WorldWideScience

Sample records for biomass energy project

  1. Forestry and biomass energy projects

    DEFF Research Database (Denmark)

    Swisher, J.N.

    1994-01-01

    This paper presents a comprehensive and consistent methodology to account for the costs and net carbon flows of different categories of forestry and biomass energy projects and describes the application of the methodology to several sets of projects in Latin America. The results suggest that both...... biomass energy development and forestry measures including reforestation and forest protection can contribute significantly to the reduction of global CO2 emissions, and that local land-use capacity must determine the type of project that is appropriate in specific cases. No single approach alone is...... sufficient as either a national or global strategy for sustainable land use or carbon emission reduction. The methodology allows consistent comparisons of the costs and quantities of carbon stored in different types of projects and/or national programs, facilitating the inclusion of forestry and biomass...

  2. Forestry and biomass energy projects

    DEFF Research Database (Denmark)

    Swisher, J.N.

    1994-01-01

    biomass energy development and forestry measures including reforestation and forest protection can contribute significantly to the reduction of global CO2 emissions, and that local land-use capacity must determine the type of project that is appropriate in specific cases. No single approach alone is...... sufficient as either a national or global strategy for sustainable land use or carbon emission reduction. The methodology allows consistent comparisons of the costs and quantities of carbon stored in different types of projects and/or national programs, facilitating the inclusion of forestry and biomass......This paper presents a comprehensive and consistent methodology to account for the costs and net carbon flows of different categories of forestry and biomass energy projects and describes the application of the methodology to several sets of projects in Latin America. The results suggest that both...

  3. Fiscalini Farms Biomass Energy Project

    Energy Technology Data Exchange (ETDEWEB)

    William Stringfellow; Mary Kay Camarillo; Jeremy Hanlon; Michael Jue; Chelsea Spier

    2011-09-30

    In this final report describes and documents research that was conducted by the Ecological Engineering Research Program (EERP) at the University of the Pacific (Stockton, CA) under subcontract to Fiscalini Farms LP for work under the Assistance Agreement DE-EE0001895 'Measurement and Evaluation of a Dairy Anaerobic Digestion/Power Generation System' from the United States Department of Energy, National Energy Technology Laboratory. Fiscalini Farms is operating a 710 kW biomass-energy power plant that uses bio-methane, generated from plant biomass, cheese whey, and cattle manure via mesophilic anaerobic digestion, to produce electricity using an internal combustion engine. The primary objectives of the project were to document baseline conditions for the anaerobic digester and the combined heat and power (CHP) system used for the dairy-based biomass-energy production. The baseline condition of the plant was evaluated in the context of regulatory and economic constraints. In this final report, the operation of the plant between start-up in 2009 and operation in 2010 are documented and an interpretation of the technical data is provided. An economic analysis of the biomass energy system was previously completed (Appendix A) and the results from that study are discussed briefly in this report. Results from the start-up and first year of operation indicate that mesophilic anaerobic digestion of agricultural biomass, combined with an internal combustion engine, is a reliable source of alternative electrical production. A major advantage of biomass energy facilities located on dairy farms appears to be their inherent stability and ability to produce a consistent, 24 hour supply of electricity. However, technical analysis indicated that the Fiscalini Farms system was operating below capacity and that economic sustainability would be improved by increasing loading of feedstocks to the digester. Additional operational modifications, such as increased utilization of

  4. CALLA ENERGY BIOMASS COFIRING PROJECT

    International Nuclear Information System (INIS)

    The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. During this Performance Period work efforts proceeded, and Carbona completed the gasifier island design package. Nexant has completed the balance of plant support systems design and the design for the biomass feed system. Work on the Technoeconomic Study is proceeding. Approximately 75% of the specified hardware quotations have been received at the end of the reporting period. A meeting is scheduled for July 23 rd and 24 th to review the preliminary cost estimates. GTI presented a status review update of the project at the DOE/NETL contractor's review meeting in Pittsburgh on June 21st

  5. CALLA ENERGY BIOMASS COFIRING PROJECT

    International Nuclear Information System (INIS)

    The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. During this Performance Period work efforts focused on completion of the Topical Report, summarizing the design and techno-economic study of the project's feasibility. GTI received supplemental authorization A002 from DOE contracts for additional work to be performed under Phase I that will further extend the performance period until the end of February 2003. The additional scope of work is for GTI to develop the gasification characteristics of selected feedstock for the project. To conduct this work, GTI will assemble an existing ''mini-bench'' unit to perform the gasification tests. The results of the test will be used to confirm or if necessary update the process design completed in Phase Task 1

  6. Book review - Biomass Energy Project Development Guidebook

    International Nuclear Information System (INIS)

    In 1985 the Pacific Northwest and Alaska Biomass Energy Program sponsored the writing of a biomass energy project development guidebook. Subject matter included the following topics: Planning for Fuel Supply; Fuel Characteristics, Storage and Use; Selecting an Energy Conversion Process; Conversion Technologies; Environmental Considerations; Economics of Biomass Projects; Financing Biomass Projects; Plant Specific Specifications; Contracting for Fuel; Wood Residue Recovery, Collection and Processing; Small to Medium Sized Modular Combustion Systems; Agricultural Residues. Also included were case studies of biomass energy projects and a glossary

  7. Bottom-up comparisons of CO2 storage and costs in forestry and biomass energy projects

    International Nuclear Information System (INIS)

    In order to include forestry and biomass energy projects in a possible CO2 emission reduction regime, and to compare the costs of individual projects or national programs, it is necessary to determine the rate of equivalency between carbon in fossil fuel emissions and carbon stored in different types of forestry, biomass and renewable energy projects. This paper presents a comprehensive and consistent methodology to account for the costs and carbon flows of different categories of forestry and biomass energy projects and describes the application of the methodology to several sets of projects in Latin America. The results suggest that both biomass energy development and forestry measures including reforestation and forest protection can contribute significantly to the reduction of global CO2 emissions, and that local land-use capacity must determine the type of project that is appropriate in specific cases. No single approach alone is sufficient as either a national or global strategy for sustainable land use or carbon emission reduction

  8. Private capital requirements for international biomass energy projects

    International Nuclear Information System (INIS)

    In developing countries, the use of biomass for energy production faces two contradictory pressures. On the one hand, biomass costs very little and it is used inefficiently for fuel or charcoal production, leading to widespread destruction of forested areas and environmental degradation; this problem is being attenuated by the promotion, through aid programmes, of more efficient cook stoves for poor people. On the other hand, the conversion of biomass into high-grade fuel such as ethanol from sugar cane or burning urban refuse or gasifying it to produce electricity is not economically competitive at this time and requires subsidies of approximately 30% to make it as attractive as conventional fuels. Only electricity production using residues from sawmills, crops and other biomass by-products is competitive, and a number of plants are in operation in some countries, particularly the United States. For such plants, the usual rates of return and long-term contract purchases that characterize investments of this kind are applied. Although technologies are available for the widespread efficient use of biomass, the financial hurdle of high initial costs has impeded their market penetration, which in turn precludes any decline in costs that might otherwise have come from production increases. Intervention by governments or by GEF, justified on grounds of environmental protection, is needed to accelerate the introduction of the new technologies. The only private flows that are taking place at the moment are those from enlightened investors wishing to guarantee themselves a strong position in the area for the future or to preempt command and control regulations, such as carbon taxes, imposed by governments. The joint implementation of biomass technologies between industrialized and developing countries might be one method of accelerating this flow. (author)

  9. Biomass energy projects in Central and Eastern Europe. General information, favorable concepts and financing possibilities

    International Nuclear Information System (INIS)

    The purpose of this guide is to provide information on the possibilities to invest and carry out biomass energy projects in Central and Eastern Europe. In the first part of the guide background information is given on countries in Central and Eastern Europe, focusing on bio-energy. A few cases are presented to illustrate different biomass energy concepts. Based on economic calculations an indication is given of the feasibility of those concepts. Also the most relevant sources of information are listed. In the second part an overview is given of Dutch, European and international financial tools that can be used in biomass energy projects in Central and Eastern Europe

  10. Biomass energy

    International Nuclear Information System (INIS)

    Bioenergy systems can provide an energy supply that is environmentally sound and sustainable, although, like all energy systems, they have an environmental impact. The impact often depends more on the way the whole system is managed than on the fuel or on the conversion technology. The authors first describe traditional biomass systems: combustion and deforestation; health impact; charcoal conversion; and agricultural residues. A discussion of modern biomass systems follows: biogas; producer gas; alcohol fuels; modern wood fuel resources; and modern biomass combustion. The issue of bioenergy and the environment (land use; air pollution; water; socioeconomic impacts) and a discussion of sustainable bioenergy use complete the paper. 53 refs., 9 figs., 14 tabs

  11. Transportation Energy Futures Series. Projected Biomass Utilization for Fuels and Power in a Mature Market

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mai, T. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Newes, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Aden, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Warner, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Uriarte, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Inman, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Simpkins, T. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Argo, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-03-01

    The viability of biomass as transportation fuel depends upon the allocation of limited resources for fuel, power, and products. By focusing on mature markets, this report identifies how biomass is projected to be most economically used in the long term and the implications for greenhouse gas (GHG) emissions and petroleum use. In order to better understand competition for biomass between these markets and the potential for biofuel as a market-scale alternative to petroleum-based fuels, this report presents results of a micro-economic analysis conducted using the Biomass Allocation and Supply Equilibrium (BASE) modeling tool. The findings indicate that biofuels can outcompete biopower for feedstocks in mature markets if research and development targets are met. The BASE tool was developed for this project to analyze the impact of multiple biomass demand areas on mature energy markets. The model includes domestic supply curves for lignocellulosic biomass resources, corn for ethanol and butanol production, soybeans for biodiesel, and algae for diesel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  12. Transportation Energy Futures Series: Projected Biomass Utilization for Fuels and Power in a Mature Market

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, M.; Mai, T.; Newes, E.; Aden, A.; Warner, E.; Uriarte, C.; Inman, D.; Simpkins, T.; Argo, A.

    2013-03-01

    The viability of biomass as transportation fuel depends upon the allocation of limited resources for fuel, power, and products. By focusing on mature markets, this report identifies how biomass is projected to be most economically used in the long term and the implications for greenhouse gas (GHG) emissions and petroleum use. In order to better understand competition for biomass between these markets and the potential for biofuel as a market-scale alternative to petroleum-based fuels, this report presents results of a micro-economic analysis conducted using the Biomass Allocation and Supply Equilibrium (BASE) modeling tool. The findings indicate that biofuels can outcompete biopower for feedstocks in mature markets if research and development targets are met. The BASE tool was developed for this project to analyze the impact of multiple biomass demand areas on mature energy markets. The model includes domestic supply curves for lignocellulosic biomass resources, corn for ethanol and butanol production, soybeans for biodiesel, and algae for diesel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  13. Commercialization of biomass energy projects: Outline for maximizing use of valuable tax credits and incentives

    International Nuclear Information System (INIS)

    The Federal Government offers a number of incentives designed specifically to promote biomass energy. These incentives include various tax credits, deductions and exemptions, as well as direct subsidy payments and grants. Additionally, equipment manufacturers and project developers may find several other tax provisions useful, including tax incentives for exporting U.S. good and engineering services, as well as incentives for the development of new technologies. This paper outlines the available incentives, and also addresses ways to coordinate the use of tax breaks with government grants and tax-free bond financing in order to maximize benefits for biomass energy projects

  14. Economic sustainability of a biomass energy project located at a dairy in California, USA

    International Nuclear Information System (INIS)

    Previous experience has demonstrated the tenuous nature of biomass energy projects located at livestock facilities in the U.S. In response, the economic sustainability of a 710 kW combined heat and power biomass energy system located on a dairy farm in California was evaluated. This biomass energy facility is unique in that a complete-mix anaerobic digester was used for treatment of manure collected in a flush-water system, co-digestates were used as additional digester feedstocks (whey, waste feed, and plant biomass), and the power plant is operating under strict regulatory requirements for stack gas emissions. Electricity was produced and sold wholesale, and cost savings resulted from the use of waste heat to offset propane demand. The impact of various operational factors was considered in the economic analysis, indicating that the system is economically viable as constructed but could benefit from introduction of additional substrates to increase methane and electricity production, additional utilization of waste heat, sale of digested solids, and possibly pursuing greenhouse gas credits. Use of technology for nitrogen oxide (NOx) removal had a minimal effect on economic sustainability. - Highlights: ► We evaluated the economic sustainability of a dairy biomass energy project. ► The project is economically sustainable as currently operated. ► The simple payback period could be reduced if the system is operated near capacity. ► Co-digestion of off-site waste streams is recommended to improve profitability.

  15. Biomass energy projects for joint implementation of the UN FCCC [Framework Convention on Climate Change

    International Nuclear Information System (INIS)

    The UN Framework Convention on Climate Change (FCCC) allows for the joint implementation (JI) of measures to mitigate the emissions of greenhouse gases. The concept of JI refers to the implementation of such measures in one country with partial or full financial and/or technical support from another country, potentially fulfilling some of the supporting country's emission-reduction commitment under the FCCC. This paper addresses some key issues related to JI under the FCCC as they relate to the development of biomass energy projects for carbon offsets in developing countries. Issues include the reference case or baseline, carbon accounting and net carbon storage, potential project implementation barriers and risks, monitoring and verification, local agreements and host-country approval. All of these issues are important in project design and evaluation. We discuss briefly several case studies, which consist of a biomass-fueled co-generation projects under development at large sugar mills in the Philippines, India and Brazil, as potential JI projects. The case studies illustrate the benefits of bioenergy for reducing carbon emissions and some of the important barriers and difficulties in developing and crediting such projects. Results to date illustrate both the achievements and the difficulties of this type of project. (author)

  16. Biomass power; Biomasse-Energie

    Energy Technology Data Exchange (ETDEWEB)

    Woergetter, M.

    2003-07-01

    The author reports about use of biomass in Austria and Bavaria: power generation, production of biodiesel, bioethanol, energy efficiency of small biomass furnaces. (uke) [German] Bioenergie wird von breiten Kreisen als wichtiger Ansatz in Richtung einer nachhaltigen Entwicklung in Europa gesehen. Die Herausforderung liegt dabei im neuen Herangehen an Entscheidungen; Dimensionen der Wirtschaft, der Umwelt und der Gesellschaft sind dabei zu beruecksichtigen. Bioenergie ist somit keine reine Frage der Umwelt, sondern zielt auf den Umbau unseres Systems in Richtung Nachhaltigkeit. (orig.)

  17. Estimating Swedish biomass energy supply

    International Nuclear Information System (INIS)

    Biomass is suggested to supply an increasing amount of energy in Sweden. There have been several studies estimating the potential supply of biomass energy, including that of the Swedish Energy Commission in 1995. The Energy Commission based its estimates of biomass supply on five other analyses which presented a wide variation in estimated future supply, in large part due to differing assumptions regarding important factors. In this paper, these studies are assessed, and the estimated potential biomass energy supplies are discusses regarding prices, technical progress and energy policy. The supply of logging residues depends on the demand for wood products and is limited by ecological, technological, and economic restrictions. The supply of stemwood from early thinning for energy and of straw from cereal and oil seed production is mainly dependent upon economic considerations. One major factor for the supply of willow and reed canary grass is the size of arable land projected to be not needed for food and fodder production. Future supply of biomass energy depends on energy prices and technical progress, both of which are driven by energy policy priorities. Biomass energy has to compete with other energy sources as well as with alternative uses of biomass such as forest products and food production. Technical progress may decrease the costs of biomass energy and thus increase the competitiveness. Economic instruments, including carbon taxes and subsidies, and allocation of research and development resources, are driven by energy policy goals and can change the competitiveness of biomass energy

  18. Introduction to biomass energy project financing, funding sources and government strategies

    International Nuclear Information System (INIS)

    Biomass projects can help developing countries to protect their environment as well as to build a modem infrastructure. However, such projects present, in addition to the more typical risks associated with fossil-fuel projects, certain risks relating to the unique technologies and fuels used in such projects. Further, their location in developing countries regularly creates enhanced political and credit risk as well. Biomass power projects, like any other power project, must be financed. To be financeable, a power project should allocate risk in the most efficient way, so as to maximize return on investment. This paper examines the way in which various project documents can be structured to allocate most efficiently the technology and fuel risks unique to biomass projects, as well as the more typical risks, such as construction risk, permitting risk, expropriation risk, currency risk, country risk, sovereign risks, operating risks and credit risk. In addition, this paper summarizes the public financing sources and support that are available to assist in meeting the unique risk profiles of biomass projects. Specifically, it examines some of the principal multilateral and export credit agencies having involvement in this area. Finally, it examines potential strategies available to the developer of a biomass project for soliciting the involvement of, and negotiating with, local governments and public financing agencies. (author)

  19. Energy from biomass. Summaries of the Biomass Projects carried out as part of the Department of Trade and Industry's New and Renewable Energy Programme. Vol. 5: straw, poultry litter and energy crops as energy sources

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-01-01

    These volumes of summaries provide easy access to the many projects carried out in the Energy from Biomass programme area as part of the Department of Trade and Industry's New and Renewable Energy Programme. The summaries in this volume cover contractor reports on the subject published up to December 1997. (author)

  20. Energy use of biomass

    OpenAIRE

    HOLEČKOVÁ, Michaela

    2010-01-01

    The aim of this bachelor thesis is the research of different types of biomass, description of the various types of methods and technologies for energy usage of biomass and the mapping of large power plant units in the Czech Republic. The first part of this thesis deals with the definition of biomass, its distribution and the description of basic essential attributes describing its composition. The downstream part of this work is focused on the technologies of gaining energy out of biomass or ...

  1. Wood, straw, energetic crops... Biomass energy. A sustainable alternative for your projects

    International Nuclear Information System (INIS)

    After having briefly recalled the French and European legal context promoting the use of renewable energies, this document highlights the challenges associated with such a development. They concern the environment, the energetic independence, the cost of energy, and the local and rural development. It evokes the actions and labels which favour the improvement and the renewal of domestic heating equipment, the large number of installations using biomass for collective heating or for industrial heating. It indicates the objectives of the biomass energy programme for 2007-2010, and describes the French energy conservation agency (ADEME) role and missions within this programme

  2. Energy from biomass. Summaries of the Biomass Projects carried out as part of the Department of Trade and Industry's New and Renewable Energy Programme. Vol. 3: converting wood fuel to energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    These volumes of summaries provide easy access to the many projects carried out in the Energy from Biomass programme area as part of the Department of Trade and Industry's New and Renewable Energy Programme. The summaries in this volume cover contractor reports on the subject published up to December 1997. (author)

  3. Policy and project implementation in the field of biomass energy in England. Report of a study trip to England. Final report

    International Nuclear Information System (INIS)

    May 1998 a group of Dutch experts in the field of biomass energy visited several biomass processing plants and a biomass plantation in England to gain insight and learn from experiences of projects and the policy with respect to biomass in the United Kingdom. Also a seminar was organized to discuss the British and Dutch policy with regard to biomass energy. The British policy resulted in a relatively successful market for renewable energy, in particular based on the Non Fossil Fuel Obligation (NFFO), a regulating competition by means of which a price convergence has been realized. The essence of NFFO that it makes projects 'bankable' by offering a guaranteed sellback. Only a limited number of biomass installations is in operation in England. In the next few years some biomass projects will be implemented (50-100 MWe) in which short rotation crops will play an important part. 50 refs

  4. Biomass to energy

    International Nuclear Information System (INIS)

    This road-map proposes by the Group Total aims to inform the public on the biomass to energy. It explains the biomass principle, the possibility of biomass to energy conversion, the first generation of biofuels (bio ethanol, ETBE, bio diesel, flex fuel) and their advantages and limitations, the european regulatory framework and policy with the evolutions and Total commitments in the domain. (A.L.B.)

  5. Energy from biomass and waste

    International Nuclear Information System (INIS)

    This report provides a review of the Commission of the European Communities (CEC) Energy Demonstration Programme in the sector of Energy from biomass and waste, and examines the current status of the energy technologies associated with the sector, in relation to projects supported under the Programme, those included under various national programmes and by reference to the published literature. Detailed overviews of five sub-categories represented in the Energy from biomass and waste sector are presented to illustrate their relative significance in terms of estimated energy potential, technological and economic status and the nature of future research, development and demonstration needs. Finally the potential role of the biomass and waste energy technologies in meeting the energy needs of the developing world is discussed. 33 refs; 2 figs; 11 tabs

  6. Bioenergy Project Development and Biomass Supply

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Modern biomass, and the resulting useful forms of bioenergy produced from it, are anticipated by many advocates to provide a significant contribution to the global primary energy supply of many IEA member countries during the coming decades. For non-member countries, particularly those wishing to achieve economic growth as well as meet the goals for sustainable development, the deployment of modern bioenergy projects and the growing international trade in biomass-based energy carriers offer potential opportunities.

  7. Biomass living energy

    International Nuclear Information System (INIS)

    Any energy source originating from organic matter is biomass, which even today is the basic source of energy for more than a quarter of humanity. Best known for its combustible properties, biomass is also used to produce biofuels. This information sheet provides also information on the electricity storage from micro-condensers to hydroelectric dams, how to save energy facing the increasing of oil prices and supply uncertainties, the renewable energies initiatives of Cork (Ireland) and the Switzerland european energy hub. (A.L.B.)

  8. Energy from biomass. Summaries of the Biomass Projects carried out as part of the Department of Trade and Industry`s New and Renewable Energy Programme. Vol. 4: anaerobic digestion for biogas

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    These volumes of summaries provide easy access to the many projects carried out in the Energy from Biomass programme area as part of the Department of Trade and Industry`s New and Renewable Energy Programme. The summaries in this volume cover contractor reports on the subject published up to December 1997. (author)

  9. Biomass energy in Central America

    International Nuclear Information System (INIS)

    The objective of this paper is to introduce the concept of biomass to energy issues and opportunities in Central America. In this region, made up of seven countries (Belize, Costa Rica, El Salvador, Guatemala, Honduras, Nicaragua and Panama), the biomass sector has the potential to play a crucial role in alleviating the environmental and development predicaments faced by all economies of the region. This paper assesses the available biomass resources at the regional and country levels and gives an overview of the current utilization of biomass fuels. It also describes the overall context in which the biomass-to-energy initiatives are immersed. At the regional level, biomass energy consumption accounts for more than 50% of total energy consumption. In regard to the utilization of biomass for energy purposes, it is clear that Central America faces a critical juncture at two levels, both mainly in rural areas: in the productive sector and at the household level. The absence of sustainable development policies and practices has jeopardized the availability of biomass fuels, particularly wood. Firewood is an important source of energy for rural industries such as coffee processing, which is one of the largest productive activities in the region. This paper comments on some of the most successful technological innovations already in place in the region, for instance, the rapid development of co-generation projects by the sugar cane industry, especially in El Salvador and Guatemala, the substitution of coffee husks for firewood in coffee processing plants in Costa Rica and El Salvador and the sustainable use of pine forests for co-generation in Honduras. Only one out of every two inhabitants in Central America now has access to electricity from the public grid. Biomass fuels, mainly firewood but also, to a lesser extent, other crop residues such as corn stalks, are the main source of energy for cooking and heating by most of the population. (It is foreseen that by the end

  10. Biomass energy resource enhancement

    International Nuclear Information System (INIS)

    The demand for energy in developing countries is expected to increase to at least three times its present level within the next 25 years. If this demand is to be met by fossil fuels, an additional 2 billion tonnes of crude oil or 3 billion tonnes of coal would be needed every year. This consumption pattern, if allowed to proceed, would add 10 billion tonnes of CO2, to the global atmosphere each year, with its attendant risk of global warming. Therefore, just for our survival, it is imperative to progressively replace fossil fuels by biomass energy resources and to enhance the efficiency of use of the latter. Biomass is not only environmentally benign but is also abundant. It is being photosynthesised at the rate of 200 billion tonnes of carbon every year, which is equivalent to 10 times the world's present demand for energy. Presently, biomass energy resources are highly under-utilised in developing countries; when they are used it is through combustion, which is inefficient and causes widespread environmental pollution with its associated health hazards. Owing to the low bulk density and high moisture content of biomass, which make it difficult to collect, transport and store, as well as its ash-related thermochemical properties, its biodegradability and seasonal availability, the industrial use of biomass is limited to small and (some) medium-scale industries, most of which are unable to afford efficient but often costly energy conversion systems. Considering these constraints and the need to enhance the use base, biomass energy technologies appropriate to developing countries have been identified. Technologies such as briquetting and densification to upgrade biomass fuels are being adopted as conventional measures in some developing countries. The biomass energy base can be enhanced only once these technologies have been shown to be viable under local conditions and with local raw materials, after which they will multiply on their own, as has been the case with

  11. Improving logistics for biomass supply from energy crops in Europe: Main results from the Logist'EC Project

    OpenAIRE

    Flatberg, Truls; Perrin, Aurélie; Wohlfahrt, Julie; Bjørkwoll, Thor; Echevarria Goni , Inès; Van Der Linden, Raimo; Loyce, Chantal; Pelzer, Elise; Ragaglini, Giorgio; Shield, Ian; Yates, Nicola

    2015-01-01

    Cost-efficient, environmental-friendly and socially sustainable biomass supply chains are urgently needed to achieve the 2020 targets of the Strategic Energy Technologies-Plan of the European Union, which are likely to be impeded by the potential scarcity of lignocellulosic biomass from agriculture. Innovative techniques for crop management, biomass harvesting and pre-treatment, storage and transport offer a prime avenue to increase biomass supply while keeping costs down and minimizing adver...

  12. Economic, energy and environmental evaluations of biomass-based fuel ethanol projects based on life cycle assessment and simulation

    International Nuclear Information System (INIS)

    This paper summarizes the research of Monte Carlo simulation-based Economic, Energy and Environmental (3E) Life Cycle Assessment (LCA) of the three Biomass-based Fuel Ethanol (BFE) projects in China. Our research includes both theoretical study and case study. In the theoretical study part, 3E LCA models are structured, 3E Index Functions are defined and the Monte Carlo simulation is introduced to address uncertainties in BFE life cycle analysis. In the case study part, projects of Wheat-based Fuel Ethanol (WFE) in Central China, Corn-based Fuel Ethanol (CFE) in Northeast China, and Cassava-based Fuel Ethanol (CFE) in Southwest China are evaluated from the aspects of economic viability and investment risks, energy efficiency and airborne emissions. The life cycle economy assessment shows that KFE project in Guangxi is viable, while CFE and WFE projects are not without government's subsidies. Energy efficiency assessment results show that WFE, CFE and KFE projects all have positive Net Energy Values. Emissions results show that the corn-based E10 (a blend of 10% gasoline and 90% ethanol by volume), wheat-based E10 and cassava-base E10 have less CO2 and VOC life cycle emissions than conventional gasoline, but wheat-based E10 and cassava-based E10 can generate more emissions of CO, CH4, N2O, NOx, SO2, PM10 and corn-based E10 can has more emissions of CH4, N2O, NOx, SO, PM10.

  13. Biomass energy in the making

    International Nuclear Information System (INIS)

    Wood, straw, agricultural residues, organic wastes, biomass is everywhere you look. But the efficient use of this source of green electricity - the world's second largest renewable energy source - requires optimization of biomass collection and combustion processes. Biomass is back on the political agenda. In mid-June of this year, the French government gave this renewable energy a boost by selecting twenty-two projects to generate power and heat with biomass. The plants, to be commissioned by 2010, will be located in eleven different regions and will consume energy from organic plant matter. The power generated will be bought at a firm price of 128 euros per megawatt-hour. Most of the fuel will come from forest and paper industry waste, but straw and even grape pomace will be used in some cases. The plants will have a combined generating capacity of 300 MWh, raising France's installed biomass capacity to a total of 700 MWe. A drop of water in the ocean in the overall scheme of France's electricity. It is true that France has long neglected biomass. In 2004, electricity generated from biological resources represented a mere 1.74 TWhe in France, just 0.3% of its power consumption. This will rise to 0.6% once the new plants have come on line. The trend is the same in all of the EU's 27 member states, according to Eurostat, the statistical office of the European Communities: the amount of electricity generated from biomass (including biogas, municipal waste and wood) has practically doubled in six years, rising from 40 to 80 TWhe between 2000 and 2005. This is an improvement, but it still only represents 2.5% of the electricity supplied to Europeans. On a global scale, biomass contributes just 1% of total electric power generation. Yet biomass is an energy resource found all over the world, whether as agricultural waste, wood chips, or dried treatment plant sludge, to name but a few. Biomass power plants have managed to gain a foothold mainly in countries that produce

  14. Biomass furnace: projection and construction

    Energy Technology Data Exchange (ETDEWEB)

    Melo, Fernanda Augusta de Oliveira; Silva, Juarez Sousa e; Silva, Denise de Freitas; Sampaio, Cristiane Pires; Nascimento Junior, Jose Henrique do [Universidade Federal de Vicosa (DEA/UFV), MG (Brazil). Dept. de Engenharia Agricola

    2008-07-01

    Of all the ways to convert biomass into thermal energy, direct combustion is the oldest. The thermal-chemical technologies of biomass conversion such as pyrolysis and gasification, are currently not the most important alternatives; combustion is responsible for 97% of the bio-energy produced in the world (Demirbas, 2003). For this work, a small furnace was designed and constructed to use biomass as its main source of fuel, and the combustion chamber was coupled with a helical transporter which linked to the secondary fuel reservoir to continually feed the combustion chamber with fine particles of agro-industrial residues. The design of the stove proved to be technically viable beginning with the balance of mass and energy for the air heating system. The proposed heat generator was easily constructed as it made use of simple and easily acquired materials, demanding no specialized labor. (author)

  15. Ecosystems and biomass energy

    International Nuclear Information System (INIS)

    Biomass, particularly fuelwood and charcoal, is one of the main sources of fuel to meet the energy needs of traditional, commercial and industrial activities in developing countries. While it satisfies only about 14% of the world's primary energy needs, in some countries it satisfies up to 80% of those needs. As a result of population growth, urbanization, economic reforms, restructuring and new development targets in most of these countries, new forms of energy and a more intensive use of energy are expected for the years ahead. This additional demand for energy will be met mainly by hydroelectricity, coal and fossil fuels. However, where biomass is available or can be planted, bio fuels can be converted into new forms of energy (electricity and power) and energy carriers (liquid and gaseous fuels) to meet not only the energy needs of the modem sectors but also to maintain a sustainable supply to traditional users. In fact, FAO estimates that biomass could provide nearly three times more energy than it does without affecting the current supply of other commodities and goods such as food, fodder, fuel, timber and non-wood fuel products. The benefits derived from the utilization of biomass as a source of energy are twofold: (a) the task of supplying bio fuels can help to attract new investment, create new employment and income opportunities in rural areas, raise the value of natural resources and preserve the environment and (b) new forms of energy and energy carriers could foster increased production and productivity at the rural and community level, particularly in remote areas where conventional fuels are not easily available at affordable prices. Bioenergy can be easily developed in modular and decentralized schemes and offers many advantages. It could be an inexpensive source of energy, even at present energy prices, and it requires less capital investment for its implementation than alternative solutions. However, there are many disadvantages, too. For

  16. Romania biomass energy. Country study

    International Nuclear Information System (INIS)

    The present report was prepared under contract to UNIDO to conduct a case study of biomass energy use and potential in Romania. The purpose of the case study is to provide a specific example of biomass energy issues and potential in the context of the economic transition under way in eastern Europe. The transition of Romania to a market economy is proceeding at a somewhat slower pace than in other countries of eastern Europe. Unfortunately, the former regime forced the use of biomass energy with inadequate technology and infrastructure, particularly in rural areas. The resulting poor performance thus severely damaged the reputation of biomass energy in Romania as a viable, reliable resource. Today, efforts to rejuvenate biomass energy and tap into its multiple benefits are proving challenging. Several sound biomass energy development strategies were identified through the case study, on the basis of estimates of availability and current use of biomass resources; suggestions for enhancing potential biomass energy resources; an overview of appropriate conversion technologies and markets for biomass in Romania; and estimates of the economic and environmental impacts of the utilization of biomass energy. Finally, optimal strategies for near-, medium- and long-term biomass energy development, as well as observations and recommendations concerning policy, legislative and institutional issues affecting the development of biomass energy in Romania are presented. The most promising near-term biomass energy options include the use of biomass in district heating systems; cofiring of biomass in existing coal-fired power plants or combined heat and power plants; and using co-generation systems in thriving industries to optimize the efficient use of biomass resources. Mid-term and long-term opportunities include improving the efficiency of wood stoves used for cooking and heating in rural areas; repairing the reputation of biogasification to take advantage of livestock wastes

  17. The influence of perceived uncertainty on entrepreneurial action in emerging renewable energy technology; biomass gasification projects in the Netherlands

    International Nuclear Information System (INIS)

    Emerging renewable energy technologies cannot break through without the involvement of entrepreneurs who dare to take action amidst uncertainty. The uncertainties that the entrepreneurs involved perceive will greatly affect their innovation decisions and can prevent them from engaging in innovation projects aimed at developing and implementing emerging renewable energy technologies. This article analyzes how perceived uncertainties and motivation influence an entrepreneur's decision to act, using empirical data on biomass gasification projects in the Netherlands. Our empirical results show that technological, political and resource uncertainty are the most dominant sources of perceived uncertainty influencing entrepreneurial decision-making. By performing a dynamic analysis, we furthermore demonstrate that perceived uncertainties and motivation are not stable, but evolve over time. We identify critical factors in the project's internal and external environment which influence these changes in perceived uncertainties and motivation, and describe how various interactions between the different variables in the conceptual model (internal and external factors, perceived uncertainty, motivation and previous actions of the entrepreneurs) positively or negatively influence the decision of entrepreneurs to continue entrepreneurial action. We discuss how policymakers can use these insights for stimulating the development and diffusion of emerging renewable energy technologies

  18. Great Lakes Regional Biomass Energy Program

    International Nuclear Information System (INIS)

    The Great Lakes Regional Biomass Energy Program (GLRBEP) was initiated September, 1983, with a grant from the Office of Energy Efficiency and Renewable Energy of the US Department of Energy (DOE). The program provides resources to public and private organizations in the Great Lakes region to increase the utilization and production of biomass fuels. The objectives of the GLRBEP are to: (1) improve the capabilities and effectiveness of biomass energy programs in the state energy offices; (2) assess the availability of biomass resources for energy in light of other competing needs and uses; (3) encourage private sector investments in biomass energy technologies; (4) transfer the results of government-sponsored biomass research and development to the private sector; (5) eliminate or reduce barriers to private sector use of biomass fuels and technology; (6) prevent or substantially mitigate adverse environmental impacts of biomass energy use. The Program Director is responsible for the day-to-day activities of the GLRBEP and for implementing program mandates. A 40 member Technical Advisory Committee (TAC) sets priorities and recommends projects. The governor of each state in the region appoints a member to the Steering Council, which acts on recommendations of the TAC and sets basic program guidelines. The GLRBEP is divided into three separate operational elements. The State Grants component provides funds and direction to the seven state energy offices in the region to increase their capabilities in biomass energy. State-specific activities and interagency programs are emphasized. The Subcontractor component involves the issuance of solicitations to undertake projects that address regional needs, identified by the Technical Advisory Committee. The Technology Transfer component includes the development of nontechnical biomass energy publications and reports by Council staff and contractors, and the dissemination of information at conferences, workshops and other events

  19. Sustainable use of forest biomass for energy

    International Nuclear Information System (INIS)

    The substitution of biomass for fossil fuels in energy consumption is a measure to mitigate global warming, and political action plans at European and national levels exist for an increased use. The use of forest biomass for energy can imply different economic and environmental advantages and disadvantages for the society, the energy sector and forestry. For the achievement of an increased and sustainable use of forest biomass for energy, the EU 5th Framework project WOOD-EN-MAN aimed at synthesising current knowledge and creating new knowledge within the field

  20. Using CORE Model-Based Systems Engineering Software to Support Program Management in the U.S. Department of Energy Office of the Biomass Project: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Riley, C.; Sandor, D.; Simpkins, P.

    2006-11-01

    This paper describes how a model-based systems engineering software, CORE, is helping the U. S. Department of Energy's Office of Biomass Program assist with bringing biomass-derived biofuels to the market. This software tool provides information to guide informed decision-making as biomass-to-biofuels systems are advanced from concept to commercial adoption. It facilitates management and communication of program status by automatically generating custom reports, Gantt charts, and tables using the widely available programs of Microsoft Word, Project and Excel.

  1. Slow pyrolysis for rural small biomass energy by joint project developments of Brazil and Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Kampegowda, Rajesh; Chandayot, Pongchan [Asian University, Chonburi (Thailand)], email: rkempegowda@asianust.ac.th; Pannirselvam, Pagandai V.; Humberto, Maricy; Santos, Joao Matias [Universidade Federal do Rio Grande do Norte (DEQ/UFRN), Natal, RN (Brazil). Dept. de Engenharia Quimica. Grupo de Pesquisa em Engenharia de Custos], email: pannirbr@gmail.com

    2008-07-01

    The efficiency for carbonization by slow pyrolysis is still low in the current method studied using rice straw in Thailand and cashewnut shell in Brazil, however direct heating process yields better char yield of 17% as compared to indirect heating with 15% process using horizontal metal drum kiln.where as vertical kiln were mainly used in Brazil. Higher yield is made possible from Brasilian cashew nut shell to make oil and char. Carbon and energy balance was also carried out and the results were compared for the direct and indirect process. Burning by indirect draft gives better results like more char, faster process. Direct draft gives less char, but higher quality (higher C and H2). Also a lot of straw is left unburnt in the direct draft kiln, because of bad temperature distribution and flow inside. The kiln design is found to be more suitable for indirect draft rather than direct draft. Both methods still give rice straw charcoal that has low calorific value with an output char LHV of 4337 kcal/kg as compared to fresh rice straw of 3412 kcal/kg. In the direct heating method output char is enriched to 45% with a still unburnt rice straw left out as compared to indirect heating method with carbon enrichment of 39%. There is a loss of 13% of carbon through the ash in the both the methods. The carbon content in the condensate is in the order of 18.5% for the indirect process as compared to 13.9% in the direct process due to less exhaust and carbon enrichment inside the kiln. There is a loss of 43% of carbon in the exhaust from indirect heating process as compared to direct heating process which is reduced to 26%. The energy balance predicts a heat loss of 14% in exhaust gases. A practical small scale slow pyrolysis project was developed to meet rural energy and heat requirements. to make the clean energy from waste resources possible by the joint project. (author)

  2. Biomass plantations - energy farming

    Energy Technology Data Exchange (ETDEWEB)

    Paul, S.

    1981-02-01

    Mounting oil import bills in India are restricting her development programmes by forcing the cutting down of the import of other essential items. But the countries of the tropics have abundant sunlight and vast tracts of arable wastelands. Energy farming is proposed in the shape of energy plantations through forestry or energy cropping through agricultural media, to provide power fuels for transport and the industries and also to provide fuelwoods for the domestic sector. Short rotation cultivation is discussed and results are given of two main species that are being tried, ipil-ipil and Casuarina. Evaluations are made on the use of various crops such as sugar cane, cassava and kenaf as fuel crops together with hydrocarbon plants and aquatic biomass. (Refs. 20)

  3. Biomass gasification for energy production

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, H.; Morris, M.; Rensfelt, E. [TPS Termiska Prosesser Ab, Nykoeping (Sweden)

    1997-12-31

    Biomass and waste are becoming increasingly interesting as fuels for efficient and environmentally sound power generation. Circulating fluidized bed (CFB) gasification for biomass and waste has been developed and applied to kilns both in the pulp and paper industry and the cement industry. A demonstration plant in Greve-in- Chianti, Italy includes two 15 MW{sub t}h RDF-fuelled CFB gasifiers of TPS design, the product gas from which is used in a cement kiln or in steam boiler for power generation. For CFB gasification of biomass and waste to reach a wider market, the product gas has to be cleaned effectively so that higher fuel to power efficiencies can be achieved by utilizing power cycles based on engines or gas turbines. TPS has developed both CFB gasification technology and effective secondary stage tar cracking technology. The integrated gasification - gas-cleaning technology is demonstrated today at pilot plant scale. To commercialise the technology, the TPS`s strategy is to first demonstrate the process for relatively clean fuels such as woody biomass and then extend the application to residues from waste recycling. Several demonstration projects are underway to commercialise TPS`s gasification and gas cleaning technology. In UK the ARBRE project developed by ARBRE Energy will construct a gasification plant at Eggborough, North Yorkshire, which will provide gas to a gas turbine and steam turbine generation system, producing 10 MW and exporting 8 Mw of electricity. It has been included in the 1993 tranche of the UK`s Non Fossil Fuel Obligation (NFFO) and has gained financial support from EC`s THERMIE programme as a targeted BIGCC project. (author)

  4. Quinault Indian Nation Comprehensive Biomass Strategic Planning Project

    Energy Technology Data Exchange (ETDEWEB)

    Cardenas, Jesus [American Community Enrichment, Elma, WA (United States)

    2015-03-31

    The overall purposes of the Quinault Indian Nation’s Comprehensive Biomass Strategic Planning Project were to: (1) Identify and confirm community and tribal energy needs; (2) Conducting an inventory of sustainable biomass feedstock availability; (3) Development of a biomass energy vision statement with goals and objectives; (4) Identification and assessment of biomass options for both demand-side and supply side that are viable to the Quinault Indian Nation (QIN); and (5) Developing a long-term biomass strategy consistent with the long-term overall energy goals of the QIN. This Comprehensive Biomass Strategic Planning Project is consistent with the QIN’s prior two-year DOE Renewable Energy Study from 2004 through 2006. That study revealed that the most viable options to the QIN’s renewable energy options were biomass and energy efficiency best practices. QIN's Biomass Strategic Planning Project is focused on using forest slash in chipped form as feedstock for fuel pellet manufacturing in support of a tribal biomass heating facility. This biomass heating facility has been engineered and designed to heat existing tribal facilities as well as tribal facilities currently being planned including a new K-12 School.

  5. Advanced system demonstration for utilization of biomass as an energy source. Volume I. Scope and design criteria and project summary

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-10-01

    The information in this document is the result of an intensive engineering effort to demonstrate the feasibility of biomass-fueled boilers in cogeneration applications. This design package is based upon a specific site in the State of Maine. However, the design is generic in nature and could serve as a model for other biomass conversion facilities located anywhere biomass is abundant. The project's purpose and summary information are presented: the plant, its concept of operation; and other overall information are described. The capital cost estimate for the plant, and the basis upon which it was obtained are given; a schedule of key milestones and activities required to construct the plant and put it into operation is presented; and the general findings in areas that affect the viability of the project are discussed. The technical design, biomass study, environmental impact, commercialization, and economic factors are addressed. Each major plant area and the equipment and facilities that each includes are discussed in depth. Some overall plant requirements, including noise control, reliability, maintainability, and safety, are detailed. The results of each study relating to alternatives considered for optimizing plant operation parameters and specific system process schemes are briefly presented. All economic factors that affect the feasibility and viability of the biomass project are defined and evaluated.

  6. Biomass, energy for the future?

    International Nuclear Information System (INIS)

    This document contains a brief presentation of a book in which the authors examine whether biomass will be able to participate to energy transition and respond to the increasing energy needs. They define the biomass, describe its use, recall its history, and discuss its role in energy transition. They question the use of biomass and wander whether it's a good idea to burn wood, if biofuels will be able to replace oil, whether biofuels are good for the environment, if biomass will be able to respond to the needs of building and chemical industries, whether it is worth to produce electricity from biomass, and whether methane has a future as energy vector. They examine the role of forest as a source of biomass-energy (how France could get the best out of its forests, whether it is better to plant trees or to exploit the forests). They discuss the role of agriculture, the role of wastes as a source of biomass-energy (whether it is better to burn or methanize wastes, what to choose between manure and corn for local energies). They examine the perspectives for biomass-energy, and notably whether there is enough land to feed humans and produce energy, how to decide between food, energy, materials and chemistry

  7. Biomass for energy. Danish solutions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    Information is given on a number of typical and recently established plants of all types and sizes, for converting the main Danish biomass resources (manures, straw and wood derived from agricultural activities and forestry)into energy. Danish biomass resources and energy and environmental policies are described. In Denmark there is a very wide range of technologies for converting biomass into energy, and these are clarified. In addition, performance data from a number of plants fuelled with biomass fuels are presented. The course of further developments within this field is suggested. The text is illustrated with a considerable number of coloured photographs and also with graphs and diagrams. (ARW)

  8. Biomass energy conversion: conventional and advanced technologies

    International Nuclear Information System (INIS)

    Increasing interest in biomass energy conversion in recent years has focused attention on enhancing the efficiency of technologies converting biomass fuels into heat and power, their capital and operating costs and their environmental emissions. Conventional combustion systems, such as fixed-bed or grate units and entrainment units, deliver lower efficiencies (<25%) than modem coal-fired combustors (30-35%). The gasification of biomass will improve energy conversion efficiency and yield products useful for heat and power generation and chemical synthesis. Advanced biomass gasification technologies using pressurized fluidized-bed systems, including those incorporating hot-gas clean-up for feeding gas turbines or fuel cells, are being demonstrated. However, many biomass gasification processes are derivatives of coal gasification technologies and do not exploit the unique properties of biomass. This paper examines some existing and upcoming technologies for converting biomass into electric power or heat. Small-scale 1-30 MWe units are emphasized, but brief reference is made to larger and smaller systems, including those that bum coal-biomass mixtures and gasifiers that feed pilot-fuelled diesel engines. Promising advanced systems, such as a biomass integrated gasifier/gas turbine (BIG/GT) with combined-cycle operation and a biomass gasifier coupled to a fuel cell, giving cycle efficiencies approaching 50% are also described. These advanced gasifiers, typically fluid-bed designs, may be pressurized and can use a wide variety of biomass materials to generate electricity, process steam and chemical products such as methanol. Low-cost, disposable catalysts are becoming available for hot-gas clean-up (enhanced gas composition) for turbine and fuel cell systems. The advantages, limitations and relative costs of various biomass gasifier systems are briefly discussed. The paper identifies the best known biomass power projects and includes some information on proposed and

  9. Production of biomass in wet peatlands (paludiculture). The EU-AID project 'Wetland energy' in Belarus. Solutions for the substitution of fossil fuels (peat briquettes) by biomass from wet peatlands

    Energy Technology Data Exchange (ETDEWEB)

    Wichtmann, Wendelin [Michael Succow Stiftung fuer den Schutz der Natur, Greifswald (Germany); Haberl, Andreas; Tanneberger, Franziska

    2012-07-01

    In Belarus, a pilot project demonstrating site adapted management of wet peatlands for biomass production have started recently. In cooperation with local stakeholders, the currently environmentally unfriendly peat extraction for energy will be converted into a sustainable land use system. By replacing the peat briquettes with locally produced briquettes using biomass from rewetted peatlands the income situation of remote and rural areas will be improved. In various combustion trials of peatland biomass in Germany and Belarus the suitability of the material for energy production has been demonstrated. The EU-Aid funded project in Belarus is realized by the Michael Succow Foundation in cooperation with the International Sacharov Environmental University (ISEU) and the Institute for Nature Management of the National Academy of Sciences (IfNM). Applied, site-specific management concepts, employing site adapted machinery for reed and sedge vegetation on wet peatlands will not only result in avoidance of environmentally harmful peat extraction, but also in benefits for distinctive biodiversity. This site adapted peatlands management (paludiculture) comprises the reduction of greenhousegas (GHG) emissions by rewetting of drained peatlands and by the replacement of fossil fuels by biomass from these sites. Under favourable conditions additionally CO{sub 2} sequestration by new peat formation reestablished. The biomass will be harvested with site adapted machinery and processed to fuel briquettes. (orig.)

  10. Energy from biomass and waste

    OpenAIRE

    FAAIJ A.p.c.

    2001-01-01

    Biomass, a broad term for all organic matter of plants, trees and crops, is currently regarded as a renewable energy source which can contribute substantially to the world's energy supply in the future. Various scenarios for the development of energy supply and demand, such as compiled by the World Energy Council (WEC), the Intergovernmental Panel on Climate Change (IPCC), Shell and the Stockholm Environmental Institute (SEI), indicate that biomass has the potential to make a large contributi...

  11. Biomass combustion power generation technologies: Background report 4.1 for the EU Joule 2+ project: Energy from biomass: An assessment of two promising systems for energy production

    International Nuclear Information System (INIS)

    New developments in biomass combustion technology in progress tend to go towards efficiencies which come close to the present fossil fuel fired systems. The objective of this study is to give a representation of the state of the art and future prospects of biomass combustion technologies and to compare those on a location-independent basis. This will be done both by a general boiler technology description on the basis of qualitative criteria and by a comparison of most recently built and planned power plants on more quantitative grounds. The methodology which has been used in gathering, selecting, presenting and comparing the information is discussed in chapter 2. In chapter 3, a general introduction is given on some basic principles of biomass combustion technology. This includes the combustion process, the Rankine steam cycle and NOx formation. Different boiler technologies which are in use for biomass combustion power generation are discussed in chapter 4. The main groups of boilers which are discussed are the pile burners, stoker fired boilers, suspension fired boilers and fluidized bed boilers. The description focuses on aspects such as construction, operation, fuel requirements, efficiencies and emissions. Chapter 5 deals with individual existing or planned biomass combustion plants, resulting from an international inventory. All the different technologies which have been discussed in chapter 4 are discussed in chapter 5 in the context of complete power plants. The information which is presented for each plant comprises a technical description, efficiencies, emissions and investment costs. At the end of chapter 5 an overview of comparable data from the literature is given, as well as an overview of the results of the inventory. 32 figs., 28 tabs., 4 appendices., 51 refs

  12. Biomass living energy; Biomasse l'energie vivante

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    Any energy source originating from organic matter is biomass, which even today is the basic source of energy for more than a quarter of humanity. Best known for its combustible properties, biomass is also used to produce biofuels. This information sheet provides also information on the electricity storage from micro-condensers to hydroelectric dams, how to save energy facing the increasing of oil prices and supply uncertainties, the renewable energies initiatives of Cork (Ireland) and the Switzerland european energy hub. (A.L.B.)

  13. A Hybrid Life-Cycle Assessment of Nonrenewable Energy and Greenhouse-Gas Emissions of a Village-Level Biomass Gasification Project in China

    Directory of Open Access Journals (Sweden)

    Mingyue Pang

    2012-07-01

    Full Text Available Small-scale bio-energy projects have been launched in rural areas of China and are considered as alternatives to fossil-fuel energy. However, energetic and environmental evaluation of these projects has rarely been carried out, though it is necessary for their long-term development. A village-level biomass gasification project provides an example. A hybrid life-cycle assessment (LCA of its total nonrenewable energy (NE cost and associated greenhouse gas (GHG emissions is presented in this paper. The results show that the total energy cost for one joule of biomass gas output from the project is 2.93 J, of which 0.89 J is from nonrenewable energy, and the related GHG emission cost is 1.17 × 10−4 g CO2-eq over its designed life cycle of 20 years. To provide equivalent effective calorific value for cooking work, the utilization of one joule of biomass gas will lead to more life cycle NE cost by 0.07 J and more GHG emissions by 8.92 × 10−5 g CO2-eq compared to natural gas taking into consideration of the difference in combustion efficiency and calorific value. The small-scale bio-energy project has fallen into dilemma, i.e., struggling for survival, and for a more successful future development of village-level gasification projects, much effort is needed to tide over the plight of its development, such as high cost and low efficiency caused by decentralized construction, technical shortcomings and low utilization rate of by-products.

  14. Energy from biomass. Teaching material; Energie aus Biomasse. Ein Lehrmaterial

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-04-01

    The textbook discusses the available options for power and heat generation from biomass as well as the limits of biomass-based power supply. The main obstacle apart from the high cost is a lack of knowledge, which the book intends to remedy. It addresses students of agriculture, forestry, environmental engineering, heating systems engineering and apprentice chimney sweepers, but it will also be useful to all other interested readers. [German] Biomasse kann aufgrund seiner vielfaeltigen Erscheinungs- und Umwandlungsformen sowohl als Brennstoff zur Waerme- und Stromgewinnung oder als Treibstoff eingesetzt werden. Die energetische Nutzung von Biomasse birgt zudem nicht zu verachtende Vorteile. Zum einen wegen des Beitrags zum Klimaschutz aufgrund der CO{sub 2}-Neutralitaet oder einfach, weil Biomasse immer wieder nachwaechst und von fossilen Ressourcen unabhaengig macht. All den bisher erschlossenen Moeglichkeiten der energetischen Nutzung von Biomasse moechte dieses Lehrbuch Rechnung tragen. Es zeigt aber auch die Grenzen auf, die mit der Energieversorgung durch Bioenergie einhergehen. Hohe Kosten und ein erhebliches Informationsdefizit behinderten bisher eine verstaerkte Nutzung dieses Energietraeges. Letzterem soll dieses Lehrbuch entgegenwirken. Das vorliegende Lehrbuch wurde fuer die Aus- und Weiterbildung erstellt. Es richtet sich vor allem an angehende Land- und Forstwirte, Umwelttechniker, Heizungsbauer und Schornsteinfeger, ist aber auch fuer all diejenigen interessant, die das Thema ''Energie aus Biomasse'' verstehen und ueberblicken moechten. (orig.)

  15. Biomass - Activities and projects in 2002; Biomasse Aktivitaeten und Projekte 2002. Ueberblicksbericht zum Forschungsprogramm 2002

    Energy Technology Data Exchange (ETDEWEB)

    Binggeli, D.; Guggisberg, B.

    2003-07-01

    This annual report made for the Swiss Federal Office of Energy reviews the activities carried out under the Biomass Research Programme in 2002 and describes the various projects that were active during the year. The situation concerning energy supply from biomass is discussed and figures are presented on its share in total Swiss energy consumption. Three categories of biomass use are presented - burning, fermentation of wastes and biofuels. >From each of these categories, several pilot and demonstration projects are described that cover a wide range of technologies and research activities, ranging from the pre-processing of biogenic wastes through to the optimisation of biogas-based combined heat and power installations and the operational economics of compact biogas installations. The report is completed with lists of research and development projects and pilot and demonstration projects.

  16. Thermochemical gas production from biomass - pyrolysis and gasification. Papers of a seminar organized by the Energy Research Project Manager in cooperation with the German Society for Technical Collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Gehrmann, J. (ed.)

    1981-11-01

    A collection of papers are presented which were given on November 12 and 13, 1981 at the Juelich Nuclear Research Institute. The topics include pyrolysis and vaporization from biomass, gas fuel production from biomass, energy production from biomass, and various concepts on energy supply and systems. Papers are accompanied by diagrams and illustrations.

  17. Biomass and control of energy

    Energy Technology Data Exchange (ETDEWEB)

    Lefebvre, L.

    1993-12-31

    From 1986, the Rhone Alpes Region has developed a policy for the control of energy in high schools, included in a program of control and development of local energy sources. The biomass is valorized. Characteristics of the financial plans and regional prospects of development are studied. (TEC). 1 fig.

  18. Collins pine/BCI biomass to ethanol project

    International Nuclear Information System (INIS)

    California has abundant biomass resources and a growing transportation fuels market. These two facts have helped to create an opportunity for biomass to ethanol projects within the state. One such project under development is the Collins Pine/BCI Project. Collins Pine Company and BC International (BCI) have teamed up to develop a forest biomass to ethanol facility to be collocated with Collins Pine's 12 MW, biomass-fueled electric generator in Chester, California. The Collins Pine Company (headquartered in Portland, Oregon) is an environmentally progressive lumber company that has owned and operated timberlands near Chester, California since the turn of the century. Collins manages 100,000 acres of timberland in the immediate area of the project. BCI (Dedham, Massachusetts) holds an exclusive license to a new, patented biotechnological process to convert lignocellulosic materials into ethanol and other specially chemicals with significant cost savings and environmental benefits. The project has received a California Energy Commission PIER program award to continue the developmental work done in the Quincy Library Group's Northeastern California Ethanol Manufacturing Feasibility Study (November 1997). This paper provides (1) a brief overview of the biomass and transportation fuels market in California; (2) the current status of the Collins Pine/BCI biomass ethanol project; and (3) future prospects and hurdles for the project to overcome. (author)

  19. Commercializing Canada's emerging energies : capitalising on large-scale power project opportunities from wind and hydro power, to biomass and clean coal

    International Nuclear Information System (INIS)

    The Canada Institute conference on Commercialising Canada's Emerging Energies was held in Calgary, Alberta, Canada on May 28-29, 2007. This publication provides cutting-edge project updates and best practices on how to take advantage of new business opportunities, while both identifying and mitigating the risks associated with future large-scale projects. Emerging energies - wind, hydro, biomass and clean coal - are no longer the future, they are todayAre you ready to take advantage of Canada's next generation of clean and green power opportunities?Canada's electricity industry is changing dramatically. Power projects are becoming less centralized. Governments are shifting their focus to clean and green sources of energy. The cost-effectiveness of applying emerging energy technologies for large-scale (5mw+) power projects has significantly improved - especially with new regulatory incentives.However, many challenges still need to be addressed to bring many of these projects into the mainstream market. Ensuring adequate supply, system reliability and transmission capacity are among the key technical issues. Improvements to community consultation practice, project planning and implementation skills, and government incentives are also expected to improve emerging energy economics and deliverability

  20. Biomass conversion processes for energy and fuels

    Science.gov (United States)

    Sofer, S. S.; Zaborsky, O. R.

    The book treats biomass sources, promising processes for the conversion of biomass into energy and fuels, and the technical and economic considerations in biomass conversion. Sources of biomass examined include crop residues and municipal, animal and industrial wastes, agricultural and forestry residues, aquatic biomass, marine biomass and silvicultural energy farms. Processes for biomass energy and fuel conversion by direct combustion (the Andco-Torrax system), thermochemical conversion (flash pyrolysis, carboxylolysis, pyrolysis, Purox process, gasification and syngas recycling) and biochemical conversion (anaerobic digestion, methanogenesis and ethanol fermentation) are discussed, and mass and energy balances are presented for each system.

  1. Energy from biomass. Economic and ecological evaluation; Energie aus Biomasse. Oekonomische und oekologische Bewertung

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    The book includes the following presentations: Energy from biomass - introduction into the round table discussion; biomass for heat, fuel and electricity production; technological aspects of biomass based energy production; perspectives and scenarios for sustainable biomass utilisation; economical aspects of biomass based energy production; energy wood utilisation and sustainable forestry - a conflict of objectives?; impact of biomass plantations for the energy production on the ecosystem and land managment; impacts of the plant based energy production from the view of environmental protection.

  2. Biomass to energy; La valorisation energetique de la biomasse

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-06-15

    This road-map proposes by the Group Total aims to inform the public on the biomass to energy. It explains the biomass principle, the possibility of biomass to energy conversion, the first generation of biofuels (bio ethanol, ETBE, bio diesel, flex fuel) and their advantages and limitations, the european regulatory framework and policy with the evolutions and Total commitments in the domain. (A.L.B.)

  3. Combined production og biomass for energy and clean drinking water - A miscanthus demonstration project on the 'Renewable energ island' Samsoe

    Energy Technology Data Exchange (ETDEWEB)

    Joergensen, U. [Danish Inst. of Agricultural sciences (Denmark)

    2003-05-01

    The island of Samsoe has been elected as the Danish 'Renewable Energy Island', with the aim of 100% self sufficiency with renewable energy within year 2007. The island is supposed to become a showcase for Danish renewable energy technology. The biomass resource of the island is however scarce due to intensive horticultural production and a rather small forested area, and there is a need to produce more biomass for the heating plants established or under construction. In year 2001 the Danish Energy Agency sponsored establishment of approximately 20 ha miscanthus on Samsoe, and the county of Aarhus sponsored the establishment of a soil water sampling station to follow nitrate leaching from two management systems of miscanthus and from a neighbouring crop rotation. This paper presents the project experiences and results so far. The project has produced the following experiences on miscanthus establishment: Rhizome harvest is best done on sandy soils; Calculation of amount of rhizome material collected and planted is difficult and more experience is needed; The planting machine is operational but there are several points for further optimization, e.g. stone release on coulters; So far the mild climate with low precipitation at Samsoe seems to suite miscanthus well. With respect to ground water protection the first results on nitrate concentrations are in line with earlier experimental results. A catch crop of fodder radish significantly reduced concentrations in the first year. (ba)

  4. New energy technologies 3 - Geothermal and biomass energies

    International Nuclear Information System (INIS)

    This third tome of the new energy technologies handbook is devoted to two energy sources today in strong development: geothermal energy and biomass fuels. It gives an exhaustive overview of the exploitation of both energy sources. Geothermal energy is presented under its most common aspects. First, the heat pumps which encounter a revival of interest in the present-day context, and the use of geothermal energy in collective space heating applications. Finally, the power generation of geothermal origin for which big projects exist today. The biomass energies are presented through their three complementary aspects which are: the biofuels, in the hypothesis of a substitutes to fossil fuels, the biogas, mainly produced in agricultural-type facilities, and finally the wood-fuel which is an essential part of biomass energy. Content: Forewords; geothermal energy: 1 - geothermal energy generation, heat pumps, direct heat generation, power generation. Biomass: 2 - biofuels: share of biofuels in the energy context, present and future industries, economic and environmental status of biofuel production industries; 3 - biogas: renewable natural gas, involuntary bio-gases, man-controlled biogas generation, history of methanation, anaerobic digestion facilities or biogas units, biogas uses, stakes of renewable natural gas; 4 - energy generation from wood: overview of wood fuels, principles of wood-energy conversion, wood-fueled thermal energy generators. (J.S.)

  5. Biomass and Swedish energy policy

    International Nuclear Information System (INIS)

    The use of biomass in Sweden has increased by 44% between 1990 and 1999. In 1999 it was 85 TWh, equivalent to 14% of the total Swedish energy supply. The existence of large forest industry and district heating systems has been an essential condition for this expansion. The tax reform in 1991 seems, however, to have been the most important factor responsible for the rapid bioenergy expansion. Through this reform, the taxation of fossil fuels in district heating systems increased by approximately 30-160%, depending on fuel, whereas bioenergy remained untaxed. Industry is exempted from the energy tax and pays reduced carbon tax. No tax is levied on fossil fuels used for electricity production. Investment grants have existed for biomass-based electricity production but these grants have not been large enough to make biomass-based electricity production economically competitive in a period of falling electricity prices. Despite this, the biomass-based electricity production has increased slightly between 1990 and 1999. A new taxation system aiming at a removal of the tax difference between the industry, district heating and electricity sectors has recently been analysed by the Swedish government. One risk with such a system is that it reduces the competitiveness for biomass in district heating systems as it seems unlikely that the taxes on fossil fuels in the industry and electricity sectors will increase to a level much higher than in other countries. A new system, based on green certificates, for supporting electricity from renewable energy sources has also been proposed by the government.

  6. Considerations in implementing integrated biomass energy systems in developing countries

    International Nuclear Information System (INIS)

    Biomass energy is emerging as a real option for satisfying power needs in developing countries. Experience has shown improvements in GDP are directly linked to increased consumption of energy. Biomass energy can also be environmentally and developmentally beneficial where it will be both grown and used. Biomass production can offset deforestation, reduce soil erosion, increase rural employment, and stimulate development. Moreover, when biomass is grown renewably there is no net buildup of atmospheric carbon. Issues and barriers associated with implementing integrated biomass energy systems in developing countries are discussed. An integrated biomass energy system is dependent on sustainably grown and managed energy crops, supportive of rural development, and environmentally beneficial, adapted to local conditions; takes advantage of by- and co-products and uses conversion technologies that have been optimized for biomass. A preliminary evaluation of a biomass to electricity project relying on plantation grown feedstocks in Southwest China indicates that biomass could be grown and converted to electricity at costs lower than alternatives and yield an internal rate of return of about 15%. The IRR based on a social and environmental benefits are substantial and investment in the facility is well-justified. However, assessing biomass energy systems is exceedingly complex. Considerations are grouped into biomass production, biomass logistics and transport, and biomass conversion. Implementation requires considerations of energy and economics, institutional and social issues, and environmental issues. The conclusion that such a project would be viable in rural China is shadowed by many site-specific circumstances and highlights the need for systematic and integrated appraisal

  7. A survey of state clean energy fund support for biomass

    Energy Technology Data Exchange (ETDEWEB)

    Fitzgerald, Garrett; Bolinger, Mark; Wiser, Ryan

    2004-08-20

    This survey reviews efforts by CESA member clean energy funds to promote the use of biomass as a renewable energy source. For each fund, details are provided regarding biomass eligibility for support, specific programs offering support to biomass projects, and examples of supported biomass projects (if available). For the purposes of this survey, biomass is defined to include bio-product gasification, combustion, co-firing, biofuel production, and the combustion of landfill gas, though not all of the programs reviewed here take so wide a definition. Programs offered by non-CESA member funds fall outside the scope of this survey. To date, three funds--the California Energy Commission, Wisconsin Focus on Energy, and the New York State Energy Research and Development Authority--have offered programs targeted specifically at the use of biomass as a renewable energy source. We begin by reviewing efforts in these three funds, and then proceed to cover programs in other funds that have provided support to biomass projects when the opportunity has arisen, but otherwise do not differentially target biomass relative to other renewable technologies.

  8. AgraPure Mississippi Biomass Project

    Energy Technology Data Exchange (ETDEWEB)

    Blackwell,D.A; Broadhead, L.W.; Harrell, W.J.

    2006-03-31

    The AgraPure Mississippi Biomass project was a congressionally directed project, initiated to study the utilization of Mississippi agricultural byproducts and waste products in the production of bio-energy and to determine the feasibility of commercialization of these agricultural byproducts and waste products as feedstocks in the production of energy. The final products from this project were two business plans; one for a Thermal plant, and one for a Biodiesel/Ethanol plant. Agricultural waste fired steam and electrical generating plants and biodiesel plants were deemed the best prospects for developing commercially viable industries. Additionally, oil extraction methods were studied, both traditional and two novel techniques, and incorporated into the development plans. Mississippi produced crop and animal waste biomasses were analyzed for use as raw materials for both industries. The relevant factors, availability, costs, transportation, storage, location, and energetic value criteria were considered. Since feedstock accounts for more than 70 percent of the total cost of producing biodiesel, any local advantages are considered extremely important in developing this particular industry. The same factors must be evaluated in assessing the prospects of commercial operation of a steam and electrical generation plant. Additionally, the access to the markets for electricity is more limited, regulated and tightly controlled than the liquid fuel markets. Domestically produced biofuels, both biodiesel and ethanol, are gaining more attention and popularity with the consuming public as prices rise and supplies of foreign crude become less secure. Biodiesel requires no major modifications to existing diesel engines or supply chain and offers significant environmental benefits. Currently the biodiesel industry requires Federal and State incentives to allow the industry to develop and become self-sustaining. Mississippi has available the necessary feedstocks and is

  9. Tax issues and incentives for biomass projects

    International Nuclear Information System (INIS)

    The federal government offers a number of tax incentives to developers of biomass projects. This paper describes each tax benefit, explains what conditions must be met before the benefit is available, and offers practical insights gained from working for over 10 years in the field. Understanding what tax benefits are available is important because the more tax benefits a developer can qualify for in connection with his project, the less expensive the project will be to build and operate and the easier it will be to arrange financing because there will be higher returns in the project for potential investors

  10. Biomass energy utilisation - ecological and economic aspects

    International Nuclear Information System (INIS)

    Biomass is the world's fourth largest energy source today and it represents about 35% of the primary energy supply in developing countries. Biomass is a versatile source of energy in that it can produce electricity, heat, transport fuel and it can be stored. The problems (technical, economic, etc.) which have to be solved by treatment of biomass are discussed in this work. The average quantities of biomass resources of some European countries are presented and the structure, percentage of products and their calorific values are estimated. Keywords: Biomass Energy Potential, Ecological & Economic Aspects

  11. Municipal biomass projects in Poland selected problems and examples

    International Nuclear Information System (INIS)

    The general framework for the development of the biomass sector in Poland is described. Several barriers are listed and discussed with the focus put on small-scale biomass use for space heating. The main barrier is the lack of investments funds. It is pointed out that this barrier can be overcome by a combined approach of financial support and effect of scale. It is argued that energy planning, which in Poland is delegated by law to the lowest administration unit (NUTS5) is not optimal as far as biomass is concerned and should be rather shifted to the NUTS3 level. It is also argued that research targeted at optimisation of the use of the available biomass potential is lacking and needed. In this context a joint project of four Krakow universities is briefly described. (authors)

  12. Mobility chains analysis of technologies for passenger cars and light duty vehicles fueled with biofuels : application of the Greet model to project the role of biomass in America's energy future (RBAEF) project.

    Energy Technology Data Exchange (ETDEWEB)

    Wu, M.; Wu, Y.; Wang, M; Energy Systems

    2008-01-31

    The Role of Biomass in America's Energy Future (RBAEF) is a multi-institution, multiple-sponsor research project. The primary focus of the project is to analyze and assess the potential of transportation fuels derived from cellulosic biomass in the years 2015 to 2030. For this project, researchers at Dartmouth College and Princeton University designed and simulated an advanced fermentation process to produce fuel ethanol/protein, a thermochemical process to produce Fischer-Tropsch diesel (FTD) and dimethyl ether (DME), and a combined heat and power plant to co-produce steam and electricity using the ASPEN Plus{trademark} model. With support from the U.S. Department of Energy (DOE), Argonne National Laboratory (ANL) conducted, for the RBAEF project, a mobility chains or well-to-wheels (WTW) analysis using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed at ANL. The mobility chains analysis was intended to estimate the energy consumption and emissions associated with the use of different production biofuels in light-duty vehicle technologies.

  13. Optimal use of biomass for energy production

    International Nuclear Information System (INIS)

    In addition to the EWAB programme, which is focused mainly on the application of waste and biomass for generating electricity, Novem is also working on behalf of the government on the development of a programme for gaseous and liquid energy carriers (GAVE). The Dutch ministries concerned have requested that Novem provide more insight concerning two aspects. The first aspect is the world-wide availability of biomass in the long term. A study group under the leadership of the University of Utrecht has elaborated this topic in greater detail in the GRAIN project. The second aspect is the question of whether the use of biomass for biofuels, as aimed at in the GAVE programme, can go hand in hand with the input for the electricity route. Novem has asked the Dutch research institute for the electric power industry (KEMA) to study the driving forces that determine the future use of biomass for electricity and biofuels, the competitive strength of each of the routes, and the possible future scenarios that emerge. The results of this report are presented in the form of copies of overhead sheets

  14. Launching Plan B:Biomass Energy

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    China’s first biomass electricity company focuses on helping farmers as it strives to expand In April 2011,the world’s largest biomass power company,China National Bio Energy Co.Ltd.(NBE),began building a biomass power plant in Shangcai County of central China’s Henan Province.The new plant,due to reach

  15. Biomass gasification project WKK2013 Unterpremstaetten; Biomassevergasungsprojekt WKK2013 Unterpremstaetten

    Energy Technology Data Exchange (ETDEWEB)

    Greiler, Erwin [oeCompany - Renewable Energy Consulting Dr. Greiler, Graz (Austria)

    2013-10-01

    The biomass gasification project WKK1013 Unterpremstaetten consists of two biomass gasification plants working with the principle of downdraft gasification. These include two combined heat and power (CHP) plants for energetic wood gas usage. Those produce, with the aid of woodchips as biomass, solid fuel in a very ecofriendly way. From an economical aspect 100% of the heat requirement(eco-heat) and around 60 to 70% of the power demand (eco-power) of an in 2012/2013 constructed low-energy housing estate within the market town Unterpremstaetten near Graz is being produced. (Styria/Austria). The complete heat loss of the thermal power stations is being saved with two hot water tanks with a capacity of 5.000 l each. The housing area was build by the low-energy house standards and are among other things equipped with an electric vehicle charging station. (orig.)

  16. Estimates of US biomass energy consumption 1992

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-06

    This report is the seventh in a series of publications developed by the Energy Information Administration (EIA) to quantify the biomass-derived primary energy used by the US economy. It presents estimates of 1991 and 1992 consumption. The objective of this report is to provide updated estimates of biomass energy consumption for use by Congress, Federal and State agencies, biomass producers and end-use sectors, and the public at large.

  17. Estimates of US biomass energy consumption 1992

    International Nuclear Information System (INIS)

    This report is the seventh in a series of publications developed by the Energy Information Administration (EIA) to quantify the biomass-derived primary energy used by the US economy. It presents estimates of 1991 and 1992 consumption. The objective of this report is to provide updated estimates of biomass energy consumption for use by Congress, Federal and State agencies, biomass producers and end-use sectors, and the public at large

  18. Biomass energy systems and the environment

    Science.gov (United States)

    Braunstein, H. M.; Kanciruk, P.; Roop, R. D.; Sharples, F. E.; Tatum, J. S.; Oakes, K. M.

    The technology, resources, applied, and experimental features of biomass energy resources are explored, with an emphasis on environmental and social implications of large-scale biomass development. The existing land and water based biomass resource is described in terms of available energy, ecological concerns, agricultural crops, livestock production, freshwater systems, and ocean systems. Attention is given to proposed systems of biomass energy production from forestry and silviculture, agricultural crops, livestock wastes, and freshwater and ocean systems. A survey is made of various biomass materials, techniques for conversion to gas, liquid fuels, or for direct combustion, and impacts of large-scale biomass production and harvest are examined. Particular note is made of the effects of scaling biomass conversion systems, including near- and long-term applications, and ethics and aesthetic concerns.

  19. Biomass energy in the making; La biomasse: une energie en devenir

    Energy Technology Data Exchange (ETDEWEB)

    Anon

    2008-07-01

    Wood, straw, agricultural residues, organic wastes, biomass is everywhere you look. But the efficient use of this source of green electricity - the world's second largest renewable energy source - requires optimization of biomass collection and combustion processes. Biomass is back on the political agenda. In mid-June of this year, the French government gave this renewable energy a boost by selecting twenty-two projects to generate power and heat with biomass. The plants, to be commissioned by 2010, will be located in eleven different regions and will consume energy from organic plant matter. The power generated will be bought at a firm price of 128 euros per megawatt-hour. Most of the fuel will come from forest and paper industry waste, but straw and even grape pomace will be used in some cases. The plants will have a combined generating capacity of 300 MWh, raising France's installed biomass capacity to a total of 700 MWe. A drop of water in the ocean in the overall scheme of France's electricity. It is true that France has long neglected biomass. In 2004, electricity generated from biological resources represented a mere 1.74 TWhe in France, just 0.3% of its power consumption. This will rise to 0.6% once the new plants have come on line. The trend is the same in all of the EU's 27 member states, according to Eurostat, the statistical office of the European Communities: the amount of electricity generated from biomass (including biogas, municipal waste and wood) has practically doubled in six years, rising from 40 to 80 TWhe between 2000 and 2005. This is an improvement, but it still only represents 2.5% of the electricity supplied to Europeans. On a global scale, biomass contributes just 1% of total electric power generation. Yet biomass is an energy resource found all over the world, whether as agricultural waste, wood chips, or dried treatment plant sludge, to name but a few. Biomass power plants have managed to gain a foothold mainly in

  20. Biomass - Activities and projects in 2004; Biomasse - Aktivitaeten und Projekte 2004

    Energy Technology Data Exchange (ETDEWEB)

    Binggeli, D.; Guggisberg, B.

    2005-07-01

    This annual report by the Swiss Federal Office of Energy (SFOE) presents an overview of the Swiss research programme on biomass and its efficient use both as a source of heat and electrical power and as a fuel. Work done and results obtained in the year 2004 are looked at. Topics covered include combustion and gasification of wood, the fermentation of biogenic wastes and developments in the bio-fuels area. Several projects in each of these areas are discussed. National co-operation with various universities, private organisations and other federal offices is discussed, as are contributions made to symposia and exhibitions in the biomass area. International co-operation within the framework of International Energy Agency (IEA) tasks is mentioned. Various pilot and demonstration projects in the combustion, gasification and fermentation areas are listed and discussed.

  1. Assessment of the externalities of biomass energy for electricity production

    Energy Technology Data Exchange (ETDEWEB)

    Linares, P.; Leal, J.; Saez, R.M.

    1996-10-01

    This study presents a methodology for the quantification of the socioeconomic and environmental externalities of the biomass fuel cycle. It is based on the one developed by the ExternE Project of the European Commission, based in turn in the damage function approach, and which has been extended and modified for a better adaptation to biomass energy systems. The methodology has been applied to a 20 MW biomass power plant, fueled by Cynara cardunculus, in southern Spain. The externalities addressed have been macroeconomic effects, employment, CO{sub 2}, fixation, erosion, and non-point source pollution. The results obtained should be considered only as subtotals, since there are still other externalities to be quantified. anyway, and in spite of the uncertainty existing, these results suggest that total cost (those including internal and external costs) of biomass energy are lower than those of conventional energy sources, what, if taken into account, would make biomass more competitive than it is now. (Author)

  2. Assessment of the externalise of biomass energy for electricity production

    Energy Technology Data Exchange (ETDEWEB)

    Linares, P.; Leal, J.; Saez, R.M.

    1996-07-01

    This study presents a methodology for the quantification of the socioeconomic and environmental externalities of the biomass fuel cycle. It is based on the one developed by the ExternE Project of the European Commission, based in turm in the damage function approach, and which has been extended and modified for a better adaptation to biomass energy systems. The methodology has been applied to a 20 MW biomass power plant, fueled by Cynara cardunculus, in southern Spain. The externalities addressed have been macroeconomic effects, employment, CO2, fixation, erosion, and non-point source pollution. The results obtained should be considered only as subtotals, since there are still other externalities to be quantified. Anyway, and in spite of the uncertainty existing, these results suggest that the total cost (those including internal and external costs) of biomass energy are lower than those of conventional energy sources, what, if taken into account, would make biomass more competitive than it is now. (Author) 44 refs.

  3. Assessment of the externalise of biomass energy for electricity production

    International Nuclear Information System (INIS)

    This study presents a methodology for the quantification of the socioeconomic and environmental externalities of the biomass fuel cycle. It is based on the one developed by the ExternE Project of the European Commission, based in turm in the damage function approach, and which has been extended and modified for a better adaptation to biomass energy systems. The methodology has been applied to a 20 MW biomass power plant, fueled by Cynara cardunculus, in southern Spain. The externalities addressed have been macroeconomic effects, employment, CO2, fixation, erosion, and non-point source pollution. The results obtained should be considered only as subtotals, since there are still other externalities to be quantified. Anyway, and in spite of the uncertainty existing, these results suggest that the total cost (those including internal and external costs) of biomass energy are lower than those of conventional energy sources, what, if taken into account, would make biomass more competitive than it is now. (Author) 44 refs

  4. Biomass Energy Data Book: Edition 2

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Lynn L [ORNL; Boundy, Robert Gary [ORNL; Badger, Philip C [ORNL; Perlack, Robert D [ORNL; Davis, Stacy Cagle [ORNL

    2009-12-01

    The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability. This is the second edition of the Biomass Energy Data Book which is only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass, is a section on biofuels which covers ethanol, biodiesel and bio-oil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is on the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also four appendices which include frequently needed conversion factors, a table of selected biomass feedstock characteristics, assumptions for selected tables and figures, and discussions on sustainability. A glossary of terms and a list of acronyms are also included for the reader's convenience.

  5. Biomass Energy Data Book: Edition 3

    Energy Technology Data Exchange (ETDEWEB)

    Boundy, Robert Gary [ORNL; Davis, Stacy Cagle [ORNL

    2010-12-01

    The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability. This is the third edition of the Biomass Energy Data Book which is only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass, is a section on biofuels which covers ethanol, biodiesel and bio-oil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is on the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also four appendices which include frequently needed conversion factors, a table of selected biomass feedstock characteristics, and discussions on sustainability. A glossary of terms and a list of acronyms are also included for the reader's convenience.

  6. Biomass Energy Data Book: Edition 4

    Energy Technology Data Exchange (ETDEWEB)

    Boundy, Robert Gary [ORNL; Diegel, Susan W [ORNL; Wright, Lynn L [ORNL; Davis, Stacy Cagle [ORNL

    2011-12-01

    The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability. This is the fourth edition of the Biomass Energy Data Book which is only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass, is a section on biofuels which covers ethanol, biodiesel and bio-oil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is on the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also two appendices which include frequently needed conversion factors, a table of selected biomass feedstock characteristics, and discussions on sustainability. A glossary of terms and a list of acronyms are also included for the reader's convenience.

  7. Biomass Energy Data Book: Edition 1

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Lynn L [ORNL; Boundy, Robert Gary [ORNL; Perlack, Robert D [ORNL; Davis, Stacy Cagle [ORNL; Saulsbury, Bo [ORNL

    2006-09-01

    The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of the Biomass Program and the Office of Planning, Budget and Analysis in the Department of Energy's Energy Efficiency and Renewable Energy (EERE) program. Designed for use as a desk-top reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use. This is the first edition of the Biomass Energy Data Book and is currently only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass is a section on biofuels which covers ethanol, biodiesel and BioOil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is about the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also three appendices which include measures of conversions, biomass characteristics and assumptions for selected tables and figures. A glossary of terms and a list of acronyms are also included for the reader's convenience.

  8. Biomass energy: Sustainable solution for greenhouse gas emission

    Science.gov (United States)

    Sadrul Islam, A. K. M.; Ahiduzzaman, M.

    2012-06-01

    Biomass is part of the carbon cycle. Carbon dioxide is produced after combustion of biomass. Over a relatively short timescale, carbon dioxide is renewed from atmosphere during next generation of new growth of green vegetation. Contribution of renewable energy including hydropower, solar, biomass and biofuel in total primary energy consumption in world is about 19%. Traditional biomass alone contributes about 13% of total primary energy consumption in the world. The number of traditional biomass energy users expected to rise from 2.5 billion in 2004 to 2.6 billion in 2015 and to 2.7 billion in 2030 for cooking in developing countries. Residential biomass demand in developing countries is projected to rise from 771 Mtoe in 2004 to 818 Mtoe in 2030. The main sources of biomass are wood residues, bagasse, rice husk, agro-residues, animal manure, municipal and industrial waste etc. Dedicated energy crops such as short-rotation coppice, grasses, sugar crops, starch crops and oil crops are gaining importance and market share as source of biomass energy. Global trade in biomass feedstocks and processed bioenergy carriers are growing rapidly. There are some drawbacks of biomass energy utilization compared to fossil fuels viz: heterogeneous and uneven composition, lower calorific value and quality deterioration due to uncontrolled biodegradation. Loose biomass also is not viable for transportation. Pelletization, briquetting, liquefaction and gasification of biomass energy are some options to solve these problems. Wood fuel production is very much steady and little bit increase in trend, however, the forest land is decreasing, means the deforestation is progressive. There is a big challenge for sustainability of biomass resource and environment. Biomass energy can be used to reduce greenhouse emissions. Woody biomass such as briquette and pellet from un-organized biomass waste and residues could be used for alternative to wood fuel, as a result, forest will be saved and

  9. 3rd annual biomass energy systems conference

    Energy Technology Data Exchange (ETDEWEB)

    1979-10-01

    The main objectives of the 3rd Annual Biomass Energy Systems Conference were (1) to review the latest research findings in the clean fuels from biomass field, (2) to summarize the present engineering and economic status of Biomass Energy Systems, (3) to encourage interaction and information exchange among people working or interested in the field, and (4) to identify and discuss existing problems relating to ongoing research and explore opportunities for future research. Abstracts for each paper presented were edited separately. (DC)

  10. Agricultural Residues and Biomass Energy Crops

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-06-01

    There are many opportunities to leverage agricultural resources on existing lands without interfering with production of food, feed, fiber, or forest products. In the recently developed advanced biomass feedstock commercialization vision, estimates of potentially available biomass supply from agriculture are built upon the U.S. Department of Agriculture’s (USDA’s) Long-Term Forecast, ensuring that existing product demands are met before biomass crops are planted. Dedicated biomass energy crops and agricultural crop residues are abundant, diverse, and widely distributed across the United States. These potential biomass supplies can play an important role in a national biofuels commercialization strategy.

  11. Port Graham Community Building Biomass Heating Design Project

    Energy Technology Data Exchange (ETDEWEB)

    Norman, Patrick [Port Graham Village Corporation, Anchorage, AK (United States); Sink, Charles [Chugachmiut, Anchorage, Alaska (United States)

    2015-04-30

    Native Village of Port Graham completed preconstruction activities to prepare for construction and operations of a cord wood biomass heating system to five or more community buildings in Port Graham, Alaska. Project Description Native Village of Port Graham (NVPG) completed preconstruction activities that pave the way towards reduced local energy costs through the construction and operations of a cord wood biomass heating system. NVPG plans include installation of a GARN WHS 3200 Boiler that uses cord wood as fuel source. Implementation of the 700,000 Btu per hour output biomass community building heat utility would heat 5-community buildings in Port Graham, Alaska. Heating system is estimated to displace 85% of the heating fuel oil or 5365 gallons of fuel on an annual basis with an estimated peak output of 600,000 Btu per hour. Estimated savings is $15,112.00 per year. The construction cost estimate made to install the new biomass boiler system is estimated $251,693.47 with an additional Boiler Building expansion cost estimated at $97,828.40. Total installed cost is estimated $349,521.87. The WHS 3200 Boiler would be placed inside a new structure at the old community Water Plant Building site that is controlled by NVPG. Design of the new biomass heat plant and hot water loop system was completed by Richmond Engineering, NVPG contractor for the project. A hot water heat loop system running off the boiler is designed to be placed underground on lands controlled by NVPG and stubbed to feed hot water to existing base board heating system in the following community buildings: 1. Anesia Anahonak Moonin Health and Dental Clinic 2. Native Village of Port Graham offices 3. Port Graham Public Safety Building/Fire Department 4. Port Graham Corporation Office Building which also houses the Port Graham Museum and Head Start Center 5. North Pacific Rim Housing Authority Workshop/Old Fire Hall Existing community buildings fuel oil heating systems are to be retro-fitted to

  12. Biomass energy - Definitions, resources and transformation processes

    International Nuclear Information System (INIS)

    Biomass energy is today considered as a new renewable energy source, and thus, has entered a regulatory framework aiming at encouraging its development for CO2 pollution abatement. This book addresses the constraints, both natural and technological, of the exploitation of the biomass resource, and then the economical and regulatory aspects of this industry. This second edition provides a complement about the plants used and the new R and D progresses made in this domain. Content: 1 - Definitions and general considerations: natural organic products, regulatory and standardized definitions, energy aspects of biomass fuels; 2 - Resources: energy production dedicated crops, biomass by-products, biomass from wastes; 3 - Biomass to energy transformation processes: combustion, gasification, pyrolysis, torrefaction, methanation, alcoholic fermentation, landfill biogas, Fischer-Tropsch synthesis, methanol synthesis, trans-esterification, synthetic natural gas production, bio-hydrogen production; 4 - Biofuels: solid fuels, solid automotive biofuels, gaseous biofuels, liquid biofuels, comparative efficiency; 5 - Situation of biomass energy: regulations, impact on non-energy purpose biomass, advantages and drawbacks

  13. Biomass energy conversion workshop for industrial executives

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    The rising costs of energy and the risks of uncertain energy supplies are increasingly familiar problems in industry. Bottom line profits and even the simple ability to operate can be affected by spiralling energy costs. An often overlooked alternative is the potential to turn industrial waste or residue into an energy source. On April 9 and 10, 1979, in Claremont, California, the Solar Energy Research Institute (SERI), the California Energy Commission (CEC), and the Western Solar Utilization Network (WSUN) held a workshop which provided industrial managers with current information on using residues and wastes as industrial energy sources. Successful industrial experiences were described by managers from the food processing and forest product industries, and direct combustion and low-Btu gasification equipment was described in detail. These speakers' presentations are contained in this document. Some major conclusions of the conference were: numerous current industrial applications of wastes and residues as fuels are economic and reliable; off-the-shelf technologies exist for converting biomass wastes and residues to energy; a variety of financial (tax credits) and institutional (PUC rate structures) incentives can help make these waste-to-energy projects more attractive to industry. However, many of these incentives are still being developed and their precise impact must be evaluated on a case-by-case basis.

  14. Biomass gasification as project for the rural development; A gaseificacao da biomassa como projeto para o desenvolvimento rural

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Marcelo Cortes; Sanchez, Caio Glauco; Angulo, Mario Barriga; Parodi, Fernando Aurelio [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica]. E-mails: mcortes@fem.unicamp.br; caio@fem.unicamp.br; mariobarriga@hotmail.com; jambock@rocketmail.com

    2002-07-01

    This paper presents a study on the gasification of the biomass as a project for the rural development. Consider the biomass gasification as an sustainable alternative for energy generation, with low pollutant emission.

  15. Biomass in a sustainable energy system

    Energy Technology Data Exchange (ETDEWEB)

    Boerjesson, Paal

    1998-04-01

    In this thesis, aspects of an increase in the utilization of biomass in the Swedish energy system are treated. Modern bioenergy systems should be based on high energy and land use efficiency since biomass resources and productive land are limited. The energy input, including transportation, per unit biomass produced is about 4-5% for logging residues, straw and short rotation forest (Salix). Salix has the highest net energy yield per hectare among the various energy crops cultivated in Sweden. The CO{sub 2} emissions from the production and transportation of logging residues, straw and Salix, are equivalent to 2-3% of those from a complete fuel-cycle for coal. Substituting biomass for fossil fuels in electricity and heat production is, in general, less costly and leads to a greater CO{sub 2} reduction per unit biomass than substituting biomass derived transportation fuels for petrol or diesel. Transportation fuels produced from cellulosic biomass provide larger and less expensive CO{sub 2} emission reductions than transportation fuels from annual crops. Swedish CO{sub 2} emissions could be reduced by about 50% from the present level if fossil fuels are replaced and the energy demand is unchanged. There is a good balance between potential regional production and utilization of biomass in Sweden. Future biomass transportation distances need not be longer than, on average, about 40 km. About 22 TWh electricity could be produced annually from biomass in large district heating systems by cogeneration. Cultivation of Salix and energy grass could be utilized to reduce the negative environmental impact of current agricultural practices, such as the emission of greenhouse gases, nutrient leaching, decreased soil fertility and erosion, and for the treatment of municipal waste and sludge, leading to increased recirculation of nutrients. About 20 TWh biomass could theoretically be produced per year at an average cost of less than 50% of current production cost, if the economic

  16. Biomass in a sustainable energy system

    International Nuclear Information System (INIS)

    In this thesis, aspects of an increase in the utilization of biomass in the Swedish energy system are treated. Modern bioenergy systems should be based on high energy and land use efficiency since biomass resources and productive land are limited. The energy input, including transportation, per unit biomass produced is about 4-5% for logging residues, straw and short rotation forest (Salix). Salix has the highest net energy yield per hectare among the various energy crops cultivated in Sweden. The CO2 emissions from the production and transportation of logging residues, straw and Salix, are equivalent to 2-3% of those from a complete fuel-cycle for coal. Substituting biomass for fossil fuels in electricity and heat production is, in general, less costly and leads to a greater CO2 reduction per unit biomass than substituting biomass derived transportation fuels for petrol or diesel. Transportation fuels produced from cellulosic biomass provide larger and less expensive CO2 emission reductions than transportation fuels from annual crops. Swedish CO2 emissions could be reduced by about 50% from the present level if fossil fuels are replaced and the energy demand is unchanged. There is a good balance between potential regional production and utilization of biomass in Sweden. Future biomass transportation distances need not be longer than, on average, about 40 km. About 22 TWh electricity could be produced annually from biomass in large district heating systems by cogeneration. Cultivation of Salix and energy grass could be utilized to reduce the negative environmental impact of current agricultural practices, such as the emission of greenhouse gases, nutrient leaching, decreased soil fertility and erosion, and for the treatment of municipal waste and sludge, leading to increased recirculation of nutrients. About 20 TWh biomass could theoretically be produced per year at an average cost of less than 50% of current production cost, if the economic value of these local

  17. Financing models for biomass-energy; Modeles de financement de la biomasse-energie

    Energy Technology Data Exchange (ETDEWEB)

    Khennas, S.

    2000-06-01

    There is a direct link between the market value of biomass and the demand. Investments are always directed towards projects where cost effectiveness is the greatest. On the African continent, the lack of coherent regional policies concerning biomass-energy and its financing hindered their spread and effectiveness. The author suggested means to rectify the situation. The first conclusion was that financing was not available for small scale projects. The description of the following five different models of financing by intermediate financing partners was presented: (1) rural development banks using public funds, (2) proximity financing, the multiplier effect, (3) direct financial intermediation through non-government agencies, (4) traditional savings, and (5) the use of bilateral development agencies. As far as medium and large scale projects were concerned, market niches were required to ensure the cost effectiveness of a project. One such niche was the production of electricity using biomass in the vicinity of centres where refuse was abundant. For large scale projects, one major constraint was the need for additional funds to prepare feasibility studies before applying for financing, since the information was not always readily available. In addition, funds for the implementation of viable projects were not available. Therefore, it became clear that the lack of projects which could interest the financing community explained the low direct investment in Africa. The author concluded by indicating that projects where the social impact was greatest should be allocated additional funds in the form of low interest loans or subsidies. The absence of a structured political and institutional framework was recognized as the major constraint in all cases.

  18. Biomass energy potential in Brazil. Country study

    International Nuclear Information System (INIS)

    The present paper was prepared as a country study about the biomass potential for energy production in Brazil. Information and analysis of the most relevant biomass energy sources and their potential are presented in six chapters. Ethanol fuel, sugar-cane bagasse, charcoal, vegetable oil, firewood and other biomass-derived fuels are the objects of a historical review, in addition to the presentation of state-of-the-art technologies, economic analysis and discussion of relevant social and environmental issues related to their production and use. Wherever possible, an evaluation, from the available sources of information and based on the author's knowledge, is performed to access future perspectives of each biomass energy source. Brazil is a country where more than half of the energy consumed is provided from renewable sources of energy, and biomass provides 28% of the primary energy consumption. Its large extension, almost all located in the tropical and rainy region, provides an excellent site for large-scale biomass production, which is a necessity if biomass is to be used to supply a significant part of future energy demand. Even so, deforestation has occurred and is occurring in the country, and the issue is discussed and explained as mainly the result of non-energy causes or the use of old and outdated technologies for energy production. (author)

  19. Modelling of biomass utilization for energy purpose

    Energy Technology Data Exchange (ETDEWEB)

    Grzybek, Anna (ed.)

    2010-07-01

    the overall farms structure, farms land distribution on several separate subfields for one farm, villages' overpopulation and very high employment in agriculture (about 27% of all employees in national economy works in agriculture). Farmers have low education level. In towns 34% of population has secondary education and in rural areas - only 15-16%. Less than 2% inhabitants of rural areas have higher education. The structure of land use is as follows: arable land 11.5%, meadows and pastures 25.4%, forests 30.1%. Poland requires implementation of technical and technological progress for intensification of agricultural production. The reason of competition for agricultural land is maintenance of the current consumption level and allocation of part of agricultural production for energy purposes. Agricultural land is going to be key factor for biofuels production. In this publication research results for the Project PL0073 'Modelling of energetical biomass utilization for energy purposes' have been presented. The Project was financed from the Norwegian Financial Mechanism and European Economic Area Financial Mechanism. The publication is aimed at moving closer and explaining to the reader problems connected with cultivations of energy plants and dispelling myths concerning these problems. Exchange of fossil fuels by biomass for heat and electric energy production could be significant input in carbon dioxide emission reduction. Moreover, biomass crop and biomass utilization for energetical purposes play important role in agricultural production diversification in rural areas transformation. Agricultural production widening enables new jobs creation. Sustainable development is going to be fundamental rule for Polish agriculture evolution in long term perspective. Energetical biomass utilization perfectly integrates in the evolution frameworks, especially on local level. There are two facts. The fist one is that increase of interest in energy crops in Poland

  20. Department of Energy Recovery Act Investment in Biomass Technologies

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-11-01

    The American Recovery and Reinvestment Act of 2009 (Recovery Act) provided more than $36 billion to the Department of Energy (DOE) to accelerate work on existing projects, undertake new and transformative research, and deploy clean energy technologies across the nation. Of this funding, $1029 million is supporting innovative work to advance biomass research, development, demonstration, and deployment.

  1. Biomass energy, forests and global warming

    International Nuclear Information System (INIS)

    Biomass in all its forms currently provides about 14% of the world's energy, equivalent to 25 million bbl oil/day; in developing countries where it is the major energy source, biomass supplies 35% of total energy use. Although biomass energy use affects the flux of carbon to the atmosphere, the main carbon emission problem is caused by fossil fuels and land clearance for agriculture. Biomass fuels make no net contribution to atmospheric CO2 if used sustainably. A major global revegetation and reforestation effort is a possible strategy to reduce CO2 emissions and to slow the pace of climatic change. However, a more attractive alternative strategy might be to substitute fossil fuels, especially coal, with biomass grown specifically for this purpose producing modern fuels such as electricity, liquids and gases. This paper examines biomass energy use, devegetation, biomass burning, the implications for global warming and the ability of biomass to sequester CO2 and substitute for fossil fuels. It also discusses some socioeconomic and political issues. (author)

  2. First biomass conference of the Americas: Energy, environment, agriculture, and industry. Proceedings, Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    This conference was designed to provide a national and international forum to support the development of a viable biomass industry. Although papers on research activities and technologies under development that address industry problems comprised part of this conference, an effort was made to focus on scale-up and demonstration projects, technology transfer to end users, and commercial applications of biomass and wastes. The conference was divided into these major subject areas: Resource Base, Power Production, Transportation Fuels, Chemicals and Products, Environmental Issues, Commercializing Biomass Projects, Biomass Energy System Studies, and Biomass in Latin America. The papers in this third volume deal with Environmental Issues, Biomass Energy System Studies, and Biomass in Latin America. Concerning Environmental Issues, the following topics are emphasized: Global Climate Change, Biomass Utilization, Biofuel Test Procedures, and Commercialization of Biomass Products. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  3. First biomass conference of the Americas: Energy, environment, agriculture, and industry

    International Nuclear Information System (INIS)

    This conference was designed to provide a national and international forum to support the development of a viable biomass industry. Although papers on research activities and technologies under development that address industry problems comprised part of this conference, an effort was made to focus on scale-up and demonstration projects, technology transfer to end users, and commercial applications of biomass and wastes. The conference was divided into these major subject areas: Resource Base, Power Production, Transportation Fuels, Chemicals and Products, Environmental Issues, Commercializing Biomass Projects, Biomass Energy System Studies, and Biomass in Latin America. The papers in this third volume deal with Environmental Issues, Biomass Energy System Studies, and Biomass in Latin America. Concerning Environmental Issues, the following topics are emphasized: Global Climate Change, Biomass Utilization, Biofuel Test Procedures, and Commercialization of Biomass Products. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database

  4. International biomass. International markets of biomass-energy - Public synthesis

    International Nuclear Information System (INIS)

    This publication proposes a synthesis of a study which aimed at analysing the present and future place of wood-energy in the European Union as the main renewable resource used to produce heat and electricity. This study comprised an analysis of European markets of solid biomass and of regulation, case studies on wood-energy producer markets (North America, Eastern Europe, Brazil and Africa), a study of preparation modes (shredding, granulation, roasting) and biomass transport. This study is based on bibliographical searches in national and European sources, and on field data collected by the various bodies involved in this study. This synthesis notably discusses the following issues: solid biomass is the main renewable resource for the EU and has many applications; European objectives for solid biomass by 2020 are very ambitious; markets are becoming international to face the EU's increasing demand; pellet production in North America is strongly increasing; in Europe, eastern European countries are the main exporters; Brazil has an export potential which is still to be confirmed; the African trade with Europe is still in its infancy. Finally, the development perspectives of roasted wood trade are discussed

  5. Energy Production from Marine Biomass (Ulva lactuca)

    DEFF Research Database (Denmark)

    Nikolaisen, Lars; Daugbjerg Jensen, Peter; Svane Bech, Karin;

    The background for this research activity is that the 2020 goals for reduction of the CO2 emissions to the atmosphere are so challenging that exorbitant amounts of biomass and other renewable sources of energy must be mobilised in order to – maybe – fulfil the ambitious 2020 goals. The macroalgae...... is an unexploited, not researched, not developed source of biomass and is at the same time an enormous resource by mass. It is therefore obvious to look into this vast biomass resource and by this report give some of the first suggestions of how this new and promising biomass resource can be...

  6. Prospects for biomass-to-electricity projects in Yunnan Province, China

    Energy Technology Data Exchange (ETDEWEB)

    Perlack, R.D.

    1996-02-01

    Efforts have been underway since 1989 to assess the prospects for biomass-to-electricity projects in Yunnan Province. Results of prefeasibility studies for specific projects suggest that they are both financially and technically viable. Because of low labor costs and favorable climate biomass can be grown on marginal and underutilized land and converted to electricity at costs lower than other alternatives. Bases on current plantation establishment rates, the potential size of the biomass resource can easily support over 1 GW of electric generating capacity in small-sized (up to 20-40 MW) cogeneration and stand-alone projects. These projects, if implemented, can ease power shortages, reduce unemployment, and help sustain the region`s economic growth. Moreover, the external environmental benefits of biomass energy are also potentially significant. This report briefly summarizes the history of biomass assessment efforts in Yunnan Province and discusses in more detail twelve projects that have been identified for U.S. private sector investment. This discussion includes a feasibility analysis of the projects (plantation-grown biomass and its conversion to electricity) and an estimate of the biomass resource base in the general vicinity of each project. This data as well as information on power needs and local capabilities to manage and operate a biomass-to-electricity project are then used to rank-order the twelve projects. One cogeneration and one stand-alone facility are recommended for additional study and possible investment.

  7. Environmental implications of increased biomass energy use

    Energy Technology Data Exchange (ETDEWEB)

    Miles, T.R. Sr.; Miles, T.R. Jr. (Miles (Thomas R.), Portland, OR (United States))

    1992-03-01

    This study reviews the environmental implications of continued and increased use of biomass for energy to determine what concerns have been and need to be addressed and to establish some guidelines for developing future resources and technologies. Although renewable biomass energy is perceived as environmentally desirable compared with fossil fuels, the environmental impact of increased biomass use needs to be identified and recognized. Industries and utilities evaluating the potential to convert biomass to heat, electricity, and transportation fuels must consider whether the resource is reliable and abundant, and whether biomass production and conversion is environmentally preferred. A broad range of studies and events in the United States were reviewed to assess the inventory of forest, agricultural, and urban biomass fuels; characterize biomass fuel types, their occurrence, and their suitability; describe regulatory and environmental effects on the availability and use of biomass for energy; and identify areas for further study. The following sections address resource, environmental, and policy needs. Several specific actions are recommended for utilities, nonutility power generators, and public agencies.

  8. LCA of biomass-based energy systems

    DEFF Research Database (Denmark)

    Tonini, Davide; Astrup, Thomas

    2012-01-01

    Decrease of fossil fuel consumption in the energy sector is an important step towards more sustainable energy production. Environmental impacts related to potential future energy systems in Denmark with high shares of wind and biomass energy were evaluated using life-cycle assessment (LCA). Based...

  9. Woody biomass energy potential in 2050

    International Nuclear Information System (INIS)

    From a biophysical perspective, woody biomass resources are large enough to cover a substantial share of the world's primary energy consumption in 2050. However, these resources have alternative uses and their accessibility is limited, which tends to decrease their competitiveness with respect to other forms of energy. Hence, the key question of woody biomass use for energy is not the amount of resources, but rather their price. In this study we consider the question from the perspective of energy wood supply curves, which display the available amount of woody biomass for large-scale energy production at various hypothetical energy wood prices. These curves are estimated by the Global Biosphere Management Model (GLOBIOM), which is a global partial equilibrium model of forest and agricultural sectors. The global energy wood supply is estimated to be 0–23 Gm3/year (0–165 EJ/year) when energy wood prices vary in a range of 0–30$/GJ (0–216$/m3). If we add household fuelwood to energy wood, then woody biomass could satisfy 2–18% of world primary energy consumption in 2050. If primary forests are excluded from wood supply then the potential decreases up to 25%. - highlights: • We examine woody biomass energy potential by partial equilibrium model of forest and agriculture sectors. • It is possible to satisfy 18% (or 14% if primary forests are excluded) of the world's primary energy consumption in 2050 by woody biomass. • To achieve this would require an extensive subsidy/tax policy and would lead to substantial higher woody biomass prices compared to their current level

  10. Sustainable biomass production for energy in Sri Lanka

    Energy Technology Data Exchange (ETDEWEB)

    Perera, K.K.C.K.; Rathnasiri, P.G.; Sugathapala, A.G.T. [Moratuwa Univ., Moratuwa (Sri Lanka)

    2003-11-01

    The present study concentrates mainly on the estimation of land availability for biomass production and the estimation of sustainable biomass production potential for energy. The feasible surplus land area available for bioenergy plantation is estimated assuming two land availability scenarios (Scenarios 1 and 2) and three biomass demand scenarios (IBD Scenario, SBD Scenario and FBD Scenario). Scenario 1 assumes that 100% of the surplus area available in base year 1997 will be suitable for plantation without considering population growth and food production and that 75% of this surplus land is feasible for plantation. Scenario 2 assumes that future food requirement will grow by 20% and the potential surplus area will be reduced by that amount. The incremental biomass demand scenario (IBD Scenario) assumes that only the incremental demand for biomass in the year 2010 with respect to the base year 1997 has to be produced from new plantation. The sustainable biomass demand scenario (SBD Scenario) assumes that the total sustainable supply of biomass in 1997 is deducted from the future biomass demand in 2010 and only the balance is to be met by new plantation. The full biomass demand scenario (FBD Scenario) assumes that the entire projected biomass demand of the year 2010 needs to be produced from new plantation. The total feasible land area for the scenarios IBD-l, IBD-2, SBD-l, SBD-2, FBD-l and FBD-2 are approximately 0.96, 0.66, 0.80, 0.94, 0.60 and 0.30 Mha, respectively. Biomass production potential is estimated by selecting appropriate plant species, plantation spacing and productivity level. The results show that the total annual biomass production in the country could vary from 2 to 9.9 Mt. With the production option (i.e. 1.5 m x 1.5 m spacing plantation with fertilizer application) giving the highest yield, the total biomass production for energy under IBD Scenario would be 9.9 Mtyr{sup -l} for Scenario 1 and 6.7 Mtyr{sup -l} for Scenario 2. Under SBD Scenario

  11. Sustainable biomass production for energy in Sri Lanka

    International Nuclear Information System (INIS)

    The present study concentrates mainly on the estimation of land availability for biomass production and the estimation of sustainable biomass production potential for energy. The feasible surplus land area available for bioenergy plantation is estimated assuming two land availability scenarios (Scenarios 1 and 2) and three biomass demand scenarios (IBD Scenario, SBD Scenario and FBD Scenario). Scenario 1 assumes that 100% of the surplus area available in base year 1997 will be suitable for plantation without considering population growth and food production and that 75% of this surplus land is feasible for plantation. Scenario 2 assumes that future food requirement will grow by 20% and the potential surplus area will be reduced by that amount. The incremental biomass demand scenario (IBD Scenario) assumes that only the incremental demand for biomass in the year 2010 with respect to the base year 1997 has to be produced from new plantation. The sustainable biomass demand scenario (SBD Scenario) assumes that the total sustainable supply of biomass in 1997 is deducted from the future biomass demand in 2010 and only the balance is to be met by new plantation. The full biomass demand scenario (FBD Scenario) assumes that the entire projected biomass demand of the year 2010 needs to be produced from new plantation. The total feasible land area for the scenarios IBD-1, 1BD-2, SBD-1, SBD-2, FBD-1 and FBD-2 are approximately 0.96, 0.66, 0.80, 0.94, 0.60 and 0.30 Mha, respectively. Biomass production potential is estimated by selecting appropriate plant species, plantation spacing and productivity level. The results show that the total annual biomass production in the country could vary from 2 to 9.9 Mt. With the production option (i.e. 1.5 mx1.5 m spacing plantation with fertilizer application) giving the highest yield, the total biomass production for energy under IBD Scenario would be 9.9 Mt yr-1 for Scenario 1 and 6.7 Mt yr-1 for Scenario 2. Under SBD Scenario, the

  12. Socio-economic effects of biomass supply chain : case studies from Logist'EC project

    OpenAIRE

    Lechon, Yolanda; Østergård, Hanne; Morandi, Fabiana; Wohlfahrt, Julie; Perrin, Aurélie; Gabrielle, Benoit; Bjorkvoll, Thor Harald; Flatberg, Truls; Damman, Sigrid

    2015-01-01

    The European policies have been designed over the last decade to face the challenge of climate change. Several measures have been put in place to accelerate the development and deployment of cost-effective low carbon technologies. The domestic nature and its potential avaibility in Europe make biomass a relevant resource to be considered. The Logistics for Energy Crops Biomass (LogistEC) project aims to develop new or improve technologies of biomass logistics chain. The sustainability of diff...

  13. Introduction to energy balance of biomass production

    International Nuclear Information System (INIS)

    During last years, energy crops have been envisaged as an interesting alternative to biomass residues utilization as renewable energy source. In this work, main parameters used in calculating the energy balance of an energy crop are analyzed. The approach consists of determining energy equivalents for the different inputs and outputs of the process, thus obtaining energy ratios of the system, useful to determine if the energy balance is positive, that is, if the system generates energy. Energy costs for inputs and assessment approaches for energy crop yields (output) are provided. Finally, as a way of illustration, energy balances of some representative energy crops are shown. (Author) 15 refs

  14. Biomass energy systems program summary

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-07-01

    Research programs in biomass which were funded by the US DOE during fiscal year 1978 are listed in this program summary. The conversion technologies and their applications have been grouped into program elements according to the time frame in which they are expected to enter the commercial market. (DMC)

  15. Switchgrass a valuable biomass crop for energy

    CERN Document Server

    2012-01-01

    The demand of renewable energies is growing steadily both from policy and from industry which seeks environmentally friendly feed stocks. The recent policies enacted by the EU, USA and other industrialized countries foresee an increased interest in the cultivation of energy crops; there is clear evidence that switchgrass is one of the most promising biomass crop for energy production and bio-based economy and compounds. Switchgrass: A Valuable Biomass Crop for Energy provides a comprehensive guide to  switchgrass in terms of agricultural practices, potential use and markets, and environmental and social benefits. Considering this potential energy source from its biology, breed and crop physiology to its growth and management to the economical, social and environmental impacts, Switchgrass: A Valuable Biomass Crop for Energy brings together chapters from a range of experts in the field, including a foreword from Kenneth P. Vogel, to collect and present the environmental benefits and characteristics of this a ...

  16. Biomass to energy : GHG reduction quantification protocols and case study

    International Nuclear Information System (INIS)

    With the growing concerns over greenhouses gases and their contribution to climate change, it is necessary to find ways of reducing environmental impacts by diversifying energy sources to include non-fossil fuel energy sources. Among the fastest growing green energy sources is energy from waste facilities that use biomass that would otherwise be landfilled or stockpiled. The quantification of greenhouse gas reductions through the use of biomass to energy systems can be calculated using various protocols and methodologies. This paper described each of these methodologies and presented a case study comparing some of these quantification methodologies. A summary and comparison of biomass to energy greenhouse gas reduction protocols in use or under development by the United Nations, the European Union, the Province of Alberta and Environment Canada was presented. It was concluded that regulatory, environmental pressures, and public policy will continue to impact the practices associated with biomass processing or landfill operations, such as composting, or in the case of landfills, gas collection systems, thus reducing the amount of potential credit available for biomass to energy facility offset projects. 10 refs., 2 tabs., 6 figs

  17. The potentials of biomass as renewable energy

    International Nuclear Information System (INIS)

    Biomass is a term used in the context of energy to define a range of products derived from photosynthesis. Annually large amounts of solar energy is stored in the leaves, stems and branches of plants. Of the various renewable sources of energy, biomass is thus unique in that it represents stored solar energy. In addition it is the only source of carbon, and it may be converted into convenient solid, liquid and gaseous fuels. Biomass, principally in the form of wood, is humankind's oldest form of energy, and has been used to fuel both domestic and industrial activities. Traditional use has been, through direct combustion, a process still used extensively in many parts of the world. Biomass is a renewable and indigenous resource that requires little or no foreign exchange. But it is a dispersed, labor-intensive and land requiring source of energy and may avoid or reduce problems of waste disposal. We'll try to assess the potential contribution of biomass to the future world energy supply. 4 refs., 6 tabs

  18. Biomass District Energy Trigeneration Systems: Emissions Reduction and Financial Impact

    Energy Technology Data Exchange (ETDEWEB)

    Rentizelas, A., E-mail: arent@central.ntua.gr; Tolis, A.; Tatsiopoulos, I. [National Technical University of Athens, Sector of Industrial Management and Operational Research, School of Mechanical Engineering (Greece)

    2009-04-15

    Biomass cogeneration is widely used for district heating applications in central and northern Europe. Biomass trigeneration on the other hand, constitutes an innovative renewable energy application. In this work, an approved United Nations Framework Convention on Climate Change baseline methodology has been extended to allow the examination of biomass trigeneration applications. The methodology is applied to a case study in Greece to investigate various environmental and financial aspects of this type of applications. The results suggest that trigeneration may lead to significant emissions reduction compared to using fossil fuels or even biomass cogeneration and electricity generation. The emissions reduction achieved may be materialized into a considerable revenue stream for the project, if traded through a trading mechanism such as the European Union Greenhouse Gas Emission Trading Scheme. A sensitivity analysis has been performed to compensate for the high volatility of the emission allowances' value and the immaturity of the EU Trading Scheme, which prevent a reliable estimation of the related revenue. The work concludes that emission allowances trading may develop into one of the major revenue streams of biomass trigeneration projects, significantly increasing their financial yield and attractiveness. The impact on the yield is significant even for low future values of emission allowances and could become the main income revenue source of such projects, if emission allowances increase their value substantially. The application of trigeneration for district energy proves to lead to increased environmental and financial benefits compared to the cogeneration or electricity generation cases.

  19. Biomass District Energy Trigeneration Systems: Emissions Reduction and Financial Impact

    International Nuclear Information System (INIS)

    Biomass cogeneration is widely used for district heating applications in central and northern Europe. Biomass trigeneration on the other hand, constitutes an innovative renewable energy application. In this work, an approved United Nations Framework Convention on Climate Change baseline methodology has been extended to allow the examination of biomass trigeneration applications. The methodology is applied to a case study in Greece to investigate various environmental and financial aspects of this type of applications. The results suggest that trigeneration may lead to significant emissions reduction compared to using fossil fuels or even biomass cogeneration and electricity generation. The emissions reduction achieved may be materialized into a considerable revenue stream for the project, if traded through a trading mechanism such as the European Union Greenhouse Gas Emission Trading Scheme. A sensitivity analysis has been performed to compensate for the high volatility of the emission allowances' value and the immaturity of the EU Trading Scheme, which prevent a reliable estimation of the related revenue. The work concludes that emission allowances trading may develop into one of the major revenue streams of biomass trigeneration projects, significantly increasing their financial yield and attractiveness. The impact on the yield is significant even for low future values of emission allowances and could become the main income revenue source of such projects, if emission allowances increase their value substantially. The application of trigeneration for district energy proves to lead to increased environmental and financial benefits compared to the cogeneration or electricity generation cases

  20. Role of biomass in global energy supply

    International Nuclear Information System (INIS)

    Bioenergy is energy of biological and renewable origin, normally in the form of purpose-grown energy crops or by-products from agriculture, forestry or fisheries. Biomass provides approximately 11-14% of the world's energy, but there are significant differences between industrialised and developing countries. In many developing countries biomass is the most important energy source. As a global average, biomass provides approximately 35% of developing countries' energy, but there are large regional differences. Many sub-Saharan African countries depend on biomass for up to 90% of their energy indicating that they have little in the way of industry or other modern activities. In the last decade interest in bioenergy has increased in industrialised countries partly due to growing concern about climate change, technological advances in biomass conversion, increasing focus on security of energy supply, and increasing interest in renewable energy generally. Two trends emerge: The developing countries will in general aim to reduce their dependence on traditional bioenergy. The relative share of bioenergy in the energy balance will therefore go down, though the number of people depending on traditional bioenergy probably will remain constant, with corresponding consequences for health and resources. Industrialised countries, plus a number of developing countries, will aim to increase their use of modern bioenergy technologies. With the traditional association of bioenergy as old fashioned and for the poor, the recent interest in biomass resources has invented a new term 'modern bioenergy' which covers a number of technological areas from combustion at domestic, industrial or power plant scale, gasification, hydrolysis, pyrolysis, extraction, digestion etc. There are some barriers to the increased use of bioenergy, but they can be overcome through dedicated interventions by public and private sector entities. (BA)

  1. Soybean Biomass as a Renewable Energy Resource

    Directory of Open Access Journals (Sweden)

    Vlatka Rozman

    2009-12-01

    Full Text Available A constant need for energy is necessary and permanent as far as modern society is concerned. The primary energy resource in today’s world are fossil fuels. A serious problem is the fact that their amount is decreasing. Fossil fuels are not renewable. Their sources will disappear and new energy resources will have to be switched to, because the consequences of energy resources disappearance are inconceivable. Biomass as an energy resource is not properly used. There are many ways to generate energy from biomass. You can grow plants to get biomass for energy production or you can use plants’ residues, which are the results of agricultural production. You can also use organic waste products and animal faeces. The oldest way of the production of energy or fuel from biomass is burning. Agricultural biomass including soybean straw is a very acceptable fuel from the point of view of environmental protection and especially greenhouse gases emission.The use of biomass energy offers chances for the establishment of new jobs. This way it can have a positive influence on both the local and national economy.The knowledge and use of soybean growing has a great importance for the development of certain regions in Croatia, as well as on the employment rate and entrepreneur encouragement. It would be even more important to start using unused land areas. Soybean growing makes it possible to introduce “the third culture“ (except for wheat and corn, which will result in additional and safer profit for farmers in Croatia, a more favourable use of agricultural machines, and the profitability of production.

  2. Biomass energy and the global carbon balance

    International Nuclear Information System (INIS)

    Studies on climate change and energy production increasingly recognise the crucial role of biological systems. Carbon sinks in forests (above and below ground), CO2 emissions from deforestation, planting trees for carbon storage, and biomass as a substitute for fossil fuels are some of the key issues which arise. Halting deforestation is of paramount importance, but there is also great potential for reforestation of degraded lands, agroforestry and improved forest management. It is concluded that biomass energy plantations and other types of energy cropping could be a more effective strategy for carbon mitigation than simply growing trees as a carbon store, particularly on higher productivity lands. Use of the biomass produced as an energy source has the added advantage of a wide range of other environmental, social and economic benefits. (author)

  3. Energy from biomass and wastes: 1979 update

    Energy Technology Data Exchange (ETDEWEB)

    Klass, D.L.

    1979-01-01

    The R and D activities in progress in the United States on the development of biomass and wastes as renewable energy sources have reached the point where all phases of the technology are under active investigation. Highlights of this effort are briefly reviewed from the standpoint of energy impact, funding, carbon dioxide build-up in the atmosphere, and biomass production and its conversion to energy and synthetic fuels. Special attention is given to alcohols because of the current interest in gasohol. Significant accomplishments were reported in 1979, and it is expected that commercial utilization of this information will begin to gather more momentum.

  4. Surplus biomass through energy efficient kilns

    International Nuclear Information System (INIS)

    Highlights: → The magnitude of the national heat demand for drying lumber in kilns is established. → Each part of the total heat consumption is divided and shown between the main drying conditions. → The potential to increase the energy efficiency in kilns with available techniques is presented. → The market demand for the biomass, available with increase kiln energy efficiency, is reviled. -- Abstract: The use of biomass in the European Union has increased since the middle of the 1990s, mostly because of high subsidies and CO2 emission regulation through the Kyoto protocol. The sawmills are huge biomass suppliers to the market; out of the Swedish annual lumber production of 16.4 Mm3, 95% is produced by medium to large-volume sawmills with a lumber quotient of 47%. The remaining part is produced as biomass. An essential part (12%) of the entering timber is used for supply of heat in their production processes, mostly in the substantial drying process. The drying process is the most time and heat consuming process in the sawmill. This study was undertaken to determine the sawmills' national use of energy and potential magnitude of improvements. If the drying process can be made more effective, sawmills' own use of biomass can be decreased and allow a considerably larger supply to the biomass market through processed or unprocessed biomass, heat or electricity production. The national electricity and heat usage when drying the lumber have been analysed by theoretical evaluation and experimental validation at a batch kiln. The main conclusion is that the heat consumption for drying lumber among the Swedish sawmills is 4.9 TW h/year, and with available state-of-the-art techniques it is possible to decrease the national heat consumption by approximately 2.9 TW h. This additional amount of energy corresponds to the market's desire for larger energy supply.

  5. Renewable energy. Part 6. Biomass and biogas, substitute fuels, wind power; Erneuerbare Energien. Bd. 6. Biomasse und Biogas, Ersatzbrennstoffe, Windenergie

    Energy Technology Data Exchange (ETDEWEB)

    Thome-Kozmiensky, Karl J.; Beckmann, Michael

    2011-07-01

    The authors of the book under consideration report on the technical implementation of projects to produce electricity and heat from renewable energies. In particular, the issues biomass, production and utilization of biogas, materials recycling and energy recovery of substitute fuels and wind energy are discussed.

  6. Emission guidelines for energy production from biomass

    International Nuclear Information System (INIS)

    For the introduction of bio-energy on the Dutch market it is important to know the regulations for the emission limits for the use of biomass. An overview is made of emission regulations in the Netherlands with respect to thermal conversion of biomass. Also experiences of practical situations have been compiled and evaluated and an inventory was made of emission regulations in Germany, Finland, Denmark, England and Austria and the European Union. All the compiled information has been evaluated and the Dutch emission regulations for bio-energy is represented in the form of a decision making scheme or working paper and compared with emission regulations in foreign countries. 18 refs

  7. Policy and prospects for energy from biomass

    International Nuclear Information System (INIS)

    The Dutch government supports the production of energy from biomass by means of fiscal regulations and financial incentives. An overview is given of available laboratory equipment for the characterization of fuels and catalysts and absorbents, and test facilities for gasification and gas purification in foreign countries and in different academic and research institutes in the Netherlands. The facilities and the expertise originate from fluid bed coal combustion and coal gasification experiments. Since the available facilities in the Netherlands are spread over seven institutes it is very important to coordinate the facilities and the expertise in a national research program on the use of biomass as an energy source. 2 tabs

  8. Biomass energy: Another driver of land acquisitions?

    Energy Technology Data Exchange (ETDEWEB)

    Cotula, Lorenzo; Finnegan, Lynn; MacQueen, Duncan

    2011-08-15

    As governments in the global North look to diversify their economies away from fossil fuel and mitigate climate change, plans for biomass energy are growing fast. These are fuelling a sharp rise in the demand for wood, which, for some countries, could outstrip domestic supply capacity by as much as 600 per cent. It is becoming clear that although these countries will initially look to tap the temperate woodlands of developed countries, there are significant growth rate advantages that may lead them to turn to the tropics and sub-tropics to fill their biomass gap in the near future. Already there is evidence of foreign investors acquiring land in Africa, South America and Southeast Asia to establish tree plantations for biomass energy. If left unchecked, these trends could increase pressures on land access and food security in some of the world's poorest countries and communities.

  9. Greenhouse gas balances of biomass energy systems

    International Nuclear Information System (INIS)

    A full energy-cycle analysis of greenhouse gas emissions of biomass energy systems requires analysis well beyond the energy sector. For example, production of biomass fuels impacts on the global carbon cycle by altering the amount of carbon stored in the biosphere and often by producing a stream of by-products or co-products which substitute for other energy-intensive products like cement, steel, concrete or, in case of ethanol form corn, animal feed. It is necessary to distinguish between greenhouse gas emissions associated with the energy product as opposed to those associated with other products. Production of biomass fuels also has an opportunity cost because it uses large land areas which could have been used otherwise. Accounting for the greenhouse gas emissions from biomass fuels in an environment of credits and debits creates additional challenges because there are large non-linearities in carbon flows over time. This paper presents some of the technical challenges of comprehensive greenhouse gas accounting and distinguishes between technical and public policy issues. (author). 5 refs, 5 figs

  10. China - Biomass Cogeneration Development Project : Fuel Supply Handbook for Biomass-Fired Power Projects

    OpenAIRE

    World Bank

    2010-01-01

    This handbook provides an overview of the main topics that need consideration when managing the supply of biomass to large biomass power plants. It will help investors in China to develop, with assistance of local biomass supply experts, their own solutions. The focus is on biomass residues, in particular agricultural residues (mainly straw and stalks) and forestry residues (mainly residue...

  11. Biomass Compositional Analysis for Energy Applications

    Science.gov (United States)

    Hames, Bonnie R.

    In its broadest definition, biomass can be described as all material that was or is a part of a living organism. For renewable energy applications, however, the definition of biomass is usually limited to include only materials that are plant-derived such as agricultural residues (e.g., wheat straw, corn stover) by-products of industrial processes (e.g., sawdust, sugar cane bagasse, pulp residues, distillers grains), or dedicated energy crops (e.g., switchgrass, sorghum, Miscanthus, short-rotation woody crops). This chapter describes analytical methods developed to measure plant components with an emphasis on the measurement of components that are important for biomass conversion. The methods described here can be viewed as a portfolio of analytical methods, with consistent assumptions and compatible sample preparation steps, selected for simplicity, robust application, and the ability to obtain a summative mass closure on most samples that accurately identifies greater than 95% of the mass of a plant biomass sample. The portfolio of methods has been successfully applied to a wide variety of biomass feedstock as well as liquid and solid fractions of both thermochemical pretreatment and enzymatic saccharification (1).

  12. BIOMASS AS AN ALTERNATIVE SOURCE OF ENERGY IN INDIA

    Directory of Open Access Journals (Sweden)

    DEEPAK PALIWAL,

    2010-10-01

    Full Text Available The fossil fuel is a main source of energy for generation of electricity in India. Overall, about 80% of greenhouse gas (GHS emissions are related to the production and use of energy, and particularly, burning of fossils fuels. The environmental problems are associated with the generation of conventional sources of energy.The Kyoto protocol has established flexible mechanisms for developing countries to meet there GHG reduction commitment. Therefore, renewable source of energy is an alternative to conserve the natural resources and reduce the pollution burden. At present renewable sources of energy such as solar, wind, geothermal and hydropower provide small fraction of energy need. The most prevalent source is biomass, which accounts around 12% of total energy requirement. This source of energy includes wood, logging waste, sawdust, animal dung and vegetables consisting of grass, leaves, grass residues and agricultural waste. The biomass is abundant in nature which can be trapped as source of energy for generation of electricity for the rural as well as urban population. The technology needs to be developed for use of biomass as a source of energy. This paperdiscusses about its prospects in Asia and particularly in India. The recent developments and projects in India are discussed. A note on pollution control strategies has also been added.

  13. Biomass Burning Observation Project Science Plan

    Energy Technology Data Exchange (ETDEWEB)

    Kleinman, KI [Brookhaven National Laboratory; Sedlacek, AJ [Brookhaven National Laboratory

    2013-09-01

    Aerosols from biomass burning perturb Earth’s climate through the direct radiative effect (both scattering and absorption) and through influences on cloud formation and precipitation and the semi-direct effect. Despite much effort, quantities important to determining radiative forcing such as the mass absorption coefficients (MAC) of light-absorbing carbon, secondary organic aerosol (SOA) formation rates, and cloud condensation nuclei (CCN) activity remain in doubt. Field campaigns in northern temperate latitudes have been overwhelmingly devoted to other aerosol sources in spite of biomass burning producing about one-third of the fine particles (PM2.5) in the U.S.

  14. Field biomass as global energy source

    OpenAIRE

    Hakala, Kaija; Kontturi, Markku; Pahkala, Katri

    2009-01-01

    Current (1997–2006) and future (2050) global field biomass bioenergy potential was estimated based on FAO (2009) production statistics and estimations of climate change impacts on agriculture according to emission scenario B1 of IPCC. The annual energy potential of raw biomass obtained from crop residues and bioenergy crops cultivated in fields set aside from food production is at present 122–133 EJ, 86–93 EJ or 47–50 EJ, when a vegetarian, moderate or affluent diet is followed, respectively....

  15. Energy from biomass. Ethics and practice; Energie aus Biomasse. Ethik und Praxis

    Energy Technology Data Exchange (ETDEWEB)

    Franke, Silke (ed.)

    2013-06-01

    The implementation of the energy policy turnaround inevitably results in modifications of the land use and landscape. Besides the discussion about the environmental consequences, a debate about ethical issues increasingly arose. Under this aspect, the booklet under consideration contains the following contributions: (1) Renewable energy sources - the role of bioenergy (Bernard Widmann); (2) Energy from biomass - An ethic analysis (Stephan Schleissing); (3) Culture for our landscapes - combination of biomass and water protection (Frank Wagener); (4) Cultivation of energy crops - short rotation coppices (Frank Burger); (5) Bioenergy region Straubing-Bogen: Excellent in the matter of renewable energy sources (Josefine Eichwald); (6) Rural development - motor for the energy policy turnaround (Roland Spiller).

  16. Energy Ontologies: Wind, Biomass, and Fossil Transportation

    OpenAIRE

    Heidi Scott

    2016-01-01

    This article uses literary sources to draw ontological distinctions among three distinct energy sources: wind power, biomass, and fossil fuels. The primary aim is to demonstrate how radically our fossil fuel regime has changed human ontology in the last two centuries during which we have entered the Anthropocene. Because this radical transformation contains myriad elements, this article will focus on transportation: the speed, quality, and quantity of travel permitted by successive energy sou...

  17. Developing Government Renewable Energy Projects

    Energy Technology Data Exchange (ETDEWEB)

    Kurt S. Myers; Thomas L. Baldwin; Jason W. Bush; Jake P. Gentle

    2012-07-01

    The US Army Corps of Engineers has retained Idaho National Laboratory (INL) to conduct a study of past INL experiences and complete a report that identifies the processes that are needed for the development of renewable energy projects on government properties. The INL has always maintained expertise in power systems and applied engineering and INL’s renewable energy experiences date back to the 1980’s when our engineers began performing US Air Force wind energy feasibility studies and development projects. Over the last 20+ years of working with Department of Defense and other government agencies to study, design, and build government renewable projects, INL has experienced the do’s and don’ts for being successful with a project. These compiled guidelines for government renewable energy projects could include wind, hydro, geothermal, solar, biomass, or a variety of hybrid systems; however, for the purpose of narrowing the focus of this report, wind projects are the main topic discussed throughout this report. It is our thought that a lot of what is discussed could be applied, possibly with some modifications, to other areas of renewable energy. It is also important to note that individual projects (regardless the type) vary to some degree depending on location, size, and need but in general these concepts and directions can be carried over to the majority of government renewable energy projects. This report focuses on the initial development that needs to occur for any project to be a successful government renewable energy project.

  18. Availability of biomass for energy production. GRAIN: Global Restrictions on biomass Availability for Import to the Netherlands

    International Nuclear Information System (INIS)

    The report includes reports of activities that were carried out within the GRAIN project. This evaluation shows that the (technical) potential contribution of bio-energy to the future world's energy supply could be very large. In theory, energy farming on current agricultural land could contribute over 800 EJ, without jeopardising the world's food supply. Use of degraded lands may add another 150 EJ, although this contribution will largely come from crops with a low productivity. The growing demand for bio-materials may require a biomass input equivalent to 20-50 EJ, which must be grown on plantations when existing forests are not able to supply this growing demand. Organic wastes and residues could possibly supply another 40-170 EJ, with uncertain contributions from forest residues and potentially a very significant role for organic waste, especially when bio-materials are used on a larger scale. In total, the upper limit of the bio-energy potential could be over 1000 EJ per year. This is considerably more than the current global energy use of 400 EJ. However, this contribution is by no means guaranteed: crucial factors determining biomass availability for energy are: (1) Population growth and economic development; (2) The efficiency and productivity of food production systems that must be adopted worldwide and the rate of their deployment in particular in developing countries; (3) Feasibility of the use of marginal/degraded lands; (4) Productivity of forests and sustainable harvest levels; (5) The (increased) utilisation of bio-materials. Major transitions are required to exploit this bio-energy potential. It is uncertain to what extent such transitions are feasible. Depending on the factors mentioned above, the bio-energy potential could be very low as well. At regional/local level the possibilities and potential consequences of biomass production and use can vary strongly, but the insights in possible consequences are fairly limited up to now. Bio-energy offers

  19. Biomass in the future European energy market

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Charles [DONG Energy, Fredericia (Denmark)

    2011-07-01

    With Europe's ambitious target in mind to increase its share of renewable energy to 20% (a 34% share of energy for electricity production), this paper discusses the importance and challenges resulting from increased use of biomass. Biomass comprises a wide range of fuels featuring a variety of properties and qualities, and both usage and import will lead to dilemmas in relation to sustainability, area usage and food production. The paper also discusses Eurelectric's reasons why import criteria should be defined. The challenge of establishing the required capacity and the perspectives involved in added use are addressed here based on Danish experience and observations from two decades of development programmes. The development comprises generation of infrastructure, co-firing of straw and coal, gasification, new ways of exploiting the energy in household waste and second-generation bio-ethanol production. (orig.)

  20. Biomass energy systems information user study

    Energy Technology Data Exchange (ETDEWEB)

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-02-01

    The results of a series of telephone interviews with groups of users of information on biomass energy systems are described. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. This report is 1 of 10 discussing study results. The overall study provides baseline data about information needs in the solar community. Results from 12 biomass groups of respondents are analyzed in this report: Federally Funded Researchers (2 groups), Nonfederally Funded Researchers (2 groups), Representatives of Manufacturers (2 groups), Representatives of State Forestry Offices, Private Foresters, Forest Products Engineers, Educators, Cooperative Extension Service County Agents, and System Managers. The data will be used as input to the determination of information products and services the Solar Energy Research Institute, the Solar Energy Information Data Bank Network, and the entire information outreach community should be preparing and disseminating.

  1. Energy production from marine biomass (Ulva lactuca)

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaisen, L.; Daugbjerg Jensen, P.; Svane Bech, K. [Danish Technological Institute (DTI), Taastrup (Denmark)] [and others

    2011-11-15

    In this project, methods for producing liquid, gaseous and solid biofuel from the marine macroalgae Ulva lactuca has been studied. To get an understanding of the growth conditions of Ulva lactuca, laboratory scale growth experiments describing N, P, and CO{sub 2} uptake and possible N{sub 2}O and CH{sub 4} production are carried out. The macroalgae have been converted to bioethanol and methane (biogas) in laboratory processes. Further the potential of using the algae as a solid combustible biofuel is studied. Harvest and conditioning procedures are described together with the potential of integrating macroalgae production at a power plant. The overall conclusions are: 1. Annual yield of Ulva lactuca is 4-5 times land-based energy crops. 2. Potential for increased growth rate when bubbling with flue gas is up to 20%. 3. Ethanol/butanol can be produced from pretreated Ulva of C6 and - for butanol - also C5 sugars. Fermentation inhibitors can possibly be removed by mechanical pressing. The ethanol production is 0,14 gram pr gram dry Ulva lactuca. The butanol production is lower. 4. Methane yields of Ulva are at a level between cow manure and energy crops. 5. Fast pyrolysis produces algae oil which contains 78 % of the energy content of the biomass. 6. Catalytic supercritical water gasification of Ulva lactuca is feasible and a methane rich gas can be obtained. 7. Thermal conversion of Ulva is possible with special equipment as low temperature gasification and grate firing. 8. Co-firing of Ulva with coal in power plants is limited due to high ash content. 9. Production of Ulva only for energy purposes at power plants is too costly. 10. N{sub 2}O emission has been observed in lab scale, but not in pilot scale production. 11. Analyses of ash from Ulva lactuca indicates it as a source for high value fertilizers. 12. Co-digestion of Ulva lactuca together with cattle manure did not alter the overall fertilization value of the digested cattle manure alone. (LN)

  2. Process evaluation of the Regional Biomass Energy Program

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, C.R.; Brown, M.A.; Perlack, R.D.

    1994-03-01

    The U.S. Department of Energy (DOE) established the Regional Biomass Energy Program (RBEP) in 1983 to increase the production and use of biomass energy resources. Through the creation of five regional program (the Great Lakes, Northeast, Pacific Northwest, Southeast, and West), the RBEP focuses on regionally specific needs and opportunities. In 1992, Oak Ridge National (ORNL) conducted a process evaluation of the RBEP Program designed to document and explain the development of the goals and strategies of the five regional programs; describe the economic and market context surrounding commercialization of bioenergy systems; assess the criteria used to select projects; describe experiences with cost sharing; identify program accomplishments in the transfer of information and technology; and offer recommendations for program improvement.

  3. Biomass Futures: an integrated approach for estimating the future contribution of biomass value chains to the European energy system and inform future policy formation

    NARCIS (Netherlands)

    Panoutsou, C.; Bauen, A.; Alexopoulou, E.; Elbersen, B.S.

    2013-01-01

    The Biomass Futures project assessed the role of bioenergy in meeting Europe's renewable energy targets established by the 2009 Renewable Energy Directive for 2020 and provided outlooks to 2030 and 2050. This perspective sets the scene for the approaches followed within Biomass Futures, and presents

  4. Alternative biomass sources for thermal energy generation

    Science.gov (United States)

    Steensen, Torge; Müller, Sönke; Dresen, Boris; Büscher, Olaf

    2015-04-01

    Traditionally, renewable biomass energy sources comprise forests, agriculture and other large vegetation units. With the increasing demand on those landscape elements, including conflicts of interest to nature conservation and food production, the research focus should also incorporate smaller vegetation entities. In this study, we highlight the availability of small-scale features like roadside vegetation or hedges, which are rarely featured in maps. Roadside vegetation, however, is well known and regularly trimmed to allow the passing of traffic but the cut material is rarely harvested. Here, we combine a remote-sensing-based approach to quantify the seasonal biomass harvests with a GIS-based method to outline optimal transportation routes to, and the location of, storage units and power plants. Our main data source will be ESA's upcoming Sentinel-2 optical satellite. Spatial resolution of 10 meters in the visible and near infrared requires the use of spectral unmixing to derive end member spectra of the targeted biomass objects. Additional stereo-matching and LIDAR measurements allow the accompanying height estimate to derive the biomass volume and its changes over time. GIS data bases from the target areas allow the discrimination between traditional, large features (e.g. forests and agriculture) as well as previously unaccounted for, smaller vegetation units. With the mapped biomass occurrence and additional, GIS-based infrastructure information, we can outline transport routes that take into account local restrictions like nature reserve areas, height or weight limitations as well as transport costs in relation to potential gains. This information can then be processed to outline optimal places for power plants. To simulate the upcoming Sentinel-2 data sets, we use airborne data from the AISA Eagle, spatially and spectrally down-sampled to match Sentinel 2's resolution. Our test scenario is an area in western Germany, the Kirchheller Heide, close to the city

  5. BIOMASS-TO-ENERGY FEASIBILITY STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Cecil T. Massie

    2002-09-03

    The purpose of this study was to assess the economic and technical feasibility of producing electricity and thermal energy from biomass by gasification. For an economic model we chose a large barley malting facility operated by Rahr Malting Co. in Shakopee, Minnesota. This plant provides an excellent backdrop for this study because it has both large electrical loads and thermal loads that allowed us to consider a wide range of sizes and technical options. In the end, eleven scenarios were considered ranging from 3.1 megawatts (MWe) to 19.8 MWe. By locating the gasification and generation at an agricultural product processing plant with large electrical and thermal loads, the expectation was that some of the limitations of stand-alone biomass power plants would be overcome. In addition, since the process itself created significant volumes of low value biomass, the hope was that most of the biomass gathering and transport issues would be handled as well. The development of low-BTU gas turbines is expected to fill a niche between the upper limit of multiple spark ignited engine set systems around 5 MWe and the minimum reasonable scale for steam turbine systems around 10 MWe.

  6. Conversion of biomass into energy source

    International Nuclear Information System (INIS)

    This study assists the identification of possible application and markets of the CHP-plants in the NAS states, and forms the first part of a detailed study on economical and ecological prospects of small scale and large heat pipe reformers in NAS. It is well known that the energy strategy of the European Union, foresees the increase of the participation of the renewable energy from the total of the energy resources of the European Union, up to 12% in 2010. This participation is of a great importance for the adequate reduction of green house effect gases. From the energy production point of view it is proven the fact that in 2010 the production of renewable energy will be: electricity - 675 tWh; heat - 80 Mtoe (930 TWh). From the above mentioned energy demand, the biomass will cover: electricity - 230 TWh-34,1%; heat - 75 Mtoe (93,8%)

  7. LCA of biomass-based energy systems

    DEFF Research Database (Denmark)

    Tonini, Davide; Astrup, Thomas Fruergaard

    2012-01-01

    Decrease of fossil fuel consumption in the energy sector is an important step towards more sustainable energy production. Environmental impacts related to potential future energy systems in Denmark with high shares of wind and biomass energy were evaluated using life-cycle assessment (LCA). Based...... on the reference year 2008, energy scenarios for 2030 and 2050 were assessed. For 2050 three alternatives for supply of transport fuels were considered: (1) fossil fuels, (2) rapeseed based biodiesel, and (3) Fischer–Tropsch based biodiesel. Overall, the results showed that greenhouse gas emissions......–2100 × 106 m2/PJ depending on the amounts and types of energy crops introduced. Use of fossil diesel in the transport sector appeared to be environmentally preferable over biodiesel for acidification, aquatic eutrophication and land occupation. For global warming, biodiesel production via Fischer–Tropsch was...

  8. Singular Strategic Project for the Development, Demonstration and Evaluation of Energy Crop Biomass-based Energy Production in Spain (On Cultivos); Proyecto Singular y Estragetico para el desarrollo, demostracion y evaluacion de la produccion de energia en Espana a partir de la biomasa de cultivos energeticos (On Cultivos)

    Energy Technology Data Exchange (ETDEWEB)

    Manzano, E.; Maleta, E. J.; Carrasco, J. E.

    2008-07-01

    The Singular Strategic Project (PSE) On Cultivos, Development, demonstration and evaluation of the viability of energy crop biomass-based energy production in Spain, has been under way since 2005. This article describes the project objectives and general data indicating the current project status and the most relevant preliminary results obtained since it began. The On Cultivos PSE is proving to be an effective tool to channel the R and D efforts required to achieve the integral commercial implementation of energy crops in Spain. (Author) 4 refs.

  9. Energy from biomass and wastes XIV

    International Nuclear Information System (INIS)

    The papers presented at IGT's conference in Lake Buena Vista, Florida, January 29--February 2, 1990, on energy from biomass and waste are reproduced in this book. This conference was the fifteenth in the series which began in January 1976. The objectives were: to renew and correlate information on new undertakings and achievements in the field; to assess current research and development results with respect to short- and long-range applications; to provide perspectives that relate biomass energy to potential markets and commercialization opportunities; and to survey and evaluate the technical and economic factors related to demonstration and commercial plants. The papers in this book are divided into several categories--Introduction (Papers 1--5), Environmental Issues (Papers 6--15), Biomass Production (Papers 16--23), Combustion (Papers 24--31), Thermal Gasification (Papers 32--39), Biological Gasification (Papers 39--47), Thermal Liquefaction (Paper 40--52), and Alcohol Fuels (Papers 53--60). Individual papers are abstracted and indexed separately

  10. Green energy. Biomass fuels and the environment

    International Nuclear Information System (INIS)

    The United Nations Environment Programme has been concerned with energy/environment issues since it was first set up after the United Nations Conference on the Human Environment held in Stockholm in 1972. In the late 1970s, UNEP compiled three comprehensive reports on the the environmental impacts of the production and use of fossil fuels, nuclear energy and renewable energy sources. In 1987 it was decided to update the volume on renewable energy since knowledge of biofuels and their effects on the environment had greatly improved. Among many innovations, Brazil's decision to embark on a major, and now successful, programme to produce ethanol from sugarcane as a substitute vehicle fuel is one of the most significant. At the same time, energy tree crops, agroforestry systems and the use of plantations for environmental improvement have become issues of key importance to sustainable development in developing countries. Biomass fuels, of course, have always been important in terms of the numbers of people who use them; the significant change during the 1980s was that the potential advantages of these fuels took on a new significance in the light of environmental degradation and related issues such as greenhouse warming. The biomass fuels began to be considered as attractive energy sources in their own right - not simply as 'last resort' fuels for developing countries with only limited energy options. While this development may solve some environmental problems, it certainly raises others - the improper utilization of biomass fuels in the past has been responsible for deforestation, desertification and the ill health of many millions of the women in developing countries who use biomass fuels in unventilated huts. These issues currently affect about half of the world population. The new UNEP study was intended to provide an up-to-date evaluation of the environmental issues raised by the use of biomass fuels, and hence to reduce or eliminate their adverse impacts while

  11. A review of biomass energy potential

    International Nuclear Information System (INIS)

    This article reviews some recent development in biomass utilisation systems in Malaysia. The technology reviewed are direct combustion of biomass , wood briquetting technology, pyrolysis of biomass and gasification of wood in Malaysia

  12. Stakeholder preferences towards the sustainable development of CDM projects: Lessons from biomass (rice husk) CDM project in Thailand

    International Nuclear Information System (INIS)

    This research applies both quantitative and qualitative methods to investigate stakeholder preferences towards sustainable development (SD) priorities in Clean Development Mechanism (CDM) projects. The CDM's contribution to SD is explored in the context of a biomass (rice husk) case study conducted in Thailand. Quantitative analysis ranks increasing the usage of renewable energy as the highest priority, followed by employment and technology transfer. Air pollution (dust) is ranked as the most important problem. Preference weights expressed by experts and local resident are statistically different in the cases of: employment generation; emission reductions; dust; waste disposal; and noise. Qualitative results, suggest that rice husk CDM projects contribute significantly to SD in terms of employment generation, an increase in usage of renewable energy, and transfer of knowledge. However, rice husk biomass projects create a potential negative impact on air quality. In order to ensure the environmental sustainability of CDM projects, stakeholders suggest that Thailand should cancel an Environmental Impact Assessment (EIA) exemption for CDM projects with an installed capacity below 10 MW and apply it to all CDM projects. - Highlights: → Stakeholders rank increasing the usage of renewable energy as the highest priority. → Biomass (rice husk) CDM projects create a potential negative impact on air quality. → Rice husk CDM projects cannot give an extra income to farmers. → Preference weights expressed by experts and local residents are statistically different.

  13. Stakeholder preferences towards the sustainable development of CDM projects: Lessons from biomass (rice husk) CDM project in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Parnphumeesup, Piya, E-mail: pp66@hw.ac.uk [International Centre for Island Technology (ICIT), Institute of Petroleum Engineering, Heriot-Watt University, Old Academy, Back Road, Stromness, Orkney KW16 3AW, Scotland (United Kingdom); Kerr, Sandy A. [International Centre for Island Technology (ICIT), Institute of Petroleum Engineering, Heriot-Watt University, Old Academy, Back Road, Stromness, Orkney KW16 3AW, Scotland (United Kingdom)

    2011-06-15

    This research applies both quantitative and qualitative methods to investigate stakeholder preferences towards sustainable development (SD) priorities in Clean Development Mechanism (CDM) projects. The CDM's contribution to SD is explored in the context of a biomass (rice husk) case study conducted in Thailand. Quantitative analysis ranks increasing the usage of renewable energy as the highest priority, followed by employment and technology transfer. Air pollution (dust) is ranked as the most important problem. Preference weights expressed by experts and local resident are statistically different in the cases of: employment generation; emission reductions; dust; waste disposal; and noise. Qualitative results, suggest that rice husk CDM projects contribute significantly to SD in terms of employment generation, an increase in usage of renewable energy, and transfer of knowledge. However, rice husk biomass projects create a potential negative impact on air quality. In order to ensure the environmental sustainability of CDM projects, stakeholders suggest that Thailand should cancel an Environmental Impact Assessment (EIA) exemption for CDM projects with an installed capacity below 10 MW and apply it to all CDM projects. - Highlights: > Stakeholders rank increasing the usage of renewable energy as the highest priority. > Biomass (rice husk) CDM projects create a potential negative impact on air quality. > Rice husk CDM projects cannot give an extra income to farmers. > Preference weights expressed by experts and local residents are statistically different.

  14. The transfer of technologies for biomass energy utilization

    International Nuclear Information System (INIS)

    The first part of the paper presents the common perception of technology transfer as a trade relationship rather than a systematic approach to establish a complex technological capacity in a given field. It aims to correct this misperception by introducing some other ideas: (a) the need to support the people, adjust the relevant organizations and establish the capacities to provide the products and services; (b) the typical life cycles of technologies from the initial concept to the final stages of transfer and sustainable dissemination; (c) the needs and expectations of the groups targeted by the technologies for biomass energy utilization. The second part of the paper discusses one example of successful technology transfer: the use of large biomass-burning stoves for food preparation in public institutions and private restaurants in East Africa. The third part of the paper highlights two non-technological barriers to the transfer of biomass energy technologies: (a) weak market forces and business interests and a large number of State activities and projects and (b) conflicting interests of end-users, craftsmen, private and public project partners, which can threaten the success of the attempted technology transfer, even after local adaptation. Finally, suggestions are made for overcoming some of these problems. (author)

  15. Biomass use in chemical and mechanical pulping with biomass-based energy supply

    Energy Technology Data Exchange (ETDEWEB)

    Holmberg, Jonas M.; Gustavsson, Leif [Department of Engineering Physics and Mathematics, Mid Sweden University, SE-831 25 Oestersund (Sweden)

    2007-12-15

    The pulp and paper industry is energy intensive and consumes large amounts of wood. Biomass is a limited resource and its efficient use is therefore important. In this study, the total amount of biomass used for pulp and for energy is estimated for the production of several woodfree (containing only chemical pulp) and mechanical (containing mechanical pulp) printing paper products, under Swedish conditions. Chemical pulp mills today are largely self-sufficient in energy while mechanical pulp mills depend on large amounts of external electricity. Technically, all energy used in pulp- and papermaking can be biomass based. Here, we assume that all energy used, including external electricity and motor fuels, is based on forest biomass. The whole cradle-to-gate chain is included in the analyses. The results indicate that the total amount of biomass required per tonne paper is slightly lower for woodfree than for mechanical paper. For the biomass use per paper area, the paper grammage is decisive. If the grammage can be lowered by increasing the proportion of mechanical pulp, this may lower the biomass use per paper area, despite the higher biomass use per unit mass in mechanical paper. In the production of woodfree paper, energy recovery from residues in the mill accounts for most of the biomass use, while external electricity production accounts for the largest part for mechanical paper. Motor fuel production accounts for 5-7% of the biomass use. The biomass contained in the final paper product is 21-42% of the total biomass use, indicating that waste paper recovery is important. The biomass use was found to be about 15-17% lower for modelled, modern mills compared with mills representative of today's average technology. (author)

  16. Hydropower and biomass as renewable energy sources in Turkey

    International Nuclear Information System (INIS)

    When talking about renewable energy sources today, the most important and economical energy sources for Turkey are hydropower and biomass.The present study gives a review of production, consumption, and economics of hydropower and biomass as renewable energy sources in Turkey. Turkey has a total gross hydropower potential of 433 GW, but only 125 GW of the total hydroelectric potential of Turkey can be economically used. By the commissioning of new hydropower plants, which are under construction, 36% of the economically usable potential of the country could be tapped. On the other hand, biomass (wood and wastes) energy is the second most important renewable energy source for Turkey. However, the biomass energy sources of Turkey are limited. In 1998, the biomass share of the total energy consumption of the country is 10%. In this study, the potential of important biomass energy sources and animal solid wastes of the country were determined. The effects of hydropower and biomass usage on the environment were also discussed. Considering total cereal products and fatty seed plants, approximately 50-60 million tons per year of biomass and 8-10 million tons of solid matter animal waste are produced, and 70% of total biomass is seen as being usable for energy. Some useful suggestions and recommendations are also presented. The present study shows that there is an important potential for hydropower and biomass energy sources in Turkey. (author)

  17. Energy Ontologies: Wind, Biomass, and Fossil Transportation

    Directory of Open Access Journals (Sweden)

    Heidi Scott

    2016-06-01

    Full Text Available This article uses literary sources to draw ontological distinctions among three distinct energy sources: wind power, biomass, and fossil fuels. The primary aim is to demonstrate how radically our fossil fuel regime has changed human ontology in the last two centuries during which we have entered the Anthropocene. Because this radical transformation contains myriad elements, this article will focus on transportation: the speed, quality, and quantity of travel permitted by successive energy sources. To consider the comparative literatures of energy as they relate to transportation, we will begin with wind, then consider muscle-driven biomass giving way to coal locomotion, and conclude with the highest octane fuel, petroleum. The central interest is in how the fuel depicted in literature illuminates historical moments in which the interfaces between self, society, and nature are configured by specific energy regimes. By using literature as a source text, we may arrive at an emotionally and philosophically more robust synthesis of energy history than the social and natural sciences, relying upon objective accounts and statistics, are able to provide. By re-reading literature through the lens of the Anthropocene, we gain perspective on how earlier insights into the relationship between energy and experience can inform our explorations of today’s ontological reality. Energy literature instructs us out of the fossil fuel mindset of world domination and back to a physical realm in which we are small actors in a world guided by capricious forces. Such a reality requires hard muscular work and emotional immersion to restore an ethic of care and sustainability.

  18. The international trade in biomass for energy.

    OpenAIRE

    Ha-Duong, Minh

    2014-01-01

    This truck will soon leave the Baitang (Kampuchea) Plc factory to export its cargo of rice husk to Thailand, where it will be used as a biomass fuel. A few years ago, in the west of Cambodge, rice husk was a waste that rice millers had to pay farmers to come and pick up. Now, some is exported to Thailand. Rice husk has become an internationally traded commodity. Researchers of the Clean Energy and Sustainable Development (CleanED) at the University of Science and Technology Hanoi (USTH) in co...

  19. Energy from waste. Utilization of biomass and substitute fuels; Energie aus Abfall. Biomasse- und Ersatzbrennstoffverwertung

    Energy Technology Data Exchange (ETDEWEB)

    Fricke, K.; Bergs, C.G.; Kosak, G.; Wallmann, R. (eds.)

    2008-07-01

    Within the 69th symposium of ANS e.V. (Braunschweig, Federal Republic of Germany) with the title 'Energy from waste - utilization of biomass and refuse-derived fuels' at 16th and 17th September, 2008, the following lectures were held: (1) Resource efficient operation in waste management (Klaus Fricke, Tobias Bahr, Timo Thiel, Oliver Kugelstadt); (2) A contribution of the waste management to a sustainable energy supply (principle lecture by Helge Wendenburg and Claus-Gerhard Bergs); (3) Energy from waste - Potentials and possibilities of utilization (Rainer Wallmann, Thomas Fritz); (4) Attempts of optimisation for the supply of secondary fuels and energy by waste incinerators (Bernhard Gallenkemper); (5) Supply of power by thermal waste treatment facilities (Arnd I. Urban); (6) Updating a fermentation compound in the compost heap Goettingen (Ottomar Ruehl); (7) An innovative concept for the utilization of waste biomass as an energy resource (Jens-Kai Wegener, Wolfgang Luecke); (8) A future orientated technological conversion of the energetical utilization of biomass (Achim Loewen); (9) Synergistic effects of a co-fermentation with clarification sludge and liquid manure (Norbert Dichtl, Wiebke Rand); (10) Further Development of anaerobic technology from microbiology to utilization of gas (Frank Scholwin, Michael Nelles); (11) Dry fermentation of biomass from waste (Rolf Lieberneiner, Ulf Theilen); (12) Solid-Liquid separation of municipal waste - an experience report VM press (Gregor Stadtmueller); (13) A cost effective total solution of the treatment of biological wastes with partial flow fermentation (Martin Mayer); (14) An exemplary economical optimisation in the composting of wastes by means of a preinstalled fermentation technology with utilization of waste heat (Peter Lutz); (15) Secondary fuels - processing and utilization (Thomas Pretz); (16) Sewage sludge - waste or substitute fuel? (Armin Uhrig); (17) Utilisation of substitute fuels in the paper

  20. Biomass gasification to heat, electricity and biofuels. HighBio project publication

    Energy Technology Data Exchange (ETDEWEB)

    Lassi, U.; Wikman, B. (eds.)

    2011-07-01

    Renewable energy and the use of biomass in energy production promotes sustainable development and decreases the use of fossil fuels. Biomass, e.g. wood chips can be used in the production of heat and electricity, as well as being used as a biofuel component and novel product for the chemical industry. Efficient utilisation of biomass requires a high level of knowledge and the development of new processes to create a new way of thinking. In this process, international co-operation plays a significant role. The aim of the HighBio project was to produce new information on biomass gasification and the utilisation opportunities of product gas in biofuel and biochemicals production. The project was also aimed at studying utilisation properties of biogasification ashes in distributed energy production. Small-scaled CHP plants can be used for simultaneous heat and power production by gasifying wood chips and by burning energy intensive product gas. Compared with thermal combustion, particulate emissions from gasification are lower, which also contributes to the EU's ever tightening emission legislation. Several small and middle scale companies in the Northern part of Finland and Sweden have worked with biomass gasification, and during the project, the birth of new ones has been seen. In this development stage, researchers of the HighBio project have also been strongly involved. Increased use of renewable energy opens up new possibilities for entrepreneurship and the birth of new companies, especially in rural areas. In order to enable these opportunities, we need research data from the universities, novel innovations, and especially their successful commercialisation. The HighBio project has also contributed to tackling those challenges by arranging research seminars and meetings to companies and other interest groups, as well as by establishing research activities and collaborations. Regional collaboration combined with national and international research networks

  1. First Biomass Conference of the Americas: Energy, environment, agriculture, and industry. Proceedings, Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    This conference was designed to provide a national and international forum to support the development of a viable biomass industry. Although papers on research activities and technologies under development that address industry problems comprised part of this conference, an effort was made to focus on scale-up and demonstration projects, technology transfer to end users, and commercial applications of biomass and wastes. The conference was divided into these major subject areas: Resource Base, Power Production, Transportation Fuels, Chemicals and Products, Environmental Issues, Commercializing Biomass Projects, Biomass Energy System Studies, and Biomass in Latin America. The papers in this second volume cover Transportation Fuels, and Chemicals and Products. Transportation Fuels topics include: Biodiesel, Pyrolytic Liquids, Ethanol, Methanol and Ethers, and Commercialization. The Chemicals and Products section includes specific topics in: Research, Technology Transfer, and Commercial Systems. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  2. Current and potential utilisation of biomass energy in Fiji

    International Nuclear Information System (INIS)

    Energy from biomass accounts for an average of 43% of the primary energy used in developing countries, with some countries totally dependent on biomass for all their energy needs. The most common use for biomass for energy is the provision of heat for cooking and heating; other uses include steam and electricity generation and crop and food drying. Fiji, a developing country, uses energy from wood and coconut wastes for cooking and copra drying. Bagasse from sugar mills is used to generate process steam as well as some 15 MW of electricity, for mill consumption and for sale to the national grid. Other, relatively small scale uses for biomass include the generation of steam and electricity for industry. This paper attempts to quantify the amount of biomass, in its various forms, available in Fiji and assesses the current potential utilisation of biomass for energy in Fiji. (author)

  3. Coming on stream: Financing biomass and alternative-fuel projects in the 1990s

    International Nuclear Information System (INIS)

    Biomass-energy and alternative-fuels projects make environmental sense, but do they make economic sense? In the current project-finance environment, moving ideas off the drawing board and transforming them into reality takes more than vision and commitment; it takes the ability to understand and address the financial markets' perception of risk. This paper examines the state of the project-finance market, both as it pertains to biomass and alternative-fuels projects and in more general terms, focusing on what project sponsors and developers need to dot to obtain both early-state and construction/term financing, and the role a financial adviser can play in helping ensure access to funds at all stages

  4. Biomass Energy Systems and Resources in Tropical Tanzania

    OpenAIRE

    Wilson, Lugano

    2010-01-01

    Tanzania has a characteristic developing economy, which is dependent on agricultural productivity.  About 90% of the total primary energy consumption of the country is from biomass.  Since the biomass is mostly consumed at the household level in form of wood fuel, it is marginally contributing to the commercial energy supply.  However, the country has abundant energy resources from hydro, biomass, natural gas, coal, uranium, solar, wind and geothermal.  Due to reasons that include the limited...

  5. Opportunities for utilizing waste biomass for energy in Uganda

    OpenAIRE

    Bingh, Lars Petter

    2004-01-01

    The energy system in Uganda is largely based on biomass and especially wood. The high demand for wood results in fast reductions of the available wood stocks. This thesis is focusing on biomass waste as a supplement to the existing energy carriers. This thesis includes agricultural residues from the main cash and food crops in Uganda, as well as municipal solid waste (MSW) in Kampala. The available biomass waste resources are mapped, the energy content is examined and possible ways of utiliza...

  6. Sustainable global energy supply based on lignocellulosic biomass from afforestation of degraded areas

    Science.gov (United States)

    Metzger, Jürgen O.; Hüttermann, Aloys

    2009-02-01

    An important aspect of present global energy scenarios is the assumption that the amount of biomass that can be grown on the available area is so limited that a scenario based on biomass as the major source of energy should be unrealistic. We have been investigating the question whether a Biomass Scenario may be realistic. We found that the global energy demand projected by the International Energy Agency in the Reference Scenario for the year 2030 could be provided sustainably and economically primarily from lignocellulosic biomass grown on areas which have been degraded by human activities in historical times. Moreover, other renewable energies will contribute to the energy mix. There would be no competition with increasing food demand for existing arable land. Afforestation of degraded areas and investment for energy and fuel usage of the biomass are not more expensive than investment in energy infrastructure necessary up to 2030 assumed in the fossil energy based Reference Scenario, probably much cheaper considering the additional advantages such as stopping the increase of and even slowly reducing the CO2 content of the atmosphere, soil, and water conservation and desertification control. Most importantly, investment for a Biomass Scenario would be actually sustainable, in contrast to investment in energy-supply infrastructure of the Reference Scenario. Methods of afforestation of degraded areas, cultivation, and energetic usage of lignocellulosic biomass are available but have to be further improved. Afforestation can be started immediately, has an impact in some few years, and may be realized in some decades.

  7. Current Status and Prospects of Biomass Energy Industry in China

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    At present biomass energy industry is in its infancy in China and it has a bright future. Biomass energy production used grain as raw materials has entered industrialization phase.Some key technologies of biomass energy industry are coming to mature.China has issued relevant industrial standards laws and regulations,and has provided support in finance,loan,tax,etc.But China's biomass energy industry is faced with many problems which need to be solved.For example,taking grain as raw materials is unsustain...

  8. Financial and energy analyses of woody biomass plantations

    International Nuclear Information System (INIS)

    This paper provides an economic analysis of a short rotation woody crop (SRWC) plantation system established the financial and energy costs of woody biomass and related net values for the total system. A production model for commercial-sized Populus plantations was developed from a series of research projects sponsored by the U.S,. Department of Energy's Short Rotation Woody Crops Program. The design was based on hybrid poplar planted on good quality agricultural sites at a density of 2100 cutting ha-1. Growth was forecast at 16 Mg(OD) ha-1 yr-1 on a six-year rotation cycle. All inputs associated with plantation establishment, annual operations, and land use were identified on a financial and energy cost basis (Strauss et al. 1989). Net values for the system projected a minimum financial profit and a major net energy gain. Financial profit was limited by the high market value of energy inputs as compared to the low market value of the energy output. The net energy gain was attributed to the solar energy captured through photosynthesis. Principal input costs to the overall system, on both a financial and energy basis, were land rent and the harvesting/transportation requirements

  9. Biomass-the task of ecology and factor in energy

    International Nuclear Information System (INIS)

    Constantly decreasing primary energy sources and environmental issues are part of the reason to seek alternatives by developing new technologies. Biomass as organic matter of vegetable origin and animals can be recycled, processed and used for the extraction of energy. In the presented work looking at the different types of biomass as a potential source for energy. A rating of the energy potential of different types of biomass. Furthermore, an overview of the main methods for processing and to generate energy. The final result of the work is a classification of different types of biomass and grouping in terms of their efficient processing to produce energy on a particular method. Key words: biomass energy, bioenergy, potential, ecology, bio-product, processing, gasification, pyrolysis, fermentation., burning

  10. Limiting biomass consumption for heating in 100% renewable energy systems

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Lund, Henrik; Connolly, David

    2012-01-01

    for other sectors, but while still enabling a 100% renewable energy system. The analyses of heating technologies shows that district heating (DH) systems are important in limiting the dependence on biomass and create cost effective solutions. DH systems are especially important in renewable energy...... such as large-scale solar thermal, large heat pumps, geothermal heat, industrial surplus heat, and waste incineration. Where the energy density in the building stock is not high enough for DH to be economical, geothermal heat pumps can be recommended for individual heating systems, even though biomass......The utilisation of biomass poses large challenges in renewable energy systems while buildings account for a substantial part of the energy supply even in 100% renewable energy systems. In this paper the focus is on how the heating sector can reduce its consumption of biomass, thus leaving biomass...

  11. Biomass I. Science Activities in Energy [and] Teacher's Guide.

    Science.gov (United States)

    Oak Ridge Associated Universities, TN.

    Designed for science students in fourth, fifth, and sixth grades, the activities in this unit illustrate principles and problems related to biomass as a form of energy. (The word biomass is used to describe all solid material of animal or vegetable origin from which energy may be extracted.) Twelve student activities using art, economics,…

  12. Biomass Burning Observation Project (BBOP) Final Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Kleinman, LI [Brookhaven National Lab. (BNL), Upton, NY (United States); Sedlacek, A. J. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-01-01

    The Biomass Burning Observation Project (BBOP) was conducted to obtain a better understanding of how aerosols generated from biomass fires affect the atmosphere and climate. It is estimated that 40% of carbonaceous aerosol produced originates from biomass burning—enough to affect regional and global climate. Several biomass-burning studies have focused on tropical climates; however, few campaigns have been conducted within the United States, where millions of acres are burned each year, trending to higher values and greater climate impacts because of droughts in the West. Using the Atmospheric Radiation Measurement (ARM) Aerial Facility (AAF), the BBOP deployed the Gulfstream-1 (G-1) aircraft over smoke plumes from active wildfire and agricultural burns to help identify the impact of these events and how impacts evolve with time. BBOP was one of very few studies that targeted the near-field time evolution of aerosols and aimed to obtain a process-level understanding of the large changes that occur within a few hours of atmospheric processing.

  13. Financing of renewable energy from biomass in the Central and Eastern Europe

    International Nuclear Information System (INIS)

    In this paper author presents activities of International Finance Corporation in the field of renewable energy. Author is focused on a description of one of last program called 'Commercializing Energy Efficiency Finance' (CEEF) than to cover all available related products or programs. The CEEF program represents an innovative approach leading to sustainable financing of EE projects including RE biomass projects. Financing of some EE projects in the Central and Eastern Europe is described

  14. Environmental impacts of biomass energy resource production and utilization

    International Nuclear Information System (INIS)

    The purpose of this paper is to provide a broad overview of the environmental impacts associated with the production, conversion and utilization of biomass energy resources and compare them with the impacts of conventional fuels. The use of sustainable biomass resources can play an important role in helping developing nations meet their rapidly growing energy needs, while providing significant environmental advantages over the use of fossil fuels. Two of the most important environmental benefits biomass energy offers are reduced net emissions of greenhouse gases, particularly CO2, and reduced emissions of SO2, the primary contributor to acid rain. The paper also addresses the environmental impacts of supplying a range of specific biomass resources, including forest-based resources, numerous types of biomass residues and energy crops. Some of the benefits offered by the various biomass supplies include support for improved forest management, improved waste management, reduced air emissions (by eliminating the need for open-field burning of residues) and reduced soil erosion (for example, where perennial energy crops are planted on degraded or deforested land). The environmental impacts of a range of biomass conversion technologies are also addressed, including those from the thermochemical processing of biomass (including direct combustion in residential wood stoves and industrial-scale boilers, gasification and pyrolysis); biochemical processing (anaerobic digestion and fermentation); and chemical processing (extraction of organic oils). In addition to reducing CO2 and SO2, other environmental benefits of biomass conversion technologies include the distinctly lower toxicity of the ash compared to coal ash, reduced odours and pathogens from manure, reduced vehicle emissions of CO2, with the use of ethanol fuel blends, and reduced particulate and hydrocarbon emissions where biodiesel is used as a substitute for diesel fuel. In general, the key elements for achieving

  15. Oil palm biomass as a sustainable energy source: A Malaysian case study

    International Nuclear Information System (INIS)

    It has been widely accepted worldwide that global warming is by far the greatest threat and challenge in the new millennium. In order to stop global warming and to promote sustainable development, renewable energy is a perfect solution to achieve both targets. Presently million hectares of land in Malaysia is occupied with oil palm plantation generating huge quantities of biomass. In this context, biomass from oil palm industries appears to be a very promising alternative as a source of raw materials including renewable energy in Malaysia. Thus, this paper aims to present current scenario of biomass in Malaysia covering issues on availability and sustainability of feedstock as well as current and possible utilization of oil palm biomass. This paper will also discuss feasibility of some biomass conversion technologies and some ongoing projects in Malaysia related to utilization of oil palm biomass as a source of renewable energy. Based on the findings presented, it is definitely clear that Malaysia has position herself in the right path to utilize biomass as a source of renewable energy and this can act as an example to other countries in the world that has huge biomass feedstock. (author)

  16. Renewable biomass energy: Understanding regional scale environmental impacts

    International Nuclear Information System (INIS)

    If biomass energy is to become a significant component of the US energy sector, millions of acres of farmland must be converted to energy crops. The environmental implications of this change in land use must be quantitatively evaluated. The land use changes will be largely driven by economic considerations. Farmers will grow energy crops when it is profitable to do so. Thus, models which purport to predict environmental changes induced by energy crop production must take into account those economic features which will influence land use change. In this paper, we present an approach for projecting the probable environmental impacts of growing energy crops at the regional scale. The approach takes into account both economic and environmental factors. We demonstrate the approach by analyzing, at a county-level, the probable impact of switchgrass production on erosion, evapotranspiration, nitrate in runoff, and phosphorous fertilizer use in two multi-county subregions within the Tennessee Valley Authority (TVA) region. Our results show that the adoption of switchgrass production will have different impacts in each subregion as a result of differences in the initial land use and soil conditions in the subregions. Erosion, evapotranspiration, and nitrate in runoff are projected to decrease in both subregions as switchgrass displaces the current crops. Phosphorous fertilizer applications are likely to increase in one subregion and decrease in the other due to initial differences in the types of conventional crops grown in each subregion. Overall these changes portend an improvement in water quality in the subregions with the increasing adoption of switchgrass

  17. Biomass energy: status and future trends for Quebec

    International Nuclear Information System (INIS)

    The current status of biomass energy in the Province of Quebec was reviewed. For electrical energy production uses, biomass combustibles include peat, forestry, agro-food and urban waste products. These materials are used directly as combustibles in the production of electricity, or are first processed through gasification, pyrolysis, anaerobic digestion or fermentation into combustible products. In Quebec, 176.2 MW of electricity is produced yearly from biomass materials, mostly waste products of the forestry industry. New biomass avenues are actively being explored, including bio- gases produced from municipal landfill sites, gasification of used automobile tires and combustion of demolition waste. Although their contribution is minimal, biomass materials can nevertheless contribute a few hundred megawatts of energy to the Province's overall energy budget. 2 figs

  18. Process, cost modeling and simulations for integrated project development of biomass for fuel and protein

    International Nuclear Information System (INIS)

    The construction of the models for biomass project development are described. These models, first constructed using QPRO electronic spread sheet for Windows, are now being developed with the aid of visual and object oriented program as tools using DELPHI V.1 for windows and process simulator SUPERPRO, V.2.7 Intelligent Inc. These models render the process development problems with economic objectives to be solved very rapidly. The preliminary analysis of cost and investments of biomass utilisation projects which are included for this study are: steam, ammonia, carbon dioxide and alkali pretreatment process, methane gas production using anaerobic digestion process, aerobic composting, ethanol fermentation and distillation, effluent treatments using high rate algae production as well as cogeneration of energy for drying. The main project under developments are the biomass valuation projects with the elephant (Napier) grass, sugar cane bagasse and microalgae, using models for mass balance, equipment and production cost. The sensibility analyses are carried out to account for stochastic variation of the process yield, production volume, price variations, using Monte Carlo method. These models allow the identification of economical and scale up problems of the technology. The results obtained with few preliminary project development with few case studies are reported for integrated project development for fuel and protein using process and cost simulation models. (author)

  19. Assessing Ohio's Biomass Resources for Energy Potential Using GIS

    OpenAIRE

    Jeanty, P. Wilner; Warren, Dave; Hitzhusen, Fred

    2004-01-01

    This recently completed AEDE study funded by Ohio DOD involves a geo-referenced inventory by county of Ohio biomass resources for energy. Categories include forest and crop residues, livestock manure, municipal solid waste and food processing waste. This is an update and expansion of an earlier (1982) inventory of biomass by Hitzhusen et al. It also disaggregates and expands a study by Walsh et al. in 2000 which ranked Ohio 11th among the 50 states in total biomass availability. By estimating...

  20. Biomass gasification technology nationalization and human resources formation in North region: GASEIBRAS Project

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, Suani Teixeira; Velazquez, Silvia Maria Stortini Gonzalez; Santos, Sandra Maria Apolinario dos; Lora, Beatriz Acquaro [Centro Nacional de Referencia em Biomassa (CENBIO), Sao Paulo, SP (Brazil)], e-mail: suani@iee.usp.br, e-mail: sgvelaz@iee.usp.br, e-mail: sandra@iee.usp.br, e-mail: blora@iee.usp.br

    2008-07-01

    Gasification systems already developed in Brazil are not adjusted to the electricity production at isolated communities, because this models that supply a gas with satisfactory properties to this end, are projected to operate with coal and not with biomass in natura, what implies in the biomass transformation in coal with all the environmental impacts and loss of thermodynamic income associates to this practical. These problems had been surpassed with the GASEIFAMAZ Project development realized by CENBIO in the last two years. The project, that it aimed to make possible the electricity supply expansion in communities without energy access in the country north region, consisted of two gasification systems importation from the Indian Institute of Science, tests accomplishment and its transference to an isolated community. (author)

  1. Biomass energy: the scale of the potential resource.

    Science.gov (United States)

    Field, Christopher B; Campbell, J Elliott; Lobell, David B

    2008-02-01

    Increased production of biomass for energy has the potential to offset substantial use of fossil fuels, but it also has the potential to threaten conservation areas, pollute water resources and decrease food security. The net effect of biomass energy agriculture on climate could be either cooling or warming, depending on the crop, the technology for converting biomass into useable energy, and the difference in carbon stocks and reflectance of solar radiation between the biomass crop and the pre-existing vegetation. The area with the greatest potential for yielding biomass energy that reduces net warming and avoids competition with food production is land that was previously used for agriculture or pasture but that has been abandoned and not converted to forest or urban areas. At the global scale, potential above-ground plant growth on these abandoned lands has an energy content representing approximately 5% of world primary energy consumption in 2006. The global potential for biomass energy production is large in absolute terms, but it is not enough to replace more than a few percent of current fossil fuel usage. Increasing biomass energy production beyond this level would probably reduce food security and exacerbate forcing of climate change. PMID:18215439

  2. Impact analysis of expanding biomass energy use to rural poverty in tropical Asia

    OpenAIRE

    Siregar, Masdjidin; Sugino, Tomohide

    2008-01-01

    Since the Kyoto Protocol came into effect in 2005, more attention has been paid to the development of biomass resource use. The tropical Asian countries have large potential for biomass production. In order to reduce imported fuel, the Government of Indonesia is attempting to find alternative renewable energy, particularly in the form of biofuel. The report presents the prospects for biofuel projects and the possible impacts on rural society based on a case study of bioethanol production from...

  3. Robust and sustainable bioenergy: Biomass in the future Danish energy system; Robust og baeredygtig bioenergi: Biomasse i fremtidens danske energisystem

    Energy Technology Data Exchange (ETDEWEB)

    Skoett, T.

    2012-09-15

    The publication is a collection of articles about new, exciting technologies for the production of bioenergy, which received support from Danish research programmes. The green technologies must be sustainable so that future generations' opportunities for bioenergy use is not restricted, and the solutions must be robust in relation to security of supply, costs and energy economy. In this context, research plays a crucial role. Research is especially carried out within the use of residues as bio-waste, straw, wood and manure for energy purposes, but there are also projects on energy crops, as well as research into how algae from the sea can increase the production of biomass. (LN)

  4. Exploring biomass energy of microorganisms using data mining methods

    International Nuclear Information System (INIS)

    Energy crisis is a global issue and biomass energy is treated as a potential alternative energy. Biomass energy is a renewable energy that is converted by the use of abundant biomass. Archaea, which are suitable microorganisms for biomass converting into biomass energy, can survive under ammonia oxidation environment and release energy through the genetic metabolism. In this study, we analyzed and classified 27 kinds of Archaea, by using Fuzzy C-Means algorithm. Based on the concept of genetic metabolism, 'codon usage bias' of three amino acids, Leucine, Serine and Arginine in Archaea, were chosen as the source for cluster analysis. Results showed a strong relationship between the finding clusters and traditional biological classifications, especially for the 'Codon Usage Number' of Leucine. It is concluded that No. 15, No. 21 and No. 23, which have significant correlation with biological classification due to the same Genus species, would be found out as the potential Archaea by Fuzzy C-Means algorithm for biomass conversion. In summary, this study provides a method of clustering analysis to explore the microorganism for biomass.

  5. The necessity of biomass energy for the Turkish economy

    Energy Technology Data Exchange (ETDEWEB)

    Surmen, Y. [Karadeniz Technical Univ., Faculty of Economics and Business Administrative Sciences, Trabzon (Turkey)

    2003-02-15

    Biomass energy is derived from plant and animal material, such as wood from natural forests, waste from agricultural and forestry processes, and industrial, human, or animal wastes. Various agricultural residues such as grain dust, wheat straw, and hazelnut shell are available in Turkey as the sources of biomass energy. Among the biomass energy sources, fuelwood seems to be one of the most interesting because its share of the total energy production of Turkey is high at 21% and the techniques for converting it to useful energy are not necessarily sophisticated. The total forest potential of Turkey is around 935 million m{sup 3} with an annual growth of about 28 million m{sup 3}. The consumption of forest biomass compared to total energy has slightly decreased from 22 to 14% during the last decade because the consumption of liquefied petroleum gases is increasing continuously. (Author)

  6. Potential contribution of biomass to the sustainable energy development

    International Nuclear Information System (INIS)

    Biomass is a renewable energy source and its importance will increase as national energy policy and strategy focuses more heavily on renewable sources and conservation. Biomass is considered the renewable energy source with the highest potential to contribute to the energy needs of modern society for both the industrialized and developing countries worldwide. The most important biomass energy sources are wood and wood wastes, agricultural crops and their waste byproducts, municipal solid waste, animal wastes, waste from food processing, and aquatic plants and algae. Biomass is one potential source of renewable energy and the conversion of plant material into a suitable form of energy, usually electricity or as a fuel for an internal combustion engine, can be achieved using a number of different routes, each with specific pros and cons. Currently, much research has been focused on sustainable and environmental friendly energy from biomass to replace conventional fossil fuels. The main objective of the present study is to investigate global potential and use of biomass energy and its contribution to the sustainable energy development by presenting its historical development.

  7. Energy from biomass and biofuels. Current market initiatives. Altener seminar, Amsterdam, Netherlands, 26 May 1997

    International Nuclear Information System (INIS)

    Biomass, organic wastes, hydroelectric power, wind power and solar energy contribute to approximately 6% of the current energy demand in the European Union (EU). Goals are set by the EU to double this share in the energy production in the next decade. The EU Altener Programme aims to increase the use of renewables as source of energy, the trade in renewable energy products and related equipment and services, supporting a wide variety of projects, sector and market studies, events and technical standards. The Agricultural and Forestrial Biomass Network (AFB-Nett) promotes and stimulates, as part of the Altener Programme, the implementation and commercial exploitation of energy from biomass by the initiation of among other things business opportunities and information exchange. The AFB-Nett National Coordinator for the Netherlands, Novem, organised in this respect the title seminar. 85 participants from several European countries attended presentations covering the whole bio-energy chain: from information on biomass supply, through trade, logistics and pretreatment issues up to discussion on conversion technologies. It became clear to the audience that it is a necessary condition to take into account the total chain when developing projects in a specific field of this chain. However, non-technical aspects must be considered as well. Therefore, in developing business opportunities the challenge remains to connect all good project initiatives covering parts of the chain into a few 'whole-chain'-projects

  8. Biomass as an energy source: an Asian-Pacific perspective

    International Nuclear Information System (INIS)

    Biomass is the most commonly used renewable source of energy in the region covered by the Economic and Social Commission for Asia and the Pacific, making up an average of 50% of energy supplies in the developing countries. However, experience over the past one and a half decades in rural energy supply in the ESCAP region suggests that biomass resources are unlikely to compete with conventional supplies in meeting expanded rural energy needs for fuel, electricity and fertilizers. Nevertheless, biomass, especially wood and agricultural residues, will remain the main energy source in most countries of the region for the next two decades. The development of biomass energy systems in the ESCAP region is at different stages for different types of biomass resources. Efforts have been concentrated in six areas: direct combustion, gasification, co-generation, anaerobic digestion, densification and dendrothermal processes. Among the biomass technologies presently being promoted in the region, biogas and cooking stove programmes are the largest in terms of scale, operations and coverage. Co-generation is promising as its economic advantages make it attractive to industrial consumers, particularly the booming food and fibre production and processing industries, which produce enough biomass feedstock to warrant installing co-generation facilities. Despite its potential, the production of liquid fuel from energy crops is presently taking place in only a few countries. The major constraints on extending the use of biomass include the difficulty of assessing resources, poor local acceptance of technology (mainly for social and economic reasons), lack of financial resources and manpower, environmental concerns, the absence of up-to-date local technology and the lack of after-sales services. Appropriate technologies to develop and harness the region's vast biomass resource base to augment energy supplies, particularly in rural areas, has been a major issue in the developing

  9. Biomass energy research program 2008 - 2011; Energieforschungsprogramm Biomasse fuer die Jahre 2008-2011

    Energy Technology Data Exchange (ETDEWEB)

    Hermle, S.; Binggeli, D.; Guggisberg, B.

    2008-07-01

    This report published by the Swiss Federal Office of Energy (SFOE) discusses the Swiss research program on energy from biomass for the years 2008 to 2011. The Swiss government's energy research programs are defined every four years in co-operation with the Swiss Federal Energy Research Commission. This paper describes the concept for the biomass area. Research into modern technological concepts and ways of transforming biomass into energy are discussed and main areas of research to be addressed are discussed. Three main technological areas are defined: combustion, gasification and anaerobic fermentation. Important themes to be examined include system optimisation and integration, quality assurance and the promotion of new technologies. National and international networking between research and practice is commented on, as are the possibilities for the funding of the work.

  10. The current state of the California biomass energy industry

    International Nuclear Information System (INIS)

    During the decade of the 1980s the California biomass energy industry grew from a few isolated facilities located mostly at pulp mills into the largest biomass energy industry in the world. Currently, more than fifty biomass powered electricity generating facilities provide the state with some 850 Megawatts (MW) of generating capacity, most of it interconnected to the state's electric utility systems. Each year, more than ten million tons of wood and agricultural wastes in the state are converted into fuel, rather than being disposed of using conventional, environmentally costly methods like open burning and landfill burial. As the 1980s began, the California biomass energy industry was in a nascent state. Optimism was blooming within the wood-products and agricultural sectors of California, who foresaw an opportunity to turn costly wastes into profits. At the same time, the independent energy industry itself was being launched. Interest in biomass energy development was spreading to the engineering and construction industries and the financial community as well. A great variety of firms and individuals were engaged in the development of biomass power plants and biomass fuel sources. The second half of the 1980s saw the fruits of the developmental activity that began in the first half of the decade. Biomass energy facilities were entering construction and coming on-line in increasing numbers, and the demand for biomass fuels was increasing in step. As the decade was coming to an end, biomass fuel supplies were hard put to meet the demand, yet a huge number of new facilities entered operation in 1990. This extreme growth spurt of new generating capacity caused a fuel crisis and a shake-out in the industry just as it was entering full-scale operation. The Crisis of Success had been reached. More recently an equilibrium has been achieved in which fuel prices are at levels that produce adequate supplies, while allowing profitable operations at the power plants

  11. Energy generation from biomass with the aid of fuel cells; Energetische Nutzung von Biomasse mit Brennstoffzellenverfahren

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    To provide an opportunity for information exchange at the interface between biomass use for energy generation and developers of fuel cells, the workshop 'Energy generation from biomass with the aid of fuel cells' was held by the Fachagentur Nachwachsende Rohstoffe on 9 and 10 December 1998. The lectures and discussions permit to assess better the opportunities and restraints resulting from the use of biogenous fuel gas in fuel cells. (orig.) [German] Um an der Schnittstelle zwischen der energetischen Nutzung von Biomasse und den Entwicklern von Brennstoffzellen einen Informationsaustausch zu ermoeglichen, wurde am 9. und 10. Dezember 1998 der Workshop 'Energetische Nutzung von Biomasse mit Brennstoffzellenverfahren' von der FNR veranstaltet. Die Vortraege und die Diskussion erlauben eine bessere Einschaetzung der Moeglichkeiten und Restriktionen, die sich bei dem Einsatz von biogenen Brenngasen in Brennstoffzellen ergeben. (orig.)

  12. Still many hurdles ahead for energy out of biomass

    International Nuclear Information System (INIS)

    The Government of Baden-Wuerttemberg believes that the present conditions in the Land do not permit a drastic increase of the share of biomass in overall energy production by way of topping an additional energy source. The conditions necessary for substantially increasing the use of biomass (notably straw, wood and biogas) as an energy source would first have to be set up not only nationwide but also in the states of the European Union. The Government nevertheless believes that there still is some scope for a more intensive utilisation of biomass. (orig./HP)

  13. Battleground Energy Recovery Project

    Energy Technology Data Exchange (ETDEWEB)

    Bullock, Daniel [USDOE Gulf Coast Clean Energy Application Center, Woodlands, TX (United States)

    2011-12-31

    In October 2009, the project partners began a 36-month effort to develop an innovative, commercial-scale demonstration project incorporating state-of-the-art waste heat recovery technology at Clean Harbors, Inc., a large hazardous waste incinerator site located in Deer Park, Texas. With financial support provided by the U.S. Department of Energy, the Battleground Energy Recovery Project was launched to advance waste heat recovery solutions into the hazardous waste incineration market, an area that has seen little adoption of heat recovery in the United States. The goal of the project was to accelerate the use of energy-efficient, waste heat recovery technology as an alternative means to produce steam for industrial processes. The project had three main engineering and business objectives: Prove Feasibility of Waste Heat Recovery Technology at a Hazardous Waste Incinerator Complex; Provide Low-cost Steam to a Major Polypropylene Plant Using Waste Heat; and Create a Showcase Waste Heat Recovery Demonstration Project.

  14. Biomass energy success stories: a portfolio illustrating current economic uses of renewable biomass energy

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-03-01

    This second edition of the Biomass Energy Success Stories covers a wide range of examples of organizations which have experienced economic benefits by substituting renewable biomass energy for non-renewable fossil fuels. In addition to the broader spectrum of industry seen to be pursuing this approach, the cases illustrate a move towards innovative and technologically more sophisticated approaches. For example, the Quebec Community's thermal accumulator acts as a buffer to accommodate the variable fuel value of boiler fuel consisting of unpredictable residues of variable moisture content. By this innovative approach, the quality of steam to its year-round customer can be held within the contractual limits. Another unique development appears in the use of the LAMB-CARGATE wet cell burner which is able to cope with wood residue fuels containing up to 70% moisture. Two of the more interesting and promising developments in the race to substitute renewable energy for fossil fuels are Fluidized Bed and Fuel-alcohol on-farm distilleries. For this reason appendices are included giving some useful insights concerning them.

  15. Technoeconomic assessment of biomass to energy

    International Nuclear Information System (INIS)

    A spreadsheet-based decision support system has been developed that allows easy evaluation of integrated biomass to electricity and biomass to ethanol systems. The Bioenergy Assessment Model (BEAM) has been developed to allow the techno-economic assessment of biomass to electricity and biomass to ethanol schemes, including investigation of the interfacing issues. Technical and economic parameters can be assessed for a variety of feedstocks, conversion technologies and generating cycles. Production modules are currently available for biomass supply from short rotation coppice and conventional forestry relevant to conditions and practices in NW Europe. The biomass conversion modules include pre-treatment (reception, storage, handling, comminution, screening and drying); atmospheric gasification (generic gasifier, wet gas scrubbing, dual fuel engine); pressure gasification (generic gasifier, hot gas filtration, gas turbine combined cycle); fast pyrolysis for liquid bio-fuel-oil (pyrolyser, oil storage, pilot-injected diesel engine); combustion (fluid bed combuster steam turbine), conventional acid hydrolysis fermentation and the NREL SSF process to ethanol. In addition there is a further module which can be used to examine the collection, mass burn and generation of electricity from MSW. BEAM has been used, and the results presented in this paper, to determine the costs of generating bio-electricity from short rotation coppice and conventional forestry over a range of power outputs and for each conversion technology. Alternative feedstock supply strategies have been examined and relations drawn between delivered feedstock cost and cost of electricity. (author)

  16. Prospects of biomass energy in Bangladesh: an alternative development

    International Nuclear Information System (INIS)

    Biomass plays an important and complex role in the lives of the people of rural Bangladesh, where more than 80 per cent of the country's population live. The problems relating to biomass do not have to do merely with the question of supply of wood, or of food or of fuel; the problems are linked to competition in the variegations of land-use and to differing end-uses of by-products that may compete with or complement each other. The paper discusses the present pattern and amount of biomass consumption with a view to assessing the future prospect of biomass supply in meeting various needs. Regarding biomass energy supply, several important conclusions can be drawn: a) the energy consumption pattern in Bangladesh is characterized by heavy dependence on traditional fuel; b) the domestic sector uses 80 per cent of the total biomass fuel and c) in the industrial sector, about 76 per cent of the energy used consists of biomass fuel, mainly for processing agricultural products. Several observations are made pertaining to different sectors of biomass fuel demand. (author)

  17. Environmental implications of increased biomass energy use. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Miles, T.R. Sr.; Miles, T.R. Jr. [Miles (Thomas R.), Portland, OR (United States)

    1992-03-01

    This study reviews the environmental implications of continued and increased use of biomass for energy to determine what concerns have been and need to be addressed and to establish some guidelines for developing future resources and technologies. Although renewable biomass energy is perceived as environmentally desirable compared with fossil fuels, the environmental impact of increased biomass use needs to be identified and recognized. Industries and utilities evaluating the potential to convert biomass to heat, electricity, and transportation fuels must consider whether the resource is reliable and abundant, and whether biomass production and conversion is environmentally preferred. A broad range of studies and events in the United States were reviewed to assess the inventory of forest, agricultural, and urban biomass fuels; characterize biomass fuel types, their occurrence, and their suitability; describe regulatory and environmental effects on the availability and use of biomass for energy; and identify areas for further study. The following sections address resource, environmental, and policy needs. Several specific actions are recommended for utilities, nonutility power generators, and public agencies.

  18. The Potential for Biomass District Energy Production in Port Graham, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Charles Sink, Chugachmiut; Keeryanne Leroux, EERC

    2008-05-08

    This project was a collaboration between The Energy & Environmental Research Center (EERC) and Chugachmiut – A Tribal organization Serving the Chugach Native People of Alaska and funded by the U.S. Department of Energy (DOE) Tribal Energy Program. It was conducted to determine the economic and technical feasibility for implementing a biomass energy system to service the Chugachmiut community of Port Graham, Alaska. The Port Graham tribe has been investigating opportunities to reduce energy costs and reliance on energy imports and support subsistence. The dramatic rise in the prices of petroleum fuels have been a hardship to the village of Port Graham, located on the Kenai Peninsula of Alaska. The Port Graham Village Council views the forest timber surrounding the village and the established salmon industry as potential resources for providing biomass energy power to the facilities in their community. Benefits of implementing a biomass fuel include reduced energy costs, energy independence, economic development, and environmental improvement. Fish oil–diesel blended fuel and indoor wood boilers are the most economical and technically viable options for biomass energy in the village of Port Graham. Sufficient regional biomass resources allow up to 50% in annual heating savings to the user, displacing up to 70% current diesel imports, with a simple payback of less than 3 years for an estimated capital investment under $300,000. Distributive energy options are also economically viable and would displace all imported diesel, albeit offering less savings potential and requiring greater capital. These include a large-scale wood combustion system to provide heat to the entire village, a wood gasification system for cogeneration of heat and power, and moderate outdoor wood furnaces providing heat to 3–4 homes or community buildings per furnace. Coordination of biomass procurement and delivery, ensuring resource reliability and technology acceptance, and arbitrating

  19. Solar-assisted biomass-district heating: projects in Austria and operational data; Solarunterstuetzte Biomasse-Fernwaermeversorgung: Projekte in Oesterreich und Betriebsdaten

    Energy Technology Data Exchange (ETDEWEB)

    Faninger, G. [Institut fuer Interdisziplinaere Forschung und Fortbildung der Universitaeten Klagenfurt, Innsbruck und Wien (IFF), Klagenfurt (Austria)

    1998-12-31

    In recent years small-volume biomass district heating systems (district heat grids) have attracted increasing interest in Austria. By the end of 1997 some 359 biomass-district heating systems with an overall capacity of approximately 483 MW were in operation. If a biomass-district heating plant and a solar plant are combined the solar plant can supply most of the heat required outside the heating season. At present Austria runs 12 solar-assisted biomass-district heating grids with collector areas between 225 square metres and 1,250 square metres. In order to run these biomass-district heating systems in an economically and technically efficient way it is necessary to assure high quality in terms of planning, construction and operation. A list of criteria is set up on the basis of first operational data in order to evaluate energy efficiency and economic performance. These criteria should be applied in order to ensure that energy, environment and economy are equally considered in the planning and construction of solar-assisted biomass-district heating plants. They should also be helpful for the approval procedures of projects. (orig.) [Deutsch] Kleinraeumige Biomasse-Fernwaermeanlagen (Nahwaermenetze) fanden in den letzten Jahren zunehmendes Interesse in Oesterreich. So waren Ende 1997 insgesamt 359 Biomasse-Fernwaermeanlagen mit einer installierten Gesamtleistung von etwa 483 MW in Betrieb. Die Kombination einer Biomasse-Fernwaermeanlage mit einer Solaranlage bringt den Vorteil, dass die Waermebereitstellung ausserhalb der Heizsaison zu einem hohen Anteil ueber die Solaranlage vorgenommen werden kann. Derzeit werden in Oesterreich 12 solarunterstuetzte Biomasse-Nahwaermenetze mit Kollektorflaechen von 225 m{sup 2} bis 1.250 m{sup 2} betrieben. Um einen moeglichst effizienten und damit auch wirtschaftlichen Betrieb von solarunterstuetzten Biomasse-Fernwaermeanlagen zu gewaehrleisten, werden hohe Anforderungen an Planung, Ausfuehrung und Betrieb gestellt. Auf der

  20. Making energy projects happen

    International Nuclear Information System (INIS)

    In today's business environment, control of energy cost is a major challenge for businesses, institutions, and governmental agencies. New technologies are available to reduce energy costs through cogeneration, cheaper fuels, or other means. Often it is not possible for a Plant Owner to undertake such a project, regardless of how desirable it may be. The authors of this paper show that by applying the principles of Project Structuring and developing a comprehensive project team, the desired reduction in energy costs can be achieved. Various examples are cited, and guidelines are given for an Owner to use

  1. Emission reductions from woody biomass waste for energy as an alternative to open burning.

    Science.gov (United States)

    Springsteen, Bruce; Christofk, Tom; Eubanks, Steve; Mason, Tad; Clavin, Chris; Storey, Brett

    2011-01-01

    Woody biomass waste is generated throughout California from forest management, hazardous fuel reduction, and agricultural operations. Open pile burning in the vicinity of generation is frequently the only economic disposal option. A framework is developed to quantify air emissions reductions for projects that alternatively utilize biomass waste as fuel for energy production. A demonstration project was conducted involving the grinding and 97-km one-way transport of 6096 bone-dry metric tons (BDT) of mixed conifer forest slash in the Sierra Nevada foothills for use as fuel in a biomass power cogeneration facility. Compared with the traditional open pile burning method of disposal for the forest harvest slash, utilization of the slash for fuel reduced particulate matter (PM) emissions by 98% (6 kg PM/BDT biomass), nitrogen oxides (NOx) by 54% (1.6 kg NOx/BDT), nonmethane volatile organics (NMOCs) by 99% (4.7 kg NMOCs/BDT), carbon monoxide (CO) by 97% (58 kg CO/BDT), and carbon dioxide equivalents (CO2e) by 17% (0.38 t CO2e/BDT). Emission contributions from biomass processing and transport operations are negligible. CO2e benefits are dependent on the emission characteristics of the displaced marginal electricity supply. Monetization of emissions reductions will assist with fuel sourcing activities and the conduct of biomass energy projects. PMID:21305889

  2. The development and utilization of biomass energy resources in China

    International Nuclear Information System (INIS)

    Biomass energy resources are abundant in China and have reached 730 million tonnes of coal equivalent, representing about 70% of the energy consumed by households. China has attached great importance to the development and utilization of its biomass energy resources and has implemented programmes for biogas unit manufacture, more efficient stoves, fuelwood development and thermal gasification to meet new demands for energy as the economy grows. The conclusion is that the increased use of low-carbon and non-carbon energy sources instead of fossil fuels is an important option for energy and environment strategy and has bright prospects in China. (author)

  3. Biomass supply management for advanced energy: applications in developing countries

    International Nuclear Information System (INIS)

    Advanced biomass energy systems, including new biomass resource enhancement technologies, should be developed only where compelling situations for investors or communities exist to economically do so. These situations, or minimum viable operating conditions, are assessed from a pragmatic perspective. They are determined by specific circumstances and divergent interests that take time to define and integrate. Customized solutions are necessary and can change quickly with geography and market circumstances New technologies offer more options but are not necessarily the best. The example of energy crop technology is used to demonstrate the interdependencies that exist between new resource enhancement technology and biomass energy systems operations. The ability to genetically increase the energy density of energy crops is compared to other enhancement measures such as increasing the number of tonnes grown per hectare-year, reducing costs per tonne and improving other characteristics. Issues that need to be considered include significant knowledge gaps, lack of commitments in R and D, specificity of conversion system requirements, handling capabilities and opportunity costs. Broader biomass procurement strategies, which may be more important than resource enhancement technologies, are discussed. Biomass cost-supply is utilized as a strong analytical feature to evaluate the effectiveness of biomass procurement strategies and new biomass production technologies. Some past experiences are reviewed. Cost-supply is assessed from the perspective of the whole biomass energy system to expose the interdependencies between production operations, conversion scale and technologies, and community markets and service. Investment limits, for example, may be as important a determinant as the cost-efficiency of a new technology, which, in turn, affects biomass cost-supply-quality requirements. The cost of new technologies can then be compared to the changed performance of the overall

  4. Energy conversion of biomass in coping with global warming

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, Shin-ya; Ogi, Tomoko; Minowa, Tomoaki [National Inst. for Resources and Environment, Tsukuba, Ibaraki (Japan)

    1993-12-31

    The main purpose of the present paper is to propose energy conversion technologies of biomass in coping with global warming. Among thermochemical conversion, liquid fuel production by high pressure process is mainly introduced. Biomass is a term used to describe materials of biological origin, either purpose-grown or arising as by-products, residues or wastes from forestry, agriculture and food processing. Such biomass is a renewable energy sources dependent on solar energy. Through photosynthesis, plants converts carbon dioxide into organic materials used in their growth. Energy can be recovered from the plant materials by several processes, the simplest way is burning in air. As far as biomass is used in this way, there is no atmospheric accumulation of carbon dioxide making no effect on the Greenhouse Effect, provided that the cycle of regrowth and burning is sustained.

  5. The use of biomass in Denmark. Goal and means in ''Energy 21''

    International Nuclear Information System (INIS)

    This conference paper discusses the role of biomass in Denmark up to 2005. The energy action plan ''Energy 21'', which was adopted in 1996, conforms to the goal of reducing the CO2 emission by 20% by 2005 compared to the 1988 level and by 50% by 2030. In 2030, 20% of the net energy consumption will come from biomass. The instruments for achieving this ambitious goal take the form of agreements with the electricity utilities, taxes and charges, and selective subsidies to the use of biomass technologies, to electricity produced from biomass, and to research and development. Revisions of the Biomass Agreement may contribute to achieving the goals. The market conditions for the electricity utilities for buying straw and wood chips have been made more flexible and biogas may now be used for decentralized combined heat and power in natural gas regions. The development and demonstration projects have paid off by having brought the development to a level where a forced biomass utilization is possible. The development of biomass is undergoing a comprehensive readjustment. 1 figure, 5 tabs

  6. Integration of Lignocellulosic Biomass into Renewable Energy Generation Concepts

    Directory of Open Access Journals (Sweden)

    KUSCH Sigrid

    2009-08-01

    Full Text Available In all European countries various lignocellulosic biomasses such as agricultural residues (straw, strawcontaining dung or fractions from municipal solid waste are available in large amounts, but currently hardly any of thispotential is being used for energy generation. This paper reviews the different options for including lignocellulosicbiomass into renewable energy generation schemes. Not all wastes are suitable to be treated by principally availabletechniques such as anaerobic digestion, ethanol production or thermal valorisation. The present paper gives an overviewof utilisation options for lignocellulosic biomass to either produce biofuels or to integrate such biomass into anaerobicdigestion. Biorefinery concepts are discussed as well.

  7. Wood Biomass Sustainability under the Renewable Energy Directive

    OpenAIRE

    GORDEEVA, Yelena

    2014-01-01

    The article studies the role of wood biomass as a source of renewable energy in the EU and the potential sustainability risks associated with the rapid growth in the use of wood stimulated by the Renewable Energy Directive (RED). Secondly the article discusses the RED's sustainability criteria and their applicability to wood biomass. Thirdly, the article analyzes the current legal framework for forest management that is referred to by the European Commission as "enough to provide assurances f...

  8. Complex analysis of energy production technologies from solid biomass in the Ukraine

    Science.gov (United States)

    Zheliezna, T. A.; Drozdova, O. I.

    2014-04-01

    The results of the energetic, economic, and environmental analyses of technologies of energy production from solid biomass are considered. Examples of the introduction of the technology of the direct combustion of biomass (straw and wood) in a boiler installation, a domestic boiler, and a combined heat and power plant (CHPP) are considered. The results indicate the energetic and environmental reasonability of implementation of such projects. From the economic viewpoint, the introduction of the boilers that use the biomass is profitable with the substitution of natural gas for the state-financed and industrial consumers, and the CHPP operation with the use of biomass is profitable with selling the electrical energy by the "feed-in" tariff.

  9. Sustainable Energy (SUSEN) project

    International Nuclear Information System (INIS)

    Research Centre Rez and University of West Bohemia started preparatory work on the 'Sustainable Energy' project, financed from EU structural funds. The goals and expected results of the project, its organization, estimated costs, time schedule and current status are described. (orig.)

  10. Production of Solid sustainable Energy Carriers from biomass by means of TORrefaction (SECTOR)

    Energy Technology Data Exchange (ETDEWEB)

    Witt, Janet; Bienert, Kathrin [DBFZ Deutsches Biomasseforschungszentrum gemeinnuetzige GmbH, Leipzig (Germany). Bereich Bioenergiesysteme; Zwart, Robin; Kiel, Jaap; Englisch, Martin; Wojcik, Magdalena

    2012-07-01

    SECTOR is a large-scale European project with a strong consortium of over 20 partners from industry and science. The project is focussed on the further development of torrefaction-based technologies for the production of solid bioenergy carriers up to pilot-plant scale and beyond, and on supporting the market introduction of torrefaction-based bioenergy carriers as a commodity renewable solid fuel. The torrefaction of biomass materials is considered to be a very promising technology for the promotion of the large-scale implementation of bioenergy. During torrefaction biomass is heated up in the absence of oxygen to a temperature of 250-320 C. By combining torrefaction with pelletisation or briquetting, biomass materials can be converted into a high-energy-density commodity solid fuel or bioenergy carrier with improved behaviour in (long-distance) transport, handling and storage, and also with superior properties in many major end-use applications. Torrefaction has the potential to provide a significant contribution to an enlarged raw material portfolio for biomass fuel production inside Europe by including both agricultural and forestry biomass. In this way, the SECTOR project is expected to shorten the time-to-market of torrefaction technology and to promote market introduction within stringent sustainability boundary conditions. The European Union provides funding for this project within the Seventh Framework Programme. The project has a duration of 42 months and started in January 2012. (orig.)

  11. Energy Efficiency of Biogas Produced from Different Biomass Sources

    International Nuclear Information System (INIS)

    Malaysia has different sources of biomass like palm oil waste, agricultural waste, cow dung, sewage waste and landfill sites, which can be used to produce biogas and as a source of energy. Depending on the type of biomass, the biogas produced can have different calorific value. At the same time the energy, being used to produce biogas is dependent on transportation distance, means of transportation, conversion techniques and for handling of raw materials and digested residues. An energy systems analysis approach based on literature is applied to calculate the energy efficiency of biogas produced from biomass. Basically, the methodology is comprised of collecting data, proposing locations and estimating the energy input needed to produce biogas and output obtained from the generated biogas. The study showed that palm oil and municipal solid waste is two potential sources of biomass. The energy efficiency of biogas produced from palm oil residues and municipal solid wastes is 1.70 and 3.33 respectively. Municipal solid wastes have the higher energy efficiency due to less transportation distance and electricity consumption. Despite the inherent uncertainties in the calculations, it can be concluded that the energy potential to use biomass for biogas production is a promising alternative.

  12. Energy Efficiency of Biogas Produced from Different Biomass Sources

    Science.gov (United States)

    Begum, Shahida; Nazri, A. H.

    2013-06-01

    Malaysia has different sources of biomass like palm oil waste, agricultural waste, cow dung, sewage waste and landfill sites, which can be used to produce biogas and as a source of energy. Depending on the type of biomass, the biogas produced can have different calorific value. At the same time the energy, being used to produce biogas is dependent on transportation distance, means of transportation, conversion techniques and for handling of raw materials and digested residues. An energy systems analysis approach based on literature is applied to calculate the energy efficiency of biogas produced from biomass. Basically, the methodology is comprised of collecting data, proposing locations and estimating the energy input needed to produce biogas and output obtained from the generated biogas. The study showed that palm oil and municipal solid waste is two potential sources of biomass. The energy efficiency of biogas produced from palm oil residues and municipal solid wastes is 1.70 and 3.33 respectively. Municipal solid wastes have the higher energy efficiency due to less transportation distance and electricity consumption. Despite the inherent uncertainties in the calculations, it can be concluded that the energy potential to use biomass for biogas production is a promising alternative.

  13. Biomass energy systems program summary. Information current as of September 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    1980-10-01

    This program summary describes each of the DOE's Biomass Energy System's projects funded or in existence during fiscal year 1979 and reflects their status as of September 30, 1979. The summary provides an overview of the ongoing research, development, and demonstration efforts of the preceding fiscal year as well. (DMC)

  14. A biomass energy flow chart for Sierra Leone

    International Nuclear Information System (INIS)

    Terrestrial above-ground biomass production and utilisation in Sierra Leone was analysed for the years 1984/5 to 1990/1. The total production of biomass energy was estimated at an annual average of 131 PJ (39% from agriculture, 51% from forestry and 10% from livestock). Of the 117 PJ produced from agricultural and forestry operations, 37 PJ was harvested as firewood and burnt (10.9 GJ or 0.72 t wood per capita per year, supplying 80% of the country's energy), 12 PJ was harvested for food, 66 PJ was unutilised crop and forestry residues, 3 PJ was harvested crop residues for use directly as fuel, and 2 PJ was harvested and used for industrial purposes and not for fuel. Livestock produced wastes with an energy content of 13 PJ of which only 0.1 PJ was collected and used for fuel. Thus 54 PJ (41%) of the 131 PJ of biomass energy produced annually was actually utilised while 49 PJ remained as unused agricultural residues and dung, and a further 27 PJ was unused forestry residues. The total amount of biomass (fuelwood, residues and dung) used directly to provide energy, mostly in households, was estimated at 40 PJ (11.8 GJ per capita per year of 0.79 t fuelwood equivalent). Direct biomass energy utilisation in agroindustry (0.4 PJ) was negligible in comparison. Two assessments of Sierra Leone's biomass standing stock and MAI (mean annual increment) were examined in order to assess the sustainability of various biomass use scenarios. Large differences were found between the MAI of the two assessments, making it difficult to predict sustainability of biomass production and use. The estimation of total standing stock varied between 227 and 366 Mt and the estimation of MAI varied between 15 and 70 Mt. Analysis of the availability and use of the biomass resource is crucial if biomass energy is to be used on a sustainable basis. A software package has been developed and is available to draft biomass flow charts but further work is needed to incorporate social and economic

  15. Forest biomass diversion in the Sierra Nevada: Energy, economics and emissions

    OpenAIRE

    Springsteen, Bruce; Christofk, Thomas; York, Robert A; Mason, Tad; Baker, Stephen; Lincoln, Emily; Hartsough, Bruce R; Yoshioka, Takuyuki

    2015-01-01

    As an alternative to open pile burning, use of forest wastes from fuel hazard reduction projects at Blodgett Forest Research Station for electricity production was shown to produce energy and emission benefits: energy (diesel fuel) expended for processing and transport was 2.5% of the biomass fuel (energy equivalent); based on measurements from a large pile burn, air emissions reductions were 98%-99% for PM2.5, CO (carbon monoxide), NMOC (nonmethane organic compounds), CH4 (methane) and BC (b...

  16. Energy Efficiency Project Development

    Energy Technology Data Exchange (ETDEWEB)

    IUEP

    2004-03-01

    The International Utility Efficiency Partnerships, Inc. (IUEP) has been a leader among the industry groups that have supported voluntary initiatives to promote international energy efficiency projects and address global climate change. The IUEP maintains its leadership by both supporting international greenhouse gas (GHG) reduction projects under the auspices of the U.S. Department of Energy (DOE) and by partnering with U.S. and international organizations to develop and implement strategies and specific energy efficiency projects. The goals of the IUEP program are to (1) provide a way for U.S. industry to maintain a leadership role in international energy efficiency infrastructure projects; (2) identify international energy project development opportunities to continue its leadership in supporting voluntary market-based mechanisms to reduce GHG emissions; and (3) demonstrate private sector commitment to voluntary approaches to global climate issues. The IUEP is dedicated to identifying, promoting, managing, and assisting in the registration of international energy efficiency projects that result in demonstrated voluntary reductions of GHG emissions. This Final Technical Report summarizes the IUEP's work in identifying, promoting, managing, and assisting in development of these projects and IUEP's effort in creating international cooperative partnerships to support project development activities that develop and deploy technologies that (1) increase efficiency in the production, delivery and use of energy; (2) increase the use of cleaner, low-carbon fuels in processing products; and (3) capture/sequester carbon gases from energy systems. Through international cooperative efforts, the IUEP intends to strengthen partnerships for energy technology innovation and demonstration projects capable of providing cleaner energy in a cost-effective manner. As detailed in this report, the IUEP met program objectives and goals during the reporting period January 1

  17. Valorization of jatropha fruit biomass for energy applications

    OpenAIRE

    Marasabessy, A.

    2015-01-01

    Valorization of Jatropha fruit biomass for energy applications Ahmad Marasabessy Thesis Abstract Our research objectives were to develop sustainable technologies of Jatropha oil extraction and Jatropha biomass fractionation within a framework of bioconversions (enzymatic and microbial processings).  Microbial extraction of oil from Jatropha kernels using whole cells of Bacillus pumilus yields 73% oil, and this is comparable to the known processes such as by using expeller or by enzymati...

  18. Nitrogen cycling in an integrated biomass for energy system

    International Nuclear Information System (INIS)

    A series of experiments was conducted to evaluate N cycling in three components of an integrated biomass for energy system, i.e. water hyacinth production, anaerobic digestion in hyacinth biomass, and recycling of digester effluent and sludge. Plants assimilated 50 to 90% of added N in hyacinth production systems. Up to 28% of the total plant N was contained in hyacinth detritus. Nitrogen loading as plant detritus into hyacinth ponds was 92 to 148 kg N ha-1 yr-1. Net mineralization of plant organic 15N during anaerobic digestion was 35 and 70% for water hyacinth plants with low and high N content, respectively. Approximately 20% of the 15N was recovered in the digested sludge while the remaining 15N was recovered in the effluent. Water hyacinth growth in digester effluents was affected by electrical conductivity and 15NH4+-N concentration. Addition of water hyacinth biomass to soil resulted in decomposition of 39 to 50% of added C for fresh plant biomass and 19 to 23% of added C for digested biomass sludge. Only 8% of added 15N in digested sludges was mineralized to 15NO3--N despite differences in initial N content. In contrast, 3 and 33% of added 15N in fresh biomass with low and high N content, respectively, was recovered as 15NO3--N. Total 15N recovery after anaerobic digestion ranged from 70 to 100% of the initial plant biomass 15N. Total N recovery by sludge and effluent recycling in the integrated biomass for energy system was 48 to 60% of the initial plant biomass 15N

  19. Report of the excursion Energy from Biomass to Germany, 26-28 November 1997

    International Nuclear Information System (INIS)

    The aim of the title excursion was to provide participants with up-to-date information of different aspects with respect to the production of energy from biomass. Visits were paid to the main office and the research centre of 'Lurgi Umwelt' in Frankfurt am Main, the cogeneration installation 'Pflanzenoel-Blockheizkraftwerk' in Greussenheim, a local government organization, involved in the management of biomass projects, CARMEN ('Centrales Agrar Rohstoff Marketing und Entwicklungs-Netzwerk' or Central Agricultural Raw Material Marketing and Development Network) in Wuerzburg, the 22 MW biomass heating power plant 'Biomasse-Heizkraftwerk Sulzbach-Rosenberg' in Sulzbach-Rosenberg, and the research institute (in particular with respect to miscanthus) 'Bayerische Landesanstalt fuer Weinbau und Gartenbau' in Wuerzburg. Next to an evaluation of the excursion and an overview of the experiences of the participants background information from the visited sites is presented

  20. Low-Energy Electron Scattering by Sugarcane Lignocellulosic Biomass Molecules

    Science.gov (United States)

    Oliveira, Eliane; Sanchez, Sergio; Bettega, Marcio; Lima, Marco; Varella, Marcio

    2012-06-01

    The use of second generation (SG) bioethanol instead of fossil fuels could be a good strategy to reduce greenhouse gas emissions. However, the efficient production of SG bioethanol has being a challenge to researchers around the world. The main barrier one must overcome is the pretreatment, a very important step in SG bioethanol aimed at breaking down the biomass and facilitates the extraction of sugars from the biomass. Plasma-based treatment, which can generate reactive species, could be an interesting possibility since involves low-cost atmospheric-pressure plasma. In order to offer theoretical support to this technique, the interaction of low-energy electrons from the plasma with biomass is investigated. This study was motived by several works developed by Sanche et al., in which they understood that DNA damage arises from dissociative electron attachment, a mechanism in which electrons are resonantly trapped by DNA subunits. We will present elastic cross sections for low-energy electron scattering by sugarcane biomass molecules, obtained with the Schwinger multichannel method. Our calculations indicate the formation of π* shape resonances in the lignin subunits, while a series of broad and overlapping σ* resonances are found in cellulose and hemicellulose subunits. The presence of π* and σ* resonances could give rise to direct and indirect dissociation pathways in biomass. Then, theoretical resonance energies can be useful to guide the plasma-based pretreatment to break down specific linkages of interest in biomass.

  1. Community outreach and education: key components of the Salix consortium's willow biomass project

    International Nuclear Information System (INIS)

    This project facilitates the commercialization of willow biomass crops as a locally grown source of renewable energy. The challenge is to simultaneously optimize production and utilization technology, develop farmer interest and crop acreage, and establish stable and reliable markets. The participation of farmers and landowners, businesses, and local and regional governments in the process is essential for success. A three-phased approach elicits this participation: focused outreach and education, active involvement of potential producers of willow biomass crops, and the development of a user-friendly economic and business model that can be used by a variety of stakeholders. Barriers to commercialization have been identified, such as misconceptions about the production system and crop, assurances of a stable and reliable market for the material, and indications that the equipment and infrastructure to grow and process willow biomass crops are in place. Outreach efforts have specifically addressed these issues. As a result target audiences' responses have changed from passive observation to inquiries and suggestions for active participation. This shift represents a significant step towards the goal of making willow biomass crops a viable source of locally produced fuel. (author)

  2. Renewable energy obtained by thermochemical conversion of biomass and wastes

    International Nuclear Information System (INIS)

    Full text: The production of energy from alternative sources is one of the main strategic tools for the sustainable development of modern society. In this regard, different kinds of biomass and wastes can contribute to the production of energy by means of chemical, thermal and biological processes. Energy technologies based on biomass and waste are undergoing rapid development: processes are optimized, new ideas are proposed for technical application. Despite the growing interest for the use of these technologies, in many countries their implementation still is at a low level, mainly for reasons other than technical and economical (i.e., low public acceptability, bad experience from the past, insufficient knowledge and experience, and others). Due to the wide range of feedstocks, biomass has a broad geographic distribution, in some cases offering a least-cost and near-term alternative. Renewable sources of energy will have a major role to the energy balance in upcoming years. Romania has an important renewable energy potential in solar, wind energy and biomass and offers utilization availabilities at local and national level. The 'Strategy of capitalizing renewable energy sources', drawn up by the Ministry of Economy and Commerce proposes year 2015 as target for the share of renewable sources to reach about 10-12 % of the overall energy supply. Thermochemical biomass conversion does include a number of possible roots to produce useful fuels and chemicals from the initial biomass feedstock. The basis of thermochemical conversion is the pyrolysis process. This paper focuses on this process in order to produce gas mixtures with high H2 content as the main products, significant amounts of liquid and a reactive carbon-rich char as the main by-products.The relationship between the composition of the starting materials, the process conditions and the desired product yields has also investigated to find out what are the optimum parameters of thermochemical conversion

  3. Strategies on biomass energies in EU

    Energy Technology Data Exchange (ETDEWEB)

    Xenakis, E. [European Commission, Bruxelles (Belgium)

    1997-08-01

    The main EU programmes, supporting the renewable deployment, are the research and development programmes JOULE, THERMIE and FAIR, included in the 4th framework programme, the ALTENER programme and the `Community Support Framework` programme. Research and development (R and E) activity within the JOULE and THERMIE programmes are divided into five areas, of which the third concerns the renewable energies. The support could range from 40 to 100 % of the cost. JOULE programme is research oriented, while the THERMIE programme is demonstration oriented. The FAIR programme is also a specific research and development programme for agriculture and agrifood industry. It could cover, among others, projects in connection with the biogas exploitation. The ALTENER programme provides support for the so called `software` actions, promoting renewables, mainly training and information actions, including events like the present one. Furthermode, it provides support for technical specifications, creation of infrastructure for the promotion of renewables and so on. ALTENER does not support investments. Finally the `Community Support Framework` programme promoting the regional development, could, in some cases, support traditional technology investments in relation to renewables. (au)

  4. Biomasse til energi og økologisk jordbrug

    DEFF Research Database (Denmark)

    Christensen, Bent T; Meyer, Niels I; Nielsen, Vilhjalmur;

    Biomass is foreseen to play an important role in the Danish energy supply in the future. In recent years however, concerned ecological farmers have claimed that crop residues and animal manure should be returned to the fields with as small loss in carbon and nutrients content as possible. This has...... created uncertainty concerning the realistic potential of biomass for energy. In order to analyse this question the Danish Energy Agency has funded a preliminary, interdiciplinary study concerning the relevance of the claims of the ecological farmers. The principles of ecological farming and the claims of...... ecological farmers on the use of biomass for energy are described, and empirical studies and models of the impact of soil carbon and nutrients on soil productivity are presented. The impact on the soil carbon balance of incorporating straw and manure to the field and the effects of land use changes are...

  5. Domestic energy policy effects on the US biomass market

    International Nuclear Information System (INIS)

    This study develops and applies a structural, partial-equilibrium model of United States biomass supply and demand. The aim is to examine the biomass price and expenditure effects of domestic biofuel policies. The results indicate that the cellulosic biofuel sub-mandate alone could increase biomass prices by an average of 50%–100% over the baseline values. Biomass expenditures including those by biofuel producers increase by an average of 140% relative to the baseline. A sensitivity analysis focusing on supply response indicates that the results are fairly sensitive to the supply elasticity. This study contributes to the literature by providing policymakers and other energy policy stakeholders with a forward looking analysis of potential policy effects on the US biomass market. -- Highlights: ► A partial-equilibrium model of US biomass supply and demand is developed. ► Simulations estimate market impacts of a cellulosic biofuel mandate and RPS. ► Biofuel mandate and RPS have fairly strong biomass price and expenditure effects. ► Sensitivity analysis suggests the results are sensitive to the supply elasticity.

  6. Comparative study of different waste biomass for energy application.

    Science.gov (United States)

    Motghare, Kalyani A; Rathod, Ajit P; Wasewar, Kailas L; Labhsetwar, Nitin K

    2016-01-01

    Biomass is available in many varieties, consisting of crops as well as its residues from agriculture, forestry, and the agro-industry. These different biomass find their way as freely available fuel in rural areas but are also responsible for air pollution. Emissions from such solid fuel combustion to indoor, regional and global air pollution largely depend on fuel types, combustion device, fuel properties, fuel moisture, amount of air supply for combustion and also on climatic conditions. In both economic and environment point of view, gasification constitutes an attractive alternative for the use of biomass as a fuel, than the combustion process. A large number of studies have been reported on a variety of biomass and agriculture residues for their possible use as renewable fuels. Considering the area specific agriculture residues and biomass availability and related transportation cost, it is important to explore various local biomass for their suitability as a fuel. Maharashtra (India) is the mainstay for the agriculture and therefore, produces a significant amount of waste biomass. The aim of the present research work is to analyze different local biomass wastes for their proximate analysis and calorific value to assess their potential as fuel. The biomass explored include cotton waste, leaf, soybean waste, wheat straw, rice straw, coconut coir, forest residues, etc. mainly due to their abundance. The calorific value and the proximate analysis of the different components of the biomass helped in assessing its potential for utilization in different industries. It is observed that ash content of these biomass species is quite low, while the volatile matter content is high as compared to Indian Coal. This may be appropriate for briquetting and thus can be used as a domestic fuel in biomass based gasifier cook stoves. Utilizing these biomass species as fuel in improved cook-stove and domestic gasifier cook-stoves would be a perspective step in the rural energy and

  7. Achieving the energy potential of biomass in developing countries

    International Nuclear Information System (INIS)

    Biomass (or the biologically renewable organic matter produced by the photosynthesis of plants) constitutes a world-wide energy potential of about 1.7 x 1011 dry tonnes/yr and can be converted to useful energy by two methods: (1) biogas production and (2) alcohol production by means of fermentation. Each is discussed separately. 4 refs, 7 tabs

  8. Energy Storage Project

    Science.gov (United States)

    Mercer, Carolyn R.; Jankovsky, Amy L.; Reid, Concha M.; Miller, Thomas B.; Hoberecht, Mark A.

    2011-01-01

    NASA's Exploration Technology Development Program funded the Energy Storage Project to develop battery and fuel cell technology to meet the expected energy storage needs of the Constellation Program for human exploration. Technology needs were determined by architecture studies and risk assessments conducted by the Constellation Program, focused on a mission for a long-duration lunar outpost. Critical energy storage needs were identified as batteries for EVA suits, surface mobility systems, and a lander ascent stage; fuel cells for the lander and mobility systems; and a regenerative fuel cell for surface power. To address these needs, the Energy Storage Project developed advanced lithium-ion battery technology, targeting cell-level safety and very high specific energy and energy density. Key accomplishments include the development of silicon composite anodes, lithiated-mixed-metal-oxide cathodes, low-flammability electrolytes, and cell-incorporated safety devices that promise to substantially improve battery performance while providing a high level of safety. The project also developed "non-flow-through" proton-exchange-membrane fuel cell stacks. The primary advantage of this technology set is the reduction of ancillary parts in the balance-of-plant--fewer pumps, separators and related components should result in fewer failure modes and hence a higher probability of achieving very reliable operation, and reduced parasitic power losses enable smaller reactant tanks and therefore systems with lower mass and volume. Key accomplishments include the fabrication and testing of several robust, small-scale nonflow-through fuel cell stacks that have demonstrated proof-of-concept. This report summarizes the project s goals, objectives, technical accomplishments, and risk assessments. A bibliography spanning the life of the project is also included.

  9. Integrated biomass utilization system developments (Kyoto-Bio-Cycle Project) and the effects of greenhouse gas reduction

    International Nuclear Information System (INIS)

    Full text: The biomass available in Kyoto City located in urban area of Japan was estimated to be 2.02x106 t-wet/ yr (0.14x106 k liter/ yr oil equivalent), of which waste paper, waste timber, waste food, unused forest wood from the surrounding mountains and sewage sludge account for the largest amounts on an energy basis. These types of biomass can contribute to utilize for the reduction of fossil fuel consumption and for the reduction of greenhouse gas (GHG) emission. Therefore we started the Kyoto-Bio-Cycle Project (FY 2007-2009), which is the demonstration of renewable energy conversion technologies from the biomass. Specifically, we aimed for the greening of necessary materials such as methanol and the cyclic use of byproducts, with the bio diesel fuel production from used cooking oil (5 k liter-methyl ester/ day) as the core activity. Two technologies are being developed as part of the project. One is gasification and methanol synthesis to synthesize methanol with the pyrolytic gas generated from woody biomass. The other is high efficiency bio gasification that treats waste food, waste paper, and waste glycerin. This technology can improve the production rate of biogas and reduce the residue through the introduction of 80 degree Celsius-hyper-thermophilic hydrolysis in the 55 degree Celsius-thermophilic anaerobic fermentation process. These systems can produce 4 types of renewable energy such as bio diesel fuel, biogas, electricity and heat. And we conducted the life-cycle system analysis of GHG reduction effect for the demonstrating technologies, additionally we examined an optimum method of biomass utilization in the future low-carbon-society. As a result, the method that produces the liquid fuel (methanol, Ft oil) from dry biomass (waste timber, etc.) and the biogas from wet biomass (waste food, etc.) can reduce GHG emission highly at present and in the future, compared with the current direct combustion of biomass for the power generation. (author)

  10. Potential of forestry biomass for energy in economies in transition

    International Nuclear Information System (INIS)

    A rapid increase in the world's population, the gradual exhaustion of fossil fuels and serious ecological problems are making developed countries more attentive to the utilization of renewable energy sources, mainly biomass, which should form part of the global energy mix during the twenty-first century. The economies in transition have been experiencing a transformation of their political, economic and social systems and a modernization of their industry, including the energy industry. Energy supply in the transition economies is based on coal, oil, gas and nuclear power. Of the renewable sources, only hydroelectric power is utilized to any significant extent. The forest biomass resources of these economies are quantified in this paper. The economies in transition have a big potential for biomass from forestry and timber industry wastes and agricultural wastes that are not being utilized and could become a source of energy. So far, biomass is used as a source of energy in only small amounts in the wood and pulp industries and as fuelwood in forestry. The governments of some countries (the Czech Republic, Hungary and Slovakia) have energy plans through the year 2010 that aim to develop renewable energy sources. Economic, institutional, technical and other barriers to the development of renewable sources and their utilization are analysed in this paper and some remedies are proposed. In cooperation with countries such as Austria, Denmark, Sweden, Finland, the United States of America and others, which have achieved remarkable results in the utilization of biomass for energy, it would be possible for the transition economies to quickly develop the technological know-how needed to satisfy the demand for energy of approximately 350 million inhabitants. (author)

  11. Sustainable biomass products development and evaluation, Hamakua project. Final draft report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    The PICHTR Sustainable Biomass Energy Program was developed to evaluate the potential to cultivate crops for energy production as an alternative use of lands made available by the closing of large sugar plantations. In particular, the closing of the Hamakua Sugar Company on the island of Hawaii brought a great deal of attention to the future of agriculture in this region and in the state. Many options were proposed. Several promising alternatives had been proposed for cane lands. These included dedicated feedstock supply systems (DFSS) for electrical energy production, cultivation of sugarcane to produce ethanol and related by-products, and the production of feed and crops to support animal agriculture. Implementation of some of the options might require preservation of large tracts of land and maintenance of the sugar mills and sugar infrastructure. An analysis of the technical, financial, and other issues necessary to reach conclusions regarding the optimal use of these lands was required. At the request of the Office of State Planning and Senator Akaka`s office, the Pacific International Center for High Technology Research (PICHTR) established and coordinated a working group composed of state, county, federal, and private sector representatives to identify sustainable energy options for the use of idle sugar lands on the island of Hawaii. The Sustainable Biomass Energy Program`s Hamakua Project was established to complete a comprehensive evaluation of the most viable alternatives and assess the options to grow crops as a source of raw materials for the production of transportation fuel and/or electricity on the island of Hawaii. The motivation for evaluating biomass to energy conversion embraced the considerations that Hawaii`s energy security would be improved by diversifying the fuels used for transportation and reducing dependency on imported fossil fuels. The use of waste products as feedstocks could divert wastes from landfills.

  12. Carbon dioxide from integrated biomass energy systems - examples from case studies in USA

    International Nuclear Information System (INIS)

    This report is a result of a work by Vattenfall and Electric Power Research Institute (EPRI) to study a number of integrated biomass energy systems. The emphasis of this paper will be on the energy systems of the projects in Minnesota and New York. By introducing the dedicated feedstock supply system (DFSS), the amount of energy spent for production of crops can be reduced, the amount of fertilizers can be decreased, the soil can be improved, and a significant amount of energy will be produced, compared to an ordinary farm crop. Although the conversion of biomass to electricity in itself does not emit more CO2 than is captured by the biomass through photosynthesis, there will be some CO2-emissions from the DFSS. External energy is required for the production of the biomass feedstock, and this energy is mainly based on fossil fuels. By using this input energy, CO2 and other greenhouse gases are emitted. But, by utilizing fossil fuels as external input fuels for production of biomass, we would get about 10-15 times more electric energy per unit fossil fuel, than we would get if the fossil fuel was utilized in a power directly. Compared to traditional coal based electricity production, the CO2-emissions are in most cases reduced significantly. But the reduction rate is related to the process and the whole integrated system. The reduction could possibly be increased further, by introducing more efficient methods in farming, transportation, and handling, and by selecting the best methods or technologies for conversion of biomass fuel to electricity. 25 refs, 8 figs, 8 tabs

  13. A REVIEW ON BIOMASS DENSIFICATION TECHNOLOGIE FOR ENERGY APPLICATION

    Energy Technology Data Exchange (ETDEWEB)

    JAYA SHANKAR TUMULURU; CHRISTOPHER T. WRIGHT

    2010-08-01

    The world is currently facing challenges to reduce the dependence on fossil fuels and to achieve a sustainable renewable supply. Renewable energies represent a diversity of energy sources that can help to maintain the equilibrium of different ecosystems. Among the various sources of renewable energy, biomass is finding more uses as it is considered carbon neutral since the carbondioxide released during its use is already part of the carbon cycle (Arias et al., 2008). Increasing the utilization of biomass for energy can help to reduce the negative CO2 impact on the environment and help to meet the targets established in the Kyoto Protocol (UN, 1998). Energy from biomass can be produced from different processes like thermochemical (combustion, gasification, and pyrolysis), biological (anaerobic digestion, fermentation) or chemical (esterification) where direct combustion can provide a direct near-term energy solution (Arias et al., 2008). Some of the inherent problems with raw biomass materials, like low bulk density, high moisture content, hydrophilic nature and low calorific value, limit the ease of use of biomass for energy purposes (Arias et al., 2008). In fact, due to its low energy density compared to fossil fuels, high volumes of biomass will be needed; adding to problems associated with storage, transportation and feed handling at a cogeneration plant. Furthermore, grinding biomass pulverizes, can be very costly and in some cases impractical. All of these drawbacks have given rise to the development of new technologies in order to increase the quality of biomass fuels. The purpose of the work is mainly in four areas 1) Overview of the torrefaction process and to do a literature review on i) Physical properties of torrefied raw material and torrefaction gas composition. 2) Basic principles in design of packed bed i) Equations governing the flow of material in packed bed ii) Equations governing the flow of the gases in packed bed iii) Effect of physical

  14. Biomass cogeneration: industry response for energy security and environmental consideration

    International Nuclear Information System (INIS)

    Biomass occurs in abundance in the highly agricultural-based countries of South-East Asia. If these are processed in the wood and agro-processing industries, large volumes of residues are generated. The residue are potential sources of energy which the industries can tap through the use of cogeneration systems, in order to meet their own thermal and electrical requirements. This will reduce the industry's dependence on power from the grid and thus increase their own self-sufficiency in terms of energy. Biomass cogeneration brings the environmental, as well as economic benefits to the industries. It makes use of clean and energy-efficient technologies and utilises biomass as fuels which cause less environment al pollution and the greenhouse effect, as against the use of fossil fuels. A particular mill that embarks on biomass cogeneration is also able to realise, among others, income from the export of excess electricity to the grid. Biomass residue if not used for other purposes have negative values as they need to be disposed of. They can, however, be profit-generating as well. (Author)

  15. ANALYSIS OF THERMAL-CHEMICAL CHARACTERISTICS OF BIOMASS ENERGY PELLETS

    Directory of Open Access Journals (Sweden)

    Zorica Gluvakov

    2014-09-01

    Full Text Available In modern life conditions, when emphasis is on environmental protection and sustainable development, fuels produced from biomass are increasingly gaining in importance, and it is necessary to consider the quality of end products obtained from biomass. Based on the existing European standards, collected literature and existing laboratory methods, this paper presents results of testing individual thermal - chemical properties of biomass energy pellets after extrusion and cooling the compressed material. Analysing samples based on standard methods, data were obtained on the basis of which individual thermal-chemical properties of pellets were estimated. Comparing the obtained results with the standards and literature sources, it can be said that moisture content, ash content and calorific values are the most important parameters for quality analysis which decide on applicability and use-value of biomass energy pellets, as biofuel. This paper also shows the impact of biofuels on the quality of environmental protection. The conclusion provides a clear statement of quality of biomass energy pellets.

  16. Biomass based energy. A review on raw materials and processing methods; Energie aus Biomasse. Eine Uebersicht ueber Rohstoffe und Verfahren

    Energy Technology Data Exchange (ETDEWEB)

    Woellauer, P.

    2007-07-01

    The book reviews the variety of biogenic raw materials and the technologically important biomass conversion techniques. The chapter on the different kinds of biomass includes a) wood from forestry, landscape culturing and saw mills, bark and old wood; b) plants (corn, miscanthus, cannabis, wheat, rye, sugar beets, grass, rape, etc.), residuals and wastes (straw, liquid manure, slaughthouse wastes, kitchen wastes, sewage sludge, others). The chapter on biomass conversion processing discusses combustion, oxidation in spercritical water, gasification and reforming, fermentation, extrusion or extraction, and downstream processes. The chapter on biomass based electricity and mechanical energy includes refrigeration engineering, direct utilization: Otto engines, Diesel engines, microgas turbine fuel cells, and heat processing: Striling engine, vapour turbine, ORC turbine, externally fired gas turbine, and the Kalina process.

  17. Biomass for energy - small scale technologies

    Energy Technology Data Exchange (ETDEWEB)

    Salvesen, F.; Joergensen, P.F. [KanEnergi, Rud (Norway)

    1997-12-31

    The bioenergy markets and potential in EU region, the different types of biofuels, the energy technology, and the relevant applications of these for small-scale energy production are reviewed in this presentation

  18. Biomass energy: Employment generation and its contribution to poverty alleviation

    International Nuclear Information System (INIS)

    Studies were undertaken in Malawi from 1995 to 1997 and 2007 to 2008 to estimate the supply and demand of household energy. Because little is known about the supply chain for biomass, surveys were carried out for urban areas on its production, transport and trade as well as sustainable supply. Also, because biomass is used by all people for a multitude of purposes, a complete picture was made of regional and urban biomass supply and demand. The results indicated that biomass is not only the principal energy, accounting for 89 percent of demand, but also the main traded energy in the two time periods accounting for 56-59 percent of commercial demand. Petroleum products supplied 26-27 percent, electricity 8-12 percent and coal 6-10 percent. The market value of traded woodfuel was US$ 48.8 million and US$ 81.0 million in 1996 and 2008 respectively, about 3.5 percent of gross domestic product (GDP). The study found that in 1996 and 2008 respectively, the equivalent of 93,500 and 133,000 full-time people was employed in the biomass supply chain, approximately 2 percent of the potential workforce. In contrast, about 3400 and 4600 people were employed in the supply chain of other fuels in these years. If the Malawi findings are applied to the current estimated wood energy consumption in sub-Saharan Africa, then approximately 13 million people could be employed in commercial biomass energy; this highlights its importance as a means to assist with sustainable development and poverty alleviation. (author)

  19. Carbon and nitrogen trade-offs in biomass energy production

    Energy Technology Data Exchange (ETDEWEB)

    Cucek, Lidija; Klemes, Jiri Jaromir [University of Pannonia, Centre for Process Integration and Intensification (CPI" 2), Research Institute of Chemical and Process Engineering, Faculty of Information Technology, Veszprem (Hungary); Kravanja, Zdravko [University of Maribor, Faculty of Chemistry and Chemical Engineering, Maribor (Slovenia)

    2012-06-15

    This contribution provides an overview of carbon (CFs) and nitrogen footprints (NFs) concerning their measures and impacts on the ecosystem and human health. The adversarial relationship between them is illustrated by the three biomass energy production applications, which substitute fossil energy production applications: (i) domestic wood combustion where different fossil energy sources (natural gas, coal, and fuel oil) are supplemented, (ii) bioethanol production from corn grain via the dry-grind process, where petrol is supplemented, and (iii) rape methyl ester production from rape seed oil via catalytic trans-esterification, where diesel is supplemented. The life cycle assessment is applied to assess the CFs and NFs resulting from different energy production applications from 'cradle-to-grave' span. The results highlighted that all biomass-derived energy generations have lower CFs and higher NFs whilst, on the other hand, fossil energies have higher CFs and lower NFs. (orig.)

  20. National renewable energy policy and local opposition in the UK: the failed development of a biomass electricity plant

    International Nuclear Information System (INIS)

    Biomass energy developments in the UK are supported by central government but face considerable opposition from the public. The purpose of this study is to explore the causes and consequences of public opposition to biomass energy development in North Wiltshire where Ambient Energy Ltd. proposed the development of a 5 MWe wood gasification plant near the town of Cricklade. The case study was conducted through in-depth interviews, content analysis, person to person questionnaire survey, focus group discussion and participatory appraisal methods. Though biomass energy plants in general have fewer environmental impacts than plants which use fossil fuel, there could still be local impacts which give rise to concerns and local opposition to the development. The opposition could be partially explained by the fact that the general public is relatively unfamiliar with biomass energy. Public acceptance or rejection was mainly based on the public trust or mistrust. The case study demonstrates two distinctly rigid characteristics among the key stakeholders of biomass energy development. These are the 'not-in-my-back-yard' attitude from the public and the 'there-is-no-alternative' attitude of the developers. These rigid stances were widely contributing to the failure of the project to gain planning permission. The environmental justification of biomass energy at the national level is not always sufficient to convince the local residents. Winning public support to promote biomass energy requires an alternative approach of planning and action through interactive communication, public participation and collective learning among all the stakeholders

  1. A Spatial Model of the Biomass to Energy Cycle

    DEFF Research Database (Denmark)

    Möller, Bernd

    2003-01-01

    A major source of biomass for energy production is the New Zealand forest industry, with 1.5 M tons of in-forest residues and additional 0.4 M tons as unused residues from sawmills. Transportation and handling are the main contributors for biomass costs at a specific consumer site, and they vary by...... location. This paper aims to contribute to the development of a biomass to energy evaluation and mapping system, using geographical information systems (GIS). A GIS-based in-forest residue model considers forest growth and choice of harvest method. Data from a sawmill survey is used to assess sawmill resi......-dues. For both sources the costs of road transportation have been modelled using spatial cost allocation. As emphasis has been on using public data, the model is still a rough es-timate, which could be improved using forest industry data and refined algorithms. As a first result, the cost distribution and...

  2. Emissions from biomass energy in some selected Asian countries

    International Nuclear Information System (INIS)

    In this paper, an attempt has been made to estimate the annual emission of certain greenhouse and other gases and substances from biomass energy sources in selected countries of Asia. For this purpose, the reported values of the different emission factor for biomass combustion have been compiled from an extensive literature review. From the compiled values, a set of emission factors of different gases/pollutants for each fuel-combustion system combination is obtained for each country. The emission factors for the carbon containing gases, i.e. CO2, CO and CH4, are corrected by multiplying each emission factor by a correction factor to avoid over- or under-estimation of total carbon emission. Estimated biomass energy use by technology and the corrected emission factors are used to estimate the total emissions in the selected countries. (Author)

  3. Biomass-based energy carriers in the transportation sector

    International Nuclear Information System (INIS)

    The purpose of this report is to study the technical and economic prerequisites to attain reduced carbon dioxide emissions through the use of biomass-based energy carriers in the transportation sector, and to study other environmental impacts resulting from an increased use of biomass-based energy carriers. CO2 emission reduction per unit arable and forest land used for biomass production (kg CO2/ha,year) and costs for CO2 emission reduction (SEK/kg CO2) are estimated for the substitution of gasoline and diesel with rape methyl ester, biogas from lucerne, ethanol from wheat and ethanol, methanol, hydrogen and electricity from Salix and logging residues. Of the studied energy carriers, those based on Salix provide the largest CO2 emission reduction. In a medium long perspective, the costs for CO2 emission reduction seem to be lowest for methanol from Salix and logging residues. The use of fuel cell vehicles, using methanol or hydrogen as energy carriers, can in a longer perspective provide more energy efficient utilization of biomass for transportation than the use of internal combustion engine vehicles. 136 refs, 12 figs, 25 tabs

  4. Renewable energy project development

    Energy Technology Data Exchange (ETDEWEB)

    Ohi, J.

    1996-12-31

    The author presents this paper with three main thrusts. The first is to discuss the implementation of renewable energy options in China, the second is to identify the key project development steps necessary to implement such programs, and finally is to develop recommendations in the form of key issues which must be addressed in developing such a program, and key technical assistance needs which must be addressed to make such a program practical.

  5. Impact of novel energy sources: OTEC, wind, goethermal, biomass

    Science.gov (United States)

    Roberts, A. S., Jr.

    1978-01-01

    Alternate energy conversion methods such as ocean thermal energy conversion (OTEC), wind power, geothermal wells and biomass conversion are being explored, and re-examined in some cases, for commercial viability. At a time when United States fossil fuel and uranium resources are found to be insufficient to supply national needs into the twenty-first century, it is essential to broaden the base of feasible energy conversion technologies. The motivations for development of these four alternative energy forms are established. Primary technical aspects of OTEC, wind, geothermal and biomass energy conversion systems are described along with a discussion of relative advantages and disadvantages of the concepts. Finally, the sentiment is voiced that each of the four systems should be developed to the prototype stage and employed in the region of the country and in the sector of economy which is complimentary to the form of system output.

  6. World Energy Projection System model documentation

    International Nuclear Information System (INIS)

    The World Energy Projection System (WEPS) was developed by the Office of Integrated Analysis and Forecasting within the Energy Information Administration (EIA), the independent statistical and analytical agency of the US Department of Energy. WEPS is an integrated set of personal computer based spreadsheets containing data compilations, assumption specifications, descriptive analysis procedures, and projection models. The WEPS accounting framework incorporates projections from independently documented models and assumptions about the future energy intensity of economic activity (ratios of total energy consumption divided by gross domestic product GDP), and about the rate of incremental energy requirements met by natural gas, coal, and renewable energy sources (hydroelectricity, geothermal, solar, wind, biomass, and other renewable resources). Projections produced by WEPS are published in the annual report, International Energy Outlook. This report documents the structure and procedures incorporated in the 1998 version of the WEPS model. It has been written to provide an overview of the structure of the system and technical details about the operation of each component of the model for persons who wish to know how WEPS projections are produced by EIA

  7. World Energy Projection System model documentation

    Energy Technology Data Exchange (ETDEWEB)

    Hutzler, M.J.; Anderson, A.T.

    1997-09-01

    The World Energy Projection System (WEPS) was developed by the Office of Integrated Analysis and Forecasting within the Energy Information Administration (EIA), the independent statistical and analytical agency of the US Department of Energy. WEPS is an integrated set of personal computer based spreadsheets containing data compilations, assumption specifications, descriptive analysis procedures, and projection models. The WEPS accounting framework incorporates projections from independently documented models and assumptions about the future energy intensity of economic activity (ratios of total energy consumption divided by gross domestic product GDP), and about the rate of incremental energy requirements met by natural gas, coal, and renewable energy sources (hydroelectricity, geothermal, solar, wind, biomass, and other renewable resources). Projections produced by WEPS are published in the annual report, International Energy Outlook. This report documents the structure and procedures incorporated in the 1998 version of the WEPS model. It has been written to provide an overview of the structure of the system and technical details about the operation of each component of the model for persons who wish to know how WEPS projections are produced by EIA.

  8. Biomass energy production in agriculture: A weighted goal programming analysis

    International Nuclear Information System (INIS)

    Energy production from biomasses can be an important resource that, when combined with other green energies such as wind power and solar plants, can contribute to reduce dependency on fossil fuels. The aim of this study is to assess how agriculture could contribute to the production of bio-energy. A multi-period Weighted Goal Programming model (MpWGP) has been applied to identify the optimal land use combinations that simultaneously maximise farmers' income and biomass energy production under three concurrent constraints: water, labour and soil availability. Alternative scenarios are considered that take into account the effect of climate change and social change. The MpWGP model was tested with data from the Rovigo county area (Italy) over a 15-year time period. Our findings show that trade-off exists between the two optimisation targets considered. Although the optimisation of the first target requires traditional agricultural crops, which are characterised by high revenue and a low production of biomass energy, the latter would be achievable with intensive wood production, namely, high-energy production and low income. Our results also show the importance of the constraints imposed, particularly water availability; water scarcity has an overall negative effect and specifically affects the level of energy production. - Research Highlights: → The aim of this study is to assess how agriculture could contribute to the production of bio-energy. → A multi-period (15-year) Weighted Goal Programming model (MpWGP) has been applied. → We identify the optimal land use combinations that simultaneously maximise farmers' income and biomass energy production. → Three concurrent constraints have been considered: water, labour and soil availability.→ Water scarcity has an overall negative effect and specifically affects the level of energy production.

  9. Biomass energy policy in Africa: selected case studies

    International Nuclear Information System (INIS)

    The majority of the population in the continent of Africa depend on biomass as a source of energy. Woodfuel (charcoal and fuelwood), the most important source of energy, is a subject of major concern in developing countries mainly because of its increasing scarcity, and recently because of its importance to the debate on climate change as its use is associated with emission on the greenhouse gases (GHG's). The book discusses the biomass energy problem and the policy options for addressing it in Botswana and Rwanda. Though the studies mainly draw their material from the surveys undertaken in these countries, extensive use is made of the existing general literature on this subject. The two case studies on Botswana address the nature, extent, and policy implications of the fuelwood problem, including the extent to which it contributes to deforestation. The Rwanda case studies examine the seasonal and spatial variation of the consumption of biomass energy (woodfuel and residues) and the evolution of the energy policy process with particular reference to biomass energy. A number of policy recommendations are made which may not only be relevant to Botswana and Rwanda, but also to other developing countries in a similar situation. The book thus makes a valuable contribution to the scarce literature on energy and environment in Africa. The multi-disciplinarity of the book makes it more valuable to a large number of readers. It will be an important reference material for policy makers and researchers in Africa as well as other developing countries. AFREPREN The African Energy Policy Research Network (AFREPREN) promotes research on energy issues relevant to the formulation and implementation of policy by African governments. It also aims to build research capability as well as mobilize existing expertise to address both near- and long-term challenges faced by the energy sector in Africa. (UK)

  10. Conflicts on Use of Agricultural Biomass for Energy

    DEFF Research Database (Denmark)

    Meyer, Niels I; Nielsen, Vilhjalmur; Christensen, Bent T.;

    1997-01-01

    The use of biomass for energy puposes may conflict with the need to maintain soil quality of arable fields. Concerned ecological farmers claim that crop residues and animal manure should all be returned to the fields with as small a loss in carbon and nutrients content as possible. If a large part...

  11. Fuels and chemicals from biomass using solar thermal energy

    Science.gov (United States)

    Giori, G.; Leitheiser, R.; Wayman, M.

    1981-01-01

    The significant nearer term opportunities for the application of solar thermal energy to the manufacture of fuels and chemicals from biomass are summarized, with some comments on resource availability, market potential and economics. Consideration is given to the production of furfural from agricultural residues, and the role of furfural and its derivatives as a replacement for petrochemicals in the plastics industry.

  12. Energy analysis of biochemical conversion processes of biomass to bioethanol

    Energy Technology Data Exchange (ETDEWEB)

    Bakari, M.; Ngadi, M.; Bergthorson, T. [McGill Univ., Ste-Anne-de-Bellevue, PQ (Canada). Dept. of Bioresource Engineering

    2010-07-01

    Bioethanol is among the most promising of biofuels that can be produced from different biomass such as agricultural products, waste and byproducts. This paper reported on a study that examined the energy conversion of different groups of biomass to bioethanol, including lignocelluloses, starches and sugar. Biochemical conversion generally involves the breakdown of biomass to simple sugars using different pretreatment methods. The energy needed for the conversion steps was calculated in order to obtain mass and energy efficiencies for the conversions. Mass conversion ratios of corn, molasses and rice straw were calculated as 0.3396, 0.2300 and 0.2296 kg of bioethanol per kg of biomass, respectively. The energy efficiency of biochemical conversion of corn, molasses and rice straw was calculated as 28.57, 28.21 and 31.33 per cent, respectively. The results demonstrated that lignocelluloses can be efficiently converted with specific microorganisms such as Mucor indicus, Rhizopus oryzae using the Simultaneous Saccharification and Fermentation (SSF) methods.

  13. Characterization and comparison of biomass produced from various sources: Suggestions for selection of pretreatment technologies in biomass-to-energy

    International Nuclear Information System (INIS)

    Highlights: ► Biomass with higher volatile matter content has a higher carbon conversion rate. ► Applying the suitable pretreatment techniques that will enhance the bioenergy yield. ► The ratio of H2O/fixed carbon is a critical factor for enhancing the energy conversion. -- Abstract: This study investigated the characteristics of 26 varieties of biomass produced from forestry, agriculture, municipality, and industry in Taiwan to test their applicability in thermal conversion technologies and evaluation of enhanced energy efficiency. Understanding the reactivity of the tested biomass, the cluster analysis was also used in this research to classify into characteristics groups of biomass. This research also evaluated the feasibility of energy application of tested biomass by comparing it to the physicochemical properties of various coals used in Taiwan’s power plants. The experimental results indicated that the volatile matter content of the all tested biomass was 60% and above. It can be concluded that the higher carbon conversion rate will occur in the thermal conversion process of all tested biomass. Based on the results of lower heating value (LHV) of MSW and non-hazardous industrial sludge, the LHV was lower than other tested biomass that was between 1000 and 1800 kcal/kg. This is due to the higher moisture content of MSW and sludge that resulted in the lower LHV. Besides, the LHV of other tested biomass and their derived fuels was similar to the tested coal. However, the energy densities of woody and agricultural waste were smaller than that of the coal because the bulky densities of woody and agricultural wastes were low. That is, the energy utilization efficiency of woody and agricultural waste was relatively low. To improve the energy density of tested biomass, appropriate pre-treatment technologies, such as shredding, pelletizing or torrefied technologies can be applied, that will enhance the energy utilization efficiency of all tested biomass.

  14. Availability of biomass for energy: Report of the contractors meeting, held at November 3, 1994, in Utrecht, Netherlands

    International Nuclear Information System (INIS)

    Results of a few studies on the title subject, carried out within the framework of the NOVEM programme EWAB, were presented at a contractors meeting. The overall conclusion of the presentation was that energy from biomass has a large potential. However, the cost effectiveness of the different options has to be improved. In particular, international research on the subject is necessary. Also more demonstration projects have to be set up in order to gain insight in the exact costs and benefits, the options to improve the cost-effectiveness, and to fill in the knowledge gaps. In the presentations of the meeting attention is paid to avoided CO2 emissions as a result of energy crops, the spatial aspects of biomass cultivation, model calculations of the economics of biomass techniques in comparison with other techniques, conversion techniques for biomass, biomass harvesting systems, logistic aspects regarding energy production from biomass, experiences with the cultivation of willows and miscanthus, the cost effectiveness of biomass cultivation, and the state-of-the-art in national and international research on energy from biomass

  15. Developing markets of energy biomass. Local and global perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Heinimoe, J.

    2011-07-01

    The thesis explores global and national-level issues related to the development of markets for biomass for energy. The thesis consists of five separate papers and provides insights on selected issues. The aim of Paper 1 was to identify methodological and statistical challenges in assessing international solid and liquid biofuels trade and provide an overview of the Finnish situation with respect to the status of international solid and liquid biofuels trade. We found that, for the Finnish case, it is possible to qualify direct and indirect trade volumes of biofuels. The study showed that indirect trade of biofuels has a highly significant role in Finland and may be a significant sector also in global biofuels trade. The purpose of Paper 2 was to provide a quantified insight into Finnish prospects for meeting the national 2020 renewable energy targets and concurrently becoming a largescale producer of forest-biomass-based second-generation biofuels for feeding increasing demand in European markets. We found that Finland has good opportunities to realise a scenario to meet 2020 renewable energy targets and for large-scale production of wood-based biofuels. The potential net export of transport biofuels from Finland in 2020 would correspond to 2-3% of European demand. Paper 3 summarises the global status of international solid and liquid biofuels trade as illuminated by several separate sources. International trade of biofuels was estimated at nearly 1 EJ for 2006. Indirect trade of biofuels through trading of industrial roundwood and material by-products comprises the largest proportion of the trading, with a share of about two thirds. The purpose of Paper 4 was to outline a comprehensive picture of the coverage of various certification schemes and sustainability principles relating to the entire value-added chain of biomass and bioenergy. Regardless of the intensive work that has been done in the field of sustainability schemes and principles concerning use of

  16. Energy and conservation benefits from managed prairie biomass

    Science.gov (United States)

    Jungers, Jacob M.; Trost, Jared J.; Lehman, Clarence L.; Tilman, David

    2011-01-01

    Marginally productive land, such as that enrolled in the Conservation Reserve Program (CRP), may provide acreage and economic incentives for cellulosic energy production. Improving the yields from these lands will help establish a biomass producer?s position in the marketplace. The effects of water and nitrogen on biomass yields were investigated in both a plot-scale experiment and a broad-scale survey of CRP lands. The plot-scale experiment demonstrated that irrigation improved mixed-species prairie biomass yields more than nitrogen fertilizer on coarse-textured, marginally productive soils. Experimental plots amended with both irrigation and moderate (but not high) nitrogen produced more biomass than other treatment combinations, but this trend was not statistically significant. The survey of biomass yields on CRP lands across four Midwestern States indicates that yields are better correlated with June rainfall than any other individual month. Applying nutrient-enriched water such as agricultural runoff could benefit prairie yields if applied at appropriate times.

  17. Biomass Plant and Sensors Network for Process Monitoring and Energy Storage in a Superconducting Magnetic Device

    OpenAIRE

    Pullano, Salvatore; Bianco, Maria Giovanna; Critello, Costantino; Laganà, Filippo; Menniti, Daniela; Ruberto, Francesco; Tiriolo, Raffaele; Fiorillo, Antonino

    2014-01-01

    This research has been carried out in the context of a national organization project (PON04a2_F), promoted by the Italian Ministry of Education, University and Research under the tutelage of the European Community. It is part of a more complex “Smart Cities” project, and it is devoted to the realization of an alternative system for green energy production. It includes an electrical power supply generated from the anaerobic digestion of biomass and the storage of electrical energy in a superco...

  18. DOE Energy Challenge Project

    Energy Technology Data Exchange (ETDEWEB)

    Frank Murray; Michael Schaepe

    2009-04-24

    Project Objectives: 1. Promote energy efficiency concepts in undergraduate and graduate education. 2. Stimulate and interest in pulp and paper industrial processes, which promote and encourage activities in the area of manufacturing design efficiency. 3. Attract both industrial and media attention. Background and executive Summary: In 1997, the Institute of Paper Science and Technology in conjunction with the U.S. Department of Energy developed a university design competition with an orientation to the Forest Products Industry. This university design competition is in direct alignment with DOE’s interests in instilling in undergraduate education the concepts of developing energy efficient processes, minimizing waste, and providing environmental benefits and in maintaining and enhancing the economic competitiveness of the U.S. forest products industry in a global environment. The primary focus of the competition is projects, which are aligned with the existing DOE Agenda 2020 program for the industry and the lines of research being established with the colleges comprising the Pulp and Paper Education and Research Alliance (PPERA). The six design competitions were held annually for the period 1999 through 2004.

  19. Biomass recycling heat technology and energy products

    Science.gov (United States)

    Tabakaev, R. B.; Gergelizhiu, P. S.; Kazakov, A. V.; Zavorin, A. S.

    2014-10-01

    Relevance is determined by necessity of utilizing of local low-grade fuels by energy equpment. Most widespread Tomsk oblast (Russian Federation region) low-grade fuels are described and listed. Capability of utilizing is analysed. Mass balances of heat-technology conversion materials and derived products are described. As a result, recycling capability of low-grade fuels in briquette fuel is appraised.

  20. Production and trading of biomass for energy: an overview of the global status

    NARCIS (Netherlands)

    Heinimö, J.; Junginger, Martin

    2009-01-01

    The markets for industrially used biomass for energy purposes are developing rapidly toward being international commodity markets. Determining international traded biomass volumes for energy purposes is difficult, for several reasons, such as challenges regarding the compilation of statistics on the

  1. Photosynthetic pathway and biomass energy production.

    Science.gov (United States)

    Marzola, D L; Bartholomew, D P

    1979-08-10

    The current interest in locating new or alternative sources of energy has focused attention on solar energy capture by crops that can be subsequently utilized as a substitute for fossil fuels. The very high productivity of sugarepane and the fact that it accumulates sugars that are directly fermentable to alcohol may have caused seemingly less productive crops to be overlooked. We show here that recoverable alcohol from achievable commercial yields of pineapple can actually equal that of sugarcane, with the pineapple crop requiring only a fraction of the water used by sugarcane. Pineapple is well adapted to the subhumid or semiarid tropics and thus is particularly well suited for exploiting large areas not now under cultivation with any crop of commercial value. PMID:17729660

  2. Renewable energies. Vol. 2. Surrogate fuels, biomass and biogas, solar and wind energy; Erneuerbare Energien. Bd. 2. Ersatzbrennstoffe, Biomasse und Biogas, Solar- und Windenergie

    Energy Technology Data Exchange (ETDEWEB)

    Thome-Kozmiensky, Karl J.; Beckmann, Michael

    2009-07-01

    The book on renewable energies, vol.2, surrogate fuels, biomass and biogas, solar and wind energy, covers the following chapters: analytics and sampling concerning the biogenic carbon content of surrogate fuels; processing of surrogate fuels for the energetic utilization; energetic utilization of surrogate fuels; energetic utilization of biomass; fermentation and biogas; solar energy (solar thermal power plant, photovoltaics); wind energy.

  3. Financing wind energy projects

    International Nuclear Information System (INIS)

    Triodos Bank has more than 10 years of experience with developing and financing wind projects in the Netherlands. Over 50 Megawatt has been installed with direct involvement of the bank. The experience is both as a bank and as a venture capital fund. In this contribution the perspective will be more from a venture capital point of view than as a bank. The bank's activities in the wind energy sector started in 1986 by forming a joint venture with an engineering bureau, experienced i wind energy but not yet in developing wind projects. From 1989 onwards the joint venture started to build wind farms, both as a private company and in a joint venture with utilities. The European Investment Bank became involved with a long-term debt finance facility (15 years, fixed interest loan). The main difficulties were long-term commitments from landowners (Dike authorities) and utilities with regard to power contracts. The development got really stuck when utilities refused to pay a fair price anymore. Also, site development became more and more difficult. Even the poor technical performance improved drastically and did not frighten developers and banks too much. (author)

  4. Forest Biomass Energy Resources in China: Quantity and Distribution

    Directory of Open Access Journals (Sweden)

    Caixia Zhang

    2015-11-01

    Full Text Available As one of the most important renewable and sustainable energy sources, the forest biomass energy resource has always been the focus of attention of scholars and policy makers. However, its potential is still uncertain in China, especially with respect to its spatial distribution. In this paper, the quantity and distribution of Chinese forest biomass energy resources are explored based mainly on forestry statistics data rather than forest resource inventory data used by most previous studies. The results show that the forest biomass energy resource in China was 169 million tons in 2010, of which wood felling and bucking residue (WFBR,wood processing residue (WPR, bamboo processing residue, fuel wood and firewood used by farmers accounted for 38%, 37%, 6%, 4% and 15%, respectively. The highest resource was located in East China, accounting for nearly 39.0% of the national amount, followed by the Southwest and South China regions, which accounted for 17.4% and 16.3%, respectively. At the provincial scale, Shandong has the highest distribution, accounting for 11.9% of total resources, followed by Guangxi and Fujian accounting for 10.3% and 10.2%, respectively. The actual wood-processing residue (AWPR estimated from the actual production of different wood products (considering the wood transferred between regions showed apparent differences from the local wood processing residue (LWPR, which assumes that no wood has been transferredbetween regions. Due to the large contribution of WPR to total forestry bioenergy resources, the estimation of AWPR will provide a more accurate evaluation of the total amount and the spatial distribution of forest biomass energy resources in China.

  5. Local biomass as a decentral source of energy; Kommunale Biomasse als dezentraler Energietraeger

    Energy Technology Data Exchange (ETDEWEB)

    Schlederer, Swantje Mignon; Guenthert, F. Wolfgang [Univ. der Bundeswehr Muenchen, Neubiberg (Germany). Inst. fuer Wasserwesen, Siedlungswasserwirtschaft und Abfalltechnik

    2013-03-15

    The production of wood based fuels such as wooden logs, wood chip, wooden briquettes or pellets has become standard practice. The easy handling of wood as an energy source has contributed to its popularity. A growing demand for wood based fuels has resulted in higher prices and the increasing demand is being met more and more by imports. The florafuel-Procedure provides an alternative to this trend by processing stalks and biomass waste, which in turn means a considerably broader raw material base. The procedure, which produces fuel in the form of pellets or briquettes to generate electricity or heat, is currently being optimised at the University of the German Federal Armed Forces in Munich (Universitaet der Bundeswehr Muenchen) and is about to complete a demonstration plant which should prove its economic viability. Substances such as chlorine and potassium which normally cause concern during the combustion of stalks and stems can be significantly reduced through this production process. Moreover, the materials used as an energy source do not compete with food production. The fuel produced can be easily transported and stored. It can be used to meet both base load and peak load demands and has therefore proven to be highly flexible. Easy handling, little storage space and low capital expenditure are important characteristics of the florafuel-Procedure. Compared to other production processes, the florafuel-Procedure shows a very favourable energy balance for biomass based on stalks and stems. (orig.)

  6. A hybrid optimization model of biomass trigeneration system combined with pit thermal energy storage

    International Nuclear Information System (INIS)

    Highlights: • Hybrid optimization model of biomass trigeneration system with PTES is developed. • Influence of premium feed-in tariffs on trigeneration systems is assessed. • Influence of total system efficiency on biomass trigeneration system with PTES is assessed. • Influence of energy savings on project economy is assessed. - Abstract: This paper provides a solution for managing excess heat production in trigeneration and thus, increases the power plant yearly efficiency. An optimization model for combining biomass trigeneration energy system and pit thermal energy storage has been developed. Furthermore, double piping district heating and cooling network in the residential area without industry consumers was assumed, thus allowing simultaneous flow of the heating and cooling energy. As a consequence, the model is easy to adopt in different regions. Degree-hour method was used for calculation of hourly heating and cooling energy demand. The system covers all the yearly heating and cooling energy needs, while it is assumed that all the electricity can be transferred to the grid due to its renewable origin. The system was modeled in Matlab© on hourly basis and hybrid optimization model was used to maximize the net present value (NPV), which was the objective function of the optimization. Economic figures become favorable if the economy-of-scale of both power plant and pit thermal energy storage can be utilized. The results show that the pit thermal energy storage was an excellent option for storing energy and shaving peaks in energy demand. Finally, possible switch from feed-in tariffs to feed-in premiums was assessed and possible subsidy savings have been calculated. The savings are potentially large and can be used for supporting other renewable energy projects

  7. Using wood residues as biomass for cooking energy in Cambodia

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sophanarith; Koike, Masao (Faculty of Agriculture, Shinshu University, Nagano (Japan)); Nophea Sasaki (Graduate School of Applied Informatics, University of Hyogo, Kobe (Japan))

    2007-07-01

    Due to rapid deforestation and fast growing population over the last three decades, a future shortfall of wood supply (wood and firewood) is expected in Cambodia. Therefore, alternative source of wood supply for cooking energy are needed. This alternative could potentially come from wood residues such as onsite and offsite residues. The aim of this report is to develop a modeling tool that can be used to estimate wood residues from logging (onsite) and wood processing (offsite), and to explore an appropriate system for distributing the wood residues in Cambodia. We analyze potential wood residues in evergreen, mixed and deciduous forests in Cambodia. For comparison, total wood residues are analyzed under three forest management scenarios: Business as usual (BAUSU), long-term economic gains (LEGA) and climate beneficial option (CLIBO). Under the BAUSU, LEGA and CLIBO the potential onsite biomass is totally estimated at 1.67, 1.00, and 0.35 million Mg year' (1 Mg = 106 g = 1 ton), respectively. Total offsite (SW and VW) biomass per year is estimated at 1.00, 0.60, and 0.20 million Mg under the BAUSU, LEGA and CLIBO, respectively. Total potential forest biomasses (onsite and offsite) are estimated at 2.68, 1.61 and 0.53 million Mg year' under BAUSU, LEGA and CLIBO, respectively. Our results suggested that, regardless of management scenarios forest biomasses are potentially available. Due to the fact that approximately 95% of Cambodian population depend mainly on fuel wood for daily cooking energy, effective system for distributing forest biomasses to the needed local population could greatly reduce the pressure on natural forest, which has been deforested and overexploited since the last few decades. (orig.)

  8. Issues surrounding biomass energy use in non-OECD countries

    International Nuclear Information System (INIS)

    The problem of energy-supply of Senegal is described by the Minister of Energy of Senegal. The destruction and degradation of forests in Senegal is a major risk because of the high demographic growth, the extensive agriculture and poverty. New policies are required that guarantee a sustainable energy supply to populations, and conserve the fragile environment. The biomass issue is to be incorporated into an overall development policy that effectively combines strategies relating to forestry, agriculture, rearing and resource management but also to population, poverty elimination, urban development and decentralization. (K.A.)

  9. Sustainable utilisation of forest biomass for energy - Possibilities and problems

    DEFF Research Database (Denmark)

    Stupak, I.; Asikainen, A.; Jonsell, M.;

    2007-01-01

    . and other synthesis publications on Sustainable use of forest biomass for energy. Topics are listed and an overview of advantages. disadvantages, and trade-offs between them is given, from the viewpoint of society in general and the forestry or the Nordic and Baltic countries, the paper also...... identifies the extent to which wood for energy is and energy sectors in particular. F included in forest legislation and forest certification standards under the "Programme for the Endorsement of Forest Certification" (PEFC) and the "Forest Stewardship Council" (FSC) schemes. Energy and forest policies at EU...... and national levels, and European PEFC forest standards are analysed. With respect to energy policies, the utilisation of wood for energy is generally supported in forest policies but forest legislation is seldom used as a direct toot to encourage the utilisation of wood for energy. Regulations...

  10. Energy conservation options for cooking with biomass in Ghana

    DEFF Research Database (Denmark)

    Nielsen, Per Sieverts; Næraa, Rikke; Karlsson, Kenneth

    1996-01-01

    Cooking is the main energy consuming activity in Ghana. This is mainly due to a generally low material standard of living, but also because the cooking process itself is energy inefficient. The fuel for cooking in Ghana is mainly biomass either in the form of wood, agricultural residues or charcoal....... An energy chain for the cooking process is established and the possible conservation options are surveyed in kitchen performance tests in Abodom in the tropical zone of Ghana. The energy consumption for the food preparation has been measured and energy saving options have been determined for some parts...... point has been reached. Most cooks tend to continue using a high heat supply even though it is not necessary. This process is often carried out without lid on the pot even though the use of lid will reduce the energy loss considerably. It is also concluded that the average fuelwood consumption in Abodom...

  11. Outline of biomass resource analysis with a global land use and energy model

    International Nuclear Information System (INIS)

    Biomass resource analysis is outlined in consideration of land use competition, using a global land use and energy model (GLUE) formulated with a SD (System Dynamics) technique and a biomass balance table (BBT) that can show overall biomass flow and bio-energy potential quantitatively. Bio-energy potentials of not only energy crops but also biomass residues are evaluated, considering overall biomass flow including food chains and wood chains. Fluctuations of bio-energy potential are evaluated using two scenarios for animal food demands. (K.A.)

  12. Toward a biomass-intensive sustainable energy strategy for Indiana

    International Nuclear Information System (INIS)

    Following two devastating blows to Midwestern economies during 1998-depressed crop prices resulting from a global,constriction of grain demand and federally imposed reductions in NOx emissions from power plants across the Midwest-incentives for a sustainable energy policy based on biofuels gained credibility. Indiana, the state most dependent on coal for electricity, may be the most affected by the new EPA restrictions. Simultaneously, grain production reached near record outputs yet frustrated farmers because of globally weakened market conditions. This paper examines the effects of these events by addressing the question: to what extent could a sustainable energy scenario be developed for Indiana? The focus on biomass is guided by the local availability of agricultural resources and the economic constraints imposed at the national and global level. We analyzed the availability of agricultural land for dedicated energy crop production, strategies and incentives to develop markets and adoption of production techniques, and estimates of maximum potential production and fuel conversion of energy crops. These results provide an assessment of limitations for achieving a sustainable energy scenario for one Midwestern state, while simultaneously suggesting realistic levels of integration of biomass energy that may be anticipated in the near future. (author)

  13. Life Cycle Assessment of Selected Biomass and Fossil Fuel Energy Systems in Denmark and Ghana - with a focus on greenhouse gases

    DEFF Research Database (Denmark)

    Nielsen, Per Sieverts

    1996-01-01

    The aim of the present project has been to establish an LCA methodology for assessing different biomass energy systems in Denmark and Ghana in relation to their emission of greenhouse gases. The biomass systems which have been studied are willow chips, surplus straw and biogas from manure for Den...

  14. A Low-cost, High-yield Process for the Direct Productin of High Energy Density Liquid Fuel from Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Rakesh

    2014-02-21

    The primary objective and outcome of this project was the development and validation of a novel, low-cost, high-pressure fast-hydropyrolysis/hydrodeoxygenation (HDO) process (H{sub 2}Bioil) using supplementary hydrogen (H{sub 2}) to produce liquid hydrocarbons from biomass. The research efforts under the various tasks of the project have culminated in the first experimental demonstration of the H2Bioil process, producing 100% deoxygenated >C4+ hydrocarbons containing 36-40% of the carbon in the feed of pyrolysis products from biomass. The demonstrated H{sub 2}Bioil process technology (i.e. reactor, catalyst, and downstream product recovery) is scalable to a commercial level and is estimated to be economically competitive for the cases when supplementary H{sub 2} is sourced from coal, natural gas, or nuclear. Additionally, energy systems modeling has revealed several process integration options based on the H{sub 2}Bioil process for energy and carbon efficient liquid fuel production. All project tasks and milestones were completed or exceeded. Novel, commercially-scalable, high-pressure reactors for both fast-hydropyrolysis and hydrodeoxygenation were constructed, completing Task A. These reactors were capable of operation under a wide-range of conditions; enabling process studies that lead to identification of optimum process conditions. Model compounds representing biomass pyrolysis products were studied, completing Task B. These studies were critical in identifying and developing HDO catalysts to target specific oxygen functional groups. These process and model compound catalyst studies enabled identification of catalysts that achieved 100% deoxygenation of the real biomass feedstock, sorghum, to form hydrocarbons in high yields as part of Task C. The work completed during this grant has identified and validated the novel and commercially scalable H2Bioil process for production of hydrocarbon fuels from biomass. Studies on model compounds as well as real biomass

  15. Economic viability of present-day biomass energy installations; Wirtschaftlichkeit von heutigen Biomasse-Energieanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Markus Sommerhalder, M.; Schelske, O. [Ernst Basler und Partner AG, Zuerich (Switzerland); Nussbaumer, T. [Verenum, Zuerich (Switzerland); Engeli, H. [Engeli Engineering, Neerach (Switzerland); Membrez, Y.; Ndoh, M.; Tacchini, C. [EREP SA, Aclens (Switzerland)

    2007-03-15

    This illustrated, comprehensive report for the Swiss Federal Office of Energy (SFOE) takes a look at the economic viability of biomass energy installations. The installations examined included wood-fired installations, biogas installations and those using bio-diesel and bio-ethanol. The system boundaries involved are defined and various factors that influence cost calculations are examined. The resulting heat and electricity prices for various energy sources and systems are presented and discussed. Examples of small and large-scale installations are presented. For wood-energy, combined heat and power system producing electricity at powers of 1 to 5 MWe are looked at and the various factors influencing their viability are discussed. Biogas installations of various sizes are discussed and the differing investment costs involved are commented on. Here, large industrial installations using communal green wastes are also examined and the influence of communal waste-collection charges on the price for the electricity generated is discussed, as is the influence of the market for the residual compost produced. The production and use of biogas in public wastewater treatment plants is also looked at, including the use of co-substrates. As far as biogenic liquid fuels such as bio-diesel and bio-ethanol are concerned, the report takes a brief look at the situation concerning installations in Switzerland and reviews the production costs involved. Various conclusions are drawn for the various energy sources reviewed as well as for the prices for heat and electrical energy obtained.

  16. Biomass: An Alternative Source of Energy for Eighth or Ninth Grade Science.

    Science.gov (United States)

    Heyward, Lillie; Murff, Marye

    This teaching unit develops the possibility of using biomass as an alternative source of energy. The concept of biomass is explained and the processes associated with its conversion to energy are stated. Suggestions for development of biomass technology in different geographic areas are indicated. Lessons for 6 days are presented for use with…

  17. Combustion Properties of Biomass Flash Pyrolysis Oils: Final Project Report

    Energy Technology Data Exchange (ETDEWEB)

    C. R. Shaddix; D. R. Hardesty

    1999-04-01

    Thermochemical pyrolysis of solid biomass feedstocks, with subsequent condensation of the pyrolysis vapors, has been investigated in the U.S. and internationally as a means of producing a liquid fuel for power production from biomass. This process produces a fuel with significantly different physical and chemical properties from traditional petroleum-based fuel oils. In addition to storage and handling difficulties with pyrolysis oils, concern exists over the ability to use this fuel effectively in different combustors. The report endeavors to place the results and conclusions from Sandia's research into the context of international efforts to utilize pyrolysis oils. As a special supplement to this report, Dr. Steven Gust, of Finland's Neste Oy, has provided a brief assessment of pyrolysis oil combustion research efforts and commercialization prospects in Europe.

  18. Energy analysis of Organic Rankine Cycles for biomass applications

    Directory of Open Access Journals (Sweden)

    Algieri Angelo

    2015-01-01

    Full Text Available The present paper aims at analysing the performances of Organic Rankine Cycles (ORCs adopted for the exploitation of the biomass resulting from the pruning residues in a 3000 hectares district in Southern Italy. A parametric energy analysis has been carried out to define the influence of the main plant operating conditions. To this purpose, both subcritical and transcritical power plants have been examined and saturated and superheated conditions at the turbine inlet have been imposed. Moreover, the effect of the working fluid, condensation temperature, and internal regeneration on system performances has been investigated. The results show that ORC plants represent an interesting and sustainable solution for decentralised and small-scale power production. Furthermore, the analysis highlights the significant impact of the maximum temperature and the noticeable effect of internal regeneration on the performances of the biomass power plants.

  19. Dynamics of Technological Innovation Systems. The Case of Biomass Energy

    International Nuclear Information System (INIS)

    The starting point is that the current energy system largely depends on fossil fuels. This phenomenon, which is labelled as carbon lock-in, causes a long breakthrough period for renewable energy. The most suitable theoretical approach to analyse the development, diffusion and implementation of emergent technologies, such as renewable energy, is the Technological Innovation Systems' (TIS) perspective. This approach focuses on a particular technology and includes all those factors (institutions, actors, and networks) that influence its development. Recent research has identified several so-called System Functions that need to be fulfilled for a TIS to support successfully the evolution of a technology. In this paper we will use the following set of System Functions: F1: Entrepreneurial Activities, F2: Knowledge Development (learning), F3: Knowledge Diffusion through Networks, F4: Guidance of the Search, F5: Market Formation, F6: Resources Mobilisation, F7: Counteracting Resistance to Change (also Support from Advocacy Coalitions). By focusing on the System Functions the key processes that occur in a system which influence the development, diffusion and implementation of that technology will be identified and insight will be gained in the system dynamics. The System Functions are not independent but interact and influence each other. The nature of interactions whether they are positive or negative will influence the performance of the system respectively. Positive System Function fulfilment can lead to positive, i.e. virtuous cycles of processes that strengthen each other and lead to the building up of momentum that creates a process of creative destruction within the incumbent system. According to the same reasoning, a system in decline is characterised by one or more vicious cycles, where the System Functions interact and reinforce each other in a negative way. The results from the case studies showed that different functional patterns occurred for the Biomass

  20. Biomass gasification- a promising renewable energy technology for industries

    International Nuclear Information System (INIS)

    The demand for energy in the industrial sector is increasing to meet the growing activities due to the encouragement of the government in our country. This energy requirement is mostly thermal or electrical. To sustain the healthy trend there is an urgent need to look for alternate (renewable) sources of energy in addition to the measures of energy conservation wherever possible. One such very promising, matured, and advanced renewable energy technology is biomass gasification, offering a host of benefits. The use of this technology especially in the industrial sector, by taking the first hand practical examples from our experience of working in this area where it has been put to use is discussed. To further give an idea of the vast nature of its applicability different class of industries have been chosen highlighting the advantages derived by adopting this technology. (author). 8 refs., 3 figs

  1. Leading global energy and environmental transformation: Unified ASEAN biomass-based bio-energy system incorporating the clean development mechanism

    International Nuclear Information System (INIS)

    In recent years, the ten member countries in the Association of Southeast Asia Nations (ASEAN) have experienced high economic growth and, in tandem, a substantial increment in energy usage and demand. Consequently, they are now under intense pressure to secure reliable energy supplies to keep up with their growth rate. Fossil fuels remain the primary source of energy for the ASEAN countries, due to economic and physical considerations. This situation has led to unrestrained emissions of greenhouse gases to the environment and thus effectively contributes to global climate change. The abundant supply of biomass from their tropical environmental conditions offers great potential for ASEAN countries to achieve self-reliance in energy supplies. This fact can simultaneously transform into the main driving force behind combating global climate change, which is associated with the usage of fossil fuels. This research article explores the potential and advantages for ASEAN investment in biomass-based bio-energy supply, processing and distribution network with an emphasis on regional collaborations. It also investigates the implementation and operational challenges in terms of political, economic and technical factors for the cross-border energy scheme. Reliance of ASEAN countries on the clean development mechanism (CDM) to address most of the impediments in developing the project is also under scrutiny. Unified co-operation among ASEAN countries in integrating biomass-based bio-energy systems and utilising the clean development mechanism (CDM) as the common effort could serve as the prime example for regional partnerships in achieving sustainable development for the energy and environmental sector in the future. -- Highlights: →A study that explores feasibility for ASEAN investment in biomass-based bio-energy. →Focus is given on regional supply, processing and distribution network. →Cross-border implementation and operational challenges are discussed thoroughly.

  2. Energy-Based Evaluations on Eucalyptus Biomass Production

    Directory of Open Access Journals (Sweden)

    Thiago L. Romanelli

    2012-01-01

    Full Text Available Dependence on finite resources brings economic, social, and environmental concerns. Planted forests are a biomass alternative to the exploitation of natural forests. In the exploitation of the planted forests, planning and management are key to achieve success, so in forestry operations, both economic and noneconomic factors must be considered. This study aimed to compare eucalyptus biomass production through energy embodiment of anthropogenic inputs and resource embodiment including environmental contribution (emergy for the commercial forest in the Sao Paulo, Brazil. Energy analyses and emergy synthesis were accomplished for the eucalyptus production cycles. It was determined that emergy synthesis of eucalyptus production and sensibility analysis for three scenarios to adjust soil acidity (lime, ash, and sludge. For both, energy analysis and emergy synthesis, harvesting presented the highest input demand. Results show the differences between energy analysis and emergy synthesis are in the conceptual underpinnings and accounting procedures. Both evaluations present similar trends and differ in the magnitude of the participation of an input due to its origin. For instance, inputs extracted from ores, which represent environmental contribution, are more relevant for emergy synthesis. On the other hand, inputs from industrial processes are more important for energy analysis.

  3. Potential and possibilities of supplying energy from biomass and biogas; Potentiale und Moeglichkeiten der Energiebereitstellung durch Biomasse und Biogas

    Energy Technology Data Exchange (ETDEWEB)

    Sonnenberg, H. [Bundesforschungsanstalt fuer Landwirtschaft, Braunschweig (Germany). Inst. fuer Betriebstechnik; Weiland, P.; Ahlgrimm, H.J. [Bundesforschungsanstalt fuer Landwirtschaft (FAL), Braunschweig (Germany). Inst. fuer Technologie

    1998-06-01

    Agriculture`s potential contribution to the energy supply of the ``town of the future`` through the conversion of biomass to energy, including biogas production, is a rather modest one. Supposing that the share of total renewable energy in Germany`s primary energy demand rises to approximately 4%, then the proportion of biomass from biotic raw materials especially produced for the purpose will at the most make up an eighth of this amount. Beyond this, biomass is burdened with other drawbacks such as low supply efficiency, limited availability, and weather-dependent reliability. On the other hand, biomass is well suited for conversion to solid, liquid, and gaseous fuels, including inexpensive ones with low energy density (solid fuels), mostly used for stationary heating applications, as well as more expensive ones such as liquid fuels with a high energy density for mobile applications in the automotive sector. Thanks to its capacity to regenerate, biomass is an inexhaustible resource. Moreover, its natural life cycle has a small impact on the environment. [Deutsch] Der Beitrag, den die Landwirtschaft durch energetische Nutzung von Biomasse, z.B. auch mit der Erzeugung von Biogas, zur Energieversorgung der `Stadt der Zukunft` leisten kann, nimmt sich bescheiden aus. Wird erwartet, dass innerhalb des naechsten Jahrzehnts der Anteil regenerativer Energien insgesamt auf etwa 4% des Primaerenergie-Verbrauchs Deutschlands ansteigen koennte, so duerfte Biomasse als speziell zur Energiegewinnung angebaute nachwachsende Rohstoffe mit bestensfalls 0,5 Prozentpunkten daran beteiligt sein. Es beduerfen darueber hinaus auch Nachteile, wie geringe Bereitstellungseffizienz, beschraenkte Verfuegbarkeit und witterungsabhaengige Zuverlaessigkeit, der Beachtung. Die Biomasse kann jedoch mit Erfolg in feste, fluessige und gasfoermige Energietraeger konvertiert werden, sowohl in preiswerte mit geringer Energiedichte (Festbrennstoffe) fuer bevorzugt stationaeren Heizungs-Einsatz als auch

  4. Potential For Agricultural Biomass Production for Energy Purposes in Poland: a Review

    OpenAIRE

    Rafał Baum; Karol Wajszczuk; Benedykt Pepliński; Jacek Wawrzynowicz

    2013-01-01

    This article reviews the production capacity of Polish agriculture with respect to biomass used for energy production. The forecast production potential of agricultural biomass in Poland in 2020 includes three key areas: the expected consumption of renewable energy according to energy type, the energy potential of agriculture and barriers to the use of biomass. Studies have shown that in Poland, total energy consumption will significantly increase (over 10% by 2020). Growth of demand for rene...

  5. Pilot project concerning the establishment of a collective biomass conversion plant on the island of Mors

    International Nuclear Information System (INIS)

    This pilot project comprises a feasibility study in connection with plans to establish a biomass conversion plant, on the Danish island of Mors, which would provide methane to be used as fuel, in combination with natural gas, for a cogeneration plant serving six villages. The subjects of location, organization, the transportation of biomass, the design of the biomass conversion plant, economical aspects and conditions of the use of the methane are discussed as a basis for decisions in this respect. Environmental considerations are also dealt with. (AB)

  6. Priority order in using biomass resources - Energy systems analyses of future scenarios for Denmark

    DEFF Research Database (Denmark)

    Kwon, Pil Seok; Østergaard, Poul Alberg

    2013-01-01

    . This article compares the value of using biomass as a heat source and for electricity generation in a 100% renewable energy system context. The comparison is done by assuming an incremental decrease in the biomass available for the electricity and heat sector, respectively. The assumed scenarios for......According to some future Danish energy scenarios, biomass will become one of the two main pillars of the future energy system accompanied by wind power. The biomass can be used for generating heat and electricity, and as a transportation fuel in a future energy system according to the scenarios...... the decrease of biomass are made by use of an hourly energy system analysis model, EnergyPLAN. The results are shown in terms of system configuration, biomass fuel efficiency, system cost, and impacts on the export of electricity. It is concluded that the reduction of biomass in the heat sector is...

  7. A techno-economic evaluation of a biomass energy conversion park

    NARCIS (Netherlands)

    Dael, Van M.; Passel, van S.; Pelkmans, L.; Guisson, R.; Reumermann, P.; Luzardo, N.M.; Witters, N.; Broeze, J.

    2013-01-01

    Biomass as a renewable energy source has many advantages and is therefore recognized as one of the main renewable energy sources to be deployed in order to attain the target of 20% renewable energy use of final energy consumption by 2020 in Europe. In this paper the concept of a biomass Energy Conve

  8. Applying SE Methods Achieves Project Success to Evaluate Hammer and Fixed Cutter Grinders Using Multiple Varieties and Moistures of Biomass Feedstock for Ethanol Production

    Energy Technology Data Exchange (ETDEWEB)

    Larry R. Zirker; Christopher T. Wright, PhD; R. Douglas Hamelin

    2008-06-01

    Applying basic systems engineering (SE) tools to the mission analysis phases of a 2.5-million dollar biomass pre-processing project for the U.S. Department of Energy directly assisted the project principal investigator understand the complexity and identify the gaps of a moving-target project and capture the undefined technical/functional requirements and deliverables from the project team and industrial partners. A creative application of various SE tools by non-aerospace systems engineers developed an innovative “big picture” product that combined aspects of mission analysis with a project functional flow block diagram, providing immediate understanding of the depth and breath of the biomass preprocessing effort for all team members, customers, and industrial partners. The “big picture” diagram became the blue print to write the project test plan, and provided direction to bring the project back on track and achieve project success.

  9. Analysis of the availability of biomass in Cuba with energy ends

    International Nuclear Information System (INIS)

    The sugar Power stations commonly are endowed with an area water heater energetics with I upset generators to burn biomass and to generate electricity, alone that make it in the period of harvest, the trash that generate in its industrial process for electricity to be self-sufficient in burning. For to continue generating the whole year is necessary the supply of other solid fuels (biomasses not sugar). In this case the supply of marabou biomass with more caloric power and smaller content of humidity that the trash, converts it in a more efficient fuel in this industry. This project opens a road for the use of more than 900.000 hectares today infested by marabou, some will be been able to use again, after more than disabled 25 years, for the agricultural production and others will be able to be reforested with energy forests that allow the sustainable of the project. These studies are guided to contribute to the increment and sustainable of the security electro-energetics in Cuba, facilitating the environmental recovery and the agricultural use of the floors, facilitating the adoption of systems that achieve an in agreement generation with the strategy approved in the principles of the Energy Revolution and proposal in the limits of the 6. Congress of Party. (author)

  10. Renewable energies: the choice of invitation to tender candidates for the electric power plants supplied by biomass or biogas

    International Nuclear Information System (INIS)

    To contribute to the french objectives of renewable energies development, the Ministry of Industry proposed an invitation to tender for the realization at the first of january 2007 of electric power plants (more than 12 MW) from biomass and biogas. This document presents the selected projects. (A.L.B.)

  11. Energy and carbon dioxide control from biomass through anthropogenic peat

    International Nuclear Information System (INIS)

    This paper reports on a remedy to overcome CO2 build up which is proposed; it is based on biomass. Biomass is grown on energy farms and digested anaerobically to yield methane and an organic residue; the methane collected defrays process cost and the organic residue is buried as man-made or anthropogenic peat (AP) to remove carbon from the life cycle permanently. Combustion of fossil fuels in one region can be balanced by withdrawal of AP elsewhere to make net addition of CO2 to the atmosphere zero or even negative. This allows continued reliance on fossil fuels while stabilizing or reducing the level of CO2 in the air. Economic activity and development are not disrupted anywhere. The value of the methane collected covers the cost of the operation and, in fact, might yield a profit. More than enough rain forest has already been cleared to implement this proposal at world scale. An example is provided for illustration, using known yields and present values: Biomass grown on 320 million hectares of tropical land can provide enough AP to stabilize atmospheric CO2 content below 400 ppm if properly sequestered; methane worth more than $500 billion is produced at the same time

  12. Hybrid biomass-wind power plant for reliable energy generation

    International Nuclear Information System (INIS)

    Massive implementation of renewable energy resources is a key element to reduce CO2 emissions associated to electricity generation. Wind resources can provide an important alternative to conventional electricity generation mainly based on fossil fuels. However, wind generators are greatly affected by the restrictive operating rules of electricity markets because, as wind is naturally variable, wind generators may have serious difficulties on submitting accurate generation schedules on a day ahead basis, and on complying with scheduled obligations in real-time operation. In this paper, an innovative system combining a biomass gasification power plant, a gas storage system and stand-by generators to stabilize a generic 40 MW wind park is proposed and evaluated with real data. The wind park power production model is based on real data about power production of a Spanish wind park and a probabilistic approach to quantify fluctuations and so, power compensation needs. The hybrid wind-biomass system is analysed to obtain main hybrid system design parameters. This hybrid system can mitigate wind prediction errors and so provide a predictable source of electricity. An entire year cycle of hourly power compensations needs has been simulated deducing storage capacity, extra power needs of the biomass power plant and stand-by generation capacity to assure power compensation during critical peak hours with acceptable reliability. (author)

  13. Financing green energy projects in Malaysia

    International Nuclear Information System (INIS)

    Kyoto Protocol is the first global commitment to reduce greenhouse gas (GHG) emissions. Malaysia, which signed the Protocol on 12 March 1999, must also take steps to address the climate change concerns. The use of renewable energy sources is seen as a feasible way to address the issue. Despite their environment-friendliness, these sources of energy are grossly under-utilised even though Malaysia is amply endowed with renewable energies, particularly biomass and solar. As a unique domestic resource, recurring energy savings from energy efficiency could also qualify as renewable energy. At present, the contribution of renewable energy in the country's energy mix is very small compared to its large potential. The Malaysian Government recognizes the potential of this form of energy. As part of its fuel diversification policy, the government plans to expand the four-fuel strategy to include renewable energy as the fifth fuel. Due to all year constant sunshine and vast oil palm cultivation, both solar and palm oil residues are identified as the most promising green energy option. Efforts are underway to embark on programs to demonstrate and evaluate the viability of these emerging green technologies. A few organizations are given grants to undertake pre-feasibility studies of pre-commercialization demonstration projects. When approved, viable projects could also qualify for technical and financial assistance from foreign partners. However, grants are limited and under World Trade Organization rules such subsidies should not exceed 30 percent in most cases. Commercialization of green energy projects must therefore involve full participation of private developers and financial institutions. Yet, virtually no attempt is made to promote financing of such projects in Malaysia. In most cases, financial institutions are not aware of the economic potential of these unique and under exploited sources. This paper will discuss problems in financing green energy projects and then

  14. The French market of biomass. An analysis of barriers and levers of development of the wood-energy sector, main biomass resource

    International Nuclear Information System (INIS)

    This article presents the content of a market study which aimed at assessing the weight of wood-energy in the French energy mix when it represents 97 per cent of biomass consumed under the form of heat, at giving an overview of markets within which this energy is now valorised (housing heating, heat and cogeneration), at analysing the business model of biomass projects, at assessing mechanisms aimed at supporting this sector, and at assessing the potential of the French market as far as wood-energy is concerned. The report presents the operation principles and applications of biomass, analyses the share of wood-energy in the French energy mix and the objectives defined by the Grenelle de l'Environnement, presents the French forests as an abundant resource, comments wood-based heating of housing as an evolving market, presents and analyses the market of industrial and collective heat, and discusses the perspective of a multiplication by 4 by 2020 of cogeneration installed capacities

  15. Biomass gasification with preheated air: Energy and exergy analysis

    Directory of Open Access Journals (Sweden)

    Karamarkovic Rade M.

    2012-01-01

    Full Text Available Due to the irreversibilities that occur during biomass gasification, gasifiers are usually the least efficient units in the systems for production of heat, electricity, or other biofuels. Internal thermal energy exchange is responsible for a part of these irreversibilities and can be reduced by the use of preheated air as a gasifying medium. The focus of the paper is biomass gasification in the whole range of gasification temperatures by the use of air preheated with product gas sensible heat. The energetic and exergetic analyses are carried with a typical ash-free biomass feed represented by CH1.4O0.59N0.0017 at 1 and 10 bar pressure. The tool for the analyses is already validated model extended with a heat exchanger model. For every 200 K of air preheating, the average decrease of the amount of air required for complete biomass gasification is 1.3% of the amount required for its stoichiometric combustion. The air preheated to the gasification temperature on the average increases the lower heating value of the product gas by 13.6%, as well as energetic and exergetic efficiencies of the process. The optimal air preheating temperature is the one that causes gasification to take place at the point where all carbon is consumed. It exists only if the amount of preheated air is less than the amount of air at ambient temperature required for complete gasification at a given pressure. Exergy losses in the heat exchanger, where the product gas preheats air could be reduced by two-stage preheating.

  16. Biomass Energy Systems and Resources in Tropical Tanzania

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Lugano (KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology (Sweden))

    2010-07-01

    Tanzania has a characteristic developing economy, which is dependent on agricultural productivity. About 90% of the total primary energy consumption of the country is from biomass. Since the biomass is mostly consumed at the household level in form of wood fuel, it is marginally contributing to the commercial energy supply. However, the country has abundant energy resources from hydro, biomass, natural gas, coal, uranium, solar, wind and geothermal. Due to reasons that include the limited technological capacity, most of these resources have not received satisfactory harnessing. For instance: out of the estimated 4.7GW macro hydro potential only 561MW have been developed; and none of the 650MW geothermal potential is being harnessed. Furthermore, besides the huge potential of biomass (12 million tons of oil equivalent), natural gas (45 million cubic metres), coal (1,200 million tones), high solar insolation (4.5 - 6.5 kWh/m2), 1,424km of coastal strip, and availability of good wind regime (> 4 m/s wind speed), they are marginally contributing to the production of commercial energy. Ongoing exploration work also reveals that the country has an active system of petroleum and uranium. On the other hand, after commissioning the 229 km natural gas pipeline from SongoSongo Island to Dar es Salaam, there are efforts to ensure a wider application in electricity generation, households, automotive and industry. Due to existing environmental concerns, biomass resource is an attractive future energy for the world, Tanzania inclusive. This calls for putting in place sustainable energy technologies, like gasification, for their harnessing. The high temperature gasification (HTAG) of biomass is a candidate technology since it has shown to produce improved syngas quality in terms of gas heating value that has less tar. This work was therefore initiated in order to contribute to efforts on realizing a commercial application of biomass in Tanzania. Particularly, the work aimed at

  17. Wood Pellet-Fired Biomass Boiler Project at the Ketchikan Federal Building

    Energy Technology Data Exchange (ETDEWEB)

    Tomberlin, G.

    2014-06-01

    Biomass boiler systems have existed for many years, but the technology has advanced in recent decades and can now provide automated and efficient operation for a relatively modest investment. Key advances in system monitoring and control allow for lower operating costs, since the control systems run all aspects of the boiler, including feed, load reduction and even tube cleaning. These advances have made such systems economical on a small scale in situations where inexpensive fuels like natural gas are not available. This creates an opportunity for building operators in remote, cold-climate locations to reduce the use of expensive fuels for heating buildings. GSA Region 10 installed the system at the federal building in Ketchikan, Alaska and submitted the project to the Green Proving Ground (GPG) program. GSA's GPG program contracted with the National Renewable Energy Laboratory (NREL) to assess the installation and the technology. The system serves as a demonstration to assess actual system efficiencies, as well as operating characteristics and financial benefits. In addition to installation and operational issues, the project team/researchers examined other issues, including fuel transportation costs, building energy savings, and overall economics.

  18. Advanced system demonstration for utilization of biomass as an energy source. Environmental report

    Energy Technology Data Exchange (ETDEWEB)

    McCollom, M.

    1979-01-01

    The conclusions and findings of extensive analyses undertaken to assess the environmental impacts and effects of the proposal to assist in an Advanced System Demonstration for Utilization of Biomass as an Energy Source by means of a wood-fueled power plant. Included are a description of the proposed project, a discussion of the existing environment that the project would affect, a summary of the project's impacts on the natural and human environments, a discussion of the project's relationships to other government policies and plans, and an extensive review of the alternatives which were considered in evaluating the proposed action. All findings of the research undertaken are discussed. More extensive presentations of the methods of analysis used to arrive at the various conclusions are available in ten topical technical appendices.

  19. Project financing renewable energy schemes

    International Nuclear Information System (INIS)

    The viability of many Renewable Energy projects is critically dependent upon the ability of these projects to secure the necessary financing on acceptable terms. The principal objective of the study was to provide an overview to project developers of project financing techniques and the conditions under which project finance for Renewable Energy schemes could be raised, focussing on the potential sources of finance, the typical project financing structures that could be utilised for Renewable Energy schemes and the risk/return and security requirements of lenders, investors and other potential sources of financing. A second objective is to describe the appropriate strategy and tactics for developers to adopt in approaching the financing markets for such projects. (author)

  20. Potential for the energy-oriented use of biomass in Switzerland; Potentiale zur energetischen Nutzung von Biomasse in der Schweiz

    Energy Technology Data Exchange (ETDEWEB)

    Oettli, B.; Blum, M.; Peter, M.; Schwank, O. [Infras, Zuerich (Switzerland); Bedniaguine, D.; Dauriat, A.; Gnansounou, G. [Swiss Federal Institute of Technology (EPFL), Laboratory of Energy Systems (LASEN), Lausanne (Switzerland); Chetelat, J.; Golay, G. [Swiss Federal Office of Technology (EPFL), Laboratoire de systemes d' information geographique (LASIG), Lausanne (Switzerland); Hersener, J.-L. [Ingenieurbuero Hersener, Wiesendangen (Switzerland); Meier, U. [Meritec GmbH, Guntershausen (Switzerland); Schleiss, K. [Umwelt- und Kompostberatung, Grenchen (Switzerland)

    2004-07-01

    This comprehensive report for the Swiss Federal Office of Energy (SFOE) discusses the potential offered by the use of biomass in the energy area. In the first and main part of the report, the base data and the methodology used are discussed and the theoretical and realisable potentials are examined. Scenarios on reference-energy prices are discussed, whereby the price of oil is taken as primary reference. General estimates of the potential of biomass are presented for 2025 and 2040 and compared with figures for 2003. Conversion paths and various types of installations are discussed. Economic potential and future market-shares of biomass energy-use are discussed. Finally, the external costs of energy supply systems are examined and their influence on the economic potential of biomass technologies is discussed. The second part of the report takes a look at the use of geographic information systems (GIS) for data acquisition and the visualisation of energy-potentials. In the third part of the report, the optimal use of the potential offered by biomass is looked at and the most important results and recommendations of the study group are presented. The report is completed with a list of relevant literature and a comprehensive appendix.

  1. Evaluation of Alnus species and hybrids. [For biomass energy production

    Energy Technology Data Exchange (ETDEWEB)

    Hall, R.B. (Iowa State Univ., Ames, IA (US). Dept. of Forestry); Burgess, D. (Petawawa National Forestry Inst., Chalk River, Ontario (CA))

    1990-01-01

    Trials of a common set of seed lots representing 39 parents and five species of Alnus have been started in four countries: Belgium, Canada, the UK, and the US. Initial results indicate that cold hardiness is a problem in using A. acuminata but that sufficiently hardy A. rubra sources are available. A. glutinosa had the best growth in the nursery, and A. cordata had the best survival under severe moisture-stress conditions. A summary also is given of a workshop on alder improvement that further demonstrates the potential for developing the genus for biomass energy production. (author).

  2. Biomass for energy versus food and feed, land use analyses and water supply

    OpenAIRE

    Ladanai, Svetlana; Vinterbäck, Johan

    2010-01-01

    The global growth in energy demand continues, but the way of meeting rising energy needs is not sustainable. The use of biomass energy is a widely accepted strategy towards sustainable development that sees the fastest rate with the most of increase in power generation followed by strong rises in the consumption of biofuels for transport. Agriculture, forestry and wood energy sector are the leading sources of biomass for bioenergy. However, to be acceptable, biomass feedstock must be produced...

  3. Implementation of the biomass gasification project for community empowerment at Melani village, Eastern Cape, South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Mamphweli, Ntshengedzeni S.; Meyer, Edson L. [University of Fort Hare, Institute of Technology, Private Bag X1314, Alice 5700 (South Africa)

    2009-12-15

    Eskom and the University of Fort Hare are engaged in a biomass gasification project using the System Johansson Biomass gasifier (SJBG). The SJBG installed at Melani village in the Eastern Cape province of South Africa is used to assess the viability and affordability of biomass gasification in South Africa. A community needs assessment study was undertaken at the village before the installation of the plant. The study revealed the need for low-cost electricity for small businesses including growing of crops, chicken broilers, manufacturing of windows and door frames, sewing of clothing, bakery etc. It was also found that the community had a problem with the socio-environmental aspects of burning biomass waste from the sawmill furnace as a means of waste management. The SJBG uses the excess biomass materials (waste) to generate low-cost electricity to drive community economic development initiatives. A study on the properties and suitability of the biomass materials resulting from sawmill operation and their suitability for gasification using the SJBG was undertaken. The study established that the biomass materials meet the requirements for the SJBG. A 300 Nm{sup 3}/h SJBG was then manufactured and installed at the village. (author)

  4. Analysis of results of biomass forest inventory in northeastern Amazon for development of REDD+ carbon project.

    Science.gov (United States)

    Mello, Leonel N C; Sales, Marcio H R; Rosa, Luiz P

    2016-03-01

    In Brazil, a significant reduction in deforestation rates occurred during the last decade. In spite of that fact, the average annual rates are still too high, approximately 400.000 ha/year (INPE/Prodes). The projects of emissions reduction through avoided deforestation (REED+) are an important tool to reduce deforestation rates in Brazil. Understanding the amazon forest structure, in terms of biomass stock is key to design avoided deforestation strategies. In this work, we analyze data results from aboveground biomass of 1,019.346,27 hectares in the state of Pará. It was collected data from 16,722 trees in 83 random independent plots. It was tested 4 allometric equations, for DBH > 10cm: Brown et al. (1989), Brown and Lugo (1999), Chambers et al. (2000), Higuchi et al. (1998). It revealed that the biggest carbon stock of above ground biomass is stocked on the interval at DBH between 30cm and 80cm. This biomass compartment stocks 75.70% of total biomass in Higuchi et al. (1998) equation, 75.56% of total biomass in Brown et al. (1989) equation, 78.83% of total biomass in Chambers et al. (2000) equation, and 73.22% in Brown and Lugo (1999) equation. PMID:26959317

  5. Biomass Assessment. Assessment of global biomass potentials and their links to food, water, biodiversity, energy demand and economy. Inventory and analysis of existing studies. Supporting document

    International Nuclear Information System (INIS)

    This supporting document contains the result from the inventory phase of the biomass assessment of global biomass potentials and their links to food, water, biodiversity, energy demand and economy. This study provides a comprehensive assessment of global biomass potential estimates, focusing on the various factors affecting these potentials, such as food supplies, water use, biodiversity, energy demands and agro-economics

  6. Nontraditional Use of Biomass at Certified Forest Management Units: Forest Biomass for Energy Production and Carbon Emissions Reduction in Indonesia

    Directory of Open Access Journals (Sweden)

    Asep S. Suntana

    2012-01-01

    Full Text Available Biomass conversion technologies that produce energy and reduce carbon emissions have become more feasible to develop. This paper analyzes the potential of converting biomass into biomethanol at forest management units experiencing three forest management practices (community-based forest management (CBFM, plantation forest (PF, and natural production forest (NPF. Dry aboveground biomass collected varied considerably: 0.26–2.16 Mg/ha/year (CBFM, 8.08–8.35 Mg/ha/year (NPF, and 36.48–63.55 Mg/ha/year (PF. If 5% of the biomass was shifted to produce biomethanol for electricity production, the NPF and PF could provide continuous power to 138 and 2,762 households, respectively. Dedicating 5% of the biomass was not a viable option from one CBFM unit. However, if all biomasses were converted, the CBFM could provide electricity to 19–27 households. If 100% biomass from two selected PF was dedicated to biomethanol production: (1 52,200–72,600 households could be provided electricity for one year; (2 142–285% of the electricity demand in Jambi province could be satisfied; (3 all gasoline consumed in Jambi, in 2009, would be replaced. The net carbon emissions avoided could vary from 323 to 8,503 Mg when biomethanol was substituted for the natural gas methanol in fuel cells and from 294 to 7,730 Mg when it was used as a gasoline substitute.

  7. The use of isotopes in the production and transformation of biomass for energy purposes

    International Nuclear Information System (INIS)

    Biomass possibilities as an energy source and ''agroenergetica'' concept are described. Then, the possibilities of radiotracers in research on agroenergy, mainly photosynthesis, plant metabolism and soil-plant relations are analyzed. Finally the use of radioactive sources for the treatment of lignocellulosic biomass and the conservation of amylaceus biomass are considered. (author)

  8. The use of biomass in Denmark. Goal and means in ``Energy 21``; Biomasseanvendelse i Danmark. Maal og virkemidler i ``Energi 21``

    Energy Technology Data Exchange (ETDEWEB)

    Odgaard, O.

    1997-12-31

    This conference paper discusses the role of biomass in Denmark up to 2005. The energy action plan ``Energy 21``, which was adopted in 1996, conforms to the goal of reducing the CO{sub 2} emission by 20% by 2005 compared to the 1988 level and by 50% by 2030. In 2030, 20% of the net energy consumption will come from biomass. The instruments for achieving this ambitious goal take the form of agreements with the electricity utilities, taxes and charges, and selective subsidies to the use of biomass technologies, to electricity produced from biomass, and to research and development. Revisions of the Biomass Agreement may contribute to achieving the goals. The market conditions for the electricity utilities for buying straw and wood chips have been made more flexible and biogas may now be used for decentralized combined heat and power in natural gas regions. The development and demonstration projects have paid off by having brought the development to a level where a forced biomass utilization is possible. The development of biomass is undergoing a comprehensive readjustment. 1 figure, 5 tabs.

  9. Costs and profitability of renewable energies in metropolitan France - ground-based wind energy, biomass, solar photovoltaic. Analysis

    International Nuclear Information System (INIS)

    After a general presentation of the framework of support to renewable energies and co-generation (purchasing obligation, tendering, support funding), of the missions of the CRE (Commission for Energy Regulation) within the frame of the purchasing obligation, and of the methodology adopted for this analysis, this document reports an analysis of production costs for three different renewable energy sectors: ground-based wind energy, biomass energy, and solar photovoltaic energy. For each of them, the report recalls the context (conditions of purchasing obligation, winning bid installations, installed fleet in France at the end of 2012), indicates the installations taken into consideration in this study, analyses the installation costs and funding (investment costs, exploitation and maintenance costs, project funding, production costs), and assesses the profitability in terms of capital and for stakeholders

  10. Proceedings of the Chernobyl phytoremediation and biomass energy conversion workshop

    International Nuclear Information System (INIS)

    Many concepts, systems, technical approaches, technologies, ideas, agreements, and disagreements were vigorously discussed during the course of the 2-day workshop. The workshop was successful in generating intensive discussions on the merits of the proposed concept that includes removal of radionuclides by plants and trees (phytoremediation) to clean up soil in the Chernobyl Exclusion Zone (CEZ), use of the resultant biomass (plants and trees) to generate electrical power, and incorporation of ash in concrete casks to be used as storage containers in a licensed repository for low-level waste. Twelve years after the Chernobyl Nuclear Power Plant (ChNPP) Unit 4 accident, which occurred on April 26, 1986, the primary 4radioactive contamination of concern is from radioactive cesium (137Cs) and strontium (90Sr). The 137Cs and 90Sr were widely distributed throughout the CEZ. The attendees from Ukraine, Russia, Belarus, Denmark and the US provided information, discussed and debated the following issues considerably: distribution and characteristics of radionuclides in CEZ; efficacy of using trees and plants to extract radioactive cesium (Cs) and strontium (Sr) from contaminated soil; selection of energy conversion systems and technologies; necessary infrastructure for biomass harvesting, handling, transportation, and energy conversion; radioactive ash and emission management; occupational health and safety concerns for the personnel involved in this work; and economics. The attendees concluded that the overall concept has technical and possibly economic merits. However, many issues (technical, economic, risk) remain to be resolved before a viable commercial-scale implementation could take place

  11. Proceedings of the Chornobyl phytoremediation and biomass energy conversion workshop

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, J. [Pacific Northwest National Lab., Richland, WA (United States); Tokarevsky, V. [State Co. for Treatment and Disposal of Mixed Hazardous Waste (Ukraine)

    1998-06-01

    Many concepts, systems, technical approaches, technologies, ideas, agreements, and disagreements were vigorously discussed during the course of the 2-day workshop. The workshop was successful in generating intensive discussions on the merits of the proposed concept that includes removal of radionuclides by plants and trees (phytoremediation) to clean up soil in the Chornobyl Exclusion Zone (CEZ), use of the resultant biomass (plants and trees) to generate electrical power, and incorporation of ash in concrete casks to be used as storage containers in a licensed repository for low-level waste. Twelve years after the Chornobyl Nuclear Power Plant (ChNPP) Unit 4 accident, which occurred on April 26, 1986, the primary 4radioactive contamination of concern is from radioactive cesium ({sup 137}Cs) and strontium ({sup 90}Sr). The {sup 137}Cs and {sup 90}Sr were widely distributed throughout the CEZ. The attendees from Ukraine, Russia, Belarus, Denmark and the US provided information, discussed and debated the following issues considerably: distribution and characteristics of radionuclides in CEZ; efficacy of using trees and plants to extract radioactive cesium (Cs) and strontium (Sr) from contaminated soil; selection of energy conversion systems and technologies; necessary infrastructure for biomass harvesting, handling, transportation, and energy conversion; radioactive ash and emission management; occupational health and safety concerns for the personnel involved in this work; and economics. The attendees concluded that the overall concept has technical and possibly economic merits. However, many issues (technical, economic, risk) remain to be resolved before a viable commercial-scale implementation could take place.

  12. Hydrogen Sulfide Micro-Sensor for Biomass Fouling Detection Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Hydrogen Sulfide (H2S)is the leading chemical agent causing human fatalities following inhalation exposures. The overall aim of this project is to develop and...

  13. Overview of new energy projects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    Developing new energy is one of the main pillars of Japan`s energy policy. NEDO is pressing ahead with the further development of new energy sources and the introduction and diffusion of new energy technologies as a core. NEDO is carrying out the following development. For the utilization of clean and abundant solar energy, the photovoltaic power generation, and the practical application of solar thermal systems are promoted. Japan, located in the Pacific Rim volcanic zone, is blessed with massive reserves of geothermal energy resources, and work is being conducted to develop technologies for promoting geothermal energy utilization. As its resources are widely dispersed and abundant, coal is an attractive energy source. However, coal needs to be made more environmentally friendly. NEDO is conducting the development of coal conversion technologies, i.e., liquefaction and gasification technologies. Fuel cell is one of the energy storage technologies. Hydrogen and alcohol are themes as clean alternative energy sources. Furthermore, biomass and wind energy conversion system are also being investigated. To promote the development of geothermal resources, NEDO is carrying out geothermal development promotion surveys. To secure stable supplies of coal for Japan, NEDO is conducting geological surveys in countries where it is difficult for private companies to conduct business. Promotion of international cooperation is also presented.

  14. Power generation prior food safety? Biomass in the conflict area of energy security and hunger crisis; Energieerzeugung vor Ernaehrungssicherung? Biomasse im Spannungsfeld von Energiesicherung und Hungerkrise

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Monika C.M. (ed.)

    2011-07-01

    Within the international meeting of the Evangelische Akademie Loccum (Rehburg-Loccum, Federal Republic of Germany) at 13rd to 15th May, 2009 the following lectures were held: (1) Biomass - Energy of the future (Daniela Thraen); (2) Bio energy and cultivation of energy crops in Lower Saxony. State of the art and perspectives (Gerd Carsten Hoeher); (3) Bioenergy and food security project in FAO (Mirella Salvatore); (4) Appetite for hunger and competition in land use (Elmar Altvater); (5) Biodiesel poles in Northeast Brasilia. Efficiencies and experiences of a project for the integration of small farmers into the national Biodiesel program (Stefan Goertz); (6) Bioenergy in Africa: Chance to overcome energy poverty or driver of hunger (Hamimu Hongo); (7) Cultivation of Jatropha for direct utilization of oil: Win-Win situation for small farmers and companies? (Lorenz Kirchner); (8) Energy security by means of sufficient power generation. Energy and fuels from biomass result in renaissance of the agriculture and offer chances for fight against poverty and for avoidance of hunger to developing countries (Nasir El Bassam).

  15. Environmental assessment of energy production from waste and biomass

    DEFF Research Database (Denmark)

    Tonini, Davide

    impacts. Waste, such as municipal solid waste, does not involve land use change impacts. However, existing and emerging waste treatment technologies offer different environmental benefits and drawbacks which should be evaluated in order to recommend appropriate technologies in selected scenarios. To...... contributor to the induced GHG emissions within bioenergy systems. Although quantification of these impacts is associated with high uncertainty, an increasing number of studies are documenting the significance of the iLUC impacts in the bioenergy life cycle. With respect to municipal solid waste, state of the...... as the overall energy conversion efficiency is significantly lower thereby leading to decreased GHG performances. On this basis, recovery of energy, materials and resources from waste such as residual agricultural/forestry biomass and municipal/commercial/industrial waste should be seen as the way...

  16. BioMeeT. Planning of biomass based methanol energy combine - Trollhaettan region. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Brandberg, Aake; Hjortsberg, Hans; Saevbark, Bengt [Ecotraffic R and D AB, Stockholm (Sweden); Ekbom, Tomas; Hjerpe, Carl-Johan; Landaelv, Ingvar [Nykomb Synergetics AB, Stockholm (Sweden)

    2000-04-01

    The conversion of biomass in an energy combine based on primary gasification yields a gas that can be used as fuels gas, for synthesis of motor fuels (methanol or other) or for electric power production. The study gives examples of alternative product mixes. The conclusions of the study are: (1) Potential of new, not yet utilised biomass is available, and new areas of applications, where oil is presently used, are needed to develop the potential. Motor fuel production (methanol, DME) is a presumption in the BioMeeT-study. (2) Yield figures in the energy combine are comparable to those of now used bio-systems for power and co-generation. (3) Which one of the cases in the BioMeeT-project is the most favourable cannot be decided on a plant-to-plant basis alone but the entire system for supply energy carriers in the region has to be considered, as the all plants within the system may change. This would require further investigations. Moreover, the results will be different in various regions in Sweden and Europe due to the markets for all energy carriers. (4) At today's conditions in the Trollhaettan region it must be stated that there is only room for dedicated bio-methanol/DME production (provided such a market will come) with moderate addition to the district heating system as in the BAL-project. (5) In the longer term the future supply of all energy carriers, including new electric power and new bio-fuels, has to be considered for new plants and at renewals. In such a case an energy combine as in the BioMeeT-project may be a central conversion plant with gas deliveries to satellites such as local co-generation, district heat and industries in a regional system within a 50 - 100 km radius. This should be included in regional planning for the future. (6) Estimated investment costs per kW feedstock input is higher for the energy combine compared to present technologies (mature technologies for power and heat) but have to be judged for all plants taken together in

  17. Biomass for energy in the European Union - a review of bioenergy resource assessments

    OpenAIRE

    Bentsen Niclas; Felby Claus

    2012-01-01

    Abstract This paper reviews recent literature on bioenergy potentials in conjunction with available biomass conversion technologies. The geographical scope is the European Union, which has set a course for long term development of its energy supply from the current dependence on fossil resources to a dominance of renewable resources. A cornerstone in European energy policies and strategies is biomass and bioenergy. The annual demand for biomass for energy is estimated to increase from the cur...

  18. Economic viability of present-day biomass energy installations

    International Nuclear Information System (INIS)

    This illustrated, comprehensive report for the Swiss Federal Office of Energy (SFOE) takes a look at the economic viability of biomass energy installations. The installations examined included wood-fired installations, biogas installations and those using bio-diesel and bio-ethanol. The system boundaries involved are defined and various factors that influence cost calculations are examined. The resulting heat and electricity prices for various energy sources and systems are presented and discussed. Examples of small and large-scale installations are presented. For wood-energy, combined heat and power system producing electricity at powers of 1 to 5 MWe are looked at and the various factors influencing their viability are discussed. Biogas installations of various sizes are discussed and the differing investment costs involved are commented on. Here, large industrial installations using communal green wastes are also examined and the influence of communal waste-collection charges on the price for the electricity generated is discussed, as is the influence of the market for the residual compost produced. The production and use of biogas in public wastewater treatment plants is also looked at, including the use of co-substrates. As far as biogenic liquid fuels such as bio-diesel and bio-ethanol are concerned, the report takes a brief look at the situation concerning installations in Switzerland and reviews the production costs involved. Various conclusions are drawn for the various energy sources reviewed as well as for the prices for heat and electrical energy obtained

  19. Biomass energy and the environmental impacts associated with its production and utilization

    International Nuclear Information System (INIS)

    Biomass is the first-ever fuel used by humankind and is also the fuel which was the mainstay of the global fuel economy till the middle of the 18th century. Then fossil fuels took over because fossil fuels were not only more abundant and denser in their energy content, but also generated less pollution when burnt, in comparison to biomass. In recent years there is a resurgence of interest in biomass energy because biomass is perceived as a carbon-neutral source of energy unlike net carbon-emitting fossil fuels of which copious use has led to global warming and ocean acidification. The paper takes stock of the various sources of biomass and the possible ways in which it can be utilized for generating energy. It then examines the environmental impacts, including impact vis a vis greenhouse gas emissions, of different biomass energy generation-utilization options. (author)

  20. Financing of Renewable Energy Projects

    International Nuclear Information System (INIS)

    The paper describes the role of the Banco Centroamericano de Integracion Economica in financing renewable energy projects in Central America. Also decribes the different financing modes to the goverment and private sectors

  1. Compact energy conversion module Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This STTR project delivers a compact vibration-based Energy Conversion Module (ECM) that powers sensors for purposes like structural health monitoring (SHM). NASA...

  2. Project finance for alternative energy

    International Nuclear Information System (INIS)

    This paper is intended to provide general advice to sponsors of renewable energy projects who expect to raise project-based financing from commercial banks to fund the development of their projects. It will set out, for the benefit of such sponsors, how bankers typically approach the analysis of these undertakings and in particular the risk areas on which they concentrate. By doing so it should assist sponsors to maximise their prospects of raising bank finance. (author)

  3. Forest based biomass for energy in Uganda: Stakeholder dynamics in feedstock production

    International Nuclear Information System (INIS)

    Insufficient energy supply and low levels of development are closely linked. Both are major issues in Uganda where growing demand cannot be met by overstretched infrastructure and the majority still rely on traditional biomass use. Uganda's renewable energy policy focuses on decentralised sources including modern biomass. In this paper, stakeholder dynamics and potential socio-economic impacts of eight modern bioenergy feedstock production models in Uganda are considered, and key considerations for future planning provided. For these models the main distinctions were land ownership (communal or private) and feedstock type (by-product or plantation). Key social issues varied by value chain (corporate, government or farmer/NGO), and what production arrangement was in place (produced for own use or sale). Small, privately owned production models can be profitable but are unlikely to benefit landless poor and, if repeated without strategic planning, could result in resource depletion. Larger projects can have greater financial benefits, though may have longer term natural resource impacts felt by adjacent communities. Bioenergy initiatives which allow the rural poor to participate through having a collaborative stake, rather than receiving information, and provide opportunities for the landless are most likely to result in socio-economic rural development to meet policy goals. The structured approach to understanding stakeholder dynamics used was found to be robust and sufficiently adaptable to provide meaningful analysis. In conclusion; local, context-specific planning and assessment for bioenergy projects, where all stakeholders have the opportunity to be collaborators in the process throughout its full lifecycle, is required to achieve rural development objectives. -- Highlights: • Stakeholder dynamics and socio-economics in 8 Ugandan bioenergy projects considered. • Key distinctions were ownership, feedstock, value chain and production arrangement. • Small

  4. Fort Hood solar energy project

    Energy Technology Data Exchange (ETDEWEB)

    1980-07-30

    During the period April 1975 to March 1978, the American Technological University (ATU) of Killeen, Texas, was awarded several follow-on contracts by the Division of Solar Energy (DSE), Energy Research and Development Administration (ERDA), which subsequently became the Division of Solar Technology (DST), Department of Energy (DOE). The contracts were to design a solar total energy system for use at Fort Hood, Texas. A review encompassing the period of the project from January 1975 to March 1978, was conducted by the Office of Inspector General (IG), DOE. The review examined both the management of the project by ATU and ERDA personnel and the award and administration by ERDA of the contracts to ATU for support of the project. The IG review found that: (1) there was a lack of continuity in the management of the project by both ATU and ERDA; (2) ERDA failed to maintain control of the project and failed to issue specific project direction to ATU; (3) ERDA failed to follow existing procurement regulations for the review and acceptance of unsolicited proposals from ATU; (4) the ERDA Headquarters program Manager and the Contract Administrator for the conceptual design phase of the project had failed to ensure that all the tasks which had been funded were performed by ATU; and (5) the decision by the Director, ERDA/DSE, to award successive contracts to ATU was questionable in view of ATU's performance on the project.

  5. BioBoost. Biomass based energy intermediates boosting bio-fuel production

    Energy Technology Data Exchange (ETDEWEB)

    Niebel, Andreas [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Institut fuer Katalyseforschung und -technologie (IKFT)

    2013-10-01

    To increase the share of biomass for renewable energy in Europe conversion pathways which are economic, flexible in feedstock and energy efficient are needed. The BioBoost project concentrates on dry and wet residual biomass and wastes as feedstock for de-central conversion by fast pyrolysis, catalytic pyrolysis and hydrothermal carbonization to the intermediate energy carriers oil, coal or slurry. Based on straw the energy density increases from 2 to 20-30 GJ/m{sup 3}, enabling central GW scale gasification plants for bio-fuel production. A logistic model for feedstock supply and connection of de-central with central conversion is set up and validated allowing the determination of costs, the number and location of de-central and central sites. Techno/economic and environmental assessment of the value chain supports the optimization of products and processes. The utilization of energy carriers is investigated in existing and coming applications of heat and power production and synthetic fuels and chemicals. (orig.)

  6. Swamp future. Energy for Western Pomerania Grid formation and potentials for the thermal utilization of biomass from paludi culture; MoorZukunft. Energie fuer Vorpommern. Netzwerkbildung und Potentiale fuer die thermische Verwertung von Biomasse aus Paludikultur

    Energy Technology Data Exchange (ETDEWEB)

    Nordt, Anke; Schroeder, Christian [Greifswald Univ. (Germany). Inst. fuer Botanik und Landschaftsoekologie; Schroeder, Philipp

    2013-10-01

    MoorZukunft aims to initiate pilot projects for utilisation biomass from ''wet'' peatland for energy purposes. Also alternative concepts of funding regional cooperations are to be developed. The implementation of paludiculture, the sustainable cultivation of rewetted peatland, needs innovative unions between farmers who produce primary material for paludi-products and biomass consumers for energy or material utilisation. Areas for implementing paludiculture are identified and potential partners for regional use and consumption are cross-linked. Business models will be developed with the parties of possible cooperations, i.g. between farmer and municipal energy supplier and functional attended until realisation. The procedure to initiate pilot projects will be explained. This expands from requests of areas and partners until possible forms of organisation locally shared utilisation partnerships. (orig.)

  7. Biomass. Energy carrier and biobased products; Biomasse. Energietraeger und biobasierte Produkte

    Energy Technology Data Exchange (ETDEWEB)

    Muecke, W. [Technische Univ. Muenchen (Germany). Inst. fuer Toxikologie und Umwelthygiene; Groeger, G. (eds.) [BioRegionUlm Foerderverein Biotechnologie e.V., Ulm (Germany)

    2006-07-01

    Within the scope of the 3rd Reivensburg Environmental Biotechnology Meeting at 29th June, 2007, at Castle Reivensburg near Guenzburg (Federal Republic of Germany), the following lectures were held: (a) Challenges according to materials management, land use and power generation in the background of precarious economical situation in the Federal Republic of Germany (H.-G. Petersen); (b) Regenerative raw materials in Germany: Plant sources and potentials (W. Luehs, W. Friedt); (c) Biobased industrial products and bioraffinery systems (B. Kamm, M. Kamm); (d) Potential of biomass materials conversion in chemical industries (R. Busch); (e) Environmental compatible processes and low-priced ecological materials from the processing of biotechnological poly-3-hydroxybutyrate (H. Seliger, H. Haeberlein, R. Kohler, P. Sulzberger); (f) New starch from potatoes - a regenerative raw material (T. Servay); (g) Fuels from renewable energy sources: potential, production, perspectives (M. Specht, U. Zuberbuehler, A. Bandi); (h) Application of biogas as a fuel from the view of a car manufacturer (S. Schrahe); (i) Large-scale production of bioethanol (P. Johne, C. Sauter); (j) Environmental political evaluation of the use of biofuels and politics of biofuels of selected countries (J.M. Henke).

  8. Utilization of biomass in the county of Vaesternorrland, Sweden. Optimization of energy flow to different demand categories; Biobraenslets utnyttjande i Vaesternorrland. Optimering av energifloeden till olika behovskategorier

    Energy Technology Data Exchange (ETDEWEB)

    Jelvehed, P.

    1999-12-01

    The main aim of the project is to minimize the total energy system cost during a ten year period, and to analyze the long-term competitiveness of biomass compared to other energy carriers, and also to make an analysis of cost-efficient measures within the energy system.

  9. Critical success factors for biomass. Identification/specification of critical success factors in the development and market introduction of biomass conversion systems for the production of electricity and/or heat and/or gaseous/liquid secondary energy carriers

    International Nuclear Information System (INIS)

    The Dutch government has set the policy target that in 2020 10% of the total energy consumption has to be provided by means of renewable energy sources. Biomass is expected to play a major role (25-30%) in this future renewable energy based energy supply system. However, it is still unclear if this biomass-based target will be reached. Although studies showed that success or failure of innovations and projects depend on a multitude of scientific, technical, economic and societal variables, a number of questions still remained unanswered. This information often concentrated exclusively on the cost price aspects. This study is conducted to identify the internal and external barriers or constraints other than cost aspects, which are of vital importance to a successful penetration of biomass in the Dutch energy market. Barriers with a decreasing influence on the market introduction of bioenergy in the Netherlands are: short-term contractability of biomass (organic waste streams) for energy purposes, applicable emission and waste policies, and unfamiliarity of bioenergy by the public and government. Barriers that potentially could play an important role on the market introduction of bioenergy in the Netherlands in the near future are: long-term contractability of biomass (organic waste streams and energy crops) for energy purposes, the 'new' emission constraints and their potential negative influence on the implementation of small-scale biomass-based combined-cycle plants, the rivalry of bioenergy with other renewable energy based technologies in a liberalising energy market, the social acceptance of bioenergy, the future European agriculture policy (energy crops), and the current status and development perspectives of biomass-based energy conversion technologies. 66 refs

  10. Energy-Exchange Project

    Energy Technology Data Exchange (ETDEWEB)

    1982-04-01

    The purpose of the study was to determine what energy savings can be achieved by coordinating the resources and requirements of two facilities, the 26th Ward Water Pollution Control Plant (WPCP) and a housing development named Starrett City with its own total energy system. It was determined that three energy exchange options were economically and technically feasible. These include: the transfer of digester gas produced at the 26th Ward to the boilers at the Starrett City's total energy plant (TEP); the transfer of hot water heated at the TEP to the 26th Ward for space and process heating; and the transfer of coal effluent waste water from the 26th Ward to the condenser cooling systems at the TEP. Technical information is presented to support the findings. The report addresses those tasks of the statement of work dedicated to data acquisition, analysis, and energy conservation strategies internal to the Starrett City TEP and the community it supplies as well as to the 26th Ward WPCP. (MCW)

  11. Financing Municipal Energy Efficiency Projects

    OpenAIRE

    Energy Sector Management Assistance Program

    2014-01-01

    Improving the energy efficiency (EE) of municipally owned buildings, such as schools and hospitals, and municipal infrastructure, such as public lighting, water supply, and district heating, offers budgetary savings on energy bills and a wide range of environmental and socioeconomic benefits. But relatively few municipal EE projects have been developed and implemented successfully. The cha...

  12. Biomass energy resource enhancement: the move to modern secondary energy forms

    International Nuclear Information System (INIS)

    Income growth and industrialization in developing countries is driving their economies towards the use of secondary energy forms that deliver high efficiency energy and environmentally more benignant-uses for biomass. Typical of these secondary energy forms are electricity, distributed gas systems and liquid fuels. This trend suggests that the hitherto separate pathways taken by biomass energy technology development in developing and industrialized countries will eventually share common elements. While in the United States and the European Union the majority of the bioenergy applications are in medium- and large-scale industrial uses of self-generated biomass residues, the characteristic use in developing countries is in rural cook-stoves. Increasing urbanization and investment in transportation infrastructure may allow increasing the operational scale in developing countries. One factor driving this trend is diminishing individual and household biomass resource demands as rural incomes increase and households ascend the energy ladder towards clean and efficient fuels and appliances. Scale increases and end-user separation from the biomass resource require that the biomass be converted at high efficiency into secondary energy forms that serve as energy carriers. In middle-income developing country economies such as Brazil, secondary energy transmission is increasingly in the form of gas and electricity in addition to liquid transportation fuels. Unfortunately, the biomass resource is finite, and in the face of competing food and fibre uses and land constraints, it is difficult to substantially increase the amount of biomass available. As a result, development must emphasize conversion efficiency and the applications of bioenergy. Moreover, as a consequence of economic growth, biomass resources are increasingly to be found in the secondary and tertiary waste streams of cities and industrial operations. If not used for energy production, this potential resource needs

  13. Optimising the Environmental Sustainability of Short Rotation Coppice Biomass Production for Energy

    Directory of Open Access Journals (Sweden)

    Ioannis Dimitriou

    2014-12-01

    Full Text Available Background and Purpose: Solid biomass from short rotation coppice (SRC has the potential to significantly contribute to European renewable energy targets and the expected demand for wood for energy, driven mainly by market forces and supported by the targets of national and European energy policies. It is expected that in the near future the number of hectares under SRC will increase in Europe. Besides producing biomass for energy, SRC cultivation can result in various benefits for the environment if it is conducted in a sustainable way. This paper provides with an overview of these environmental benefits. Discussion and Conclusions: The review of existing literature shows that SRC helps to improve water quality, enhance biodiversity, prevent erosion, reduce chemical inputs (fertilizers, pesticides and mitigate climate change due to carbon storage. To promote and disseminate environmentally sustainable production of SRC, based on existing literature and own project experience, a set of sustainability recommendations for SRC production is developed. In addition to numerous environmental benefits, sustainable SRC supply chains can bring also economic and social benefits. However, these aspects of sustainability are not addressed in this paper since they are often country specific and often rely on local conditions and policies. The sustainable practices identified in this manuscript should be promoted among relevant stakeholder to stimulate sustainable local SRC production.

  14. Study on the current status of biomass energy development; Bio mass energy no kaihatsu jokyo chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    A survey was conducted on the present status of biomass energy in Japan and abroad and the developmental trend of the latest biomass energy technology. Brazil and the U.S. are most advancing in the biomass energy utilization. Brazil uses sugar cane which is plenty in supply as a raw material, and the U.S. does corn which is the surplus crop. Both countries use the conventional ethanol fermentation technology and produce the petroleum substitution liquid fuel which is in greatest need. As to the technology to convert biomass resource into energy, attention has so far been paid to the development of the production process of the liquid fuel. The latest technology for ethanol fermentation using saccharin and starch as raw materials has already been established in Japan, and the energy-saving type alcohol recovery technology has also reached the stage of practical application. Moreover, as to the ethanol conversion technology with cellulose substrate, the development of the saccharification process will be needed in future. 15 figs., 10 tabs.

  15. Global energy / CO2 projections

    International Nuclear Information System (INIS)

    Section headings are: (1) Social and economic problems of the 21st century and the role of energy supply systems (2) Energy-environment interactions as a central point of energy research activities (3) New ways of technological progress and its impacts on energy demand and supply (4) Long-term global energy projections (5) Comparative analysis of global long-term energy / CO2 studies (6) Conclusions. The author shows that, in order to alleviate the negative impacts of energy systems on the climate, it will be necessary to undertake tremendous efforts to improve the energy use efficiency, to drastically change the primary energy mix, and, at the same time, to take action to reduce greenhouse emissions from other sources and increase the CO2 sink through enhanced reforestation. (Quittner)

  16. Electrifying biomass

    International Nuclear Information System (INIS)

    British Columbia's (BC) energy plan was outlined in this PowerPoint presentation. BC Hydro is the third largest electric utility in Canada with a generating capacity of 11,000 MW, 90 per cent of which is hydro generation. Various independent power project (IPP) biomass technologies were outlined, including details of biogas, wood residue and municipal solid waste facilities. An outline of BC Hydro's overall supply mix was presented, along with details of the IPP supply mix. It was suggested that the cancellation of the Duke Point power project has driven growth in the renewable energy sector. A chart of potential energy contribution by resource type was presented, as well as unit energy cost ranges. Resources included small and large hydro; demand side management; resource smart natural gas; natural gas; coal; wind; geothermal; biomass; wave; and tidal. The acquisition process was reviewed. Details of calls for tenders were presented, and issues concerning bidder responsibility and self-selection were examined. It was observed that wood residue presents a firm source of electricity that is generally local, and has support from the public. In addition, permits for wood residue energy conversion are readily available. However, size limitations, fuel risks, and issues concerning site control may prove to be significant challenges. It was concluded that the success of biomass energy development will depend on adequate access and competitive pricing. tabs., figs

  17. Biomass energy - An environmentally preferred and sustainable option

    International Nuclear Information System (INIS)

    A display was presented that focuses on the Congressional mandates of: matching local resources to local energy needs; technology transfer and technical information assistance; resource assessments; environmental impact identification; pollution abatement and mitigation; and local economic development. Program activities in the Pacific Northwest are highlighted and technical projects are briefly described

  18. Heating technologies for limiting biomass consumption in 100% renewable energy systems

    OpenAIRE

    Mathiesen, Brian Vad; Lund, Henrik; Connolly, David

    2011-01-01

    The utilisation of biomass poses large challenges in renewable energy systems and buildings account for a substantial part of the energy supply also in 100% renewable energy systems. The analyses of heating technologies show that district heating systems are especially important in limiting the dependence on biomass resources and to create cost effective systems. District heating systems are especially important in renewable energy systems with large amounts of fluctuating renewable energy so...

  19. Geothermal Energy and Biomass Integration in Urban Systems: a Case Study

    OpenAIRE

    Moret, Stefano; Gerber, Léda; Amblard, Frédéric; Peduzzi, Emanuela; Maréchal, François

    2015-01-01

    Heating, electricity and transportation are the three components of urban systems final energy consumption. Geothermal energy and biomass are two promising renewable energy resources that can be used for the production of heat, electricity and biofuels, thus allowing a reduction of fossil fuel consumption and of the associated greenhouse gas emissions. The goal of this paper is to assess the potential for the integration of geothermal energy combined with biomass in the energy system of a cit...

  20. The Joint BioEnergy Institute (JBEI): Developing New Biofuels by Overcoming Biomass Recalcitrance

    OpenAIRE

    Scheller, Henrik Vibe; Singh, Seema; Blanch, Harvey; Keasling, Jay D.

    2010-01-01

    The mission of the Joint BioEnergy Institute is to advance the development of the next-generation of biofuels—liquid fuels derived from the solar energy stored in plant biomass. The papers in this volume describe some of the research conducted in the area of feedstocks development and biomass deconstruction.

  1. Sustainable model for financial viability of decentralized biomass gasifier based power projects

    International Nuclear Information System (INIS)

    This paper made a modest attempt for designing a sustainable model for financial viability of biomass gasifier power projects for enhancing electricity access in India and other developing countries. For long term sustainability of distributed generation projects in remote rural areas, viability from both project implementing agency (PIA) and the end-users need to be ensured. The minimum required prices of electricity from both PIA and end-user perspective have been estimated. While for PIA the cost recovery is the key for viability, the affordability to pay the electricity cost is crucial for the end users. Analysis carried out in this paper on the basis of data obtained from operational projects implemented in India reveal that it is essential to operate the system at a higher capacity utilization factor. While this can be achieved though creating convergence with locally relevant economic activity, it is also observed that micro-enterprises cannot pay beyond a certain price of electricity to keep it sustainable. This paper sets forth a case for developing a regulatory mechanism to extend the tariff fixation for the projects and providing cross-subsidies to ensure long term sustainability of off-grid project. - Highlights: → We design sustainable financial model for viability of biomass gasifier projects. → Analysis based on field data obtained from operational projects in India. Estimated electricity pricing from both implementing agency and end-users perspective. → A regulatory mechanism for tariff fixation and cross subsidization is recommended.

  2. Sustainable model for financial viability of decentralized biomass gasifier based power projects

    Energy Technology Data Exchange (ETDEWEB)

    Palit, Debajit, E-mail: debajitp@teri.res.in [Energy and Resources Institute, IHC Complex, Lodhi Road, New Delhi 110003 (India); Malhotra, Ramit, E-mail: ramit.malhotra@teri.res.in [Energy and Resources Institute, IHC Complex, Lodhi Road, New Delhi 110003 (India); Kumar, Atul, E-mail: atulk@teri.res.in [Energy and Resources Institute, IHC Complex, Lodhi Road, New Delhi 110003 (India); Copernicus Institute of Sustainable Development, Faculty of Geosciences, Utrecht University, P.O. Box 80115, 3508 TC Utrecht (Netherlands)

    2011-09-15

    This paper made a modest attempt for designing a sustainable model for financial viability of biomass gasifier power projects for enhancing electricity access in India and other developing countries. For long term sustainability of distributed generation projects in remote rural areas, viability from both project implementing agency (PIA) and the end-users need to be ensured. The minimum required prices of electricity from both PIA and end-user perspective have been estimated. While for PIA the cost recovery is the key for viability, the affordability to pay the electricity cost is crucial for the end users. Analysis carried out in this paper on the basis of data obtained from operational projects implemented in India reveal that it is essential to operate the system at a higher capacity utilization factor. While this can be achieved though creating convergence with locally relevant economic activity, it is also observed that micro-enterprises cannot pay beyond a certain price of electricity to keep it sustainable. This paper sets forth a case for developing a regulatory mechanism to extend the tariff fixation for the projects and providing cross-subsidies to ensure long term sustainability of off-grid project. - Highlights: > We design sustainable financial model for viability of biomass gasifier projects. > Analysis based on field data obtained from operational projects in India. Estimated electricity pricing from both implementing agency and end-users perspective. > A regulatory mechanism for tariff fixation and cross subsidization is recommended.

  3. National and regional generation of municipal residue biomass and the future potential for waste-to-energy implementation

    International Nuclear Information System (INIS)

    Municipal residue biomass (MRB) in the municipal solid waste (MSW) stream is a potential year-round bioenergy feedstock. A method is developed to estimate the amount of residue biomass generated by the end-user at the scale of a country using a throughput approach. Given the trade balance of food and forestry products, the amount of MRB generated is calculated by estimating product lifetimes, discard rates, rates of access to MSW collection services, and biomass recovery rates. A wet tonne of MRB could be converted into about 8 GJ of energy and 640 kg of carbon dioxide (CO2) emissions, or buried in a landfill where it would decompose into 1800 kg of CO2 equivalent (in terms of global warming potential) methane (CH4) and CO2 emissions. It is estimated that approximately 1.5 Gt y-1 of MRB are currently collected worldwide. The energy content of this biomass is approximately 12 EJ, but only a fraction is currently utilized. An integrated assessment model is used to project future MRB generation and its utilization for energy, with and without a hypothetical climate policy to stabilize atmospheric CO2 concentrations. Given an anticipated price for biomass energy (and carbon under a policy scenario), by the end of the century, it is projected that nearly 60% of global MRB would be converted to about 8 EJ y-1 of energy in a reference scenario, and nearly all of global MRB would be converted into 16 EJ y-1 of energy by the end of the century under a climate policy scenario. (author)

  4. Integration of waste processing and biomass production systems as part of the KSC Breadboard project.

    Science.gov (United States)

    Garland, J L; Mackowiak, C L; Strayer, R F; Finger, B W

    1997-01-01

    After initial emphasis on large-scale baseline crop tests, the Kennedy Space Center (KSC) Breadboard project has begun to evaluate long-term operation of the biomass production system with increasing material closure. Our goal is to define the minimum biological processing necessary to make waste streams compatible with plant growth in hydroponic systems, thereby recycling nutrients into plant biomass and recovering water via atmospheric condensate. Initial small and intermediate-scale studies focused on the recycling of nutrients contained in inedible plant biomass. Studies conducted between 1989-1992 indicated that the majority of nutrients could be rapidly solubilized in water, but the direct use of this crop "leachate" was deleterious to plant growth due to the presence of soluble organic compounds. Subsequent studies at both the intermediate scale and in the large-scale Biomass Production Chamber (BPC) have indicated that aerobic microbiological processing of crop residue prior to incorporation into recirculating hydroponic solutions eliminated any phytotoxic effect, even when the majority of the plant nutrient demand was provided from recycled biomass during long term studies (i.e. up to 418 days). Current and future studies are focused on optimizing biological processing of both plant and human waste streams. PMID:11542556

  5. Densified biomass can cost-effectively mitigate greenhouse gas emissions and address energy security in thermal applications.

    Science.gov (United States)

    Wilson, Thomas O; McNeal, Frederick M; Spatari, Sabrina; G Abler, David; Adler, Paul R

    2012-01-17

    Regional supplies of biomass are currently being evaluated as feedstocks in energy applications to meet renewable portfolio (RPS) and low carbon fuel standards. We investigate the life cycle greenhouse gas (GHG) emissions and associated abatement costs resulting from using densified switchgrass for thermal and electrical energy. In contrast to the large and positive abatement costs for using biomass in electricity generation ($149/Mg CO(2)e) due to the low cost of coal and high feedstock and power plant operation costs, abatement costs for replacing fuel oil with biomass in thermal applications are large and negative (-$52 to -$92/Mg CO(2)e), resulting in cost savings. Replacing fuel oil with biomass in thermal applications results in least cost reductions compared to replacing coal in electricity generation, an alternative that has gained attention due to RPS legislation and the centralized production model most often considered in U.S. policy. Our estimates indicate a more than doubling of liquid fuel displacement when switchgrass is substituted for fuel oil as opposed to gasoline, suggesting that, in certain U.S. locations, such as the northeast, densified biomass would help to significantly decarbonize energy supply with regionally sourced feedstock, while also reducing imported oil. On the basis of supply projections from the recently released Billion Ton Report, there will be enough sustainably harvested biomass available in the northeast by 2022 to offset the entirety of heating oil demand in the same region. This will save NE consumers between $2.3 and $3.9 billion annually. Diverting the same resource to electricity generation would cost the region $7.7 billion per year. While there is great need for finding low carbon substitutes for coal power and liquid transportation fuels in the U.S., we argue that in certain regions it makes cost- (and GHG mitigation-) effective sense to phase out liquid heating fuels with locally produced biomass first. PMID

  6. Biomass for energy in the European Union - a review of bioenergy resource assessments

    Directory of Open Access Journals (Sweden)

    Bentsen Niclas

    2012-04-01

    Full Text Available Abstract This paper reviews recent literature on bioenergy potentials in conjunction with available biomass conversion technologies. The geographical scope is the European Union, which has set a course for long term development of its energy supply from the current dependence on fossil resources to a dominance of renewable resources. A cornerstone in European energy policies and strategies is biomass and bioenergy. The annual demand for biomass for energy is estimated to increase from the current level of 5.7 EJ to 10.0 EJ in 2020. Assessments of bioenergy potentials vary substantially due to methodological inconsistency and assumptions applied by individual authors. Forest biomass, agricultural residues and energy crops constitute the three major sources of biomass for energy, with the latter probably developing into the most important source over the 21st century. Land use and the changes thereof is a key issue in sustainable bioenergy production as land availability is an ultimately limiting factor.

  7. Biomass for energy in the European Union - a review of bioenergy resource assessments.

    Science.gov (United States)

    Bentsen, Niclas Scott; Felby, Claus

    2012-01-01

    This paper reviews recent literature on bioenergy potentials in conjunction with available biomass conversion technologies. The geographical scope is the European Union, which has set a course for long term development of its energy supply from the current dependence on fossil resources to a dominance of renewable resources. A cornerstone in European energy policies and strategies is biomass and bioenergy. The annual demand for biomass for energy is estimated to increase from the current level of 5.7 EJ to 10.0 EJ in 2020. Assessments of bioenergy potentials vary substantially due to methodological inconsistency and assumptions applied by individual authors. Forest biomass, agricultural residues and energy crops constitute the three major sources of biomass for energy, with the latter probably developing into the most important source over the 21st century. Land use and the changes thereof is a key issue in sustainable bioenergy production as land availability is an ultimately limiting factor. PMID:22546368

  8. Biomass integrated gasification combined cycle power generation with supplementary biomass firing: Energy and exergy based performance analysis

    International Nuclear Information System (INIS)

    A thermodynamic analysis of a Biomass Integrated Gasification Combined Cycle (BIGCC) plant has been performed based on energy and exergy balances in a proposed configuration. Combustion of supplementary biomass fuel is considered using the oxygen available in the gas turbine (GT) exhaust. The effects of pressure and temperature ratios of the GT system and the amount of fuel burned in the supplementary firing chamber on the thermal and exergetic efficiencies of the plant have been investigated. The plant efficiencies increase with the increase in both pressure and temperature ratios; however, the latter has a stronger influence than the former. Supplementary firing of biomass increases the plant efficiencies of a BIGCC plant till an optimum level of degree of firing. The other technical issues related to supplementary firing, like ash fusion in the furnace and exhaust heat loss maintaining a minimum pinch point temperature difference are accounted and finally a set of optimum plant operating parameters have been identified. The performance of a 50 MWe plant has been analyzed with the optimum operating parameters to find out equipment rating and biomass feed rates. Exergetic efficiencies of different plant equipments are evaluated to localize the major thermodynamic irreversibilities in the plant. -- Highlights: → A thermodynamic analysis of a Biomass Integrated Gasification Combined Cycle (BIGCC) plant has been performed based on energy and exergy balances across various plant components in a proposed configuration in order to optimize the operating parameters. → The effect of supplementary biomass firing in the BIGCC plant has been analyzed in detail to find out the optimum degree of firing for the best plant performance. → The equipment ratings and fuel feed rates are evaluated and the technical feasibility of the plant configuration has been analyzed. → Exergetic efficiencies of different plant equipments are evaluated to localize the major thermodynamic

  9. Hydrothermal conversion of biomass to liquid energy sources; Hydrothermale Konversion von Biomasse zu fluessigen Energietraegern

    Energy Technology Data Exchange (ETDEWEB)

    Kroeger, Michael; Peters, Mario; Klemm, Marco; Nelles, Michael [Deutsches Biomasseforschungszentrum (DBFZ) gemeinnuetzige GmbH, Leipzig (Germany)

    2013-10-01

    Beside thermo-chemical processes like pyrolysis, torrefaction and gasification another process group called hydrothermal conversion of biomass comes into the focus of research and development. Especially for wet biomass this process has several advantages: as the reaction medium is water wet biomass not needs to be dried. Beside the reaction pathways, which are still not completely understood, it is important to investigate reactor concepts. That gives the possibility to continuously process the given biomass to deduce specific process conditions for the production of chemicals and fuels. Experiments were conducted in a newly developed tubular reactor at temperatures from 150 to 270 C and reaction times from 1 to 6 min. By studying the HPLC analysis of the liquid products the formation and degradation of several products which may be utilized as base materials for chemicals and fuels (furfural, 5-HMF etc.) was conducted. The experiments illustrate the possibility to influence product composition to a certain extend only by varying temperature and time of the hydrothermal process. That could result in an economic and feasible way to produce intermediate chemicals from biomass. In a second step these product analysis will be used to develop catalysts and investigate the possibilities of in-situ-hydrogenation and synthesis of further valuable chemicals and fuels. (orig.)

  10. Allocation of biomass resources for minimising energy system greenhouse gas emissions

    International Nuclear Information System (INIS)

    The European Union (EU) energy policy has three targets: supply security, development of a competitive energy sector and environmental sustainability. The EU countries have issued so-called National Renewable Energy Action Plans (NREAP) for increased renewable energy generation. Biomass is stipulated to account for 56% of renewable energy generation by 2020, corresponding to an increase in bioenergy generation from 2.4 × 109 GJ in 2005 to 5.7 × 109 GJ in 2020. There is uncertainty about the amounts of biomass available in the EU, and import challenges policy targets on supply security and sustainability. We address issues about how, from a technical point of view, the EU may deploy its biomass resources to reduce greenhouse gas (GHG) emissions from energy consumption. We investigate if deployment patterns depend on resource availability and technological development. In situations with adequate biomass availability the analysis suggests that liquid fuel production should be based on agricultural residues. Electricity production should be based on forest residues and other woody biomass and heat production on forest and agricultural residues. Improved conversion technologies implicitly relax the strain on biomass resources and improve supply security. - Highlights: • Optimal allocation of biomass to energy is analysed conceptually for the EU by 2020. • Allocation is influenced not only by GHG performance, also by resource availability. • Surplus biomass could be allocated to electricity generation to reduce GHG emissions

  11. Estimation on the Total Quantity of Biomass Energy and Its Environmental Benefit Analysis in Shandong Province

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective] The aim was to estimate the total quantity of biomass energy and analyze its environmental benefit in Shandong Province.[Method] Based on the data from the statistics yearbook of Shandong Province in 2010,the total quantity of biomass resources and biomass energy in Shandong Province in 2009 was estimated,and its environmental benefit was analyzed.[Result] Biomass resources in Shandong Province mainly refer to crop residues,forest residues,grassland changed from degraded land.If degraded land be...

  12. Development of High Yield Feedstocks and Biomass Conversion Technology for Renewable Energy

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Andrew G. [Univ. of Hawaii, Honolulu, HI (United States); Crow, Susan [Univ. of Hawaii, Honolulu, HI (United States); DeBeryshe, Barbara [Univ. of Hawaii, Honolulu, HI (United States); Ha, Richard [Hamakua Springs County Farms, Hilo, HI (United States); Jakeway, Lee [Hawaiian Commercial and Sugar Company, Puunene, HI (United States); Khanal, Samir [Univ. of Hawaii, Honolulu, HI (United States); Nakahata, Mae [Hawaiian Commercial and Sugar Company, Puunene, HI (United States); Ogoshi, Richard [Univ. of Hawaii, Honolulu, HI (United States); Shimizu, Erik [Univ. of Hawaii, Honolulu, HI (United States); Stern, Ivette [Univ. of Hawaii, Honolulu, HI (United States); Turano, Brian [Univ. of Hawaii, Honolulu, HI (United States); Turn, Scott [Univ. of Hawaii, Honolulu, HI (United States); Yanagida, John [Univ. of Hawaii, Honolulu, HI (United States)

    2015-04-09

    This project had two main goals. The first goal was to evaluate several high yielding tropical perennial grasses as feedstock for biofuel production, and to characterize the feedstock for compatible biofuel production systems. The second goal was to assess the integration of renewable energy systems for Hawaii. The project focused on high-yield grasses (napiergrass, energycane, sweet sorghum, and sugarcane). Field plots were established to evaluate the effects of elevation (30, 300 and 900 meters above sea level) and irrigation (50%, 75% and 100% of sugarcane plantation practice) on energy crop yields and input. The test plots were extensive monitored including: hydrologic studies to measure crop water use and losses through seepage and evapotranspiration; changes in soil carbon stock; greenhouse gas flux (CO2, CH4, and N2O) from the soil surface; and root morphology, biomass, and turnover. Results showed significant effects of environment on crop yields. In general, crop yields decrease as the elevation increased, being more pronounced for sweet sorghum and energycane than napiergrass. Also energy crop yields were higher with increased irrigation levels, being most pronounced with energycane and less so with sweet sorghum. Daylight length greatly affected sweet sorghum growth and yields. One of the energy crops (napiergrass) was harvested at different ages (2, 4, 6, and 8 months) to assess the changes in feedstock characteristics with age and potential to generate co-products. Although there was greater potential for co-products from younger feedstock, the increased production was not sufficient to offset the additional cost of harvesting multiple times per year. The feedstocks were also characterized to assess their compatibility with biochemical and thermochemical conversion processes. The project objectives are being continued through additional support from the Office of Naval Research, and the Biomass Research and Development

  13. The environmental costs and benefits of biomass energy use in California

    Energy Technology Data Exchange (ETDEWEB)

    Morris, G. [Future Resources Associates, Inc., Berkeley, CA (United States)

    1997-05-01

    The California renewable energy industries have worked diligently during the past couple of years to develop public policies conducive to the future of renewable energy production within the context of electric market restructuring and the evolving competitive electric services industry. The state`s biomass power industry has organized itself as the California Biomass Energy Alliance (CBEA), and has participated vigorously in the regulatory and legislative processes. In order to reward biomass power generators for the special services they provide, CBEA has promoted the concept of providing incentives specifically targeted to biomass within the context of any renewables program enacted in the state. This concept has been embraced by the other renewables industry organizations, but resisted by the utilities. This study represents an effort to identify, characterize, ad quantify the environmental costs and benefits of biomass energy use in California, and to elucidate the future role of biomass power production within the context of the evolving deregulation of the California electricity industry. The report begins with a review of the development and growth of the California biomass power industry during the past 15 years. This is followed by an analysis of the biomass fuels market development during the same period. It examines trends in the types and costs of biomass fuels. The environmental performance of the mature California biomass energy industry is analyzed, and takes into account the environmental impacts of the industry, and the impacts that would be associated with disposing of the materials used as fuels if the biomass power industry were not in operation. The analysis is then extended to consider the environmental and economic consequences of the loss of biomass generating capacity since 1993. The report ends with a consideration of the future prospects for the industry in the context of restructuring.

  14. Project finance for renewable energy

    International Nuclear Information System (INIS)

    This paper is intended to provide general advice to sponsors of renewable energy projects who expect to raise project-based financing from commercial banks to fund the development of their projects. It sets out, for the benefit of such sponsors, how bankers typically approach the analysis of these undertakings and in particular the risk areas on which they concentrate. By doing so it should assist sponsors to maximize their prospects of raising bank finance. The watchword for sponsors approaching banks must be ''Be Prepared'' . (author)

  15. Waste biomass and energy transition. Proven practices, new developments and visions; Abfall-Biomasse und Energiewende. Bewaehrtes, Neues und Visionen

    Energy Technology Data Exchange (ETDEWEB)

    Fricke, Klaus [Arbeitskreis fuer die Nutzbarmachung von Siedlungsabfaellen (ANS) e.V., Braunschweig (Germany); Technische Univ. Braunschweig (Germany). Lehrstuhl Abfall- und Ressourcenwirtschaft; Kammann, Claudia [Arbeitskreis fuer die Nutzbarmachung von Siedlungsabfaellen (ANS) e.V., Braunschweig (Germany). Fachausschuss Biokohle; Hochschule Geisenheim Univ. (Germany). Klimafolgenforschung-Klimawandel in Spezialkulturen; Wallmann, Rainer (ed.) [Arbeitskreis fuer die Nutzbarmachung von Siedlungsabfaellen (ANS) e.V., Braunschweig (Germany); Werra-Meissner Kreis, Eschwege (Germany)

    2014-07-01

    This book contains 17 papers that were presented at the 75th meeting of the ANS. The following main topics are covered: waste management in the context of climate protection and the energy turnaround; optimised materials management; carbon: climate killer or indispensable raw material?; climate protection in Germany - why and how?; treatment techniques for waste biomass; the amended Renewable Energy Law - sensible adaptation or impediment to the energy turnaround?; putting ideas into practice: examples and opportunities. Four of the contributions have been abstracted individually for this database. [German] Dieses Buch enthaelt 17 Beitraege, die auf dem 75. Symposium des ANS vorgetragen wurden. Die Themenschwerpunkte waren: Abfallwirtschaft im Kontext des Klimaschutzes und der Energiewende; Optimiertes Stoffmanagement; Kohlenstoff: Klimakiller oder unverzichtbare Rohstoff?; Klimaschutz in Deutschland - Warum und wie?; Behandlungstechniken von Abfall-Biomasse; Novellierung des EEG - Sinnvolle Anpassung oder Breme der Energiewende; Der Weg in die Praxis: Beispiele und Chancen. Vier der Beitraege wurden separarat fuer diese Datenbank aufgenommen.

  16. Income tax credits and incentives available for producing energy from biomass

    International Nuclear Information System (INIS)

    In the 1970's the US became interested in the development of energy from biomass and other alternative sources. While this interest was stimulated primarily by the oil embargoes of the 1970's, the need for environmentally friendly alternative fuels was also enhanced by the Clean Water Act and the Clean Air Act, two prominent pieces of environmental legislation. As a result, Congress created several tax benefits and subsidies for the production of energy for biomass. Congress enacted biomass energy incentives in 1978 with the creation of excise tax exemptions for alcohol fuels, in 1980 with the enactment of the IRC section 29 nonconventional fuel credit provisions and the IRC section 40 alcohol fuel credits, and recently with the addition of favorable biomass energy provisions as part of the Comprehensive National energy Policy Act of 1992. This article focuses on the following specific tax credits, tax benefits and subsidies for biomass energy: (1) IRC section 29 credit for producing gas from biomass, (2) IRC section 45 credit for producing electricity from biomass, (3) Incentive payments for electricity produced from biomass, (4) Excise tax exemptions for alcohol fuels, (5) IRC section 40 alcohol fuels credits, and (6) IRC section 179A special deduction for alcohol fuels property

  17. Optimising the Environmental Sustainability of Short Rotation Coppice Biomass Production for Energy

    OpenAIRE

    Ioannis Dimitriou; Željka Fištrek

    2014-01-01

    Background and Purpose: Solid biomass from short rotation coppice (SRC) has the potential to significantly contribute to European renewable energy targets and the expected demand for wood for energy, driven mainly by market forces and supported by the targets of national and European energy policies. It is expected that in the near future the number of hectares under SRC will increase in Europe. Besides producing biomass for energy, SRC cultivation can result in various benefits for the envir...

  18. Biogas energy production from tropical biomass wastes by anaerobic digestion

    Science.gov (United States)

    Anaerobic digestion (AD) is an attractive technology in tropical regions for converting locally abundant biomass wastes into biogas which can be used to produce heat, electricity, and transportation fuels. However, investigations on AD of tropical forestry wastes, such as albizia biomass, and food w...

  19. Energy Analysis of a Biomass Co-firing Based Pulverized Coal Power Generation System

    OpenAIRE

    Marc A. Rosen; Shoaib Mehmood; Bale V. Reddy

    2012-01-01

    The results are reported of an energy analysis of a biomass/coal co-firing based power generation system, carried out to investigate the impacts of biomass co-firing on system performance. The power generation system is a typical pulverized coal-fired steam cycle unit, in which four biomass fuels (rice husk, pine sawdust, chicken litter, and refuse derived fuel) and two coals (bituminous coal and lignite) are considered. Key system performance parameters are evaluated for various fuel combina...

  20. Biomass, microorganisms for special applications, microbial products I, energy from renewable resources

    Energy Technology Data Exchange (ETDEWEB)

    Rehm, H.J.; Reed, G. (eds.)

    1982-01-01

    The book contains the following sections: biomass from carbohydrates; biomass from higher n-alkanes; biomass from methane and methanol; phototropic microalgae; edible mushrooms; starter cultures for milk and meat processing; starter cultures for other purposes; microbial soil amelioration; bacteria for nitrogen fixation; microbial insecticides; ethanol fermentation; acetic acid; lactic acid; citric acid; gluconic acid; organic acids of minor importance; amino acids; extracellular polysaccharides; microbial emulsifiers and de-emulsifiers; and energy from renewable resources. 190 figures, 205 tabels. (CKK)

  1. 2012 Clean Energy: Project Summaries

    OpenAIRE

    Asian Development Bank

    2013-01-01

    This report summarizes the investments in clean energy made by the operations departments of the Asian Development Bank (ADB) in 2012, condensing information from project databases and formal reports in an easy-to-reference format. This report was prepared by ADB’s Clean Energy Program which provides the cohesive agenda that encompasses and guides ADB’s lending and non-lending assistance, initiatives, and plan of action for sustainable growth in Asia and the Pacific.

  2. Heating technologies for limiting biomass consumption in 100% renewable energy systems

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Lund, Henrik; Connolly, David

    The utilisation of biomass poses large challenges in renewable energy systems and buildings account for a substantial part of the energy supply also in 100% renewable energy systems. The analyses of heating technologies show that district heating systems are especially important in limiting the...... dependence on biomass resources and to create cost effective systems. District heating systems are especially important in renewable energy systems with large amounts of fluctuating renewable energy sources as it enables fuel efficient and lower cost energy systems with thermal heat storages. And also...... district heating enables the use of combined heat and power production (CPH) and other renewable resources than biomass such as large-scale solar thermal, large-heat pumps, geothermal heat, industrial surplus heat etc. which is important for reducing the biomass consumption. Where the energy density in the...

  3. Projecting demand and supply of forest biomass for heating in Norway

    International Nuclear Information System (INIS)

    This paper assesses the increase in demand and supply for forest biomass for heating in Norway in 2020. By then there is a political aim to double the national production of bioenergy from the level in 2008. The competitiveness of woody biomass in central and district heating is analyzed in a model selecting the least-cost heating technology and scale in municipalities given a set of constraints and under different fuels price scenarios. The supply of forest biomass from roundwood is estimated based on data of forest inventories combined with elasticities regarding price and standing volumes. The supply of biomass from harvesting residues is estimated in an engineering approach based on data from the national forest inventories and roundwood harvest. The results show how the production of bioenergy is affected by changes in energy prices and support schemes for bioenergy. One conclusion from the analyses is that the government target of 14 TWh more bioenergy by 2020 is not likely to be met by current technologies and policy incentives. The contribution of the analysis is the detailed presentation of the heat market potentials and technology choices combined with supply functions for both roundwood and harvesting residues. - Highlights: → This paper accesses the demand and supply for forest biomass for heating in Norway in 2020. → Market share for wood in central and new district heating is analyzed in a cost-minimizing model. → The supply of forest biomass includes wood chips from import, roundwood and harvesting residues. → The production of bioenergy is affected by changes in energy prices and support schemes. → The government target for bioenergy is not met by current technologies and policy incentives.

  4. Projecting demand and supply of forest biomass for heating in Norway

    Energy Technology Data Exchange (ETDEWEB)

    Tromborg, Erik, E-mail: erik.tromborg@umb.no [Norwegian University of Life Sciences, Department of Ecology and Natural Resource Management, P.O. Box 5003, NO-1432 As (Norway); Havskjold, Monica; Lislebo, Ole [Xrgia as, P.O. Box 329, NO-1301, Sandvika (Norway); Rorstad, Per Kristian [Norwegian University of Life Sciences, Department of Ecology and Natural Resource Management, P.O. Box 5003, NO-1432 As (Norway)

    2011-11-15

    This paper assesses the increase in demand and supply for forest biomass for heating in Norway in 2020. By then there is a political aim to double the national production of bioenergy from the level in 2008. The competitiveness of woody biomass in central and district heating is analyzed in a model selecting the least-cost heating technology and scale in municipalities given a set of constraints and under different fuels price scenarios. The supply of forest biomass from roundwood is estimated based on data of forest inventories combined with elasticities regarding price and standing volumes. The supply of biomass from harvesting residues is estimated in an engineering approach based on data from the national forest inventories and roundwood harvest. The results show how the production of bioenergy is affected by changes in energy prices and support schemes for bioenergy. One conclusion from the analyses is that the government target of 14 TWh more bioenergy by 2020 is not likely to be met by current technologies and policy incentives. The contribution of the analysis is the detailed presentation of the heat market potentials and technology choices combined with supply functions for both roundwood and harvesting residues. - Highlights: > This paper accesses the demand and supply for forest biomass for heating in Norway in 2020. > Market share for wood in central and new district heating is analyzed in a cost-minimizing model. > The supply of forest biomass includes wood chips from import, roundwood and harvesting residues. > The production of bioenergy is affected by changes in energy prices and support schemes. > The government target for bioenergy is not met by current technologies and policy incentives.

  5. Consumption of woody biomass in industry, commercial, and public facilities in Serbia: Present state and possible contribution to the share of renewable sources in final energy consumption

    OpenAIRE

    Glavonjić Branko D.; Oblak Leon Z.

    2012-01-01

    This paper is the continuation of the presentation of results obtained in comprehensive researches of woody biomass consumption in Serbia conducted as a part of the TCP/FAO project “Wood energy for sustainable rural development”. The previous paper (No. 3, 2011) showed results of wood fuels consumption for households heating and this paper shows their consumption for the needs of industry, commercial and public facilities. Research results show that total consumption of woody biomass in...

  6. Modeling of biomass-to-energy supply chain operations: Applications, challenges and research directions

    International Nuclear Information System (INIS)

    Reducing dependency on fossil fuels and mitigating their environmental impacts are among the most promising aspects of utilizing renewable energy sources. The availability of various biomass resources has made it an appealing source of renewable energy. Given the variability of supply and sources of biomass, supply chains play an important role in the efficient provisioning of biomass resources for energy production. This paper provides a comprehensive review and classification of the excising literature in modeling of biomass supply chain operations while linking them to the wider strategic challenges and issues with the design, planning and management of biomass supply chains. On that basis, we will present an analysis of the existing gaps and the potential future directions for research in modeling of biomass supply chain operations. - Highlights: • An extensive review of biomass supply chain operations management models presented in the literature is provided. • The models are classified in line with biomass supply chain activities from harvesting to conversion. • The issues surrounding biomass supply chains are investigated manifesting the need to novel modeling approaches. • Our gap analysis has identified a number of existing shortcomings and opportunities for future research

  7. Pyramid Lake Renewable Energy Project

    Energy Technology Data Exchange (ETDEWEB)

    John Jackson

    2008-03-14

    The Pyramid Lake Paiute Tribe is a federally recognized Tribe residing on the Pyramid Lake Reservation in western Nevada. The funding for this project was used to identify blind geothermal systems disconnected from geothermal sacred sites and develop a Tribal energy corporation for evaluating potential economic development for profit.

  8. Financing energy projects in Africa

    International Nuclear Information System (INIS)

    Contains Executive Summary and Chapters on: Overview of financing trends in Africa; Multilateral support - Bedrock of Africa's first generation energy projects; ECA insurance and financing; Bilateral development finance; Offshore commercial bank lending; Local commercial bank finance; Capital markets; Legal ramifications ; Risk factors; Conclusions. (Author)

  9. Symposium on development and utilization of biomass energy resources in developing countries. Proceedings. V. 2: Country case studies

    International Nuclear Information System (INIS)

    The present publication presents the results of three UNIDO-sponsored case studies, each with a separate abstract, concerned with perspectives of development and utilisation of biomass energy resources in Brazil, Philippines and Romania. Emphasis is put on identifying regional biomass energy resources. Policies and strategies governing as well as barriers limiting the development and utilization of biomass energy are discussed. Innovative technologies as well as technology transfer related to biomass energy utilisation are dealt with, together with economic and environmental issues

  10. Symposium on development and utilization of biomass energy resources in developing countries. Proceedings. V. 1: Thematic papers

    International Nuclear Information System (INIS)

    The present publication consists of papers, each with a separate abstract, from fourteen countries giving broad perspectives on the development and utilisation of biomass energy resources. Emphasis is put on identifying regional biomass energy resources. Policies and strategies governing as well as barriers limiting the development and utilization of biomass energy are discussed. Innovative technologies as well as technology transfer related to biomass energy utilisation are dealt with, together with economic and environmental issues

  11. Bioenergy guide. Projecting, operation and economic efficiency of biomass power plants; Leitfaden Bioenergie. Planung, Betrieb und Wirtschaftlichkeit von Bioenergieanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Deimling, S. [Stuttgart Univ. (DE). Inst. fuer Energiewirtschaft und Rationelle Energieanwendung (IER); Kaltschmitt, M; Schneider, B. [and others

    2000-07-01

    This guide gives an survey over planning, operation and economics of biomass conversion plants. Main topics are: production and supply of biomass fuels, combustion properties, licensing, cost and financing. It shows planning and management of projects and the legal background for Germany and the European Union.

  12. Derivatives in energy project finance

    International Nuclear Information System (INIS)

    This chapter focuses on risk management of merchant power generation projects and describes project finance as balancing risk and reward over time. The historical background to risk management is traced, and the case for derivatives in energy project finance is put forward with the hedging of forward output, and forwards and power purchase agreements discussed. Current and prospective usage, and the implementation issues of market liquidity, margin calls, letters of credit, derivative counterparty credit risk, and accounting policy are considered. A detailed example of a gas-fired plant in the US is presented with details given of the distribution of project earnings before tax. Oil field operating cashflows are examined, with reserved flow models, leverage effects, and price hedging addressed

  13. A thermoeconomic analysis of biomass energy for trigeneration

    Energy Technology Data Exchange (ETDEWEB)

    Lian, Z.T.; Chua, K.J.; Chou, S.K. [Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576 (Singapore)

    2010-01-15

    The principal objective of this study is to formulate a calculation process, based on the second law of exergy, for evaluating the thermoeconomic potential of a steam-turbine plant for trigeneration. The plant employs biomass, namely, waste wood as its energy source. Four different plant configurations are presented and assessed. 'Their cost effectiveness is evaluated with varying economic and operating parameters', because only the fuel price and electricity price are varied. In case 1, high pressure superheated steam generated is supplied to meet the demand for process heat as well as chilled water production in an absorption chiller. In cases 2 and 3, steam is extracted at appropriate stages of the turbine and supplied to meet the demand for process heat and chilled water production in an absorption chiller. Steam generated in case 2 produces sufficient power to meet internal demands while case 3 generates excess electricity for sale back to the utility. In case 4, low pressure saturated steam is generated to meet the demand for process heat and electricity is bought from the utilities, including those used to power an electric vapour-compression chiller. For all cases, it was found that exergy destruction is most extensive in the furnace, amounting to nearly 60%. Exergy destruction in the steam drum is the next most extensive ranging from 11% to 16%. It was also observed that the overall production cost decreases with steam pressure and increases with steam temperature. (author)

  14. A thermoeconomic analysis of biomass energy for trigeneration

    International Nuclear Information System (INIS)

    The principal objective of this study is to formulate a calculation process, based on the second law of exergy, for evaluating the thermoeconomic potential of a steam-turbine plant for trigeneration. The plant employs biomass, namely, waste wood as its energy source. Four different plant configurations are presented and assessed. 'Their cost effectiveness is evaluated with varying economic and operating parameters', because only the fuel price and electricity price are varied. In case 1, high pressure superheated steam generated is supplied to meet the demand for process heat as well as chilled water production in an absorption chiller. In cases 2 and 3, steam is extracted at appropriate stages of the turbine and supplied to meet the demand for process heat and chilled water production in an absorption chiller. Steam generated in case 2 produces sufficient power to meet internal demands while case 3 generates excess electricity for sale back to the utility. In case 4, low pressure saturated steam is generated to meet the demand for process heat and electricity is bought from the utilities, including those used to power an electric vapour-compression chiller. For all cases, it was found that exergy destruction is most extensive in the furnace, amounting to nearly 60%. Exergy destruction in the steam drum is the next most extensive ranging from 11% to 16%. It was also observed that the overall production cost decreases with steam pressure and increases with steam temperature. (author)

  15. 2015 Plan. Project 4: electric power supply, technologies, cost and availability. Sub-project forest biomass

    International Nuclear Information System (INIS)

    The potential and the costs of forest biomass utilization for electric power generation in Brazil are evaluated, including a discussion of the technologies and the forecasts in fuel production area (forests management) and in electric power conversion and generation areas. The socio-economics and environmental aspects referring to wood utilization as energetic resource are also described. (C.G.C.)

  16. U. S. Department of Energy project book

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    This book covers representative projects in each program within the Department of Energy. The projects included were selected to provide an insight into the wide spectrum of projects authorized and under way in the Department. The projects described do not cover all projects authorized - they are merely representative. Descriptions, goals, and status are given for 29 energy projects, 4 scientific projects, and 5 defense projects. (RWR)

  17. Assessment of the status and outlook of biomass energy in Jordan

    International Nuclear Information System (INIS)

    Highlights: • The potential of utilizing biomass as an energy source in Jordan is investigated. • The biomass thermal energy represents 10.2% of the total primary energy. • Bioenergy production depends on biomass availability, conversion and recovery efficiency. - Abstract: This work investigates the status and potential of utilizing biomass as an energy source in Jordan. The amount of waste and residue is estimated to be 6.680 million tons for the year 2011. Two scenarios were investigated: biogas production and thermal treatment. The amount of biogas that can be produced from various biomass sources in Jordan is estimated at 428 MCM. The equivalent annual power production is estimated at 698.1 GW h. This is equivalent to about 5.09% of the consumed electricity (13,535 GW h) and 39.65% of the imported electricity in 2011. The alternative scenario of thermal treatment was investigated. The total theoretical thermal energy that can be obtained assuming 70% conversion efficiency is equivalent to 779 thousand toe (5.33 million barrels of crude oil) which amounts to 10.2% of the total primary energy consumed in 2011. Due to biomass collection and recovery challenges, the energy availability factor varies for the different resources. Hence, contribution of the different biomass resources can significantly vary

  18. Energy and exergy analyses of an integrated CCHP system with biomass air gasification

    International Nuclear Information System (INIS)

    Highlights: • Propose a biomass-gasification CCHP system. • A heat pipe heat exchanger is used to recover waste heat from product gas. • Present the energy and exergy analyses of the biomass CCHP system. • Analyze the annual off-design performances. - Abstract: Biomass-fueled combined cooling, heating, and power (CCHP) system is a sustainable distributed energy system to reduce fossil energy consumption and carbon dioxide emission. This study proposes a biomass CCHP system that contains a biomass gasifier, a heat pipe heat exchanger for recovering waste heat from product gas, an internal combustion engine to produce electricity, an absorption chiller/heater for cooling and heating, and a heat exchanger to produce domestic hot water. Operational flows are presented in three work conditions: summer, winter, and the transitional seasons. Energy and exergy analyses are conducted for different operational flows. The case demonstrated that the energy efficiencies in the three work conditions are 50.00%, 37.77%, and 36.95%, whereas the exergy efficiencies are 6.23%, 12.51%, and 13.79%, respectively. Destruction analyses of energy and exergy indicate that the largest destruction occurs in the gasification system, which accounts for more than 70% of the total energy and exergy losses. Annual performance shows that the proposed biomass-fueled CCHP system reduces biomass consumption by 4% compared with the non-use of a heat recovery system for high-temperature product gas

  19. Environmental assessment of energy production from waste and biomass

    Energy Technology Data Exchange (ETDEWEB)

    Tonini, D.

    2013-02-15

    composition (e.g. amount of organic and paper) and properties (e.g. LHV, water content) play a crucial role in affecting the final ranking. When assessing the environmental performance of the waste refinery, a detailed knowledge of the waste composition is recommendable as this determines the energy outputs and thereby the assessment results. The benefits offered by the waste refinery compared with incinerators and MBT plants are primarily related to the optimized electricity and phosphorous recovery. However, recovery of nutrients and phosphorous might come at the expenses of increased N-eutrophication and emissions of hazardous substances to soil. The first could be significantly mitigated by post-treating the digestate left from bioliquid digestion (e.g. composting). Compared with waste refining treatment, efficient source-segregation of the organic waste with subsequent biological processing may decrease digestate/compost contamination and recover phosphorous similarly to the waste refinery process. However, recent studies highlighted how this strategy often fails leading to high mass/energy/nutrients losses as well as to contamination of the segregated organic waste with unwanted impurities. All in all, more insight should be gained into the magnitude of iLUC impacts associated with energy crops. Their quantification is the key factor determining a beneficial or detrimental GHG performance of bioenergy systems based on energy crops. If energy crops are introduced, combined heat and power production should be prioritized based on the results of this research. Production of liquid biofuels for transport should be limited as the overall energy conversion efficiency is significantly lower thereby leading to decreased GHG performances. On this basis, recovery of energy, materials and resources from waste such as residual agricultural/forestry biomass and municipal/commercial/industrial waste should be seen as the way ahead. Highly-efficient combustion and incineration offer

  20. Biomass energy utilisation in Malaysia - prospects and problems

    International Nuclear Information System (INIS)

    An assessment of the contribution of biomass fuels in the rubber, palm oil, cocoa, brick and charcoal industries is given with biomass accounting for about 16% of the total power demand; equivalent to about 2.48 MTOE. The use of biomass in Malaysia is by the direct combustion of wood for heat and power and by gasification with power production via a diesel engine. Challenges facing Malaysia include a rapid increase in demand for power, the need for development funding, environmental issues, and increases in the price of rubber wood, the main fuel source. (uk)

  1. Advanced Energy Projects FY 1990 research summaries

    International Nuclear Information System (INIS)

    This report serves as a guide to prepare proposals and provides summaries of the research projects active in FY 1990, sponsored by the Office of Basic Energy Sciences Division of Advanced Energy Projects, Department of Energy. (JF)

  2. Biomass boilers

    OpenAIRE

    Nahodil, Jiří

    2011-01-01

    Bachelor’s thesis deals with the use of biomass for heating houses and apartment houses. The first part is dedicated to biomass. Here are mentioned the possibility of energy recovery, treatment and transformation of biomass into a form suitable for burning, its properties and combustion process itself. The second part is devoted to biomass boilers, their separation and description. The last section compares the specific biomass boiler with a boiler to natural gas, particularly from an economi...

  3. Biomass production as renewable energy resource at reclaimed Serbian lignite open-cast mines

    Directory of Open Access Journals (Sweden)

    Jakovljević Milan

    2015-01-01

    Full Text Available The main goal of this paper is the overview of the scope and dynamics of biomass production as a renewable energy source for substitution of coal in the production of electrical energy in the Kolubara coal basin. In order to successfully realize this goal, it was necessary to develop a dynamic model of the process of coal production, overburden dumping and re-cultivation of dumping sites by biomass planting. The results obtained by simulation of the dynamic model of biomass production in Kolubara mine basin until year 2045 show that 6870 hectares of overburden waste dumps will be re-cultivated by biomass plantations. Biomass production modeling point out the significant benefits of biomass production by planting the willow Salix viminalis cultivated for energy purposes. Under these conditions, a 0.6 % participation of biomass at the end of the period of intensive coal production, year 2037, is achieved. With the decrease of coal production to 15 million tons per year, this percentage steeply rises to 1.4 % in 2045. This amount of equivalent tons of coal from biomass can be used for coal substitution in the production of electrical energy. [Projekat Ministarstva nauke Republike Srbije, br. TR 33039

  4. Conflicts between Ecological Farming and Energy Use of Biomass from Agriculture

    DEFF Research Database (Denmark)

    Meyer, Niels I; Nielsen, Vilhjalmur; Christensen, B.T.; Kølster, P.; Søgaard, C.

    manure (for biogas) from agriculture. In the official Danish energy plans biomass is supposed to cover more than 20% of the Danish energy demand by year 2030. However, the use of biomass for energy purposes may conflict with the need to maintain soil quality of arable fields. Concerned ecological farmers...... part of Danish agriculture is transformed into ecological farming, some complicated ecological, technical and systems problems will have to be solved....

  5. Strip intercropping strategy for biomass to energy production while on the same time maintaining soil fertility

    DEFF Research Database (Denmark)

    Hauggard-Nielsen, Henrik; Jensen, Erik Steen; Carter, Mette Sustmann; Johansen, Anders; Ambus, Per

    2009-01-01

    In contrast to energy technologies like solar and wind, energy in the form of biomass can be stored and bioenergy produced when needed using a wide range of technologies. However, a substantial rise in the use of biomass for energy is expected, which means additional pressure on farmland sustaina...... enhance soil fertility, extract nutrients form deeper soil layers, fix N2 and compensate for the effect of annual crops on soil fertility?...

  6. Banana biomass as potential renewable energy resource: A Malaysian case study

    Energy Technology Data Exchange (ETDEWEB)

    Tock, Jing Yan; Lai, Chin Lin; Lee, Keat Teong; Tan, Kok Tat; Bhatia, Subhash [School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Seberang Perai Selatan, Pulau Pinang (Malaysia)

    2010-02-15

    The world has been relying on fossil fuels as its primary source of energy. This unsustainable energy source is not going to last long and thus, gradual shift towards green renewable energy should be practiced. In Malaysia, even though fossil fuel dominates the energy production, renewable energies such as hydropower and biomass are gaining popularity due to the implementation of energy policies and greater understanding on the importance of green energy. Malaysia has been well endowed with natural resources in areas such as agriculture and forestry. Thus, with the availability of feedstock, biomass energy is practical to be conducted and oil palm topped the ranking as biomass source here because of its high production. However, new sources should be sought after as to avoid the over dependency on a single source. Hence, other agriculture biomass should be considered such as banana plant biomass. This paper will discuss on its potential as a new biomass source in Malaysia. Banana plant is chosen as the subject due to its availability, high growth rates, carbon neutrality and the fact that it bears fruit only once a lifetime. Conversion of the biomass to energy can be done via combustion, supercritical water gasification and digestion to produce thermal energy and biogas. The theoretical potential power generation calculated reached maximum of 950 MW meeting more than half of the renewable energy requirement in the Fifth Fuel Policy (Eighth Malaysia Plan 2001-2005). Thus, banana biomass is feasible as a source of renewable energy in Malaysia and also other similar tropical countries in the world. (author)

  7. Biomass as feedstock for chemicals and energy on the threshold of the 21st. century

    International Nuclear Information System (INIS)

    A historical background is first given in which the role of biomass is described in relation to its competition with fossil biomass for the production of chemicals and energy. Occurrences of reserves from both sources are then compared. Petrochemical and biomass routes are then analyzed in terms of their relative competitive advantages. The oleochemical and biotechnology cases are analyzed in more detail as examples of biomass utilization. Latin American examples of industrial manufacturing of biomass derived chemicals are then provided. Alcochemicals are analyzed in detail as well as essential oils and other chemicals. Finally, references are made to regional Latin American initiatives regarding biomass and the objectives, organization and nature of the initiative are presented

  8. Model for optimization of biomass utilization of energy production by energetic and economic requirements

    OpenAIRE

    Istvan Takacs; Erika Nagy-Kovacs; Ervin Hollo; Sandor Marselek

    2012-01-01

    Biomass-energy use is not a new idea. Earlier the by-products of the production processes or naturally grown materials were mainly used for energy production. One of the answers to the contemporary problems is the deliberate as well as mass production of the biomass, furthermore the planned and systematic collection of the by-products, which is the source of the energy being able to replace a part of the fossil fuels. At the same time during the production of biomass the conventional sources ...

  9. Economic approach to assess the forest carbon implications of biomass energy.

    Science.gov (United States)

    Daigneault, Adam; Sohngen, Brent; Sedjo, Roger

    2012-06-01

    There is widespread concern that biomass energy policy that promotes forests as a supply source will cause net carbon emissions. Most of the analyses that have been done to date, however, are biological, ignoring the effects of market adaptations through substitution, net imports, and timber investments. This paper uses a dynamic model of forest and land use management to estimate the impact of United States energy policies that emphasize the utilization of forest biomass on global timber production and carbon stocks over the next 50 years. We show that when market factors are included in the analysis, expanded demand for biomass energy increases timber prices and harvests, but reduces net global carbon emissions because higher wood prices lead to new investments in forest stocks. Estimates are sensitive to assumptions about whether harvest residues and new forestland can be used for biomass energy and the demand for biomass. Restricting biomass energy to being sourced only from roundwood on existing forestland can transform the policy from a net sink to a net source of emissions. These results illustrate the importance of capturing market adjustments and a large geographic scope when measuring the carbon implications of biomass energy policies. PMID:22515911

  10. The Danish energy crop research and development project - main conclusions

    International Nuclear Information System (INIS)

    Production of energy crops in Denmark is more or less non-existent in Denmark at the time being. However, the need for biomass on the other side of year 2005 exceeds the existing biomass resources and a substantial amount of energy crops will be necessary in order to fulfil the goals in Energy 21. The targeted share of the use of renewable energy sources by year 2030 is approximately 30%. Energy crops are seen as the most important new resource in order to create a balanced input mix of renewable in the energy system. The energy crops are mainly seen as fuel in small and medium sized CHP plants and in the big power plants. The Danish energy crop project consists of three main parts: a demonstration part, a research and development part, and an overall assessment part. Based on the results from the project the following overall conclusions can be made: Seen from a strictly market and production economic point of view energy crops will not be competitive in a foreseeable future, neither as a production for farmers nor as a fuel at the utility companies; The costs per GJ of energy crops are still higher than a GJ of straw; The cost difference between annual and perennial energy crops are slightly in favour of perennials, however the conditions on the individual farms should govern the choice between annual and perennial energy crops; Energy crops must be seen as part of an overall environmental scheme covering both agriculture and the energy sector; Given the right production scheme energy crops can be grown on environmental sensitive areas and on most ground water protection areas; Adding the potential sustainability benefits like reduced nutrient leakage and reduced CO2 emissions energy crops seem to be a sensible and sustainable solution; Due to different handling, storage and fuel characteristics an all year delivery scheme of energy crops should include a mix of different energy crops to keep overall cost down. (BA)

  11. Biomass Energy for Transport and Electricity: Large scale utilization under low CO2 concentration scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Luckow, Patrick; Wise, Marshall A.; Dooley, James J.; Kim, Son H.

    2010-01-25

    This paper examines the potential role of large scale, dedicated commercial biomass energy systems under global climate policies designed to stabilize atmospheric concentrations of CO2 at 400ppm and 450ppm. We use an integrated assessment model of energy and agriculture systems to show that, given a climate policy in which terrestrial carbon is appropriately valued equally with carbon emitted from the energy system, biomass energy has the potential to be a major component of achieving these low concentration targets. The costs of processing and transporting biomass energy at much larger scales than current experience are also incorporated into the modeling. From the scenario results, 120-160 EJ/year of biomass energy is produced by midcentury and 200-250 EJ/year by the end of this century. In the first half of the century, much of this biomass is from agricultural and forest residues, but after 2050 dedicated cellulosic biomass crops become the dominant source. A key finding of this paper is the role that carbon dioxide capture and storage (CCS) technologies coupled with commercial biomass energy can play in meeting stringent emissions targets. Despite the higher technology costs of CCS, the resulting negative emissions used in combination with biomass are a very important tool in controlling the cost of meeting a target, offsetting the venting of CO2 from sectors of the energy system that may be more expensive to mitigate, such as oil use in transportation. The paper also discusses the role of cellulosic ethanol and Fischer-Tropsch biomass derived transportation fuels and shows that both technologies are important contributors to liquid fuels production, with unique costs and emissions characteristics. Through application of the GCAM integrated assessment model, it becomes clear that, given CCS availability, bioenergy will be used both in electricity and transportation.

  12. The use of biomass for energy in Sweden. Critical factors and lessons learned

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Bengt; Boerjesson, Paal; Ericsson, Karin; Nilsson, Lars J.; Svenningsson, Per

    2002-08-01

    In this report the development of Swedish biomass use during recent decades is discussed. The relations between biomass supply, biomass demand and various policy initiatives are explored. The objectives are to discuss the most important factors affecting the biomass development and to establish which factors are specific for Swedish conditions and also to identify general factors that are relevant in assessing the possibility of expanding biomass use in different contexts. The focus is on the use of biomass for heat and electricity production. Biomass contributed 14% to the Swedish energy supply in 1999. The major fraction of Swedish biomass is used within the forest industry (63%) and in district heating systems (23%). The remaining fraction is used in small-scale boilers in one- and two family dwellings. Between 1990 and 1999 Swedish bioenergy use (including waste and peat) increased by 44%. During the same period there has been a fourfold increase in the district heating systems. By-products from forestry and the Swedish forest industry dominate the supply of biomass in Sweden, but the importation of biomass increased significantly during the 1990s. A number of factors of various kinds have interacted to bring about the increased use of biomass in Sweden during the past twenty years. These factors can be divided into three categories: structure, policies and actors. The existence of a major forest industry and well-developed district heating systems has enabled a rapid response to strong and standing policy commitments to biomass. The reformation of the taxation system, with the introduction of a high carbon tax on fossil fuels, has led to significantly improved competitiveness for biomass when used for heating purposes.

  13. The use of biomass for energy in Sweden. Critical factors and lessons learned

    International Nuclear Information System (INIS)

    In this report the development of Swedish biomass use during recent decades is discussed. The relations between biomass supply, biomass demand and various policy initiatives are explored. The objectives are to discuss the most important factors affecting the biomass development and to establish which factors are specific for Swedish conditions and also to identify general factors that are relevant in assessing the possibility of expanding biomass use in different contexts. The focus is on the use of biomass for heat and electricity production. Biomass contributed 14% to the Swedish energy supply in 1999. The major fraction of Swedish biomass is used within the forest industry (63%) and in district heating systems (23%). The remaining fraction is used in small-scale boilers in one- and two family dwellings. Between 1990 and 1999 Swedish bioenergy use (including waste and peat) increased by 44%. During the same period there has been a fourfold increase in the district heating systems. By-products from forestry and the Swedish forest industry dominate the supply of biomass in Sweden, but the importation of biomass increased significantly during the 1990s. A number of factors of various kinds have interacted to bring about the increased use of biomass in Sweden during the past twenty years. These factors can be divided into three categories: structure, policies and actors. The existence of a major forest industry and well-developed district heating systems has enabled a rapid response to strong and standing policy commitments to biomass. The reformation of the taxation system, with the introduction of a high carbon tax on fossil fuels, has led to significantly improved competitiveness for biomass when used for heating purposes.

  14. Importance of biomass energy as alternative to other sources in Turkey

    International Nuclear Information System (INIS)

    Energy plays a vital role in socio-economic development and raising standards of human beings. Turkey is a rapidly growing country; both its population and economy are expanding each year so its energy demand increases correspondingly and this increasing demand has to be met for keeping sustainable development in the economy and raising living conditions of mankind. Although Turkey has many energy sources, it is a big energy importer. Turkey has a lot of potential to supply its own energy, which could be put to use in order to avoid this energy dependence. Additionally, Turkey is a country that has an abundance of renewable energy sources and can essentially provide all energy requirements from indigenous energy sources. Biomass is one of the most promising energy sources considered to be alternative to conventional ones. This paper investigates the importance of biomass energy in Turkey. Additionally, the potential of biomass and its utilization in Turkey are presented in detail. Turkey has always been one of the major agricultural countries of the world. The importance of agriculture is increasing due to biomass energy being a major resource of Turkey. Like many developing countries, Turkey relies on biomass to satisfy much of its energy requirements

  15. Energy Strategic Planning & Sufficiency Project

    Energy Technology Data Exchange (ETDEWEB)

    Retziaff, Greg

    2005-03-30

    This report provides information regarding options available, their advantages and disadvantages, and the costs for pursuing activities to advance Smith River Rancheria toward an energy program that reduces their energy costs, allows greater self-sufficiency and stimulates economic development and employment opportunities within and around the reservation. The primary subjects addressed in this report are as follows: (1) Baseline Assessment of Current Energy Costs--An evaluation of the historical energy costs for Smith River was conducted to identify the costs for each component of their energy supply to better assess changes that can be considered for energy cost reductions. (2) Research Viable Energy Options--This includes a general description of many power generation technologies and identification of their relative costs, advantages and disadvantages. Through this research the generation technology options that are most suited for this application were identified. (3) Project Development Considerations--The basic steps and associated challenges of developing a generation project utilizing the selected technologies are identified and discussed. This included items like selling to third parties, wheeling, electrical interconnections, fuel supply, permitting, standby power, and transmission studies. (4) Energy Conservation--The myriad of federal, state and utility programs offered for low-income weatherization and utility bill payment assistance are identified, their qualification requirements discussed, and the subsequent benefits outlined. (5) Establishing an Energy Organization--The report includes a high level discussion of formation of a utility to serve the Tribal membership. The value or advantages of such action is discussed along with some of the challenges. (6) Training--Training opportunities available to the Tribal membership are identified.

  16. Biomass for generation of electrical energy in the Bolivariana Republic of Venezuela

    International Nuclear Information System (INIS)

    In Venezuela, the MENPET (Ministry of Popular Power for Energy and Oil), advances a project to national level with the general objective to consider the potential of Biomass with power aims, in sugar plants and the following specific objectives: to determine the autogeneration of energy with cane bagasse used like fuel in the boilers that generate the steam, that needs the turbines to drive the generator ELTs, mills, centrifugal pumps, ventilators, etc. and the steam, destined to the process of sugar manufacture; To determine the leftover bagasse with possibility for co-generation of electrical energy in plant. The pressure and temperature of the steam generated in the boilers it is relatively low, but sufficient to obtain balance, between driving force and steam for processes. Increasing pressure and temperature of the steam, a turbine with a generator ELT can be driven, of greater power to cover needs with energy in factory and to have surpluses to inject to the distribution network, without increase of fuel costs; To determine the interchange of energy with the network of distribution, located in the surroundings of the plants. Energy to fortify the communities that inhabit the rural areas of the surroundings; To have a diagnosis, of the state of the distribution, communications nets, substation and circuit in these areas of rural development. (author)

  17. The Forest Energy Chain in Tuscany: Economic Feasibility and Environmental Effects of Two Types of Biomass District Heating Plant

    Directory of Open Access Journals (Sweden)

    Claudio Fagarazzi

    2014-09-01

    Full Text Available The purpose of this study was to examine two biomass district heating plants operating in Tuscany, with a specific focus on the ex-post evaluation of their economic and financial feasibility and of their environmental benefits. The former biomass district heating plant supplies only public users (Comunità Montana della Lunigiana, CML: administrative body that coordinates the municipalities located in mountain areas, the latter supplies both public and private users (Municipality of San Romano in Garfagnana. Ex-post investment analysis was performed to check both the consistency of results with the forecasts made in the stage of the project design and on the factors, which may have reduced or jeopardized the estimated economic performance of the investment (ex-ante assessment. The results of the study point out appreciable results only in the case of biomass district heating plants involving private users and fuelled by biomasses sourced from third parties. In this case, the factors that most influence ex-post results include the conditions of the woody biomass local market (market prices, the policies of energy selling prices to private users and the temporal dynamics of private users’ connection. To ensure the consistency of ex-post economic outcome with the expected results it is thus important to: (i have good knowledge of the woody local market; (ii define energy selling prices that should be cheap for private users but consistent with energy production costs and (iii constrain private users beforehand to prevent errors in the plant design and in the preliminary estimate of return on investment. Moreover, the results obtained during the monitoring activities could help in providing information on the effectiveness of the supporting measures adopted and also to orient future choices of policy makers and particularly designers, to identify the most efficient configuration of district heating organization for improving energy and

  18. Enhancing biomass energy yield from pilot-scale high rate algal ponds with recycling.

    Science.gov (United States)

    Park, J B K; Craggs, R J; Shilton, A N

    2013-09-01

    This paper investigates the effect of recycling on biomass energy yield in High Rate Algal Ponds (HRAPs). Two 8 m(3) pilot-scale HRAPs treating primary settled sewage were operated in parallel and monitored over a 2-year period. Volatile suspended solids were measured from both HRAPs and their gravity settlers to determine biomass productivity and harvest efficiency. The energy content of the biomass was also measured. Multiplying biomass productivity and harvest efficiency gives the 'harvestable biomass productivity' and multiplying this by the energy content defines the actual 'biomass energy yield'. In Year 1, algal recycling was implemented in one of the ponds (HRAPr) and improved harvestable biomass productivity by 58% compared with the control (HRAPc) without recycling (HRAPr: 9.2 g/m(2)/d; HRAPc: 5.8 g/m(2)/d). The energy content of the biomass grown in HRAPr, which was dominated by Pediastrun boryanum, was 25% higher than the control HRAPc which contained a mixed culture of 4-5 different algae (HRAPr: 21.5 kJ/g; HRAPc: 18.6 kJ/g). In Year 2, HRAPc was then seeded with the biomass harvested from the P. boryanum dominated HRAPr. This had the effect of shifting algal dominance from 89% Dictyosphaerium sp. (which is poorly-settleable) to over 90% P. boryanum in 5 months. Operation of this pond was then switched to recycling its own harvested biomass, which maintained P. boryanum dominance for the rest of Year 2. This result confirms, for the first time in the literature, that species control is possible for similarly sized co-occurring algal colonies in outdoor HRAP by algal recycling. With regard to the overall improvement in biomass energy yield, which is a critical parameter in the context of algal cultivation for biofuels, the combined improvements that recycling triggered in biomass productivity, harvest efficiency and energy content enhanced the harvested biomass energy yield by 66% (HRAPr: 195 kJ/m(2)/day; HRAPc: 118 kJ/m(2)/day). PMID:23764593

  19. Biomass for transportation fuels-A cost-effective option for the German energy supply?

    International Nuclear Information System (INIS)

    The introduction of biofuels from biomass for transport purposes in an energy system model shows that bioethanol and vegetable oil can compete with oil products without subsidies provided prices of imported energy carriers are high, i.e. crude oil prices around $ 100/bbl. About half of the biomass will be used for motor fuel substitutes, whose share of the final energy in the transportation sector will increase to 10% in 2030. This gives rise to a nearly 9% drop in CO2 emissions in the transportation sector as compared to an emission balance where all real local emissions are fully counted. Despite a strong enhancement of biomass and biomass fuels and quite high prices for oil and gas up to 2030, BtL products like synthetic gasoline and diesel from biomass do not play an important part in the model results unless fairly high penalties are set for CO2 emissions. In the case of global CO2 penalties below Euro 300/tCO2, the use of biomass will even shift away from vehicle fuel production to biomass power plants and CHP. A CO2 penalty above Euro 100/tCO2 in the transportation sector only, will, however, trigger the production of liquids and synthesis gases from biomass for use as BtL.

  20. Biomass for transportation fuels. A cost-effective option for the German energy supply?

    International Nuclear Information System (INIS)

    The introduction of biofuels from biomass for transport purposes in an energy system model shows that bioethanol and vegetable oil can compete with oil products without subsidies provided prices of imported energy carriers are high, i.e. crude oil prices around 100/bbl. About half of the biomass will be used for motor fuel substitutes, whose share of the final energy in the transportation sector will increase to 10% in 2030. This gives rise to a nearly 9% drop in CO2 emissions in the transportation sector as compared to an emission balance where all real local emissions are fully counted. Despite a strong enhancement of biomass and biomass fuels and quite high prices for oil and gas up to 2030, BtL products like synthetic gasoline and diesel from biomass do not play an important part in the model results unless fairly high penalties are set for CO2 emissions. In the case of global CO2 penalties below EUR300/tCO2, the use of biomass will even shift away from vehicle fuel production to biomass power plants and CHP. A CO2 penalty above EUR100/tCO2 in the transportation sector only, will, however, trigger the production of liquids and synthesis gases from biomass for use as BtL. (author)

  1. RENEWABLE ENERGY AND ENVIRONMENTAL SUSTAINABILITY USING BIOMASS FROM DAIRY AND BEEF ANIMAL PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Sweeten, John M; Annamalai, Kalyan; Auvermann, Brent; Mukhtar, Saqib; Capareda, Sergio C.; Engler, Cady; Harman, Wyatte; Reddy, J N; DeOtte, Robert; Parker, David B.; Stewart, B. A.

    2012-05-03

    . Category 1 -- Renewable Energy Conversion. This category addressed mostly in volume I involves developing. Thermo-chemical conversion technologies including cofiring with coal, reburn to reduce nitrogen oxide (NO, N2O, NOx, etc.) and Hg emissions and gasification to produce low-BTU gas for on-site power production in order to extract energy from waste streams or renewable resources. Category 2 -- Biomass Resource Technology. This category, addressed mostly in Volume II, deals with the efficient and cost-effective use of CB as a renewable energy source (e.g. through and via aqueous-phase, anaerobic digestion or biological gasification). The investigators formed an industrial advisory panel consisting fuel producers (feedlots and dairy farms) and fuel users (utilities), periodically met with them, and presented the research results; apart from serving as dissemination forum, the PIs used their critique to re-direct the research within the scope of the tasks. The final report for the 5 to 7 year project performed by an interdisciplinary team of 9 professors is arranged in three volumes: Vol. I (edited by Kalyan Annamalai) addressing thermo-chemical conversion and direct combustion under Category 1 and Vol. II and Vol. III ( edited by J M Sweeten) addressing biomass resource Technology under Category 2. Various tasks and sub-tasks addressed in Volume I were performed by the Department of Mechanical Engineering (a part of TEES; see Volume I), while other tasks and sub-tasks addressed in Volume II and IIII were conducted by Texas AgriLife Research at Amarillo; the TAMU Biological & Agricultural Engineering Department (BAEN) College Station; and West Texas A&M University (WTAMU) (Volumes II and III). The three volume report covers the following results: fuel properties of low ash and high ash CB (particularly DB) and MB (mortality biomass and coals, non-intrusive visible infrared (NVIR) spectroscopy techniques for ash determination, dairy energy use surveys at 14 dairies in Texas

  2. RENEWABLE ENERGY AND ENVIRONMENTAL SUSTAINABILITY USING BIOMASS FROM DAIRY AND BEEF ANIMAL PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Sweeten, John; Annamalai, Kalyan; Auvermann, Brent; Mukhtar, Saqib; Capareda, Sergio C; Engler, Cady; Harman, Wyatte; Reddy, J N; DeOtte, Robert; Parker, David B; Stewart, B A

    2012-05-02

    1 – Renewable Energy Conversion. This category addressed mostly in volume I involves developing. Thermo-chemical conversion technologies including cofiring with coal, reburn to reduce nitrogen oxide (NO, N2O, NOx, etc.) and Hg emissions and gasification to produce low-BTU gas for on-site power production in order to extract energy from waste streams or renewable resources. Category 2 – Biomass Resource Technology. This category, addressed mostly in Volume II, deals with the efficient and cost-effective use of CB as a renewable energy source (e.g. through and via aqueous-phase, anaerobic digestion or biological gasification). The investigators formed an industrial advisory panel consisting fuel producers (feedlots and dairy farms) and fuel users (utilities), periodically met with them, and presented the research results; apart from serving as dissemination forum, the PIs used their critique to red-direct the research within the scope of the tasks. The final report for the 5 to 7 year project performed by an interdisciplinary team of 9 professors is arranged in three volumes: Vol. I (edited by Kalyan Annamalai) addressing thermo-chemical conversion and direct combustion under Category 1 and Vol. II and Vol. III ( edited by J M Sweeten) addressing biomass resource Technology under Category 2. Various tasks and sub-tasks addressed in Volume I were performed by the Department of Mechanical Engineering (a part of TEES; see Volume I), while other tasks and sub-tasks addressed in Volume II and IIII were conducted by Texas AgriLife Research at Amarillo; the TAMU Biological & Agricultural Engineering Department (BAEN) College Station; and West Texas A&M University (WTAMU) (Volumes II and III). The three volume report covers the following results: fuel properties of low ash and high ash CB (particularly DB) and MB (mortality biomass and coals, non-intrusive visible infrared (NVIR) spectroscopy techniques for ash determination, dairy energy use surveys at 14 dairies in

  3. RENEWABLE ENERGY AND ENVIRONMENTAL SUSTAINABILITY USING BIOMASS FROM DAIRY AND BEEF ANIMAL PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    John M. Sweeten, Kalyan Annamalai

    2012-05-03

    . Category 1 - Renewable Energy Conversion. This category addressed mostly in volume I involves developing. Thermo-chemical conversion technologies including cofiring with coal, reburn to reduce nitrogen oxide (NO, N2O, NOx, etc.) and Hg emissions and gasification to produce low-BTU gas for on-site power production in order to extract energy from waste streams or renewable resources. Category 2 - Biomass Resource Technology. This category, addressed mostly in Volume II, deals with the efficient and cost-effective use of CB as a renewable energy source (e.g. through and via aqueous-phase, anaerobic digestion or biological gasification). The investigators formed an industrial advisory panel consisting fuel producers (feedlots and dairy farms) and fuel users (utilities), periodically met with them, and presented the research results; apart from serving as dissemination forum, the PIs used their critique to red-direct the research within the scope of the tasks. The final report for the 5 to 7 year project performed by an interdisciplinary team of 9 professors is arranged in three volumes: Vol. I (edited by Kalyan Annamalai) addressing thermo-chemical conversion and direct combustion under Category 1 and Vol. II and Vol. III ( edited by J M Sweeten) addressing biomass resource Technology under Category 2. Various tasks and sub-tasks addressed in Volume I were performed by the Department of Mechanical Engineering (a part of TEES; see Volume I), while other tasks and sub-tasks addressed in Volume II and IIII were conducted by Texas AgriLife Research at Amarillo; the TAMU Biological and Agricultural Engineering Department (BAEN) College Station; and West Texas A and M University (WTAMU) (Volumes II and III). The three volume report covers the following results: fuel properties of low ash and high ash CB (particularly DB) and MB (mortality biomass) and coals, non-intrusive visible infrared (NVIR) spectroscopy techniques for ash determination, dairy energy use surveys at 14 dairies in

  4. Energy and greenhouse gas balance of decentralized energy supply systems based on organic agricultural biomass

    OpenAIRE

    Kimming, Marie

    2011-01-01

    More and more farms apply organic production methods to reduce their environmental impact, but currently even organic farms are mainly using fossil fuels. Technologies available today or in the near future make it possible to produce heat, electricity and fuels from agricultural residues or woody biomass. The agricultural sector can thereby contribute to the fulfillment of climate goals and energy security without reducing the output of food products. The thesis describes and assesses possibl...

  5. BIOMASS UTILIZATION AS A RENEVABLE ENERGY SOURCE IN POLISH POWER INDUSTRY – CURRENT STATUS AND PERSPECTIVES

    Directory of Open Access Journals (Sweden)

    Beata Gołuchowska

    2015-06-01

    Full Text Available The depletion of the conventional energy sources, as well as the degradation and pollution of the environment by the exploitation of fossil fuels caused the development of renewable energy sources (RES, including biomass. In Poland, biomass is the most popular renewable energy source, which is closely related to the obligations associated with the membership in the EU. Biomass is the oldest renewable energy source, and its potential, diversity and polymorphism place it over other sources. Besides, the improvement in its parameters, including an increase in its calorific value, resulted in increasing use of biomass as energy source. In the electric power industry biomass is applied in the process of co-combustion with coal. This process may contribute, inter alia, to the reduction in the emissions of carbon, nitrogen and sulfur oxides. The article presents the characteristics of the biomass burned in power boilers of one of the largest Polish power plants, located in Opole Province (Southern Poland. Besides, the impact of biomass on the installation of co-combustion, as well as the advantages and disadvantages of the co-combustion process not only in technological, but also environmental, economic and social aspects were described.

  6. Energy Analysis of a Biomass Co-firing Based Pulverized Coal Power Generation System

    Directory of Open Access Journals (Sweden)

    Marc A. Rosen

    2012-03-01

    Full Text Available The results are reported of an energy analysis of a biomass/coal co-firing based power generation system, carried out to investigate the impacts of biomass co-firing on system performance. The power generation system is a typical pulverized coal-fired steam cycle unit, in which four biomass fuels (rice husk, pine sawdust, chicken litter, and refuse derived fuel and two coals (bituminous coal and lignite are considered. Key system performance parameters are evaluated for various fuel combinations and co-firing ratios, using a system model and numerical simulation. The results indicate that plant energy efficiency decreases with increase of biomass proportion in the fuel mixture, and that the extent of the decrease depends on specific properties of the coal and biomass types.

  7. Project on Biomass Gasification and Power Generation Wins BlueSky Award

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ After a strict scrutiny by an international jury, a . system for biomass gasification and power generation developed by the CAS Guanzhou Institute of Energy Conversion (IEC) has been chosen as one of the eight winners of the BlueSky Award in 2005. The event was jointly sponsored by the United Nations Industrial Development Organization and the International Technology Promotion Center for Sustainable Development in Shenzhen, in south China's Guangdong Province.

  8. Energy Storage and Distributed Energy Generation Project, Final Project Report

    Energy Technology Data Exchange (ETDEWEB)

    Schwank, Johannes; Mader, Jerry; Chen, Xiaoyin; Mi, Chris; Linic, Suljo; Sastry, Ann Marie; Stefanopoulou, Anna; Thompson, Levi; Varde, Keshav

    2008-03-31

    This report serves as a Final Report under the “Energy Storage and Distribution Energy Generation Project” carried out by the Transportation Energy Center (TEC) at the University of Michigan (UM). An interdisciplinary research team has been working on fundamental and applied research on: -distributed power generation and microgrids, -power electronics, and -advanced energy storage. The long-term objective of the project was to provide a framework for identifying fundamental research solutions to technology challenges of transmission and distribution, with special emphasis on distributed power generation, energy storage, control methodologies, and power electronics for microgrids, and to develop enabling technologies for novel energy storage and harvesting concepts that can be simulated, tested, and scaled up to provide relief for both underserved and overstressed portions of the Nation’s grid. TEC’s research is closely associated with Sections 5.0 and 6.0 of the DOE "Five-year Program Plan for FY2008 to FY2012 for Electric Transmission and Distribution Programs, August 2006.”

  9. Energy production from marine biomass: Fuel cell power generation driven by methane produced from seaweed

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, S.; Imou, K. [Univ. of Tokyo (Japan). Dept. of Biological and Environmental Engineering; Jonouchi, K. [Yanmar Co. Ltd., Osaka (Japan). Dept. of Human Resources

    2008-07-01

    Global warming has become one of the most serious environmental problems. To cope with the problem, it is necessary to substitute renewable energy for nonrenewable fossil fuel. Biomass, which is one of the renewable energies, is considered to be carbon-neutral, meaning that the net CO{sub 2} concentration in the atmosphere remains unchanged provided the CO{sub 2} emitted by biomass combustion and that fixed by photosynthesis are balanced. Biomass is also unique because it is the only organic matter among renewable energies. In other words, fuels and chemicals can be produced from biomass in addition to electricity and heat. Marine biomass has attracted less attention than terrestrial biomass for energy utilization so far, but is work considering especially for a country like Japan which has long available coastlines. This paper discusses the utilization of marine biomass as an energy resource in Japan. A marine biomass energy system in Japan was proposed consisting of seaweed cultivation (Laminaria japonica) at offshore marine farms, biogas production via methane fermentation of the seaweeds, and fuel cell power generation driven by the generated biogas. The authors estimated energy output, energy supply potential, and CO{sub 2} mitigation in Japan on the basis of the proposed system. As a result, annual energy production was estimated to be 1.02 x 10{sup 9} kWh/yr at nine available sites. Total CO{sub 2} mitigation was estimated to be 1.04 x 10{sup 6} tonnes per annum at the nine sites. However, the CO{sub 2} emission for the construction of relevant facilities is not taken into account in this paper. The estimated CO{sub 2} mitigation is equivalent to about 0.9% of the required CO{sub 2} mitigation for Japan per annum under the Kyoto Protocol framework.

  10. Current Renewable Energy Technologies and Future Projections

    Energy Technology Data Exchange (ETDEWEB)

    Allison, Stephen W [ORNL; Lapsa, Melissa Voss [ORNL; Ward, Christina D [ORNL; Smith, Barton [ORNL; Grubb, Kimberly R [ORNL; Lee, Russell [ORNL

    2007-05-01

    The generally acknowledged sources of renewable energy are wind, geothermal, biomass, solar, hydropower, and hydrogen. Renewable energy technologies are crucial to the production and utilization of energy from these regenerative and virtually inexhaustible sources. Furthermore, renewable energy technologies provide benefits beyond the establishment of sustainable energy resources. For example, these technologies produce negligible amounts of greenhouse gases and other pollutants in providing energy, and they exploit domestically available energy sources, thereby reducing our dependence on both the importation of fossil fuels and the use of nuclear fuels. The market price of renewable energy technologies does not reflect the economic value of these added benefits.

  11. Biomass for energy production. Economic evaluation, efficiency comparison and optimal utilization of biomass

    International Nuclear Information System (INIS)

    An optimized and/or goal-oriented use of available biomass feedstock for energetic conversion requires a detailed analysis of bioenergy production lines according to technical and economic efficiency indicators. Accordingly, relevant parameters of selected production lines supplying heat, electricity and fuel have been studied and used as data base for an optimization model. Most favorable combination of bioenergy lines considering political and economic objectives are analyzed by applying a specifically designed linear optimization model. Modeling results shall allow evaluation of political courses of action.

  12. Minimum emissions from biomass FBC. Improved energy generation based on biomass FBC with minimum emission. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hallgren, A. [TPS Termiska Processer AB, Nykoeping (Sweden)

    2002-02-01

    The primary aim of the project is to improve the performance of biomass fired FBC (fluidised bed combustion) through a concurrent detailed experimental and modelling approach. The expected results shall establish in experimental investigations, the thermochemical performance of a selection of fuels separately and in combination with suitable bed materials, stipulate recommendations, based on labscale via test rig and pilot scale to commercial scale investigations, how to repress agglomeration and defluidisation in fluidised bed combustion systems, indicate, based on the experimental findings, how to utilise primary measures to minimise the formation of nitrogen oxide compounds in the FB and provide a logistic assessment, based on case studies, identifying optimum logistic strategies for the selected fuels in commercial heat and power production. The investigation programme comprises straw, meat and bone meal (MBM) and forest residues as biofuels, quartz sand, bone ash, magnesium oxide and mullite as bed materials, sodium and ammonia carbonate as NO{sub x} reduction additives, and dolomite, kaolinite and coal ash for suppression of bed defluidisation. All materials have undergone a very detailed characterisation programme generating basic data on their chemical and structural composition as well as their sintering propensities. Combustion residues such as bottom and fly ashes have run through the same characterisation programme. The knowledge obtained by the characterisation programme supports the experimental combustion campaigns which are performed at 20, 90 and 350 kW FBC reactors. The information produced is validated in a 3 MW and 25 MW commercial FBC reactor. NO{sub x} formation and destruction mechanisms and rates have been included in a 3-D CFD software code used for NO{sub x} formation modelling. Parameter assessments confirmed the theoretical achievement of a 20-30 % reduction of NO{sub x} formation through implementation of the alkali injection concept as

  13. The biomass file

    International Nuclear Information System (INIS)

    As biomass represents the main source of renewable energy to reach the 23 per cent objective in terms of energy consumption by 2020, a first article gives a synthetic overview of its definition, its origins, its possible uses, its share in the French energy mix, its role by 2020, strengths and weaknesses for its development, the growth potential of its market, and its implications in terms of employment. A second article outlines the assets of biomass, indicates the share of some crops in biomass energy production, and discusses the development of new resources and the possible energy valorisation of various by-products. Interviews about biomass market and development perspectives are proposed with representatives of institutions, energy industries and professional bodies concerned with biomass development and production. Other articles comments the slow development of biomass-based cogeneration, the coming into operation of a demonstration biomass roasting installation in Pau (France), the development potential of biogas in France, the project of bio natural gas vehicles in Lille, and the large development of biogas in Germany

  14. Production of renewable energy from biomass and waste materials using fluidized bed technologies

    International Nuclear Information System (INIS)

    Malaysian industries generate substantial amount of biomass and waste materials such as wastes from agricultural and wood based industries, sludge waste from waste-water treatment plants and solid waste from municipals. Incinerating these waste materials not only produces renewable energy, but also solving their disposal problems. Fluidized bed combustors are widely used for incinerating these biomass materials. The significant advantages of fluidized bed incineration include simple design, efficient, and ability to reduce air pollution emissions. This paper discusses the opportunities and challenges of producing the green energy from biomass materials using the fluidized bed technologies. (Author)

  15. The use of agricultural biomass for energy purposes: EU and national policy

    OpenAIRE

    Sabrina Giuca

    2008-01-01

    The implementation in 2020 of binding national targets for reducing greenhouse gas emissions and use of renewable energy has increased the interest in biomass as a viable alternative to fossil fuels. Thus agriculture acquires a primary role for the reduction of CO2 but raises many issues: CBA, food vs fuel, subsidies, tax measures and investments. After outlining the framework for the exploitation of biomass energy, the analysis carried out on the prospects of development of agroenergy chains...

  16. Panorama 2010: Which biomass resources should be used to obtain a sustainable energy system?

    International Nuclear Information System (INIS)

    Biomass is the leading renewable energy in the world today. Moreover, the introduction of biomass into energy systems presents certain advantages as far as reducing greenhouse gas emissions is concerned. However, its mobilization still presents many challenges relative to the competition between uses and the management of local natural resources (e.g. water, soil and biodiversity). Therefore, the technologies involved should be structured so that this resource can be developed to be truly sustainable. (author)

  17. The Current and Potential Production of Forest Biomass for Energy in Europe, Russia, and China

    OpenAIRE

    Schopfhauser, W.

    1996-01-01

    In this analysis, the forest biomass utilization and the potential for energy production for Western and Eastern Europe, Russia and China has been estimated. Western and Eastern Europe are assessed on a country level and Russia and China as regions. Current trends and developments of forest resources characterize their ability to produce forest biomass for energy production. Europe is characterized by a slowly increasing forest land area, underutilization of the forest resource, and increased...

  18. Trees and biomass energy: carbon storage and/or fossil fuel substitution?

    International Nuclear Information System (INIS)

    Studies on climate change and energy production increasingly recognise the crucial role of biological systems. Carbon sinks in forests (above and below ground), CO2 emissions from deforestation, planting trees for carbon storage, and biomass as a substitute for fossil fuels are some key issues which arise. This paper assesses various forestry strategies and examines land availability, forest management, environmental sustainability, social and political factors, infrastructure and organisation, economic feasibility, and ancillary benefits associated with biomass for energy. (author)

  19. Biomass energy development in California: Accomplishments and challenges

    International Nuclear Information System (INIS)

    The recent and rapid growth of biomass power development in California has created the largest contiguous biomass fueled electrical generating capacity in U.S. This growth has been fostered by resource availability, federal (PURPA) incentives, and the entrepeneurial response of independent power producers. California's environment has benefited from reduced air emissions, wildfire suppression, landfill reduction and the sequestering of carbon. The state has benefited economically through capital investment, employment for several thousand, and the generation of over $100 million in state and local tax revenues. Along with the benefits have come serious challenges brought about largely due to changes in the utility and regulatory environment. These changes threaten the continued existence and economic viability of the developed biomass power industry in California and threatens to establish national precedents. Specific issues are identified and recommended actions are presented

  20. Biotechnology of biomass conversion

    International Nuclear Information System (INIS)

    This book covers: An introduction to biomass crops; The microbiology of fermentation processes; The production of ethanol from biomass crops, such as sugar cane and rubbers; The energy of biomass conversion; and The economics of biomass conversion

  1. Production and trading of biomass for energy - An overview of the global status

    Energy Technology Data Exchange (ETDEWEB)

    Heinimoe, J. [Lappeenranta University of Technology, Wredenkatu 2, FI-78250 Varkaus (Finland); Junginger, M. [Copernicus Institute, Utrecht University, Van Unnikgebouw, Heidelberglaan 2, NL-3584 CS Utrecht (Netherlands)

    2009-09-15

    The markets for industrially used biomass for energy purposes are developing rapidly toward being international commodity markets. Determining international traded biomass volumes for energy purposes is difficult, for several reasons, such as challenges regarding the compilation of statistics on the topic. While for some markets (pellets and ethanol) separate overviews exist, no comprehensive statistics and summaries aggregating separate biomass streams are available. The aim of this paper is to summarise trade volumes for various biomasses used for energy and to review the challenges related to measurement of internationally traded volumes of biofuels. International trade of solid and liquid biofuels was estimated to be about 0.9 EJ for 2006. Indirect trade of biofuels thorough trading of industrial roundwood and material byproducts comprises the largest proportion of trading, having a share of about 0.6 EJ. The remaining amount consisted of products that are traded directly for energy purposes, with ethanol, wood pellets, and palm oil being the most important commodities. In 2004-2006, the direct trade of biofuels increased 60%, whereas indirect trade has been almost constant. When compared to current global energy use of biomass (about 50 EJ yr{sup -1}) and to the long-term theoretical trading potential between the major regions of the world (80-150 EJ yr{sup -1}), the development of international trade of biomass for energy purposes is in its initial stage, but it is expected to continue to grow rapidly. (author)

  2. Production and trading of biomass for energy - An overview of the global status

    International Nuclear Information System (INIS)

    The markets for industrially used biomass for energy purposes are developing rapidly toward being international commodity markets. Determining international traded biomass volumes for energy purposes is difficult, for several reasons, such as challenges regarding the compilation of statistics on the topic. While for some markets (pellets and ethanol) separate overviews exist, no comprehensive statistics and summaries aggregating separate biomass streams are available. The aim of this paper is to summarise trade volumes for various biomasses used for energy and to review the challenges related to measurement of internationally traded volumes of biofuels. International trade of solid and liquid biofuels was estimated to be about 0.9 EJ for 2006. Indirect trade of biofuels thorough trading of industrial roundwood and material byproducts comprises the largest proportion of trading, having a share of about 0.6 EJ. The remaining amount consisted of products that are traded directly for energy purposes, with ethanol, wood pellets, and palm oil being the most important commodities. In 2004-2006, the direct trade of biofuels increased 60%, whereas indirect trade has been almost constant. When compared to current global energy use of biomass (about 50 EJ yr-1) and to the long-term theoretical trading potential between the major regions of the world (80-150 EJ yr-1), the development of international trade of biomass for energy purposes is in its initial stage, but it is expected to continue to grow rapidly. (author)

  3. International seminar on biomass and fossil fuels co-firing in power plants and heating plants in Europe; Seminaire international sur la cocombustion de biomasse et d'energies fossiles dans les centrales electriques et les chaufferies en Europe

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The aim of the European commission which has fixed to 12% the share of renewable energies in the total energy consumption up to 2010, is to develop the biomass sector. Co-firing is a solution that allows to increase significantly the use of biomass because it does not require important investments. Today, about 150 power plants in Europe use co-firing. An Altener project named 'Cofiring' has ben settled in order to bring together and analyze the European experience in this domain and to sustain and rationalize the design of future projects. The conclusions of this study, coordinated by VTT Energy and which involves CARMEN (Germany), CBE (Portugal), the Danish centre for landscape and planning, ITEBE (France), KOBA (Italy), SLU (Sweden), and EVA (Austria), were presented during this international seminar. (J.S.)

  4. Gasification of biomass for energy production. State of technology in Finland and global market perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Wilen, C.; Kurkela, E. [VTT Energy, Espoo (Finland). Energy Production Technologies

    1997-12-31

    This report reviews the development of the biomass gasification technology in Finland over the last two decades. Information on Finnish biomass resources and use, energy economy and national research policy is provided as background. Global biomass resources and potential energy from biomass markets are also assessed based on available literature, to put the development of the gasification technology into a wider perspective of global biomass utilization for energy production. The increasing use of biomass and other indigenous forms of energy has been part and parcel of the Finnish energy policy for some twenty years. Biomass and peat account for almost 20% of the production of primary energy in Finland. As the consumption of biofuels is significantly lower than the annual growth or renewal, the use of bioenergy is considered to be an important measure of reducing carbon dioxide emissions. Research and development on thermal gasification of solid fuels was initiated in the late 1970s in Finland. The principal aim was to decrease the dependence of Finnish energy economy on imported oil by increasing the utilization potential of indigenous fuels. Development in the early 1980s focused on simple atmospheric-pressure fuel gas applications including a gasification heating plant. Eight Bioneer updraft gasifiers (abt 5 MW{sub th}) were constructed in 1982-1986, and a new Bioneer gasifier was commissioned in eastern Finland in 1996. A Pyroflow circulating fluidised-bed gasifies was also commercialized in the mid-1980s; four gasifiers (15-35 MW{sub th}) were commissioned. In the late 1980s the interest in integrated gasification combined-cycle (IGCC) power plants, based on pressurised air gasification of biomass and hot gas cleanup, increased in Finland and in many other countries. The utilization potential for indigenous fuels is mainly in medium-scale combined heat and electricity production (20-150 MW,). Foster Wheeler Energia Oy, Carbona Inc. and Imatran Voima Oy are

  5. Gasification of biomass for energy production. State of technology in Finland and global market perspectives

    International Nuclear Information System (INIS)

    This report reviews the development of the biomass gasification technology in Finland over the last two decades. Information on Finnish biomass resources and use, energy economy and national research policy is provided as background. Global biomass resources and potential energy from biomass markets are also assessed based on available literature, to put the development of the gasification technology into a wider perspective of global biomass utilization for energy production. The increasing use of biomass and other indigenous forms of energy has been part and parcel of the Finnish energy policy for some twenty years. Biomass and peat account for almost 20% of the production of primary energy in Finland. As the consumption of biofuels is significantly lower than the annual growth or renewal, the use of bioenergy is considered to be an important measure of reducing carbon dioxide emissions. Research and development on thermal gasification of solid fuels was initiated in the late 1970s in Finland. The principal aim was to decrease the dependence of Finnish energy economy on imported oil by increasing the utilization potential of indigenous fuels. Development in the early 1980s focused on simple atmospheric-pressure fuel gas applications including a gasification heating plant. Eight Bioneer updraft gasifiers (abt 5 MWth) were constructed in 1982-1986, and a new Bioneer gasifier was commissioned in eastern Finland in 1996. A Pyroflow circulating fluidised-bed gasifies was also commercialized in the mid-1980s; four gasifiers (15-35 MWth) were commissioned. In the late 1980s the interest in integrated gasification combined-cycle (IGCC) power plants, based on pressurised air gasification of biomass and hot gas cleanup, increased in Finland and in many other countries. The utilization potential for indigenous fuels is mainly in medium-scale combined heat and electricity production (20-150 MW,). Foster Wheeler Energia Oy, Carbona Inc. and Imatran Voima Oy are the main

  6. Electric power generation using biomass gasification systems in nature in isolated communities of the Amazon region: project GASEIBRAS; Geracao de eletricidade utilizando sistemas de gaseificacao de biomassa in natura em comunidades isoladas da regiao amazonica: projeto GASEIBRAS

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, Suani Teixeira; Velazquez, Silvia M. Stortini Goncalves; Santos, Sandra M. Apolinario dos; Lora, Beatriz Acquaro [Universidade de Sao Paulo (CENBIO/USP), SP (Brazil). Centro de Referencia Nacional em Biomassa], e-mails: suani@iee.usp.br, sgvelaz@iee.usp.br, sandra@iee.usp.br, blora@iee.usp.br

    2006-07-01

    This paper will present the pioneering project of electric energy generation from renewable sources 'GASEIBRAS - Nationalization of the Biomass Gasification Technology and Formation of Human Resources in the Amazon Region', recently approved by the National Advice of Scientific and Technological Development (CNPq) and for the Ministry of Mines and Energy (MME). The GASEIBRAS project intends to use the experience previously acquired in the project GASEIFAMAZ - Comparison between Existing Technologies of Biomass Gasification in Brazil and Exterior and Formation of Human Resources in the North Region, sponsored by FINEP/CTENERG, to develop and construct a 20 kWe biomass gasification system, with total national technology, easy to operate and to maintain, and fed with local available biomass residues. Apart from contributing for the development of the national technology, this project will provide the sustainable development of the isolated communities in the Amazon region. The ongoing development of this project will enable to consolidate the national biomass gasification technology for electricity generation. The implemented prototype will allow the response of this project in other regions of the country, due its tailor made characteristic to attend to small isolated communities, thus supplying decentralized energy from renewable sources, to Amazon region. (author)

  7. Policies and regulations affecting biomass-related energy sector development in Sri Lanka

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-06-15

    The future predictions of energy demand, limitations of hydro expansion and inadequate fossil fuel supplies in Sri Lanka suggest the requirement for a diversity of power sources in the future. It has been recognized that renewable energy (particularly biomass, hydro, wind and solar) will have an important role in meeting future energy demands. The main objective of this policy brief is to discuss the current status of the biomass energy sector of Sri Lanka and to lay a foundation for a process of further studies and consultations leading towards a well-integrated energy policy.

  8. The exploitation of biomass for building space heating in Greece: Energy, environmental and economic considerations

    International Nuclear Information System (INIS)

    Highlights: • The oil substitution with biomass residues for heating buildings is examined. • Primary energy consumption from biomass results increased by 3–4% as compared to diesel oil. • CO2 and SO2 emissions are significantly higher with biomass than with diesel oil. • The examined substitution is economically attractive for the final consumers. - Abstract: The exploitation of forest and agricultural biomass residues for energy production may offer significant advantages to the energy policy of the relevant country, but it strongly depends on a number of financial, technological and political factors. The work in hand focuses on the investigation of the energy, environmental and financial benefits, resulting from the exploitation of forest and agricultural biomass residues, fully substituting the conventional fuel (diesel oil) for building space heating in Greece. For this investigation, the energy needs of a representative building are determined using the EnergyPlus software, assuming that the building is located across the various climate zones of Greece. Based on the resulting thermal energy needs, the primary energy consumption and the corresponding emissions are determined, while an elementary fiscal analysis is also performed. The results show that significant financial benefits for the end-user are associated with the substitution examined, even though increased emissions and primary energy consumption have been derived

  9. Directory of Solar Energy Research Activities in the United States: First Edition, May 1980. [1220 projects

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-05-01

    Information covering 1220, FY 1978 and FY 1979 solar energy research projects is included. In addition to the title and text of project summaries, the directory contains the following indexes: subject index, investigator index, performing organization index, and supporting organization index. This information was registered with the Smithsonian Science Information Exchange by Federal, State, and other supporting organizations. The project summaries are categorized in the following areas: biomass, ocean energy, wind energy,photovoltaics, photochemical energy conversion, photobiological energy conversion, solar heating and cooling, solar process heat, solar collectors and concentrators, solar thermal electric generation, and other solar energy conversion. (WHK)

  10. Woody biomass consumption in Montenegro and its contribution to the realization of the national 2020 renewable energy target

    Directory of Open Access Journals (Sweden)

    Glavonjić Branko D.

    2013-01-01

    Full Text Available This paper is the continuation of the presentation of results obtained in comprehensive research of woody biomass consumption in Montenegro conducted as a part of the FODEMO/MONSTAT project “Wood fuels consumption in Montenegro”. The previous paper (No.2, 2013 showed results of wood fuels consumption for households heating and this paper shows their consumption for the other energy purposes as well as its participation in total final energy consumption in Montenegro. Total consumption of woody biomass for energy and non-energy purposes in Montenegro in 2011 was 1.06 million m3, out of which 732.9 thousand m3 or 69.1% was in the form of firewood and 326.6 thousand m3 or 30.8% was in the form of industrial roundwood. Additionally, 251 m3 of woody biomass in the form of wood residue were used for the needs of charcoal producers and households. Apart from this, 423 tonnes of wood briquettes, 948 tonnes of wood pellets, 1039 tonnes of charcoal, 86,193 m3 of wood residue from industry and 5,254 m3 of wood waste from construction industry were also used for energy purposes. Total final consumption of wood energy, which includes the consumption of all wood fuel categories, was 7,275.04 TJ or 173,761 toe (tonne of oil equivalent in Montenegro in 2011, which is equal to the value of 2,020,844,444 kWh. The size of energy values and significance of wood energy is best shown by the fact that wood is the third most important energy-generating product in final energy consumption in Montenegro, just behind petroleum products and electricity. Compared to final consumption of electricity of 12,290 TJ, value of wood energy in the amount of 7,275.04 TJ is 59.2% of electricity consumption.

  11. Energy of the Earth. Geothermal and biomass energy sources for humanity

    International Nuclear Information System (INIS)

    The Earth feeds us but supplies its energy to us as well and in two ways: the heat coming from the Earth's core spreads through rocks and geologic fractures and heats the groundwater, in particular in volcanic and hydrothermal areas. This energy can be captured and directly used for district and space heating or converted into electricity. The Earth, thanks to photosynthesis, is also a formidable chemical factory. With the single energy coming from the sun, plants oxide water and convert the carbon from the air into sugars to make biomass. Cultures, agricultural and animal breeding wastes are as many resources for a renewable and greenhouse gas-free energy which can be converted into non-toxic chemical products, automotive fuels, heat and electricity. Both geothermal and biomass resources are far to have supplied their full potential. Production capacities are enormous and capable to answer the needs of a still growing up humanity. This book explains how we are going to exploit this energy wealth. (J.S.)

  12. RENEWABLE ENERGY AND ENVIRONMENTAL SUSTAINABILITY USING BIOMASS FROM DAIRY AND BEEF ANIMAL PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Kalyan Annamalai, John M. Sweeten,

    2012-05-03

    . Category 1 - Renewable Energy Conversion. This category addressed mostly in volume I involves developing. Thermo-chemical conversion technologies including cofiring with coal, reburn to reduce nitrogen oxide (NO, N2O, NOx, etc.) and Hg emissions and gasification to produce low-BTU gas for on-site power production in order to extract energy from waste streams or renewable resources. Category 2 - Biomass Resource Technology. This category, addressed mostly in Volume II, deals with the efficient and cost-effective use of CB as a renewable energy source (e.g. through and via aqueous-phase, anaerobic digestion or biological gasification). The investigators formed an industrial advisory panel consisting fuel producers (feedlots and dairy farms) and fuel users (utilities), periodically met with them, and presented the research results; apart from serving as dissemination forum, the PIs used their critique to red-direct the research within the scope of the tasks. The final report for the 5 to 7 year project performed by an interdisciplinary team of 9 professors is arranged in three volumes: Vol. I (edited by Kalyan Annamalai) addressing thermo-chemical conversion and direct combustion under Category 1 and Vol. II and Vol. III ( edited by J M Sweeten) addressing biomass resource Technology under Category 2. Various tasks and sub-tasks addressed in Volume I were performed by the Department of Mechanical Engineering (a part of TEES; see Volume I), while other tasks and sub-tasks addressed in Volume II and IIII were conducted by Texas AgriLife Research at Amarillo; the TAMU Biological and Agricultural Engineering Department (BAEN) College Station; and West Texas A and M University (WTAMU) (Volumes II and III). The three volume report covers the following results: fuel properties of low ash and high ash CB (particularly DB) and MB (mortality biomass) and coals, non-intrusive visible infrared (NVIR) spectroscopy techniques for ash determination, dairy energy use surveys at 14 dairies in

  13. Energy supplies for Kvanefjeld project

    International Nuclear Information System (INIS)

    Power supply possibilities for Kvanefjeld project (West Greenland) are evaluated for a projection of 4,2 mln ton of uranium ore (corresponding to 1100 t uranium) mined yearly. The lifetime of the mine should be in this case about 23 years. Energy demand for such mining and ore-processing complex will be about 450 GWh. Feasibility studies comprehend three energy models. The first one is based on hydroelectric power plant at Johan Dahl Land covering all the district power demands. The second model involves hydro power from Johan Dahl Land, while heat (about 250 GWh/year) is supplied by fossil-fuel power plant sited close to the ore-processing complex. The third model is based on a coal-fueled power plant covering both power and heat demands placed close to the ore-processing complex. Losses in transmission lines from hydroelectric power plants and other technological problems have to be studied in detail. Economic evaluations of energy costs per KWh for these three models indicate lower price for hydro power, but no significant difference is expected. (EG)

  14. Heating technologies for limiting biomass consumption in 100% renewable energy systems

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Lund, Henrik; Connolly, David

    2011-01-01

    building stock is not high enough for districts heating geothermal heat pumps can be recommended for individual heating systems, although the costs and biomass consumption is higher than the district heating solutions.......The utilisation of biomass poses large challenges in renewable energy systems and buildings account for a substantial part of the energy supply also in 100% renewable energy systems. The analyses of heating technologies show that district heating systems are especially important in limiting the...... dependence on biomass resources and to create cost effective systems. District heating systems are especially important in renewable energy systems with large amounts of fluctuating renewable energy sources as it enables fuel efficient and lower cost energy systems with thermal heat storages. And also...

  15. Advanced Energy Projects: FY 1993, Research summaries

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    AEP has been supporting research on novel materials for energy technology, renewable and biodegradable materials, new uses for scientific discoveries, alternate pathways to energy efficiency, alternative energy sources, innovative approaches to waste treatment and reduction, etc. The summaries are grouped according to projects active in FY 1993, Phase I SBIR projects, and Phase II SBIR projects. Investigator and institutional indexes are included.

  16. Which territorial integration of participative renewable energies? Present status and analysis of French projects. Final report

    International Nuclear Information System (INIS)

    This study aimed at qualifying actors involved in projects (stakeholders, motivations, who decides what and how), at identifying the available resources (technical and financial abilities, project management abilities), at describing the mobilisation work and territorial dialogue processes, and at exploring how benefit distribution contributes to territorial dynamics. This study first identified participative renewable energy projects in France. A survey by questionnaire was then performed among project holders. Six projects have also been more deeply studied (a mix of solar and photovoltaic and wind energy, two wind farms located in two different regions, a solar photovoltaic project, a hydroelectric project, and a project on biomass from forest). After the methodology, the report defines what a participative renewable energy project is, proposes an overview of these projects in 2015, present the case studies, and proposes an analysis on the different aspects of the project process

  17. Biomass Gasifier Energy Cyber-Physical System Design with Coupling of the Wind and Solar Energy

    Directory of Open Access Journals (Sweden)

    Zhihuan Zhang

    2013-07-01

    Full Text Available The air pollution in China has been quite serious, and biomass is extremely rich in large agricultural country. In the view of current situation, highly efficient solar collectors, wind energy and solar energy coupled heating straw gasification system is studied. The stability of continuous gas production is analyzed in various weather conditions including windy, calm, sunny and cloudy. Highly efficient solar panels, wind energy and solar energy coupled heating straw gasification control system is raised. This system overcomes the time variability of the weather conditions to ensure the stability of the continuous gas production under a variety of weather conditions. It has high quality of gas production, strong anti-interference ability and robustness.

  18. Rosebud Sioux Wind Energy Project

    Energy Technology Data Exchange (ETDEWEB)

    Tony Rogers

    2008-04-30

    In 1998, through the vision of the late Alex “Little Soldier” Lunderman (1928-2000) and through the efforts of the Rosebud Sioux Tribal Utilities Commission, and with assistance from Intertribal Council on Utility Policy (COUP), and Distributed Generation, Inc (DISGEN). The Rosebud Sioux Tribe applied and was awarded in 1999 a DOE Cooperative Grant to build a commercial 750 Kw wind turbine, along with a 50/50 funding grant from the Department of Energy and a low interest loan from the Rural Utilities Service, United States Department of Agriculture, the Rosebud Sioux Tribe commissioned a single 750 kilowatt NEG Micon wind turbine in March of 2003 near the Rosebud Casino. The Rosebud Sioux Wind Energy Project (Little Soldier “Akicita Cikala”) Turbine stands as a testament to the vision of a man and the Sicangu Oyate.

  19. Biomass recalcitrance

    DEFF Research Database (Denmark)

    Felby, Claus

    2009-01-01

    Alternative and renewable fuels derived from lignocellulosic biomass offer a promising alternative to conventional energy sources, and provide energy security, economic growth, and environmental benefits. However, plant cell walls naturally resist decomposition from microbes and enzymes - this co......Alternative and renewable fuels derived from lignocellulosic biomass offer a promising alternative to conventional energy sources, and provide energy security, economic growth, and environmental benefits. However, plant cell walls naturally resist decomposition from microbes and enzymes......, enzymatic hydrolysis, and product fermentation options. Biomass Recalcitrance is essential reading for researchers, process chemists and engineers working in biomass conversion, also plant scientists working in cell wall biology and plant biotechnology. This book examines the connection between biomass...... of plant cell wall structure, chemical treatments, enzymatic hydrolysis, and product fermentation options. "Biomass Recalcitrance" is essential reading for researchers, process chemists and engineers working in biomass conversion, also plant scientists working in cell wall biology and plant biotechnology....

  20. Waste biomass-to-energy supply chain management: a critical synthesis.

    Science.gov (United States)

    Iakovou, E; Karagiannidis, A; Vlachos, D; Toka, A; Malamakis, A

    2010-10-01

    The development of renewable energy sources has clearly emerged as a promising policy towards enhancing the fragile global energy system with its limited fossil fuel resources, as well as for reducing the related environmental problems. In this context, waste biomass utilization has emerged as a viable alternative for energy production, encompassing a wide range of potential thermochemical, physicochemical and bio-chemical processes. Two significant bottlenecks that hinder the increased biomass utilization for energy production are the cost and complexity of its logistics operations. In this manuscript, we present a critical synthesis of the relative state-of-the-art literature as this applies to all stakeholders involved in the design and management of waste biomass supply chains (WBSCs). We begin by presenting the generic system components and then the unique characteristics of WBSCs that differentiate them from traditional supply chains. We proceed by discussing state-of-the-art energy conversion technologies along with the resulting classification of all relevant literature. We then recognize the natural hierarchy of the decision-making process for the design and planning of WBSCs and provide a taxonomy of all research efforts as these are mapped on the relevant strategic, tactical and operational levels of the hierarchy. Our critical synthesis demonstrates that biomass-to-energy production is a rapidly evolving research field focusing mainly on biomass-to-energy production technologies. However, very few studies address the critical supply chain management issues, and the ones that do that, focus mainly on (i) the assessment of the potential biomass and (ii) the allocation of biomass collection sites and energy production facilities. Our analysis further allows for the identification of gaps and overlaps in the existing literature, as well as of critical future research areas. PMID:20231084

  1. Energy study of the energy supply systems for isolated communities in Cuba from the use of biomass gasifiers downdraft

    International Nuclear Information System (INIS)

    At work a comprehensive energy analysis of plants generating electricity from the gasification of various biomass that currently conceived by the management of the Electric Union for the electrification of isolated communities in the fields of Cuba is made. For this, based on the properties of the main biomass available, the calculations needed are performed to evaluate the efficiency of the gasifier and other components of energy transformation system. The power generation are taken into consideration and an assessment of the needs of biomass in each case is made. (full text)

  2. Biomass Assessment. Assessment of global biomass potentials and their links to food, water, biodiversity, energy demand and economy. Inventory and analysis of existing studies. Main report

    International Nuclear Information System (INIS)

    The increased use and potential growth of biomass for energy has triggered a heated debate on the sustainability of those developments as biomass production is now also associated with increased competition with food and feed production, loss of forest cover and the like. Besides such competition, also the net reduction in greenhouse gas emissions is questioned in case land-use for biomass is associated with clearing forest, with conversion of peat land, as well as with high fossil energy inputs for machinery, fertilisers and other agrochemicals. Although available studies give a reasonable insight in the importance of various parameters, the integration between different arenas is still limited. This causes confusion in public as well as scientific debate, with conflicting views on the possibilities for sustainable use of biomass as a result. This study aims to tackle this problem by providing a more comprehensive assessment of the current knowledge with respect to biomass resource potentials

  3. Methodology for estimating biomass energy potential and its application to Colombia

    International Nuclear Information System (INIS)

    Highlights: • Methodology to estimate the biomass energy potential and its uncertainty at a country level. • Harmonization of approaches and assumptions in existing assessment studies. • The theoretical and technical biomass energy potential in Colombia are estimated in 2010. - Abstract: This paper presents a methodology to estimate the biomass energy potential and its associated uncertainty at a country level when quality and availability of data are limited. The current biomass energy potential in Colombia is assessed following the proposed methodology and results are compared to existing assessment studies. The proposed methodology is a bottom-up resource-focused approach with statistical analysis that uses a Monte Carlo algorithm to stochastically estimate the theoretical and the technical biomass energy potential. The paper also includes a proposed approach to quantify uncertainty combining a probabilistic propagation of uncertainty, a sensitivity analysis and a set of disaggregated sub-models to estimate reliability of predictions and reduce the associated uncertainty. Results predict a theoretical energy potential of 0.744 EJ and a technical potential of 0.059 EJ in 2010, which might account for 1.2% of the annual primary energy production (4.93 EJ)

  4. Geographies of biomass and solar energy: Spatial decision support for regional energy sustainability

    Science.gov (United States)

    Calvert, Kirby Edward

    This thesis applies concepts and techniques in geography in order to contribute to our understanding of the opportunities and challenges associated with the transition toward renewable energy. The work is best understood as the sum of two parts. In the first part, the methodological and philosophical underpinnings of the field of energy geography are explored in order to situate the research in the broader constellation of geographical practices surrounding energy. I make the case that energy transitions are not merely shifts in energy supply but are also simultaneously fundamental shifts in prevailing spatial relations, so that energy transition management is best conceived as a spatial strategy with emphasis on regional level land-energy planning. In the second part of the thesis, I aim to provide decision support in favour of this spatial strategy. This begins in Chapter 4 with a comprehensive critical review of how GIScience and remote sensing has been applied in RE assessments and spatial planning. The next three chapters engage key gaps in this literature and are the analytical contributions of the thesis. The focus of the research is on biomass and solar energy in (eastern) Ontario. In Chapter 5 I develop geographically explicit supply-cost curves for forestry and agricultural biomass and assess the relative merits of a mixed biomass feedstock stream. In Chapter 6 I recognize and address the issue that developers of dedicated bioenergy crops and ground-mount solar PV systems prefer the same type of land. Land-energy trade-offs are modeled and their implications in the context of incentivizing RE development are discussed. In Chapter 7 I explore ways in which targeted facility siting can capture ancillary benefits related to RE production. I argue that focusing on the benefits as well as the costs of system siting is critical to linking developer and public interests. Ontario's feed-in tariff program is evaluated in the light of this claim. Chapter 8

  5. Sustainable biomass-derived hydrothermal carbons for energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Falco, Camillo

    2012-01-15

    The need to reduce humankind reliance on fossil fuels by exploiting sustainably the planet renewable resources is a major driving force determining the focus of modern material research. For this reason great interest is nowadays focused on finding alternatives to fossil fuels derived products/materials. For the short term the most promising substitute is undoubtedly biomass, since it is the only renewable and sustainable alternative to fossil fuels as carbon source. As a consequence efforts, aimed at finding new synthetic approaches to convert biomass and its derivatives into carbon-based materials, are constantly increasing. In this regard, hydrothermal carbonisation (HTC) has shown to be an effective means of conversion of biomass-derived precursors into functional carbon materials. However the attempts to convert raw biomass, in particular lignocellulosic one, directly into such products have certainly been rarer. Unlocking the direct use of these raw materials as carbon precursors would definitely be beneficial in terms of HTC sustainability. For this reason, in this thesis the HTC of carbohydrate and protein-rich biomass was systematically investigated, in order to obtain more insights on the potentials of this thermochemical processing technique in relation to the production of functional carbon materials from crude biomass. First a detailed investigation on the HTC conversion mechanism of lignocellulosic biomass and its single components (i.e. cellulose, lignin) was developed based on a comparison with glucose HTC, which was adopted as a reference model. In the glucose case it was demonstrated that varying the HTC temperature allowed tuning the chemical structure of the synthesised carbon materials from a highly cross-linked furan-based structure (T = 180 C) to a carbon framework composed of polyaromatic arene-like domains. When cellulose or lignocellulosic biomass was used as carbon precursor, the furan rich structure could not be isolated at any of the

  6. Biomass energy production. Citations from the International Aerospace Abstracts data base

    Science.gov (United States)

    Moore, P. W.

    1980-01-01

    These 210 citations from the international literature describe the production and/or utilization of most forms of biomass as a source of energy, fuel, food, and chemical intermediates or feedstocks. Biomass conversion by incineration, gasification, pyrolysis, hydrolysis, anaerobic digestion, or fermentation, as well as by catalytic, photosynthetic, chemosynthetic, and bio-electrochemical means are among the conversion processes considered. Discussions include biomass plantation and material productivity, transportation and equipment requirements, effects, comparisons of means and efficiencies of utilization and conversion, assessments of limitations, and evaluations of economic potential.

  7. Energy-efficient biomass processing with pulsed electric fields for bioeconomy and sustainable development.

    Science.gov (United States)

    Golberg, Alexander; Sack, Martin; Teissie, Justin; Pataro, Gianpiero; Pliquett, Uwe; Saulis, Gintautas; Stefan, Töpfl; Miklavcic, Damijan; Vorobiev, Eugene; Frey, Wolfgang

    2016-01-01

    Fossil resources-free sustainable development can be achieved through a transition to bioeconomy, an economy based on sustainable biomass-derived food, feed, chemicals, materials, and fuels. However, the transition to bioeconomy requires development of new energy-efficient technologies and processes to manipulate biomass feed stocks and their conversion into useful products, a collective term for which is biorefinery. One of the technological platforms that will enable various pathways of biomass conversion is based on pulsed electric fields applications (PEF). Energy efficiency of PEF treatment is achieved by specific increase of cell membrane permeability, a phenomenon known as membrane electroporation. Here, we review the opportunities that PEF and electroporation provide for the development of sustainable biorefineries. We describe the use of PEF treatment in biomass engineering, drying, deconstruction, extraction of phytochemicals, improvement of fermentations, and biogas production. These applications show the potential of PEF and consequent membrane electroporation to enable the bioeconomy and sustainable development. PMID:27127539

  8. Sustainable biomass-derived hydrothermal carbons for energy applications

    OpenAIRE

    Falco, Camillo

    2012-01-01

    The need to reduce humankind reliance on fossil fuels by exploiting sustainably the planet renewable resources is a major driving force determining the focus of modern material research. For this reason great interest is nowadays focused on finding alternatives to fossil fuels derived products/materials. For the short term the most promising substitute is undoubtedly biomass, since it is the only renewable and sustainable alternative to fossil fuels as carbon source. As a consequence efforts,...

  9. Biogas energy production from tropical biomass wastes by anaerobic digestion.

    Science.gov (United States)

    Ge, Xumeng; Matsumoto, Tracie; Keith, Lisa; Li, Yebo

    2014-10-01

    Anaerobic digestion (AD) is an attractive technology in tropical regions for converting locally abundant biomass wastes into biogas which can be used to produce heat, electricity, and transportation fuels. However, investigations on AD of tropical forestry wastes, such as albizia biomass and food wastes, such as taro, papaya, and sweet potato, are limited. In this study, these tropical biomass wastes were evaluated for biogas production by liquid AD (L-AD) and/or solid-state AD (SS-AD), depending on feedstock characteristics. When albizia leaves and chips were used as feedstocks, L-AD had greater methane yields (161 and 113 L kg(-1)VS, respectively) than SS-AD (156.8 and 59.6 L kg(-1)VS, respectively), while SS-AD achieved 5-fold higher volumetric methane productivity than L-AD. Mono-digestion and co-digestion of taro skin, taro flesh, papaya, and sweet potato achieved methane yields from 345 to 411 L kg(-1)VS, indicating the robustness of AD technology. PMID:25022835

  10. Biomass resources for energy in Ohio: The OH-MARKAL modeling framework

    Science.gov (United States)

    Shakya, Bibhakar

    The latest reports from the Intergovernmental Panel on Climate Change have indicated that human activities are directly responsible for a significant portion of global warming trends. In response to the growing concerns regarding climate change and efforts to create a sustainable energy future, biomass energy has come to the forefront as a clean and sustainable energy resource. Biomass energy resources are environmentally clean and carbon neutral with net-zero carbon dioxide (CO2) emissions, since CO2 is absorbed or sequestered from the atmosphere during the plant growth. Hence, biomass energy mitigates greenhouse gases (GHG) emissions that would otherwise be added to the environment by conventional fossil fuels, such as coal. The use of biomass resources for energy is even more relevant in Ohio, as the power industry is heavily based on coal, providing about 90 percent of the state's total electricity while only 50 percent of electricity comes from coal at the national level. The burning of coal for electricity generation results in substantial GHG emissions and environmental pollution, which are responsible for global warming and acid rain. Ohio is currently one of the top emitters of GHG in the nation. This dissertation research examines the potential use of biomass resources by analyzing key economic, environmental, and policy issues related to the energy needs of Ohio over a long term future (2001-2030). Specifically, the study develops a dynamic linear programming model (OH-MARKAL) to evaluate biomass cofiring as an option in select coal power plants (both existing and new) to generate commercial electricity in Ohio. The OH-MARKAL model is based on the MARKAL (MARKet ALlocation) framework. Using extensive data on the power industry and biomass resources of Ohio, the study has developed the first comprehensive power sector model for Ohio. Hence, the model can serve as an effective tool for Ohio's energy planning, since it evaluates economic and environmental

  11. Energy-efficient biomass processing with pulsed electric fields for bioeconomy and sustainable development

    OpenAIRE

    Golberg, Alexander; Sack, Martin; Teissie, Justin; Pataro, Gianpiero; Pliquett, Uwe; Saulis, Gintautas; Töpfl, Stefan; Miklavcic, Damijan; Vorobiev, Eugene; Frey, Wolfgang

    2016-01-01

    Fossil resources-free sustainable development can be achieved through a transition to bioeconomy, an economy based on sustainable biomass-derived food, feed, chemicals, materials, and fuels. However, the transition to bioeconomy requires development of new energy-efficient technologies and processes to manipulate biomass feed stocks and their conversion into useful products, a collective term for which is biorefinery. One of the technological platforms that will enable various pathways of bio...

  12. Embodied energy and environmental impacts of a biomass boiler: a life cycle approach

    OpenAIRE

    Sonia Longo; Maurizio Cellura; Francesco Guarino; Vincenzo La Rocca; Giuseppe Maniscalco; Massimo Morale

    2015-01-01

    The 2030 policy framework for climate and energy, proposed by the European Commission, aims towards the reduction of European greenhouse gas emissions by 40% in comparison to the 1990 level and to increase the share of renewable energy of at least the 27% of the European's energy consumption of 2030. The use of biomass as sustainable and renewable energy source may be a viable tool for achieving the above goals. However, renewable energy technologies are not totally clean because they cause e...

  13. Planning woody biomass logistics for energy production: A strategic decision model

    International Nuclear Information System (INIS)

    One of the key factors on which the sustainable development of modern society should be based is the possibility to take advantage of renewable energies. Biomass resources are one of the most common and widespread resources in the world. Their use to produce energy has many advantages, such as the reduction of greenhouse emissions. This paper describes a GIS-based Environmental Decision Support System (EDSS) to define planning and management strategies for the optimal logistics for energy production from woody biomass, such as forest biomass, agricultural scraps and industrial and urban untreated wood residues. The EDSS is characterized by three main levels: the GIS, the database, and the optimization. The optimization module is divided in three sub-modules to face different kinds of decision problems: strategic planning, tactical planning, and operational management. The aim of this article is to describe the strategic planning level in detail. The decision variables are represented by plant capacity and harvested biomass in a specific forest parcel for each slope class, while the objective function is the sum of the costs related to plant installation and maintenance, biomass transportation and collection, minus the benefits coming from the energy sales at the current market price, including the renewable energy certificates. Moreover, the optimization problem is structured through a set of parameters and equations that are able to encompass different energy conversion technologies (pyrolysis, gasification or combustion) in the system. A case study on the Liguria Region (Savona Province) is presented and results are discussed. (author)

  14. Problems and opportunities fr solar energy in biomass, pyrolysis, and gasification

    Energy Technology Data Exchange (ETDEWEB)

    Reed, T.

    1979-11-01

    Passive solar input for drying crops and wood already make a significant input to the US energy budget, and active solar drying, requiring temperatures below 200/sup 0/C, can easily make an important substitution for fossil fuels in drying. Pyrolysis of biomass typically requires less than 1.6 MBtu/dry ton at a temperature of 500/sup 0/C, and this could potentially be supplied by direct solar heating. The heat input is likely to be by indirect heating of a solid, liquid or gas heat-transfer agent. Fast pyrolysis requires modest heat inputs with high heat-transfer rates at temperatures over 900/sup 0/C and thus may be particularly suited to focusing collectors as energy sources. Char gasification, using steam or CO/sub 2/, requires large energy inputs at temperatures over 900/sup 0/C and thus is the least likely field of application of solar energy. Ultimately, the large scale application of solar energy to biomass pyrolysis and gasification will depend on the relative cost of direct solar versus biomass inputs. Biomass energy inputs now typically cost 1 to 3 $/MBtu; when direct solar heat costs begin to approach this level, we may begin to use direct solar process heat for biomass conversion.

  15. Economics of biomass energy utilization in combustion and gasification plants: effects of logistic variables

    International Nuclear Information System (INIS)

    The substitution of conventional fossil fuels with biomass for energy production results both in a net reduction of greenhouse gases emissions and in the replacement of non-renewable energy sources. However, at present, generating energy from biomass is rather expensive due to both technological limits related to lower conversion efficiencies, and logistic constraints. In particular, the logistics of biomass fuel supply is likely to be complex owing to the intrinsic feedstock characteristics, such as the limited period of availability and the scattered geographical distribution over the territory. In this paper, the economical feasibility of biomass utilization for direct production of electric energy by means of combustion and gasification-conversion processes, has been investigated and evaluated over a capacity range from 5 to 50 MW, taking into account total capital investments, revenues from energy sale and total operating costs, also including a detailed evaluation of logistic costs. Moreover, in order to evaluate the impact of logistics on the bio-energy plants profitability, the effects of main logistic variables such as specific vehicle transport costs, vehicles capacity, specific purchased biomass costs and distribution density, have been examined. Finally, a mapping of logistic constraints on plant profitability in the specified capacity range has been carried out

  16. The land cover and carbon cycle consequences of large-scale utilizations of biomass as an energy source

    International Nuclear Information System (INIS)

    The use of modern biomass for energy generation has been considered in many studies as a possible measure for reducing or stabilizing global carbon dioxide (CO2) emission. In this paper we assess the impacts of large-scale global utilization of biomass on regional and grid scale land cover, greenhouse gas emissions, and carbon cycle. We have implemented in the global environmental change model IMAGE the LESS biomass intensive scenario, which was developed for the Second Assessment Report of IPCC. This scenario illustrates the potential for reducing energy related emission by different sets of fuel mixes and a higher energy efficiency. Our analysis especially covers different consequences involved with such modern biomass scenarios. We emphasize influences of CO2 concentrations and climate change on biomass crop yield, land use, competition between food and biomass crops, and the different interregional trade patterns for modern biomass based energy. (author)

  17. Potential of hydrogen from oil palm biomass as a source of renewable energy worldwide

    International Nuclear Information System (INIS)

    Various catastrophes related to extreme weather events such as floods, hurricanes, droughts and heat waves occurring on the Earth in the recent times are definitely a clear warning sign from nature questioning our ability to protect the environment and ultimately the Earth itself. Progressive release of greenhouse gases (GHG) such as CO2 and CH4 from development of various energy-intensive industries has ultimately caused human civilization to pay its debt. Realizing the urgency of reducing emissions and yet simultaneously catering to needs of industries, researches and scientists conclude that renewable energy is the perfect candidate to fulfill both parties requirement. Renewable energy provides an effective option for the provision of energy services from the technical point of view. In this context, biomass appears as one important renewable source of energy. Biomass has been a major source of energy in the world until before industrialization when fossil fuels become dominant and researches have proven from time to time its viability for large-scale production. Although there has been some successful industrial-scale production of renewable energy from biomass, generally this industry still faces a lot of challenges including the availability of economically viable technology, sophisticated and sustainable natural resources management, and proper market strategies under competitive energy markets. Amidst these challenges, the development and implementation of suitable policies by the local policy-makers is still the single and most important factor that can determine a successful utilization of renewable energy in a particular country. Ultimately, the race to the end line must begin with the proof of biomass ability to sustain in a long run as a sustainable and reliable source of renewable energy. Thus, the aim of this paper is to present the potential availability of oil palm biomass that can be converted to hydrogen (leading candidate positioned as the

  18. Potential of hydrogen from oil palm biomass as a source of renewable energy worldwide

    International Nuclear Information System (INIS)

    Various catastrophes related to extreme weather events such as floods, hurricanes, droughts and heat waves occurring on the Earth in the recent times are definitely a clear warning sign from nature questioning our ability to protect the environment and ultimately the Earth itself. Progressive release of greenhouse gases (GHG) such as CO2 and CH4 from development of various energy-intensive industries has ultimately caused human civilization to pay its debt. Realizing the urgency of reducing emissions and yet simultaneously catering to needs of industries, researches and scientists conclude that renewable energy is the perfect candidate to fulfill both parties requirement. Renewable energy provides an effective option for the provision of energy services from the technical point of view. In this context, biomass appears as one important renewable source of energy. Biomass has been a major source of energy in the world until before industrialization when fossil fuels become dominant and researches have proven from time to time its viability for large-scale production. Although there has been some successful industrial-scale production of renewable energy from biomass, generally this industry still faces a lot of challenges including the availability of economically viable technology, sophisticated and sustainable natural resources management, and proper market strategies under competitive energy markets. Amidst these challenges, the development and implementation of suitable policies by the local policy-makers is still the single and most important factor that can determine a successful utilization of renewable energy in a particular country. Ultimately, the race to the end line must begin with the proof of biomass ability to sustain in a long run as a sustainable and reliable source of renewable energy. Thus, the aim of this paper is to present the potential availability of oil palm biomass that can be converted to hydrogen (leading candidate positioned as the

  19. Hawaii energy strategy project 3: Renewable energy resource assessment and development program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    RLA Consulting (RLA) has been retained by the State of Hawaii Department of Business, Economic Development and Tourism (DBEDT) to conduct a Renewable Energy Resource Assessment and Development Program. This three-phase program is part of the Hawaii Energy Strategy (HES), which is a multi-faceted program intended to produce an integrated energy strategy for the State of Hawaii. The purpose of Phase 1 of the project, Development of a Renewable Energy Resource Assessment Plan, is to better define the most promising potential renewable energy projects and to establish the most suitable locations for project development in the state. In order to accomplish this goal, RLA has identified constraints and requirements for renewable energy projects from six different renewable energy resources: wind, solar, biomass, hydro, wave, and ocean thermal. These criteria were applied to areas with sufficient resource for commercial development and the results of Phase 1 are lists of projects with the most promising development potential for each of the technologies under consideration. Consideration of geothermal energy was added to this investigation under a separate contract with DBEDT. In addition to the project lists, a monitoring plan was developed with recommended locations and a data collection methodology for obtaining additional wind and solar data. This report summarizes the results of Phase 1. 11 figs., 22 tabs.

  20. Opportunities for utilization of non-conventional energy sources for biomass pretreatment.

    Science.gov (United States)

    Singh, Rawel; Krishna, Bhavya B; Kumar, Jitendra; Bhaskar, Thallada

    2016-01-01

    The increasing concerns over the depletion of fossil resources and its associated geo-political issues have driven the entire world to move toward sustainable forms of energy. Pretreatment is the first step in any biochemical conversion process for the production of valuable fuels/chemicals from lignocellulosic biomass to eliminate the lignin and produce fermentable sugars by hydrolysis. Conventional techniques have several limitations which can be addressed by using them in tandem with non-conventional methods for biomass pretreatment. Electron beam and γ (gamma)-irradiation, microwave and ultrasound energies have certain advantages over conventional source of energy and there is an opportunity that these energies can be exploited for biomass pretreatment. PMID:26350883

  1. Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues

    International Nuclear Information System (INIS)

    This paper describes the potential applications of renewable energy sources to replace fossil fuel combustion as the prime energy sources in various countries, and discusses problems associated with biomass combustion in boiler power systems. Here, the term biomass includes organic matter produced as a result of photosynthesis as well as municipal, industrial and animal waste material. Brief summaries of the basic concepts involved in the combustion of biomass fuels are presented. Renewable energy sources (RES) supply 14% of the total world energy demand. RES are biomass, hydropower, geothermal, solar, wind and marine energies. The renewables are the primary, domestic and clean or inexhaustible energy resources. The percentage share of biomass was 62.1% of total renewable energy sources in 1995. Experimental results for a large variety of biomass fuels and conditions are presented. Numerical studies are also discussed. Biomass is an attractive renewable fuel in utility boilers. The compositions of biomass among fuel types are variable. Ash composition for the biomass is fundamentally different from ash composition for the coal. Especially inorganic constituents cause to critical problems of toxic emissions, fouling and slagging. Metals in ash, in combination with other fuel elements such as silica and sulfur, and facilitated by the presence of chlorine, are responsible for many undesirable reactions in combustion furnaces and power boilers. Elements including K, Na, S, Cl, P, Ca, Mg, Fe, Si are involved in reactions leading to ash fouling and slagging in biomass combustors. Chlorine in the biomass may affect operation by corrosion. Ash deposits reduce heat transfer and may also result in severe corrosion at high temperatures. Other influences of biomass composition are observed for the rates of combustion and pollutant emissions. Biomass combustion systems are non-polluting and offer significant protection of the environment. The reduction of greenhouse gases

  2. Research advances in the study of Pistacia chinensis Bunge, a superior tree species for biomass energy

    Institute of Scientific and Technical Information of China (English)

    Li Hong-lin; Zhang Zhi-xiang; Lin Shan-zhi; Li Xiao-xu

    2007-01-01

    As a renewable energy, biomass energy has aroused wide attention and studies of this issue have become a hot topic throughout the world. Pistacia chinensis Bunge (Anacardiaceae) is a superior species for biomass energy with high oil content in seeds and wide geographic distribution. It is a dioeciously, deciduous arbor, flowering from March to April and bearing fruits from September to November. The classification, regional distribution and biological characteristics of P. chinensis are stated in this paper,then, research advances in the growth, breeding and physiology of this species are summarized. The problems in present studies are broached. Finally, a future direction for research is proposed.

  3. Overview on the development and utilization of biomass energy in Africa and Asia

    International Nuclear Information System (INIS)

    In developing countries, biomass is the main source of energy for rural communities and industries and is often a source even for urban households. A pressing concern is the rapid rate of deforestation, brought about by two factors: land clearing for agricultural production and for dwellings and the growing demand for biomass as an energy source. The production of agricultural and forest residues has also been increasing. Much of this residue is disposed of by burning it on the fields or is used in highly polluting stoves and furnaces for cooking or other food processing or industrial activities. Air pollution from inefficient combustion of biomass residues is severe in a number of places, leading to increases in eye and lung diseases and in greenhouse gas emissions. In this overview paper, the following information will be provided: Summary of the available data on biomass resources from Africa and Asia and indication of its reliability; Description of the current technologies used to convert biomass to energy; Discussion of the current research and development (R and D) on the efficiency of these technologies; Examination of the barriers impeding the adoption of new, more efficient technologies; Identification and evaluation of the policies and strategies being used to improve the efficiency of biomass as an energy source and to increase resource availability. Biomass will continue to be the main fuel for most households and many rural industries in Asia and Africa for the next 10 years. In many countries, the biomass, especially wood, is being used on an unsustainable basis. A wide range of more efficient and less expensive conversion and production technologies have now been developed and are in use in Africa and Asia. The rates of adoption of these technologies have varied considerably, however, between and within countries of the region. For effective dissemination, governments, non-governmental organizations (NGOs), commercial organizations and end

  4. Exploiting the Medium Term Biomass Energy Potentials in Austria. A Comparison of Costs and Macroeconomic Impact

    International Nuclear Information System (INIS)

    The transition to an implicitly solar-based energy system can make use of various specific biomass energy systems. This paper provides economic and environmental indicators for evaluating alternative options. The paper proceeds in three empirical steps. First, an expert survey supplies the primary biomass potentials available for non-food use in Austria and their respective costs. Second, an inquiry into investment, operating and financing costs of 30 different biomass energy use systems allows a standardized comparison among them and their relationship to fossil reference technologies. Third, a computable general equilibrium model of the Austrian economy is employed to quantify the impacts of fostering the use of distinct biomass energy technologies. The results allow us to distinguish between those technologies that tend to lead to an increase in both GDP and employment (e.g., combined heat and power production from sewage sludge biogas), to an increase only in employment, while GDP tends to diminish (e.g., district heating based on agricultural pellets) or to a decline in both (e.g., co-firing based on wood-chips, bark or industrial pellets). Individual technologies could account for up to one third of Austria's Kyoto obligation, while combinations of technologies, triggered by a combined CO2 tax and biomass energy subsidy for example, could almost fully lead to Austrian Kyoto-compliance

  5. Energy consumption of biomass in the residential sector of Italy in 1999

    International Nuclear Information System (INIS)

    The report aims at showing the situation in Italian residential sector in the year 1999 about the consumption of biomass like energy source. Data presented are the result of a statistical survey on the Italian family. Taking into account the year 1999, the survey allowed to estimate a national consumption of vegetal fuels equal to about 14 Mt, with an average value by family of 3 t. The following aspects have been put in evidence: the consumption of biomass in Italy is characterised mainly bu the use of wood, 98.5% out of the total vegetal fuel consumption. Olive pits, charcoal and nutshells can be considered as marginal. Biomass supplying system by the families is related to the single biomass typology; in the case of wood there is a substantial equilibrium between the purchase (42.5%) and the self production/supplies (47%). In the case of olive pits the supplying system is mostly the purchase, on the contrary for the nutshells is the self production/supplies; Biomass are mostly used in the principal house (84.8% of the families using biomass); the families expressed satisfaction; the energetic systems that use vegetal fuels have a complementary character in relation to the systems not fuelled with biomass

  6. Biomass as a Sustainable Energy Source: An Illustration of Chemical Engineering Thermodynamic Concepts

    Science.gov (United States)

    Mohan, Marguerite A.; May, Nicole; Assaf-Anid, Nada M.; Castaldi, Marco J.

    2006-01-01

    The ever-increasing global demand for energy has sparked renewed interest within the engineering community in the study of sustainable alternative energy sources. This paper discusses a power generation system which uses biomass as "fuel" to illustrate the concepts taught to students taking a graduate level chemical engineering process…

  7. ALTENER - Biomass event in Finland

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The publication contains the lectures held in the Biomass event in Finland. The event was divided into two sessions: Fuel production and handling, and Co-combustion and gasification sessions. Both sessions consisted of lectures and the business forum during which the companies involved in the research presented themselves and their research and their equipment. The fuel production and handling session consisted of following lectures and business presentations: AFB-NETT - business opportunities for European biomass industry; Wood waste in Europe; Wood fuel production technologies in EU- countries; new drying method for wood waste; Pellet - the best package for biofuel - a view from the Swedish pelletmarket; First biomass plant in Portugal with forest residue fuel; and the business forum of presentations: Swedish experiences of willow growing; Biomass handling technology; Chipset 536 C Harvester; KIC International. The Co-combustion and gasification session consisted of following lectures and presentations: Gasification technology - overview; Overview of co-combustion technology in Europe; Modern biomass combustion technology; Wood waste, peat and sludge combustion in Enso Kemi mills and UPM-Kymmene Rauma paper mill; Enhanced CFB combustion of wood chips, wood waste and straw in Vaexjoe in Sweden and Grenaa CHP plant in Denmark; Co-combustion of wood waste; Biomass gasification projects in India and Finland; Biomass CFB gasifier connected to a 350 MW{sub t}h steam boiler fired with coal and natural gas - THERMIE demonstration project in Lahti (FI); Biomass gasification for energy production, Noord Holland plant in Netherlands and Arbre Energy (UK); Gasification of biomass in fixed bed gasifiers, Wet cleaning and condensing heat recovery of flue gases; Combustion of wet biomass by underfeed grate boiler; Research on biomass and waste for energy; Engineering and consulting on energy (saving) projects; and Research and development on combustion of solid fuels

  8. Fossil energy versus nuclear, wind, solar and agricultural biomass: Insights from an Italian national survey

    International Nuclear Information System (INIS)

    In Italy there has been considerable political debate around the new energy policy, which is specifically designed to contribute to climate change mitigation. While there is renewed interest in nuclear energy generation, there has been heated debate concerning wind farms that have rapidly expanded and are dramatically changing the landscape in many rural areas. Finally, interest has also increased in biomass as an energy source. However, in this case, a significant part of the population is worried about landscape change and primary crop reduction. In this study we report the results from a nation-wide survey (=504 households) in Italy undertaken during summer 2009. A Latent Class Choice Experiment was used to quantify household preferences over different energy sources. Our results show that Italian households can be split into three segments with homogeneous preferences. The first segment (35% of the population) shows strong preference for wind and solar energy and dislikes both biomass and nuclear. The second (33% of the population) shows moderate preference for solar and wind energy and, as with the first segment, dislikes both nuclear and biomass. The third (32% of the population) shows a strong preference for green energy (solar, wind and biomass) and is very much against nuclear energy. The three segments were also characterized in terms of household socio-economic characteristics. - Highlights: ► We quantify Italian household preferences over different energy sources. ► Results come from a nation-wide survey undertaken during summer 2009. ► Energy sources tested: fossil fuel, nuclear, wind, solar and agricultural biomass. ► A latent class choice experiment was used. ► Italians can be split into three segments with different energy source preferences.

  9. Optimal Operation of Biomass Gasifier Based Hybrid Energy System

    OpenAIRE

    Balamurugan, P.; Kumaravel, S.; Ashok, S.

    2011-01-01

    The focus of the world on renewable energy sources is growing rapidly due to its availability and environment friendliness. However, the renewable energy influenced by natural conditions is being intermittent, it is difficult to accomplish stable energy supply only by one kind of renewable energy source. In order to achieve reliability, it is necessary to integrate two or more energy sources together in an optimal way as hybrid energy system. Optimal allocation of sources, unpredictable load ...

  10. Storage of caatinga forest biomass to improve the quality of wood for energy

    Directory of Open Access Journals (Sweden)

    Martha Andreia Brand

    2016-07-01

    Full Text Available ABSTRACT: This study aimed to evaluate the quality of forest biomass energy, coming from the Caatinga, for different storage times in the field. The study was conducted in southern Piauí, between January and February (rainy season. Samples were collected containing branches and trunks of various species, and samples of branches and trunks separately in 5 sample units of 20x20m. Samples were evaluated in the general state freshly harvested and samples of branches and logs after 15 and 30 days of storage in piles in the field. The analyzes carried out were: moisture content on wet basis, ash content and calorific value. Moisture content of freshly harvested biomass ranged from 39% with two days after cutting to 79% in biomass cut and left distributed in the field for 10 days. After storage in piles for 15 days, branches showed moisture content of 18% and the logs 21%, and net calorific value of 3432kcal kg-1 and 3274kcal kg-1, respectively. After 30 days, moisture content for branches was 13% and the logs 21%, and net calorific value of 3672kcal kg-1 and 3240kcal kg-1, respectively. Ash content of the biomass was low. Cutting trees in the rainy season, with maintenance of biomass in the field for 10 days, resulted in an increment of moisture content. Branches had the best behaviour during the storage. Fifteen days of storage are sufficient for the caatinga biomass to achieve high-quality energy.

  11. Biomass and electricity: the agricultural biomass. Geothermal energy from fractured rocks: prospective scenarios and impact on environment

    International Nuclear Information System (INIS)

    This publication contains two articles. The first one aims at giving an assessment of energy production potential of biomass in France at a regional level. It gives estimates of volumes of breeding effluents in the different French regions and according to a low and a high hypothesis, presents various technologies used to produce energy from these effluents (examples in Denmark and in Great-Britain), gives estimates of quantities of wheat or barley straws which could be used for energy production in the different French regions and describes straw-based Danish cogeneration plants, gives estimates for other energetic crops (some trees and herbaceous crops) and reports the Belgium experience. The second text reports a middle-term or long-term prospective and economical feasibility study on the production of geothermal energy from fractured rocks. Some researches have already demonstrated the feasibility of a heat exchanger on very deep and cracked granitic rocks which could supply hot water that could be used for energy production. The study examines the different possibilities of evolution of this concept (deepness, increase in the number of wells, transformation into heat, electricity or cogeneration) and describes their technical and economical characteristics within an industrial development perspective on the long term

  12. Allocation of Energy Use in the Biomass-based Fuel Ethanol System and Its Use in Decision Making

    Institute of Scientific and Technical Information of China (English)

    LENG Ru-bo; YU Sui-ran; FANG Fang; DAI Du; WANG Cheng-tao

    2005-01-01

    The Chinese government is developing biomass ethanol as one of its automobile fuels for energy security and environmental improvement reasons. The energy efficiency of the biomass-based fuel ethanol is critical issue. To investigate the energy use in the three biomass-base ethanol fuel systems, energy content approach, Market value approach and Product displacement approach methods were used to allocate the energy use based on life cycle energy assessment. The results shows that the net energy of corn based, wheat based, and cassava-based ethanol fuel are 12543MJ, 10299MJ and 13112MJ when get one ton biomassbased ethanol, respectively, and they do produce positive net energy.

  13. Goode Gym Energy Renovation Project

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Andrena [Bennett College, Greensboro, NC (United States)

    2014-12-11

    The Ida H. Goode Gymnasium was constructed in 1964 to serve as a focal point for academics, student recreation, and health and wellness activities. This 38,000 SF building contains a gymnasium with a stage, swimming pool, eight classrooms, a weight room, six offices and auxiliary spaces for the athletic programs. The gym is located on a 4-acre greenfield, which is slated for improvement and enhancement to future athletics program at Bennett College. The available funding for this project was used to weatherize the envelope of the gymnasium, installation of a new energy-efficient mechanical system, and a retrofit of the existing lighting systems in the building’s interior. The envelope weatherization was completed without disturbing the building’s historic preservation eligibility. The existing heating system was replaced with a new high efficiency condensing system. The new heating system also includes a new Building Automation System which provides additional monitoring. Proper usage of this system will provide additional energy savings. Most of the existing interior lighting fixtures and bulbs were replaced with new LED and high efficiency T-8 bulbs and fixtures. Occupancy sensors were installed in applicable areas. The Ida Goode Gymnasium should experience high electricity and natural gas savings as well as operational/maintenance efficiency increases. The aesthetics of the building was maintained and the overall safety was improved.

  14. Ecological effects of harvesting biomass for energy in the Spanish Mediterranean

    International Nuclear Information System (INIS)

    Biomass utilization for energy has major consequences for Spanish Mediterranean landscapes. In this paper we present a synthesis of the ecological effects of harvesting biomass for energy. We compare these effects with other fuel reduction procedures such as prescribed burning. Throughout history we see that some Iberian ecosystems are stabilized by long human interference. One of the stabilizing factors is the utilization of wood as a source of energy. New energy sources and massive human movements towards urban areas have changed the ecosystem dynamics. Reforested areas in Spain during the period from 1940 to 1970 included silviculture treatments that in some cases never took place. This has led to a greater accumulation of biomass. The current perspective of the problem must be analyzed from an economic and political viewpoint. For instance, the Middle East crisis has direct consequences for the budget dedicated to forest energetics, and consequently for the landscape. This shows how ecological problems must be dealt with using a very broad perspective. In Spain current biomass usage should be considered primarily as a complementary silvicultural treatment rather than as a way of producing great biomass outputs. If we are going to manage our forest from an ecological perspective, we have to analyze the effects of these operations at the stand level. At the landscape level fuel management plans should be included in the Forest Management Prescriptions (ordenaciones) whether in terms of harvesting or in a prescribed burning plan

  15. PERFORMANCE STUDIES ON DOWNDRAFT GASIFIER WITH BIOMASS ENERGY SOURCES AVAILABLE IN REMOTE VILLAGES

    Directory of Open Access Journals (Sweden)

    V. ChristusJeya Singh

    2014-01-01

    Full Text Available Increasing global concern over the environmental issues and depletion of fossil fuels, significant interest has been shown by the researchers to develop alternate energy technologies like biomass, biogas, solar to meet the future energy demand. The prediction of the performance of different biomass energy sources in gasifiers is needed for the implementation of this technology to fulfil the need of decentralized heat and power applications, relevant to remote villages. This study presents the theoretical and experimental studies conducted on a 50 kW downdraft biomass gasifier with various biomass materials such as wood, coconut shell, rubber seed kernel and coir pith which are generally available in villages. Two-zone kinetic equilibrium model approach is used to predict the composition and temperature of the producer gas. The influence of equivalence ratio on the reaction temperature, quality of producer gas and gasifier conversion efficiency are discussed. The experimental and theoretical studies show that the rubber seed kernel can be effectively used as a feedstock of the biomass gasifier to meet the rural energy demand.

  16. Hydrogen rich gas from oil palm biomass as a potential source of renewable energy in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed, M.A.A.; Salmiaton, A.; Wan Azlina, W.A.K.G.; Mohammad Amran, M.S.; Fakhru' l-Razi, A. [Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Taufiq-Yap, Y.H. [Centre of Excellence for Catalysis Science and Technology and Department of Chemistry, Faculty of Science, University Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia)

    2011-02-15

    Oil palm is one of the major economic crops in many countries. Malaysia alone produces about 47% of the world's palm oil supply and can be considered as the world's largest producer and exporter of palm oil. Malaysia also generates huge quantity of oil palm biomass including oil palm trunks, oil palm fronds, empty fruit bunches (EFB), shells and fibers as waste from palm oil fruit harvest and oil extraction processing. At present there is a continuously increasing interest in the utilization of oil palm biomass as a source of clean energy. One of the major interests is hydrogen from oil palm biomass. Hydrogen from biomass is a clean and efficient energy source and is expected to take a significant role in future energy demand due to the raw material availability. This paper presents a review which focuses on different types of thermo-chemical processes for conversion of oil palm biomass to hydrogen rich gas. This paper offers a concise and up-to-date scenario of the present status of oil palm industry in contributing towards sustainable and renewable energy. (author)

  17. EERC Center for Biomass Utilization 2006

    Energy Technology Data Exchange (ETDEWEB)

    Zygarlicke, Christopher J. [Univ. of North Dakota, Grand Forks, ND (United States). Energy and Environmental Research Center; Hurley, John P. [Univ. of North Dakota, Grand Forks, ND (United States). Energy and Environmental Research Center; Aulich, Ted R. [Univ. of North Dakota, Grand Forks, ND (United States). Energy and Environmental Research Center; Folkedahl, Bruce C. [Univ. of North Dakota, Grand Forks, ND (United States). Energy and Environmental Research Center; Strege, Joshua R. [Univ. of North Dakota, Grand Forks, ND (United States). Energy and Environmental Research Center; Patel, Nikhil [Univ. of North Dakota, Grand Forks, ND (United States). Energy and Environmental Research Center; Shockey, Richard E. [Univ. of North Dakota, Grand Forks, ND (United States). Energy and Environmental Research Center

    2009-05-27

    The Center for Biomass Utilization® 2006 project at the Energy & Environmental Research Center (EERC) consisted of three tasks related to applied fundamental research focused on converting biomass feedstocks to energy, liquid transportation fuels, and chemicals. Task 1, entitled Thermochemical Conversion of Biomass to Syngas and Chemical Feedstocks, involved three activities. Task 2, entitled Crop Oil Biorefinery Process Development, involved four activities. Task 3, entitled Management, Education, and Outreach, focused on overall project management and providing educational outreach related to biomass technologies through workshops and conferences.

  18. Analysis of the Economic Impact of Large-Scale Deployment of Biomass Resources for Energy and Materials in the Netherlands. Appendix 1. Bottom-up Scenarios

    International Nuclear Information System (INIS)

    The Bio-based Raw Materials Platform (PGG), part of the Energy Transition in The Netherlands, commissioned the Agricultural Economics Research Institute (LEI) and the Copernicus Institute of Utrecht University to conduct research on the macro-economic impact of large scale deployment of biomass for energy and materials in the Netherlands. Two model approaches were applied based on a consistent set of scenario assumptions: a bottom-up study including technoeconomic projections of fossil and bio-based conversion technologies and a topdown study including macro-economic modelling of (global) trade of biomass and fossil resources. The results of the top-down and bottom-up modelling work are reported separately. The results of the synthesis of the modelling work are presented in the main report. This report (part 1) presents scenarios for future biomass use for energy and materials, and analyses the consequences on energy supply, chemical productions, costs and greenhouse gas (GHG) emissions with a bottom-up approach. The bottom-up projections, as presented in this report, form the basis for modelling work using the top-down macro-economic model (LEITAP) to assess the economic impact of substituting fossil-based energy carriers with biomass in the Netherlands. The results of the macro-economic modelling work, and the linkage between the results of the bottom-up and top-down work, will be presented in the top-down economic part and synthesis report of this study

  19. Anaerobic biotechnological approaches for production of liquid energy carriers from biomass

    DEFF Research Database (Denmark)

    Karakashev, Dimitar Borisov; Thomsen, Anne Belinda; Angelidaki, Irini

    2007-01-01

    determined by substrates and microbial communities available as well as the operating conditions applied. In this review, we evaluate the recent biotechnological approaches employed in ethanol and ABE fermentation. Practical applicability of different technologies is discussed taking into account the......In recent years, increasing attention has been paid to the use of renewable biomass for energy production. Anaerobic biotechnological approaches for production of liquid energy carriers (ethanol and a mixture of acetone, butanol and ethanol) from biomass can be employed to decrease environmental...... pollution and reduce dependency on fossil fuels. There are two major biological processes that can convert biomass to liquid energy carriers via anaerobic biological breakdown of organic matter: ethanol fermentation and mixed acetone, butanol, ethanol (ABE) fermentation. The specific product formation is...

  20. Interactions between biomass energy technologies and nutrient and carbon balances at the farm level

    Energy Technology Data Exchange (ETDEWEB)

    Joergensen, Uffe; Molt Petersen, B. [Danish Inst. of Agricultural Science, Dept. of Agroecology, Tjele (Denmark)

    2006-08-15

    Biomass energy is by far the largest renewable energy source in the world (IEA Renewable information (www.iea.org)). Biomass utilisation is closely linked to management and sustainability issues of forestry and agriculture. Carbon is extracted from forests and agriculture to bioenergy facilities, from where it is partly or fully emitted as CO{sub 2} and thus no longer available for sustaining soil organic matter content. Nutrients are extracted as well and, depending of the conversion technology, they may be recycled to farmland or lost as gaseous emissions. Thus, we must be able to describe these effects, and to suggest strategies to alleviate adverse effects on farm sustainability and on the environment. By choosing intelligent combinations of cropping systems and energy conversion technologies, win-win solutions may be achieved. This paper illustrates, via three cases, some agricultural impacts of choice of biomass technology and describes an intriguing possibility for recycling municipal or industrial wastes through the bioenergy chain. (au)

  1. Potential of hydrogen from oil palm biomass as a source of renewable energy worldwide

    Energy Technology Data Exchange (ETDEWEB)

    Kelly Yong, Tau Len; Lee, Keat Teong; Mohamed, Abdul Rahman; Bhatia, Subhash (School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Pulau Pinang (Malaysia))

    2007-07-01

    Various catastrophes related to extreme weather events such as floods, hurricanes, droughts and heat waves occurring on earth in the recent times are definitely a clear warning sign from nature questioning our ability to protect the environment and ultimately earth itself. Progressive release of greenhouse gases (GHG) such as CO{sub 2} and CH{sub 4} from development of various energy intensive industries has ultimately cause earth to pay its debt. Realizing the urgency of reducing the emissions and yet simultaneously catering to needs of industries, researches and scientist conclude that renewable energy is the perfect candidate to fulfill both parties requirement. Renewable energy is capable of providing an effective option for the provision of energy services from the technical point of view. One of the best sources of renewable energy identified is from biomass. Biomass has been a major source of energy in the world since the beginning of civilization and researches have proven from time to time its viability for large scale production. However, till now, the laboratory scale outcome has not been successfully translated into real industries realization. It is found that renewable energy faces a lot of challenges including the availability of economical viable technology, sophisticated and sustainable natural resources management and proper market strategies under competitive energy markets. Amidst these challenges, the development and implementation of suitable policies by the local policy-makers is still the single and most important factor that can determine a successful utilization of renewable energy in a particular country. Ultimately, the race to the end line must begin with the proof of biomass ability to sustain in a long run as a continuous and reliable source of renewable energy. Thus, the aim of this paper is to present the potential availability of oil palm biomass that can be converted to hydrogen (leading candidate positioned as the energy of the

  2. The implications of deregulation for biomass and renewable energy in California. Revision

    Energy Technology Data Exchange (ETDEWEB)

    Morris, G. [Future Resources Associates, Inc., Berkeley, CA (United States)

    1998-08-01

    The California legislature took up electric utility deregulation legislation during 1996, culminating in AB 1890, California`s landmark restructuring legislation. The legislation created a transition funding program for renewables. No permanent program for the support of renewable energy production extending beyond the end of the transition period (2002) is included in AB 1890. AB 1890 assigned to the California Energy Commission (CEC) the task of determining how to allocate the renewables transition funds between existing and new renewable generating sources, and among the various renewable energy technologies that are available for deployment in California. The California Environmental Protection Agency (Cal/EPA) was assigned the task of reporting to the legislature about the specific benefits provided by biomass energy production in California, and about policies that could shift some of the cost of biomass energy production away from the electric ratepayer, on to beneficiaries of the environmental benefits of biomass energy production. This study describes the development of the CEC and Cal/EPA reports to the California legislature, and provides an analysis of the major issues that were encountered during the course of their development. The study concludes with a consideration of the future prospects for biomass and renewable energy production in the state.

  3. Selection of high producing shrubs of the Western United States for energy biomass. Final report, April 1, 1978-October 31, 1981. [Saltbush, sagebrush, rabbitbrush, and greasewood

    Energy Technology Data Exchange (ETDEWEB)

    McKell, C.M.; Van Epps, G.A.; Barker, J.R.

    1981-01-01

    This project investigated the selection and preliminary study of the most productive native shrubs that are commonly found growing on millions of acres of arid and semiarid lands of the Western United States for their potential use as energy fuel from biomass. Many uncertainties exist in producing biomass for energy fuels. However, arid land shrub biomass production offers several advantages that may be more favorable than other biomass types. Shrubs could utilize available marginal croplands and rangelands; there would be little or no competition for scarce water resources, and within the wide diversity of native shrubs, a number of species have a potential for relatively large biomass production. Species chosen for study were fourwing saltbush (Atriplex canescens), big saltbush (A. lentiformis), big sagebrush (Artemisia tridentata), spreading rabbitbrush (Chrysothamnus linifolis), rubber rabbitbrush (C. nauseosus), and greasewood (Sarcobatus vermiculatus). The study was divided into three phases. Phase one dealt with the selection, measurement, and burning quality of large growing shrubs in native populations. The main objective of phase two was to measure the biomass production of the selected large growing shrubs at a dryland field research station for three years. In addition the influence of planting space was ascertained. In phase three the genetic differences of large and small sagebrush (A. tridentata) were evaluated. 15 figs., 24 tabs.

  4. A techno-economic evaluation of a biomass energy conversion park

    Energy Technology Data Exchange (ETDEWEB)

    Van Dael, M.; Van Passel, S.; Witters, N. [Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek (Belgium); Pelkmans, L.; Guisson, R. [VITO, Boeretang 200, 2400 Mol (Belgium); Reumermann, P. [BTG Biomass Technology Group, Josink Esweg 34, 7545 PN Enschede (Netherlands); Marquez Luzardo, N. [School of Life Sciences and Environmental Technology, Avans Hogeschool, Hogeschoollaan 1, 4800 RA Breda (Netherlands); Broeze, J. [Agrotechnology and Food Sciences Group, Wageningen University, Bomenweg 2, 6703 HD Wageningen (Netherlands)

    2013-04-15

    Biomass as a renewable energy source has many advantages and is therefore recognized as one of the main renewable energy sources to be deployed in order to attain the target of 20% renewable energy use of final energy consumption by 2020 in Europe. In this paper the concept of a biomass Energy Conversion Park (ECP) is introduced. A biomass ECP can be defined as a synergetic, multi-dimensional biomass conversion site with a highly integrated set of conversion technologies in which a multitude of regionally available biomass (residue) sources are converted into energy and materials. A techno-economic assessment is performed on a case study in the Netherlands to illustrate the concept and to comparatively assess the highly integrated system with two mono-dimensional models. The three evaluated models consist of (1) digestion of the organic fraction of municipal solid waste, (2) co-digestion of manure and co-substrates, and (3) integration. From a socio-economic point of view it can be concluded that it is economically and energetically more interesting to invest in the integrated model than in two separate models. The integration is economically feasible and environmental benefits can be realized. For example, the integrated model allows the implementation of a co-digester. Unmanaged manure would otherwise represent a constant pollution risk. However, from an investor's standpoint one should firstly invest in the municipal solid waste digester since the net present value (NPV) of this mono-dimensional model is higher than that of the multi-dimensional model. A sensitivity analysis is performed to identify the most influencing parameters. Our results are of interest for companies involved in the conversion of biomass. The conclusions are useful for policy makers when deciding on policy instruments concerning manure processing or biogas production.

  5. FY 1997 report on the research study for preparation of NEDO`s vision. Biomass energy; 1997 nendo chosa hokokusho (NEDO vision sakutei ni muketa chosa kenkyu). Biomass energy ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Research study was made on the current usage, technological development and future subjects of biomass energy. The current use of biomass energy over the world estimated to be nearly a billion t/y oil equivalent. This value is estimated to be only a part of a pure primary biomass yield of 73 billion t/y oil equivalent showing a large supply potential. The evaluation result of a biomass energy potential in the world by GLUE (Global Land Use and Energy Model) considering worldwide biomass flow and competition of land use showed that no change of land use form in advanced areas is predicted, and no production of new biomass energy from forests in advancing areas is also expected. Production of biomass energy from farm products is promising in advanced areas, while the potential of biomass residue is high in advancing areas showing the possibility of energy development. Development of new biotechnologies such as molecular control of bio-production functions is expected to increase biomass resources. 76 refs., 26 figs., 30 tabs.

  6. Economic metrics for wind energy projects

    OpenAIRE

    Wagner Sousa de Oliveira, Antonio Jorge Fernandes, Joaquim Jose Borges Gouveia

    2011-01-01

    This paper presents an overview of economic metrics for wind energy projects. The attractiveness of the proposed wind energy can vary considerably between evaluation of the private and public sector. The financing structure is very important influencing factor for the attractiveness of wind energy project. In many cases, the economic activities practiced by economic agents of financing the project in order to earn sufficient income to meet the investors‘ needs and other economic agents involv...

  7. Primary energy and greenhouse gas implications of increasing biomass production through forest fertilization

    International Nuclear Information System (INIS)

    In this study we analyze the primary energy and greenhouse gas (GHG) implications of increasing biomass production by fertilizing 10% of Swedish forest land. We estimate the primary energy use and GHG emissions from forest management including production and application of N and NPK fertilizers. Based on modelled growth response, we then estimate the net primary energy and GHG benefits of using biomaterials and biofuels obtained from the increased forest biomass production. The results show an increased annual biomass harvest of 7.4 million t dry matter, of which 41% is large-diameter stemwood. About 6.9 PJ/year of additional primary energy input is needed for fertilizer production and forest management. Using the additional biomass for fuel and material substitution can reduce fossil primary energy use by 150 or 164 PJ/year if the reference fossil fuel is fossil gas or coal, respectively. About 22% of the reduced fossil energy use is due to material substitution and the remainder is due to fuel substitution. The net annual primary energy benefit corresponds to about 7% of Sweden's total primary energy use. The resulting annual net GHG emission reduction is 11.9 million or 18.1 million tCO2equiv if the reference fossil fuel is fossil gas or coal, respectively, corresponding to 18% or 28% of the total Swedish GHG emissions in 2007. A significant one-time carbon stock increase also occurs in wood products and forest tree biomass. These results suggest that forest fertilization is an attractive option for increasing energy security and reducing net GHG emission.

  8. Emission guidelines for energy production from biomass; Emissierichtlijnen voor energieopwekking uit biomassa

    Energy Technology Data Exchange (ETDEWEB)

    Van Loo, S. [TNO Milieu, Energie en Procesinnovatie TNO-MEP, Apeldoorn (Netherlands)

    1998-08-01

    For the introduction of bio-energy on the Dutch market it is important to know the regulations for the emission limits for the use of biomass. An overview is made of emission regulations in the Netherlands with respect to thermal conversion of biomass. Also experiences of practical situations have been compiled and evaluated and an inventory was made of emission regulations in Germany, Finland, Denmark, England and Austria and the European Union. All the compiled information has been evaluated and the Dutch emission regulations for bio-energy is represented in the form of a decision making scheme or working paper and compared with emission regulations in foreign countries. 18 refs.

  9. Assessing the interactions among U.S. climate policy, biomass energy, and agricultural trade

    Energy Technology Data Exchange (ETDEWEB)

    Wise, Marshall A.; McJeon, Haewon C.; Calvin, Katherine V.; Clarke, Leon E.; Kyle, G. Page

    2014-09-01

    Energy from biomass is potentially an important contributor to U.S. climate change mitigation efforts. However, an important consideration to large-scale implementation of bioenergy is that the production of biomass competes with other uses of land. This includes traditionally economically productive uses, such as agriculture and forest products, as well as storage of carbon in forests and non-commercial lands. In addition, in the future, biomass may be more easily traded, meaning that increased U.S. reliance on bioenergy could come with it greater reliance on imported energy. Several approaches could be implemented to address these issues, including limits on U.S. biomass imports and protection of U.S. and global forests. This paper explores these dimensions of bioenergy’s role in U.S. climate policy and the relationship to these alternative measures for ameliorating the trade and land use consequences of bioenergy. It first demonstrates that widespread use of biomass in the U.S. could lead to imports; and it highlights that the relative stringency of domestic and international carbon mitigation policy will heavily influence the degree to which it is imported. Next, it demonstrates that while limiting biomass imports would prevent any reliance on other countries for this energy supply, it would most likely alter the balance of trade in other agricultural products against which biomass competes; for example, it might turn the U.S. from a corn exporter to a corn importer. Finally, it shows that increasing efforts to protect both U.S. and international forests could also affect the balance of trade in other agricultural products.

  10. Biomass recycle as a means to improve the energy efficiency of CELSS algal culture systems

    Science.gov (United States)

    Radmer, R.; Cox, J.; Lieberman, D.; Behrens, P.; Arnett, K.

    1987-01-01

    Algal cultures can be very rapid and efficient means to generate biomass and regenerate the atmosphere for closed environmental life support systems. However, as in the case of most higher plants, a significant fraction of the biomass produced by most algae cannot be directly converted to a useful food product by standard food technology procedures. This waste biomass will serve as an energy drain on the overall system unless it can be efficiently recycled without a significant loss of its energy content. Experiments are reported in which cultures of the alga Scenedesmus obliquus were grown in the light and at the expense of an added carbon source, which either replaced or supplemented the actinic light. As part of these experiments, hydrolyzed waste biomass from these same algae were tested to determine whether the algae themselves could be made part of the biological recycling process. Results indicate that hydrolyzed algal (and plant) biomass can serve as carbon and energy sources for the growth of these algae, suggesting that the efficiency of the closed system could be significantly improved using this recycling process.

  11. Making the Forest Biomass as the real choice of the renewable energy

    International Nuclear Information System (INIS)

    There is an increasing demand of the forest bioenergy in many forest countries. However, the biomass production chain is very price sensitive and quite often the existing utilization systems are not optimized to burn wood as main fuel. In this project the production chain is considered as a whole and the technology is developed for the collection of the forest biomass and also the power plant technology is analyzed. The main objective is to study a system that is as much as possible optimized for the wood fuel. (orig.)

  12. Proceedings of the fifth International Slovak Biomass Forum (ISBF)

    International Nuclear Information System (INIS)

    The publication has been set up as a proceedings of the conference dealing with use of biomass for energy production. The main conference topics are focused on the following scopes: Session 1: RES Policies, strategies, political background; Session 2: Bioenergy markets, tools and influence factors; Session 3: Biomass fuels production and trading; Parallel Session 4: Biomass firing technologies; Parallel Session 5: Municipal projects uptake; Parallel Session 6: Biomass large and small CHP; Parallel Session 7: Environmental biomass technologies; Session 8: Biomass projects financing roundtable; In this proceedings 54 contributions is included

  13. Potential and impacts of renewable energy production from agricultural biomass in Canada

    International Nuclear Information System (INIS)

    Highlights: • This study quantifies the bioenergy production potential in the Canadian agricultural sector. • Two presented scenarios included the mix of market and non-market policy targets and the market-only drivers. • The scenario that used mix of market and policy drivers had the largest impact on the production of bioenergy. • The production of biomass-based ethanol and electricity could cause moderate land use changes up to 0.32 Mha. • Overall, agricultural sector has a considerable potential to generate renewable energy from biomass. - Abstract: Agriculture has the potential to supply considerable amounts of biomass for renewable energy production from dedicated energy crops as well as from crop residues of existing production. Bioenergy production can contribute to the reduction of greenhouse gas (GHG) emissions by using ethanol and biodiesel to displace petroleum-based fuels and through direct burning of biomass to offset coal use for generating electricity. We used the Canadian Economic and Emissions Model for Agriculture to estimate the potential for renewable energy production from biomass, the impacts on agricultural production, land use change and greenhouse gas emissions. We explored two scenarios: the first considers a combination of market incentives and policy mandates (crude oil price of $120 bbl−1; carbon offset price of $50 Mg−1 CO2 equivalent and policy targets of a substitution of 20% of gasoline by biomass-based ethanol; 8% of petroleum diesel by biodiesel and 20% of coal-based electricity by direct biomass combustion), and a second scenario considers only carbon offset market incentives priced at $50 Mg−1 CO2 equivalent. The results show that under the combination of market incentives and policy mandates scenario, the production of biomass-based ethanol and electricity increases considerably and could potentially cause substantial changes in land use practices. Overall, agriculture has considerable potential to generate

  14. Biomass energy transport: analysis of bioenergy transport chains using life cycle inventory method

    International Nuclear Information System (INIS)

    Biomass for energy conversion is usually considered as a local resource. With appropriate logistic systems, access to biomass can be improved over a large geographical area. In this study, life cycle inventory (LCI) has been used as a method to investigate the environmental load of selected bioenergy transport chains. As a case study, chains starting in Sweden and ending in Holland have been investigated. Biomass originates from tree sections or forest residues, the latter upgraded to bales or pellets. The study is concentrated on production of electricity, hot cooling water is considered as a loss. Electricity is, in the case study, produced from solid biomass in the importing country. Electricity can also be produced in the country of origin and exported via the transnational grid as transportation medium. The results show that emissions from long range transportation, 1200 km, performed with ships, is of minor importance compared to emissions from local bioenergy systems in a local market. In bioenergy systems the use of fuels and electricity for operating machines and transportation carriers requires a net energy input which amounts to typically 7-9 per cent of delivered electrical energy from the system. Emissions of key substances such as NOx, CO, S, hydrocarbons, and particles are low in a perspective of sustainability. Emissions of CO2 from bio-combustion are considered to be zero since there is approximately no net contribution of carbon to the biosphere in an energy system based on biomass. The results indicate that biomass for energy can be transported from Scandinavia to Holland without losing its environmental benefits. (author)

  15. Renewable energies: the choice of invitation to tender candidates for the electric power plants supplied by biomass or biogas; Energies renouvelables: le choix des candidats aux appels d'offres pour des centrales electriques alimentees a partir de biomasse ou de biogaz. DGEMP-DIDEME

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-01-01

    To contribute to the french objectives of renewable energies development, the Ministry of Industry proposed an invitation to tender for the realization at the first of january 2007 of electric power plants (more than 12 MW) from biomass and biogas. This document presents the selected projects. (A.L.B.)

  16. BIOMASS AS AN ALTERNATIVE SOURCE OF ENERGY IN INDIA

    OpenAIRE

    DEEPAK PALIWAL,; NILANJAN SARKAR; RANJAN BASAK,; DEBOJYOTI MITRA,

    2010-01-01

    The fossil fuel is a main source of energy for generation of electricity in India. Overall, about 80% of greenhouse gas (GHS) emissions are related to the production and use of energy, and particularly, burning of fossils fuels. The environmental problems are associated with the generation of conventional sources of energy.The Kyoto protocol has established flexible mechanisms for developing countries to meet there GHG reduction commitment. Therefore, renewable source of energy is an alternat...

  17. Analysis of the Economic Impact of Large-Scale Deployment of Biomass Resources for Energy and Materials in the Netherlands. Appendix 2. Macro-economic Scenarios

    International Nuclear Information System (INIS)

    The Bio-based Raw Materials Platform (known as PGG), which is part of the Energy Transition programme in the Netherlands, commissioned the Agricultural Economics Research Institute (LEI) and the Copernicus Institute of Utrecht University to study the macro-economic impact of large-scale deployment of biomass for energy and materials in the Netherlands. Two model approaches were applied based on a consistent set of scenario assumptions: a bottom-up study including techno-economic projections of fossil and bio-based conversion technologies and a top-down study including macro-economic modelling of (global) trade of biomass and fossil resources. The results of the top-down study (part 2) including macro-economic modelling of (global) trade of biomass and fossil resources, are presented in this report

  18. Advanced energy projects FY 1992 research summaries

    International Nuclear Information System (INIS)

    The Division of Advanced Energy Projects (AEP) provides support to explore the feasibility of novel, energy-related concepts that evolve from advances in basic research. These concepts are typically at an early stage of scientific definition and, therefore, are beyond the scope o