of combustion of natural gas and syngas from biomass pyrolysis in the combustion chamber of a micro gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    Fantozzi, Francesco; Laranci, Paolo; D' Alessandro, Bruno [University of Perugia (DII/UNIPG) (Italy). Dept. of Industrial Engineering], Emails: fanto@unipg.it, paolo.laranci@unipg.it, dalessandro@bio-net.it

    2009-07-01

    Micro gas turbines (MGT) can be profitably used for the production of distributed energy (DE), with the possibility to use gaseous fuels with low BTU derived from biomass or waste through the pyrolysis or gasification processes. These synthesis gases (SG) show significant differences with respect to natural gas (NG), in terms of composition, calorific value, content of hydrogen, tar and particulate matter content; such differences can be turn into problems of ignition, instability burning, difficulties in controlling the emissions and fouling. CFD analysis of the combustion process is an essential tool for identifying the main critical arising in using these gases, in order to modify existing geometries and to develop new generation of combustor for use with low BTU gases. This paper describes the activities of experimental and numerical analysis carried out to study the combustion process occurring inside an existing annular Rich-Quench-Lean (RQL) Combustion Chamber (CC) of a 80 kW MGT. In the paper some results of a CFD study of the combustion process performed with an original developed chemical models are reported in terms of temperature and velocity distributions inside the CC and in terms of compositions of turbine inlet gas and of its thermodynamic parameters (mass flow, temperature, pressure). An evaluation of pollutant emissions of CO, CO{sub 2} and NOx and a comparison with the available experimental data relating to the case of combustion of NG is also provided in the paper. Moreover, the carried out investigation concerns the case of operation with a SG fuel derived from biomass in an Integrated Pyrolysis Regenerated Plant (IPRP). (author)

  4. Formate-assisted pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    DeSisto, William Joseph; Wheeler, Marshall Clayton; van Heiningen, Adriaan R. P.

    2015-03-17

    The present invention provides, among other thing, methods for creating significantly deoxygenated bio-oils form biomass including the steps of providing a feedstock, associating the feedstock with an alkali formate to form a treated feedstock, dewatering the treated feedstock, heating the dewatered treated feedstock to form a vapor product, and condensing the vapor product to form a pyrolysis oil, wherein the pyrolysis oil contains less than 30% oxygen by weight.

  5. Effects of Pyrolysis Temperature on Characteristics of Biomass Char%热解温度对生物质半焦特征的影响

    Institute of Scientific and Technical Information of China (English)

    鲁许鳌; 冉旭; 郑小龙; 阎维平

    2012-01-01

    Mechanism-based pyrolysis experiments were carried out on rice husk and straw, during which physicochemical properties of the char were studied using TG, SEM, EDX and XDR, such as the pore structure, slagging characteristics, migration of chlorine and sulfur, and crystalline phase of the inorganic compound, etc. Results show that the pore structure of biomass char changes a lot at 500-800 ℃. When the pyrolysis temperature gets up to 1 000 ℃, the convex side of rice husk char will appear in melting state, while the straw char in melting and bounding condition. Most remaining of chlorine and sulfur will precipitate from the char at 800-1 000 ℃. The phase changes greatly and amorphous inorganic compound appears at a final pyrolysis temperature of 1 000 ℃ in the process of rice husk and straw pyrolysis.%对稻壳和稻秸进行了机理性热解试验,并采用TG、SEM、EDS和XDR方法研究和分析了半焦的孔隙结构、结渣特性、氯和硫元素迁移和无机化合物晶相等物化特性的变化规律.结果表明:在500~800℃,生物质热解半焦孔隙结构的变化较大.当热解温度为1000℃时,稻壳半焦的凸面呈现熔融现象,稻秸半焦呈现熔融黏结现象.在800~1000℃,半焦中剩余的氯和硫大部分会析出;在稻壳和稻秸热解过程中,当终温为1000℃时,物相发生较大变化并且出现非晶态的无机化合物.

  6. Pyrolysis and Gasification

    DEFF Research Database (Denmark)

    Astrup, Thomas; Bilitewski, B.

    2011-01-01

    Pyrolysis and gasification include processes that thermally convert carbonaceous materials into products such as gas, char, coke, ash, and tar. Overall, pyrolysis generates products like gas, tar, and char, while gasification converts the carboncontaining materials (e.g. the outputs from pyrolysis....... Today gasification is used within a range of applications, the most important of which are conversion of coal into syngas for use as chemical feedstock or energy production; but also gasification of biomass and waste is gaining significant interest as emerging technologies for sustainable energy. From...

  7. 基于三组分的生物质快速热解实验研究%EXPERIMENTAL STUDY OF BIOMASS RAPID PYROLYSIS BASED ON THREE COMPONENTS

    Institute of Scientific and Technical Information of China (English)

    赵坤; 肖军; 沈来宏; 瞿婷婷

    2011-01-01

    The rapid pyrolysis experimental research on biomass components(cellulose, hemicell-ulose and lignin)was carried out in the tube furnace, the effect of tempertature on the pyrolysis product(char, tar and uncondensable gas)yields was investigated. The results showed that the yield of three components pyrolysis char decreases with increasing reactive temperature, while the incondensable gas yield increases with increasing temperature, the tar yield increases first but decreases with increasing temperature and existed an optimal reaction temperature. The constituents of incondensable gas and tar are different with increasing temperture. Choose rice straw and cornstalk as materials, according to them different contents of cellulose, hemicellulose and lingin, superposition method was used to caculate product yield. By comparing the experimental and calculational results,the additivity law allow the product yields of a biomass to be correlated with its fractions of three components to some extent, the overall trend of the product yields are consistent but have a little discrepancies in the quantity.%在管式炉内对纤维素、半纤维素和木质素进行热解实验研究,考察热解温度对于热解产物(焦炭、焦油和不凝性气体)分布的影响.实验结果表明:随温度的升高,三组分热解产生的焦炭产量不断降低,气体产量不断增加,焦油产量先升后降,存在一最佳反应温度.不凝气体组分随温度变化有不同的变化趋势,焦油的组分也不同.选取稻秸和玉米秸秆为原料,按照这两种生物质中三组分含量的不同将纤维素、半纤维素和木质素的产物进行叠加,并与稻秸和玉米秆的热解实验结果作对比,分析三组分含量对于热解产物的影响.结果表明:按照三组分叠加的方法来考察生物质的热解在一定程度上是可行的,产物产量的总体趋势一致,在产量上稍有差异.

  8. Experimental Study on Adsorption Characteristics of SO2 and NO Using Biomass-pyrolysis Chars%生物质热解焦吸附模拟烟气中SO2和NO的实验研究

    Institute of Scientific and Technical Information of China (English)

    卢平; 陆飞; 树童; 王秦超

    2012-01-01

    以麦秆、稻秆、棉花秆、玉米秆和稻壳等5种生物质原料为对象,在热解温度Tp=673~1 073 K范围内,采用快速热解和慢速热解方式制备了生物质焦,利用固定床吸附反应装置研究了焦粒粒径、热解温度、热解速率、烟气组成、吸附反应温度和生物质种类等因素对生物质焦吸附模拟烟气中SO2、NO的影响.结果表明:生物质焦对SO2的吸附效率和吸附量随着生物质焦粒径的减小而增加,但其增加趋势逐步减小.随着热解温度升高,生物质焦对SO2的吸附效率和吸附量均呈现先上升后下降的趋势.快速热解生物质焦对SO2和NO的单独吸附效率和吸附量均高于慢速热解焦.生物质焦对SO2和NO的吸附效率和吸附量均随着吸附反应温度的升高而下降.生物质焦对SO2吸附能力显著优于吸附NO的能力,模拟烟气中SO2组分对NO吸附具有显著促进作用.SO2和NO同时吸附时,WS-RP873型生物质焦对SO2的吸附量较单独吸附时减少了22.3%,但其对NO吸附量却提高了112%.在Tp=873 K快速热解条件下,各种生物质焦对SO2吸附量顺序为麦秆焦>玉米秆焦>稻秆焦>稻壳焦>棉花秆焦,对NO吸附量顺序为麦秆焦>稻秆焦>玉米秆焦>稻壳焦>棉花秆焦.%Biomass-pyrolysis chars were prepared under rapid pyrolysis and slow pyrolysis at pyrolysis temperature (Tp) of 673-1073 K from five kinds of biomass named wheat straw, rice straw, cotton stalk, maize stalk and rice husk. The effects of biomass char particle size, pyrolysis temperature, pyrolysis rate, composition of the simulated flue gas, adsorption reaction temperature, and biomass type on adsorption characteristics of SO2 and NO by using biomass-pyrolysis chars were carried out experimentally in a fixed-bed reactor. The results indicate that adsorption efficiency and adsorption capacity of SO2 over biomass-pyrolysis chars increase with decreasing the particle size of biomass chars

  9. 桉树类生物质热解及产物释放特性研究%Study on pyrolysis of eucalyptus biomass and releasing characteristics of products

    Institute of Scientific and Technical Information of China (English)

    李莉; 宋景慧; 马晓茜; 湛志钢

    2013-01-01

    The pyrolysis processing of eucalyptus biomass including branch and bark in different heating rates and their releasing characteristics of products were carried out by thermogravimetric analysis (TGA) coupled with fourier transform infrared spectrometry (FTIR) system, the difference of pyrolysis mechanism between two eucalyptus biomass was further analyzed. The results indicate that there are mainly three stages during the processing of eucalypt branch pyrolysis which are drying process, pyrolysis process and carbonating process. During the process of pyrolysis, many kinds of gaseous organic compounds are released, with faster rate of pyrolysis reaction compare to eucalypt brak. The pruducts mainly are many organic gas and little CO2 and CO. The processing of eucalypt brak pyrolysis is more complicated, which main has five stages including drying, deeply drying, pyrolysis, carbonating and deeply carbonating processing in higher temperature, with lower pyrolysis rate. It has similar gaseous products during the processing of pyrolysis compared with eucalypt branch. However, there exited vigorously carbonating reaction during the temperature range of 450~550 ℃ and 650~800 ℃, with CO2 and CO as the main gaseous products.%采用热重红外联用方法研究不同升温速率下桉树枝和桉树皮的热解特性和热解气体产物的释放特性,对比分析两者的差异性及差异机理.结果表明:桉树枝热解过程主要分为干燥、热解和碳化3个阶段,热解速率较快,气体产物释放主要集中在热解阶段进行,主要气体产物有烷烃、醇、酚、醛、羧酸、酮等多种有机气体产物和少量CO,CO2;桉树皮热解过程分为干燥、进一步干燥、热解反应、碳化及高温持续碳化5个阶段,相比桉树枝热解速率明显较低.桉树皮热解反应阶段在450~550℃和650~800℃两个高温区间存在较为剧烈的碳化反应过程,主要气体产物为CO2和CO.

  10. Kinetics of the pyrolysis of arundo, sawdust, corn stover and switch grass biomass by thermogravimetric analysis using a multi-stage model.

    Science.gov (United States)

    Biney, Paul O; Gyamerah, Michael; Shen, Jiacheng; Menezes, Bruna

    2015-03-01

    A new multi-stage kinetic model has been developed for TGA pyrolysis of arundo, corn stover, sawdust and switch grass that accounts for the initial biomass weight (W0). The biomass were decomposed in a nitrogen atmosphere from 23°C to 900°C in a TGA at a single 20°C/min ramp rate in contrast with the isoconversion technique. The decomposition was divided into multiple stages based on the absolute local minimum values of conversion derivative, (dx/dT), obtained from DTG curves. This resulted in three decomposition stages for arundo, corn stover and sawdust and four stages for switch grass. A linearized multi-stage model was applied to the TGA data for each stage to determine the pre-exponential factor, activation energy, and reaction order. The activation energies ranged from 54.7 to 60.9 kJ/mol, 62.9 to 108.7 kJ/mol, and 18.4 to 257.9 kJ/mol for the first, second and the third decomposition stages respectively.

  11. Fabrication of Biomass-Derived Carbon Aerogels with High Adsorption of Oils and Organic Solvents: Effect of Hydrothermal and Post-Pyrolysis Processes

    Directory of Open Access Journals (Sweden)

    Aishu Yin

    2016-09-01

    Full Text Available Biomass is the most plentiful and well-utilized renewable carbon resource on the earth. Direct conversion of biomass to carbon aerogel provides a promising approach to develop adsorbent materials. In the present work, the effect of presence of water during hydrothermal treatment and holding temperature during post-pyrolysis process have been investigated for the preparation of carbon aerogels (CAs using eggplant as raw material. The results showed that the addition of water during hydrothermal treatment was advantageous for the preparation of CA samples with higher surface area and stronger hydrophobicity, resulting in superior adsorption capacities of CAs for both oil and organic solvents compared with that fabricated without the presence of water. The optimized carbon aerogel possessed higher specific surface of 249 m2·g−1 and exhibited excellent hydrophobicity with a water contact angle of 133°. The adsorption capacities of carbon aerogel for oils and organic solvents could reach 35–45 times its own weight. In addition, the adsorbed oil and organic solvents could be recovered by distillation, and the regenerated carbon aerogels samples exhibited the stable performance and outstanding reusability. Therefore, the carbon aerogel has great potential in application of oil recovery and environmental protection.

  12. Exploratory studies on fast pyrolysis oil upgrading

    NARCIS (Netherlands)

    Mahfud, Farchad Husein

    2007-01-01

    Pyrolysis oil is a dark brown liquid which can be produced in high yield from different kind of biomass sources by means of fast pyrolysis. Pyrolysis oil is considered as a promising second generation energy carrier and may play an important role in the future of "biobased economies". The energy con

  13. Enhancement of bio-oil production via pyrolysis of wood biomass by pretreatment with H2SO4.

    Science.gov (United States)

    Kumagai, Shogo; Matsuno, Ryo; Grause, Guido; Kameda, Tomohito; Yoshioka, Toshiaki

    2015-02-01

    In this work, a Japanese cedar wood sample was treated during the first step at ambient temperature and atmospheric pressure using several concentrations of sulfuric acid (H2SO4) in a stirred flask. During this pretreatment C-O bonds of cellulose, hemicellulose, and lignin were cleaved. The second step involved the pyrolysis of the pretreated wood sample at 550 °C in a quartz glass tube reactor. A maximum oil yield of 46.8 wt% with the minimum char yield of 10.1 wt% was obtained by the treatment with 3 M H2SO4, whereas untreated wood samples resulted in a 30.1 wt% yield of oil. The main components in the oils were levoglucosan and tar. These results suggest that moderate acid pretreatment produced shorter chain units of cellulose, hemicellulose, and lignin, thereby facilitating the conversion into oil by pyrolysis. The results of thermogravimetry-mass spectroscopy supported the presence of shorter chain units in the pretreated wood samples.

  14. 生物质与低阶煤低温共热解转化研究%STUDY ON LOW TEMPERATURE CO-PYROLYSIS OF BIOMASS AND LOW RANK COAL

    Institute of Scientific and Technical Information of China (English)

    何选明; 潘叶; 陈康; 吴梁森

    2012-01-01

    将野生浮萍与长焰煤以不同比例掺混,采用自行设计的煤干馏实验装置进行生物质与煤共热解实验,对液体产物煤焦油进行GC-MS分析,以探索生物质与煤低温共热解的反应及煤焦油轻质化规律.同时采用热重分析仪,探讨生物质添加对煤热解过程的影响机理.结果表明,随着混合样品中生物质量的增加,焦油收率增大10%左右,焦油中直链烷烃及高附加值的萘、酚和芴等化合物得到一定的富集,实现了低温煤焦油轻质化的目的.样品失重率增大,TG曲线向低温区移动,热解活化能逐渐减小,长焰煤、生物质及其混合物热分解动力学模型符合准一级动力学方程,两者的掺混促进了整个反应的进行.%Co-pyrolysis characteristics of low rank coal mixed with biomass(duckweed )in different proportions were studied in a dry distillation equipment, and focusing on the coal tar of the product with GC-MS in order to investigate the reaction mechanism of the co-pyrolysis between biomass and coal. Furthermore, the research studied on the pyrolysis mechanism with bio-mass added by thermogravimetric analyzer. The results show that low-temperature tar could be upgraded with the increasing of biomass content, straight chain alkanes and high-value chemicals such as naphthalene, phenol, anthracene were enriched. The biomass can do favor to the pyrolysis process of coal by reducing the temperature of coaPs pyrolysis and active energy(E), The co-pyrolysis process belongs to first-order kinetic reaction, and the synergetic effect was found during coal and biomass co-prolysis by comparing with the individual pyrolysis.

  15. Effects of pyrolysis pressure on the properties and gasification reactivities of biomass chars%热解压力对生物质焦结构及气化反应性能的影响

    Institute of Scientific and Technical Information of China (English)

    丁亮; 张永奇; 黄戒介; 王志青; 房倚天

    2014-01-01

    Biomass chars were prepaer d under different pyrolysis pressurse in a pressurized fixed bed reactor. The evolution of chemical composition and physical structure of the biomass chars with the change of pyrolysis pressure were observed by BET, XRD, CHNS elemental analyzer and ICP-AES.The reactivit se of biomass c hars were evaluated by a thermgo ravimetric analyzer.The results show tah t the yields of biomsa s chars increase w ith ni creasing pyrlo ysis pressure, but reach a plateau above 1.0 MPa.With increasing pyrolysis pres ure C content in biomass chars icn reases, whiel H content and BET surface aread ecrease.The degree of graphitization of corn stalk char and sawdust char increases with increasing pyrolysis pressure, while thta of rice huks char shows almost no dependence on pyrolysis pressure.The average gasification rates of corn stalk char and sawdust char all decrease with increasing pyrolysis pressure, while pyrolysis pressure has little influence on the gasification rate of rice husk char.Compared the evolution of BETs urface area and carbon crystallti e structure of biomass chars with biomass char gasification rate, it shows that the difference of carbon crystallite structure of biomass chars, which was brought out by the change of pyrolysis pressure, mainly contributes to the difference of gasification rate of biomass chars prepared under different pyrolysis pressures.%利用加压固定床反应器、吸附仪、X射线衍射仪、元素分析仪、电感耦合等离子原子发射光谱仪等考察了热解压力对生物质半焦(以下简称半焦)产率、物化结构、元素组成的影响规律。同时,利用热天平对不同热解压力下所制半焦的气化行为进行了考察。结果表明,随热解压力升高,半焦产率增大,当压力升至1.0 MPa后,半焦产率基本不变;半焦中C元素含量随热解压力的升高而增加,而H元素含量和BET比表面积则减小;此外,随热解压力升高,

  16. Effect of temperature and AAEM species on fast pyrolysis of biomass tar%热解温度及AAEM元素对生物质快速热解焦油的影响

    Institute of Scientific and Technical Information of China (English)

    冯冬冬; 赵义军; 唐文博; 张宇; 钱娟; 孙绍增

    2016-01-01

    生物质热解受热解温度、热解速率和碱金属及碱土金属(AAEM)元素影响显著。利用热裂解气相色谱质谱联用法(Py-GC/MS)针对热解温度及AAEM元素对生物质快速热解焦油的影响展开深入研究,通过样品热解前后的失重情况分析了热解温度及AAEM元素对生物质(稻壳和木屑、酸洗稻壳和酸洗木屑)热解特性的影响规律,利用气相色谱质谱仪(GC/MS)对热解焦油组分及含量进行了在线半定量分析,并对热解焦油组分分子量分布情况展开了讨论。结果表明生物质Py-GC/MS快速热解实验,酸洗脱除AAEM元素致使热解失重率减小。500~900℃范围内随温度的升高,大分子焦油成分逐渐减少,逐渐转化为轻质组分。AAEM 元素限制了焦油前体的聚合,进一步抑制了含氧杂环类碳环(糠醛等)的生成。稻壳的热解焦油的相对分子质量主要分布在110~129。木屑快速热解焦油产率明显高于稻壳,且热解焦油中分子量分布广泛,含有更多较大分子量(150~209)的化合物成分。%Pyrolysis temperature, heating rate, alkali metal and alkaline earth metal (AAEM) species have significant effects on biomass pyrolysis. In this paper, by using the pyrolysis gas chromatography mass spectrometry (Py-GC/MS), the effect of temperature and AAEM species on fast pyrolysis of the biomass tar was investigated. The influence of pyrolysis temperature and AAEM species on the pyrolysis characteristics of biomass (rice husk and sawdust, H-form rice husk and H-form sawdust) was analyzed by means of mass loss of samples. The online semi quantitative analysis of pyrolysis tar was carried out by gas chromatography mass spectrometry (GC/MS). The distribution of molecular weight of pyrolysis tar was discussed. The results showed that during fast pyrolysis of biomass, the removal of AAEM species reduced the mass loss rate. With increasing pyrolysis temperature in

  17. Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels: Thermochemical Research Pathways with In Situ and Ex Situ Upgrading of Fast Pyrolysis Vapors

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Abhijit [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sahir, A. H. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tan, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Humbird, David [DWH Process Consulting, Denver, CO (United States); Snowden-Swan, Lesley J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Meyer, Pimphan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ross, Jeff [Harris Group, Inc., Seattle, WA (United States); Sexton, Danielle [Harris Group, Inc., Seattle, WA (United States); Yap, Raymond [Harris Group, Inc., Seattle, WA (United States); Lukas, John [Harris Group, Inc., Seattle, WA (United States)

    2015-03-01

    This report was developed as part of the U.S. Department of Energy’s Bioenergy Technologies Office’s efforts to enable the development of technologies for the production of infrastructure-compatible, cost-competitive liquid hydrocarbon fuels from biomass. Specifically, this report details two conceptual designs based on projected product yields and quality improvements via catalyst development and process integration. It is expected that these research improvements will be made within the 2022 timeframe. The two conversion pathways detailed are (1) in situ and (2) ex situ upgrading of vapors produced from the fast pyrolysis of biomass. While the base case conceptual designs and underlying assumptions outline performance metrics for feasibility, it should be noted that these are only two of many other possibilities in this area of research. Other promising process design options emerging from the research will be considered for future techno-economic analysis. Both the in situ and ex situ conceptual designs, using the underlying assumptions, project MFSPs of approximately $3.5/gallon gasoline equivalent (GGE). The performance assumptions for the ex situ process were more aggressive with higher distillate (diesel-range) products. This was based on an assumption that more favorable reaction chemistry (such as coupling) can be made possible in a separate reactor where, unlike in an in situ upgrading reactor, one does not have to deal with catalyst mixing with biomass char and ash, which pose challenges to catalyst performance and maintenance. Natural gas was used for hydrogen production, but only when off gases from the process was not sufficient to meet the needs; natural gas consumption is insignificant in both the in situ and ex situ base cases. Heat produced from the burning of char, coke, and off-gases allows for the production of surplus electricity which is sold to the grid allowing a reduction of approximately 5¢/GGE in the MFSP.

  18. Biomass thermochemical conversion - overview of results; Biomassan jalostus - tutkimusalueen katsaus

    Energy Technology Data Exchange (ETDEWEB)

    Sipilae, K. [VTT Energy, Espoo (Finland). Energy Production Technologies

    1995-12-31

    In this Bioenergy research program the thermochemical conversion activities are mainly concentrated in three fields (1) flash pyrolysis and the use of wood oil in boilers and engines (2) biomass gasification for gas engine power plants and finally (3) conversion of black liquor and extractives in a pulp mill to various liquid fuels. Parallel to activities in Finland also significant work has been done in EU-Joule and Apas projects and in the IEA Bioenergy Agreement. In the area of flash pyrolysis technology, three new laboratory and PDU-units have been installed to VTT in order to produce various qualities of bio oils from wood and straw. The quality of pyrolysis oils have been characterized by physical and chemical methods supported by EU and IEA networks. Several companies are carrying out pyrolysis activities as well: Neste Oy is testing the wood oil in a 200 kW boiler, Waertsilae Diesel Oy is testing Canadian wood oil in a 1.5 MWe diesel power plant engine and Vapo Oy is carrying out investigations to produce pyrolysis oils in Finland. The biomass gasification coupled to a gas engine is an interesting alternative for small scale power production parallel to existing fluid bed boiler technology. VTT has installed a circulating fluid bed gasifier with advanced gas cleaning system to test various technologies in order to feed the gas to an engine. In order to produce liquid fuels at a pulp mill, the laboratory work has continued using crude soap as a raw material for high pressure liquid phase treatment and atmospheric pyrolysis process. The quality of the oil is like light fuel oil or diesel fuel, possibilities to use it as a lubricant will be investigated

  19. 不同温度热解残余生物质半焦对磷的吸附%Phosphate Adsorption of Residual Biomass Char by Pyrolysis

    Institute of Scientific and Technical Information of China (English)

    彭峰; 何丕文

    2011-01-01

    [ Objective ] The aim was to study adsorption of phosphorus in water by residual biomass char. [ Method ] The adsorption kinetics and isotherm of phosphate by biomass char obtained at different temperatures were studied. The pseudo first-order, pseudo second-order, intra-particle diffusion models and Langmuir, Freundlich isotherm models were employed to fit experimental data. [ Result ] The results showed that the adsorption of phosphate followed the pseudo second-order kinetics model and the equilibrium adsorption capacity and adsorption rate increased with the increasing of pyrolysis temperature. The adsorption isotherm was described by Freundlich model, which suggested that multiple processes controlled the serption of phosphate by biomass char. The adsorption activation energy of biomass chars at different temperatures were 10.86, 11.27 and 10.95 kJ/mol, which indicated that it belonged to physics adsorption. [ Conlusion ] The biomass char was approved that it had a good effect on adsorbing phosphate .%[目的]研究生物质热解制备生物油的残余半焦对水中磷的吸附性能.[方法]研究了不同温度(550、650和750 ℃)热解半焦吸附磷的动力学和等温线,分别采用准一级、准二级和颗粒内扩散3种模型及Langmuir、Freundlich等温吸附方程对实验数据进行拟合.[结果]结果表明准二级动力学模型能较好描述磷在半焦表面的吸附行为,平衡吸附量和吸附速率随着热解温度的升高而增加.此外,等温吸附过程能较好地用Freundlich吸附等温线方程描述,表明磷在半焦表面的吸附受多种机制影响.3种温度下热解所得半焦对磷的吸附活化能分别为10.86、11.27和10.95 kJ/mol,说明该吸附过程主要为物理吸附.[结论]生物质热解半焦对水中磷具有良好的吸附去除效果.

  20. 生物质热解氯的析出机制研究%Mechanism Study of Chlorine Release During Biomass Pyrolysis

    Institute of Scientific and Technical Information of China (English)

    吴鹏; 余春江; 柏继松; 李廉明; 黄芳

    2013-01-01

    以稻草为主要研究对象,以含氯生物质模化物为对照,通过管式炉、热重红外联用以及理论计算,对生物质中无机氯的热解析出机制进行探索.管式炉热解试验表明:低温下(200~600℃)稻草和模化物中的KC1可以与活性基团反应而析出HCl;灰成分对低温条件下氯析出的过程可能有催化促进作用;模化物中的氯在高温区(>600℃)主要以气态碱金属氯化物形式析出.TG-FTIR试验表明:稻草热解脱挥发分过程与HCl的析出之间存在直接的关联;管式炉稻草热解过程在较低温度条件下析出的Cl是HCl;在高温区,碱金属氯化物和灰成分SiO2之间未发生显著的化学反应.理论计算表明:生物质中的Cl是以碱金属氯化物形式存在的;碱金属氯化物在高温下(>700℃)主要以蒸汽态进入气相;碱金属氯化物与SiO2的反应在高温下(800~900℃)可以进行.%Taking straw as a study object and a chlorine-based biomass model compound as a reference, the author analyzed the release mechanism of Cl during biomass pyrolysis by tube furnace, thermogravimetric-Fourier transform infrared spectroscopy(TG-FTIR) and theoretical calculation. Tube furnace pyrolysis tests show that KC1 in straw and model compound reacts with organic functional groups and generates HC1 at 200—600℃; straw ash might promote the release of chlorine under low temperature; and chlorine in the model compound releases in the form of gaseous alkali metal chlorides at temperature above 600 ℃. TG-FTIR results show that the release of HC1 relates directly with the release of volatile components; Cl is released in the form of is HC1 at low temperature during the tube furnace pyrolysis tests; chemical reaction between alkali metal chlorides and SiO2 is not significant at high temperature. Theoretical calculations show that Cl of biomass exists in the form of alkali metal chlorides; the alkali metal chlorides would go into gas phase at high

  1. On the atomization and combustion of liquid biofuels in gas turbines: towards the application of biomass-derived pyrolysis oil

    NARCIS (Netherlands)

    Sallevelt, Johan Leonard Hendrik Pieter

    2015-01-01

    The combustion of liquid biofuels in gas turbines is an efficient way of generating heat and power from biomass. Gas turbines play a major role in the global energy supply and are suitable for a wide range of applications. However, biofuels generally have different properties compared to conventiona

  2. Fast pyrolysis of biomass in fluidized bed reactor UNICAMP, Brazil: problems, causes and solutions; Pirolise rapida de biomassa em reator de leito fluidizado UNICAMP-Brasil: problemas, causas e solucoes

    Energy Technology Data Exchange (ETDEWEB)

    Mesa Perez, Juan Miguel; Marin Mesa, Henry Ramon [Bioware Tecnologia, Campinas, SP (Brazil); Rocha, Jose Dilcio; Olivares Gomez, Edgardo [Universidade Estadual de Campinas (NIPE/UNICAMP), SP (Brazil). Nucleo Interdisciplinar de Planejamento Energetico; Cortez, Luis Augusto Barbosa; Shimabukuro, Fabio Rodrigo; Vallin, Marco Jim Gui [Universidade Estadual de Campinas (FEAGRI/UNICAMP), SP (Brazil). Fac. de Engenharia Agricola

    2006-07-01

    The fluidized bed reactor developed by the researchers of the UNICAMP in the installations of the Sugar Cane Technology Center (CTC), in Piracicaba-SP, is the first reactor of biomass fast pyrolysis in Brazil to produce bio-oil. In this work the problems of operation with the reactor in functioning are presented as the emptying of gases produced in the pyrolysis by means of the biomass feeding system, the block of the thread of biomass feeding, the inert material sintering in the bed, etc. The possible causes are described. Thus it, the first ones could be solved, either by the reduction of the height of the inert bed, or by the increase of the wadding percentage of the thread, among others. These results of the exploratory tests make possible the steady work of the plant, greater knowledge of the phenomena that occur during the fast pyrolysis in flutizide bed, as well as the establishment of adjusted levels for the identified independent factors during the remaining experimental works. (author)

  3. Results of a demonstration experiment: Hydrogenation of pyrolysis oils from biomass; Ergebnisse eines Demonstrationsversuchs zur Hydrierung von Pyrolyseoelen aus Biomassen

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, M. [DMT-Gesellschaft fuer Forschung und Pruefung mbH, Essen (Germany)

    1998-09-01

    Sump phase hydrogenation is a technique specially developed for coal liquefaction; it provides a possibility of processing the liquid products of biomass pyrolyis into high-grade carburettor fuels. A demonstration experiment was carried out at the hydrogenation plant of DMT. The plant has a capacity of 10 kg/h. The technical feasibility of hydrogenation of biomass oils was demonstrated in a continuous experiment. The contribution describes the experimental conditions, yields, and product qualities. (orig.) [Deutsch] Die fuer die Kohleverfluessigung entwickelte Sumpfphasenhydrierung bietet die Moeglichkeit, die Fluessigprodukte der Pyrolyse von Biomassen zu hochwertigen Vergaserkraftstoffen zu veredeln. Im Hydriertechnikum der DMT wurde hierzu ein Demonstrationsversuch durchgefuehrt. Die Anlage ist fuer einen Kohledurchsatz von 10 kg/h ausgelegt. In einem kontinuierlichen Versuchslauf wurde mit dieser Anlage die technische Machbarkeit der Hydrierung von Bio-Oelen demonstriert. In dem vorliegenden Beitrag werden die Versuchsbedingungen, Ausbeuten und Produktqualitaeten vorgestellt. (orig.)

  4. 固定床反应器中生物质/废塑料共热解制备燃料油%Co-pyrolysis of biomass and waste plastic for biofuel in fixed-bed reactor

    Institute of Scientific and Technical Information of China (English)

    徐艺; 陈宇; 华德润; 吴玉龙; 杨明德; 陈镇; 唐娜

    2013-01-01

    Thermal pyrolysis of different biomass (sawdust, straw) and plastic (polypropylene, poly vinyl chloride) and synergistic effects of co-pyrolysis of biomass and plastic were investigated with TGA. In fixed-bed reactor the influence of plastic content on co-pyrolysis of biomass and plastic was discussed, and the produced bio-oil was analyzed with elemental analysis and GC-MS. The results showed that significant synergy was present in the co-pyrolysis process of biomass and plastic, especially in the co-pyrolysis process of sawdust and polypropylene the synergistic effect was the most prominent. When the content of polypropylene was 80%, bio-oil yield was the highest, obviously higher than that of separate pyrolysis. And the results of elemental and GC-MS analysis showed that the bio-oil had a higher hydrogen content and its calorific value was equal to that of the crude oil equivalent.%通过热重分析不同生物质(木屑和秸秆)单独热解以及与塑料(PP和dcPVC)共热解时的热解行为,研究了生物质与塑料共热解过程中的协同作用.在固定床反应器中考察了塑料的含量对生物质/塑料共热解的影响,最后通过元素分析和GC-MS对所得生物油进行了分析.研究结果表明:生物质和塑料共热解过程中存在明显的协同作用.木屑和PP共热解过程中的协同作用最为显著,当PP含量为80%时,所得生物油的产率最高,明显高于两者单独热解得到的生物油.元素分析和GC-MS分析结果表明:木屑和PP所得生物油的含氢量较高,所得到生物油的热值与石化燃油的相近.

  5. An experimental investigation into the formation of polycyclic-aromatic hydrocarbons (PAH) from pyrolysis of biomass materials

    Energy Technology Data Exchange (ETDEWEB)

    McGrath, T.; Sharma, R.; Hajaligol, M. [Philip Morris USA, Richmond, VA (United States). Research Center

    2001-10-09

    The formation of polycyclic-aromatic hydrocarbons (PAH) from the pyrolysis of cellulose, pectin and chlorogenic acid was studied. The primary product, mostly primary volatile tar, was exposed to a higher thermal severity i.e. high temperatures and long residence times. The reactor setup consisted of a quartz tube with two zones, zone I and II, each heated and controlled separately. Zone I was used to first pyrolyse the substrate at 300{degree}C to produce a low temperature tar (LTT) as well as to pyrolyse the product char at 600{degree}C to produce a high temperature tar (HTT). The LTT and HTT were then subjected to a high thermal severity in the second zone (zone II) where the temperature was varied between 700 and 850{degree}C. The residence time of the volatiles in zone II was varied between ca. 90 and 1400 ms (calculated at 800{degree}C). The results show that the yield of most PAHs increased with temperature, except in a few cases where the yield of two- and three-ring PAHs exhibited a maximum. PAHs yields also generally increased as the residence time was increased from 90 to 1400 ms at 800{degree}C. 19 refs., 9 figs., 2 tabs.

  6. Development of biomass pyrolysis volatiles fractional condenser%生物质热解挥发物两级冷凝器的设计

    Institute of Scientific and Technical Information of China (English)

    蒋恩臣; 熊磊明; 王明峰; 苏旭林; 郭信辉; 赵创

    2014-01-01

    根据生物质连续热解挥发物中焦油、木醋液和可燃气的冷凝特性,设计生物质处理量为3 kg·h-1挥发物的两级冷凝器,其中第一级冷凝器用于分离焦油,第二级冷凝器用于分离木醋液。为解决热解挥发物携带的炭粉颗粒在一级冷凝器中与焦油混合,导致一级冷凝器堵塞的问题,提出一种热解挥发物先进入大管径冷凝管再进入小管径冷凝管的冷凝方案,计算该冷凝器传热系数及换热面积,确定结构尺寸,并进行试验研究。结果表明,该设计方案可有效解决热解挥发物易堵塞问题,同时具有较好的木醋液和焦油分离效率,采用分级冷凝工艺收集的焦油和木醋液在静置2个月后无分层现象,焦油含水率由直接冷凝的26%降低到1.5%。%According to the condensing features of tar, wood vinegar and combustible gas by biomass continuous pyrolysis, the two-stage condenser with biomass processing capacity of 3 kg/h was designed. In this apparatus, the first-stage condenser was used for separating tar and the second-stage condenser was used for separating wood vinegar. In order to solve the problem that carbon powder particles from pyrolysis volatiles mixing with the tar in the first-stage condenser lead to block the first-stage condenser a project-pyrolysis volatiles entering into the big diameter condenser pipe first and then entering into the small diameter condenser pipe was proposed. The condenser heat transfer coefficient and heat transfer area were calculated to determine the structure size. The results showed that this kind of design scheme could effectively solve the problem which condenser was easy blocked, meanwhile, it could separate wood vinegar and tar efficiently, after two months standing the tar and wood vinegar collected by fractional condensation system were still not appear layering. Contrast direct condensation the moisture content of tar was decreased from 26%to 1.5%.

  7. 生物质热解焦对模拟烟气中汞吸附特性的实验研究%Experimental Study of Mercury Adsorption Characteristics of Biomass-pyrolysis Chars in the Simulated Flue Gas

    Institute of Scientific and Technical Information of China (English)

    树童; 王秦超; 卢平

    2012-01-01

    Different kinds of biomass-pyrolysis chars were prepared from four kinds of biomass named mulberry twig (MT) , nut shell (NS) , wheat straw (WS) , and rice husk (RH) in a fixed-bed pyrolysis reactor. The specific surface areas and pore structure parameters were measured by a surface area analyzer. The mercury adsorption characteristics of the biomass-pyrolysis chars were carried out in a fixed-bed adsorption reactor. The effects of biomass type, pyrolysis temperature, adsorption temperature and initial mercury concentration on mercury adsorption characteristics were investigated. The results indicated that: ( 1 ) At the same conditions of pyrolysis and adsorption reaction, the adsorption char- acteristics of NS char were the best, MT char and WS chars were in middle, and RS char was the worst. (2) At the py- rolysis temperatures of 400℃- 600℃, biomass chars pyrolyzed at 600℃ showed the best adsorption characteristics, and biomass chars pyrolyzed at 400℃ performed the worst adsorption characteristics. ( 3 ) The unit mercury adsorption capacity of biomass-pyrolysis chars decreased with increasing the adsorption temperature significantly at the adsorption temperature of 60℃-120℃. (4) The unit adsorption capacity of biomass-pyrolysis chars decreased slightly with increasing initial mercury concentration at the initial mercury concentration of 13.5 μg/m3 - 38.1 μg/m3.%以桑树枝、核桃壳、麦秆和稻秆4种生物质为原料,利用固定床热解实验台制备不同的生物质热解焦,采用比表面积与孔隙度分析仪测量了生物质热解焦的比表面积及其孔隙结构参数.利用固定床吸附实验装置,研究了生物质种类、热解温度、吸附温度及汞初始浓度等因素对模拟烟气中汞吸附性能的影响.结果表明:(1)在相同的热解和吸附条件下,核桃壳热解焦的吸附效果最好,其次是桑树枝热解焦和麦秆热解焦,稻秆热

  8. 大颗粒生物质高温热解模型的建立及数值模拟%CONSTRUCTION OF LARGE BIOMASS HIGH TEMPERATURE PYROLYSIS MODEL AND NUMERICAL SIMULATION

    Institute of Scientific and Technical Information of China (English)

    齐国利; 董芃; 张玉; 谈和平

    2011-01-01

    Through analysing the physico-chemical characteristics and pyrolysis mechanism of biomass deeply, bio-mass pyrolysis model under high temperature was built. Coupling the heat transfer equation with the chemical kinetics equations and solving them numerically using the fourth order Runge-Kutta and TDMA method, and the computation results were compared with experimental date. The simulation results shown that temperature rate of increase is high at the radial position close to face compared to that at the centre of the particle; As the particle radius increases , the time of completion of pyrolysis increases; Macromolecular tar begin to fast pyrolysis when ambient temperature reach 1273K, and as the temperature is higher, the tar pyrolysis rate is faster, when temperature come to 1673 K, the macromolecular tar is almost cracked completely.%通过对生物质理化特性和热解机理的深入分析,建立了高温条件下生物质热解模型.耦合生物质热解化学反应动力学方程和传热方程,用四阶龙格库塔法和三角追赶法求解,并将计算结果与文献中的实验数据进行对比.模拟结果表明:在径向位置颗粒中心温度的增加速率比表面的增加速率高;随着颗粒粒径的增加,生物质热解完成所需的时间加长;大分子焦油在1273K以上才开始快速裂解,温度越高裂解速率越快,当温度达到1673K时,大分子焦油几乎裂解完全.

  9. Characterization and Catalytic Upgrading of Crude Bio-oil Produced by Hydrothermal Liquefaction of Swine Manure and Pyrolysis of Biomass

    Science.gov (United States)

    Cheng, Dan

    The distillation curve of crude bio-oil from glycerol-assisted hydrothermal liquefaction of swine manure was measured using an advanced distillation apparatus. The crude bio-oil had much higher distillation temperatures than diesel and gasoline and was more distillable than the bio-oil produced by the traditional liquefaction of swine manure and the pyrolysis of corn stover. Each 10% volumetric fraction was analyzed from aspects of its chemical compositions, chemical and physical properties. The appearance of hydrocarbons in the distillates collected at the temperature of 410.9°C and above indicated that the thermal cracking at a temperature from 410°C to 500°C may be a proper approach to upgrade the crude bio-oil produced from the glycerol-assisted liquefaction of swine manure. The effects of thermal cracking conditions including reaction temperature (350-425°C), retention time (15-60 min) and catalyst loadings (0-10 wt%) on the yield and quality of the upgraded oil were analyzed. Under the optimum thermal cracking conditions at 400°C, a catalyst loading of 5% by mass and the reaction time of 30 min, the yield of bio-oil was 46.14% of the mass of the crude bio-oil and 62.5% of the energy stored in the crude bio-oil was recovered in the upgraded bio-oil. The upgraded bio-oil with a heating value of 41.4 MJ/kg and viscosity of 3.6 cP was comparable to commercial diesel. In upgrading crude bio-oil from fast pyrolysis, converting organic acids into neutral esters is significant and can be achieved by sulfonated activated carbon/bio-char developed from fermentation residues. Acitivated carbon and bio-char were sulfonated by concentrated sulfuric acid at 150°C for 18 h. Sulfonation helped activated carbon/bio-char develop acid functional groups. Sulfonated activated carbon with BET surface area of 349.8 m2/g, was effective in converting acetic acid. Acetic acid can be effectively esterified by sulfonated activated carbon (5 wt%) at 78°C for 60 min with the

  10. Proceedings of the Biomass Pyrolysis Oil Properties and Combustion Meeting, 26-28 September 1994, Estes Park, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Milne, T.

    1995-01-01

    The increasing scale-up of fast pyrolysis in North America and Europe, as well as the exploration and expansion of markets for the energy use of biocrude oils that now needs to take place, suggested that it was timely to convene an international meeting on the properties and combustion behavior of these oils. A common understanding of the state-of-the-art and technical and other challenges which need to be met during the commercialization of biocrude fuel use, can be achieved. The technical issues and understanding of combustion of these oils are rapidly being advanced through R&D in the United States. Canada, Europe and Scandinavia. It is obvious that for the maximum economic impact of biocrude, it will be necessary to have a common set of specifications so that oils can be used interchangeably with engines and combustors which require minimal modification to use these renewable fuels. Fundamental and applied studies being pursued in several countries are brought together in this workshop so that we can arrive at common strategies. In this way, both the science and the commercialization are advanced to the benefit of all, without detracting from the competitive development of both the technology and its applications. This United States-Canada-Finland collaboration has led to the two and one half day specialists meeting at which the technical basis for advances in biocrude development is discussed. The goal is to arrive at a common agenda on issues that cross national boundaries in this area. Examples of agenda items are combustion phenomena, the behavior of trace components of the oil (N, alkali metals), the formation of NOx in combustion, the need for common standards and environmental safety and health issues in the handling, storage and transportation of biocrudes.

  11. 无轴螺旋连续热解装置上的生物质热解特性%Biomass continuous pyrolysis characteristics on shaftless screw conveying reactor

    Institute of Scientific and Technical Information of China (English)

    王明峰; 吴宇健; 蒋恩臣; 陈晓堃

    2015-01-01

    连续热解是一种高效的生物质能转化技术,无轴螺旋式连续热解装置不仅可减轻送料部件的质量,而且为热解挥发性产物的排出提供了有效空间,是极具发展前景的连续热解装置。为了解无轴螺旋式生物质连续热解特性,该文在无轴螺旋连续热解装置上,开展了以稻壳、花生壳和木薯茎秆为生物质原料的热解试验,分析了3种生物质在不同热解温度下的三态产物分布特性、热解气体组分变化规律及热解炭的组织结构和表面形貌特征。结果表明:炭产率随热解温度升高逐渐下降,气体产率逐渐上升,液体产率先上升再下降,在450℃时达到最大,产物分布特性与其他热解反应器的一致;不同原料炭产率由高到低依次为:稻壳>花生壳>木薯茎秆,液体产率由高到低依次为:稻壳>花生壳>木薯茎秆,气体产率与液体产率相反。热解气体组分受温度影响较大,热解温度升高,可燃气体组分含量不断上升,不可燃气体组分含量不断下降,不同原料对气体组分含量影响较小。热解炭的工业分析结果与原料的工业分析结果存在相关性,热解温度升高,热解炭中挥发分含量逐渐下降,固定碳及灰分含量增加,木薯茎秆炭的挥发分含量最高,花生壳炭的固定碳含量最高,稻壳炭的灰分含量最高;低温热解炭的表面官能团较为丰富,随热解温度升高官能团种类逐渐减少;原料自身结构特性对热解炭的表面形貌影响较大,随着热解温度升高,生物质原料的表面结构不断被破坏,热解炭表面出现孔隙结构,花生壳炭与木薯茎秆炭表面孔隙结构比稻壳炭更为发达。%Technology of continuous pyrolysis is an effective method of disposing biomass, and the shaftless-screw-conveying pyrolysis reactor, which is a kind of device with great development prospects, can not

  12. Influence of catalysts of different mixing ratio on biomass pyrolysis characteristics%不同混合比催化剂对生物质热解特性的影响

    Institute of Scientific and Technical Information of China (English)

    陈鸿伟; 黄雪丽; 王威威

    2013-01-01

    In order to understand the behavior of biomass catalytic pyrolysis, the rice straw was washed with 7 % acids (HCl) and distilled water, respectively. The catalysis effects of alkaline earth metallic on pyrolysis characteristics of pretreated biomass were analyzed with K2CO3, dolomite ( CaCO3·MgCO3) and their mixture of different mixing ratio addition. The test results show that acid wash can hinder biomass pyrolysis and the DTG curve of water washed sample occurs shoulder shape peak at about 350 ℃ which means water washing can change the structure of three component of biomass. Alkaline earth metallic compounds addition can promote biomass pyrolysis, which added 7 % K2CO3 specimen in 650 ℃ nearby pyrolysis coke etc rate minimum, added dolomite specimen in 720 ℃ showed maximum catalysis and weightlessness rate increased with dolomite proportion increases, the mixture shows better catalytic activity with the largest rate of biomass pyrolysis and the lowest char Production when the mixing ratio is 7 : 3 and got the highest pyrolysis rate ( -0. 004 5/s).%基于更加深入的了解生物质催化热解行为,对稻秆进行脱灰预处理(水洗和酸洗),分析灰成分中金属元素在热解过程的作用,同时尝试将K2CO3与白云石进行不同比例掺混,添加到酸洗样中,研究不同混合比催化剂对生物质热解的影响规律.试验结果表明,脱灰预处理在一定程度上阻碍了生物质的热解,水洗样在300℃附近出现肩状峰,即对生物质三组分结构上产生一些影响;而添加金属盐对生物质热解有一定促进作用,其中添加7% K2CO3试样在650℃附近热解焦产率最低,添加白云石试样在720℃以后表现出催化作用且最大失重速率随白云石比例增加而增大,当K2CO3与白云石混合比例为7:3时,生物质热解速率最大为-0.004 5/s,且热解焦产率最小,表现出更好的催化活性.

  13. Biomass Fast Pyrolysis Reactors: A Review of a Few Scientific Challenges and of Related Recommended Research Topics Réacteur de pyrolyse rapide de la biomasse : une revue de quelques verrous scientifiques et d’actions de recherches recommandées

    Directory of Open Access Journals (Sweden)

    Lédé J.

    2013-06-01

    Full Text Available The use of biomass as an alternative energy resource requires its prior processing. Many options are possible. The present paper focuses on thermochemical routes and more specifically on fast pyrolysis carried out for the preparation of so called bio-oils. The optimization and scaling up of fast pyrolysis processes for improving bio oils yields and properties come up against several difficulties. The aim of the paper is to show that some of them are related to the lack of several basic scientific knowledges, more specifically at the level of the high temperature fast pyrolysis reactor. The analysis of these challenges (biomass sample thermal decomposition, biomass-reactor interactions, secondary reactions suggests the development of several research topics. L’utilisation de la biomasse en tant que ressource énergétique de substitution nécessite sa transformation préalable. De nombreuses options sont possibles. Cet article s’intéresse aux voies thermochimiques et plus spécifiquement à la pyrolyse rapide mise en oeuvre pour la préparation d’huiles de pyrolyse. L’optimisation et l’extrapolation des procédés de pyrolyse rapide pour améliorer les rendements et propriétés des huiles de pyrolyse se heurtent à plusieurs difficultés. Le but de cet article est de montrer que certaines sont liées au manque de certaines connaissances scientifiques de base, plus précisément au niveau du réacteur haute température. L’analyse de ces verrous (décomposition thermique d’un grain de biomasse, interactions biomasse-réacteur, réactions secondaires suggère le développement de plusieurs axes de recherche.

  14. Time resolved pyrolysis of char

    DEFF Research Database (Denmark)

    Egsgaard, Helge; Ahrenfeldt, Jesper; Henriksen, Ulrik Birk

    In laboratory experiments, biomass char was produced under controlled conditions using wood chips from French pinewood. Different char qualities were obtained by pyrolysing the biomass at similar heating rates with end-temperatures ranging from 250 to 1000 o C. The char was analysed by flash...

  15. 煤的理化性质对生物质和煤共热解焦油性质的影响%Effects of coal physicochemical on tar characteristics during co-pyrolysis of biomass and coal

    Institute of Scientific and Technical Information of China (English)

    唐初阳; 张德祥; 鲁锡兰

    2016-01-01

    Saw dust,Heishan coal and Shenmu coal were chosen as raw materials.Co-pyrolysis experiments of biomass and coals were performed with difference blending ratios in a tubular furnace.The effects of saw dust additives were investigated and compared upon the co-pyrolysis yields of tar,water and light tar.Then,the thermogravimetric analyses of raw materials and the structure of coals was tested by 13C NMR.The yield and quality mechanisms of co-pyrolysis tar were further discussed,based on the yield comparison of pyrolytic products,thermal chemical reactivity of raw materials and the structure of coals.The results indicated that significant interactions of saw dust and coals increased the yield of light tar and decreased the water yield in the proper blending ratios during copyrolysis.Moreover,the aliphatic hydrocarbon of light tar was derived from alkyl radicals of the pyrolysis of biomass and coal.And the generation of pyrolytic water was inhibited because aromatic radicals of coal were converted to creosotes by the hydroxyl radicals from biomass pyrolysis.%将木屑分别与黑山煤、神木煤以不同比例掺混,利用自制热解干馏炉进行共热解实验.比较木屑的添加对共热解焦油、水和轻质焦油产率的不同影响,结合煤和生物质的热重分析结果与煤的13C核磁共振分析表征,探讨煤的结构、煤和生物质的热化学反应特性,对共热解焦油产率和品质的作用机理.结果表明:在一定配比范围内,木屑和煤之间的交互作用明显提高了共热解焦油中轻质组分的产率,同时热解水产率低于计算值;轻质焦油中的脂肪烃组分主要由木屑和煤热解产生的烷基自由基相互化合生成;煤热解产生的芳烃类自由基由于与生物质热解产生的羟基自由基生成杂酚化合物,从而抑制了热解水的生成.

  16. Scope and limitations of flash pyrolysis-gas chromatography-mass spectrometry as revealed by the thermal behaviour of high-molecular-weight lipids derived from the green microalga Botryococcus braunii

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Gelin, F.; Leeuw, J.W. de; Derenne, S.; Largeau, C.; Metzger, P.

    1994-01-01

    Curie point pyrolysis—gas chromatography/mass spectrometry studies of four types of high-molecular-weight (HMW) lipids isolated from the green microalga Botryococcus braunii race A were performed to determine the thermal behaviour of these lipids and to propose mechanisms of pyrolysis for these type

  17. 生物质连续热解反应装置的变螺距螺旋输送器设计%Design of Variable Pitch Spiral Conveyor for Biomass Continual Pyrolysis Reactor

    Institute of Scientific and Technical Information of China (English)

    蒋恩臣; 苏旭林; 王明峰; 熊磊明; 赵创; 许细微

    2013-01-01

    The biomass continuous pyrolysis reaction device with a variable pitch spiral conveyor was developed. To be more specific, the special screw conveyer was designed and optimized. Cold experiments showed that pyrolysis volatiles could be smoother to the end by way of combining the variable pitch with pros and cons screw. For general biomass, the productivity of the device was about 30 kg/h, and stay time was 5-10 min, which can meet the needs of pyrolysis reaction stably and continuously. Experimental research for various agriculture and forestry biomass could be carried out.%研制了带有变螺距螺旋输送器的生物质连续热解反应实验装置,对变螺距螺旋输送器参数进行了设计.冷态实验结果表明,变螺距与正、反向螺旋相结合的物料输送方式,更易于热解挥发物顺畅地由尾端排出,保证了连续热解反应的正常进行.该装置对一般生物质处理量约为30 kg/h,停留时间5~ 10 min,能满足连续稳定热解反应的要求,可开展多种农林生物质连续热解反应的实验研究.

  18. Effects of feedstockon co-pyrolysis of biomass and coal in a free fall reactor%原料对自由落下床中生物质与煤共热解行为的影响

    Institute of Scientific and Technical Information of China (English)

    魏立纲; 张丽; 徐绍平

    2011-01-01

    在500~700℃和生物质混合比0~100%(质量分数)条件下,利用自由落下床反应器考察原料对生物质与煤共热解行为的影响.所用煤原料为大雁褐煤(DY)和铁法烟煤(TF),而生物质原料为农业废弃物秸秆(LS)和木材加工余料白松木屑(SD).结果表明,即使在自由落下床中停留时间短的条件下,生物质与煤共热解的协同效应仍然发生.原料种类对共热解产品的产率和半焦反应性影响大:以综纤维素和灰分含量大的LS为原料时,共热解的协同效应比以SD为原料时明显;以高阶煤TF为原料时,共热解的液体产率高于以低阶煤DY为原料时的产率;在特定条件下共热解可提高半焦的反应性;与TF相比,DY存在下的共热解有利于提高半焦的反应性.在生物质与煤共热解过程中,通过选择适当原料可以制取目标产品.%Effects of feedstock on the co-pyrolysis of biomass and coal were investigated in a free fall reactor at 500°C~700°Cwith biomass blending ratio of 0 ~100%(mass ratio).The selected coal samples were Dayan brown coal (DY) and Tiefa bituminous coal(TF),and the biomass samples were agricultural residues legume straw (LS) and woody residues pine sawdust (SD).The results indicate that the synergy can occur even in a short gas residence time during the co-pyrolysis of biomass and coal in a free-fall reactor.The product yields and the CO2 reactivity of char from the co-pyrolysis are greatly influenced by the type of feedstock.The synergy in the presence of LS with high holocellulose and ash content is more significant than that in the presence of SD.The liquid yield of high rank TF co-pyrolysis is higher than that of low rank DY coal.The char reactivity can be improved by the co-pyrolysis at specific conditions.The co-pyrolysis in presence of DY can improve the reactivity of the produced char.

  19. Flashing light in microalgae biotechnology.

    Science.gov (United States)

    Abu-Ghosh, Said; Fixler, Dror; Dubinsky, Zvy; Iluz, David

    2016-03-01

    Flashing light can enhance photosynthesis and improve the quality and quantity of microalgal biomass, as it can increase the products of interest by magnitudes. Therefore, the integration of flashing light effect into microalgal cultivation systems should be considered. However, microalgae require a balanced mix of the light/dark cycle for higher growth rates, and respond to light intensity differently according to the pigments acquired or lost during the growth. This review highlights recently published results on flashing light effect on microalgae and its applications in biotechnology, as well as the recently developed bioreactors designed to fulfill this effect. It also discusses how this knowledge can be applied in selecting the optimal light frequencies and intensities with specific technical properties for increasing biomass production and/or the yield of the chemicals of interest by microalgae belonging to different genera.

  20. Pyrolysis processing for solid waste resource recovery

    Science.gov (United States)

    Serio, Michael A. (Inventor); Kroo, Erik (Inventor); Wojtowicz, Marek A. (Inventor); Suuberg, Eric M. (Inventor)

    2007-01-01

    Solid waste resource recovery in space is effected by pyrolysis processing, to produce light gases as the main products (CH.sub.4, H.sub.2, CO.sub.2, CO, H.sub.2O, NH.sub.3) and a reactive carbon-rich char as the main byproduct. Significant amounts of liquid products are formed under less severe pyrolysis conditions, and are cracked almost completely to gases as the temperature is raised. A primary pyrolysis model for the composite mixture is based on an existing model for whole biomass materials, and an artificial neural network models the changes in gas composition with the severity of pyrolysis conditions.

  1. Pyrolysis process for producing fuel gas

    Science.gov (United States)

    Serio, Michael A. (Inventor); Kroo, Erik (Inventor); Wojtowicz, Marek A. (Inventor); Suuberg, Eric M. (Inventor)

    2007-01-01

    Solid waste resource recovery in space is effected by pyrolysis processing, to produce light gases as the main products (CH.sub.4, H.sub.2, CO.sub.2, CO, H.sub.2O, NH.sub.3) and a reactive carbon-rich char as the main byproduct. Significant amounts of liquid products are formed under less severe pyrolysis conditions, and are cracked almost completely to gases as the temperature is raised. A primary pyrolysis model for the composite mixture is based on an existing model for whole biomass materials, and an artificial neural network models the changes in gas composition with the severity of pyrolysis conditions.

  2. The interactions among the pyrolysis of biomass components based on the PY-GC/MS%基于PY-GC/MS的生物质组分间相互作用的热解实验

    Institute of Scientific and Technical Information of China (English)

    朱玲莉; 仲兆平; 王佳; 王恒; 顾佳雯

    2016-01-01

    An analytical pyrolyzer coupled with gas chromatography/mass spectrometry (PY−GC/MS) had been proposed to investigate the interactions among the pyrolysis of biomass components. Pyrolysis experiments of cellulose,xylan(molding compound of hemicellulose),lignin,and two-component mixing components were carried out. Results showed that the primary pyrolysis product of cellulose at 600℃ and 10s was laevoglucose. The primary pyrolysis products of xylan were furfural and acetic acid,while that of lignin were phenols. In addition,the cellulose promoted the pyrolysis of xylan to yeild more acetic acid and furfural. The xylan and lignin strongly inhibited the production of levoglucose from cellulose pyrolysis. The presence of cellulose and xylan strongly contributed to the generation of phenols from lignin pyrolysis,whille lignin inhibited the pyrolysis of xylan to produce acetic acid and furfural. Experiments also discovered that the interactions among the mixing components were affected by temperature and residence time.%为研究生物质三组分间热裂解过程中的相互作用,利用热裂解-气相色谱/质谱联用仪(PY-GC/MS)联用的方法,对纤维素、木聚糖(半纤维素的模化物)和木质素进行单独热裂解及两两组分混合热裂解实验。单组分实验结果表明,在热解温度600℃、热解时间10s条件下纤维素的热解产物主要以左旋葡聚糖为主,木聚糖以乙酸和糠醛为主,而木质素主要以酚类物质为主。组分混合热裂解实验结果表明,纤维素促进了木聚糖热裂解生成更多的乙酸和糠醛,而木聚糖和木质素对纤维素热解生成左旋葡聚糖具有强烈的抑制作用;纤维素和木聚糖的存在大大促进了木质素热裂解生成酚类物质,而木质素抑制了木聚糖热裂解生成乙酸和糠醛。此外,研究还发现混合组分热解的相互作用受到热解温度和停留时间的影响。

  3. The influence of pyrolysis temperature on the component of biomass pyrolytic tar%裂解温度对生物质热解焦油成分的影响

    Institute of Scientific and Technical Information of China (English)

    典平鸽; 张乐观; 江程程

    2012-01-01

    Sawdust was chosen as raw materials for biomass pyrolysis tar experiments. Then experiments about the influence of reaction temperature to the yield of tar and the chemical composition of tar had been studied. The results showed that the yield of tar derived from biomass pyrolysis reached maximum at 500 ℃, the higher or lower temperature were conducive to the reduction of biomass tar. Under the different temperature, the hydrocarbons of tar are mainly aromatics and a small amount of aliphatic hydrocarbons, the oxygenated compounds are mainly phenol and its alkyl derivatives, the nitrogen compounds are mainly heterocyclic compounds, such as pyridine, pyrrole and its alkyl derivatives.%以锯末粉体为生物质热解焦油研究对象,研究了热解温度对焦油产量和焦油化学成分的影响规律,结果表明,热解温度为500 ℃时,生物质热解产生的焦油量最大,温度过高或过低都有利于焦油的减少.不同热解温度下,焦油中碳氢化合物的成分主要是芳香烃和少量的脂肪烃,含氧化合物主要是苯酚及其烷基衍生物,含氮化合物主要是吡啶、吡咯及其烷基衍生物等杂环化合物.

  4. Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: 2012 State of Technology and Projections to 2017

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Susanne B.; Snowden-Swan, Lesley J.

    2013-08-27

    This report summarizes the economic impact of the work performed at PNNL during FY12 to improve fast pyrolysis oil upgrading via hydrotreating. A comparison is made between the projected economic outcome and the actual results based on experimental data. Sustainability metrics are also included.

  5. Microwave-induced co-processing of coal and biomass

    OpenAIRE

    2015-01-01

    Pyrolysis is an attractive alternative for the conversion of solid fuels to valuable chemicals and bio-fuels. In order to obtain more H2 and syngas from pyrolysis of coal and biomass, microwave has been adopted to enhance the co-pyrolysis of coal and biomass, which has been investigated systematically in this study. Firstly, conventional pyrolysis of coal and biomass was carried out using a vertical tube furnace. Characterizations of pyrolytic gas, liquid and solid products were conducted...

  6. Pyrolysis of rapeseed cake

    Energy Technology Data Exchange (ETDEWEB)

    Karaosmanoglu, F.; Culcuoglu, E.

    2001-05-15

    In this study, biomass in the form of rapeseed cake was pyrolyzed in a fixed bed stainless steel reactor under static atmosphere at varying temperatures of 450, 550, 650, 750, and 850{sup o}C and at heating rates of either 15{sup o}C min{sup -1} or 25{sup o}C min{sup -1}. The studies reported here were aimed towards understanding the influence of heating rate and pyrolysis temperature on product yield. The maximum oil yield was observed to be evolving at 650{sup o}C pyrolysis temperature and at a heating rate of 15{sup o}C min{sup -1}. The results showed the potential of rapeseed cake as an important source of alternative liquid fuel. (author)

  7. 共热解过程对褐煤焦和生物质焦氧化特性的影响%Effect of co-pyrolysis process on the oxidation reactivity of lignite char and biomass char

    Institute of Scientific and Technical Information of China (English)

    郭沛; 赵慧明; 贾挺豪; 王美君; 常丽萍

    2015-01-01

    Ximeng lignite and cornstalk were used as the feedstock to prepare lignite char, biomass char and co-pyrolysis char with different blending ratios in a fixed bed reactor with temperature-programmed pyrolysis. The pore and chemical structure of char samples were characterized and the ash composition was analyzed. The oxidation reactivity of the mixtures of lignite char/cornstalk char with different blending ratios and the co-pyrolysis char of lignite and cornstalk with corresponding blending ratios were investigated by the isothermal thermogravimetry at 450℃, aimed at the effect of co-pyrolysis process on the char reactivity. The results show that there are obvious influences on the char structures through secondary reactions during co-pyrolysis process, leading to the char reactivity decrease. Especially with the cornstalk proportion less than 50%, these influences are more significant due to a large number of volatiles from cornstalk during co-pyrolysis enhancing the secondary reactions between the volatile and nascent char, prompting parts of organic structure less than 5 rings turn into the larger organic structure. For the char samples with cornstalk proportion above 50%, the catalytic effect of alkaline and alkaline earth metal in biomass char plays a dominating role, especially the effect of potassium, resulting in the weaker effects of secondary reactions on the structure and oxidation reactivity of the char samples.%以锡盟褐煤和玉米秸秆为原料,利用固定床程序升温热解的方法制备了褐煤焦、生物质焦以及褐煤和生物质不同混合比例的共热解焦样,并进行了孔结构和化学结构的表征以及其灰成分分析。采用等温热重法在450℃下考察褐煤焦和生物质焦的混合样与其相同比例的共热解焦样的氧化活性,对比分析共热解过程对焦样反应活性的影响。实验结果表明,共热解过程中的二次反应对焦样结构有着明显的影响,进一步导

  8. 预处理法提高生物质热解产物品质的研究进展%Research progress in pretreatment method for the quality improvement of biomass pyrolysis products

    Institute of Scientific and Technical Information of China (English)

    张帅; 王贤华; 李攀; 李允超; 隋海清; 陈汉平

    2014-01-01

    生物质水分含量高、能量密度低、储存运输成本高等缺点制约着其转化利用。预处理技术是提高生物质热解产物品质的有效方法之一。为了研究高效经济的预处理技术,本文总结了国内外生物质预处理技术的研究,对干燥法、稀酸法、水热法、烘焙法和生物法等预处理技术进行了重点分析,发现干燥法和烘焙法等技术极具潜力,但是目前的研究仍存在不足,今后还需研究成本低、产率高、污染小的预处理技术,并对预处理技术的发展提出了建议。%Biomass are known for its disadvantages,including high water content,low energy density, difficulty in comminuting into small particles and expensive transportation. However,pretreatment is one of the most effective ways to improve the quality of biomass pyrolysis products. The purpose of biomass pretreatment is to optimize certain features of biomass,such as hardness,particle size, density,composition,and chemical properties,to obtain more and higher quality of bio-oil in its pyrolysis liquefaction process. To improve the pretreatment technology with higher economic efficiency,the study onbiomass pretreatment technologies are reviewed in this paper. Many methods for high quality bio-oil have been discussed. In this review,the pretreatment technology,such as drying methods,acid hydrolysis,torrefaction,hydrothermal and biological methods,are analyzed in focus. Among them,drying methods and torrefaction have the potential in comparison. But the current study are still insufficient,we need to seek new pretreatment technology with lower cost,higher yield and less pollution. Suggestions on the development of pretreatment technology are also included. At present,the single biomass pretreatment methods have their defects,the combination of different pretreatment methods is the important direction in future research , in which the structural characteristics and composition of raw material

  9. A Review of Thermal Co-Conversion of Coal and Biomass/Waste

    Directory of Open Access Journals (Sweden)

    Aime Hilaire Tchapda

    2014-02-01

    Full Text Available Biomass is relatively cleaner than coal and is the only renewable carbon resource that can be directly converted into fuel. Biomass can significantly contribute to the world’s energy needs if harnessed sustainably. However, there are also problems associated with the thermal conversion of biomass. This paper investigates and discusses issues associated with the thermal conversion of coal and biomass as a blend. Most notable topics reviewed are slagging and fouling caused by the relatively reactive alkali and alkaline earth compounds (K2O, Na2O and CaO found in biomass ash. The alkali and alkaline earth metals (AAEM present and dispersed in biomass fuels induce catalytic activity during co-conversion with coal. The catalytic activity is most noticeable when blended with high rank coals. The synergy during co-conversion is still controversial although it has been theorized that biomass acts like a hydrogen donor in liquefaction. Published literature also shows that coal and biomass exhibit different mechanisms, depending on the operating conditions, for the formation of nitrogen (N and sulfur species. Utilization aspects of fly ash from blending coal and biomass are discussed. Recommendations are made on pretreatment options to increase the energy density of biomass fuels through pelletization, torrefaction and flash pyrolysis to reduce transportation costs.

  10. 生物质富氮热解联产高值含氮油炭的理化特性%Physicochemical properties of nitrogen rich in oil and char during biomass nitrogen-rich pyrolysis

    Institute of Scientific and Technical Information of China (English)

    闻明; 张世红; 邵敬爱; 陈应泉; 冯磊; 王贤华; 陈汉平

    2015-01-01

    Biomass is one of the most important renewable resources. Pyrolysis for producing high value added products provides additional value for biomass energy utilization. Through the introduction of exogenous nitrogen in biomass pyrolysis in nitrogen-rich conditions, it can get high value of nitrogen-containing products, i.e. nitrogen-rich char and oil. In this study, wood chips were used as raw materials. The experiment was carried out in a fixed bed reactor at 350 to 850℃, and the effect of temperature and impregnation ratio(5%, 10%, 15%, 20%) on products yields, compositions and characteristics were investigated. Firstly, wood chips were immersed in different mass fractions of urea solution, stirred for 12 hours with a magnetic mixer at room temperature. The woodchips was then separated from solution by filtration and was dried after for 24 hours in an oven. The dried woodchips was then gone through pyrolysis and the bio-oil obtained at different temperatures was analyzed by gas chromatography-mass spectrometry. Derived bio-oil and char were also analyzed for their compositions to trace nitrogen mass transfer. The surface physicochemical property of the char under nitrogen-rich conditions was characterized using a diffuse reflectance infrared spectroscopy and X-ray photoelectron spectroscopy. With the rise of impregnation ratio, the yield of char and bio-oil had little change. Temperature had a remarkable effect on the yield and nitrogen content of boichar and bio oil. Change of product yields was mainly due to the three components (cellulose, ligin and semicellulose) decomposing at different temperatures, and to the volatilization of the secondary cracking at high temperature. The GC-MS results indicated that after treated with urea solution, biomass pyrolysis oil contains large amounts of nitrogen-containing chemicals that can be used to refine high value-added chemical products. The nitrogen-containing chemicals in the bio-oil mainly include aromatic amine

  11. Flash Lidar Data Processing

    Science.gov (United States)

    Bergkoetter, M. D.; Ruppert, L.; Weimer, C. S.; Ramond, T.; Lefsky, M. A.; Burke, I. C.; Hu, Y.

    2009-12-01

    Late last year, a prototype Flash LIDAR instrument flew on a series of airborne tests to demonstrate its potential for improved vegetation measurements. The prototype is a precursor to the Electronically Steerable Flash LIDAR (ESFL) currently under development at Ball Aerospace and Technology Corp. with funding from the NASA Earth Science Technology Office. ESFL may soon significantly expand our ability to measure vegetation and forests and better understand the extent of their role in global climate change and the carbon cycle - all critical science questions relating to the upcoming NASA DESDynI and ESA BIOMASS missions. In order to more efficiently exploit data returned from the experimental Flash Lidar system and plan for data exploitation from future flights, Ball funded a graduate student project (through the Ball Summer Intern Program, summer 2009) to develop and implement algorithms for post-processing of the 3-Dimensional Flash Lidar data. This effort included developing autonomous algorithms to resample the data to a uniform rectangular grid, geolocation of the data, and visual display of large swaths of data. The resampling, geolocation, surface hit detection, and aggregation of frame data are implemented with new MATLAB code, and the efficient visual display is achieved with free commercial viewing software. These efforts directly support additional tests flights planned as early as October 2009, including possible flights over Niwot Ridge, CO, for which there is ICESat data, and a sea-level coastal area in California to test the effect of higher altitude (above ground level) on the divergence of the beams and the beam spot sizes.

  12. Biomass thermochemical conversion. Overview of results; Biomassan jalostus. Tutkimusalueen katsaus

    Energy Technology Data Exchange (ETDEWEB)

    Sipilae, K. [VTT Energy, Jyvaeskylae (Finland)

    1997-12-01

    The BIOENERGY Programme comprised two research institute projects, one enterprise project and two demonstration projects in 1996. The studies focused on the development of flash pyrolysis technology for biomass, and on the study of the storage stability of imported wood oils and of their suitability for use in oil-fired boilers and diesel power plants. Development of biomass gasification/gas engine concepts suitable for diesel power plants was also initiated. In addition to techno-economic assessments, experimental work was carried out focusing on the cleaning of gasification gas for engine use. Conversion of by-products from the pulping industry, in particular crude soap, into liquid fuels was studied by laboratory tests. Results obtained within IEA Bioenergy Agreement are also surveyed and a new three-year work plan is presented in the overview. (orig.)

  13. Total Acid Value Titration of Hydrotreated Biomass Fast Pyrolysis Oil: Determination of Carboxylic Acids and Phenolics with Multiple End-Point Detection

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, E.; Alleman, T. L.; McCormick, R. L.

    2013-01-01

    Total acid value titration has long been used to estimate corrosive potential of petroleum crude oil and fuel oil products. The method commonly used for this measurement, ASTM D664, utilizes KOH in isopropanol as the titrant with potentiometric end point determination by pH sensing electrode and Ag/AgCl reference electrode with LiCl electrolyte. A natural application of the D664 method is titration of pyrolysis-derived bio-oil, which is a candidate for refinery upgrading to produce drop in fuels. Determining the total acid value of pyrolysis derived bio-oil has proven challenging and not necessarily amenable to the methodology employed for petroleum products due to the different nature of acids present. We presented an acid value titration for bio-oil products in our previous publication which also utilizes potentiometry using tetrabutylammonium hydroxide in place of KOH as the titrant and tetraethylammonium bromide in place of LiCl as the reference electrolyte to improve the detection of these types of acids. This method was shown to detect numerous end points in samples of bio-oil that were not detected by D664. These end points were attributed to carboxylic acids and phenolics based on the results of HPLC and GC-MS studies. Additional work has led to refinement of the method and it has been established that both carboxylic acids and phenolics can be determined accurately. Use of pH buffer calibration to determine half-neutralization potentials of acids in conjunction with the analysis of model compounds has allowed us to conclude that this titration method is suitable for the determination of total acid value of pyrolysis oil and can be used to differentiate and quantify weak acid species. The measurement of phenolics in bio-oil is subject to a relatively high limit of detection, which may limit the utility of titrimetric methodology for characterizing the acidic potential of pyrolysis oil and products.

  14. Sugarcane Bagasse Pyrolysis in a Carbon Dioxide Atmosphere with Conventional and Microwave-Assisted Heating

    OpenAIRE

    Lin, Bo-Jhih; Chen, Wei-Hsin

    2015-01-01

    Pyrolysis is an important thermochemical method to convert biomass into bio-oil. In this study, the pyrolysis of sugarcane bagasse in a CO2 atmosphere under conventional and microwave-assisted heating is investigated to achieve CO2 utilization. In the microwave pyrolysis, charcoal is used as the microwave absorber to aid in pyrolysis reactions. The results indicate that the yields of pyrolysis products are greatly influenced by the heating modes. In the conventional heating, the prime product...

  15. Sugarcane bagasse pyrolysis in a carbon dioxide atmosphere with conventional and microwave-assisted heating

    OpenAIRE

    Bo-Jhih eLin; Wei-Hsin eChen

    2015-01-01

    Pyrolysis is an important thermochemical method to convert biomass into bio-oil. In this study, the pyrolysis of sugarcane bagasse in a CO2 atmosphere under conventional and microwave-assisted heating is investigated to achieve CO2 utilization. In the microwave pyrolysis, charcoal is used as the microwave absorber to aid in pyrolysis reactions. The results indicate that the yields of pyrolysis products are greatly influenced by the heating modes. In the conventional heating, the prime product...

  16. 下降管式生物质快速热解实验装置设计与实验%Design and Experiments of a Down-flow Tube Reactor for the Pyrolysis of Biomass

    Institute of Scientific and Technical Information of China (English)

    崔喜彬; 李志合; 李永军; 易维明; 柏雪源

    2011-01-01

    为了确定在固体热载体加热方式下反应温度和停留时间对生物质热解挥发特性的影响,设计了陶瓷球热载体加热下降管式生物质热解实验装置,并进行了生物质热解挥发特性实验.该实验装置能够对反应温度进行精确控制,实现生物质粉和陶瓷球热载体按比例连续均匀喂料及热解残炭样品的采集.实验物料为玉米秸秆粉,反应温度分别为450、500、550℃.停留时间通过反应物在反应管内下降距离间接测量,下降距离分别为150、550、850、1 150 mm.利用灰分示踪法计算得到了不同条件下生物质的热解挥发率.实验结果表明:玉米秸秆粉的热解挥发率随着热解温度的升高、下降距离的加长而非线性增大.%In order to investigate the effects of reaction temperature and reaction distance on the pyrolysis volatilization characteristics of biomass in a down-flow tube reactor, a ceramic ball heated down-flow tube reactor was designed and fabricated, and biomass pyrolysis experiments were conducted in the reactor. The experimental apparatus could control the reaction temperature precisely, feed the biomass and heat carrier evenly and continuously. Pulverized corn stalk powder was used as the feed stock. Reaction temperatures were 450℃ ,500t and 550℃. The falling distances, which was the indirect measure of the residence time, were 150 mm,550 mm,850 mm and 1 150 mm. Ash tracer method was used to calculate the volatilized fractions of the pyrolyzed biomass at different experimental conditions. The experimental results showed that the volatilized fraction of corn stalk powder increased nonlinearly with the increase of reaction temperature and residence time.

  17. Effect of Pyrolysis Temperature on Characteristics of Biomass Char and Coal Char%热解温度对生物质和煤成焦特性的影响

    Institute of Scientific and Technical Information of China (English)

    米翠丽; 樊孝华; 魏刚; 马登卿; 张利孟; 王学斌

    2014-01-01

    以麦秆、橡树木屑和华亭烟煤为原料,研究热解产物的理化特性并讨论燃料种类和热解温度对其的影响。采用BET、SEM-EDS、XRD和TGA对其进行分析表征。结果表明:在600~1000℃的温度范围内,煤焦的比表面积和孔隙容积随热解温度增加而增大,而木屑焦的变化不明显,麦秆焦在800℃时比表面积和孔隙容积最大,更高温度则发生烧结;焦样中C元素含量随热解温度升高而增加,而H元素和O元素随之降低,麦秆焦的着火特性优于木屑焦和煤焦。木屑焦和煤焦的着火特性随热解温度升高而变差,而麦秆焦在800℃具有最佳的着火特性。%The effects of fuel type and pyrolysis temperature on the physicochemical properties of coal char( C-char)and biomass char were investigated with straw,oak sawdust,and Huating bituminous coal as raw materials. BET,SEM-EDS,XRD,and TGA were used to analyze the coke specimens. Results show that the BET surface area and porous volume of C-char increase as the pyrolysis temperature increases,whereas those of wood char( W-char)insignificantly change,from 600 to 1 000 ℃. Straw char ( S-char)has the largest surface area and pore volume at 800 ℃ as sintering occurs at higher temperatures. As the pyrolysis temperature increases,the C content of char increases and its H and O contents decrease. The ignition characteristic of S-char is superior to those of W-char and C-char. The ignition characteristics of Wood-char and C-char decrease with the increase of pyrolysis temperature. Straw-char exhibits the best ignition characteristic at 800℃.

  18. 棉杆热解过程中焦孔隙结构演变及分形特征%Investigation of the Forming Property and Fractal Dimension of Cotton Char Pore Structure During Biomass Pyrolysis

    Institute of Scientific and Technical Information of China (English)

    李开志; 杨海平; 陈应泉; 陈汉平; 王贤华

    2012-01-01

    The changes in pore structure characteristics of cotton stalk/char particles prepared by pyrolysis process were studied, the samples were characterized by N2 isothermal absorption method, and their data points were used to analyze the fractal properties of the obtained samples. The results indicate that pyrolysis temperature has a notable impact on the pore structure and morphology of biomass char. Pyrolysis temperature is found to influence the size and the shape of char particles. The Brunauer-Emmett Teller (BET) specific surface area SBET of cotton char undergoes a complex process during pyrolysis: firstly increase to a maximum value at 650 ℃, then decrease again. The change of fractal dimension D is similar to that of SBET, this shows there are some correlation between them. Fractal dimension D is better to describe pore structure characteristics.%为了解生物质热解过程中固体焦孔隙结构的演变行为,采用氮气等温吸附法研究了热解过程中棉杆颗粒孔隙结构的变化规律,并引入分形维数对其进行定量的描述.结果表明,热解过程中棉杆焦孔隙结构微孔与中孔先增多后减少,而大孔比例变化不大.棉杆热解焦的BET比表面积(SBET)随着热解温度的升高,经历了一个先增大后减小的过程,从450℃开始,SBET迅速增大,在650℃时达到最大值,而后逐渐减小.随着热解温度的升高,棉杆焦表面分形维数先增大后减小,表明棉杆焦在热解过程中孔隙表面经历了复杂的结构变化.分形维数与BET比表面积存在一定的关联性,且分形维数能更好地表征热解焦表面孔隙结构特征.

  19. Wood vinegar and its properties from pyrolysis of biomass%生物质热解制备木醋液及其性质研究

    Institute of Scientific and Technical Information of China (English)

    侯宝鑫; 张守玉; 吴巧美; 茆青; 姚云隆; 涂圣康; 金涛; 赵孟浩

    2015-01-01

    The basic physical and chemical properties, yields and organic ingredients of the refined wood vinegar obtained from pyrolysis of Chinese fir sawdust ( CFS) , cotton stalk ( CS) and bamboo sawdust ( BS) were investigated. The results show that yields of crude wood vinegar and the refined one from the three biomasses at 350℃ are nearly the same. However, yield of the wood vinegar from KCl-treated CFS ( KCl-CFS) under the same conditions decreases. The physical and chemical properties of the three refined wood vinegars are different from each other. The pH value of CFS wood vinegar is the lowest and its density is the highest. The content of the organic acids contained from BS and CS wood vinegars is higher than that of CFS wood vinegar. The organic components in the refined wood vinegars were analyzed by gas chromatography and mass spectrometry ( GC-MS ) . The results indicate that CFS wood vinegar includes acids, phenols and ketones. Besides the three ingredients, alcohols with high relative content are found in BS and CS wood vinegars. The relative contents of the acids and phenols contained in the three wood vinegars are in the order of BS>CS>CFS and that of the ketones is CFS > CS > BS. The relative contents of the phenols and ketones contained in the refined wood vinegar produced from KCl-CFS decrease and that of the acids increases, especially the acetic acid. The relative content of the alcohols contained in the refined KCl-CFS wood vinegar roughly doubles compared with that of CFS wood vinegar.%对杉木屑、棉杆、竹屑三种生物质热解制得的木醋液产率、基本理化性质及其有机成分进行了分析研究. 结果表明,三种生物质原料在350℃下热解制得的粗木醋液、精制木醋液产率相差不大,相同条件下氯化钾浸渍处理后的杉木屑热解所得的粗木醋液、精制木醋液的产率有所降低. 三种原料制得的精制木醋液的理化性质不同,杉木屑木醋液的pH值最小,密度最

  20. Biomass [updated

    Energy Technology Data Exchange (ETDEWEB)

    Turhollow Jr, Anthony F [ORNL

    2016-01-01

    Biomass resources and conversion technologies are diverse. Substantial biomass resources exist including woody crops, herbaceous perennials and annuals, forest resources, agricultural residues, and algae. Conversion processes available include fermentation, gasification, pyrolysis, anaerobic digestion, combustion, and transesterification. Bioderived products include liquid fuels (e.g. ethanol, biodiesel, and gasoline and diesel substitutes), gases, electricity, biochemical, and wood pellets. At present the major sources of biomass-derived liquid fuels are from first generation biofuels; ethanol from maize and sugar cane (89 billion L in 2013) and biodiesel from vegetable oils and fats (24 billion liters in 2011). For other than traditional uses, policy in the forms of mandates, targets, subsidies, and greenhouse gas emission targets has largely been driving biomass utilization. Second generation biofuels have been slow to take off.

  1. Effect of synergism between biomass and coal during co-pyrolysis in a free fall reactor on tar components%自由落下床中生物质与煤共热解的协同效应对焦油组成的影响

    Institute of Scientific and Technical Information of China (English)

    魏立纲; 张丽; 徐绍平

    2012-01-01

    The liquid products from co-pyrolysis of Dayan lignite (DY) and legume straw (LS) and from pyrolysis of the single fuel were classified into asphalts, phenols, aliphatic, aromatics and polar fractions by solvent extraction-column chromatography. Compared with the calculated yield of asphalts, i. e. the mass weighted mean value 19. 0% from pyrolysis of the single coal and biomass, the experimental yield from co-pyrolysis decreased to 11.4% , and the aromaticity of the co-pyrolysis asphalts increased. At the same time, the yield of light molecular weight phenols, methylphenol, dimethylphenol and their derivatives increased at about 5% during the co-pyrolysis; while the content of aliphatic hydrocarbons with long chains decreased. The content of decalins was 43.37% in aromatic fraction of the co-pyrolysis tar, whereas it was almost not found in the tars from pyrolysis of the individual fuel. These results verified that the synergy existed during co-pyrolysis of coal and biomass under the experimental conditions. It was contributed to the reactions such as hydropyrolysis and hydrogenation during co-pyrolysis of coal and biomass under the hydrogen atmosphere mainly supplied by biomass pyrolysis. Co-pyrolysis of coal and biomass favors producing low molecular weight compounds and improving the quality of the liquid product.%利用溶剂萃取-柱层析方法,将自由落下床中豆秸与大雁褐煤共热解以及单种原料热解的液体产品分为沥青烯、酚类、脂肪烃类、芳香烃类和极性物等组分.结果表明,共热解的沥青烯产率为11.4%,低于根据煤和生物质单独热解的质量加权平均计算值19.0%,且芳香性增大;与计算值相比,低分子量的酚类、甲基苯酚、二甲基苯酚及其衍生物的含量提高了5%;而且长侧链的脂肪烃含量减少.共热解焦油的芳香类组分中十氢萘的质量分数是43.37%,但其在单一原料热解焦油中并没有被检测到.热解油分析结果表

  2. New candidate for biofuel feedstock beyond terrestrial biomass for thermo-chemical process (pyrolysis/gasification) enhanced by carbon dioxide (CO2).

    Science.gov (United States)

    Kwon, Eilhann E; Jeon, Young Jae; Yi, Haakrho

    2012-11-01

    The enhanced thermo-chemical process (i.e., pyrolysis/gasification) of various macroalgae using carbon dioxide (CO(2)) as a reaction medium was mainly investigated. The enhanced thermo-chemical process was achieved by expediting the thermal cracking of volatile chemical species derived from the thermal degradation of the macroalgae. This process enables the modification of the end products from the thermo-chemical process and significant reduction of the amount of condensable hydrocarbons (i.e., tar, ∼50%), thereby directly increasing the efficiency of the gasification process.

  3. Effects of cellulose, xylan and lignin content on biomass pyrolysis characteristics and product distribution%纤维素木聚糖和木质素含量对生物质热解特性及产物的影响

    Institute of Scientific and Technical Information of China (English)

    李小华; 焦丽华; 樊永胜; 陈磊; 蔡忆昔

    2015-01-01

    采用热重法研究了纤维素、木聚糖和木质素含量对生物质热解特性的影响,分析了三组分相互混合热解时的交互作用规律,及其对热解动力学参数的影响;同时,在生物质真空热解液化系统上考察了三组分含量对热解液化产物分布及生物油组成的影响。结果表明,纤维素热解较为剧烈,生物油中芳香族、糖类、醛类和醇类含量较高;木聚糖的热稳定性较差,生物油中芳香族、酮类和酸类物质较多;木质素热解较为平缓且固体残留物较多,生物油成分主要为芳香族化合物。纤维素对活化能和指前因子的影响较大,木聚糖和木质素对反应级数的影响较大;纤维素的热解有利于减少固体残留物,而木质素的热解产物有利于促进糖类的分解;木聚糖对纤维素的热解具有明显的抑制作用;木聚糖能促进木质素的低温热解,两者混合热解对生物油组成影响较小。因此,高纤维素含量的生物质可以获得更高的生物油产率,且适量的木质素有利于促进纤维素的分解,为进一步提高生物油产率和品质提供了理论依据。%This paper investigated the effect of cellulose, xylan and lignin content on biomass pyrolysis characteristics and analyzed the interaction rules of the 3 biomass components. The proportions of the 3 components i.e. cellulose, xylan and lignin were reasonably designed, and there were 7 experimental samples according to different quality proportions. The Thermo TGA/DSC 1 was used to analyze the thermo-gravimetric processes of the samples composed of the 3 components. And the pyrolysis characteristics of the cellulose, xylan and lignin were studied. Supposing that the 3 components’ thermo-gravimetric processes were isolated with each other, the overall weightlessness process of the mixed samples was attributed to the superposition of every single component’s weightlessness. By

  4. Influence of modified biomass char on releases characteristics of volatiles during pyrolysis of cotton stalk%改性生物质炭对棉秆热解挥发分析出特性的影响

    Institute of Scientific and Technical Information of China (English)

    刘慧慧; 邹俊; 邓勇; 杨海平; 王贤华; 陈汉平

    2016-01-01

    The biomass char has an important influence on the release of volatile during the fast pyrolysis processes due to its complex structure features and the presence of inorganic minerals. Furthermore, as inherent catalysts, the large content of salts in biomass promotes the char to react with volatile. Thus this study aims to investigate the influence of char and inorganic salts on the volatile-char interactions. Experiments were conducted on a two-stage system with the same temperature of 500℃. Char pretreatments i.e. acid washing and salts (NaCl, KCl, MgCl2 and FeCl3) impregnating were introduced. Volatile derived from cotton stalk pyrolysis got reaction under the presence of fresh char with different mass. The condensed bio-oil obtained from the pyrolysis with and without the catalysts (cotton stalk char) was characterized by the GC-MS (gas chromatograph - mass spectrometer) analyses. The non-condensed pyrolysis gas via the filter and drier was characterized by the GC. The results indicated that: with the increasing of the mass of cotton stalk char, its ability of promoting the secondary cracking of pyrolysis volatile became stronger. As a result, the liquid bio-oil yield decreased from 56.70% to 51.32%, while the yield of small molecular gases continued to increase from 17.88% to 22.13%. When the dosage of the cotton stalk char was 2.0 g, the highest gas yield of 22.1% was obtained. When the cotton stalk char was added in the pyrolysis, the acids, aldehydes and lipid content declined sharply. It is deduced that the cotton stalk char plays an inhibiting effect in the formation of them. At the same time, this inhibiting effect is conducive to the formation of more phenols. After deliming, semi-coke group structure will weaken the inhibition of the formation of acids in the volatile. Likewise, the capacity of phenolic enrichment is also reduced. The cotton stalk loaded with metal chloride enhanced the semi-coke’s effects on the volatile catalytic cracking and

  5. 生物质预处理技术及其对热解产物的影响综述%A Review of Biomass Pretreatment Technologies and Their Influences on Pyrolysis Products

    Institute of Scientific and Technical Information of China (English)

    胡海涛; 李允超; 王贤华; 张帅; 杨海平; 陈汉平

    2014-01-01

    总结了国内外各种生物质预处理技术及其对热解产物的影响的研究现状,分析了不同预处理方法的优势及存在的问题,指出微波干燥预处理是一种快捷的生物质干燥方式;脱灰预处理能加快生物质热解速率,并实现糖类组分的富集;而烘焙预处理则能提高生物油的热值。同时介绍了一些新型生物质预处理技术,如离子液体预处理可以减少裂解反应时间,使生物质油产率得到提升;而水热预处理则能使生物油中糖含量(主要是左旋葡聚糖)显著增加。并指出了今后的研究方向为:努力提高各种预处理方法的效率并降低预处理技术的成本;进一步改善现有预处理方法甚至发现新的预处理方法;通过学科交叉探索新的物理化学生物预处理技术;期望原料的预处理可以增加生物油中某些有特殊价值物质的含量或同时得到具有较高利用价值的气液固热解产物。%In this study, the research status of various biomass pretreatment technologies at home and abroad, and their effects on pyrolysis products were reviewed. The advantages and drawbacks of various pretreatment methods were summarized. It was found that microwave drying pretreatment could be an efficient way for drying biomass. The de-ash pretreatment could increase the reaction rate of biomass pyrolysis, and also enrich the carbohydrate content in bio-oils. The torrefaction pretreatment could increase the heating value of bio-oils. In addition, some other new pretreatment technologies for biomass were also reviewed, for example, the ionic liquid pretreatment could reduce the cracking time during pyrolysis, thus enhance the yield of bio-oils. The hydrothermal pretreatment could increase the sugar content ( mainly levoglucosan) in bio-oils.

  6. Effects of Catalyst Particle Size and Mass on Catalytic Cracking of Biomass Pyrolysis Tar%催化剂粒径与质量对生物质热解焦油催化裂化反应的影响

    Institute of Scientific and Technical Information of China (English)

    李永玲; 吴占松

    2012-01-01

    According to the effects of catalytic cracking conditions on the treatment of biomass pyrolysis tar, the process of tar catalytic cracking under the action of catalyst was studied on the fixed-bed test rig by taking the tar from stalk pyrolysis as the raw material, so as to analyze the influence of catalyst particle size, mass and other parameters on the tar eonversion effect and the catalytic cracking product. Results show that the decrease in catalyst particle size or the increase in catalyst mass can facilitate the conversion of gases from large molecular size with high heating values into small molecular size with low heating values, so that the catalytic craeking of tar is promoted, the gas yield is improved and the gas heating value is reduced.%针对催化裂化条件对生物质热解焦油处理的影响,以秸秆热解产生的焦油为原料,在固定床焦油催化裂化反应试验台上研究了催化剂作用下焦油催化裂化的过程,并对催化剂粒径和质量等参数对焦油转化效果和催化裂化产物的影响进行了分析.结果表明:减小催化剂的粒径或者增加催化剂质量能促进燃气中高热值大分子气体转化为低热值的小分子轻质气体,从而有效促进焦油裂化,提高燃气产率,降低燃气热值.

  7. Thermal relaxation of bituminous coal to improve donation ability of hydrogen radicals in flash pyrolysis; Sekitan kozo kanwa ni yoru suiso radical kyoyo noryoku no kojo wo mezashita netsubunkai mae shori

    Energy Technology Data Exchange (ETDEWEB)

    Mori, T.; Isoda, T.; Kusakabe, K.; Morooka, S. [Kyushu University, Fukuoka (Japan). Faculty of Engineering; Hayashi, J. [Hokkaido University, Sapporo (Japan). Center for Advanced Research of Energy Technology

    1996-10-28

    In terms of coal conversion reaction, the behavior of bituminous coal heated beyond a glass transition point was examined on the basis of pyrolyzed products, and the effect of an increase in proton mobility on promotion of coal decomposition was evaluated. In experiment, after Illinois bituminous coal specimen was heated up to a specific temperature in N2 or He gas flow at a rate of 5K/min, the specimen was directly transferred to a pyrolyzer for instantaneous pyrolysis. As the experimental result, the glass transition temperature of the Illinois coal specimen was calculated to be 589K from a differential scanning calorimetry (DSC) profile. From the pyrolysis result of the Illinois coal specimen heated up to 623K, the char yield decreased by 3kg as compared with that of the original coal, while the tar yield increased by 4kg up to 27kg per 100kg of the original coal. This tar increase was larger than that of cooled coal. These results suggested that the donation of hydrogen radicals to coal fragments is improved with an increase in proton mobility. 4 refs., 4 figs., 1 tab.

  8. Catalytic fast pyrolysis of pine wood: Effect of successive catalyst regeneration

    NARCIS (Netherlands)

    Yildiz, Guray; Lathouwers, Tom; Toraman, Hilal Ezgi; Geem, van Kevin M.; Marin, Guy B.; Ronsse, Frederik; Duren, van Ruben; Kersten, Sascha R.A.; Prins, Wolter

    2014-01-01

    The main product of biomass fast pyrolysis is a liquid mixture of numerous organic molecules with water that is usually called pyrolysis oil or bio-oil. The research discussed in this paper was meant (1) to validate a new, semicontinuously operated pyrolysis setup and (2) to investigate the effect o

  9. Pyrolysis oil utilization in 50KWE gas turbine

    NARCIS (Netherlands)

    Pozarlik, Artur; Bijl, Anton; Alst, van Niek; Bramer, Eddy; Brem, Gerrit

    2015-01-01

    The concept of using pyrolysis oil (PO) derived from biomass via a fast pyrolysis route for power and heat generation encounters problems due to an incompatibility between properties (physical and chemical) of bio-oil and gas turbines designed for fossil fuels. An extensive research has been perform

  10. Photosynthetic efficiency of Chlamydomonas reinhardtii in flashing light

    NARCIS (Netherlands)

    Vejrazka, C.; Janssen, M.G.J.; Streefland, M.; Wijffels, R.H.

    2011-01-01

    Efficient light to biomass conversion in photobioreactors is crucial for economically feasible microalgae production processes. It has been suggested that photosynthesis is enhanced in short light path photobioreactors by mixing-induced flashing light regimes. In this study, photosynthetic efficienc

  11. Research on the pyrolysis of hardwood in an entrained bed process development unit

    Energy Technology Data Exchange (ETDEWEB)

    Kovac, R.J.; Gorton, C.W.; Knight, J.A.; Newman, C.J.; O' Neil, D.J. (Georgia Inst. of Tech., Atlanta, GA (United States). Research Inst.)

    1991-08-01

    An atmospheric flash pyrolysis process, the Georgia Tech Entrained Flow Pyrolysis Process, for the production of liquid biofuels from oak hardwood is described. The development of the process began with bench-scale studies and a conceptual design in the 1978--1981 timeframe. Its development and successful demonstration through research on the pyrolysis of hardwood in an entrained bed process development unit (PDU), in the period of 1982--1989, is presented. Oil yields (dry basis) up to 60% were achieved in the 1.5 ton-per-day PDU, far exceeding the initial target/forecast of 40% oil yields. Experimental data, based on over forty runs under steady-state conditions, supported by material and energy balances of near-100% closures, have been used to establish a process model which indicates that oil yields well in excess of 60% (dry basis) can be achieved in a commercial reactor. Experimental results demonstrate a gross product thermal efficiency of 94% and a net product thermal efficiency of 72% or more; the highest values yet achieved with a large-scale biomass liquefaction process. A conceptual manufacturing process and an economic analysis for liquid biofuel production at 60% oil yield from a 200-TPD commercial plant is reported. The plant appears to be profitable at contemporary fuel costs of $21/barrel oil-equivalent. Total capital investment is estimated at under $2.5 million. A rate-of-return on investment of 39.4% and a pay-out period of 2.1 years has been estimated. The manufacturing cost of the combustible pyrolysis oil is $2.70 per gigajoule. 20 figs., 87 tabs.

  12. Catalytic partial oxidation of pyrolysis oils

    Science.gov (United States)

    Rennard, David Carl

    2009-12-01

    This thesis explores the catalytic partial oxidation (CPO) of pyrolysis oils to syngas and chemicals. First, an exploration of model compounds and their chemistries under CPO conditions is considered. Then CPO experiments of raw pyrolysis oils are detailed. Finally, plans for future development in this field are discussed. In Chapter 2, organic acids such as propionic acid and lactic acid are oxidized to syngas over Pt catalysts. Equilibrium production of syngas can be achieved over Rh-Ce catalysts; alternatively mechanistic evidence is derived using Pt catalysts in a fuel rich mixture. These experiments show that organic acids, present in pyrolysis oils up to 25%, can undergo CPO to syngas or for the production of chemicals. As the fossil fuels industry also provides organic chemicals such as monomers for plastics, the possibility of deriving such species from pyrolysis oils allows for a greater application of the CPO of biomass. However, chemical production is highly dependent on the originating molecular species. As bio oil comprises up to 400 chemicals, it is essential to understand how difficult it would be to develop a pure product stream. Chapter 3 continues the experimentation from Chapter 2, exploring the CPO of another organic functionality: the ester group. These experiments demonstrate that equilibrium syngas production is possible for esters as well as acids in autothermal operation with contact times as low as tau = 10 ms over Rh-based catalysts. Conversion for these experiments and those with organic acids is >98%, demonstrating the high reactivity of oxygenated compounds on noble metal catalysts. Under CPO conditions, esters decompose in a predictable manner: over Pt and with high fuel to oxygen, non-equilibrium products show a similarity to those from related acids. A mechanism is proposed in which ethyl esters thermally decompose to ethylene and an acid, which decarbonylates homogeneously, driven by heat produced at the catalyst surface. Chapter 4

  13. Iron-based adsorbent prepared from Litchi peel biomass via pyrolysis process for the removal of pharmaceutical pollutant from synthetic aqueous solution.

    Science.gov (United States)

    Foletto, Vitória Segabinazzi; Ferreira, Ananda Bulegon; da Cruz Severo, Eric; Collazzo, Gabriela Carvalho; Foletto, Edson Luiz; Dotto, Guilherme Luiz

    2017-03-10

    A porous iron-based adsorbent obtained from litchi peel via pyrolysis process was prepared in this work, in order to evaluate its adsorptive potential for the removal of a pharmaceutical dye (amaranth) from aqueous solution. The material was characterized by X-ray diffraction, nitrogen adsorption-desorption isotherms, and scanning electron microscopy. Several isotherm and kinetic models were tested aiming to represent the amaranth dye adsorption. The prepared sample presented magnetic property, and a mesoporous texture constituted of graphite and three iron-based phases. The adsorption kinetics of amaranth on the adsorbent followed the pseudo-second-order model, whereas the equilibrium data were in good agreement with the BET isotherm, being represented by a sigmoid-shaped adsorption isotherm. The maximum adsorption capacity for the amaranth dye was found to be 44.87 mg g(-1), demonstrating that the material prepared in this work showed to be a promising adsorbent for the removal of amaranth from aqueous solution.

  14. 生物质在惰性及含氧条件下热解特性%EXPERIMENTAL STUDY ON THE CHARACTERISTICS OF BIOMASS PYROLYSIS UNDER INERT AND OXIDATIVE CONDITIONS

    Institute of Scientific and Technical Information of China (English)

    吴文广; 罗永浩; 陈祎; 苏毅; 陈亮

    2012-01-01

    Pyrolysis characteristic of rice straw, corn straw and fir sawdust biomass in different temperature and oxygen concentration have been studied in a fixed-bed reactor, tar was analyzed by gas chromatography/mass spec-trometry (GC/MS). The results indicated that three biomass pyrolysis process have been completed at 380℃ , and achieved the maximum gas yield value in order of fir sawdust > rice straw > corn straw, which is opposite sequence as in char yields. It is also shown that each pyrolysis tar mainly consists of oxygen-containing compounds as phenols, acids, ester and small amount of low-aromatic compounds. In thermal oxidative degradation condition, tar yields decreased and gas yields increased when oxygen concentration increasing. However, fir sawdust tar decrease is less sensitive than rice straw or corn straw tar as oxygen concentration increasing, rice straw and corn straw tar was obviously decomposed about 40% as 5% of oxygen present.%在固定床反应器上研究粒径范围为100~ 150μm的稻秆、玉米秆和杉木屑3种生物质料在不同温度及含氧量中的热解特性,并采用气相色谱/质谱联用仪(GC/MS)分析焦油产物的成分.惰性气氛下的热解实验结果表明:3种生物质在380℃即基本完成其热解过程,此温度下对应的气体产量依次为杉木屑>稻秆>玉米秆,焦炭产量的顺序恰好相反,最大热解焦油生成量(质量含量)分别为:杉木屑为31%,稻秆为25%,玉米秆为22%.测试各焦油中均含有大量含氧类如酚类、酸类和脂类以及少量低环芳烃类物质.对于含氧热解,随热解携带气氛中含氧量增加.焦油产量逐渐减少,气体产量增加,5%的氧气即可降低稻秆和玉米秆约40%的热解焦油产量,而即使15%氧量浓度也仅使杉木屑焦油的产量下降17.4%,可见氧量的增加对稻秆和玉米秆热解焦油产量的影响比杉木屑的更明显.

  15. Stabilization on heavy metals of biochar from phytoremediation harvested biomass in pyrolysis processing%植物修复收获物热解制备生物炭过程中重金属的稳定性研究

    Institute of Scientific and Technical Information of China (English)

    孙阳; 刘亚男; 郭朝晖; 侍维

    2016-01-01

    Considering that a large amounts of biomass harvested containing heavy metals will be produced by phytoremediation for metal contaminated soil, the harvested biomass of giant reed containing heavy metals was selected, and the stability and enrichment characteristics of As, Cd and Pb in the pyrolysis process for biochar were studied by adding chemicals. The results show that the heavy metals in biomass are mainly enriched in biochar, and the amount and speciation of heavy metals in biochar are affected deeply by temperature of pyrolysis, pyrolysis time, the kind and amount of chemicals added. The percentage of biochar arrives at 86%when biomass is pyrolysed for 0.5 h by adding 0.5%NaOH of 250 ℃. The optimized stability conditions for As in biochar is pyrolysed for 2.00 h by adding 2%NaOH at 300 ℃, and for Cd in biochar is pyrolysed for 0.50 h by adding 0.5%FeCl3 at 250 ℃, for Pb in biochar is pyrolysed for 1 h by adding 5%CaCO3 at 400 ℃, respectively. The specific surface area of biochar reaches 0.31 m2/mg by adding FeCl3 and the stability capacity of heavy metals in biochar significantly increases. According to the BCR sequentialextraction procedure, the speciation of As in biochar exists mainly in residual form from the pyrolysis by adding NaOH while those of As in biochar exists mainly in oxidizable form by adding CaCO3,Al2O3 and FeCl3. The speciation of Cd in biochar exists mainly in residual form, and that of Pb in biochar exists mainly in oxidizable form with adding stable agents including NaOH, CaCO3, Al2O3 and FeCl3.%基于重金属污染土壤植物修复过程中产生大量含重金属的生物质收获物,以含重金属芦竹收获物为研究对象,通过在芦竹收获物中添加化学固定材料,研究其热解制备生物炭过程中As,Cd和Pb等重金属的稳定与富集特征。研究结果表明:热解过程中生物质中重金属主要富集在生物炭中,其质量分数及存在形态明显受热解温度、热解时

  16. Plasma Treatments and Biomass Gasification

    Science.gov (United States)

    Luche, J.; Falcoz, Q.; Bastien, T.; Leninger, J. P.; Arabi, K.; Aubry, O.; Khacef, A.; Cormier, J. M.; Lédé, J.

    2012-02-01

    Exploitation of forest resources for energy production includes various methods of biomass processing. Gasification is one of the ways to recover energy from biomass. Syngas produced from biomass can be used to power internal combustion engines or, after purification, to supply fuel cells. Recent studies have shown the potential to improve conventional biomass processing by coupling a plasma reactor to a pyrolysis cyclone reactor. The role of the plasma is twofold: it acts as a purification stage by reducing production of tars and aerosols, and simultaneously produces a rich hydrogen syngas. In a first part of the paper we present results obtained from plasma treatment of pyrolysis oils. The outlet gas composition is given for various types of oils obtained at different experimental conditions with a pyrolysis reactor. Given the complexity of the mixtures from processing of biomass, we present a study with methanol considered as a model molecule. This experimental method allows a first modeling approach based on a combustion kinetic model suitable to validate the coupling of plasma with conventional biomass process. The second part of the paper is summarizing results obtained through a plasma-pyrolysis reactor arrangement. The goal is to show the feasibility of this plasma-pyrolysis coupling and emphasize more fundamental studies to understand the role of the plasma in the biomass treatment processes.

  17. Catalytic pyrolysis using UZM-39 aluminosilicate zeolite

    Science.gov (United States)

    Nicholas, Christpher P; Boldingh, Edwin P

    2013-12-17

    A new family of coherently grown composites of TUN and IMF zeotypes has been synthesized and show to be effective catalysts for catalytic pyrolysis of biomass. These zeolites are represented by the empirical formula. Na.sub.nM.sub.m.sup.n+R.sub.rQ.sub.qAl.sub1-xE.sub.xSi.sub.yO.s- ub.z where M represents zinc or a metal or metals from Group 1, Group 2, Group 3 or the lanthanide series of the periodic table, R is an A,.OMEGA.-dihalosubstituted paraffin such as 1,4-dibromobutane, Q is a neutral amine containing 5 or fewer carbon atoms such as 1-methylpyrrolidine and E is a framework element such as gallium. The process involves contacting a carbonaceous biomass feedstock with UZM-39 at pyrolysis conditions to produce pyrolysis gases comprising hydrocarbons. The catalyst catalyzes a deoxygenation reaction converting oxygenated hyrdocarbons into hydrocarbons removing the oxygen as carbon oxides and water. A portion of the pyrolysis gases is condensed to produce low oxygen biomass-derived pyrolysis oil.

  18. Catalytic pyrolysis using UZM-39 aluminosilicate zeolite

    Energy Technology Data Exchange (ETDEWEB)

    Nicholas, Christopher P; Boldingh, Edwin P

    2014-10-07

    A new family of coherently grown composites of TUN and IMF zeotypes has been synthesized and shown to be effective catalysts for catalytic pyrolysis of biomass. These zeolites are represented by the empirical formula. Na.sub.nM.sub.m.sup.n+R.sub.rQ.sub.qAl.sub.1-xE.sub.xSi.sub.yO.s- ub.z where M represents zinc or a metal or metals from Group 1, Group 2, Group 3 or the lanthanide series of the periodic table, R is an A,.OMEGA.-dihalosubstituted paraffin such as 1,4-dibromobutane, Q is a neutral amine containing 5 or fewer carbon atoms such as 1-methylpyrrolidine and E is a framework element such as gallium. The process involves contacting a carbonaceous biomass feedstock with UZM-39 at pyrolysis conditions to produce pyrolysis gases comprising hydrocarbons. The catalyst catalyzes a deoxygenation reaction converting oxygenated hydrocarbons into hydrocarbons and removing the oxygen as carbon oxides and water. A portion of the pyrolysis gases is condensed to produce low oxygen biomass-derived pyrolysis oil.

  19. Mesoporous carbon stabilized MgO nanoparticles synthesized by pyrolysis of MgCl2 preloaded waste biomass for highly efficient CO2 capture.

    Science.gov (United States)

    Liu, Wu-Jun; Jiang, Hong; Tian, Ke; Ding, Yan-Wei; Yu, Han-Qing

    2013-08-20

    Anthropogenic CO2 emission makes significant contribution to global climate change and CO2 capture and storage is a currently a preferred technology to change the trajectory toward irreversible global warming. In this work, we reported a new strategy that the inexhaustible MgCl2 in seawater and the abundantly available biomass waste can be utilized to prepare mesoporous carbon stabilized MgO nanoparticles (mPC-MgO) for CO2 capture. The mPC-MgO showed excellent performance in the CO2 capture process with the maximum capacity of 5.45 mol kg(-1), much higher than many other MgO based CO2 trappers. The CO2 capture capacity of the mPC-MgO material kept almost unchanged in 19-run cyclic reuse, and can be regenerated at low temperature. The mechanism for the CO2 capture by the mPC-MgO was investigated by FTIR and XPS, and the results indicated that the high CO2 capture capacity and the favorable selectivity of the as-prepared materials were mainly attributed to their special structure (i.e., surface area, functional groups, and the MgO NPs). This work would open up a new pathway to slow down global warming as well as resolve the pollution of waste biomass.

  20. Pyrolysis oil upgrading for Co-processing in standard refinery units

    NARCIS (Netherlands)

    De Miguel Mercader, Ferran

    2010-01-01

    This thesis considers the route that comprises the upgrading of pyrolysis oil (produced from lingo-cellulosic biomass) and its further co-processing in standard refineries to produce transportation fuels. In the present concept, pyrolysis oil is produced where biomass is available and then transport

  1. Pyrolysis of cassava rhizome in a counter-rotating twin screw reactor unit.

    Science.gov (United States)

    Sirijanusorn, Somsak; Sriprateep, Keartisak; Pattiya, Adisak

    2013-07-01

    A counter-rotating twin screw reactor unit was investigated for its behaviour in the pyrolysis of cassava rhizome biomass. Several parameters such as pyrolysis temperature in the range of 500-700°C, biomass particle size of twin screw reactor was relatively low, whereas the solids content was relatively high, compared to some other reactor configurations.

  2. BIOMASS PYROLYSIS FOR LIQUIDS IN CIRCULATING FLUIDIZED BED(CFB)REACTOR%循环流化床反应器固体生物质的热解液化

    Institute of Scientific and Technical Information of China (English)

    戴先文; 吴创之; 周肇秋; 陈勇

    2001-01-01

    介绍了以循环流化床反应器为主体的固体生物质热解液化装置,实验过程,实验结果及分析。通过对气体产物的比较及油产物一般物性和油成分的分析,得出如下结论:1)较高的温度和较长的停留时间会降低油的产率,生成过多的不凝气;过低的温度和加热速率导致严重的碳化,同样会降低油产率,本实验的最高油产率可达63%。2)生物质热解油品的物性特点主要包括水分含量较高,pH值较低,粘度变化范围很大,热值与化石燃料相比为低,并且油品中因含氧量很高而极不稳定,油品的组成成分非常复杂,烷烃和非烃占据了相当的比例,芳烃和沥青质含量相对较少。3)在循环流化床中的固体生物质热解液化可模化为热解区和还原裂解区。%With the CFB as main reactor,an integrated facility was developed for the fast pyrolysis of biomass.In this facility,the bed is divided into two zones according to the pyrolysis and secondary reactions,the main chemical processes can be modelled.Based on the variation of the pyrolysis gas composition and the bio-oil ingredients,analysis of the experimental data highlights the important effects of temperature,heating rate and residence time.The main trend is that the higher temperature and longer residence time would contribute to the secondary reaction and the lower heating rate favors the carbonization,which both reduce the liquid production.In this study,the best bio-oil yield is 63%in weight.The component analysis of bio-oil shows that most compounds in bio-oil are nonhydrocarbons,while alkanes,aromatics and bitumen are relatively low.The physical properties of bio-oil include the high water and oxygen content,and the low pH and LHV.

  3. Effect of pyrolysis temperature on the chemical physical characteristics of biomass char%热解温度对生物质焦理化特性的影响

    Institute of Scientific and Technical Information of China (English)

    王学斌; 许伟刚; 靳维新; 张利孟; 王新民; 谭厚章

    2013-01-01

    The straw pyrolysis chars obtained at 873, 1 073 and 1 273 K were investigated with SEM, BET and TGA to conduct the characterization. The reduction of NO by different straw chars was investigated, with considering the effects of char concentration cchar and NO concentration cNO, to analyze the effect of pyrolysis temperature on the chemical physical characteristics of biomass char. The results show that straw char obtained at 1 073 K holds the most developed pore structure and surface area, the best combustion activity, and the highest NO reduction rate. As the char concentration increases, NO reduction rate linearly increases. As the NO concentration increases, NO reduction rate decreases as a power-function relation. At the transition temperature about 1 173 K the char-NO reaction changes from dynamic-control region to diffusion-control region. In the dynamic-control region, the pyrolysis temperature affects the activation of the char-NO reaction inconspicuously. The reaction orders for NO and straw char are found to be 0. 89 and 1.00, respectively.%利用SEM、BET及TGA对在873、1 073和1 273 K下制得的麦秆焦的理化特性进行分析,进行了用制得的麦秆焦还原NO的实验,同时考虑了焦样及NO初始浓度对该反应的影响,得出了热解温度对麦秆焦的各种物理化学特性及其与NO反应活性的影响.结果表明,1 073 K焦样的孔隙特征最为发达,燃烧活性最高,并对应最高的NO还原效率.焦作用下NO的还原率随着焦样浓度的增大线性升高,而随着初始NO浓度的增大呈幂函数的规律下降.不同热解温度下麦秆焦样与NO的反应均在1 173 K附近存在动力学控制和扩散控制的转折温度;在动力学控制的反应温度范围内,热解温度对麦秆焦与NO反应活化能的影响不大(89.78 ~95.41 kJ/mol),其中,NO浓度项和焦浓度项的反应级数分别为0.89和1.00.

  4. Foundation Flash Catalyst

    CERN Document Server

    Goralski, Greg

    2010-01-01

    This book offers an introduction to Flash Catalyst for designers with intermediate to advanced skills. It discusses where Catalyst sits within the production process and how it communicates with other programs. It covers all of the features of the Flash Catalyst workspace, teaching you how to create designs from scratch, how to build application designs and add functionality, and how to master the Catalyst/Flex workflow. * Introduces Flash Catalyst * Focuses on production process * Covers the interrelation between Flash Catalyst and Photoshop/Illustrator/Flex/Flash What you'll learn Starting f

  5. 生物质快速热裂解主要参数对产物产率及其分布的影响%Effects of biomass fast pyrolysis key parameters on yields and distributions of products

    Institute of Scientific and Technical Information of China (English)

    刘荣厚; 牛卫生; 于晓芳; 李天舒; 张春梅; 李金洋

    2003-01-01

    Sawdust fast pyrolysis experiments were conducted in a fluidized bed reactor at a biomass feed rate of 0.80~2.00 kg*h-1. The effects of process conditions, like fluidized bed reactor temperature, feed size and vapor residence time on the product yields were studied. When reactor temperatures were varied from 450℃ to 600℃, a maximum bio-oil yield of 53.33%wt was achieved at 500℃ with a char and gaseous yields of 8.97 %wt and 37.70%wt respectively. The particle size of sawdust varied in the range of 0~0.90 mm. The yield of bio-oil was maximum (58.23%wt of biomass feed) for the particle size of 0.45~0.60 mm with a char yield of 8.23%wt. Vapor residence times were ranged from 0.80 to 1.50 s at temperature of 500℃ with a particle size less than 0.20 mm. A maximum bio-oil yield of 62.60%wt was achieved at 500℃ when the vapor residence time was held constant at 0.80 s. However, at the longer residence time(1.50 s), bio-oil yield was slightly lower. Bio-oil is a miscible mixture of polar organics with water. The results showed the potential of sawdust fast pyrolysis for liquid hydrocarbon fuels production.%在生物质喂入率为0.8~2.0 kg*h-1的流化床上以木屑为原料进行了快速热裂解试验,系统研究了木屑热裂解过程中的流化床反应器温度、生物质粒径和气相滞留期三个主要参数对热裂解产物产率的影响.结果表明,当反应器温度在450~600℃之间变化时,在500℃条件下,生物油产率最高,其值为53.33%,而木炭及不可冷凝气体产率分别为8.97%和37.70%.当温度为500℃,木屑粒径在0.90 mm以下时,粒径在0.45~0.60 mm范围内的生物油产率最大,达到58.23%,这时木炭产率为8.23%.对粒径小于0.20 mm的木屑在温度500℃,气相滞留期0.80, 1.20, 1.50 s三个量级上的热裂解表明,气相滞留期为0.80 s时,生物油产率达到最大值为62.60%.但是,当气相滞留期较长时(1.50 s),生物油产率稍有下降.生物油是极性有机物

  6. Application of thin-layer chromatography with fluorescence scanning densitometry for analysing saturates in heavy liquids derived from co-pyrolysis of biomass and plastics

    Energy Technology Data Exchange (ETDEWEB)

    Cebolla, V.L. [Consejo Superior de Investigaciones Cientificas (CSIC), Instituto de Carboquimica, Zaragoza (Spain); Matt, M. [Institute of Chemistry and Chemical Technology, Krasnoyarsk (Russian Federation). Siberian Branch of Russian Academy of Sciences; Membrado, L. [Universite de Metz, Saint-Avold (FR). Laboratoire de Chimie et Applications] [and others

    2002-01-01

    Two alternative methods, based on Thin-Layer Chromatography (TLC) with Fluorescence Scanning Densitometry have been developed for characterization of heavy liquids from copyrolysis of different kinds of biomass and plastics in autoclaves under inert atmosphere. A conventional TLC system, which includes a vertical developing tank, and a High Performance TLC (HPTLC) system, with a horizontal developing chamber and the use of HPTLC plates, have been used. The analytical method involves in both cases the measurement of two chromatograms per sample: the first, on a silica gel berberine-impregnated plate, for detection of saturates using the phenomenon of berberine-induced fluorescence; and the second, on a silica gel plate, for detection of aromatic-polars and polars, by native fluorescence. Although the HPTLC system is more sensitive and faster, both techniques represent an improvement with regard to current methods for analyzing these kinds of products. However their application depends on the particular solubility of each sample and on its slope of the fluorescent response-sample load regression. (orig.)

  7. Combustion, pyrolysis, gasification, and liquefaction of biomas

    Science.gov (United States)

    Reed, T. B.

    1980-09-01

    The advantages of biomass as a feedstock are examined and biomass conversion techniques are described. Combustion is the simplest method of producing heat from biomass, using either the traditional fixed bed combustion on a grate or the fluidized bed and suspended combustion techniques now being developed. Pyrolysis of biomass is a particularly attractive process if all three products gas, wood tars, and charcoal can be used. Gasification of biomass with air is perhaps the most flexible and best developed process for conversion of biomass to fuel, yielding a low energy gas that can be burned in existing gas/oil boilers or in engines. Oxygen gasification yields a gas with higher energy content that can be used in pipelines or to fire turbines. In addition, this gas can be used for producing methanol, ammonia, or gasoline by indirect liquefaction. Fast pyrolysis of biomass produces a gas rich in ethylene that can be used to make alcohols or gasoline. Finally, treatment of biomass with high pressure hydrogen can yield liquid fuels through direct liquefaction.

  8. 生物质流态化炭气联产初步研究%A Preliminary Study of Biochar-gas Cogeneration from Biomass Fluidized Pyrolysis

    Institute of Scientific and Technical Information of China (English)

    陈红健; 范晓旭; 韩中合; 张会亮

    2015-01-01

    生物质流态化炭气联产技术是在流态化反应过程中获得生物炭和燃气,其目标是在保证燃气能够稳定燃烧情况下,尽量提高生物炭的品质和产率。为此,以木屑为原料在流化床实验台上进行了生物质在流化床中的停留时间对生物炭特性和燃气特性影响的研究;并在此基础上借助 Aspen Plus 过程模拟平台进行了扩展预测模拟计算。结果显示:停留时间对生物炭特性和燃气特性有较大影响。在本实验范围内随着停留时间,增加生物炭产率降低,生物炭中固定碳含量升高,固定碳最高含量为72%时生物炭的产率为14%;燃气中 CO、H2的含量也会随停留时间的增加而升高,燃气热值最高可达到4216 kJ/( Nm3)。%Fluidized biochar-gas cogeneration from biomass is a technology to obtain biochar and gas in the fluidized re-action process .The goal of this technology is to improve the quality and yield of biochar under the premise of stable com -bustion of gas .Sawdust was used as material in this paper to research the effect of residence time on characteristics of bio -char and gas .Simulations were conducted with Aspen plus to make an extended forecasts .The results showed that resi-dence time have a significant influence on characteristics of biochar and gas .With the lengthen of residence time , yield of biochar decreased to 14%while fixed carbon content increased to 72%in this experimental range;content of CO , H2 in gas also increased with the residence time increases , the maximum calorific value of gas could reach 4216kJ/Nm3 .

  9. Millisecond autothermal catalytic reforming of carbohydrates for synthetic fuels by reactive flash volatilization

    Science.gov (United States)

    Dauenhauer, Paul Jakob

    Carbohydrates including glucose, cellulose, starch and polyols including glycerol, ethylene glycol and methanol produced in large quantities from biomass are considered as a carbon-based feedstock for high temperature catalytic reforming by catalytic partial oxidation. Autothermal catalytic partial oxidation of methanol, ethylene glycol, and glycerol with Rh and Pt-based catalysts with ceria on alumina foam supports at residence times less than ten milliseconds produced equilibrium selectivity to synthesis gas. The addition of steam at S/C>4 produced selectivity to H2 higher than 80% with little or no selectivity to minor products. In a new process referred to as 'reactive flash volatilization,' catalytic partial oxidation was combined with pyrolysis of biomass by directly impinging particles of cellulose, starch, polyethylene, soy oil, or Aspen (Populous Tremuloides) on an operating Rh-based reforming catalyst at 700-800°C. Solid particles endothermically pyrolyzed to volatile organic compounds which mixed with air and reformed on the catalyst exothermically generating heat to drive the overall process. Particles of ˜250 mum microcrystalline cellulose processed at the conditions of C/O=1.0 on a RhCe/gamma-Al2O3/alpha-Al 2O3 at a residence time of ˜70 milliseconds produced a gaseous effluent stream selecting for 50% H2 and 50% CO with no observable side products other than H2O and CO2, and residence time.

  10. Lifecycle Assessment of Biofuel Production from Wood Pyrolysis Technology

    Science.gov (United States)

    Manyele, S. V.

    2007-01-01

    Due to a stronger dependency on biomass for energy, there is a need for improved technologies in biomass-to-energy conversion in Tanzania. This paper presents a life cycle assessment (LCA) of pyrolysis technology used for conversion of wood and wood waste to liquid biofuel. In particular, a survey of environmental impacts of the process is…

  11. NAND flash memory technologies

    CERN Document Server

    Aritome, Seiichi

    2016-01-01

    This book discusses basic and advanced NAND flash memory technologies, including the principle of NAND flash, memory cell technologies, multi-bits cell technologies, scaling challenges of memory cell, reliability, and 3-dimensional cell as the future technology. Chapter 1 describes the background and early history of NAND flash. The basic device structures and operations are described in Chapter 2. Next, the author discusses the memory cell technologies focused on scaling in Chapter 3, and introduces the advanced operations for multi-level cells in Chapter 4. The physical limitations for scaling are examined in Chapter 5, and Chapter 6 describes the reliability of NAND flash memory. Chapter 7 examines 3-dimensional (3D) NAND flash memory cells and discusses the pros and cons in structure, process, operations, scalability, and performance. In Chapter 8, challenges of 3D NAND flash memory are dis ussed. Finally, in Chapter 9, the author summarizes and describes the prospect of technologies and market for the fu...

  12. 磷酸二氢钙与生物质共热解提高生物炭固碳效果%Biomass co-pyrolysis with calcium dihydrogen phosphate improving carbon fixation of biochar

    Institute of Scientific and Technical Information of China (English)

    李飞跃; 张丽; 李孝良; 谢越; 王艳; 汪建飞

    2016-01-01

    Turning biomass wastes into biochar under low temperature and limited oxygen conditions has recently proven as a promising approach for long term carbon sequestration. In order to reveal the effects of mineral addition which is a pretreatment of biochar production on carbon retention and stability of biochar and provide an creative idea for further improvement of carbon sequestration potential by turning biomass into biochar. Calcium dihydrogen phosphate using as a typical mineral was added to sawdust and dairy manure feedstock at the ratio of 20% for biochar formation through co-pyrolysis treatment under lab condition, a typical slow pyrolysis process, heated in a Muffle Furnace at a speed of approximately 20℃/min under limited oxygen and held at 200 to 500℃ with every other 100℃ for 1 h. Moreover, two reliable methods were applied to test biochar stability: One was a simulated long-term stability method using chemical oxidation treatment to assess the labile fraction of C in biochar samples after hydrogen peroxide (H2O2) oxidation, this method was to determine the chemical stability of biochar; The other was simulated mineralization experiment to test the biochar's microbe-resistance stability, this method was to evaluate the biological stability of biochar in terms of microbial mineralization rate under simulated soil microbial conditions in a lab-scale experiment. The carbon retention was defined as the proportion of the original carbon, which was from plant photosynthesis by sequestrating the CO2 from atmosphere in feedstock, retained in the biochar after the pyrolysis. Compared with the original biochar, modified biochar produced with calcium dihydrogen phosphate addition to sawdust and dairy manure were increased by 31.3% and 26.1%, respectively; With H2O2 oxidation, the carbon loss of modified biochar produced with calcium dihydrogen phosphate addition to sawdust was reduced by 93.1%, compared with its unmodified biochar. However, the carbon loss of

  13. Avaliação de biocombustível derivado do bio-óleo obtido por pirólise rápida de biomassa lignocelulósica como aditivo para gasolina Evaluation of biofuel derived from lignocellulosic biomass fast pyrolysis bio-oil for use as gasoline addictive

    Directory of Open Access Journals (Sweden)

    Carmen Luisa Barbosa Guedes

    2010-01-01

    Full Text Available A biofuel was prepared from acid aqueous fraction (pH = 2 of bio-oil produced by fast pyrolysis (Bioware Technology of lignocellulosic biomass (sugar cane residue and tested in blends (2, 5, 10 e 20% v/v with gasoline type C (common marketed in Brazil. The specification tests made in the Refinery President Getúlio Vargas (PETROBRAS showed increasing in the octane number (MON and antiknock index (AKI with reduction in the residue generation during the combustion. The physicochemical characteristics of the biofuel were similar that combustible alcohol allowing its use as gasoline additive.

  14. Comparative Study on the Pyrolysis Behaviors of Corn Stalk and Pine Sawdust Using TG-MS

    Institute of Scientific and Technical Information of China (English)

    赵云鹏; 丁曼; 窦有权; 樊星; 王月伦; 魏贤勇

    2014-01-01

    The pyrolysis behaviors of corn stalk (CS) and pine sawdust (PS) were investigated with thermogravim-etry-mass spectroscopy (TG-MS). The peak temperature of PS was higher and the main decomposition region shifted to higher temperature compared with CS, which implied that the hemicellulose and cellulose of PS were more ther-mally stable than those of CS. However, the hemicellulose and cellulose of PS were more easily decomposed into gaseous products than those of CS during pyrolysis. The pyrolysis process of biomass can be described by a two-step independent first-order kinetic model. This fundamental study provides a basic insight into the biomass pyrolysis, which is beneficial for understanding the pyrolysis mechanism of biomass and developing an advanced thermal proc-ess for effective utilization of biomass.

  15. Optical Flashes Preceding GRBs

    CERN Document Server

    Paczynski, B

    2001-01-01

    Only one optical flash associated with a gamma-ray burst has been detected so far by ROTSE. There are also upper limits obtained by several groups for several bursts. Recent model calculations indicate a possibility that optical flash may precede the GRB. Such flashes are undetectable in the currently popular observing mode, with optical instruments responding to GRB triggers. There is a need to develop all sky optical monitoring system capable of recognizing flashes in real time, and more powerful instruments that could respond robotically to optical triggers and carry out follow up observations.

  16. Pro Android Flash

    CERN Document Server

    Chin, Stephen; Campesato, Oswald

    2011-01-01

    Did you know you can take your Flash skills beyond the browser, allowing you to make apps for Android, iOS and the BlackBerry Tablet OS? Build dynamic apps today starting with the easy-to-use Android smartphones and tablets. Then, take your app to other platforms without writing native code. Pro Android Flash is the definitive guide to building Flash and other rich Internet applications (RIAs) on the Android platform. It covers the most popular RIA frameworks for Android developers - Flash and Flex - and shows how to build rich, immersive user experiences on both Android smartphones and tablet

  17. Experimental Studies of Coal and Biomass Fuel Synthesis and Flame Characterization for Aircraft Engines (Year Two)

    Science.gov (United States)

    2011-03-31

    fuels from traditional, non-renewable resources requires the conversion of biomass , a rich source of partially -oxidized hydrocarbons, into liquids that... Char and unreacted biomass are immediately separated from the pyrolysis vapors within the cyclone and pyrolysis vapors and permanent gases flow out...which in turn increased particle entrainment and decreased premature biomass decomposition and, therefore, eliminated settling and char formation in

  18. Gasification of Tar from Biomass Pyrolysis for Syngas under Different Atmospheres%不同气氛下生物质焦油气化制备合成气

    Institute of Scientific and Technical Information of China (English)

    江程程; 肖波; 胡智泉; 成功; 张艳丽

    2011-01-01

    [Objective ] The effect of the gasification temperature under the different atmospheres on the component of syngas from tar and the characteristics of syngas formation was researched. [ Method | The component and the characteristics of the syngas produced from the gasification of tar through the biomass pyrolysis at different temperature of 500, 600, 700, 800 or 900 ℃. Was studied in a fixed bed reactor of different agents: N2, water atmospheres and CO2 in Lab. [ Results | Under the reactor of three agents: N2, water atmospheres and CO2, the concentration and gasification characteristics of H2, CO and CH4 was improved with the temperature-increasing. The introduction of water steam would obviously improve the concentration of H2 and CO in the produced gas and the concentration of H2 would reach the maximum(45. 22% ) at 800 ℃. The high concentration of carbon dioxide had great inhibition effect on the gasification of tar. [ Conclusion ] The important theoretic reference for the utilization of the gasification of tar and its good-quality was provided.%[目的]研究生物质焦油在不同气氛下气化温度对生物质焦油产气组分与产气特性的影响.[方法]采用实验室规模的固定床反应器研究N,、水蒸气和CO2气氛下,生物质焦油在500、600、700、800、900℃时裂解产气组成及其特性.[结果]在3种反应气氛下,H2、CO和CH4的含量及气体特性均随温度的升高而增加.水蒸气的介入能够明显促进产品气中H,和CO的含量,当温度达到800℃时,H2浓度达到最大值45.22%.CO2浓度过高对生物质焦油的气化反应有明显的抑制作用.[结论]为生物质焦油的气化和生物质的高质化利用提供了重要的理论依据.

  19. Flash-Type Discrimination

    Science.gov (United States)

    Koshak, William J.

    2010-01-01

    This viewgraph presentation describes the significant progress made in the flash-type discrimination algorithm development. The contents include: 1) Highlights of Progress for GLM-R3 Flash-Type discrimination Algorithm Development; 2) Maximum Group Area (MGA) Data; 3) Retrieval Errors from Simulations; and 4) Preliminary Global-scale Retrieval.

  20. Co-generated fast pyrolysis biochar mitigates green-house gas emissions and increases carbon sequestration in temperate soils

    Science.gov (United States)

    Biochar (BC) is a product of thermochemical conversion of biomass via pyrolysis, together with gas (syngas), liquid (bio-oil), and heat. Fast pyrolysis is a promising process for bio-oil generation, which leaves 10-30% of the original biomass as char. When applied to soils, BC may increase soil C s...

  1. The Utilization of Waste Date Seed as Bio-Oil and Activated Carbon by Pyrolysis Process

    Directory of Open Access Journals (Sweden)

    Mohammad Uzzal Hossain Joardder

    2012-01-01

    Full Text Available The renovation of biomass waste in the form of date seed waste into activated carbon and biofuel by fixed bed pyrolysis reactor has been focused in this study to obtain gaseous, liquid, and solid products. The date seed in particle form is pyrolysed in an externally heated fixed bed reactor with nitrogen as the carrier gas. The reactor is heated from 400°C to 600°C. A maximum liquid yield of 50 wt.% and char of 30 wt.% are obtained at a reactor bed temperature of 500°C with a running time of 120 minutes. The oil is found to possess favorable flash point and reasonable density and viscosity. The higher calorific value is found to be 28.636 MJ/kg which is significantly higher than other biomass derived. Decolonization of 85–97% is recorded for the textile effluent and 75–90% for the tannery effluent, in all cases decreasing with temperature increase. Good adsorption capacity of the prepared activated carbon in case of diluted textile and tannery effluent was found.

  2. 褐煤与生物质混合快速热解半焦特性研究%CHARACTERISTICS OF CHAR FROM FLASH PYROLYSIS OF LIGNITE AND BIOMASS

    Institute of Scientific and Technical Information of China (English)

    金会心; 吴复忠; 王洋; 王眉龙

    2015-01-01

    研究了褐煤、生物质及其不同配比混合物在快速热解条件下,热解产物半焦的产率、工业组成、热值以及表面结构等特性,探讨了其随热解温度和原料组成的变化规律.结果表明,由于受褐煤和生物质各自组成和性质的影响,褐煤与生物质混合快速热解过程,生物质配入比例和热解温度对半焦的产率、工业组成、热值及表面结构的影响较为复杂.总体趋势是,控制适宜的热解温度和适宜的生物质配入量(生物质配入比例<50%),可获得高的半焦产率和半焦热值,同时降低半焦中灰分含量.生物质掺混比例为50%,热解温度为600℃时,热解产物半焦产率为52.1%,半焦热值可达23.75 MJ/kg.由于生物质的引入,混合物热解产物半焦的表面结构比褐煤单独热解时半焦的表面结构有所改善,半焦孔隙增加,有利于增加半焦的吸附性和反应性.

  3. Pyrolytic sugars from cellulosic biomass

    Science.gov (United States)

    Kuzhiyil, Najeeb

    Sugars are the feedstocks for many promising advanced cellulosic biofuels. Traditional sugars derived from starch and sugar crops are limited in their availability. In principle, more plentiful supply of sugars can be obtained from depolymerization of cellulose, the most abundant form of biomass in the world. Breaking the glycosidic bonds between the pyranose rings in the cellulose chain to liberate glucose has usually been pursued by enzymatic hydrolysis although a purely thermal depolymerization route to sugars is also possible. Fast pyrolysis of pure cellulose yields primarily levoglucosan, an anhydrosugar that can be hydrolyzed to glucose. However, naturally occurring alkali and alkaline earth metals (AAEM) in biomass are strongly catalytic toward ring-breaking reactions that favor formation of light oxygenates over anhydrosugars. Removing the AAEM by washing was shown to be effective in increasing the yield of anhydrosugars; but this process involves removal of large amount of water from biomass that renders it energy intensive and thereby impractical. In this work passivation of the AAEM (making them less active or inactive) using mineral acid infusion was explored that will increase the yield of anhydrosugars from fast pyrolysis of biomass. Mineral acid infusion was tried by previous researchers, but the possibility of chemical reactions between infused acid and AAEM in the biomass appears to have been overlooked, possibly because metal cations might be expected to already be substantially complexed to chlorine or other strong anions that are found in biomass. Likewise, it appears that previous researchers assumed that as long as AAEM cations were in the biomass, they would be catalytically active regardless of the nature of their complexion with anions. On the contrary, we hypothesized that AAEM can be converted to inactive or less active salts using mineral acids. Various biomass feedstocks were infused with mineral (hydrochloric, nitric, sulfuric and

  4. Comparison of thermal conversion methods of different biomass types into gaseous fuel

    Science.gov (United States)

    Larina, O. M.; Sinelshchikov, V. A.; Sytchev, G. A.

    2016-11-01

    Thermal conversion methods of different biomass types into gaseous fuel are considered. The comparison of the gas mixtures characteristics (volume yield, composition and calorific value) that can be produced from the main biomass types by gasification and pyrolysis is presented. The merits and demerits of these methods are discussed. It is shown that the two-stage pyrolysis technology, which consists of the biomass pyrolysis and the consequent high-temperature conversion of pyrolysis gases and vapors into synthesis gas by filtration through a porous carbon medium, allows to achieve both a high degree of biomass conversion into gaseous fuel and a high energy efficiency.

  5. Catalytic pyrolysis using UZM-44 aluminosilicate zeolite

    Science.gov (United States)

    Nicholas, Christopher P; Boldingh, Edwin P

    2013-12-17

    A new family of aluminosilicate zeolites designated UZM-44 has been synthesized. These zeolites are represented by the empirical formula Na.sub.nM.sub.m.sup.k+T.sub.tAl.sub.1-xE.sub.xSi.sub.yO.sub.z where "n" is the mole ratio of Na to (Al+E), M represents a metal or metals from zinc, Group 1, Group 2, Group 3 and or the lanthanide series of the periodic table, "m" is the mole ratio of M to (Al+E), "k" is the average charge of the metal or metals M, T is the organic structure directing agent or agents, and E is a framework element such as gallium. The process involves contacting a carbonaceous biomass feedstock with UZM-44 at pyrolysis conditions to produce pyrolysis gases comprising hydrocarbons. The catalyst catalyzes a deoxygenation reaction converting oxygenated hydrocarbons into hydrocarbons and removing the oxygen as carbon oxides and water. A portion of the pyrolysis gases is condensed to produce low oxygen biomass-derived pyrolysis oil.

  6. Catalytic pyrolysis using UZM-44 aluminosilicate zeolite

    Energy Technology Data Exchange (ETDEWEB)

    Nicholas, Christopher P; Boldingh, Edwin P

    2014-04-29

    A new family of aluminosilicate zeolites designated UZM-44 has been synthesized. These zeolites are represented by the empirical formula. Na.sub.nM.sub.m.sup.k+T.sub.tAl.sub.1-xE.sub.xSi.sub.yO.sub.z where "n" is the mole ratio of Na to (Al+E), M represents a metal or metals from zinc, Group 1, Group 2, Group 3 and or the lanthanide series of the periodic table, "m" is the mole ratio of M to (Al+E), "k" is the average charge of the metal or metals M, T is the organic structure directing agent or agents, and E is a framework element such as gallium. The process involves contacting a carbonaceous biomass feedstock with UZM-44 at pyrolysis conditions to produce pyrolysis gases comprising hydrocarbons. The catalyst catalyzes a deoxygenation reaction converting oxygenated hydrocarbons into hydrocarbons and removing the oxygen as carbon oxides and water. A portion of the pyrolysis gases is condensed to produce low oxygen biomass-derived pyrolysis oil.

  7. Challenges for sustainable biomass utilisation. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Hiete, Michael; Ludwig, Jens; Bidart, Christian; Schultmann, Frank (eds.)

    2010-07-01

    The energetic use of biomass can provide solutions for the growing worldwide demand for energy and fuel. This book contains the contributions for the final workshop of the ''Biociclo'' research exchange between the Universidad de Concepcion and the Universitaet Karlsruhe. It reflects interdisciplinarity of the workshop's participants with contributed papers about Biomass Utilization Paths in Chile, Pyrolysis and Life-Cycle Assessment of Biomass and Logistic Concepts of Biomass Utilization Concepts. (orig.)

  8. Federal Air Pollutant Emission Regulations and Preliminary Estimates of Potential-to-Emit from Biorefineries, Pathway #2: Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels: Fast Pyrolysis and Hydrotreating Bio-oil Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Bhatt, Arpit [National Renewable Energy Lab. (NREL), Golden, CO (United States). Strategic Energy Analysis Center. Technology Systems and Sustainability Analysis Group; Zhang, Yimin [National Renewable Energy Lab. (NREL), Golden, CO (United States). Strategic Energy Analysis Center. Technology Systems and Sustainability Analysis Group; Heath, Garvin [National Renewable Energy Lab. (NREL), Golden, CO (United States). Strategic Energy Analysis Center. Technology Systems and Sustainability Analysis Group; Thomas, Mae [Eastern Research Group, Research Triangle Park, NC (United States); Renzaglia, Jason [Eastern Research Group, Research Triangle Park, NC (United States)

    2017-01-01

    Biorefineries are subject to environmental laws, including complex air quality regulations that aim to protect and improve the quality of the air. These regulations govern the amount of certain types of air pollutants that can be emitted from different types of emission sources. To determine which federal air emission regulations potentially apply to the fast pyrolysis biorefinery, we first identified the types of regulated air pollutants emitted to the ambient environment by the biorefinery or from specific equipment. Once the regulated air pollutants are identified, we review the applicability criteria of each federal air regulation to determine whether the fast pyrolysis biorefinery or specific equipment is subject to it. We then estimate the potential-to-emit of pollutants likely to be emitted from the fast pyrolysis biorefinery to understand the air permitting requirements.

  9. Stabilization of Fast Pyrolysis Oil: Post Processing Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.; Lee, Suh-Jane; Hart, Todd R.

    2012-03-01

    UOP LLC, a Honeywell Company, assembled a comprehensive team for a two-year project to demonstrate innovative methods for the stabilization of pyrolysis oil in accordance with DOE Funding Opportunity Announcement (FOA) DE-PS36-08GO98018, Biomass Fast Pyrolysis Oil (Bio-oil) Stabilization. In collaboration with NREL, PNNL, the USDA Agricultural Research Service (ARS), Pall Fuels and Chemicals, and Ensyn Corporation, UOP developed solutions to the key technical challenges outlined in the FOA. The UOP team proposed a multi-track technical approach for pyrolysis oil stabilization. Conceptually, methods for pyrolysis oil stabilization can be employed during one or both of two stages: (1) during the pyrolysis process (In Process); or (2) after condensation of the resulting vapor (Post-Process). Stabilization methods fall into two distinct classes: those that modify the chemical composition of the pyrolysis oil, making it less reactive; and those that remove destabilizing components from the pyrolysis oil. During the project, the team investigated methods from both classes that were suitable for application in each stage of the pyrolysis process. The post processing stabilization effort performed at PNNL is described in this report. The effort reported here was performed under a CRADA between PNNL and UOP, which was effective on March 13, 2009, for 2 years and was subsequently modified March 8, 2011, to extend the term to December 31, 2011.

  10. A Comparison of Lignin, Macroalgae, Wood and Straw Fast Pyrolysis

    DEFF Research Database (Denmark)

    Trinh, Ngoc Trung; Jensen, Peter Arendt; Dam-Johansen, Kim

    2013-01-01

    with respect to carbon and oxygen contents, HHV, thermal behaviors and mean molecular weight. The HHV of wood, straw, lignin and algae oils were 24.0, 23.7, 29.7 and 25.7 MJ/kg db, respectively. The distributions of metals, Cl and S in char and bio-oil were investigated for the biomasses. Almost all the metals......A fast pyrolysis study on lignin and macroalgae (non-conventional biomass) and wood and straw (conventional biomass) were carried out in a pyrolysis centrifugal reactor at pyrolysis temperature of 550 ºC. The product distributions and energy recoveries were measured and compared among...... these biomasses. The fast pyrolysis of macroalgae showed a promising result with a bio-oil yield of 65 wt% dry ash free basis (daf) and 76 % energy recovery in the bio-oil while the lignin fast pyrolysis provides a bio-oil yield of 47 wt% daf and energy recovery in bio-oil of 45 %. The physiochemical properties...

  11. Fast pyrolysis of lignin, macroalgae and sewage sludge

    DEFF Research Database (Denmark)

    Trinh, Ngoc Trung

    of carrier gas, pyrolyse biomass without a heat carrier and obtain a biomass particle heating rate of 1000 - 1500 K/s by a high centrifugal force. The reactor can be constructed at a size that could be applicable locally at waste water treatment plants or pulp and paper plants, bio-ethanol plants or can...... is available in the literature. Nonconventional biomass feedstock may also be applicable for fast pyrolysis processes. Among the forms of nonconventional biomasses: macroalgae, lignin (industrial residue) and sewage sludge may be attractive materials due to their low price, non-competitiveness with food crops...... and the possible utilization of solid wastes. Besides, a fast pyrolysis process can be used as a process to densify the biomass and produce bioslurry, a mixture of bio-oil and pyrolytic char. The bioslurry is found to be a possible feedstock for pressurized gasification plants. Thus, the aims of this project...

  12. PROPERTIES OF GAS AND CHAR FROM MICROWAVE PYROLYSIS OF PINE SAWDUST

    Directory of Open Access Journals (Sweden)

    Xian-Hua Wang

    2009-08-01

    Full Text Available Pine sawdust pyrolysis was carried out respectively using microwave and conventional electrical heating at different temperatures in order to understand the properties of pyrolytic products from microwave pyrolysis of biomass. Less char material was obtained by microwave pyrolysis compared to conventional heating at the same temperature. While comparing the components of the pyrolytic gases, it was revealed that the microwave pyrolysis gas usually had higher H2 and CO contents and lower CH4 and CO2 contents than those obtained by conventional pyrolysis at the same temperature. The texture analysis results of the microwave pyrolysis chars showed that the chars would melt and the pores would shrink at high temperatures, and hence, the specific surface areas of the chars decreased with increasing temperature. Similarly, the reactivity of the char was remarkably reduced when the microwave pyrolysis temperature exceeded 600°C.

  13. Thermochemical behavior of pretreated biomass

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Amit Kumar

    2011-07-01

    Mankind has to provide a sustainable alternative to its energy related problems. Bioenergy is considered as one of the potential renewable energy resources and as a result bioenergy market is also expected to grow dramatically in future. However, logistic issues are of serious concern while considering biomass as an alternative to fossil fuel. It can be improved by introducing pretreated wood pellet. The main objective of this thesis is to address thermochemical behaviour of steam exploded pretreated biomass. Additionally, process aspects of torrefaction were also considered in this thesis. Steam explosion (SE) was performed in a laboratory scale reactor using Salix wood chips. Afterwards, fuel and thermochemical aspects of SE residue were investigated. It was found that Steam explosion pretreatment improved both fuel and pellet quality. Pyrolysis of SE residue reveals that alerted biomass composition significantly affects its pyrolysis behaviour. Contribution from depolymerized components (hemicellulose, cellulose and lignin) of biomass was observed explicitly during pyrolysis. When devolatilization experiment was performed on pellet produced from SE residue, effect of those altered components was observed. In summary, pretreated biomass fuel characteristics is significantly different in comparison with untreated biomass. On the other hand, Process efficiency of torrefaction was found to be governed by the choice of appropriate operating conditions and the type of biomass.

  14. Hydrotreating of fast pyrolysis oils from protein-rich pennycress seed presscake

    Science.gov (United States)

    The fast pyrolysis oils produced from proteinaceous biomass, such as pennycress presscake differ significantly from those produced from biomass with mostly lignocellulosic composition. Those from proteinaceous biomass tend to be deoxygenated, contain more nitrogen, be less acidic and be more stable...

  15. Flash Vacuum Pyrolysis of 2,5-Diphenyloxazole

    Directory of Open Access Journals (Sweden)

    Constantin Draghici

    2000-08-01

    Full Text Available FVP of the title oxazole (1 at 1000oC and 0.5 mm Hg afforded a complex reaction mixture containing benzonitrile, phenylacetonitrile, biphenyl, diphenylmethane, fluorene, o-benzylbenzonitrile (major product, 22%, phenanthrene, anthracene, 9,10-anthraquinone, 2-phenylindole and 3-phenylindole. A radical and carbene mechanism was suggested in order to rationalize the formation of the reaction products.

  16. ZSM-5催化生物质三组分和松木热解生物油组分分析%Component analysis of pyrolysis bio-oil from three major components of biomass andPinus yunnanensisby ZSM-5 catalytic

    Institute of Scientific and Technical Information of China (English)

    王霏; 郑云武; 黄元波; 杨晓琴; 刘灿; 徐高峰; 郑志锋

    2016-01-01

    In order to study the catalytic pyrolysis process of the three components(Cellulose, hemicellulose and lignin) with participation of mesoporous ZSM-5, Firstly the pyrolysis of three major components in biomass and wood powder ofPinus yunnanensis were conducted. Then catalytic pyrolysis of the three major components (microcrystalline cellulose, xylan and alkali lignin) and wood powder ofPinus yunnanensiswere carried out with the mesoporous ZSM-5 as catalyst. Compositions of the derived bio-oil were identified by gas chromatograph-mass spectrometer (GC-MS). By comparing the product distribution in bio-oil between pyrolysis and catalytic pyrolysis of three major components and wood powder, the catalytic pyrolysis mechanism of biomass was studied. What is more, ZSM-5 was analyzed by N2 adsorption-desorption and XRD diffraction, and ultimate analysis of bio-oil obtained were also identified. The results indicated that during catalytic pyrolysis of three major components andPinus yunnanensis, mesoporous ZSM-5 showed different performance. The results of XRD diffraction pattern and N2absorption/desorption demonstrated ZSM-5 used had abundant mesopores with mean pore size of 6.23nm. Through pyrolysis cellulose was mainly converted intoβ-D-allose (20.39%), furfural, 2,6-di-tert-butyl-4-methylphenol, 3-propyl glutaric acid, and 2,4-Pentadienoic acid. In the process of catalytic pyrolysis, ZSM-5 transformedβ-D-allose (20.39%), furfural, 3-Propyl glutaric acid, and 2,4-Pentadienoic acid into 1-methylnaphthalene and 2,6-dimethylnaphthalene. ZSM-5 performed the supreme catalytic activity for cellulose among 4 feedstocks, and the relative content of total aromatics in bio-oil obtained from catalytic pyrolysis of cellulose was 63.89%. The raw bio-oil from hemicellulose pyrolysis mainly contained furfural (67.78%) and 2,6-di-tert-butyl-4-methylphenol. But in the course of catalytic pyrolysis, the relative content of furfural reduced drastically to 2.66% while the relative content

  17. 精制生物油和柴油混合燃料的柴油机性能%Performance of diesel engine running on diesel fuel and its blends with refined biomass fast pyrolysis bio-oil

    Institute of Scientific and Technical Information of China (English)

    麻剑; 谢阳; 罗麒元; 许沧粟

    2015-01-01

    Experimental tests were conducted to evaluate the engine performance and emission of a diesel engine with diesel fuel and simulated bio‐oil blends . The simulated bio‐oil was prepared based on the refined biomass fast pyrolysis bio‐oil with pure substances (analytically grade ) , and the fuel blends containing 10% and 20% by volume of simulated bio‐oil were named as B10 and B20 .Results indicate that the engine power for the B10 and B20 are about 3% and 7% lower than for the pure diesel fuel .The average drop of brake specific energy consumption for the B10 and B20 is about 7% at full‐load . The measured products of the imperfect combustion of fuel ,such as CO and HC ,were reduced notably for the B10 and B20 compared with the diesel fuel at medium and high loads ,which the NMHC emission decrease was about 75% at full‐load . Under full load conditions , the smoke emission characteristics of B10 and B20 were different with diesel fuel ,and the average reduction of smoke opacity was about 10% for B20 relative to B10 .%在柴油机上通过试验研究精制生物质热裂解油和柴油混合燃料的动力性、经济性和排放性等性能,其中试验用精制生物质热裂解油是根据其主要成分的比例由分析纯的单质配制的模型油。结果表明,在不改变柴油机参数的情况下,模型油代用部分柴油导致发动机外特性输出功率略有下降,模型油体积掺混比10%与20%的混合燃料(分别简称为B10和B20)降幅分别约为3%与7%;经济性略有改善,B10和B20的当量油耗率在外特性工况中相对纯柴油的平均降幅约为7%;在中高负荷工况中,混合燃料的不完全燃烧产物如CO、HC等排放下降明显,其中外特性下NM HC排放只有纯柴油的25%左右;外特性下B20的排气不透光度相对B10下降约10%。

  18. Hydrothermal liquefaction of biomass

    DEFF Research Database (Denmark)

    Toor, Saqib; Rosendahl, Lasse; Hoffmann, Jessica

    2014-01-01

    Biomass is one of the most abundant sources of renewable energy, and will be an important part of a more sustainable future energy system. In addition to direct combustion, there is growing attention on conversion of biomass into liquid en-ergy carriers. These conversion methods are divided...... into liquid biofuels, with the aim of describing the current status and development challenges of the technology. During the hydrothermal liquefaction process, the biomass macromolecules are first hydrolyzed and/or degraded into smaller molecules. Many of the produced molecules are unstable and reactive...... into biochemical/biotechnical methods and thermochemical methods; such as direct combustion, pyrolysis, gasification, liquefaction etc. This chapter will focus on hydrothermal liquefaction, where high pressures and intermediate temperatures together with the presence of water are used to convert biomass...

  19. 操作参数对生物质热解液化及焦炭特征的影响%Impact of Operation Factors on Biomass Pyrolysis and the Characteristics of Bio-Char

    Institute of Scientific and Technical Information of China (English)

    周雷宇; 王萌; 吴昊; 张海茹; 杨宏旻

    2011-01-01

    The experiments of the rice husk pyrolysis were performed in a fixed-bed reactor to produce bio-oil. The effects of the different operation factors such as pyrolysis temperature, sweeping gas ( N2 ) flow rates and heating rates on the yields of three products and the characteristics of bio-char were investigated. The maximum bio-oil yield of 49.91% was obtained at 550~C pyrolysis temperature with a heating rate of 25~C/min and nitrogen flow rate of 150 mL/min. As the heating rate increased, it favored the yields of liquid product, yet the bio-char yields decreased. Thermogravimetric analysis (TGA) was introduced to study the thermal decomposition of the feedstock. Crystals and morphology of bio-char with different pyrolysis temperatures were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis. The results showed that pyrolysis temperatures played an important role on the surface morphology and crystal phase of bio-char and the prominent porosity with the bio-char which was generated under 550%; pyrolysis temper- ature was observed.%以稻壳为研究对象,在固定床中热解制取液体生物油.实验研究了热解温度、氮气流速和升温速率对热解3种产物分布的影响.在25℃/min的升温速率达到热解终温550℃,氮气流速为150 mL/min工况下液体产率达到最大值49.91%.随着升温速率的增加液体产率升高,焦炭的产率降低.利用热重分析考察了原料的热分解特性.通过X射线衍射方法和SEM对热解焦炭的晶相和形态进行分析.研究表明热解温度对焦炭的晶相和表面形态的影响很大,在550℃的热解温度下得到的焦炭有较突出孔状结构.

  20. 基于TG-FTIR的杨木热解过程中脲醛树脂影响机理的模型物研究%Influence of Urea Formaldehyde Resin on Pyrolysis of Biomass:A Modeling Study by TG-FTIR

    Institute of Scientific and Technical Information of China (English)

    李思锦; 母军; 张宇

    2014-01-01

    Pyrolysis is an efficient and recycling way to utilize waste wood-based panels,in which urea-formaldehyde resin (UF) is the main difference between wood-based board and other kinds of biomass.The present paper studied the three main compo-nents (cellulose,hemicelluloses,lignin)of poplar wood,in order to effectively and environmentally utilize or dispose of waste wood-based panels with pyrolysis technique,to study the influence of urea formaldehyde resin on pyrolytic characteristic of wood during the process of the pyrolysis of waste wood-based panels,and to in-depth explore the mechanism of the effect of UF on each component of wood.Innovatively,the weight-loss character and gas evolution rule of the model (made from cellulose,xylan and lignin,based on the chemical components stud of poplar wood),the main components as well as the ones mixed with UF were analyzed by TG-FTIR (thermogravimetric analyzer coupled to a Fourier transform infrared spectrometer).Results indicated that UF promoted the generation of water and carboxylic acid substances during the cellulose pyrolysis process.UF combined with lignin,formed some kind of unstable nitrogenous structure which produced a large amount of NH3 ,which took part in the low-temperature (200~300 ℃)pyrolysis of lignin,and directly affected the production of pyrolysis products.It can be conclu-ded that during the process of the pyrolysis of waste wood-based panels,lignin was the one that UF mainly impacted among the three main components of wood.%热解是废弃人造板高效回收利用的方式,人造板中所含胶黏剂是其不同于生物质的主要特征。为了有效环保地利用热解技术处理废弃人造板,解明人造板热解过程中其所含脲醛树脂胶黏剂(UF)对木材热解特性的影响,深入探索UF对人造板中木材各组分的作用机制,以杨木及木材的三种主要组分(纤维素、半纤维素、木素)为研究对象,创新性地依据杨木的化

  1. Professional Flash Lite Mobile Development

    CERN Document Server

    Anderson, J G

    2010-01-01

    Discover how to create Flash Lite mobile apps from the ground up. Adobe Flash is an ideal choice for developing rich interactive content for "Flash-enabled" mobile devices; and with this book, you'll learn how to create unique applications with Flash Lite. Through a series of code samples and extensive example applications, you'll explore the core concepts, key features, and best practices of the Flash Lite player. Coverage reveals various ways to develop Flash mobile content, create applications with a cross-platform programming framework based on the Model, View and Controller conc

  2. Thermogravimetric analysis and pyrolytic kinetic study on coal/biomass blends

    Energy Technology Data Exchange (ETDEWEB)

    Wu Hong-xiang; Li Hai-bin; Zhao Zeng-li [Chinese Academy of Sciences, Guangzhou (China). Guangzhou Institute of Energy Conversion

    2009-07-01

    Three biomass and one lignite were co-pyrolyzed in a thermo gravimetric analyzer to investigate the pyrolysis performance of each material, as well as their mixtures. The lignite was blended with biomass at the percentage of 10%, 20%, 35% and 50% respectively. The results show that the initial volatile releasing temperature and the first maximum peak temperature of co-pyrolysis increase with increasing amount of lignite in blends. The position of the second maximum peak is shifted to lower temperature as the percentage of biomass is raised. Co-pyrolysis of coal/biomass blends produces more char than the summation of individual lignite and biomass pyrolysis. The pyrolysis of demineralization and devolatilization rice straw show that the alkali and alkaline earth metals promote pyrolysis of the blends at lower temperature, while Si inhibits the pyrolysis rate. Both volatile and mineral matter in biomass interact with lignite in co-pyrolysis. The synergistic effects in the co-pyrolysis of biomass and coal are suggested. 22 refs., 6 figs., 6 tabs.

  3. Effect of dry torrefaction on kinetics of catalytic pyrolysis of sugarcane bagasse

    Science.gov (United States)

    Daniyanto, Sutijan, Deendarlianto, Budiman, Arief

    2015-12-01

    Decreasing world reserve of fossil resources (i.e. petroleum oil, coal and natural gas) encourage discovery of renewable resources as subtitute for fossil resources. Biomass is one of the main natural renewable resources which is promising resource as alternate resources to meet the world's energy needs and raw material to produce chemical platform. Conversion of biomass, as source of energy, fuel and biochemical, is conducted using thermochemical process such as pyrolysis-gasification process. Pyrolysis step is an important step in the mechanism of pyrolysis - gasification of biomass. The objective of this study is to obtain the kinetic reaction of catalytic pyrolysis of dry torrified sugarcane bagasse which used Ca and Mg as catalysts. The model of kinetic reaction is interpreted using model n-order of single reaction equation of biomass. Rate of catalytic pyrolysis reaction depends on the weight of converted biomass into char and volatile matters. Based on TG/DTA analysis, rate of pyrolysis reaction is influenced by the composition of biomass (i.e. hemicellulose, cellulose and lignin) and inorganic component especially alkali and alkaline earth metallic (AAEM). From this study, it has found two equations rate of reaction of catalytic pyrolysis in sugarcane bagasse using catalysts Ca and Mg. First equation is equation of pyrolysis reaction in rapid zone of decomposition and the second equation is slow zone of decomposition. Value of order reaction for rapid decomposition is n > 1 and for slow decomposition is nConstant and order of reactions for catalytic pyrolysis of dry-torrified sugarcane bagasse with presence of Ca tend to higher than that's of presence of Mg.

  4. Effect of torrefaction pretreatment and catalytic pyrolysis on the pyrolysis poly-generation of pine wood.

    Science.gov (United States)

    Chen, Dengyu; Li, Yanjun; Deng, Minsi; Wang, Jiayang; Chen, Miao; Yan, Bei; Yuan, Qiqiang

    2016-08-01

    Torrefaction of pine wood was performed in a tube furnace at three temperatures (220, 250, and 280°C) for 30min. Then catalytic pyrolysis of raw and torrefied pine wood was performed using HZSM-5 catalyst in a fixed-bed pyrolysis reactor at 550°C for 15min. Torrefaction pretreatment and catalytic pyrolysis have an very important effect on the yield, property, and energy distribution of pyrolysis products. The results showed that the yield of biochar rapidly increased, while that of bio-oil decreased with increasing torrefaction temperature. The oxy-compound content of bio-oil, such as acids and aldehydes, sharply decreased. However, the aromatic hydrocarbon content not only increased but also further promoted by HZSM-5 catalyst. With highest mass yields and energy yields, biochar was also the very important product of pyrolysis. The oxygen content in biomass was mainly removed in the form of CO2 and H2O, leading to increasing CO2 content in non-condensable gas.

  5. Fast pyrolysis of oil palm shell (OPS)

    Science.gov (United States)

    Abdullah, Nurhayati; Sulaiman, Fauziah; Aliasak, Zalila

    2015-04-01

    Biomass is an important renewable source of energy. Residues that are obtained from harvesting and agricultural products can be utilised as fuel for energy generation by conducting any thermal energy conversion technology. The conversion of biomass to bio oil is one of the prospective alternative energy resources. Therefore, in this study fast pyrolysis of oil palm shell was conducted. The main objective of this study was to find the optimum condition for high yield bio-oil production. The experiment was conducted using fixed-bed fluidizing pyrolysis system. The biomass sample was pyrolysed at variation temperature of 450°C - 650°C and at variation residence time of 0.9s - 1.35s. The results obtained were further discussed in this paper. The basic characteristic of the biomass sample was also presented here. The experiment shows that the optimum bio-oil yield was obtained at temperature of 500°C at residence time 1.15s.

  6. Foundation Flash Cartoon Animation

    CERN Document Server

    Jones, Tim; Rosson, Allan S

    2008-01-01

    One of Flash s most common uses is still animation for cartoons, games, advertising etc, and this book takes a fresh look at the topic, breaking it down pre-production, production, and post production, and looking at each section in detail, and covering topics such as storyboarding, character libraries and camera mechanics like no Flash book has before. The book is written by members of the Emmy award winning ANIMAX team, who have created work for clients such as Disney, AOL, Fox, WWE, ESPN, and Sesame workshop. This book is an opportunity for them to share their secrets, and is written to sui

  7. Pyrolysis of Coal

    Directory of Open Access Journals (Sweden)

    Rađenović, A.

    2006-07-01

    Full Text Available The paper presents a review of relevant literature on coal pyrolysis.Pyrolysis, as a process technology, has received considerable attention from many researchers because it is an important intermediate stage in coal conversion.Reactions parameters as the temperature, pressure, coal particle size, heating rate, soak time, type of reactor, etc. determine the total carbon conversion and the transport of volatiles and therebythe product distribution. Part of the possible environmental pollutants could be removed by optimising the pyrolysis conditions. Therefore, this process will be subsequently interesting for coal utilization in the future

  8. Impact of thermal pretreatment on the fast pyrolysis conversion of Southern Pine

    Energy Technology Data Exchange (ETDEWEB)

    Tyler L. Westover; Manunya Phanphanich; Micael L. Clark; Sharna R. Rowe; Steven E. Egan; Christopher T Wright; Richard D. Boardman; Alan H. Zacher

    2013-01-01

    Background: Thermal pretreatment of biomass ranges from simple (nondestructive) drying to more severe treatments that cause devolatization, depolymerization and carbonization. These pretreatments have demonstrated promise for transforming raw biomass into feedstock material that has improved milling, handling, storage and conversion properties. In this work, southern pine material was pretreated at 120, 180, 230 and 270 degrees C, and then subjected to pyrolysis tests in a continuous-feed bubbling-fluid bed pyrolysis system. Results: High pretreatment temperatures were associated with lower specific grinding energies, higher grinding rates and lower hydrogen and oxygen contents. Higher pretreatment temperatures were also correlated with increased char production, decreased total acid number and slight decrease in the oxygen content of the pyrolysis liquid fraction. Conclusion: Thermal pretreatment has both beneficial and detrimental impacts on fast pyrolysis conversion of pine material to bio-oil, and the effect of thermal pretreatment on upgrading of pyrolysis bio-oil requires further attention.

  9. Learning Flash CS4 Professional

    CERN Document Server

    Shupe, Rich

    2009-01-01

    Learning Flash CS4 Professional offers beginners and intermediate Flash developers a unique introduction to the latest version of Adobe's powerful multimedia application. This easy-to-read book is loaded with full-color examples and hands-on tasks to help you master Flash CS4's new motion editor, integrated 3D system, and character control using the new inverse kinematics bones animation system. No previous Flash experience is necessary.

  10. Heterogeneous and homogeneous reactions of pyrolysis vapors from pine wood

    NARCIS (Netherlands)

    Hoekstra, E.; Westerhof, R.J.M.; Brilman, D.W.F.; Swaaij, van W.P.M.; Kersten, S.R.A.; Hogendoorn, J.A.; Windt, M.

    2012-01-01

    To maximize oil yields in the fast pyrolysis of biomass it is generally accepted that vapors need to be rapidly quenched. The influence of the heterogeneous and homogeneous vapor-phase reactions on yields and oil composition were studied using a fluidized-bed reactor. Even high concentrations of min

  11. Ex-Situ Catalytic Fast Pyrolysis Technology Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Biddy, M.; Dutta, A.; Jones, S.; Meyer, A.

    2013-03-01

    This technology pathway case investigates converting woody biomass using ex-situ catalytic fast pyrolysis followed by upgrading to gasoline-, diesel-, and jet-range hydrocarbon blendstocks. Technical barriers and key research needs that should be pursued for this pathway to be competitive with petroleum-derived blendstocks have been identified.

  12. In-Situ Catalytic Fast Pyrolysis Technology Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Biddy, M.; Dutta, A.; Jones, S.; Meyer, A.

    2013-03-01

    This technology pathway case investigates converting woody biomass using in-situ catalytic fast pyrolysis followed by upgrading to gasoline-, diesel-, and jet-range hydrocarbon blendstocks. Technical barriers and key research needs that should be pursued for this pathway to be competitive with petroleum-derived blendstocks have been identified.

  13. Flash Builder and Flash Catalyst The New Workflow

    CERN Document Server

    Peeters, Steven

    2010-01-01

    The Flash Platform is changing. Flash Builder and Flash Catalyst have brought a new separation of design and coding to web development that enables a much more efficient and streamlined workflow. For designers and developers used to the close confines of Flash, this is a hugely liberating but at first alien concept. This book teaches you the new workflow for the Flash platform. It gives an overview of the technologies involved and provides you with real-world project examples and best-practice guidelines to get from design to implementation with the tools at hand. * Includes many examples* Foc

  14. Inessa Josing Flash Artis

    Index Scriptorium Estoniae

    1999-01-01

    'Flash Art'i' 1998. a. nov.-dets. numbris Rosa Martínezi artiklis suvisest Manifesta II näitusest Luxembourg'is on positiivselt mainitud ka Inessa Josingut. Illustratsiooniks toodud seitsmest fotost ühel on I. Josingu aknakujundus 'What Must I Do to be Saved?'

  15. Jaan Toomik Flash Artis

    Index Scriptorium Estoniae

    1999-01-01

    1999. a. mai-juuni 'Flash Artis' on ajakirja Eesti korrespondendi Ando Keskküla artikkel Jaan Toomikust. Jaan Toomik on kutsutud esinema Londoni The Photographers' Gallery grupinäitusele, tema videot 'Father and Son' näidatakse Londonis avataval näitusel 'Near and Elsewhere' 11.-24. juunini

  16. Effect of temperature on pyrolysis product of empty fruit bunches

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Aizuddin Abdul; Sulaiman, Fauziah; Abdullah, Nurhayati [School of Physics, Universiti Sains Malaysia, 11800 Minden, Penang (Malaysia)

    2015-04-24

    Pyrolysis of empty fruit bunches (EFB) was performed in a fixed bed reactor equipped with liquid collecting system. Pyrolysis process was conducted by varying the terminal pyrolysis temperature from 300 to 500°C under heating rate of 10°C/min for at least 2 hours. Char yield was obtained highest at 300°C around 55.88 wt%, and started to decrease as temperature increase. The maximum yield of pyrolysis liquid was obtained around 54.75 wt% as pyrolysis temperature reach 450°C. For gas yield percentage, the yield gained as temperature was increased from 300 to 500°C, within the range between 8.44 to 19.32 wt%. The char obtained at 400°C has great potential as an alternative solid fuel, due to its high heating value of 23.37 MJ/kg, low in volatile matter and ash content which are approximately around 40.32 and 11.12 wt%, respectively. The collected pyrolysis liquid within this temperature range found to have high water content of around 16.15 to 18.20 wt%. The high aqueous fraction seemed to cause the pyrolysis liquid to have low HHV which only ranging from 10.81 to 12.94 MJ/kg. These trends of results showed that necessary enhancement should be employ either on the raw biomass or pyrolysis products in order to approach at least the minimum quality of common hydrocarbon solid or liquid fuel. For energy production, both produced bio-char and pyrolysis liquid are considered as sustainable sources of bio-energy since they contained low amounts of nitrogen and sulphur, which are considered as environmental friendly solid and liquid fuel.

  17. Effect of temperature on pyrolysis product of empty fruit bunches

    Science.gov (United States)

    Rahman, Aizuddin Abdul; Sulaiman, Fauziah; Abdullah, Nurhayati

    2015-04-01

    Pyrolysis of empty fruit bunches (EFB) was performed in a fixed bed reactor equipped with liquid collecting system. Pyrolysis process was conducted by varying the terminal pyrolysis temperature from 300 to 500°C under heating rate of 10°C/min for at least 2 hours. Char yield was obtained highest at 300°C around 55.88 wt%, and started to decrease as temperature increase. The maximum yield of pyrolysis liquid was obtained around 54.75 wt% as pyrolysis temperature reach 450°C. For gas yield percentage, the yield gained as temperature was increased from 300 to 500°C, within the range between 8.44 to 19.32 wt%. The char obtained at 400°C has great potential as an alternative solid fuel, due to its high heating value of 23.37 MJ/kg, low in volatile matter and ash content which are approximately around 40.32 and 11.12 wt%, respectively. The collected pyrolysis liquid within this temperature range found to have high water content of around 16.15 to 18.20 wt%. The high aqueous fraction seemed to cause the pyrolysis liquid to have low HHV which only ranging from 10.81 to 12.94 MJ/kg. These trends of results showed that necessary enhancement should be employ either on the raw biomass or pyrolysis products in order to approach at least the minimum quality of common hydrocarbon solid or liquid fuel. For energy production, both produced bio-char and pyrolysis liquid are considered as sustainable sources of bio-energy since they contained low amounts of nitrogen and sulphur, which are considered as environmental friendly solid and liquid fuel.

  18. Dual Fluidized Bed Biomass Gasification

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-09-30

    The dual fluidized bed reactor is a recirculating system in which one half of the unit operates as a steam pyrolysis device for biomass. The pyrolysis occurs by introducing biomass and steam to a hot fluidized bed of inert material such as coarse sand. Syngas is produced during the pyrolysis and exits the top of the reactor with the steam. A crossover arm, fed by gravity, moves sand and char from the pyrolyzer to the second fluidized bed. This sand bed uses blown air to combust the char. The exit stream from this side of the reactor is carbon dioxide, water and ash. There is a second gravity fed crossover arm to return sand to the pyrolysis side. The recirculating action of the sand and the char is the key to the operation of the dual fluidized bed reactor. The objective of the project was to design and construct a dual fluidized bed prototype reactor from literature information and in discussion with established experts in the field. That would be appropriate in scale and operation to measure the relative performance of the gasification of biomass and low ranked coals to produce a high quality synthesis gas with no dilution from nitrogen or combustion products.

  19. Co-pyrolysis of rice straw and polypropylene using fixed-bed pyrolyzer

    Science.gov (United States)

    Izzatie, N. I.; Basha, M. H.; Uemura, Y.; Mazlan, M. A.; Hashim, M. S. M.; Amin, N. A. M.; Hamid, M. F.

    2016-11-01

    The present work encompasses the impact of temperature (450, 500, 550, 600 °C) on the properties of pyrolysis oil and on other product yield for the co-pyrolysis of Polypropylene (PP) plastics and rice straw. Co-pyrolysis of PP plastic and rice straw were conducted in a fixed-bed drop type pyrolyzer under an inert condition to attain maximum oil yield. Physically, the pyrolysis oil is dark-brown in colour with free flowing and has a strong acrid smell. Copyrolysis between these typically obtained in maximum pyrolysis oil yields up to 69% by ratio 1:1 at a maximum temperature of 550 °C. From the maximum yield of pyrolysis oil, characterization of pyrolysis product and effect of biomass type of the composition were evaluated. Pyrolysis oil contains a high water content of 66.137 wt.%. Furfural, 2- methylnaphthalene, tetrahydrofuran (THF), toluene and acetaldehyde were the major organic compounds found in pyrolysis oil of rice straw mixed with PP. Bio-char collected from co-pyrolysis of rice straw mixed with PP plastic has high calorific value of 21.190 kJ/g and also carbon content with 59.02 wt.% and could contribute to high heating value. The non-condensable gases consist of hydrogen, carbon monoxide, and methane as the major gas components.

  20. Hydrotreatment of wood-based pyrolysis oil using zirconia-supported mono- and bimetallic (Pt, Pd, Rh) catalysts

    NARCIS (Netherlands)

    Ardiyanti, A. R.; Gutierrez, A.; Honkela, M. L.; Krause, A. O. I.; Heeres, H. J.

    2011-01-01

    Fast pyrolysis oil (PO), the liquid product of fast pyrolysis of lignocellulosic biomass, requires upgrading to extent its application range and for instance to allow for co-feeding in an existing oil-refinery. Catalytic hydrotreatment reactions (350 degrees C, 20 MPa total pressure, and 4h reaction

  1. Aqueous extractive upgrading of bio-oils created by tail-gas reactive pyrolysis to produce pure hydrocarbons and phenols

    Science.gov (United States)

    Tail-gas reactive pyrolysis (TGRP) of biomass produces bio-oil that is lower in oxygen (~15 wt% total) and significantly more hydrocarbon-rich than traditional bio-oils or even catalytic fast pyrolysis. TGRP bio-oils lend themselves toward mild and inexpensive upgrading procedures. We isolated oxyge...

  2. Document Flash Thermography

    OpenAIRE

    Larsen, Cory; Baker, Doran

    2011-01-01

    This paper presents an extension of flash thermography techniques to the analysis of documents. Motivation for this research is to develop the ability to reveal covered writings in archaeological artifacts such as the Codex Selden or Egyptian Cartonnage. An emphasis is placed on evaluating several common existing signal processing techniques for their effectiveness in enhancing subsurface writings found within a set of test documents. These processing techniques include: contrast stretching, ...

  3. Physics Flash December 2016

    Energy Technology Data Exchange (ETDEWEB)

    Kippen, Karen Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). ADEPS Communications

    2016-12-01

    This is the December 2016 issue of Physics Flash, the newsletter of the Physics Division of Los Alamos National Laboratory (LANL). In this issue, the following topics are covered: Novel liquid helium technique to aid highly sensitive search for a neutron electrical dipole moment; Silverleaf: Prototype Red Sage experiments performed at Q-site; John L. Kline named 2016 APS Fellow; Physics students in the news; First Entropy Engine quantum random number generator hits the market; and celebrating service.

  4. Physics Flash August 2016

    Energy Technology Data Exchange (ETDEWEB)

    Kippen, Karen Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-25

    Physics Flash is the newsletter for the Physics Division at Los Alamos National Laboratory. This newsletter is for August 2016. The following topics are covered: "Accomplishments in the Trident Laser Facility", "David Meyerhofer elected as chair-elect APS Nominating Committee", "HAWC searches for gamma rays from dark matter", "Proton Radiography Facility commissions electromagnetic magnifier", and "Cosmic ray muon computed tomography of spent nuclear fuel in dry storage casks."

  5. The lightning flash

    CERN Document Server

    Cooray, Vernon

    2014-01-01

    With contributions from today's leading lightning engineers and researchers, this updated 2nd edition of Vernon Cooray's classic text, The Lightning Flash provides the reader with an essential introduction to lightning and its impact on electrical and electronic equipment. Providing the reader with a thorough background into almost every aspect of lightning and its impact on electrical and electronic equipment, this new edition is updated throughout and features eight new chapters that bring the science up to date.

  6. Comparison of the pyrolysis behavior of lignins from different tree species.

    Science.gov (United States)

    Wang, Shurong; Wang, Kaige; Liu, Qian; Gu, Yueling; Luo, Zhongyang; Cen, Kefa; Fransson, Torsten

    2009-01-01

    Despite the increasing importance of biomass pyrolysis, little is known about the pyrolysis behavior of lignin--one of the main components of biomass--due to its structural complexity and the difficulty in its isolation. In the present study, we extracted lignins from Manchurian ash (Fraxinus mandschurica) and Mongolian Scots pine (Pinus sylvestris var. mongolica) using the Bjorkman procedure, which has little effect on the structure of lignin. Fourier transform infrared (FTIR) spectrometry was used to characterize the microstructure of the Bjorkman lignins, i.e., milled wood lignins (MWLs), from the different tree species. The pyrolysis characteristics of MWLs were investigated using a thermogravimetric analyzer, and the release of the main volatile and gaseous products of pyrolysis were detected by FTIR spectroscopy. During the pyrolysis process, MWLs underwent thermo-degradation over a wide temperature range. Manchurian ash MWL showed a much higher thermal degradation rate than Mongolian Scots pine MWL in the temperature range from 290-430 degrees C. High residue yields were achieved at 37 wt.% for Mongolian Scots pine MWL and 26 wt.% for Manchurian ash MWL. In order to further investigate the mechanisms of lignin pyrolysis, we also analyzed the FTIR profiles for the main pyrolysis products (CO(2), CO, methane, methanol, phenols and formaldehyde) and investigated the variation in pyrolysis products between the different MWLs.

  7. Hydrogen-rich gas production by steam gasification of char from biomass fast pyrolysis in a fixed-bed reactor: influence of temperature and steam on hydrogen yield and syngas composition.

    Science.gov (United States)

    Yan, Feng; Luo, Si-yi; Hu, Zhi-quan; Xiao, Bo; Cheng, Gong

    2010-07-01

    Steam gasification experiments of biomass char were carried out in a fixed-bed reactor. The experiments were completed at bed temperature of 600-850 degrees C, a steam flow rate of 0-0.357 g/min/g of biomass char, and a reaction time of 15min. The aim of this study is to determine the effects of bed temperature and steam flow rate on syngas yield and its compositions. The results showed that both high gasification temperature and introduction of proper steam led to higher yield of dry gas and higher carbon conversion efficiency. However, excessive steam reduced gas yield and carbon conversion efficiency. The maximum dry gas yield was obtained at the gasification temperature of 850 degrees C and steam flow rate of 0.165 g/min/g biomass char.

  8. A steady state model of agricultural waste pyrolysis: A mini review.

    Science.gov (United States)

    Trninić, M; Jovović, A; Stojiljković, D

    2016-09-01

    Agricultural waste is one of the main renewable energy resources available, especially in an agricultural country such as Serbia. Pyrolysis has already been considered as an attractive alternative for disposal of agricultural waste, since the technique can convert this special biomass resource into granular charcoal, non-condensable gases and pyrolysis oils, which could furnish profitable energy and chemical products owing to their high calorific value. In this regard, the development of thermochemical processes requires a good understanding of pyrolysis mechanisms. Experimental and some literature data on the pyrolysis characteristics of corn cob and several other agricultural residues under inert atmosphere were structured and analysed in order to obtain conversion behaviour patterns of agricultural residues during pyrolysis within the temperature range from 300 °C to 1000 °C. Based on experimental and literature data analysis, empirical relationships were derived, including relations between the temperature of the process and yields of charcoal, tar and gas (CO2, CO, H2 and CH4). An analytical semi-empirical model was then used as a tool to analyse the general trends of biomass pyrolysis. Although this semi-empirical model needs further refinement before application to all types of biomass, its prediction capability was in good agreement with results obtained by the literature review. The compact representation could be used in other applications, to conveniently extrapolate and interpolate these results to other temperatures and biomass types.

  9. Polycyclic aromatic hydrocarbons (PAH) formation from the pyrolysis of different municipal solid waste fractions

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hui [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China); Energy Research Institute, University of Leeds, Leeds LS2 9JT (United Kingdom); Wu, Chunfei, E-mail: c.wu@leeds.ac.uk [Energy Research Institute, University of Leeds, Leeds LS2 9JT (United Kingdom); Onwudili, Jude A. [Energy Research Institute, University of Leeds, Leeds LS2 9JT (United Kingdom); Meng, Aihong [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China); Zhang, Yanguo, E-mail: zhangyg@tsinghua.edu.cn [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China); Williams, Paul T., E-mail: p.t.williams@leeds.ac.uk [Energy Research Institute, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2015-02-15

    Highlights: • PAH from pyrolysis of 9 MSW fractions was investigated. • Pyrolysis of plastics released more PAH than that of biomass. • Naphthalene was the most abundant PAH in the tar. • The mechanism of PAH release from biomass and plastics was proposed. - Abstract: The formation of 2–4 ring polycyclic aromatic hydrocarbons (PAH) from the pyrolysis of nine different municipal solid waste fractions (xylan, cellulose, lignin, pectin, starch, polyethylene (PE), polystyrene (PS), polyvinyl chloride (PVC), and polyethylene terephthalate (PET)) were investigated in a fixed bed furnace at 800 °C. The mass distribution of pyrolysis was also reported. The results showed that PS generated the most total PAH, followed by PVC, PET, and lignin. More PAH were detected from the pyrolysis of plastics than the pyrolysis of biomass. In the biomass group, lignin generated more PAH than others. Naphthalene was the most abundant PAH, and the amount of 1-methynaphthalene and 2-methynaphthalene was also notable. Phenanthrene and fluorene were the most abundant 3-ring PAH, while benzo[a]anthracene and chrysene were notable in the tar of PS, PVC, and PET. 2-ring PAH dominated all tar samples, and varied from 40 wt.% to 70 wt.%. For PS, PET and lignin, PAH may be generated directly from the aromatic structure of the feedstock.

  10. The integration of dilute acid hydrolysis of xylan and fast pyrolysis of glucan to obtain fermentable sugars

    OpenAIRE

    Jiang, Liqun; Wu, Nannan; Zheng, Anqing; Zhao, Zengli; He, Fang; Li, Haibin

    2016-01-01

    Background Fermentable sugars are important intermediates in the biological conversion of biomass. Hemicellulose and amorphous cellulose are easily hydrolyzed to fermentable sugars in dilute acid, whereas crystalline cellulose is more difficult to be hydrolyzed. Cellulose fast pyrolysis is an alternative method to liberate valuable fermentable sugars from biomass. The amount of levoglucosan generated from lignocellulose by fast pyrolysis is usually lower than the theoretical yield based on th...

  11. Techno-economic assessment of fast pyrolysis for the valorization of short rotation coppice cultivated for phytoextraction

    OpenAIRE

    Kuppens, Tom; VAN DAEL, Miet; Vanreppelen, Kenny; Thewys, Theo; Yperman, Jan; Carleer, Robert; SCHREURS, Sonja; Van Passel, Steven

    2014-01-01

    The main barrier in the commercialization of phytoextraction as a sustainable alternative for remediating metal contaminated soils is its long time period, which can be countered by biomass valorization. From an environmental point of view, fast pyrolysis of the biomass is promising because its lower process temperature prevents metal volatilization. The remaining question is whether fast pyrolysis is also preferred from an economic point of view. Therefore, a techno-economic ass...

  12. Pyrolysis and co-pyrolysis of coal and oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Qiumin Zhang; Demin He; Jun Guan [Dalian University of Technology, Dalian (China). Institute of Coal Chemical Engineering

    2007-07-01

    Pyrolysis and co-pyrolysis of coal and oil shale was investigated by using Yilan oil shale, Longkou oil shale, Huolinhe lignite, Taiji gas coal and Ruqigou anthracite as raw materia1s. A fixed-bed pyrolysis and co-pyrolysis of these coal and oil shale were investigated. The results indicated that synergetic effect existed with the oil yield increased, water yield decreased, and the synergetic effect varied with the mass percentage of coal differed. The co-pyrolysis oil yield of Yilan oil shale and Ruqigou anthracite is a little higher than the linear sum of their oil yield in the pyrolysis process. But for the co-pyrolysis of Taiji gas coal and Yilan oil shale, no significant change of the oil yield was found. Huolinhe lignite and Longkou oil shale were chosen as the material for the solid heat carrier experiment. Synergetic effect analyses of both the fixed-bed pyrolysis and the retorting process with solid heat carrier were given. Huolinhe lignite is an ideal material for oil recovery by pyrolysis, with high volatile and low ash, its oil content is 8.55%. Longkou oil shale is an ideal material for oil recovery by pyrolysis, with high oil content of 14.38%. The optimum co-pyrolysis temperature for Huolinhe lignite and Longkou oil shale is 510{sup o}C. Synergetic effect was found with the oil increased 9% and water decreased 36%. 5 refs., 2 figs., 10 tabs.

  13. Thermogravimetric analysis and fast pyrolysis of Milkweed.

    Science.gov (United States)

    Kim, Seung-Soo; Agblevor, Foster A

    2014-10-01

    Pyrolysis of Milkweed was carried out in a thermogravimetric analyzer and a bubbling fluidized bed reactor. Total liquid yield of Milkweed pyrolysis was between 40.74% and 44.19 wt% between 425 °C and 550 °C. The gas yield increased from 27.90 wt% to 33.33 wt% with increasing reaction temperature. The higher heating values (HHV) of the Milkweed bio-oil were relatively high (30.33-32.87 MJ/kg) and varied with reaction temperature, feeding rate and fluidization velocity. The selectivity for CO2 was highest within non-condensable gases, and the molar ratio of CO2/CO was about 3 at the different reaction conditions. The (13)C NMR analysis, of the bio-oil showed that the relative concentration carboxylic group and its derivatives was higher at 425 °C than 475 °C, which resulted in slightly higher oxygen content in bio-oil. The pH of aqueous phase obtained at 475 °C was 7.37 which is the highest reported for any lignocellulosic biomass pyrolysis oils.

  14. Improved solid fuels from co-pyrolysis of a high-sulphur content coal and different lignocellulosic wastes

    Energy Technology Data Exchange (ETDEWEB)

    T. Cordero; J. Rodriguez-Mirasol; J. Pastrana; J.J. Rodriguez [ETSII, University of Malaga, Malaga (Spain). Department of Chemical Engineering

    2004-08-01

    Co-pyrolysis of blends of a high-sulphur coal with different biomass wastes has been investigated as a way to obtain improved solid fuels. Experiments have been performed in a thermogravimetric laboratory system and in a pilot-scale mobile bed furnace, this last operating at 600{sup o}C. The presence of biomass enhances coal desulphurization upon thermal treatment in significant relative amounts, giving rise about as much as twice percent sulphur loss at high biomass-to-coal ratios in the starting blend in comparison with the S loss occurring upon pyrolysis of coal alone. Combustion experiments with chars resulting from co-pyrolysis of these coal-biomass blends confirm this significantly improved desulphurization. Thus, co-pyrolysis of blends of high-sulphur coals with biomass wastes provides a potential way to obtain improved solid fuels combining good heating values with environmentally acceptable S contents. The chars resulting from co-pyrolysis show heating values within the range of high-quality solid fuels whereas the ash contents remain in the vicinity of that of the starting coal except in the case of the coal-straw blend where the relatively high ash content of this biomass waste leads to co-pyrolysis chars with substantially higher ash contents and lower heating values. 19 refs., 6 figs., 4 tabs.

  15. Flash Point Performance Evaluation

    Science.gov (United States)

    2014-03-01

    7094 Grabner D3828B Seta Flash CL12-3453 42.5 43.8 43.8 47.7 44.3 47.3 42.0 42.5 43.8 43.8 47.7 45.3 47.2 42.0 CL12-3475 58.5 61.7 58.7 59.7 61.3...division of Petroleum Analyzers Company (PAC) Houston, TX 14. Herzog is division of PAC 15. Stanhope- Seta , London, UK 16. Grabner Instruments is a

  16. Pyrolysis of Pine Wood

    DEFF Research Database (Denmark)

    Fjellerup, Jan Søren; Ahrenfeldt, Jesper; Henriksen, Ulrik Birk

    2005-01-01

    In this study, pinewood has been pyrolyzed using a fixed heating rate with a variable end-temperature. The pyrolysis process has been simulated using a mechanism with three parallel reactions for the formation of char, gas and tar. First order irreversible kinetics is assumed. This kind of model...

  17. Investigating pyrolysis and combustion characteristics of torrefied bamboo, torrefied wood and their blends.

    Science.gov (United States)

    Mi, Bingbing; Liu, Zhijia; Hu, Wanhe; Wei, Penglian; Jiang, Zehui; Fei, Benhua

    2016-06-01

    Bamboo and masson pine was torrefied with 300°C of temperature for 2.0h of residence time using GSL 1600X tube furnace in the argon atmosphere. Torrefied bamboo and masson pine particles were uniform mixed with different weight ratios. Pyrolysis and combustion characteristics were investigated through thermogravimetry (TGA). The results showed that pyrolysis and combustion process of all samples included three steps even though their characteristics were different. Torrefied biomass had a higher pyrolysis and combustion temperature, due to moisture and volatile removal and thermal decomposition of hemicelluloses, cellulose and lignin during torrefaction process. Torrefaction also increased high heating value, ash content and C/H and C/O ratio of biomass. The synergy of torrefied bamboo and torrefied mason pine was not found during pyrolysis and combustion process of blends. The results from this research will be very important and helpful to develop and utilize the wastes of masson pine and bamboo for energy products.

  18. Wind, biomass, hydrogen: renewable energies; Vent, biomasse, hydrogene: energies renouvelables

    Energy Technology Data Exchange (ETDEWEB)

    Rakotosson, V.; Brousse, Th.; Guillemet, Ph.; Scudeller, Y.; Crosnier, O.; Dugas, R.; Favier, F.; Zhou, Y.; Taberna, P.M.; Simon, P.; Toupin, M.; Belanger, D.; Ngo, Ch.; Djamie, B.; Guyard, Ch.; Tamain, B.; Ruer, J.; Ungerer, Ph.; Bonal, J.; Flamant, G

    2007-06-15

    This press kit gathers a series of articles about renewable energies: the compared availabilities of renewable energy sources (comparison at a given time); offshore wind turbines (projects under development, cost optimisation); hydrogen for transports: present day situation (production, transport and storage, hydrogen conversion into mechanical energy, indirect use in biomass conversion); biomass: future carbon source (resource potential in France, pyrolysis and fermentation, development of biofuels and synthetic fuels, stakes for agriculture); beneficial standards for the heat pumps market (market organization and quality approach); collecting solar energy (solar furnaces and future solar power plants, hydrogen generation). (J.S.)

  19. Pyrolysis kinetics of hazelnut husk using thermogravimetric analysis.

    Science.gov (United States)

    Ceylan, Selim; Topçu, Yıldıray

    2014-03-01

    This study aims at investigating physicochemical properties and pyrolysis kinetics of hazelnut husk, an abundant agricultural waste in Turkey. The physicochemical properties were determined by bomb calorimeter, elemental analysis and FT-IR spectroscopy. Physicochemical analysis results showed that hazelnut husk has a high calorimetric value and high volatile matter content. Pyrolysis experiments were carried out in a thermogravimetric analyzer under inert conditions and operated at different heating rates (5, 10, 20°C/min). Three different kinetic models, the iso-conversional Kissinger-Akahira-Sunose (KAS) and Ozawa-Flynn-Wall (OFW) models and Coats-Redfern method were applied on TGA data of hazelnut husk to calculate the kinetic parameters including activation energy, pre-exponential factor and reaction order. Simulation of hazelnut husk pyrolysis using data obtained from TGA analysis showed good agreement with experimental data. Combining with physicochemical properties, it was concluded that this biomass can become useful source of energy or chemicals.

  20. Pyrolysis of sugar cane bagasse in a wire-mesh reactor

    Energy Technology Data Exchange (ETDEWEB)

    Drummond, A.R.F.; Drummond, I.W. [Univ. of London (United Kingdom)

    1996-04-01

    Improved experimental techniques are described, using a wire mesh reactor; for determining the pyrolysis yields of lignocellulosic materials. In this apparatus pyrolysis tars are rapidly swept from the hot zone of the reactor and quenched, secondary reactions are thereby greatly diminished. Particular emphasis is placed upon the measurement of the pyrolysis yields for sugar cane bagasse, an abundant agricultural waste product. The role of the important pyrolysis parameters, peak temperature and heating rate, in defining the ultimate tar yield is investigated, with the value for bagasse being 54.6% at 500 C and 1,000 C/s. The pyrolysis yields, under similar conditions, of another biomass material, silver birch, are also reported and compared to those of bagasse.

  1. 灰化温度及热解气氛对生物质灰灼烧失重特性的影响%Influence of ashing temperature and pyrolysis atmosphere on weight loss properties of biomass ash obtained by combustion

    Institute of Scientific and Technical Information of China (English)

    姚锡文; 许开立

    2015-01-01

    Nowadays, sustainable development and increasing fuel demand necessitate the identification of possible energy resources. Biomass resource is regarded as a green renewable energy and will be more important in the future, which attracts the worldwide attention regarding their renewable nature, carbon dioxide-neutral characteristic, and world-wide availability. Consequently, many countries are putting great emphasis on the exploration of bio-energy. However, the use of biomass as fuel generates a large amount of residual ash, which causes serious environmental problems and has great passive influence on the chemical conversion of biomass. The biomass ash is easy to melt and volatilize, and it can not only reduce the utilization efficiency of equipment but also shorten their service life. Moreover, the inorganic species existing in biomass such as alkali oxides and salts can aggravate agglomeration, deposition, and corrosion problems on boiler’s heat transfer surfaces. So during the combustion or gasification processing, the ash with complex composition and high volatility often leads to slugging and erosion/corrosion in thermal conversion processing systems. Rice husk (RH) and rice straw (RS) are the main by-products during the process of rice processing, and they are the clean and renewable energy. Especially, in comparison to other agricultural wastes, the ash content of RH is much higher. So far, a series of studies have been carried out to investigate the characteristics of biomass ash through experiment. But the studies on the influence of ashing temperature and pyrolysis atmosphere on the properties of biomass ash are limited. In this paper, in order to investigate the weight loss regularities of biomass ash at different ashing temperature and pyrolysis atmosphere, thermogravimetric analysis was conducted to comparatively study the pyrolysis weight loss mechanism of rice husk ash (RHA) and rice straw ash (RSA) ashing at 600 and 815℃ in air and nitrogen. The

  2. Solid waste utilization: pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Boegly, W.J. Jr.; Mixon, W.R.; Dean, C.; Lizdas, D.J.

    1977-08-01

    As a part of the Integrated Community Energy System (ICES) Program, a number of technology evaluations are being prepared on various current and emerging sources of energy. This evaluation considers the use of pyrolysis as a method of producing energy from municipal solid waste. The energy can be in the form of a gas, oil, chars, or steam. Pyrolysis, the decomposition of organic matter in the absence of oxygen (or in an oxygen-deficient atmosphere), has been used to convert organic matter to other products or fuels. This process is also described as ''destructive distillation''. Four processes are described in detail: the ''Landgard'' System (Monsanto Environ-Chem Systems, Inc.); the Occidental Research Corporation Process (formerly the Garrett Research and Development Company; The ''Purox'' System (Union Carbide Corporation); and the ''Refu-Cycler'' (Hamilton Standard Corporation). ''Purox'' and ''Refu-Cycler'' produce a low-Btu gas; the Occidental process produces an oil, and the ''Landgard'' process produces steam using on-site auxiliary boilers to burn the fuel gases produced by the pyrolysis unit. Also included is a listing of other pyrolysis processes currently under development for which detailed information was not available. The evaluation provides information on the various process flowsheets, energy and material balances, product characteristics, and economics. Pyrolysis of municipal solid waste as an energy source can be considered a potential for the future; however little operational or economic information is available at this time.

  3. Study on co-pyrolysis characteristics of rice straw and Shenfu bituminous coal blends in a fixed bed reactor.

    Science.gov (United States)

    Li, Shuaidan; Chen, Xueli; Liu, Aibin; Wang, Li; Yu, Guangsuo

    2014-03-01

    Co-pyrolysis behaviors of rice straw and Shenfu bituminous coal were studied in a fixed bed reactor under nitrogen atmosphere. The pyrolysis temperatures were 700°C, 800°C and 900°C, respectively. Six different biomass ratios were used. Gas, tar components were analyzed by a gas chromatograph and a gas chromatography-mass spectrometry respectively. Under co-pyrolysis conditions, the gas volume yields are higher than the calculated values. Co-pyrolysis tar contains more phenolics, less oxygenate compounds than calculated values. The addition of biomass changes the atmosphere during the pyrolysis process and promotes tar decomposition. The SEM results show that the differences between the blended char and their parents char are not significant. The results of char yields and ultimate analysis also show that no significant interactions exist between the two kinds of particles. The changes of gas yield and components are caused by the secondary reactions and tar decomposition.

  4. Production of phenol-rich bio-oil during catalytic fixed-bed and microwave pyrolysis of palm kernel shell.

    Science.gov (United States)

    Omoriyekomwan, Joy Esohe; Tahmasebi, Arash; Yu, Jianglong

    2016-05-01

    Catalytic fixed-bed and microwave pyrolysis of palm kernel shell using activated carbon (AC) and lignite char (LC) as catalysts and microwave receptors are investigated. The effects of process parameters including temperature and biomass:catalyst ratio on the yield and composition of pyrolysis products were studied. The addition of catalyst increased the bio-oil yield, but decreased the selectivity of phenol in fixed-bed. Catalytic microwave pyrolysis of PKS significantly enhanced the selectivity of phenol production. The highest concentration of phenol in bio-oil of 64.58 %(area) and total phenolics concentration of 71.24 %(area) were obtained at 500°C using AC. Fourier transform infrared spectroscopy (FTIR) results indicated that concentration of OH, CH, CO and CO functional groups in char samples decreased after pyrolysis. Scanning electron microscopy (SEM) analysis clearly indicated the development of liquid phase in biomass particles during microwave pyrolysis, and the mechanism is also discussed.

  5. Geomorphological factors of flash floods

    Science.gov (United States)

    Kuznetsova, Yulia

    2016-04-01

    Growing anthropogenic load, rise of extreme meteorological events frequency and total precipitation depth often lead to increasing danger of catastrophic fluvial processes worldwide. Flash floods are one of the most dangerous and less understood types of them. Difficulties of their study are mainly related to short duration of single events, remoteness and hard access to origin areas. Most detailed researches of flash floods focus on hydrological parameters of the flow itself and its meteorological factors. At the same time, importance of the basin geological and geomorphological structure for flash floods generation and the role they play in global sediment redistribution is yet poorly understood. However, understanding and quantitative assessment of these features is a real basis for a complete concept of factors, characteristics and dynamics of flash floods. This work is a review of published data on flash floods, and focuses on the geomorphological factors of the phenomenon. We consider both individual roles and interactions between different geomorphological features (the whole basin parameters, characteristics of the single slopes and valley bottom). Special attention is paid to critical values of certain factors. This approach also highlights the gaps or less studied factors of flash floods. Finally, all data is organized into a complex diagram that may be used for flash floods modeling. This also may help to reach a new level of flash flood predictions and risk assessment.

  6. Design of sustainable second-generation biomass supply chains

    NARCIS (Netherlands)

    Yazan, Devrim Yazar; Duren, van Iris; Mes, Martijn; Kersten, Sascha; Clancy, Joy; Zijm, Henk

    2016-01-01

    Operational and economic trade-offs in the design of second-generation biomass (SGB) supply chains guide the decisions about plant scale and location as well as biomass collection routes. This paper compares different SGB supply chain designs with a focus on mobile pyrolysis plants and centralized v

  7. Pyrolysis and gasification of typical components in wastes with macro-TGA.

    Science.gov (United States)

    Meng, Aihong; Chen, Shen; Long, Yanqiu; Zhou, Hui; Zhang, Yanguo; Li, Qinghai

    2015-12-01

    The pyrolysis and gasification of typical components of solid waste, cellulose, hemicellulose, lignin, pectin, starch, polyethylene (PE), polystyrene (PS), polyvinyl chloride (PVC) and poly(ethylene terephthalate) (PET) were performed and compared in a macro thermogravimetric analyzer (macro-TGA). Three model biomasses, poplar stem, orange peel and Chinese cabbage, were applied to pyrolysis and gasification simulation by their components based on TG curves. Compared to those from TGA, peaks temperature of the differential thermogravimetric (DTG) curves of each samples pyrolysis on macro-TGA delayed 30-55°C due to heat transferring effect. CO2 promoted the thermal decomposition of hemicellulose, lignin, starch, pectin and model biomasses significantly by Boudouard reaction, and enhanced slightly the decomposition of PET. The activation energy (AE) of biomass components pyrolysis on macro-TGA was 167-197 kJ/mol, while that of plastic samples was 185-235 kJ/mol. The activation energy of 351-377 kJ/mol was corresponding to the Boudouard reaction in CO2 gasification. All overlap ratios in pseudo-components simulation were higher than 0.98 to indicate that pseudo-components model could be applied to both pyrolysis and CO2 gasification, and the mass fractions of components derived from pyrolysis and gasification were slightly different but not brought in obvious difference in simulating curves when they were applied across.

  8. Synergies in co-pyrolysis of Thai lignite and corncob

    Energy Technology Data Exchange (ETDEWEB)

    Sonobe, Taro [The Joint Graduate School of Energy and Environment, King Mongkut' s University of Technology Thonburi, 126 Pracha-Uthit Road, Bangmod, Tungkru, Bangkok, 10140 (Thailand); Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Worasuwannarak, Nakorn; Pipatmanomai, Suneerat [The Joint Graduate School of Energy and Environment, King Mongkut' s University of Technology Thonburi, 126 Pracha-Uthit Road, Bangmod, Tungkru, Bangkok, 10140 (Thailand)

    2008-12-15

    The results from TGA experiments at the temperature range of 300-600 C evidently distinguished the different pyrolysis behaviours of lignite and corncob; however, no clear synergistic effects could be observed for the mixture. The investigation of co-pyrolysis in a fixed-bed reactor, however, found significant synergies in both pyrolysis product yields and gas product compositions. The solid yield of the 50:50 lignite/corncob blend was much lower (i.e. 9%) than expected from the calculated value based on individual materials under the range of temperatures studied, and coincided with the higher liquid and gas yield. The synergistic effect in product gas composition was highly pronouncing for CH{sub 4} formation, i.e. three times higher than the calculated value at 400 C. Possible mechanisms were described including the interaction between corncob volatiles and lignite particles, and the effect of the heat profiles of lignite and corncob pyrolysis on the temperature dependent reactions. The enhanced devolatilisation of the blend was explained by the transfer of hydrogen from biomass to coal as well as the promotion of low-temperature thermal decomposition of lignite by exothermic heat released from corncob pyrolysis. Moreover, water, which was one of the major components in corncob volatiles produced mainly at around 200-375 C, can also be expected to act as a reactive agent to promote the secondary tar cracking producing more CH{sub 4}. (author)

  9. Experiments on the Conventional Pyrolysis of Oak Sawdust

    Energy Technology Data Exchange (ETDEWEB)

    Paraschiv, Maria; Tazerout, Mohand; Gerun, Luc; Bellettre, Jerome; Lemoult, Bernard [Ecole des Mines de Nantes (France)

    2006-07-15

    The biomass derived from wood processing (ex. sawdust) can be converted to combustible gas by thermochemical processes as pyrolysis and gasification. The oak sawdust used displays that the powder fraction has the biggest weight, which is difficult for operate and it gives the highest char yield and many particles in gas flow. A good mixture of wood powder and the bigger fractions, which give less char and tar yields, as such or in pellet shape, can be a solution to improve the thermal transformation of particles surface in order to increase gas content and avoid the particles presence in pyrolysis gases. For heat value improvement it can be use a co-pyrolysis compound, such as plastic waste that is an organic material completely mutable in combustible gaseous products. From this point of view the plastic wastes pyrolysis in the same operating conditions as wood pyrolysis were studied. The chemical data reveal that this kind of material gives volatile matters such as water, tars and gases and no solid residue. Also, the reference thermal range for degassing was found to be 480-550 [deg C], when the wood particles are already transformed and char is able to be a catalyst for tar cracking.

  10. Electricity production by advanced biomass power systems

    Energy Technology Data Exchange (ETDEWEB)

    Solantausta, Y. [VTT Energy, Espoo (Finland). Energy Production Technologies; Bridgwater, T. [Aston Univ. Birmingham (United Kingdom); Beckman, D. [Zeton Inc., Burlington, Ontario (Canada)

    1996-11-01

    This report gives the results of the Pyrolysis Collaborative Project organized by the International Energy Agency (IEA) under Biomass Agreement. The participating countries or organizations were Canada, European Community (EC), Finland, United States of America, and the United Kingdom. The overall objective of the project was to establish baseline assessments for the performance and economics of power production from biomass. Information concerning the performance of biomass-fuelled power plants based on gasification is rather limited, and even less data is available of on pyrolysis based power applications. In order to gain further insight into the potential for these technologies, this study undertook the following tasks: (1) Prepare process models to evaluate the cost and performance of new advanced biomass power production concepts, (2) Assess the technical and economic uncertainties of different biomass power concepts, (3) Compare the concepts in small scale and in medium scale production (5 - 50 MW{sub e}) to conventional alternatives. Processes considered for this assessment were biomass power production technologies based on gasification and pyrolysis. Direct combustion technologies were employed as a reference for comparison to the processes assessed in this study. Wood was used a feedstock, since the most data was available for wood conversion

  11. Step & flash imprint lithography

    Directory of Open Access Journals (Sweden)

    Douglas J. Resnick

    2005-02-01

    Full Text Available The escalating cost of next generation lithography (NGL is driven in part by the need for complex sources and optics. The cost for a single NGL tool could soon exceed $50 million, a prohibitive amount for many companies. As a result, several research groups are looking at alternative, low-cost methods for printing sub-100 nm features. Many of these methods are limited in their ability to do precise overlay. In 1999, Willson and Sreenivasan developed step and flash imprint lithography (S-FIL™. The use of a quartz template opens up the potential for optical alignment of the wafer and template. This paper reviews several key aspects of the S-FIL process, including template, tool, ultraviolet (UV-curable monomer, and pattern transfer. Two applications are also presented: contact holes and surface acoustic wave (SAW filters.

  12. Structural analysis of bio-oils from pyrolysis and steam pyrolysis of cottonseed cake

    Energy Technology Data Exchange (ETDEWEB)

    Oezbay, N. [Anadolu University, Career School of Bozueyuek, Bilecik (Turkey); Puetuen, A.E.; Puetuen, E. [Department of Chemical Engineering, Faculty of Engineering and Architecture, Anadolu University, Iki Eyluel Campus, 26470, Eskisehir (Turkey)

    2001-06-01

    Structural analysis and the effect of the water vapour on the structure of the products obtained by low temperature thermal destruction of biomass at atmospheric pressure has been investigated. The liquid products were fractionated into pentane solubles and insolubles (Asphaltenes). Pentane solubles were then solvent fractionated into pentane, toluene, ether and methanol subfractions by fractionated column chromatograpy. The aliphatic subfractions of the oils were then analysed by capillary column gas-liquid chromatography and GC/MS. For further structural analysis, the pyrolysis oils and aromatic and polar subfractions were conducted using FTIR and 1H-NMR spectra.

  13. Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida).

    Science.gov (United States)

    Kim, Kwang Ho; Kim, Jae-Young; Cho, Tae-Su; Choi, Joon Weon

    2012-08-01

    The aim of this study was to investigate the influence of pyrolysis temperature on the physicochemical properties and structure of biochar. Biochar was produced by fast pyrolysis of pitch pine (Pinus rigida) using a fluidized bed reactor at different pyrolysis temperatures (300, 400 and 500 °C). The produced biochars were characterized by elemental analysis, Brunauer-Emmett-Teller (BET) surface area, particle size distributions, field-emission scanning electron microscopy (FE-SEM), Fourier transform infrared (FTIR) spectroscopy, solid-state (13)C nuclear magnetic resonance (NMR) and X-ray diffraction (XRD). The yield of biochar decreased sharply from 60.7% to 14.4%, based on the oven-dried biomass weight, when the pyrolysis temperature rose from 300 °C to 500 °C. In addition, biochars were further carbonized with an increase in pyrolysis temperature and the char's remaining carbons were rearranged in stable form. The experimental results suggested that the biochar obtained at 400 and 500 °C was composed of a highly ordered aromatic carbon structure.

  14. Sugarcane bagasse pyrolysis in a carbon dioxide atmosphere with conventional and microwave-assisted heating

    Directory of Open Access Journals (Sweden)

    Bo-Jhih eLin

    2015-02-01

    Full Text Available Pyrolysis is an important thermochemical method to convert biomass into bio-oil. In this study, the pyrolysis of sugarcane bagasse in a CO2 atmosphere under conventional and microwave-assisted heating is investigated to achieve CO2 utilization. In the microwave pyrolysis, charcoal is used as the microwave absorber to aid in pyrolysis reactions. The results indicate that the yields of pyrolysis products are greatly influenced by the heating modes. In the conventional heating, the prime product is bio-oil and its yield is in the range of 51-54 wt%, whereas biochar is the major product in microwave-assisted heating and its yield ranges from 61 to 84 wt%. Two different absorber blending ratios of 0.1 and 0.3 are considered in the microwave pyrolysis. The solid yield decreases when the absorber blending ratio decreases from 0.3 to 0.1, while the gas and liquid yields increase. This is attributed to more energy consumed for bagasse pyrolysis at the lower blending ratio. Hydrogen is produced under the microwave pyrolysis and its concentration is between 2 and 12 vol%. This arises from the fact that the secondary cracking of vapors and the secondary decomposition of biochar in an environment with microwave irradiation is easier than those with conventional heating.

  15. Pyrolysis process and apparatus

    Science.gov (United States)

    Lee, Chang-Kuei

    1983-01-01

    This invention discloses a process and apparatus for pyrolyzing particulate coal by heating with a particulate solid heating media in a transport reactor. The invention tends to dampen fluctuations in the flow of heating media upstream of the pyrolysis zone, and by so doing forms a substantially continuous and substantially uniform annular column of heating media flowing downwardly along the inside diameter of the reactor. The invention is particularly useful for bituminous or agglomerative type coals.

  16. Co-gasification of biomass and plastics: pyrolysis kinetics studies, experiments on 100 kW dual fluidized bed pilot plant and development of thermodynamic equilibrium model and balances.

    Science.gov (United States)

    Narobe, M; Golob, J; Klinar, D; Francetič, V; Likozar, B

    2014-06-01

    Thermo-gravimetric analysis (TGA) of volatilization reaction kinetics for 50 wt.% mixtures of plastics (PE) and biomass (wood pellets) as well as for 100 wt.% plastics was conducted to predict decomposition times at 850°C and 900°C using iso-conversional model method. For mixtures, agreement with residence time of dual fluidized bed (DFB) reactor, treated as continuous stirred-tank reactor (CSTR), was obtained at large conversions. Mono-gasification of plastics and its co-gasification with biomass were performed in DFB pilot plant, using olivine as heterogeneous catalyst and heat transfer agent. It was found that co-gasification led to successful thermochemical conversion of plastics as opposed to mono-gasification. Unknown flow rates were determined applying nonlinear regression to energy and mass balances acknowledging combustion fuel, air, steam, feedstock, but also exiting char, tar, steam and other components in DFB gasification unit. Water-gas shift equilibrium and methanol synthesis requirements were incorporated into gasification model, based on measurements.

  17. Numerical Approach to Wood Pyrolysis in Considerating Heat Transfer in Reactor Chamber

    Science.gov (United States)

    Idris, M.; Novalia, U.

    2017-03-01

    Pyrolysis is the decomposition process of solid biomass into gas, tar and charcoal through thermochemical methods. The composition of biomass consists of cellulose hemi cellulose and lignin, which each will decompose at different temperatures. Currently pyrolysis has again become an important topic to be discussed. Many researchers make and install the pyrolysis reactor to convert biomass waste into clean energy hardware that can be used to help supply energy that has a crisis. Additionally the clean energy derived from biomass waste is a renewable energy, in addition to abundant source also reduce exhaust emissions of fossil energy that causes global warming. Pyrolysis is a method that has long been known by humans, but until now little is known about the phenomenon of the pyrolysis process that occurs in the reactor. One of the Pyrolysis’s phenomena is the heat transfer process from the temperature of the heat source in the reactor and heat the solid waste of biomass. The solid waste of biomass question in this research is rubber wood obtained from one of the company’s home furnishings. Therefore, this study aimed to describe the process of heat transfer in the reactor during the process. ANSYS software was prepared to make the simulation of heat transfer phenomena at the pyrolysis reactor. That’s the numerical calculation carried out for 1200 seconds. Comparison of temperature performed at T1, T2 and T3 to ensure that thermal conductivity is calculated by numerical accordance with experimental data. The distribution of temperature in the reactor chamber specifies the picture that excellent heat conduction effect of the wood near or attached to wooden components, cellulose, hemicellulose and lignin down into gas.

  18. Bioenergy research programme. Yearbook 1996. Utilization of bioenergy and biomass conversion; Bioenergian tutkimusohjelma. Vuosikirja 1996. Bioenergian kaeyttoe ja biomassan jalostus

    Energy Technology Data Exchange (ETDEWEB)

    Nikku, P. [ed.

    1997-12-01

    The aim of the programme is to increase the use of economically profitable and environmentally sound bioenergy by improving the competitiveness of present peat and wood fuels. Research and development projects will also develop new economically competitive biofuels, new equipment and methods for production, handling and utilisation of biofuels. The total funding for 1996 was 27.3 million FIM and the number of projects 63. The number of projects concerning bioenergy use was 10 and biomass conversion 6. Results of the projects carried out in 1996 are presented in this publication. The aim of the bioenergy use is to develop and demonstrate at least 3-4 new equipment or methods for handling and use of biofuels. The equipment and/or methods should provide economically competitive and environmentally sound energy production. The second aim is to demonstrate 2-3 large-scale biofuel end-use technologies. Each of these should have a potential of 0.2- 0.3 million toe/a till the year 2000. The aims have been achieved in the field of fuel handling technologies and small-scale combustion concepts, but large-scale demonstration projects before the year 2000 seems to be a very challenging aim. The aim of the biomass conversion is to produce basic information on biomass conversion, to evaluate the quality of products, their usability, environmental effects of use as well as the total economy of the production. The objective of biomass conversion is to develop 2-3 new methods, which could be demonstrated, for the production and utilisation of liquefied, gasified and other converted biofuels. The production target is 0.2-0.3 million toe/a by the year 2000 at a competitive price level. The studies focused on the development of flash pyrolysis technology for biomass, and on the study of storage stability of imported wood oils and of their suitability for use in oil-fired boilers and diesel power plants

  19. Catalytic hydrotreatment of fast-pyrolysis oil using non-sulfided bimetallic Ni-Cu catalysts on a delta-Al2O3 support

    NARCIS (Netherlands)

    Ardiyanti, A. R.; Khromova, S. A.; Venderbosch, R. H.; Yakovlev, V. A.; Heeres, H. J.

    2012-01-01

    Fast pyrolysis oil from lignocellulosic biomass is an attractive energy carrier. However, to improve the product characteristics such as a reduced polarity and higher thermal stability, upgrading is required. We here report activities on the catalytic hydrotreatment of fast pyrolysis oil using bimet

  20. High Pressure Biomass Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Pradeep K [Georgia Tech Research Corporation, Atlanta, GA (United States)

    2016-07-29

    According to the Billion Ton Report, the U.S. has a large supply of biomass available that can supplement fossil fuels for producing chemicals and transportation fuels. Agricultural waste, forest residue, and energy crops offer potential benefits: renewable feedstock, zero to low CO2 emissions depending on the specific source, and domestic supply availability. Biomass can be converted into chemicals and fuels using one of several approaches: (i) biological platform converts corn into ethanol by using depolymerization of cellulose to form sugars followed by fermentation, (ii) low-temperature pyrolysis to obtain bio-oils which must be treated to reduce oxygen content via HDO hydrodeoxygenation), and (iii) high temperature pyrolysis to produce syngas (CO + H2). This last approach consists of producing syngas using the thermal platform which can be used to produce a variety of chemicals and fuels. The goal of this project was to develop an improved understanding of the gasification of biomass at high pressure conditions and how various gasification parameters might affect the gasification behavior. Since most downstream applications of synags conversion (e.g., alcohol synthesis, Fischer-Tropsch synthesis etc) involve utilizing high pressure catalytic processes, there is an interest in carrying out the biomass gasification at high pressure which can potentially reduce the gasifier size and subsequent downstream cleaning processes. It is traditionally accepted that high pressure should increase the gasification rates (kinetic effect). There is also precedence from coal gasification literature from the 1970s that high pressure gasification would be a beneficial route to consider. Traditional approach of using thermogravimetric analyzer (TGA) or high-pressure themogravimetric analyzer (PTGA) worked well in understanding the gasification kinetics of coal gasification which was useful in designing high pressure coal gasification processes. However