WorldWideScience

Sample records for biomass conversion coal

  1. A Review of Thermal Co-Conversion of Coal and Biomass/Waste

    Directory of Open Access Journals (Sweden)

    Aime Hilaire Tchapda

    2014-02-01

    Full Text Available Biomass is relatively cleaner than coal and is the only renewable carbon resource that can be directly converted into fuel. Biomass can significantly contribute to the world’s energy needs if harnessed sustainably. However, there are also problems associated with the thermal conversion of biomass. This paper investigates and discusses issues associated with the thermal conversion of coal and biomass as a blend. Most notable topics reviewed are slagging and fouling caused by the relatively reactive alkali and alkaline earth compounds (K2O, Na2O and CaO found in biomass ash. The alkali and alkaline earth metals (AAEM present and dispersed in biomass fuels induce catalytic activity during co-conversion with coal. The catalytic activity is most noticeable when blended with high rank coals. The synergy during co-conversion is still controversial although it has been theorized that biomass acts like a hydrogen donor in liquefaction. Published literature also shows that coal and biomass exhibit different mechanisms, depending on the operating conditions, for the formation of nitrogen (N and sulfur species. Utilization aspects of fly ash from blending coal and biomass are discussed. Recommendations are made on pretreatment options to increase the energy density of biomass fuels through pelletization, torrefaction and flash pyrolysis to reduce transportation costs.

  2. Nitrogen conversion under rapid pyrolysis of two types of aquatic biomass and corresponding blends with coal.

    Science.gov (United States)

    Yuan, Shuai; Chen, Xue-li; Li, Wei-feng; Liu, Hai-feng; Wang, Fu-chen

    2011-11-01

    Rapid pyrolysis of two types of aquatic biomass (blue-green algae and water hyacinth), and their blends with two coals (bituminous and anthracite) was carried out in a high-frequency furnace. Nitrogen conversions during rapid pyrolysis of the two biomass and the interactions between the biomass and coals on nitrogen conversions were investigated. Results show that little nitrogen retained in char after the biomass pyrolysis, and NH(3) yields were higher than HCN. During co-pyrolysis of biomass and coal, interactions between biomass and coal decreased char-N yields and increased volatile-N yields, but the total yields of NH(3)+HCN in volatile-N were decreased in which HCN formations were decreased consistently, while NH(3) formations were only decreased in the high-temperature range but promoted in the low-temperature range. Interactions between blue-green algae and coals are stronger than those between water hyacinth and coal, and interactions between biomass and bituminous are stronger than those between biomass and anthracite. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Biomass Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Decker, Steve [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Brunecky, Roman [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lin, Chien-Yuan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Amore, Antonella [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wei, Hui [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Chen, Xiaowen [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Tucker, Melvin P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Czernik, Stefan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sluiter, Amie D [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhang, Min [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Magrini, Kimberly A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Himmel, Michael E [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sheehan, John [Formerly NREL; Dayton, David C. [Formerly NREL; Bozell, Joseph J. [Formerly NREL; Adney, William S. [Formerly NREL; Aden, Andy [Formerly NREL; Hames, Bonnie [Formerly NREL; Thomas, Steven R. [Formerly NREL; Bain, Richard L. [Formerly NREL

    2017-08-02

    Biomass constitutes all the plant matter found on our planet, and is produced directly by photosynthesis, the fundamental engine of life on earth. It is the photosynthetic capability of plants to utilize carbon dioxide from the atmosphere that leads to its designation as a 'carbon neutral' fuel, meaning that it does not introduce new carbon into the atmosphere. This article discusses the life cycle assessments of biomass use and the magnitude of energy captured by photosynthesis in the form of biomass on the planet to appraise approaches to tap this energy to meet the ever-growing demand for energy.

  4. Hydrothermal conversion of biomass

    NARCIS (Netherlands)

    Knezevic, D.

    2009-01-01

    This thesis presents research of hydrothermal conversion of biomass (HTC). In this process, hot compressed water (subcritical water) is used as the reaction medium. Therefore this technique is suitable for conversion of wet biomass/ waste streams. By working at high pressures, the evaporation of

  5. Life-Cycle Analysis of Greenhouse Gas Emissions and Water Consumption – Effects of Coal and Biomass Conversion to Liquid Fuels as Analyzed with the GREET Model

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qianfeng [Argonne National Lab. (ANL), Argonne, IL (United States); Cai, Hao [Argonne National Lab. (ANL), Argonne, IL (United States); Han, Jeongwoo [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-06-01

    The vast reserves of coal in the U.S. provide a significant incentive for the development of processes for coal conversion to liquid fuels (CTL). Also, CTL using domestic coal can help move the U.S. toward greater energy independence and security. However, current conversion technologies are less economically competitive and generate greater greenhouse gas (GHG) emissions than production of petroleum fuels. Altex Technologies Corporation (Altex, hereinafter) and Pennsylvania State University have developed a hybrid technology to produce jet fuel from a feedstock blend of coal and biomass. Collaborating with Altex, Argonne National Laboratory has expanded and used the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET®) model to assess the life-cycle GHG emissions and water consumption of this hybrid technology. Biomass feedstocks include corn stover, switchgrass, and wheat straw. The option of biomass densification (bales to pellets) is also evaluated in this study. The results show that the densification process generates additional GHG emissions as a result of additional biomass process energy demand. This process coproduces a large amount of char, and this study investigates two scenarios to treat char: landfill disposal (Char-LF) and combustion for combined heat and power (CHP). Since the CHP scenarios export excess heat and electricity as coproducts, two coproduct handling methods are used for well-to-wake (WTWa) analysis: displacement (Char-CHP-Disp) and energy allocation (Char-CHP-EnAllo). When the feedstock contains 15 wt% densified wheat straw and 85 wt% lignite coal, WTWa GHG emissions of the coal-and-biomass-to-liquid pathways are 116, 97, and 137 gCO2e per megajoule (MJ) under the Char-LF, Char-CHP-Disp, and Char-CHP-EnAllo scenarios, respectively, as compared to conventional jet fuel production at 84 gCO2e/MJ. WTWa water consumption values are 0.072, -0.046, and 0.044 gal/MJ for Char-LF, Char-CHP-Disp, and Char

  6. Microwave-induced co-processing of coal and biomass

    OpenAIRE

    Yan, Jie-Feng

    2015-01-01

    Pyrolysis is an attractive alternative for the conversion of solid fuels to valuable chemicals and bio-fuels. In order to obtain more H2 and syngas from pyrolysis of coal and biomass, microwave has been adopted to enhance the co-pyrolysis of coal and biomass, which has been investigated systematically in this study. Firstly, conventional pyrolysis of coal and biomass was carried out using a vertical tube furnace. Characterizations of pyrolytic gas, liquid and solid products were conducted...

  7. Hydrothermal conversion of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Knezevic, D.

    2009-09-03

    This thesis presents research of hydrothermal conversion of biomass (HTC). In this process, hot compressed water (subcritical water) is used as the reaction medium. Therefore this technique is suitable for conversion of wet biomass/ waste streams. By working at high pressures, the evaporation of water and high energy consumption that it requires can be avoided. The main focus of this work was HTC process aiming at production of transportation fuel intermediates. For this study, a new experimental technique using quartz capillary batch reactors has been developed, allowing determination of the yields of gas, liquid and solid products, and their subsequent analysis. The study was performed using glucose, a biomass model compound, and complex feedstocks, wood and pyrolysis oil. Important HTC features have been studied such as, undesired char formation, deoxygenation, and mechanism and kinetics of formation of different lumped product classes. Special attention is also given to products of the initial glucose decomposition and the kinetics of their formation. Complete mass and elemental balances obtained in this work significantly complement the literature findings on the reaction mechanism of HTC. Two distinct mechanisms of char formation are identified and two mechanisms of deoxygenation (dehydration and decarboxylation) are discussed. The observed trends in the product formation rates and yields are used to obtain an engineering reaction model for decomposition of glucose, which can be adapted for the use with complex feedstocks. Finally, a bench scale continuous reactor setup for HTC is proposed and several features of the setup have been tested separately in cold-flow, such as, feeding of biomass water slurries with a piston autoclave and a lifting fluidized bed, heat transfer, fluid bed operation and state of mixing of liquid and solid phases in continuous operations.

  8. Communal biomass conversion plants

    International Nuclear Information System (INIS)

    1991-06-01

    The Coordinating Committee set up by the Danish government in 1986 were given the responsibility of investigating the potentials for biomass conversion plants in Denmark, especially in relation to agricultural, environmental and energy aspects. The results of the Committee's plan of management for this project are presented. This main report covers 13 background reports which deal with special aspects in detail. The report describes the overall plan of management, the demonstration and follow-up programme and the individual biogas demonstration plants. Information gained from these investigations is presented. The current general status, (with emphasis on the technical and economical aspects) and the prospects for the future are discussed. The interest other countries have shown in Danish activities within the field of biogas production is described, and the possibilities for Danish export of technology and know-how in this relation are discussed. It is claimed that Denmark is the first country that has instigated a coordinated development programme for biomass conversion plants. (AB) 24 refs

  9. Biomass energy conversion: conventional and advanced technologies

    International Nuclear Information System (INIS)

    Young, B.C.; Hauserman, W.B.

    1995-01-01

    Increasing interest in biomass energy conversion in recent years has focused attention on enhancing the efficiency of technologies converting biomass fuels into heat and power, their capital and operating costs and their environmental emissions. Conventional combustion systems, such as fixed-bed or grate units and entrainment units, deliver lower efficiencies (<25%) than modem coal-fired combustors (30-35%). The gasification of biomass will improve energy conversion efficiency and yield products useful for heat and power generation and chemical synthesis. Advanced biomass gasification technologies using pressurized fluidized-bed systems, including those incorporating hot-gas clean-up for feeding gas turbines or fuel cells, are being demonstrated. However, many biomass gasification processes are derivatives of coal gasification technologies and do not exploit the unique properties of biomass. This paper examines some existing and upcoming technologies for converting biomass into electric power or heat. Small-scale 1-30 MWe units are emphasized, but brief reference is made to larger and smaller systems, including those that bum coal-biomass mixtures and gasifiers that feed pilot-fuelled diesel engines. Promising advanced systems, such as a biomass integrated gasifier/gas turbine (BIG/GT) with combined-cycle operation and a biomass gasifier coupled to a fuel cell, giving cycle efficiencies approaching 50% are also described. These advanced gasifiers, typically fluid-bed designs, may be pressurized and can use a wide variety of biomass materials to generate electricity, process steam and chemical products such as methanol. Low-cost, disposable catalysts are becoming available for hot-gas clean-up (enhanced gas composition) for turbine and fuel cell systems. The advantages, limitations and relative costs of various biomass gasifier systems are briefly discussed. The paper identifies the best known biomass power projects and includes some information on proposed and

  10. Coal conversion wastewater technology

    Energy Technology Data Exchange (ETDEWEB)

    Hrudy, S.E.; Fedorak, P.M.

    1984-01-01

    A serum bottle technique has been developed and used to study the anaerobic degradation of various phenolic substrates relevant to coal conversion wastewaters. A method for measuring absolute quantities of methane produced has been refined and applied to cultures maintained on both phenol and p-cresol. Oxidative treatment studies have demonstrated that such schemes do not offer useful application prior to anaerobic processes. Long-term experiments conclusively demonstrated the capability of anaerobic cultures to degrade m-cresol; presence of phenol and p-cresol was found to enhance this capability by shortening acclimation. Other long-term experiments indicated that the anaerobic degradability of o-cresol remains in doubt. The kinetics of phenol degradation in batch cultures containing various initial concentrations was also studied; at 43-199 mg/l levels, the final removal rates followed first order kinetics. Molecular hydrogen was identified as a possible limiting factor to the initiation of phenol degradation, and findings suggested phenol degraders prefer propionate over phenol as a substrate. A most probable number method, used for enumerating phenol degraders, estimated numbers too low to account for observed degradation rates, consistent with the hypothesis that phenol degradation depends on a consortium of organisms. Batch cultures could selectively degrade fermentable phenolics (mixed with non-fermentable ones) if the total phenolic concentration was near or below 700 mg/l. As other work has shown that fermentables comprise the majority of coal wastewater phenolics, such waters would be amenable to anaerobic biological treatment. 27 refs., 23 figs., 10 tabs.

  11. Enzymes for improved biomass conversion

    Science.gov (United States)

    Brunecky, Roman; Himmel, Michael E.

    2016-02-02

    Disclosed herein are enzymes and combinations of the enzymes useful for the hydrolysis of cellulose and the conversion of biomass. Methods of degrading cellulose and biomass using enzymes and cocktails of enzymes are also disclosed.

  12. Coal conversion wastewater technology

    Energy Technology Data Exchange (ETDEWEB)

    Hrudey, S.E.; Fedorak, P.M.

    1983-01-01

    A serum bottle technique has been developed and used to study the anaerobic degradation of various phenolic substrates relevant to coal conversion wastewaters. Previous work indicating that only phenol and p-cresol are readily fermented to methane has been confirmed along with the evidence of highly selective removal of these substrate mixtures. A quantitative method for measuring absolute quantities of methane produced has been refined and applied to draw and feed cultures maintained on phenol and p-cresol. Ultimate production stoichiometry from batch cultures has been measured and applied to draw and feed experiments to provide a valuable basis for predicting methane generation potential for these substrates. Oxidative pretreatment studies with peroxide and ozone have demonstrated that such schemes do not offer useful application prior to anaerobic processes. Evaluation of alternate sources of anaerobic sources of anaerobic bacteria has not yet provided phenolic degradation potential beyond that available from the municipal digester sludge being used. Although mixed cultures of anaerobic bacteria have been sustained in draw and feed culture for over 15 months with phenol as sole carbon source, it has not been possible to isolate the phenol degraders in pure culture. 3 refs., 12 refs., 3 tabs.

  13. Catalytic Conversion of Biomass

    Directory of Open Access Journals (Sweden)

    Rafael Luque

    2016-09-01

    Full Text Available Petroleum, natural gas and coal supply most of the energy consumed worldwide and their massive utilization has allowed our society to reach high levels of development in the past century.[...

  14. Coal conversion wastewater treatment technology

    Energy Technology Data Exchange (ETDEWEB)

    Kindzierski, W.B.; Hrudey, S.E.; Fedorak, P.M. (University of Alberta, Edmonton, AB (Canada))

    1988-12-01

    Phenolic compounds are one of the major components of coal conversion wastewaters, and their deleterious impact on the environment, particularly in natural water systems, is well documented. Phenols, at higher concentrations, have been shown to inhibit the activity of anaerobic bacteria used to degrade organic compounds. This study examines combined treatment requirements for an authentic, high strength phenolic coal conversion wastewater using both batch and semi- continuous anaerobic methanogenic bioassays. Solvent extraction pretreatment and in situ addition of activated carbon during anaerobic treatment were also examined, and proved effective in removing phenol. 61 refs., 34 tabs., 30 figs., 7 append.

  15. Cogasification of Coal and Biomass: A Review

    Directory of Open Access Journals (Sweden)

    J. S. Brar

    2012-01-01

    Full Text Available Recently, there has been significant research interest in cogasification of coal and various types of biomass blends to improve biomass gasification by reducing the tar content in the product gas. In addition, ash present in biomass catalyzes the gasification of coal. However, due to the fibrous nature of biomass and the large difference in gasification temperature of coal and biomass, cogasification in existing systems presents technical challenges. This paper documents research studies conducted on the cogasification of various types of coal and biomass using different types of gasifiers under various sets of operating conditions. In addition, the influence of cogasification on upstream and downstream processing is presented.

  16. COFIRING BIOMASS WITH LIGNITE COAL

    Energy Technology Data Exchange (ETDEWEB)

    Darren D. Schmidt

    2002-01-01

    The University of North Dakota Energy & Environmental Research Center, in support of the U.S. Department of Energy's (DOE) biomass cofiring program, completed a Phase 1 feasibility study investigating aspects of cofiring lignite coal with biomass relative to utility-scale systems, specifically focusing on a small stoker system located at the North Dakota State Penitentiary (NDSP) in Bismarck, North Dakota. A complete biomass resource assessment was completed, the stoker was redesigned to accept biomass, fuel characterization and fireside modeling tests were performed, and an engineering economic analysis was completed. In general, municipal wood residue was found to be the most viable fuel choice, and the modeling showed that fireside problems would be minimal. Experimental ash deposits from firing 50% biomass were found to be weaker and more friable compared to baseline lignite coal. Experimental sulfur and NO{sub x} emissions were reduced by up to 46%. The direct costs savings to NDSP, from cogeneration and fuel saving, results in a 15- to 20-year payback on a $1,680,000 investment, while the total benefits to the greater community would include reduced landfill burden, alleviation of fees for disposal by local businesses, and additional jobs created both for the stoker system as well as from the savings spread throughout the community.

  17. Biomass Conversion Factsheet

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-06-05

    To efficiently convert algae, diverse types of cellulosic biomass, and emerging feedstocks into renewable fuels, the U.S. Department of Energy (DOE) supports research, development, and demonstration of technologies. This research will help ensure that these renewable fuels are compatible with today’s vehicles and infrastructure.

  18. Boiler conversions for biomass

    Energy Technology Data Exchange (ETDEWEB)

    Kinni, J. [Tampella Power Inc., Tampere (Finland)

    1996-12-31

    Boiler conversions from grate- and oil-fired boilers to bubbling fluidized bed combustion have been most common in pulp and paper industry. Water treatment sludge combustion, need for additional capacity and tightened emission limits have been the driving forces for the conversion. To accomplish a boiler conversion for biofuel, the lower part of the boiler is replaced with a fluidized bed bottom and new fuel, ash and air systems are added. The Imatran Voima Rauhalahti pulverized-peat-fired boiler was converted to bubbling fluidized bed firing in 1993. In the conversion the boiler capacity was increased by 10 % to 295 MWth and NO{sub x} emissions dropped. In the Kymmene Kuusankoski boiler, the reason for conversion was the combustion of high chlorine content biosludge. The emissions have been under general European limits. During the next years, the emission limits will tighten and the boilers will be designed for most complete combustion and compounds, which can be removed from flue gases, will be taken care of after the boiler. (orig.) 3 refs.

  19. Biomass conversion processes for energy and fuels

    Science.gov (United States)

    Sofer, S. S.; Zaborsky, O. R.

    The book treats biomass sources, promising processes for the conversion of biomass into energy and fuels, and the technical and economic considerations in biomass conversion. Sources of biomass examined include crop residues and municipal, animal and industrial wastes, agricultural and forestry residues, aquatic biomass, marine biomass and silvicultural energy farms. Processes for biomass energy and fuel conversion by direct combustion (the Andco-Torrax system), thermochemical conversion (flash pyrolysis, carboxylolysis, pyrolysis, Purox process, gasification and syngas recycling) and biochemical conversion (anaerobic digestion, methanogenesis and ethanol fermentation) are discussed, and mass and energy balances are presented for each system.

  20. Overview of biomass conversion technologies

    International Nuclear Information System (INIS)

    Noor, S.; Latif, A.; Jan, M.

    2011-01-01

    A large part of the biomass is used for non-commercial purposes and mostly for cooking and heating, but the use is not sustainable, because it destroys soil-nutrients, causes indoor and outdoor pollution, adds to greenhouse gases, and results in health problems. Commercial use of biomass includes household fuelwood in industrialized countries and bio-char (charcoal) and firewood in urban and industrial areas in developing countries. The most efficient way of biomass utilization is through gasification, in which the gas produced by biomass gasification can either be used to generate power in an ordinary steam-cycle or be converted into motor fuel. In the latter case, there are two alternatives, namely, the synthesis of methanol and methanol-based motor fuels, or Fischer-Tropsch hydrocarbon synthesis. This paper deals with the technological overview of the state-of-the-art key biomass-conversion technologies that can play an important role in the future. The conversion routes for production of Heat, power and transportation fuel have been summarized in this paper, viz. combustion, gasification, pyrolysis, digestion, fermentation and extraction. (author)

  1. Gasification Characteristics of Coal/Biomass Mixed Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Reginald [Stanford Univ., CA (United States). Mechanical Engineering Dept.

    2014-09-01

    A research project was undertaken that had the overall objective of developing the models needed to accurately predict conversion rates of coal/biomass mixtures to synthesis gas under conditions relevant to a commercially-available coal gasification system configured to co-produce electric power as well as chemicals and liquid fuels. In our efforts to accomplish this goal, experiments were performed in an entrained flow reactor in order to produce coal and biomass chars at high heating rates and temperatures, typical of the heating rates and temperatures fuel particles experience in real systems. Mixed chars derived from coal/biomass mixtures containing up to 50% biomass and the chars of the pure coal and biomass components were subjected to a matrix of reactivity tests in a pressurized thermogravimetric analyzer (TGA) in order to obtain data on mass loss rates as functions of gas temperature, pressure and composition as well as to obtain information on the variations in mass specific surface area during char conversion under kinetically-limited conditions. The experimental data were used as targets when determining the unknown parameters in the chemical reactivity and specific surface area models developed. These parameters included rate coefficients for the reactions in the reaction mechanism, enthalpies of formation and absolute entropies of adsorbed species formed on the carbonaceous surfaces, and pore structure coefficients in the model used to describe how the mass specific surface area of the char varies with conversion. So that the reactivity models can be used at high temperatures when mass transport processes impact char conversion rates, Thiele modulus – effectiveness factor relations were also derived for the reaction mechanisms developed. In addition, the reactivity model and a mode of conversion model were combined in a char-particle gasification model that includes the effects of chemical reaction and diffusion of reactive gases through particle

  2. Biomass Thermochemical Conversion Program: 1986 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1987-01-01

    Wood and crop residues constitute a vast majority of the biomass feedstocks available for conversion, and thermochemical processes are well suited for conversion of these materials. Thermochemical conversion processes can generate a variety of products such as gasoline hydrocarbon fuels, natural gas substitutes, or heat energy for electric power generation. The US Department of Energy is sponsoring research on biomass conversion technologies through its Biomass Thermochemical Conversion Program. Pacific Northwest Laboratory has been designated the Technical Field Management Office for the Biomass Thermochemical Conversion Program with overall responsibility for the Program. This report briefly describes the Thermochemical Conversion Program structure and summarizes the activities and major accomplishments during fiscal year 1986. 88 refs., 31 figs., 5 tabs.

  3. Cofiring biomass with coal: Opportunities for Malaysia

    Science.gov (United States)

    Rahman, A. A.; Shamsuddin, A. H.

    2013-06-01

    Malaysia generated 108,175 GWh of electricity in 2010 where 39.51 % was sourced from coal. Coal power generation is also planned to overtake natural gas as the main fuel for electricity generation within the next two decades. Malaysia also has a vast biomass resource that is currently under-utilised for electricity generation. This paper studies the option of cofiring biomass in existing Malaysian coal power plants to increase the nation's renewable energy mix as well as to reduce its power sector carbon dioxide emission. Benefits of cofiring to the nation were discussed and agricultural residues from palm oil and paddy was identified as a potential source of biomass for cofiring. It was also found that there is a willingness for cofiring by stakeholders but barriers existed in the form of technical issues and lack of clear direction and mechanism.

  4. Cofiring biomass with coal: Opportunities for Malaysia

    International Nuclear Information System (INIS)

    Rahman, A A; Shamsuddin, A H

    2013-01-01

    Malaysia generated 108,175 GWh of electricity in 2010 where 39.51 % was sourced from coal. Coal power generation is also planned to overtake natural gas as the main fuel for electricity generation within the next two decades. Malaysia also has a vast biomass resource that is currently under-utilised for electricity generation. This paper studies the option of cofiring biomass in existing Malaysian coal power plants to increase the nation's renewable energy mix as well as to reduce its power sector carbon dioxide emission. Benefits of cofiring to the nation were discussed and agricultural residues from palm oil and paddy was identified as a potential source of biomass for cofiring. It was also found that there is a willingness for cofiring by stakeholders but barriers existed in the form of technical issues and lack of clear direction and mechanism.

  5. Trends and Challenges in Catalytic Biomass Conversion

    DEFF Research Database (Denmark)

    Osmundsen, Christian Mårup; Egeblad, Kresten; Taarning, Esben

    2013-01-01

    The conversion of biomass to the plethora of chemicals used in modern society is one of the major challenges of the 21st century. Due to the significant differences between biomass resources and the current feedstock, crude oil, new technologies need to be developed encompassing all steps...... in the value chain, from pretreatment to purification. Heterogeneous catalysis is at the heart of the petrochemical refinery and will likely play an equally important role in the future biomass-based chemical industry. Three potentially important routes to chemicals from biomass are highlighted in this chapter....... The conversion of biomass-derived substrates, such as glycerol, by hydrogenolysis to the important chemicals ethylene glycol and propane diols. Secondly, the conversion of carbohydrates by Lewis acidic zeolites to yield alkyl lactates, and finally the conversion of lignin, an abundant low value source of biomass...

  6. Process and apparatus for conversion of biomass

    NARCIS (Netherlands)

    Bakker, R.R.C.; Hazewinkel, J.H.O.; Groenestijn, van J.W.

    2006-01-01

    The invention is directed to a process for the conversion of cellulosic biomass, in particular lignocellulose-containing biomass into fermentable sugars. The invention is further directed to apparatus suitable for carrying out such processes. According to the invention biomass is converted into

  7. Novel electrochemical process for coal conversion

    Energy Technology Data Exchange (ETDEWEB)

    Farooque, M.

    1989-07-01

    The feasibility of two distinctly different routes to coal conversion at low severity conditions was investigated. An electrochemical approach utilizing both the electro-oxidation and electro-reduction routes was employed. The electro-oxidation route consists of an electrochemical reaction involving H{sub 2}O and coal, leading to the breakup of coal molecules. The observed reaction rate has been explained as a combination of the coal and pyrite electro-oxidation currents. Organic sulfur has been identified as the contributing factor for the observation of more than 100% H{sub 2} production current efficiency with several coal samples. Also, an attractive coal pre-treatment process has been identified which results in production of useful products and simultaneous upgrading of the coal. Electrochemical oxidation of coal with H{sub 2}O leads to the production of hydrogen, CO{sub 2}, simultaneous removal of pyritic sulfur, and significant reduction of ash content. There is also indirect evidence that the organic sulfur may be removed in the process. A preliminary economic evaluation of this process has projected a cost advantage of > $8 per ton of Illinois {number sign}2 coal. A lab-scale cell has been successfully employed in this study for generating process data useful for future design calculations. This study also explored the electro-reduction route of coal conversion and has successfully demonstrated production of liquid products from different coal types at low severity conditions. A variety of aliphatic and aromatic compounds have been identified in the products. Coal type appeared to be the most important parameter affecting the product spectrum. 32 refs., 26 figs., 19 tabs.

  8. Biomass thermochemical conversion program. 1985 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1986-01-01

    Wood and crop residues constitute a vast majority of the biomass feedstocks available for conversion, and thermochemical processes are well suited for conversion of these materials. The US Department of Energy (DOE) is sponsoring research on this conversion technology for renewable energy through its Biomass Thermochemical Conversion Program. The Program is part of DOE's Biofuels and Municipal Waste Technology Division, Office of Renewable Technologies. This report briefly describes the Thermochemical Conversion Program structure and summarizes the activities and major accomplishments during fiscal year 1985. 32 figs., 4 tabs.

  9. Biomass thermochemical conversion program: 1987 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1988-01-01

    The objective of the Biomass Thermochemical Conversion Program is to generate a base of scientific data and conversion process information that will lead to establishment of cost-effective processes for conversion of biomass resources into clean fuels. To accomplish this objective, in fiscal year 1987 the Thermochemical Conversion Program sponsored research activities in the following four areas: Liquid Hydrocarbon Fuels Technology; Gasification Technology; Direct Combustion Technology; Program Support Activities. In this report an overview of the Thermochemical Conversion Program is presented. Specific research projects are then described. Major accomplishments for 1987 are summarized.

  10. Power from coal and biomass via CFB

    Energy Technology Data Exchange (ETDEWEB)

    Giglio, R.; Wehrenberg, J. [Foster Wheeler Power Group, Clinton, NY (United States)

    2009-04-15

    Circulating fluidized bed technology enables burning coal and biomass to generate power while reducing emissions at the same time. Flexi-Burn CFB is being developed. It produces a CO{sub 2} rich flue gas, form which CO{sub 2} can be captured.

  11. Coal + Biomass → Liquids + Electricity (with CCS)

    Science.gov (United States)

    In this presentation, Matt Aitken applies the MARKet ALlocation energy system model to evaluate the market potential for a class of technologies that convert coal and biomass to liquid fuels and electricity (CBtLE), paired with carbon capture and storage (CCS). The technology is ...

  12. New Correlations for Coal and Biomass Pyrolysis Performances with Coal-Biomass Type Number and Temperature

    Directory of Open Access Journals (Sweden)

    Yazid Bindar

    2013-12-01

    Full Text Available The pyrolysis of coal and biomass is generally reported as the mass yield of released chemicals at various temperatures, pressures, heating rates and coal or biomass type. In this work, a new coal-biomass type number, NCT, is introduced. This number is constructed from the mass fractions of carbon, hydrogen, and oxygen in the ultimate analysis. This number is unique for each coal or biomass type. For 179 different species of coal and biomass from the literature, the volatile matter mass yield can be expressed by the second order polynomial function ln(NCT. This unique correlation allows the effects of the temperature and heating rate on the volatile yield YVY for coal and biomass to be empirically correlated as well. The correlation for the mass fraction of each chemical component in the released volatile matter correlation is obtained from the YVY correlation. The weight factor for some of the components is constant for the variation of NCT, but not for others. The resulted volatile matter and yield correlations are limited to atmospheric pressure, very small particles (less than 0.212 mm and interpreted for wire-mesh pyrolysis reactor conditions and a nitrogen gas environment.

  13. COFIRING BIOMASS WITH LIGNITE COAL

    Energy Technology Data Exchange (ETDEWEB)

    Darren D. Schmidt

    2001-09-30

    As of September 28, 2001, all the major project tasks have been completed. A presentation was given to the North Dakota State Penitentiary (NDSP) and the North Dakota Division of Community Services (DCS). In general, the feasibility study has resulted in the following conclusions: (1) Municipal wood resources are sufficient to support cofiring at the NDSP. (2) Steps have been taken to address all potential fuel-handling issues with the feed system design, and the design is cost-effective. (3) Fireside issues of cofiring municipal wood with coal are not of significant concern. In general, the addition of wood will improve the baseline performance of lignite coal. (4) The energy production strategy must include cogeneration using steam turbines. (5) Environmental permitting issues are small and do not affect economics. (6) The base-case economic scenario provides for a 15-year payback of a 20-year municipal bond and does not include the broader community benefits that can be realized.

  14. Process and apparatus for conversion of biomass

    NARCIS (Netherlands)

    Bakker, R.R.C.; Hazewinkel, J.H.O.; Groenestijn, van J.W.

    2006-01-01

    The invention is directed to a process for the conversion of biomass, in particular lignocellulose-containing biomass into a product that may be further processes in a fermentation step. The invention is further directed to apparatus suitable for carrying out such processes. According to the

  15. An overview of coal preparation initiatives with application to coal conversion in South Africa

    International Nuclear Information System (INIS)

    Reinecke, C.F.; Bunt, J.R.

    1999-01-01

    Coal has for many years been the most important energy resource in South Africa and has contributed to more than 70 % of South Africa's energy needs in 1998. The large in-situ coal deposits (in excess of 120 x 10 9 t) and relatively large recoverable reserves (about 33.5 x 10 9 t) will ensure that coal will for many a year still be South Africa's single biggest energy resource. Biomass burning consumes approximately 11 Mt/a of which 8 Mt/a is natural wood. This equals natural wood production. The use of firewood is considered to be unsustainable. Of the 225 Mt/a of coal extracted in South Africa in 1998, 67.0 Mt/a was exported. Of this, 62.9 Mt/a were exported as steam coal, 2.1 Mt/a as metallurgical coal, and the rest as anthracite. Current exports are conducted via the Richards Bay terminal (63.6 Mt/a), Durban (2.0 Mt/a) and a small amount via Maputo. The Richards Bay terminal is to be expanded to 72 Mt/a by 1999. It is also very important to note that most of the coal resources possess calorific values of below 25 MJ/kg, which limits its utilization to power generation (Eskom) and processes such as fixed bed dry bottom gasification (Sasol). A break-down of production and usage of coal by the various controlling groups in South Africa shows that Sasol (54.2 Mt/a) and Escom (91.0 Mt/a) are major consumers of coal. It has been proposed earlier by Horsfall (1993) that for power generation and coal conversion, the in-situ quality is generally regarded as satisfactory for use. All that is required in the way of processing is crushing to an appropriate top size and, for conversion, screening of the unwashed coal. Most other consumers require some degree of beneficiation, which generally entails the removal of stone/shale and low quality coal. More recently, the introduction of destoning plants at Duvha Colliery (Larcodems) and New Vaal Colliery (Drewboy washers) has significantly reduced the abrasiveness content of these local thermal coals, together with an increase

  16. Co-gasification of biomass and coal in a pressurised fluidised bed gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Andries, L.; Hein, K.R.G. [Lab. for Thermal Power Engineering, Dept. of Mechanical Engineering and Marine Technology, Delft Univ. of Technology (Netherlands)

    1996-12-31

    The Laboratory for Thermal Power Engineering of the Delft University of Technology is participating in an EU funded, international, R + D project which is designed to aid European industry in addressing issues regarding co-utilisation of biomass and/or waste in advanced coal conversion processes. The project comprises three main programmes, each of which includes a number of smaller subprogrammes. The three main programmes are: Coal-biomass systems component development and design; Coal-biomass environmental studies; Techno-economic assessment studies. (orig)

  17. Molecular catalytic coal liquid conversion

    Energy Technology Data Exchange (ETDEWEB)

    Stock, L.M.; Yang, Shiyong [Univ. of Chicago, IL (United States)

    1995-12-31

    This research, which is relevant to the development of new catalytic systems for the improvement of the quality of coal liquids by the addition of dihydrogen, is divided into two tasks. Task 1 centers on the activation of dihydrogen by molecular basic reagents such as hydroxide ion to convert it into a reactive adduct (OH{center_dot}H{sub 2}){sup {minus}} that can reduce organic molecules. Such species should be robust withstanding severe conditions and chemical poisons. Task 2 is focused on an entirely different approach that exploits molecular catalysts, derived from organometallic compounds that are capable of reducing monocyclic aromatic compounds under very mild conditions. Accomplishments and conclusions are discussed.

  18. COFIRING BIOMASS WITH LIGNITE COAL; FINAL

    International Nuclear Information System (INIS)

    Darren D. Schmidt

    2002-01-01

    The University of North Dakota Energy and Environmental Research Center, in support of the U.S. Department of Energy's (DOE) biomass cofiring program, completed a Phase 1 feasibility study investigating aspects of cofiring lignite coal with biomass relative to utility-scale systems, specifically focusing on a small stoker system located at the North Dakota State Penitentiary (NDSP) in Bismarck, North Dakota. A complete biomass resource assessment was completed, the stoker was redesigned to accept biomass, fuel characterization and fireside modeling tests were performed, and an engineering economic analysis was completed. In general, municipal wood residue was found to be the most viable fuel choice, and the modeling showed that fireside problems would be minimal. Experimental ash deposits from firing 50% biomass were found to be weaker and more friable compared to baseline lignite coal. Experimental sulfur and NO(sub x) emissions were reduced by up to 46%. The direct costs savings to NDSP, from cogeneration and fuel saving, results in a 15- to 20-year payback on a$1,680,000 investment, while the total benefits to the greater community would include reduced landfill burden, alleviation of fees for disposal by local businesses, and additional jobs created both for the stoker system as well as from the savings spread throughout the community

  19. Materials for coal conversion and utilization

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    The Fifth Annual Conference on Materials for Coal Conversion and Utilization was held October 7-9, 1980, at the National Bureau of Standards, Gaithersburg, Maryland. Sixty-six papers have been entered individually into ERA and EDB; two had been entered previously from other sources. (LTN)

  20. Biomass thermo-conversion. Research trends

    International Nuclear Information System (INIS)

    Rodriguez Machin, Lizet; Perez Bermudez, Raul; Quintana Perez, Candido Enrique; Ocanna Guevara, Victor Samuel; Duffus Scott, Alejandro

    2011-01-01

    In this paper is studied the state of the art in order to identify the main trends of the processes of thermo conversion of biomass into fuels and other chemicals. In Cuba, from total supply of biomass, wood is the 19% and sugar cane bagasse and straw the 80%, is why research in the country, should be directed primarily toward these. The methods for energy production from biomass can be group into two classes: thermo-chemical and biological conversion routes. The technology of thermo-chemical conversion includes three subclasses: pyrolysis, gasification, and direct liquefaction. Although pyrolysis is still under development, in the current energy scenario, has received special attention, because can convert directly biomass into solid, liquid and gaseous by thermal decomposition in absence of oxygen. The gasification of biomass is a thermal treatment, where great quantities of gaseous products and small quantities of char and ash are produced. In Cuba, studies of biomass thermo-conversion studies are limited to slow pyrolysis and gasification; but gas fuels, by biomass, are mainly obtained by digestion (biogas). (author)

  1. Biomass for thermochemical conversion: targets and challenges

    Directory of Open Access Journals (Sweden)

    Paul eTanger

    2013-07-01

    Full Text Available Bioenergy will be one component of a suite of alternatives to fossil fuels. Effective conversion of biomass to energy will require the careful pairing of advanced conversion technologies with biomass feedstocks optimized for the purpose. Lignocellulosic biomass can be converted to useful energy products via two distinct pathways: enzymatic or thermochemical conversion. The thermochemical pathways are reviewed and potential biotechnology or breeding targets to improve feedstocks for pyrolysis, gasification, and combustion are identified. Biomass traits influencing the effectiveness of the thermochemical process (cell wall composition, mineral and moisture content differ from those important for enzymatic conversion and so properties are discussed in the language of biologists (biochemical analysis as well as that of engineers (proximate and ultimate analysis. We discuss the genetic control, potential environmental influence, and consequences of modification of these traits. Improving feedstocks for thermochemical conversion can be accomplished by the optimization of lignin levels, and the reduction of ash and moisture content. We suggest that ultimate analysis and associated properties such as H:C, O:C, and heating value might be more amenable than traditional biochemical analysis to the high-throughput necessary for the phenotyping of large plant populations. Expanding our knowledge of these biomass traits will play a critical role in the utilization of biomass for energy production globally, and add to our understanding of how plants tailor their composition with their environment.

  2. Biomass for thermochemical conversion: targets and challenges.

    Science.gov (United States)

    Tanger, Paul; Field, John L; Jahn, Courtney E; Defoort, Morgan W; Leach, Jan E

    2013-01-01

    Bioenergy will be one component of a suite of alternatives to fossil fuels. Effective conversion of biomass to energy will require the careful pairing of advanced conversion technologies with biomass feedstocks optimized for the purpose. Lignocellulosic biomass can be converted to useful energy products via two distinct pathways: enzymatic or thermochemical conversion. The thermochemical pathways are reviewed and potential biotechnology or breeding targets to improve feedstocks for pyrolysis, gasification, and combustion are identified. Biomass traits influencing the effectiveness of the thermochemical process (cell wall composition, mineral and moisture content) differ from those important for enzymatic conversion and so properties are discussed in the language of biologists (biochemical analysis) as well as that of engineers (proximate and ultimate analysis). We discuss the genetic control, potential environmental influence, and consequences of modification of these traits. Improving feedstocks for thermochemical conversion can be accomplished by the optimization of lignin levels, and the reduction of ash and moisture content. We suggest that ultimate analysis and associated properties such as H:C, O:C, and heating value might be more amenable than traditional biochemical analysis to the high-throughput necessary for the phenotyping of large plant populations. Expanding our knowledge of these biomass traits will play a critical role in the utilization of biomass for energy production globally, and add to our understanding of how plants tailor their composition with their environment.

  3. Enzymantic Conversion of Coal to Liquid Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Richard Troiano

    2011-01-31

    The work in this project focused on the conversion of bituminous coal to liquid hydrocarbons. The major steps in this process include mechanical pretreatment, chemical pretreatment, and finally solubilization and conversion of coal to liquid hydrocarbons. Two different types of mechanical pretreatment were considered for the process: hammer mill grinding and jet mill grinding. After research and experimentation, it was decided to use jet mill grinding, which allows for coal to be ground down to particle sizes of 5 {mu}m or less. A Fluid Energy Model 0101 JET-O-MIZER-630 size reduction mill was purchased for this purpose. This machine was completed and final testing was performed on the machine at the Fluid Energy facilities in Telford, PA. The test results from the machine show that it can indeed perform to the required specifications and is able to grind coal down to a mean particle size that is ideal for experimentation. Solubilization and conversion experiments were performed on various pretreated coal samples using 3 different approaches: (1) enzymatic - using extracellular Laccase and Manganese Peroxidase (MnP), (2) chemical - using Ammonium Tartrate and Manganese Peroxidase, and (3) enzymatic - using the live organisms Phanerochaete chrysosporium. Spectral analysis was used to determine how effective each of these methods were in decomposing bituminous coal. After analysis of the results and other considerations, such as cost and environmental impacts, it was determined that the enzymatic approaches, as opposed to the chemical approaches using chelators, were more effective in decomposing coal. The results from the laccase/MnP experiments and Phanerochaete chrysosporium experiments are presented and compared in this final report. Spectra from both enzymatic methods show absorption peaks in the 240nm to 300nm region. These peaks correspond to aromatic intermediates formed when breaking down the coal structure. The peaks then decrease in absorbance over time

  4. Balanced program plan. Volume IV. Coal conversion

    Energy Technology Data Exchange (ETDEWEB)

    Richmond, C. R.; Reichle, D. E.; Gehrs, C. W.

    1976-05-01

    This document contains a description of the biomedical and environmental research necessary to ensure the timely attainment of coal conversion technologies amenable to man and his environment. The document is divided into three sections. The first deals with the types of processes currently being considered for development; the data currently available on composition of product, process and product streams, and their potential effects; and problems that might arise from transportation and use of products. Section II is concerned with a description of the necessary research in each of the King-Muir categories, while the third section presents the research strategies necessary to assess the potential problems at the conversion plant (site specific) and those problems that might effect the general public and environment as a result of the operation of large-scale coal conversion plants. (auth)

  5. Environmental monitoring handbook for coal conversion facilities

    Energy Technology Data Exchange (ETDEWEB)

    Salk, M.S.; DeCicco, S.G. (eds.)

    1978-05-01

    The primary objectives of the Department of Energy's (DOE) coal conversion program are to demonstrate the environmental acceptability, technical feasibility, and economic viability of various technologies for gaseous, liquid, and solid fuels from coal. The Environmental Monitoring Handbook for Coal Conversion Facilities will help accomplish the objective of environmental acceptability by guiding the planning and execution of socioeconomic and environmental monitoring programs for demonstration facilities. These programs will provide information adequate to (1) predict, insofar as is possible, the potential impacts of construction and operation of a coal conversion plant, (2) verify the occurrence of these or any other impacts during construction and operation, (3) determine the adequacy of mitigating measures to protect the environment, (4) develop effluent source terms for process discharges, and (5) determine the effectiveness of pollution control equipment. Although useful in a variety of areas, the handbook is intended primarily for contractors who, as industrial partners with DOE, are building coal conversion plants. For the contractor it is a practical guide on (1) the methodology for developing site- and process-specific environmental monitoring programs, (2) state-of-the-art sampling and analytical techniques, and (3) impact analyses.To correspond to the phases of project activity, the subject matter is divided into four stages of monitoring: (1) a reconnaissance or synoptic survey, (2) preconstruction or baseline, (3) construction, and (4) operation, including process monitoring (prepared by Radian Corp., McLean, Va.). For each stage of monitoring, guidelines are given on socioeconomics, aquatic and terrestrial ecology, air quality and meteorology, surface and groundwater quality, geohydrology and soil survey, and surface water hydrology.

  6. Direct conversion of algal biomass to biofuel

    Science.gov (United States)

    Deng, Shuguang; Patil, Prafulla D; Gude, Veera Gnaneswar

    2014-10-14

    A method and system for providing direct conversion of algal biomass. Optionally, the method and system can be used to directly convert dry algal biomass to biodiesels under microwave irradiation by combining the reaction and combining steps. Alternatively, wet algae can be directly processed and converted to fatty acid methyl esters, which have the major components of biodiesels, by reacting with methanol at predetermined pressure and temperature ranges.

  7. CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS FUELS

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Kalyan Annamalai; Dr. John Sweeten; Dr. Sayeed Mukhtar

    2000-10-24

    The following are proposed activities for quarter 1 (6/15/00-9/14/00): (1) Finalize the allocation of funds within TAMU to co-principal investigators and the final task lists; (2) Acquire 3 D computer code for coal combustion and modify for cofiring Coal:Feedlot biomass and Coal:Litter biomass fuels; (3) Develop a simple one dimensional model for fixed bed gasifier cofired with coal:biomass fuels; and (4) Prepare the boiler burner for reburn tests with feedlot biomass fuels. The following were achieved During Quarter 5 (6/15/00-9/14/00): (1) Funds are being allocated to co-principal investigators; task list from Prof. Mukhtar has been received (Appendix A); (2) Order has been placed to acquire Pulverized Coal gasification and Combustion 3 D (PCGC-3) computer code for coal combustion and modify for cofiring Coal: Feedlot biomass and Coal: Litter biomass fuels. Reason for selecting this code is the availability of source code for modification to include biomass fuels; (3) A simplified one-dimensional model has been developed; however convergence had not yet been achieved; and (4) The length of the boiler burner has been increased to increase the residence time. A premixed propane burner has been installed to simulate coal combustion gases. First coal, as a reburn fuel will be used to generate base line data followed by methane, feedlot and litter biomass fuels.

  8. Materials for coal conversion and utilization

    Energy Technology Data Exchange (ETDEWEB)

    None,

    1981-01-01

    The Sixth annual conference on materials for coal conversion and utilization was held October 13-15, 1981 at the National Bureau of Standards Gaithersburg, Maryland. It was sponsored by the US Department of Energy, the Electric Power Research Institute, the Gas Research Institute and the National Bureau of Standards. Fifty-eight papers from the proceedings have been entered individually into EDB and ERA; four papers had been entered previously from other sources. (LTN)

  9. Sixth underground coal-conversion symposium

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    The sixth annual underground coal conversion symposium was held at Shangri-la near Afton, Oklahoma, July 13 to 17, 1980. Sessions were developed to: Doe Field Programs, Major Industry Activity, Mathematical Modeling, Laboratory Studies, Environmental Studies, Economics, Instruments and Controls, and General Topics. Fifty-two papers from the proceedings have been entered individually into EDB and ERA. Thirteen papers had been entered previously from other sources. (LTN)

  10. Analysis of coals and biomass pyrolysis using the distributed activation energy model.

    Science.gov (United States)

    Li, Zhengqi; Liu, Chunlong; Chen, Zhichao; Qian, Juan; Zhao, Wei; Zhu, Qunyi

    2009-01-01

    The thermal decomposition of coals and biomass was studied using thermogravimetric analysis with the distributed activation energy model. The integral method resulted in Datong bituminous coal conversions of 3-73% at activation energies of 100-486 kJ/mol. The corresponding frequency factors were e(19.5)-e(59.0)s(-1). Jindongnan lean coal conversions were 8-52% at activation energies of 100-462 kJ/mol. Their corresponding frequency factors were e(13.0)-e(55.8)s(-1). The conversion of corn-stalk skins were 1-84% at activation energies of 62-169 kJ/mol with frequency factors of e(10.8)-e(26.5)s(-1). Datong bituminous coal, Jindongnan lean coal and corn-stalk skins had approximate Gaussian distribution functions with linear ln k(0) to E relationships.

  11. Biomass Conversion over Heteropoly Acid Catalysts

    KAUST Repository

    Zhang, Jizhe

    2015-04-01

    Biomass is a natural resource that is both abundant and sustainable. Its efficient utilization has long been the focus of research and development efforts with the aim to substitute it for fossil-based feedstock. In addition to the production of biofuels (e.g., ethanol) from biomass, which has been to some degree successful, its conversion to high value-added chemicals is equally important. Among various biomass conversion pathways, catalytic conversion is usually preferred, as it provides a cost-effective and eco-benign route to the desired products with high selectivities. The research of this thesis is focused on the conversion of biomass to various chemicals of commercial interest by selective catalytic oxidation. Molecular oxygen is chosen as the oxidant considering its low cost and environment friendly features in comparison with commonly used hydrogen peroxide. However, the activation of molecular oxygen usually requires high reaction temperatures, leading to over oxidation and thus lower selectivities. Therefore, it is highly desirable to develop effective catalysts for such conversion systems. We use kegging-type heteropoly acids (HPAs) as a platform for catalysts design because of their high catalytic activities and ease of medication. Using HPA catalysts allows the conversion taking place at relatively low temperature, which is beneficial to saving production cost as well as to improving the reaction selectivity. The strong acidity of HPA promotes the hydrolysis of biomass of giant molecules (e.g. cellulose), which is the first as well as the most difficult step in the conversion process. Under certain circumstances, a HPA combines the merits of homogeneous and heterogeneous catalysts, acting as an efficient homogeneous catalyst during the reaction while being easily separated as a heterogeneous catalyst after the reaction. We have successfully applied HPAs in several biomass conversion systems. Specially, we prepared a HPA-based bi-functional catalyst

  12. CFD Studies on Biomass Thermochemical Conversion

    Directory of Open Access Journals (Sweden)

    Lifeng Yan

    2008-06-01

    Full Text Available Thermochemical conversion of biomass offers an efficient and economically process to provide gaseous, liquid and solid fuels and prepare chemicals derived from biomass. Computational fluid dynamic (CFD modeling applications on biomass thermochemical processes help to optimize the design and operation of thermochemical reactors. Recent progression in numerical techniques and computing efficacy has advanced CFD as a widely used approach to provide efficient design solutions in industry. This paper introduces the fundamentals involved in developing a CFD solution. Mathematical equations governing the fluid flow, heat and mass transfer and chemical reactions in thermochemical systems are described and sub-models for individual processes are presented. It provides a review of various applications of CFD in the biomass thermochemical process field.

  13. Co-firing of biomass with coal: constraints and role of biomass pretreatment

    NARCIS (Netherlands)

    Maciejewska, A.K.; Veringa, H.; Sanders, J.P.M.; Peteves, S.D.

    2006-01-01

    This report aims at introducing the aspects of co-firing of biomass with coal. The main focus is given to problems and constraints related to utilizing biomass together with coal for power generation, and the potential of biomass pre-treatment in mitigating these constraints. The work is based on a

  14. Processing woody debris biomass for co-milling with pulverized coal

    Science.gov (United States)

    Dana Mitchell; Bob Rummer

    2007-01-01

    The USDA, Forest Service, Forest Products Lab funds several grants each year for the purpose of studying woody biomass utilization. One selected project proposed removing small diameter stems and unmerchantable woody material from National Forest lands and delivering it to a coal-fired power plant in Alabama for energy conversion. The Alabama Power Company...

  15. Biomass Thermochemical Conversion Program. 1983 Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1984-08-01

    Highlights of progress achieved in the program of thermochemical conversion of biomass into clean fuels during 1983 are summarized. Gasification research projects include: production of a medium-Btu gas without using purified oxygen at Battelle-Columbus Laboratories; high pressure (up to 500 psia) steam-oxygen gasification of biomass in a fluidized bed reactor at IGT; producing synthesis gas via catalytic gasification at PNL; indirect reactor heating methods at the Univ. of Missouri-Rolla and Texas Tech Univ.; improving the reliability, performance, and acceptability of small air-blown gasifiers at Univ. of Florida-Gainesville, Rocky Creek Farm Gasogens, and Cal Recovery Systems. Liquefaction projects include: determination of individual sequential pyrolysis mechanisms at SERI; research at SERI on a unique entrained, ablative fast pyrolysis reactor for supplying the heat fluxes required for fast pyrolysis; work at BNL on rapid pyrolysis of biomass in an atmosphere of methane to increase the yields of olefin and BTX products; research at the Georgia Inst. of Tech. on an entrained rapid pyrolysis reactor to produce higher yields of pyrolysis oil; research on an advanced concept to liquefy very concentrated biomass slurries in an integrated extruder/static mixer reactor at the Univ. of Arizona; and research at PNL on the characterization and upgrading of direct liquefaction oils including research to lower oxygen content and viscosity of the product. Combustion projects include: research on a directly fired wood combustor/gas turbine system at Aerospace Research Corp.; adaptation of Stirling engine external combustion systems to biomass fuels at United Stirling, Inc.; and theoretical modeling and experimental verification of biomass combustion behavior at JPL to increase biomass combustion efficiency and examine the effects of additives on combustion rates. 26 figures, 1 table.

  16. Grindability and combustion behavior of coal and torrefied biomass blends.

    Science.gov (United States)

    Gil, M V; García, R; Pevida, C; Rubiera, F

    2015-09-01

    Biomass samples (pine, black poplar and chestnut woodchips) were torrefied to improve their grindability before being combusted in blends with coal. Torrefaction temperatures between 240 and 300 °C and residence times between 11 and 43 min were studied. The grindability of the torrefied biomass, evaluated from the particle size distribution of the ground sample, significantly improved compared to raw biomass. Higher temperatures increased the proportion of smaller-sized particles after grinding. Torrefied chestnut woodchips (280 °C, 22 min) showed the best grinding properties. This sample was blended with coal (5-55 wt.% biomass). The addition of torrefied biomass to coal up to 15 wt.% did not significantly increase the proportion of large-sized particles after grinding. No relevant differences in the burnout value were detected between the coal and coal/torrefied biomass blends due to the high reactivity of the coal. NO and SO2 emissions decreased as the percentage of torrefied biomass in the blend with coal increased. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Co-gasification of coal and biomass: Synergy, characterization and reactivity of the residual char.

    Science.gov (United States)

    Hu, Junhao; Shao, Jingai; Yang, Haiping; Lin, Guiying; Chen, Yingquan; Wang, Xianhua; Zhang, Wennan; Chen, Hanping

    2017-11-01

    The synergy effect between coal and biomass in their co-gasification was studied in a vertical fixed bed reactor, and the physic-chemical structural characteristics and gasification reactivity of the residual char obtained from co-gasification were also investigated. The results shows that, conversion of the residual char and tar into gas is enhanced due to the synergy effect between coal and biomass. The physical structure of residual char shows more pore on coal char when more biomass is added in the co-gasification. The migration of inorganic elements between coal and biomass was found, the formation and competitive role of K 2 SiO 3 , KAlSiO 4 , and Ca 3 Al 2 (SiO 4 ) 3 is a mechanism behind the synergy. The graphization degree is enhanced but size of graphite crystallite in the residual char decreases with biomass blending ratio increasing. TGA results strongly suggest the big difference in the reactivity of chars derived from coal and biomass in spite of influence from co-gasification. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Comparative study of coal and biomass co-combustion with coal burning separately through emissions analysis

    International Nuclear Information System (INIS)

    Siddique, M.; Asadullah, A.; Khan, G.; Soomro, S.A.

    2016-01-01

    Appropriate eco-friendly methos to mitigate the problem of emissions from combustion of fossil fuel are highly demanded. The current study was focused on the effect of using coal and coal biomass co-combustion on the gaseous emissions. Different biomass were used along with coal. The coal used was lignite coal and the biomass' were tree waste, cow dung and banana tree leaves Various ratios of coal and biomass were used to investigate the combustion behavior of coal cow dung and 100% banana tree leaves emits less emission of CO, CO/sub 2/, NOx and SO/sub 2/ as compared to 100% coal, Maximum amount of CO emission were 1510.5 ppm for bannana tree waste and minimum amount obtained for lakhra coal and cow dung manure (70:30) of 684.667 leaves (90:10) and minimum amount of SO/sub 2/ present in samples is in lakhra coal-banana tree waste (80:20). The maximum amount of NO obtained for banana tree waste were 68 ppm whereas amount from cow dung manure (30.83 ppm). The study concludes that utilization of biomass with coal could make remedial action against environment pollution. (author)

  19. Biogenic coal-to-methane conversion efficiency decreases after repeated organic amendment

    Science.gov (United States)

    Davis, Katherine J.; Barnhart, Elliott P.; Fields, Matthew W.; Gerlach, Robin

    2018-01-01

    Addition of organic amendments to coal-containing systems can increase the rate and extent of biogenic methane production for 60–80 days before production slows or stops. Understanding the effect of repeated amendment additions on the rate and extent of enhanced coal-dependent methane production is important if biological coal-to-methane conversion is to be enhanced on a commercial scale. Microalgal biomass was added at a concentration of 0.1 g/L to microcosms with and without coal on days 0, 76, and 117. Rates of methane production were enhanced after the initial amendment but coal-containing treatments produced successively decreasing amounts of methane with each amendment. During the first amendment period, 113% of carbon added as amendment was recovered as methane, whereas in the second and third amendment periods, 39% and 32% of carbon added as amendment was recovered as methane, respectively. Additionally, algae-amended coal treatments produced ∼38% more methane than unamended coal treatments and ∼180% more methane than amended coal-free treatments after one amendment. However, a second amendment addition resulted in only an ∼25% increase in methane production for coal versus noncoal treatments and a third amendment addition resulted in similar methane production in both coal and noncoal treatments. Successive amendment additions appeared to result in a shift from coal-to-methane conversion to amendment-to-methane conversion. The reported results indicate that a better understanding is needed of the potential impacts and efficiencies of repeated stimulation for enhanced coal-to-methane conversion.

  20. Studying the melting behavior of coal, biomass, and coal/biomass ash using viscosity and heated stage XRD data

    DEFF Research Database (Denmark)

    Arvelakis, Stelios; Folkedahl, B.; Dam-Johansen, Kim

    2006-01-01

    a high-temperature rotational viscometer and a hot stage XRD. The produced data were used to calculate the operating temperature of a pilot-scale entrained flow reactor during the cocombustion of biomass/ coal samples in order to ensure the slag flow and to avoid corrosion of the walls due to liquid slag...... unscheduled shutdowns, decreasing the availability and increasing the cost of the produced power. In addition, the fouling of the heat exchange surfaces reduces the system efficiency. In this work the melting and rheological properties of various biomass and biomass/ coal ash samples were studied by using....../metal interaction. Biomass ash proved to have significantly different melting behavior compared to that of the coal ash. Furthermore, the addition of biomass to coal ash led to lower viscosity and subsequently to higher stickiness of the produced ash particles. The melting behavior of the slag generated...

  1. Measurement and modeling of advanced coal conversion processes

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G. (Advanced Fuel Research, Inc., East Hartford, CT (United States)); Smoot, L.D.; Brewster, B.S. (Brigham Young Univ., Provo, UT (United States))

    1991-09-25

    The objectives of this study are to establish the mechanisms and rates of basic steps in coal conversion processes, to integrate and incorporate this information into comprehensive computer models for coal conversion processes, to evaluate these models and to apply them to gasification, mild gasification and combustion in heat engines. (VC)

  2. Comparative Study of Coal and Biomass Co-Combustion With Coal Burning Separately Through Emissions Analysis

    Directory of Open Access Journals (Sweden)

    Mohammad Siddique

    2016-06-01

    Full Text Available Appropriate eco-friendly methods to mitigate the problem of emissions from combustion of fossil fuel are highly demanded. The current study was focused on the effect of using coal & coal-biomass co-combustion on the gaseous emissions. Different biomass' were used along with coal. The coal used was lignite coal and the biomass' were tree waste, cow dung and banana tree leaves. Various ratios of coal and biomass were used to investigate the combustion behavior of coal-biomass blends and their emissions. The study revealed that the ratio of 80:20 of coal (lignite-cow dung and 100% banana tree leaves emits less emissions of CO, CO2, NOx and SO2 as compared to 100% coal. Maximum amount of CO emissions were 1510.5 ppm for banana tree waste and minimum amount obtained for lakhra coal and cow dung manure (70:30 of 684.667 ppm. Maximum percentage of SO2 (345.33 ppm was released from blend of lakhra coal and tree leaves (90:10 and minimum amount of SO2 present in samples is in lakhra coal-banana tree waste (80:20. The maximum amount of NO obtained for banana tree waste were 68 ppm whereas maximum amount of NOx was liberated from lakhra coal-tree leaves (60:40 and minimum amount from cow dung manure (30.83 ppm. The study concludes that utilization of biomass with coal could make remedial action against environment pollution.

  3. Synergetic and inhibition effects in carbon dioxide gasification of blends of coals and biomass fuels of Indian origin.

    Science.gov (United States)

    Satyam Naidu, V; Aghalayam, P; Jayanti, S

    2016-06-01

    The present study investigates the enhancement of CO2 gasification reactivity of coals due to the presence of catalytic elements in biomass such as K2O, CaO, Na2O and MgO. Co-gasification of three Indian coal chars with two biomass chars has been studied using isothermal thermogravimetric analysis (TGA) in CO2 environment at 900, 1000 and 1100°C. The conversion profiles have been used to establish synergetic or inhibitory effect on coal char reactivity by the presence of catalytic elements in biomass char by comparing the 90% conversion time with and without biomass. It is concluded that both biomasses exhibit synergistic behavior when blended with the three coals with casuarina being more synergetic than empty fruit bunch. Some inhibitory effect has been noted for the high ash coal at the highest temperature with higher 90% conversion time for the blend over pure coal, presumably due to diffusional control of the conversion rate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. The carbon dioxide gasification characteristics of biomass char samples and their effect on coal gasification reactivity during co-gasification.

    Science.gov (United States)

    Mafu, Lihle D; Neomagus, Hein W J P; Everson, Raymond C; Okolo, Gregory N; Strydom, Christien A; Bunt, John R

    2017-12-18

    The carbon dioxide gasification characteristics of three biomass char samples and bituminous coal char were investigated in a thermogravimetric analyser in the temperature range of 850-950 °C. Char SB exhibited higher reactivities (R i , R s , R f ) than chars SW and HW. Coal char gasification reactivities were observed to be lower than those of the three biomass chars. Correlations between the char reactivities and char characteristics were highlighted. The addition of 10% biomass had no significant impact on the coal char gasification reactivity. However, 20 and 30% biomass additions resulted in increased coal char gasification rate. During co-gasification, chars HW and SW caused increased coal char gasification reactivity at lower conversions, while char SB resulted in increased gasification rates throughout the entire conversion range. Experimental data from biomass char gasification and biomass-coal char co-gasification were well described by the MRPM, while coal char gasification was better described by the RPM. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Conversion of Lignocellulosic Bagasse Biomass into Hydrogel

    Directory of Open Access Journals (Sweden)

    Farzaneh Amiri

    2016-11-01

    Full Text Available In recent years, the main objective of developing new hydrogel systems has been to convert biomass into environmentally-friendly hydrogels. Hybrid hydrogels are usually prepared by graft copolymerization of acrylic monomers onto natural polymers or biomass. In this study, sugarcane bagasse was used to prepare semi-synthetic hybrid hydrogels without delignification, which is a costly and timeconsuming process. Sugarcane bagasse as a source of polysaccharide was modified using polymer microgels based on acrylic monomers such as acrylic acid, acrylamide and 2-acrylamido-2-methyl propane sulfonic acid which were prepared through inverse emulsion polymerization. By this process, biomass as a low-value by-product was converted into a valuable semi-synthetic hydrogel. In the following, the effect of latex type¸ the aqueous-to-organic phase ratio in the polymer latex, time and temperature of modification reaction on the swelling capacity of the hybrid hydrogel were evaluated. The chemical reaction between sugarcane bagasse and acrylic latex was carried out during heating of the modified bagasse which led to obtain a semisynthetic hydrogel with 60% natural components and 40% synthetic components. Among the latexes with different structures, poly(AA-NaAA-AM-AMPS was the most suitable polymer latex for the conversion of biomass into hydrogel. The bagasse modified with this latex had a water absorption capacity up to 112 g/g, while the water absorption capacity of primary sugarcane bagasse was only equal to 3.6 g/g. The prepared polymer hydrogels were characterized using Fourier transform infrared spectroscopy (FTIR, dynamic-mechanical thermal analysis (DMTA, thermal gravimetric analysis (TGA, scanning electron microscopy (SEM and determination of the amount of swelling capacity.

  6. Advanced Coal Conversion Process Demonstration: A DOE Assessment

    Energy Technology Data Exchange (ETDEWEB)

    National Energy Technology Laboratory

    2005-04-01

    The objective of this project was to demonstrate a process for upgrading subbituminous coal by reducing its moisture and sulfur content and increasing its heating value using the Advanced Coal Conversion Process (ACCP) unit. The ACCP unit, with a capacity of 68.3 tons of feed coal per hour (two trains of 34 tons/hr each), was located next to a unit train loading facility at WECo's Rosebud Coal Mine near Colstrip, Montana. Most of the coal processed was Rosebud Mine coal, but several other coals were also tested. The SynCoal® produced was tested both at utilities and at several industrial sites. The demonstration unit was designed to handle about one tenth of the projected throughput of a commercial facility.

  7. A comparative experimental study of biomass, lignite and hard coal steam gasification

    Energy Technology Data Exchange (ETDEWEB)

    Smolinski, A.; Howaniec, N.; Stanczyk, K. [Central Mining Institute, Katowice (Poland)

    2011-06-15

    In the paper the results of experimental comparative study on steam gasification of lignite, hard coal and energy crops, such as Spartina pectinata, Helianthus tuberosus L, Sida hermaphrodita R. and Miscanthus X Giganteus in a laboratory-scale fixed bed reactor at the temperature of 700 {sup o}C were presented. The effectiveness of steam gasification in terms of gas flows, composition and carbon conversion was tested. The ability of coal and biomass to undergo thermochemical transformations was determined based on their chars reactivities. The tested biomass samples were relatively more reactive but produced less synthesis gas and of lower calorific value. Comparison of the reactivities and other physical and chemical properties of coals and biomass, selected based on the gasification process requirements, with a use of the principal component analysis showed that biomass samples differ from the remaining samples due to the highest content of volatiles, oxygen and hydrogen in a sample and the highest amount of carbon dioxide in produced synthesis gas. Hard coals were characterized by the lowest carbon conversion and reactivities R{sub 50} and R{sub max}. Moreover, the negative correlation between the reactivity and the heat of combustion, calorific value, carbon content in a sample and total gas yield produced in the process as well as a positive correlation between R{sub 50} and R{sub max} and volatiles, oxygen content in a sample and carbon dioxide concentration in produced gas were observed.

  8. The effect of Jatropha torrified biomass and coal preparation on steam co-gasification in a fixed bed reactor

    Science.gov (United States)

    Aloqaili, Mashal Mohammed

    Coal fired power stations produce vast amounts of harmful products that may affect our health and environment. Co-gasification of coal and biomass could be a solution to this issue as an emerging technology. Biomass may reduce emissions significantly and it may contribute to reducing capital operational cost while providing high gas yields. This research tests the co-gasification of coal and biomass blended chars. Coal and biomass were both prepared. Coal Illinois No #6 was prepared as coal semi-char and coal-char while Jatropha biomass was torrefied at six different temperatures ranging from [200-300] ºC. The co-gasification experiments was conducted in a fixed-bed reactor. A gasification temperature was 900 ºC and a constant flow rate of 100 mL/min. Carbon conversion, maximum char reactivity, products yield and amount of hydrogen produced were evaluated and studied based on data obtained from the G.C. Additionally, weight of bed material and ash leftover weight from gasification process were significantly contributed in calculating the carbon conversion percentages.

  9. Measurement and modeling of advanced coal conversion processes

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G.; Smoot, L.D.; Brewster, B.S. (Advanced Fuel Research, Inc., East Hartford, CT (United States) Brigham Young Univ., Provo, UT (United States))

    1991-01-01

    The overall objective of this program is the development of predictive capability for the design, scale up, simulation, control and feedstock evaluation in advanced coal conversion devices. This program will merge significant advances made in measuring and quantitatively describing the mechanisms in coal conversion behavior. Comprehensive computer codes for mechanistic modeling of entrained-bed gasification. Additional capabilities in predicting pollutant formation will be implemented and the technology will be expanded to fixed-bed reactors.

  10. Microbiological desulfurization and conversion of coal

    International Nuclear Information System (INIS)

    Quigley, D.R.; Stoner, D.L.; Dugan, P.R.

    1991-01-01

    Bio processing of coal is a young and emerging technology. Until the early 1980's it consisted primarily of coal depyritization using Thiobacillus ferro oxidans to either oxidize pyritic sulfur or to alter particle wettability or floatation properties by binding to exposed pyrite inclusions. Since then, other major avenues of research have been pursued. One of these is the microbiologically mediated liquefaction of coal. Initial work indicated that microorganisms were able to transform low rank coal into a black liquid that was later identified as water solubilized by alkaline substances produced by the microbes and could be enhanced by the removal of multi valent cations from coal. Current work at the INEL involves of the identification and characterization of microorganisms that are able to alter the structure of polymeric desulfurization of coal. This work initially focused on the ability of microorganisms to oxidatively remove organic sulfur from model compounds that were representative of those sulfur containing moieties identified as being in coals (e.g., dibenzo thiophene). The work also focused on those organisms that were could remove the organic sulfur without degrading the carbon structure. While some organisms that are able to perform such these reactions will effectively remove organo sulfur from coal. These concerns stem from steric hindrance considerations and the thermodynamically unfavourable nature of reaction. Current work at the INEL involves the isolation and biochemical characterization of microorganisms that are able to desulfurize and solubilized coals that have high organic sulfur contents. (author)

  11. Co-pyrolysis characteristic of biomass and bituminous coal.

    Science.gov (United States)

    Li, Shuaidan; Chen, Xueli; Liu, Aibin; Wang, Li; Yu, Guangsuo

    2015-03-01

    Co-pyrolysis characteristics of biomass and bituminous coal have been studied in this work. The temperature was up to 900°C with the heating rates of 10, 15, 20, 25 and 30°C/min. Rice straw, saw dust, microcrystalline cellulose, lignin and Shenfu bituminous coal were chosen as samples. Six different biomass ratios were used. The individual thermal behavior of each sample was obtained. The experimental weight fractions of the blended samples and the calculated values were compared. The results show that the weight fractions of the blended samples behave differently with calculated ones during the co-pyrolysis process. With the increasing biomass ratio, relative deviations between experimental weight fractions and calculated ones are larger. H/C molar ratio, heat transfer properties of biomass would affect to the interaction between biomass and coal. The maximum degradation rates are slower than the calculated ones. The activation energy distributions also changed by adding some biomass into coal. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Process and apparatus for the conversion of biomass

    NARCIS (Netherlands)

    Bakker, R.R.C.; Hazewinkel, J.H.O.; Groenestijn, van J.W.

    2008-01-01

    The invention is directed to a process for the conversion of cellulosic biomass, in particular lignocellulose-containing biomass into fermentable sugars. The invention is further directed to apparatus suitable for carrying out such processes. According to the invention biomass is converted into

  13. Achieving sustainable biomass conversion to energy and bio products

    International Nuclear Information System (INIS)

    Matteson, G. C.

    2009-01-01

    The present effort in to maximize biomass conversion-to-energy and bio products is examined in terms of sustain ability practices. New goals, standards in practice, measurements and certification are needed for the sustainable biomass industry. Sustainable practices produce biomass energy and products in a manner that is secure, renewable, accessible locally, and pollution free. To achieve sustainable conversion, some new goals are proposed. (Author)

  14. Zeolite-catalyzed biomass conversion to fuels and chemicals

    DEFF Research Database (Denmark)

    Taarning, Esben; Osmundsen, Christian Mårup; Yang, Xiaobo

    2011-01-01

    Heterogeneous catalysts have been a central element in the efficient conversion of fossil resources to fuels and chemicals, but their role in biomass utilization is more ambiguous. Zeolites constitute a promising class of heterogeneous catalysts and developments in recent years have demonstrated...... their potential to find broad use in the conversion of biomass. In this perspective we review and discuss the developments that have taken place in the field of biomass conversion using zeolites. Emphasis is put on the conversion of lignocellulosic material to fuels using conventional zeolites as well...

  15. One-pot conversion of biomass to chemicals

    OpenAIRE

    Baumgarten, Björn Frederik

    2017-01-01

    One-pot conversion of biomass to diols can be a simple and fast alternative to other methods of biomass conversion. The catalyst for this conversion is required to be bifunctional, catalysing both hydrogenation and retro-aldol condensations. Hydrogenation is realized by usage of transition metals like Ru, Ni and alternativly copper. Retro-aldol condensations are catalyzed by various tungsten compounds, amphoteric and basic metal oxides or basic sites. New amphoteric and basic catalysts ...

  16. Coal liquefaction and gas conversion contractors review conference: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    This volume contains 55 papers presented at the conference. They are divided into the following topical sections: Direct liquefaction; Indirect liquefaction; Gas conversion (methane conversion); and Advanced research liquefaction. Papers in this last section deal mostly with coprocessing of coal with petroleum, plastics, and waste tires, and catalyst studies. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  17. Complete biocycle for solar energy conversion, storage, fuel and power generation, and coal conservation for future use

    International Nuclear Information System (INIS)

    Srivastava, S.C.

    1993-01-01

    A complete carbon biocycle has been described, starting from coal in in situ condition in coal seams underground. Various steps involved are: (i) Biogasification of coal to methane, using a consortia of bacteria, has been reported. A group of bacteria degrades complex structure of coal to simpler structure. This simpler structure of coal, is then converted to methane by methanogens; (ii) Biophotolysis of methane and associated biodegradation, results in products, such as hydrogen and oxygen for use in fuel cells for power generation; (iii) Bioconversion of products so obtained is carried out to produce methanol or methane that could be used as fuel or recycled; (iv) In complete biocycle some methane is converted to biomass. In order to replace this methane, coal is converted to methane using group of bacteria, only to the extent methane has been converted to biomass; (v) The biomass so produced could be dumped underground from where coal has been gasified. Alternatively it could be burnt as fuel or else used as substitute of protein in animal food. Detailed concept of proposed technology for: (a) an alternative to conventional coal mining, (b) generation of power using products of bioconversion in fuel cell, and (c) conversation of solar energy for generation of alternative source of fuel and power, has been discussed. Possibility of developing a biofuel cell for conversion of solar energy through bioelectrochemical route has been suggested. (author). 48 refs., 3 figs

  18. Sustainable Transportation Fuels from Natural Gas (H{sub 2}), Coal and Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, Gerald

    2012-12-31

    This research program is focused primarily on the conversion of coal, natural gas (i.e., methane), and biomass to liquid fuels by Fischer-Tropsch synthesis (FTS), with minimum production of carbon dioxide. A complementary topic also under investigation is the development of novel processes for the production of hydrogen with very low to zero production of CO{sub 2}. This is in response to the nation's urgent need for a secure and environmentally friendly domestic source of liquid fuels. The carbon neutrality of biomass is beneficial in meeting this goal. Several additional novel approaches to limiting carbon dioxide emissions are also being explored.

  19. Product Characterization for Entrained Flow Coal/Biomass Co-Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Maghzi, Shawn; Subramanian, Ramanathan; Rizeq, George; Singh, Surinder; McDermott, John; Eiteneer, Boris; Ladd, David; Vazquez, Arturo; Anderson, Denise; Bates, Noel

    2011-09-30

    The U.S. Department of Energy‘s National Energy Technology Laboratory (DOE NETL) is exploring affordable technologies and processes to convert domestic coal and biomass resources to high-quality liquid hydrocarbon fuels. This interest is primarily motivated by the need to increase energy security and reduce greenhouse gas emissions in the United States. Gasification technologies represent clean, flexible and efficient conversion pathways to utilize coal and biomass resources. Substantial experience and knowledge had been developed worldwide on gasification of either coal or biomass. However, reliable data on effects of blending various biomass fuels with coal during gasification process and resulting syngas composition are lacking. In this project, GE Global Research performed a complete characterization of the gas, liquid and solid products that result from the co-gasification of coal/biomass mixtures. This work was performed using a bench-scale gasifier (BSG) and a pilot-scale entrained flow gasifier (EFG). This project focused on comprehensive characterization of the products from gasifying coal/biomass mixtures in a high-temperature, high-pressure entrained flow gasifier. Results from this project provide guidance on appropriate gas clean-up systems and optimization of operating parameters needed to develop and commercialize gasification technologies. GE‘s bench-scale test facility provided the bulk of high-fidelity quantitative data under temperature, heating rate, and residence time conditions closely matching those of commercial oxygen-blown entrained flow gasifiers. Energy and Environmental Research Center (EERC) pilot-scale test facility provided focused high temperature and pressure tests at entrained flow gasifier conditions. Accurate matching of syngas time-temperature history during cooling ensured that complex species interactions including homogeneous and heterogeneous processes such as particle nucleation, coagulation, surface condensation, and

  20. Product Characterization for Entrained Flow Coal/Biomass Co-Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Maghzi, Shawn [General Electric Global Research, Niskayuna, NY (United States); Subramanian, Ramanathan [General Electric Global Research, Niskayuna, NY (United States); Rizeq, George [General Electric Global Research, Niskayuna, NY (United States); Singh, Surinder [General Electric Global Research, Niskayuna, NY (United States); McDermott, John [General Electric Global Research, Niskayuna, NY (United States); Eiteneer, Boris [General Electric Global Research, Niskayuna, NY (United States); Ladd, David [General Electric Global Research, Niskayuna, NY (United States); Vazquez, Arturo [General Electric Global Research, Niskayuna, NY (United States); Anderson, Denise [General Electric Global Research, Niskayuna, NY (United States); Bates, Noel [General Electric Global Research, Niskayuna, NY (United States)

    2011-12-11

    The U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) is exploring affordable technologies and processes to convert domestic coal and biomass resources to high-quality liquid hydrocarbon fuels. This interest is primarily motivated by the need to increase energy security and reduce greenhouse gas emissions in the United States. Gasification technologies represent clean, flexible and efficient conversion pathways to utilize coal and biomass resources. Substantial experience and knowledge had been developed worldwide on gasification of either coal or biomass. However, reliable data on effects of blending various biomass fuels with coal during gasification process and resulting syngas composition are lacking. In this project, GE Global Research performed a complete characterization of the gas, liquid and solid products that result from the co-gasification of coal/biomass mixtures. This work was performed using a bench-scale gasifier (BSG) and a pilot-scale entrained flow gasifier (EFG). This project focused on comprehensive characterization of the products from gasifying coal/biomass mixtures in a high-temperature, high-pressure entrained flow gasifier. Results from this project provide guidance on appropriate gas clean-up systems and optimization of operating parameters needed to develop and commercialize gasification technologies. GE's bench-scale test facility provided the bulk of high-fidelity quantitative data under temperature, heating rate, and residence time conditions closely matching those of commercial oxygen-blown entrained flow gasifiers. Energy and Environmental Research Center (EERC) pilot-scale test facility provided focused high temperature and pressure tests at entrained flow gasifier conditions. Accurate matching of syngas time-temperature history during cooling ensured that complex species interactions including homogeneous and heterogeneous processes such as particle nucleation, coagulation, surface condensation

  1. Synergistic effect on thermal behavior during co-pyrolysis of lignocellulosic biomass model components blend with bituminous coal.

    Science.gov (United States)

    Wu, Zhiqiang; Wang, Shuzhong; Zhao, Jun; Chen, Lin; Meng, Haiyu

    2014-10-01

    Co-thermochemical conversion of lignocellulosic biomass and coal has been investigated as an effective way to reduce the carbon footprint. Successful evaluating on thermal behavior of the co-pyrolysis is prerequisite for predicting performance and optimizing efficiency of this process. In this paper, pyrolysis and kinetics characteristics of three kinds of lignocellulosic biomass model components (cellulose, hemicellulose, and lignin) blended with a kind of Chinese bituminous coal were explored by thermogravimetric analyzer and Kissinger-Akahira-Sunose method. The results indicated that the addition of model compounds had different synergistic effects on thermal behavior of the bituminous coal. The cellulose showed positive synergistic effects on the thermal decomposition of the coal bituminous coal with lower char yield than calculated value. For hemicellulose and lignin, whether positive or negative synergistic was related to the mixed ratio and temperature range. The distribution of the average activation energy values for the mixtures showed nonadditivity performance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Conversion of Coal Mine Gas to LNG

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-02-05

    This project evolved from a 1995, DOE-NETL competitive solicitation for practical CMM capture and utilization concepts. Appalachian Pacific was one of three companies selected to proceed with the construction and operation of a cost-shared demonstration plant. In the course of trying to proceed with this demonstration plant, AP examined several liquefaction technologies, discussed obtaining rights to coal mine methane with a number of coal companies, explored marketing potential with a wide variety of customers in many sections of the United States, studied in great detail the impact of a carbon credit exchange, and developed a suite of analytical tools with which to evaluate possible project options. In the end, the newness of the product, reluctance on the part of the coal companies to venture away from time tested practices, difficulty with obtaining financing, the failure of a carbon credit market to develop and the emergence of shale derived gas production prevented a demonstration plant from being built.

  3. Economics of coal conversion processing. Advances in coal gasification: support research. Advances in coal gasification: process development and analysis

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    The fall meeting of the American Chemical Society, Division of Fuel Chemistry, was held at Miami Beach, Florida, September 10-15, 1978. Papers involved the economics of coal conversion processing and advances in coal gasification, especially support research and process development and analysis. Fourteen papers have been entered individually into EDB and ERA; three papers had been entered previously from other sources. (LTN)

  4. COFIRING BIOMASS WITH LIGNITE COAL; F

    International Nuclear Information System (INIS)

    Darren D. Schmidt

    2001-01-01

    As of September 28, 2001, all the major project tasks have been completed. A presentation was given to the North Dakota State Penitentiary (NDSP) and the North Dakota Division of Community Services (DCS). In general, the feasibility study has resulted in the following conclusions: (1) Municipal wood resources are sufficient to support cofiring at the NDSP. (2) Steps have been taken to address all potential fuel-handling issues with the feed system design, and the design is cost-effective. (3) Fireside issues of cofiring municipal wood with coal are not of significant concern. In general, the addition of wood will improve the baseline performance of lignite coal. (4) The energy production strategy must include cogeneration using steam turbines. (5) Environmental permitting issues are small and do not affect economics. (6) The base-case economic scenario provides for a 15-year payback of a 20-year municipal bond and does not include the broader community benefits that can be realized

  5. Survey of industrial coal conversion equipment capabilities: rotating components

    Energy Technology Data Exchange (ETDEWEB)

    Williams, W. R.; Horton, J. R.; Boudreau, W. F.; Siman-Tov, M.

    1978-04-01

    At the request of the Major Facilities Project Management Division of the Energy Research and Development Administration, Fossil Energy Division, a study was undertaken to determine the capabilities of U.S. industry to supply the rotating equipment needed for future coal conversion facilities. Furthermore, problem areas were to be identified and research and development needs determined for producing advanced designs of the required equipment: Pumps, compressors, hydraulic turbines, and gas expanders. It has been concluded that equipment for essentially all clean-stream applications likely to be encountered in coal conversion facilities is generally available except high-pressure oxygen compressors. These oxygen compressors as well as slurry pumps need to be developed or significantly upgraded. Also, fans and blower for dirty-gas streams need developmental work, as do expanders for high-temperature service. Hydraulic turbines, which were not specified but which might be used for slurry applications in future coal conversion plants, are not available.

  6. Biomass gasification chars for mercury capture from a simulated flue gas of coal combustion.

    Science.gov (United States)

    Fuente-Cuesta, A; Diaz-Somoano, M; Lopez-Anton, M A; Cieplik, M; Fierro, J L G; Martínez-Tarazona, M R

    2012-05-15

    The combustion of coal can result in trace elements, such as mercury, being released from power stations with potentially harmful effects for both human health and the environment. Research is ongoing to develop cost-effective and efficient control technologies for mercury removal from coal-fired power plants, the largest source of anthropogenic mercury emissions. A number of activated carbon sorbents have been demonstrated to be effective for mercury retention in coal combustion power plants. However, more economic alternatives need to be developed. Raw biomass gasification chars could serve as low-cost sorbents for capturing mercury since they are sub-products generated during a thermal conversion process. The aim of this study was to evaluate different biomass gasification chars as mercury sorbents in a simulated coal combustion flue gas. The results were compared with those obtained using a commercial activated carbon. Chars from a mixture of paper and plastic waste showed the highest retention capacity. It was found that not only a high carbon content and a well developed microporosity but also a high chlorine content and a high aluminium content improved the mercury retention capacity of biomass gasification chars. No relationship could be inferred between the surface oxygen functional groups and mercury retention in the char samples evaluated. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Lignin biomass conversion into chemicals and fuels

    DEFF Research Database (Denmark)

    Melián Rodríguez, Mayra

    Second-generation biomass or lignocellulosic biomass, which is mainly composed of cellulose, hemicellulose and lignin, is a very important and promising feedstock for the renewable production of fuels and chemicals of the future. Lignin is the second most abundant natural polymer, representing 30...

  8. 2011 Biomass Program Platform Peer Review. Thermochemical Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Grabowski, Paul E. [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2012-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Program’s Thermochemical Conversion Platform Review meeting.

  9. 2011 Biomass Program Platform Peer Review: Biochemical Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Pezzullo, Leslie [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2012-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Program’s Biochemical Conversion Platform Review meeting.

  10. Non-slag co-gasification of biomass and coal in entrained-bed furnace

    Science.gov (United States)

    Itaya, Yoshinori; Suami, Akira; Kobayashi, Nobusuke

    2018-02-01

    Gasification is a promising candidate of processes to upgrade biomass and to yield clean gaseous fuel for utilization of renewable energy resources. However, a sufficient amount of biomass is not always available to operate a large scale of the plant. Co-gasification of biomass with coal is proposed as a solution of the problem. Tar emission is another subject during operation in shaft or kiln type of gasifiers employed conventionally for biomass. The present authors proposed co-gasification of biomass and coal in entrained-bed furnace, which is a representative process without tar emission under high temperature, but operated so to collect dust as flyash without molten slag formation. This paper presents the works performed on co-gasification performance of biomass and pulverized coal to apply to entrained-bed type of furnaces. At first, co-gasification of woody powder and pulverized coal examined using the lab-scale test furnace of the down-flow entrained bed showed that the maximum temperatures in the furnace was over 1500 K and the carbon conversion to gas achieved at higher efficiency than 80-90 percent although the residence time in the furnace was as short as a few seconds. Non-slag co-gasification was carried out successfully without slag formation in the furnace if coal containing ash with high fusion temperature was employed. The trend suggesting the effect of reaction rate enhancement of co-gasification was also observed. Secondary, an innovative sewage sludge upgrading system consisting of self-energy recovery processes was proposed to yield bio-dried sludge and to sequentially produce char without adding auxiliary fuel. Carbonization behavior of bio-dried sludge was evaluated through pyrolysis examination in a lab-scale quartz tube reactor. The thermal treatment of pyrolysis of sludge contributed to decomposition and removal of contaminant components such as nitrogen and sulfur. The gasification kinetics of sludge and coal was also determined by a

  11. Torrefaction as a process for biomass conversion into biocoal

    Directory of Open Access Journals (Sweden)

    Crnogaća Bojan R.

    2017-01-01

    Full Text Available Torrefaction is a thermo-chemical treatment of biomass carried out within a temperature range from 250ºC to 300ºC, in an inert atmosphere. The process can be described as a mild form of pyrolysis. During the torrefaction process, biomass undergoes a slight breakdown and physical water (moisture contained in biomass as well as superfluous volatiles are released while the biopolymers (cellulose, hemicelluloses and lignin partly decompose giving off various types of volatiles. In the course of the process, the properties of biomass change and result in much better quality of fuel combustion and gassification. The final product is the remaining solid, dry, brittle, blackened material that is referred to as torrefied biomass (bio-coal and which is more resistant to biological degradation, self-ignition and physical decomposition. This paper presents a comprehensive review of torrefaction including both advantages and disadvantages of the torrefaction process.

  12. Fourth annual conference on materials for coal conversion and utilization

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    The fourth annual conference on materials for coal conversion and utilization was held October 9 to 11, 1979, at the National Bureau of Standards, Gaithersburg, Maryland. It was sponsored by the National Bureau of Standards, the Electric Power Research Institute, the US Department of Energy, and the Gas Research Institute. The papers have been entered individually into EDB and ERA. (LTN)

  13. Co-gasification of different rank coals with biomass and petroleum coke in a high-pressure reactor for H(2)-rich gas production.

    Science.gov (United States)

    Fermoso, J; Arias, B; Gil, M V; Plaza, M G; Pevida, C; Pis, J J; Rubiera, F

    2010-05-01

    Four coals of different rank were gasified, using a steam/oxygen mixture as gasifying agent, at atmospheric and elevated pressure in a fixed bed reactor fitted with a solids feeding system in continuous mode. Independently of coal rank, an increase in gasification pressure led to a decrease in H(2) + CO production and carbon conversion. Gasification of the different rank coals revealed that the higher the carbon content and reactivity, the greater the hydrogen production. Co-gasification experiments of binary (coal-biomass) and ternary blends (coal-petcoke-biomass) were conducted at high pressure to study possible synergetic effects. Interactions between the blend components were found to modify the gas production. An improvement in hydrogen production and cold gas efficiency was achieved when the coal was gasified with biomass. Copyright 2009 Elsevier Ltd. All rights reserved.

  14. Comparison of selected parameters of biomass and coal

    Science.gov (United States)

    Lalak, Justyna; Martyniak, Danuta; Kasprzycka, Agnieszka; Żurek, Grzegorz; Moroń, Wojciech; Chmielewska, Mariola; Wiącek, Dariusz; Tys, Jerzy

    2016-10-01

    As a fuel, biomass differs in its properties from fossil fuels and acquisition thereof for energy purposes is limited; hence, the ongoing search for new bioenergetically useful plants. The article presents the results of physical and chemical analyses of seven species of perennial grasses: tall wheatgrass, tall wheatgrass `Bamar', brome grass, tall fescue ecotype, reed canary grass, giant miscanthus, and sorghum. The research involved technical and elemental analysis as well as analysis of the ash composition performed in order to determine their potential use for combustion process. The measurement results were compared with those obtained for hard coal and agricultural biomass, which is widely used in the energy industry. The results suggest that perennial grasses can successfully be combusted with similar performance to coal if burned in appropriate combustion installations.

  15. OxyFuel combustion of Coal and Biomass

    DEFF Research Database (Denmark)

    Toftegaard, Maja Bøg

    of coal and straw at conditions relevant to suspension-fired boilers by clarifying the effect of the change in combustion atmosphere on fuel burnout, flame temperatures, emissions of polluting species (NO, SO2, and CO), fly ash quality, and deposit formation. This work is one of the first to investigate...... and oxyfuel atmospheres. Apart from slightly improved burnout and reduced emissions of NO during oxyfuel combustion these operating conditions yield similar combustion characteristics in both environments. Co-firing coal and biomass or combustion of pure biomass in an oxyfuel power plant could yield...... be adjusted independently. By increasing the concentration of oxygen in the oxidant, i.e. by reducing the flue gas recirculation ratio, it is possible to achieve similar burnout at lower oxygen excess levels. Further work on implications of this strategy are necessary in order to fully clarify its potential...

  16. Biomass Supply Chain and Conversion Economics of Cellulosic Ethanol

    Science.gov (United States)

    Gonzalez, Ronalds W.

    2011-12-01

    Cellulosic biomass is a potential and competitive source for bioenergy production, reasons for such acclamation include: biomass is one the few energy sources that can actually be utilized to produce several types of energy (motor fuel, electricity, heat) and cellulosic biomass is renewable and relatively found everywhere. Despite these positive advantages, issues regarding cellulosic biomass availability, supply chain, conversion process and economics need a more comprehensive understanding in order to identify the near short term routes in biomass to bioenergy production. Cellulosic biomass accounts for around 35% to 45% of cost share in cellulosic ethanol production, in addition, different feedstock have very different production rate, (dry ton/acre/year), availability across the year, and chemical composition that affect process yield and conversion costs as well. In the other hand, existing and brand new conversion technologies for cellulosic ethanol production offer different advantages, risks and financial returns. Ethanol yield, financial returns, delivered cost and supply chain logistic for combinations of feedstock and conversion technology are investigated in six studies. In the first study, biomass productivity, supply chain and delivered cost of fast growing Eucalyptus is simulated in economic and supply chain models to supply a hypothetic ethanol biorefinery. Finding suggests that Eucalyptus can be a potential hardwood grown specifically for energy. Delivered cost is highly sensitive to biomass productivity, percentage of covered area. Evaluated at different financial expectations, delivered cost can be competitive compared to current forest feedstock supply. In the second study, Eucalyptus biomass conversion into cellulosic ethanol is simulated in the dilute acid pretreatment, analysis of conversion costs, cost share, CAPEX and ethanol yield are examined. In the third study, biomass supply and delivered cost of loblolly pine is simulated in economic

  17. Feasibilities of a Coal-Biomass to Liquids Plant in Southern West Virginia

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, Debangsu [West Virginia Univ., Morgantown, WV (United States); DVallance, David [West Virginia Univ., Morgantown, WV (United States); Henthorn, Greg [West Virginia Univ., Morgantown, WV (United States); Grushecky, Shawn [West Virginia Univ., Morgantown, WV (United States)

    2016-09-30

    This project has generated comprehensive and realistic results of feasibilities for a coal-biomass to liquids (CBTL) plant in southern West Virginia; and evaluated the sensitivity of the analyses to various anticipated scenarios and parametric uncertainties. Specifically the project has addressed economic feasibility, technical feasibility, market feasibility, and financial feasibility. In the economic feasibility study, a multi-objective siting model was developed and was then used to identify and rank the suitable facility sites. Spatial models were also developed to assess the biomass and coal feedstock availabilities and economics. Environmental impact analysis was conducted mainly to assess life cycle analysis and greenhouse gas emission. Uncertainty and sensitivity analysis were also investigated in this study. Sensitivity analyses on required selling price (RSP) and greenhouse gas (GHG) emissions of CBTL fuels were conducted according to feedstock availability and price, biomass to coal mix ratio, conversion rate, internal rate of return (IRR), capital cost, operational and maintenance cost. The study of siting and capacity showed that feedstock mixed ratio limited the CBTL production. The price of coal had a more dominant effect on RSP than that of biomass. Different mix ratios in the feedstock and conversion rates led to RSP ranging from $104.3 - $157.9/bbl. LCA results indicated that GHG emissions ranged from 80.62 kg CO2 eq to 101.46 kg CO2 eq/1,000 MJ of liquid fuel at various biomass to coal mix ratios and conversion rates if carbon capture and storage (CCS) was applied. Most of water and fossil energy were consumed in conversion process. Compared to petroleum-derived-liquid fuels, the reduction in GHG emissions could be between -2.7% and 16.2% with CBTL substitution. As for the technical study, three approaches of coal and biomass to liquids, direct, indirect and hybrid, were considered in the analysis. The process models including

  18. Measurement and modeling of advanced coal conversion processes

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G. (Advanced Fuel Research, Inc., East Hartford, CT (United States)); Smoot, L.D.; Brewster, B.S. (Brigham Young Univ., Provo, UT (United States))

    1990-01-01

    The overall objective of this program is the development of predictive capability for the design, scale up, simulation, control and feedstock evaluation in advanced coal conversion devices. This technology is important to reduce the technical and economic risks inherent in utilizing coal, a feedstock whose variable and often unexpected behavior presents a significant challenge. This program will merge significant advances made at Advanced Fuel Research, Inc. (AFR) in measuring and quantitatively describing the mechanisms in coal conversion behavior, with technology being developed at Brigham Young University (BYU) in comprehensive computer codes for mechanistic modeling of entrained-bed gasification. Additional capabilities in predicting pollutant formation will be implemented and the technology will be expanded to fixed-bed reactors. The foundation to describe coal-specified conversion behavior is ARF's Functional Group (FG) and Devolatilization, Vaporization, and Crosslinking (DVC) models, developed under previous and on-going METC sponsored programs. These models have demonstrated the capability to describe the time dependent evolution of individual gas species, and the amount and characteristics of tar and char. The combined FG-DVC model will be integrated with BYU's comprehensive two-dimensional reactor model, PCGC-2, which is currently the most widely used reactor simulation for combustion or gasification. The program includes: (1) validation of the submodels by comparison with laboratory data obtained in this program, (2) extensive validation of the modified comprehensive code by comparison of predicted results with data from bench-scale and process scale investigations of gasification, mild gasification and combustion of coal or coal-derived products in heat engines, and (3) development of well documented user friendly software applicable to a workstation'' environment.

  19. Energy analysis of biochemical conversion processes of biomass to bioethanol

    Energy Technology Data Exchange (ETDEWEB)

    Bakari, M.; Ngadi, M.; Bergthorson, T. [McGill Univ., Ste-Anne-de-Bellevue, PQ (Canada). Dept. of Bioresource Engineering

    2010-07-01

    Bioethanol is among the most promising of biofuels that can be produced from different biomass such as agricultural products, waste and byproducts. This paper reported on a study that examined the energy conversion of different groups of biomass to bioethanol, including lignocelluloses, starches and sugar. Biochemical conversion generally involves the breakdown of biomass to simple sugars using different pretreatment methods. The energy needed for the conversion steps was calculated in order to obtain mass and energy efficiencies for the conversions. Mass conversion ratios of corn, molasses and rice straw were calculated as 0.3396, 0.2300 and 0.2296 kg of bioethanol per kg of biomass, respectively. The energy efficiency of biochemical conversion of corn, molasses and rice straw was calculated as 28.57, 28.21 and 31.33 per cent, respectively. The results demonstrated that lignocelluloses can be efficiently converted with specific microorganisms such as Mucor indicus, Rhizopus oryzae using the Simultaneous Saccharification and Fermentation (SSF) methods.

  20. Mathematical Modelling of the Fixed-Bed Biomass-Coal Co-Gasification Process

    Directory of Open Access Journals (Sweden)

    Donskoy Igor G.

    2016-01-01

    Full Text Available The paper considers mathematical modelling of downdraft fixed-bed gasification process of the mixtures of woody biomass and coal. Biomass/coal ratio, biomass moisture content and air equivalence ratio are varying parameters. Boundaries of the efficient gasification regimes are estimated.

  1. Role of Bioreactors in Microbial Biomass and Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Liang [Chongqing University, Chongqing, China; Zhang, Biao [Chongqing University, Chongqing, China; Zhu, Xun [Chongqing University, Chongqing, China; Chang, Haixing [Chongqing University of Technology; Ou, Shawn [ORNL; Wang, HONG [Chongqing University, Chongqing, China

    2018-04-01

    Bioenergy is the world’s largest contributor to the renewable and sustainable energy sector, and it plays a significant role in various energy industries. A large amount of research has contributed to the rapidly evolving field of bioenergy and one of the most important topics is the use of the bioreactor. Bioreactors play a critical role in the successful development of technologies for microbial biomass cultivation and energy conversion. In this chapter, after a brief introduction to bioreactors (basic concepts, configurations, functions, and influencing factors), the applications of the bioreactor in microbial biomass, microbial biofuel conversion, and microbial electrochemical systems are described. Importantly, the role and significance of the bioreactor in the bioenergy process are discussed to provide a better understanding of the use of bioreactors in managing microbial biomass and energy conversion.

  2. Proceedings of the third annual underground coal conversion symposium

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-01-01

    The Third Annual Underground Coal Conversion Symposium was held at Fallen Leaf Lake, CA, June 6--9, 1977. It was sponsored by the U.S. Department of Energy and hosted by Lawrence Livermore Laboratory. Forty-one papers have been entered individually into EDB and ERA; ten papers had been entered previously from other sources. The papers cover the in-situ gasification of lignite, subbituminous coal and bituminous coal, in flat lying seams and a steeply dipping beds, at moderate and at greater depths, and describe various technologies of (borehole linking, well spacings, gasifying agents (air, oxygen, steam, hydrogen, including mixtures). Measuring instruments for diagnostic and process control purposes are described. Environmental impacts (ground subsidence and possible groundwater pollution) are the subject of several papers. Finally, mathematical modelling and projected economics of the process are developed. (LTN)

  3. Black carbon emissions from biomass and coal in rural China

    Science.gov (United States)

    Zhang, Weishi; Lu, Zifeng; Xu, Yuan; Wang, Can; Gu, Yefu; Xu, Hui; Streets, David G.

    2018-03-01

    Residential solid fuel combustion makes a major contribution to black carbon (BC) emissions in China. A new estimation of BC emissions from rural solid biomass and coal consumption has been derived from field survey data. The following new contributions are made: (1) emission factors are collected and reviewed; (2) household energy data are collected from field survey data and from the literature; (3) a new extrapolation method is developed to extend the field survey data to other locations; (4) the ownership and usage of two stove types are estimated and considered in the emission calculations; and (5) uncertainties associated with the estimation results are quantified. It is shown that rural households with higher income will consume less biomass but more coal. Agricultural acreage and temperature also significantly influence the amount of solid fuel consumed in rural areas. It is estimated that 640 ± 245 Gg BC/y were emitted to the atmosphere due to residential solid fuel consumption in rural China in 2014. Emissions of BC from straw, wood, and coal contributed 42 ± 13%, 36 ± 15%, and 22 ± 10% of the total, respectively. We show that effective BC mitigation (a reduction of 47%) could be obtained through widespread introduction of improved stoves in rural households.

  4. Black carbon emissions from biomass and coal in rural China

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Weishi; Lu, Zifeng; Xu, Yuan; Wang, Can; Gu, Yefu; Xu, Hui; Streets, David G.

    2018-03-01

    Residential solid fuel combustion makes a major contribution to black carbon (BC) emissions in China. A new estimation of BC emissions from rural solid biomass and coal consumption has been derived from field survey data. The following new contributions are made: (1) emission factors are collected and reviewed; (2) household energy data are collected from field survey data and from the literature; (3) a new extrapolation method is developed to extend the field survey data to other locations; (4) the ownership and usage of two stove types are estimated and considered in the emission calculations; and (5) uncertainties associated with the estimation results are quantified. It is shown that rural households with higher income will consume less biomass but more coal. Agricultural acreage and temperature also significantly influence the amount of solid fuel consumed in rural areas. It is estimated that 640±245 Gg BC/y were emitted to the atmosphere due to residential solid fuel consumption in rural China in 2014. Emissions of BC from straw, wood, and coal contributed 42±13%, 36±15%, and 22±10% of the total, respectively. We show that effective BC mitigation (a reduction of 47%) could be obtained through widespread introduction of improved stoves in rural households

  5. Assessment of environmental control technology for coal conversion aqueous wastes

    Energy Technology Data Exchange (ETDEWEB)

    Klein, J.A.; Barker, R.E.

    1978-07-01

    A hydrocarbonization process has been studied to assess environmental control technology for coal conversion wastewaters. Fifteen major wastewater streams were identified; 2 present serious environmental problems not routinely encountered in industry. These are the hydrocarbonization condensate and the ash sluicing waste from the gasifier. The hydrocarbonization product water is high in phenolics, ammonia, cyanide, thiocyanate, and other sulfur compounds. This stream will present a significant wastewater treatment problem unless the stream can be recycled internally. The gasifier-ash sluicing water will probably be similar to ash sluicing water from coal-fired power generating plants. However, the large quantity of toxic trace elements may be more easily dissolved from ash produced at the lower-temperature and reducing conditions encountered in gasification. A number of cleanup technologies relevant to the cleanup of coal conversion aqueous effluents have ben assessed for their adaptability to the specific pollutants found in coal hydrocarbonization wastewater. A summary of these processes lists the potential applicability, economics, raw material requirements, process compatibility, operating conditions, state of development, environmental problems, energy requirements, and availability of each. Indications are that almost any level of removal can be achieved if one is willing to pay the cost. The optimum amount of cleanup will require much future interaction between industry, environmental control technology developers, human and environmental effects assessors, and federal effluent regulations administrators.

  6. Conversion of biomass into energy source

    International Nuclear Information System (INIS)

    Antonescu, S.; Garjoaba, M.; Antonescu, A.

    2005-01-01

    This study assists the identification of possible application and markets of the CHP-plants in the NAS states, and forms the first part of a detailed study on economical and ecological prospects of small scale and large heat pipe reformers in NAS. It is well known that the energy strategy of the European Union, foresees the increase of the participation of the renewable energy from the total of the energy resources of the European Union, up to 12% in 2010. This participation is of a great importance for the adequate reduction of green house effect gases. From the energy production point of view it is proven the fact that in 2010 the production of renewable energy will be: electricity - 675 tWh; heat - 80 Mtoe (930 TWh). From the above mentioned energy demand, the biomass will cover: electricity - 230 TWh-34,1%; heat - 75 Mtoe (93,8%)

  7. Application of Fischer–Tropsch Synthesis in Biomass to Liquid Conversion

    Directory of Open Access Journals (Sweden)

    Yongwu Lu

    2012-06-01

    Full Text Available Fischer–Tropsch synthesis is a set of catalytic processes that can be used to produce fuels and chemicals from synthesis gas (mixture of CO and H2, which can be derived from natural gas, coal, or biomass. Biomass to Liquid via Fischer–Tropsch (BTL-FT synthesis is gaining increasing interests from academia and industry because of its ability to produce carbon neutral and environmentally friendly clean fuels; such kinds of fuels can help to meet the globally increasing energy demand and to meet the stricter environmental regulations in the future. In the BTL-FT process, biomass, such as woodchips and straw stalk, is firstly converted into biomass-derived syngas (bio-syngas by gasification. Then, a cleaning process is applied to remove impurities from the bio-syngas to produce clean bio-syngas which meets the Fischer–Tropsch synthesis requirements. Cleaned bio-syngas is then conducted into a Fischer–Tropsch catalytic reactor to produce green gasoline, diesel and other clean biofuels. This review will analyze the three main steps of BTL-FT process, and discuss the issues related to biomass gasification, bio-syngas cleaning methods and conversion of bio-syngas into liquid hydrocarbons via Fischer–Tropsch synthesis. Some features in regard to increasing carbon utilization, enhancing catalyst activity, maximizing selectivity and avoiding catalyst deactivation in bio-syngas conversion process are also discussed.

  8. Proceedings of the 5th underground coal conversion symposium

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-05-01

    The 5th underground coal conversion symposium was held at Alexandria, Virginia, June 18--21, 1979. Thirty-three papers have been entered individually into EDB and ERA. Seven papers were also abstracted for Energy Abstracts for Policy Analysis. Seven papers had been entered previously from other sources. The symposium was sponsored by the US Department of Energy, Division of Fossil Fuel Extraction. (LTN)

  9. A review on conversion of biomass to biofuel by nanocatalysts

    Directory of Open Access Journals (Sweden)

    Mandana Akia

    2014-03-01

    Full Text Available The world’s increasing demand for energy has led to an increase in fossil fuel consumption. However this source of energy is limited and is accompanied with pollution problems. The availability and wide diversity of biomass resources have made them an attractive and promising source of energy. The conversion of biomass to biofuel has resulted in the production of liquid and gaseous fuels that can be used for different means methods such as thermochemical and biological processes. Thermochemical processes as a major conversion route which include gasification and direct liquefaction are applied to convert biomass to more useful biofuel. Catalytic processes are increasingly applied in biofuel development. Nanocatalysts play an important role in improving product quality and achieving optimal operating conditions. Nanocatalysts with a high specific surface area and high catalytic activity may solve the most common problems of heterogeneous catalysts such as mass transfer resistance, time consumption, fast deactivation and inefficiency. In this regard attempts to develop new types of nanocatalysts have been increased. Among the different biofuels produced from biomass, biodiesel has attained a great deal of attention. Nanocatalytic conversion of biomass to biodiesel has been reported using different edible and nonedible feedstock. In most research studies, the application of nanocatalysts improves yield efficiency at relatively milder operating conditions compared to the bulk catalysts.

  10. Woody biomass availability for bioethanol conversion in Mississippi

    International Nuclear Information System (INIS)

    Perez-Verdin, Gustavo; Grebner, Donald L.; Sun, Changyou; Munn, Ian A.; Schultz, Emily B.; Matney, Thomas G.

    2009-01-01

    This study evaluated woody biomass from logging residues, small-diameter trees, mill residues, and urban waste as a feedstock for cellulosic ethanol conversion in Mississippi. The focus on Mississippi was to assess in-state regional variations and provide specific information of biomass estimates for those facilities interested in locating in Mississippi. Supply and cost of four woody biomass sources were derived from Forest Inventory Analysis (FIA) information, a recent forest inventory conducted by the Mississippi Institute for Forest Inventory, and primary production costs. According to our analysis, about 4.0 million dry tons of woody biomass are available for production of up to 1.2 billion liters of ethanol each year in Mississippi. The feedstock consists of 69% logging residues, 21% small-diameter trees, 7% urban waste, and 3% mill residues. Of the total, 3.1 million dry tons (930 million liters of ethanol) can be produced for $34 dry ton -1 or less. Woody biomass from small-diameter trees is more expensive than other sources of biomass. Transportation costs accounted for the majority of total production costs. A sensitivity analysis indicates that the largest impacts in production costs of ethanol come from stumpage price of woody biomass and technological efficiency. These results provide a valuable decision support tool for resource managers and industries in identifying parameters that affect resource magnitude, type, and location of woody biomass feedstocks in Mississippi. (author)

  11. Biomass energy conversion workshop for industrial executives

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    The rising costs of energy and the risks of uncertain energy supplies are increasingly familiar problems in industry. Bottom line profits and even the simple ability to operate can be affected by spiralling energy costs. An often overlooked alternative is the potential to turn industrial waste or residue into an energy source. On April 9 and 10, 1979, in Claremont, California, the Solar Energy Research Institute (SERI), the California Energy Commission (CEC), and the Western Solar Utilization Network (WSUN) held a workshop which provided industrial managers with current information on using residues and wastes as industrial energy sources. Successful industrial experiences were described by managers from the food processing and forest product industries, and direct combustion and low-Btu gasification equipment was described in detail. These speakers' presentations are contained in this document. Some major conclusions of the conference were: numerous current industrial applications of wastes and residues as fuels are economic and reliable; off-the-shelf technologies exist for converting biomass wastes and residues to energy; a variety of financial (tax credits) and institutional (PUC rate structures) incentives can help make these waste-to-energy projects more attractive to industry. However, many of these incentives are still being developed and their precise impact must be evaluated on a case-by-case basis.

  12. Thermochemical conversion of microalgal biomass into biofuels: a review.

    Science.gov (United States)

    Chen, Wei-Hsin; Lin, Bo-Jhih; Huang, Ming-Yueh; Chang, Jo-Shu

    2015-05-01

    Following first-generation and second-generation biofuels produced from food and non-food crops, respectively, algal biomass has become an important feedstock for the production of third-generation biofuels. Microalgal biomass is characterized by rapid growth and high carbon fixing efficiency when they grow. On account of potential of mass production and greenhouse gas uptake, microalgae are promising feedstocks for biofuels development. Thermochemical conversion is an effective process for biofuel production from biomass. The technology mainly includes torrefaction, liquefaction, pyrolysis, and gasification. Through these conversion technologies, solid, liquid, and gaseous biofuels are produced from microalgae for heat and power generation. The liquid bio-oils can further be upgraded for chemicals, while the synthesis gas can be synthesized into liquid fuels. This paper aims to provide a state-of-the-art review of the thermochemical conversion technologies of microalgal biomass into fuels. Detailed conversion processes and their outcome are also addressed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Catalytic processing of coal and biomass to carbon materials

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, B.N.; Shchipko, M.L.; Golovin, Y.G.; Ugay, M.Y. [Krasnoyarsk State University, Krasnoyarsk (Russian Federation). Inst. of Chemistry of Natural Organic Materials

    1996-12-31

    The synthesis of carbon materials is rather new and promising field of a catalyst application. The high potentialities of catalytic processes in the carbon materials production are connected with the catalyst ability to regulate the structure and some properties of carbon products, to increase the process affectivity and ecological safety. The new catalytic methods, developed by authors for the producing of different types of carbon products from coal and biomass raw materials, are described in the present paper. 6 refs., 2 figs., 1 tab.

  14. Electricity and fluid fuels from biomass and coal using advanced technologies: a cost comparison for developing country applications

    International Nuclear Information System (INIS)

    Kartha, S.; Larson, E.D.; Williams, R.H.; Katofsky, R.E.; Chen, J.; Marrison, C.I.

    1995-01-01

    Recent analyses of alternative global energy supply strategies, such as the forthcoming report of the Intergovernmental Panel on Climate Change (IPCC), to be published in 1996, have drawn attention to the possibility that biomass modernized with advanced technologies could play an important role in meeting global energy needs in the next century. This paper discusses two promising classes of advanced technologies that offer the potential for providing modem energy carriers (electricity and fluid fuels) from biomass at competitive costs within one or two decades. These technologies offer significantly more efficient use of land than currently commercial technologies for producing electricity and fluid fuels from biomass, as well as substantially improved energy balances. Electricity is Rely to be the first large market for modernized biomass, but the potential market for fluid fuel production is likely to be much larger. As coal is likely to present a more serious competitive challenge to biomass in the long run, we present an economic comparison with coal-based electricity and fluid fuels. A meaningful economic comparison between coal and biomass is possible because these feedstocks are sufficiently alike in their physical characteristics that similar conversion technologies may well be used for producing electricity and fluid fuels from them. When similar conversion technologies are used for both feedstocks, the relative costs of electricity or fluid fuels will be determined by the distinguishing technical characteristics of the feedstocks (sulphur content, moisture content and reactivity) and by the relative feedstock prices. Electric power generation from biomass and coal are compared here using an advanced integrated gasifier/gas turbine cycle that offers the potential for achieving high efficiency, low unit capital cost and low local pollutant emissions: the steam-injected gas turbine coupled to an air-blown gasifier. For both feedstocks, generation costs are

  15. Ensiling as pretreatment of grass for lignocellulosic biomass conversion

    DEFF Research Database (Denmark)

    Ambye-Jensen, Morten

    an efficient production of ethanol. Lastly, the conversion of xylan was extremely low in both grass and grass silage. Optimization of the enzymatic saccharification of grass was attempted through improvement of the hemicellulase content in the enzyme blend. However, neither additional xylanases (Cellic HTec2......Development of sound technologies of biomass conversion will be increasingly important for many years to come as planetary bounderies drive the development towards a biobased society. Pretreatment of lignocellulosic biomass is, in this regard, an essential technology. Current pretreatment methods...... method with low cost and low energy requirements, plus brings about multiple advantages with regards to agricultural management. However, the pretreatment effect of ensiling, and the overall effects for further conversion are limited. In this study, ensiling was evaluated as a method of pretreatment...

  16. Environmental requirements in thermochemical and biochemical conversion of biomass

    International Nuclear Information System (INIS)

    Frings, R.M.; Mackie, K.L.; Hunter, I.R.

    1992-01-01

    Many biological and thermochemical processing options exist for the conversion of biomass to fuels. Commercially, these options are assessed in terms of fuel product yield and quality. However, attention must also be paid to the environmental aspects of each technology so that any commercial plant can meet the increasingly stringent environmental legislation in the world today. The environmental aspects of biological conversion (biogasification and bioliquefaction) and thermal conversion (high pressure liquefaction, flash pyrolysis, and gasification) are reviewed. Biological conversion processes are likely to generate waste streams which are more treatable than those from thermal conversion processes but the available data for thermal liquefaction are very limited. Close attention to waste minimisation is recommended and processing options that greatly reduce or eliminate waste streams have been identified. Product upgrading and its effect on wastewater quality also requires attention. Emphasis in further research studies needs to be placed on providing authentic waste streams for environmental assessment. (author)

  17. Coal conversion technologies: some health and environmental effects.

    Science.gov (United States)

    Morris, S C; Moskowitz, P D; Sevian, W A; Silberstein, S; Hamilton, L D

    1979-11-09

    Several technologies to convert coal to liquid and gaseous fuels are being developed in the United States, some with support from the Department of Energy. Substitution of these technologies for those currently being used will produce different health and environmental hazards. In this article, selected health and environmental effects of four coal conversion and four existing technologies are compared. For each technology, the emission estimates for complete fuel cycles, including all steps in fuel use from extraction to the end use of space and water heating by electricity or direct combustion, were prepared by means of the Brookhaven Energy System Network Simulator model. Quantitative occupational health and safety estimates are presented for the extraction, transportation, distribution, processing, and conversion activities associated with each technology; also included are some public health damage estimates arising from fuel transportation and air pollution impacts. Qualitative estimates of health damage due to polycyclic organic matter and reduced sulfur are discussed. In general, energy inefficiencies, environmental residuals, and hence implied environmental effects and health damage increase in the order: (i) direct combustion of natural gas and oil, (ii) direct combustion of synthetic gas and oil, (iii) central-station electric power produced from synthetic gas, (iv) central-station electric power produced from coal, and (v) central-station electric power produced by the combustion of synthetic liquid fuels. The compliance and conflict of these technologies with the amendments of the Clean Air Act and other legislation are discussed.

  18. Integrated Biomass Gasification with Catalytic Partial Oxidation for Selective Tar Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lingzhi; Wei, Wei; Manke, Jeff; Vazquez, Arturo; Thompson, Jeff; Thompson, Mark

    2011-05-28

    Biomass gasification is a flexible and efficient way of utilizing widely available domestic renewable resources. Syngas from biomass has the potential for biofuels production, which will enhance energy security and environmental benefits. Additionally, with the successful development of low Btu fuel engines (e.g. GE Jenbacher engines), syngas from biomass can be efficiently used for power/heat co-generation. However, biomass gasification has not been widely commercialized because of a number of technical/economic issues related to gasifier design and syngas cleanup. Biomass gasification, due to its scale limitation, cannot afford to use pure oxygen as the gasification agent that used in coal gasification. Because, it uses air instead of oxygen, the biomass gasification temperature is much lower than well-understood coal gasification. The low temperature leads to a lot of tar formation and the tar can gum up the downstream equipment. Thus, the biomass gasification tar removal is a critical technology challenge for all types of biomass gasifiers. This USDA/DOE funded program (award number: DE-FG36-O8GO18085) aims to develop an advanced catalytic tar conversion system that can economically and efficiently convert tar into useful light gases (such as syngas) for downstream fuel synthesis or power generation. This program has been executed by GE Global Research in Irvine, CA, in collaboration with Professor Lanny Schmidt's group at the University of Minnesota (UoMn). Biomass gasification produces a raw syngas stream containing H2, CO, CO2, H2O, CH4 and other hydrocarbons, tars, char, and ash. Tars are defined as organic compounds that are condensable at room temperature and are assumed to be largely aromatic. Downstream units in biomass gasification such as gas engine, turbine or fuel synthesis reactors require stringent control in syngas quality, especially tar content to avoid plugging (gum) of downstream equipment. Tar- and ash-free syngas streams are a critical

  19. Energy Analysis of a Biomass Co-firing Based Pulverized Coal Power Generation System

    Directory of Open Access Journals (Sweden)

    Marc A. Rosen

    2012-03-01

    Full Text Available The results are reported of an energy analysis of a biomass/coal co-firing based power generation system, carried out to investigate the impacts of biomass co-firing on system performance. The power generation system is a typical pulverized coal-fired steam cycle unit, in which four biomass fuels (rice husk, pine sawdust, chicken litter, and refuse derived fuel and two coals (bituminous coal and lignite are considered. Key system performance parameters are evaluated for various fuel combinations and co-firing ratios, using a system model and numerical simulation. The results indicate that plant energy efficiency decreases with increase of biomass proportion in the fuel mixture, and that the extent of the decrease depends on specific properties of the coal and biomass types.

  20. An Integrated Biomass Production and Conversion Process for Sustainable Bioenergy

    Directory of Open Access Journals (Sweden)

    Weidong Huang

    2015-01-01

    Full Text Available There is not enough land for the current bioenergy production process because of its low annual yield per unit land. In the present paper, an integrated biomass production and conversion process for sustainable bioenergy is proposed and analyzed. The wastes from the biomass conversion process, including waste water, gas and solid are treated or utilized by the biomass production process in the integrated process. Analysis of the integrated process including the production of water hyacinth and digestion for methane in a tropical area demonstrates several major advantages of the integrated process. (1 The net annual yield of methane per unit land can reach 29.0 and 55.6 km3/h for the present and future (2040 respectively, which are mainly due to the high yield of water hyacinth, high biomethane yield and low energy input. The land demand for the proposed process accounts for about 1% of the world’s land to meet the current global automobile fuels or electricity consumption; (2 A closed cycle of nutrients provides the fertilizer for biomass production and waste treatment, and thus reduces the energy input; (3 The proposed process can be applied in agriculturally marginal land, which will not compete with food production. Therefore, it may be a good alternative energy technology for the future.

  1. Communal biomass conversion plants. From idea to reality

    International Nuclear Information System (INIS)

    1995-11-01

    The first Danish biomass conversion plant for the production of methane was built in the nineteen seventies. It was just a little plant based on manure slurries from a local herd of farm animals. It was not until the nineteen eighties that larger plants were established so that enough methane could be produced as part fuels for decentral district heating and/or cogeneration plants. By November 1995 there were 15 communal biomass conversion plants producing methane in Denmark, three more plants were in the course of establishment and a number of similar projects were on the drawing board. The history of this development is narrated and plans for the future are indicated. The document also deals with the technological aspects, operational economics, environmental impacts, resources and re-use, wastes used as fertilizers, household organic wastes and sewage slam, standards of hygiene and reduction of infection risks, exports and commercial development and socio-economic evaluations in addition to areas within this field which need special attention in the very near future. It is concluded that the economics of Danish biomass conversion plants have improved significantly since 1987, and many older plants have been brought right up to date. Improvements in technology and an increase in the supply of industrial wastes have increased production. Details of the basis of many other betterments that have taken place in recent years are also given. (AB) 27 refs

  2. Taguchi approach for co-gasification optimization of torrefied biomass and coal.

    Science.gov (United States)

    Chen, Wei-Hsin; Chen, Chih-Jung; Hung, Chen-I

    2013-09-01

    This study employs the Taguchi method to approach the optimum co-gasification operation of torrefied biomass (eucalyptus) and coal in an entrained flow gasifier. The cold gas efficiency is adopted as the performance index of co-gasification. The influences of six parameters, namely, the biomass blending ratio, oxygen-to-fuel mass ratio (O/F ratio), biomass torrefaction temperature, gasification pressure, steam-to-fuel mass ratio (S/F ratio), and inlet temperature of the carrier gas, on the performance of co-gasification are considered. The analysis of the signal-to-noise ratio suggests that the O/F ratio is the most important factor in determining the performance and the appropriate O/F ratio is 0.7. The performance is also significantly affected by biomass along with torrefaction, where a torrefaction temperature of 300°C is sufficient to upgrade eucalyptus. According to the recommended operating conditions, the values of cold gas efficiency and carbon conversion at the optimum co-gasification are 80.99% and 94.51%, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Biomass Feedstock and Conversion Supply System Design and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, Jacob J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Roni, Mohammad S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lamers, Patrick [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cafferty, Kara G. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    Idaho National Laboratory (INL) supports the U.S. Department of Energy’s bioenergy research program. As part of the research program INL investigates the feedstock logistics economics and sustainability of these fuels. A series of reports were published between 2000 and 2013 to demonstrate the feedstock logistics cost. Those reports were tailored to specific feedstock and conversion process. Although those reports are different in terms of conversion, some of the process in the feedstock logistic are same for each conversion process. As a result, each report has similar information. A single report can be designed that could bring all commonality occurred in the feedstock logistics process while discussing the feedstock logistics cost for different conversion process. Therefore, this report is designed in such a way that it can capture different feedstock logistics cost while eliminating the need of writing a conversion specific design report. Previous work established the current costs based on conventional equipment and processes. The 2012 programmatic target was to demonstrate a delivered biomass logistics cost of $55/dry ton for woody biomass delivered to fast pyrolysis conversion facility. The goal was achieved by applying field and process demonstration unit-scale data from harvest, collection, storage, preprocessing, handling, and transportation operations into INL’s biomass logistics model. The goal of the 2017 Design Case is to enable expansion of biofuels production beyond highly productive resource areas by breaking the reliance of cost-competitive biofuel production on a single, low-cost feedstock. The 2017 programmatic target is to supply feedstock to the conversion facility that meets the in-feed conversion process quality specifications at a total logistics cost of $80/dry T. The $80/dry T. target encompasses total delivered feedstock cost, including both grower payment and logistics costs, while meeting all conversion in-feed quality targets

  4. Survey of industrial coal conversion equipment capabilities: valves

    Energy Technology Data Exchange (ETDEWEB)

    Bush, W. A.; Slade, E. C.

    1978-06-01

    A survey of the industrial capabilities of the valve and valve-actuator industry to supply large, high-pressure stop valves for the future coal conversion industry is presented in this report. Also discussed are development and testing capabilities of valve and valve-actuator manufacturers and anticipated lead times required to manufacture advanced design valves for the most stringent service applications. Results indicate that the valve and valve-actuator industry is capable of manufacturing in quantity equipment of the size and for the pressure and temperature ranges which would be required in the coal conversion industry. Valve manufacturers do not, however, have sufficient product application experience to predict the continuing functional ability of valves used for lock-hopper feeders, slurry feeders, and slag-char letdown service. Developmental and testing efforts to modify existing valve designs or to develop new valve concepts for these applications were estimated to range from 1 to 6 years. A testing facility to simulate actuation of critical valves under service conditions would be beneficial.

  5. Synthesis of geopolymer from biomass-coal ash blends

    Science.gov (United States)

    Samadhi, Tjokorde Walmiki; Wulandari, Winny; Prasetyo, Muhammad Iqbal; Fernando, Muhammad Rizki; Purbasari, Aprilina

    2017-09-01

    Geopolymer is an environmentally attractive Portland cement substitute, owing to its lower carbon footprint and its ability to consume various aluminosilicate waste materials as its precursors. This work describes the development of geopolymer formulation based on biomass-coal ash blends, which is predicted to be the prevalent type of waste when biomass-based thermal energy production becomes mainstream in Indonesia. The ash blends contain an ASTM Class F coal fly ash (FA), rice husk ash (RHA), and coconut shell ash (CSA). A mixture of Na2SiO3 and concentrated KOH is used as the activator solution. A preliminary experiment identified the appropriate activator/ash mass ratio to be 2.0, while the activator Na2SiO3/KOH ratio varies from 0.8 to 2.0 with increasing ash blend Si/Al ratio. Both non-blended FA and CSA are able to produce geopolymer mortars with 7-day compressive strength exceeding the Indonesian national SNI 15-2049-2004 standard minimum value of 2.0 MPa stipulated for Portland cement mortars. Ash blends have to be formulated with a maximum RHA content of approximately 50 %-mass to yield satisfactory 7-day strength. No optimum ash blend composition is identified within the simplex ternary ash blend compositional region. The strength decreases with Si/Al ratio of the ash blends due to increasing amount of unreacted silicate raw materials at the end of the geopolymer hardening period. Overall, it is confirmed that CSA and blended RHA are feasible raw materials for geopolymer production..

  6. Pyrolysis kinetics of coking coal mixed with biomass under non-isothermal and isothermal conditions.

    Science.gov (United States)

    Jeong, Ha Myung; Seo, Myung Won; Jeong, Sang Mun; Na, Byung Ki; Yoon, Sang Jun; Lee, Jae Goo; Lee, Woon Jae

    2014-03-01

    To investigate the kinetic characteristics of coking coal mixed with biomass during pyrolysis, thermogravimetric (TG) and thermo-balance reactor (TBR) analyses were conducted under non-isothermal and isothermal condition. Yellow poplar as a biomass (B) was mixed with weak coking coal (WC) and hard coking coal (HC), respectively. The calculated activation energies of WC/B blends were higher than those of HC/B blends under non-isothermal and isothermal conditions. The coal/biomass blends show increased reactivity and decreased activation energy with increasing biomass blend ratio, regardless of the coking properties of the coal. The different char structures of the WC/B and HC/B blends were analyzed by BET and SEM. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Modelling of pyrolysis of coal-biomass blends using thermogravimetric analysis.

    Science.gov (United States)

    Sadhukhan, Anup Kumar; Gupta, Parthapratim; Goyal, Tripurari; Saha, Ranajit Kumar

    2008-11-01

    The primary objective of this work was to develop an appropriate model to explain the co-pyrolysis behaviour of lignite coal-biomass blends with different proportions using a thermogravimetric analyzer. A new parallel-series kinetic model was proposed to predict the pyrolysis behaviour of biomass over the entire pyrolysis regime, while a kinetic model similar to that of Anthony and Howard [Anthony, D.B., Howard, J.B., 1976. Coal devolatilization and hydrogasification. AIChE Journal 22(4), 625-656] was used for pyrolysis of coal. Analysis of mass loss history of blends showed an absence of synergistic effect between coal and biomass. Co-pyrolysis mass-loss profiles of the blends were predicted using the estimated kinetic parameters of coal and biomass. Excellent agreement was found between the predicted and the experimental results.

  8. Demonstration of the Viability and Evaluation of Production Costs for Biomass-Infused Coal Briquettes

    Energy Technology Data Exchange (ETDEWEB)

    Kamshad, Kourosh [Coaltek Incorporated, Tucker, GA (United States)

    2014-04-01

    This project was split into four main areas, first to identify the best combination of coal and biomass, second, create and test lab quantity of preferred combinations, Third, create a sizeable quantity for larger scale handling and consuming analysis and fourth, to provide analysis for a commercial scale production capacity. Samples of coal and biomass were collected. Five coals, representing the three major coal ranks, were collected including one bituminous, two sub-bituminous, and two lignite samples. In addition, three square bales (~50 lbs/bale) each of corn Stover and switch grass were collected with one bale of each sample processed through a hammer mill to approximately -5 mesh. A third sample of sawdust was collected once experimentation began at the University of Kentucky. Multiple combinations of coal and biomass; coal, biomass, with biomass binder, were tested until a formulation was identified that could meet the requirement criteria. Based on the results of the binderless briquetting evaluations, the CS/Sub-bit combinations was selected for extended evaluation at a 10% biomass addition rate while the WS/Bitum combination was selected for extended evaluation at a 30% biomass-addition rate. With the final results of the selection process complete, the CoalTek continuous production pilot plant in Tucker GA was outfitted with the specialized blending equipment and two 1/4 ton production runs of biomass and binder subbituminous coal briquettes were completed. These briquettes were later used for a calorific test burn at the University of North Dakota. The first formulation included subbituminous coal, corn stover and a corn starch binder the second formulation included subbituminous coal, wheat stover and corn starch binder.

  9. EVALUATION OF BIOMASS AND COAL CO-GASIFICATION OF BRAZILIAN FEEDSTOCK USING A CHEMICAL EQUILIBRIUM MODEL

    Directory of Open Access Journals (Sweden)

    R. Rodrigues

    Full Text Available Abstract Coal and biomass are energy sources with great potential for use in Brazil. Coal-biomass co-gasification enables the combination of the positive characteristics of each fuel, besides leading to a cleaner use of coal. The present study evaluates the potential of co-gasification of binary coal-biomass blends using sources widely available in Brazil. This analysis employs computational simulations using a reliable thermodynamic equilibrium model. Favorable operational conditions at high temperatures are determined in order to obtain gaseous products suitable for energy cogeneration and chemical synthesis. This study shows that blends with biomass ratios of 5% and equivalence ratios ≤ 0.3 lead to high cold gas efficiencies. Suitable gaseous products for chemical synthesis were identified at biomass ratios ≤ 35% and moisture contents ≥ 40%. Formation of undesirable nitrogen and sulfur compounds was also analyzed.

  10. Biomass thermochemical conversion. Overview of results; Biomassan jalostus. Tutkimusalueen katsaus

    Energy Technology Data Exchange (ETDEWEB)

    Sipilae, K. [VTT Energy, Jyvaeskylae (Finland)

    1997-12-01

    The BIOENERGY Programme comprised two research institute projects, one enterprise project and two demonstration projects in 1996. The studies focused on the development of flash pyrolysis technology for biomass, and on the study of the storage stability of imported wood oils and of their suitability for use in oil-fired boilers and diesel power plants. Development of biomass gasification/gas engine concepts suitable for diesel power plants was also initiated. In addition to techno-economic assessments, experimental work was carried out focusing on the cleaning of gasification gas for engine use. Conversion of by-products from the pulping industry, in particular crude soap, into liquid fuels was studied by laboratory tests. Results obtained within IEA Bioenergy Agreement are also surveyed and a new three-year work plan is presented in the overview. (orig.)

  11. Evaluating the impact of three incentive programs on the economics of cofiring willow biomass with coal in New York State

    International Nuclear Information System (INIS)

    Tharakan, P.J.; Volk, T.A.; Lindsey, C.A.; Abrahamson, L.P.; White, E.H.

    2005-01-01

    Plantations of fast-growing willow shrubs are being promoted as a source quality biomass feedstock for bioenergy and bioproducts in New York State (NY). In the near-term, cofiring of the feedstock--in combination with other woody biomass--with coal in existing utility power boilers is considered to be the most promising conversion method for energy generation. Despite the clear technological viability and associated environmental benefits, cofiring of willow has not been widely adopted. The relatively high production cost of the willow feedstock, which is over twice that of coal, is the primary reason for this lack of interest. Taxes that account for some of the social costs of using coal and/or incentives that appropriate value for some of the social benefits of using willow are essential for eliminating most or the entire current price differential. This paper presents an integrated analysis of the economics of power generation from cofiring willow biomass feedstock with coal, from the perspective of the grower, aggregator and the power plant. Emphasis is placed on analyzing the relative impact of a green premium price, a closed-loop biomass tax credit, and payments to growers under the proposed Conservation Reserve Program (CRP) harvesting exemption policy. The CRP payments reduced the delivered cost of willow by 36-35%, to $1.90 GJ -1 and $1.70 GJ -1 , under current and increased yield conditions, respectively. These prices are still high, relative to coal. Other incentives are required to ensure commercial viability. The required levels of green premium price (0.4-1.0 cents kWh -1 ) and biomass tax credit (0.75-2.4 cents kWh -1 ) vary depending on whether the incentives were being applied by themselves or in combination, and whether current yield or potential increased yields were being considered. In the near term, cofiring willow biomass and coal can be an economically viable option for power generation in NY if the expected overall beneficial effects

  12. Batch anaerobic methanogenesis of phenolic coal conversion waste water

    Energy Technology Data Exchange (ETDEWEB)

    Fedorak, P.M.; Hrudey, S.E.

    1985-01-01

    The amenability to anaerobic treatment of a phenolic wastewater from a coal conversion pilot plant was investigated in batch experiments using the Hungate serum bottle technique, using cultures containing unmodified wastewater, wastewater extracted with ether, and pre-reduced, reconstituted wastewater. Data are given on the composition of the wastewater and the concentrations of various phenolic compounds present. Wastewater concentrations of 2, 4 and 6% (vol/vol) increased methane production compared with control cultures, but higher concentrations of the wastewater were inhibitory. Further experiments indicated that the inhibitory components were ether-extractable, but were not any of the major phenolic compounds present in the original wastewater. There was also evidence to confirm that m-cresol was amenable to anaerobic degradation.

  13. Conversion of Lignocellulosic Biomass to Ethanol and Butyl Acrylate

    Energy Technology Data Exchange (ETDEWEB)

    Binder, Thomas [Archer Daniels Midland Company, Decatur, IL (United States); Erpelding, Michael [Archer Daniels Midland Company, Decatur, IL (United States); Schmid, Josef [Archer Daniels Midland Company, Decatur, IL (United States); Chin, Andrew [Archer Daniels Midland Company, Decatur, IL (United States); Sammons, Rhea [Archer Daniels Midland Company, Decatur, IL (United States); Rockafellow, Erin [Archer Daniels Midland Company, Decatur, IL (United States)

    2015-04-10

    Conversion of Lignocellulosic Biomass to Ethanol and Butyl Acrylate. The purpose of Archer Daniels Midlands Integrated Biorefinery (IBR) was to demonstrate a modified acetosolv process on corn stover. It would show the fractionation of crop residue to distinct fractions of cellulose, hemicellulose, and lignin. The cellulose and hemicellulose fractions would be further converted to ethanol as the primary product and a fraction of the sugars would be catalytically converted to acrylic acid, with butyl acrylate the final product. These primary steps have been demonstrated.

  14. Multiscale Mathematics for Biomass Conversion to Renewable Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Plechac, Petr [Univ. of Delaware, Newark, DE (United States). Dept. of Mathematical Sciences

    2016-03-01

    The overall objective of this project was to develop multiscale models for understanding and eventually designing complex processes for renewables. To the best of our knowledge, our work is the first attempt at modeling complex reacting systems, whose performance relies on underlying multiscale mathematics and developing rigorous mathematical techniques and computational algorithms to study such models. Our specific application lies at the heart of biofuels initiatives of DOE and entails modeling of catalytic systems, to enable economic, environmentally benign, and efficient conversion of biomass into either hydrogen or valuable chemicals.

  15. Proceedings of the Chornobyl phytoremediation and biomass energy conversion workshop

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, J. [Pacific Northwest National Lab., Richland, WA (United States); Tokarevsky, V. [State Co. for Treatment and Disposal of Mixed Hazardous Waste (Ukraine)

    1998-06-01

    Many concepts, systems, technical approaches, technologies, ideas, agreements, and disagreements were vigorously discussed during the course of the 2-day workshop. The workshop was successful in generating intensive discussions on the merits of the proposed concept that includes removal of radionuclides by plants and trees (phytoremediation) to clean up soil in the Chornobyl Exclusion Zone (CEZ), use of the resultant biomass (plants and trees) to generate electrical power, and incorporation of ash in concrete casks to be used as storage containers in a licensed repository for low-level waste. Twelve years after the Chornobyl Nuclear Power Plant (ChNPP) Unit 4 accident, which occurred on April 26, 1986, the primary 4radioactive contamination of concern is from radioactive cesium ({sup 137}Cs) and strontium ({sup 90}Sr). The {sup 137}Cs and {sup 90}Sr were widely distributed throughout the CEZ. The attendees from Ukraine, Russia, Belarus, Denmark and the US provided information, discussed and debated the following issues considerably: distribution and characteristics of radionuclides in CEZ; efficacy of using trees and plants to extract radioactive cesium (Cs) and strontium (Sr) from contaminated soil; selection of energy conversion systems and technologies; necessary infrastructure for biomass harvesting, handling, transportation, and energy conversion; radioactive ash and emission management; occupational health and safety concerns for the personnel involved in this work; and economics. The attendees concluded that the overall concept has technical and possibly economic merits. However, many issues (technical, economic, risk) remain to be resolved before a viable commercial-scale implementation could take place.

  16. Proceedings of the Chernobyl phytoremediation and biomass energy conversion workshop

    International Nuclear Information System (INIS)

    Hartley, J.; Tokarevsky, V.

    1998-06-01

    Many concepts, systems, technical approaches, technologies, ideas, agreements, and disagreements were vigorously discussed during the course of the 2-day workshop. The workshop was successful in generating intensive discussions on the merits of the proposed concept that includes removal of radionuclides by plants and trees (phytoremediation) to clean up soil in the Chernobyl Exclusion Zone (CEZ), use of the resultant biomass (plants and trees) to generate electrical power, and incorporation of ash in concrete casks to be used as storage containers in a licensed repository for low-level waste. Twelve years after the Chernobyl Nuclear Power Plant (ChNPP) Unit 4 accident, which occurred on April 26, 1986, the primary 4radioactive contamination of concern is from radioactive cesium ( 137 Cs) and strontium ( 90 Sr). The 137 Cs and 90 Sr were widely distributed throughout the CEZ. The attendees from Ukraine, Russia, Belarus, Denmark and the US provided information, discussed and debated the following issues considerably: distribution and characteristics of radionuclides in CEZ; efficacy of using trees and plants to extract radioactive cesium (Cs) and strontium (Sr) from contaminated soil; selection of energy conversion systems and technologies; necessary infrastructure for biomass harvesting, handling, transportation, and energy conversion; radioactive ash and emission management; occupational health and safety concerns for the personnel involved in this work; and economics. The attendees concluded that the overall concept has technical and possibly economic merits. However, many issues (technical, economic, risk) remain to be resolved before a viable commercial-scale implementation could take place

  17. Hydrothermal conversion of biomass to liquid energy sources; Hydrothermale Konversion von Biomasse zu fluessigen Energietraegern

    Energy Technology Data Exchange (ETDEWEB)

    Kroeger, Michael; Peters, Mario; Klemm, Marco; Nelles, Michael [Deutsches Biomasseforschungszentrum (DBFZ) gemeinnuetzige GmbH, Leipzig (Germany)

    2013-10-01

    Beside thermo-chemical processes like pyrolysis, torrefaction and gasification another process group called hydrothermal conversion of biomass comes into the focus of research and development. Especially for wet biomass this process has several advantages: as the reaction medium is water wet biomass not needs to be dried. Beside the reaction pathways, which are still not completely understood, it is important to investigate reactor concepts. That gives the possibility to continuously process the given biomass to deduce specific process conditions for the production of chemicals and fuels. Experiments were conducted in a newly developed tubular reactor at temperatures from 150 to 270 C and reaction times from 1 to 6 min. By studying the HPLC analysis of the liquid products the formation and degradation of several products which may be utilized as base materials for chemicals and fuels (furfural, 5-HMF etc.) was conducted. The experiments illustrate the possibility to influence product composition to a certain extend only by varying temperature and time of the hydrothermal process. That could result in an economic and feasible way to produce intermediate chemicals from biomass. In a second step these product analysis will be used to develop catalysts and investigate the possibilities of in-situ-hydrogenation and synthesis of further valuable chemicals and fuels. (orig.)

  18. Internal, external and location factors influencing cofiring of biomass with coal in the U.S. northern region

    Science.gov (United States)

    Francisco X. Aguilar; Michael E. Goerndt; Nianfu Song; Stephen R. Shifley

    2012-01-01

    The use of biomass as a source of energy has been identified as a viable option to diminish reliance on fossil fuels. We parameterized the effect of selected internal (e.g. coal-fire presence), external (e.g. price and renewable energy mandates) and location (e.g. biomass availability, infrastructure) variables on the likelihood of using biomass in cofiring with coal...

  19. Demonstration of Pressurizing Coal/Biomass Mixtures Using Posimetric Solids Pump Technology

    Energy Technology Data Exchange (ETDEWEB)

    Westendorf, Tiffany; Acharya, Harish; Cui, Zhe; Furman, Anthony; Giammattei, Mark; Rader, Jeff; Vazquez, Arturo

    2012-12-31

    This document is the Final Technical Report for a project supported by U.S. DOE NETL (Contract No. DE-FE0000507), GE Global Research, GE Energy, and Idaho National Laboratory (INL). This report discusses key project accomplishments for the period beginning August 7, 2009 and ending December 31, 2012. In this project, pressurized delivery of coal/biomass mixtures using GE Posimetric* solids pump technology was achieved in pilot scale experiments. Coal/biomass mixtures containing 10-50 wt% biomass were fed against pressures of 65-450 psi. Pressure capability increased with decreasing biomass content for a given pump design, and was linked to the interaction of highly compressible coal/biomass mixtures with the pump outlet design. Biomass pretreatment specifications for particle size and moisture content were defined based on bench-scale flowability, compressibility, friction, and permeability experiments that mimic the behavior of the Posimetric pump. A preliminary economic assessment of biomass pretreatment and pump operation for coal/biomass mixtures (CBMs) was conducted.

  20. Emissions tradeoffs associated with cofiring forest biomass with coal: A case study in Colorado, USA

    Science.gov (United States)

    Dan Loeffler; Nathaniel Anderson

    2014-01-01

    Cofiring forest biomass residues with coal to generate electricity is often cited for its potential to offset fossil fuels and reduce greenhouse gas emissions, but the extent to which cofiring achieves these objectives is highly dependent on case specific variables. This paper uses facility and forest specific data to examine emissions from cofiring forest biomass with...

  1. Co-firing coal and biomass in a fluidised bed boiler

    CSIR Research Space (South Africa)

    North, BC

    2005-11-01

    Full Text Available of biomass is “CO2 Neutral”. The CSIR was approached by one of its licensees, International Combustion (Africa) Ltd (ICAL), to design the fluidised bed combustion (FBC) zone for a biomass waste and coal co-fired boiler. This boiler had been requested by a...

  2. Combustion characteristics of Malaysian oil palm biomass, sub-bituminous coal and their respective blends via thermogravimetric analysis (TGA).

    Science.gov (United States)

    Idris, Siti Shawalliah; Rahman, Norazah Abd; Ismail, Khudzir

    2012-11-01

    The combustion characteristics of Malaysia oil palm biomass (palm kernel shell (PKS), palm mesocarp fibre (PMF) and empty fruit bunches (EFB)), sub-bituminous coal (Mukah Balingian) and coal/biomass blends via thermogravimetric analysis (TGA) were investigated. Six weight ratios of coal/biomass blends were prepared and oxidised under dynamic conditions from temperature 25 to 1100°C at four heating rates. The thermogravimetric analysis demonstrated that the EFB and PKS evolved additional peak besides drying, devolatilisation and char oxidation steps during combustion. Ignition and burn out temperatures of blends were improved in comparison to coal. No interactions were observed between the coal and biomass during combustion. The apparent activation energy during this process was evaluated using iso-conversional model free kinetics which resulted in highest activation energy during combustion of PKS followed by PMF, EFB and MB coal. Blending oil palm biomass with coal reduces the apparent activation energy value. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Pyrolysis of coal, biomass and their blends: performance assessment by thermogravimetric analysis.

    Science.gov (United States)

    Ferrara, Francesca; Orsini, Alessandro; Plaisant, Alberto; Pettinau, Alberto

    2014-11-01

    With the aim to support the experimental tests in a gasification pilot plant, the thermal decomposition of coal, biomass and their mixtures has been carried out through a thermogravimetric analysis (TGA) and a simplified kinetic analysis. The TGA of pure fuels indicates the low reactivity of South African coal and the relatively high reactivity of Sardinian Sulcis coal during pyrolysis. Among the tested fuels, biomass (stone pine wood chips) is the most reactive one. These results fully confirm those obtained during the experimental tests in the gasification pilot plant. As for the fuel blends, the analysis shows that the synergic effects between the considered coals and biomass are negligible when they are co-pyrolyzed. The results of the analysis confirm that TGA could be very useful to generally predict the gasification performance and to optimize the experimental campaigns in pilot-scale gasification plants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Biomass thermochemical conversion - overview of results; Biomassan jalostus - tutkimusalueen katsaus

    Energy Technology Data Exchange (ETDEWEB)

    Sipilae, K. [VTT Energy, Espoo (Finland). Energy Production Technologies

    1995-12-31

    In this Bioenergy research program the thermochemical conversion activities are mainly concentrated in three fields (1) flash pyrolysis and the use of wood oil in boilers and engines (2) biomass gasification for gas engine power plants and finally (3) conversion of black liquor and extractives in a pulp mill to various liquid fuels. Parallel to activities in Finland also significant work has been done in EU-Joule and Apas projects and in the IEA Bioenergy Agreement. In the area of flash pyrolysis technology, three new laboratory and PDU-units have been installed to VTT in order to produce various qualities of bio oils from wood and straw. The quality of pyrolysis oils have been characterized by physical and chemical methods supported by EU and IEA networks. Several companies are carrying out pyrolysis activities as well: Neste Oy is testing the wood oil in a 200 kW boiler, Waertsilae Diesel Oy is testing Canadian wood oil in a 1.5 MWe diesel power plant engine and Vapo Oy is carrying out investigations to produce pyrolysis oils in Finland. The biomass gasification coupled to a gas engine is an interesting alternative for small scale power production parallel to existing fluid bed boiler technology. VTT has installed a circulating fluid bed gasifier with advanced gas cleaning system to test various technologies in order to feed the gas to an engine. In order to produce liquid fuels at a pulp mill, the laboratory work has continued using crude soap as a raw material for high pressure liquid phase treatment and atmospheric pyrolysis process. The quality of the oil is like light fuel oil or diesel fuel, possibilities to use it as a lubricant will be investigated

  5. Effects of biomass type, blend composition, and co-pyrolysis temperature on hybrid coal quality

    Science.gov (United States)

    Sasongko, Dwiwahju; Wulandari, Winny; Rubani, Inga Shaffira; Rusydiansyah, Rifqi

    2017-01-01

    An experimental study on co-pyrolysis of coal with biomass wastes to produce hybrid coal was conducted to investigate the effects of important process variables, namely biomass type (rice husk and sawdust), blend composition, and co-pyrolysis temperature on the quality of hybrid coal. The experiments were carried out using a vertical tubular furnace equipped with temperature controller to maintain the co-pyrolysis reactor at a given temperature. Nitrogen gas was introduced into the furnace to create an inert environment preventing the sample from burning. A known mass of solid sample consisting of manually granulated blend of coal and biomass with binder in spherical shape was contained in a basket made of stainless sieve. After a given residence time, the sample was taken from the furnace. The blend sample prior to experiment and the produced hybrid coal were then characterized for its proximate analysis, ultimate analysis and calorific value. Experimental findings suggested that by increasing co-pyrolysis temperature from 200 to 400 °C, the calorific value of hybrid coal will increase by 14.5-17.7% to be 5585-7060 kcal/kg. It was also showed that 30% increase in the biomass content in the fuel blend would produce a hybrid coal that emitting up to 25.9% less in CO2 when used for combustion, although its calorific value decreased down to 8% compared to the biomass blend. It is shown that hybrid coal obtained from this study is comparable in calorific value to bituminous coal, thus suitable for power plant while being more environmentally friendly.

  6. Multiscale Mathematics for Biomass Conversion to Renewable Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Plechac, Petr [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Mathematics; Univ. of Delaware, Newark, DE (United States). Dept. of Mathematics; Vlachos, Dionisios [Univ. of Delaware, Newark, DE (United States). Dept. of Chemical and Biomolecular Engineering; Katsoulakis, Markos [Univ. of Massachusetts, Amherst, MA (United States). Dept. of Mathematics

    2013-09-05

    The overall objective of this project is to develop multiscale models for understanding and eventually designing complex processes for renewables. To the best of our knowledge, our work is the first attempt at modeling complex reacting systems, whose performance relies on underlying multiscale mathematics. Our specific application lies at the heart of biofuels initiatives of DOE and entails modeling of catalytic systems, to enable economic, environmentally benign, and efficient conversion of biomass into either hydrogen or valuable chemicals. Specific goals include: (i) Development of rigorous spatio-temporal coarse-grained kinetic Monte Carlo (KMC) mathematics and simulation for microscopic processes encountered in biomass transformation. (ii) Development of hybrid multiscale simulation that links stochastic simulation to a deterministic partial differential equation (PDE) model for an entire reactor. (iii) Development of hybrid multiscale simulation that links KMC simulation with quantum density functional theory (DFT) calculations. (iv) Development of parallelization of models of (i)-(iii) to take advantage of Petaflop computing and enable real world applications of complex, multiscale models. In this NCE period, we continued addressing these objectives and completed the proposed work. Main initiatives, key results, and activities are outlined.

  7. Biomass conversion and expansion factors are afected by thinning

    Directory of Open Access Journals (Sweden)

    Teresa Duque Enes

    2014-12-01

    Full Text Available Aim of the study: The objective of this paper is to investigate the use of Biomass Conversion and Expansion Factors (BCEFs in maritime pine (Pinus pinaster Ait. stands subjected to thinning.Area of the study: The study area refers to different ecosystems of maritime pine stands inNorthern Portugal.Material and methods: The study is supported by time data series and cross sectional data collected in permanent plots established in the North of Portugal. An assessment of BCEF values for the aboveground compartments and for total was completed for each studied stand. Identification of key variables affecting the value of the BCEFs in time and with thinning was conducted using correlation analysis. Predictive models for estimation of the BCEFs values in time and after thinning were developed using nonlinear regression analysis.Research highlights: For periods of undisturbed growth, the results show an allometric relationship between the BCEFs, the dominant height and the mean diameter. Management practices such as thinning also influence the factors. Estimates of the ratio change before and after thinning depend on thinning severity and thinning type. The developed models allow estimating the biomass of the stands, for the aboveground compartments and for total, based on information of stand characteristics and of thinning descriptors. These estimates can be used to assess the forest dry wood stocks to be used for pulp, bioenergy or other purposes, as well as the biomass quantification to support the evaluation of the net primary productivity.Keywords: carbon; softwood; thinning; volume; wood energy; maritime pine.

  8. Catalytic conversion of cellulosic biomass to ethylene glycol: Effects of inorganic impurities in biomass.

    Science.gov (United States)

    Pang, Jifeng; Zheng, Mingyuan; Sun, Ruiyan; Song, Lei; Wang, Aiqin; Wang, Xiaodong; Zhang, Tao

    2015-01-01

    The effects of typical inorganic impurities on the catalytic conversion of cellulose to ethylene glycol (EG) were investigated, and the mechanism of catalyst deactivation by certain impurities were clarified. It was found that most impurities did not affect the EG yield, but some non-neutral impurities or Ca and Fe ions greatly decreased the EG yield. Conditional experiments and catalyst characterization showed that some impurities changed the pH of the reaction solution and affected the cellulose hydrolysis rate; Ca and Fe cations reacted with tungstate ions and suppressed the retro-aldol condensation. To obtain a high EG yield, the pH of the reaction solution and the concentration of tungstate ions should be respectively adjusted to 5.0-6.0 and higher than 187ppm. For raw biomass conversion, negative effects were eliminated by suitable pretreatments, and high EG yields comparable to those from pure cellulose were obtained. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Energy Conversion Alternatives Study (ECAS), General Electric Phase 1. Volume 1: Executive summary. [using coal or coal derived fuels

    Science.gov (United States)

    Corman, J. C.

    1976-01-01

    A data base for the comparison of advanced energy conversion systems for utility applications using coal or coal-derived fuels was developed. Estimates of power plant performance (efficiency), capital cost, cost of electricity, natural resource requirements, and environmental intrusion characteristics were made for ten advanced conversion systems. Emphasis was on the energy conversion system in the context of a base loaded utility power plant. All power plant concepts were premised on meeting emission standard requirements. A steam power plant (3500 psig, 1000 F) with a conventional coal-burning furnace-boiler was analyzed as a basis for comparison. Combined cycle gas/steam turbine system results indicated competitive efficiency and a lower cost of electricity compared to the reference steam plant. The Open-Cycle MHD system results indicated the potential for significantly higher efficiency than the reference steam plant but with a higher cost of electricity.

  10. Development of water requirement factors for biomass conversion pathway.

    Science.gov (United States)

    Singh, Shikhar; Kumar, Amit

    2011-01-01

    Published data were used to develop an integrated spreadsheet-based model to estimate total water requirement for 12 biomass conversion pathways. The water requirement for crop production was attributed only to the grains in the estimates since agricultural residues are produced irrespective of their use for fuel or electricity. Corn stover- and wheat straw-based ethanol production pathways are water efficient, requiring only 0.3 l, whereas biopower production pathways (i.e. direct combustion and bio-oil production) require about 0.8-0.9 l of water per MJ. Wheat- and corn-based ethanol production pathways consume 77 and 108 l of water per MJ, respectively. Utilization of switchgrass for production of ethanol, biopower through the direct combustion, and pyrolysis consume 128, 187 and 229 l of water per MJ, respectively. Biodiesel production from canola seed consumes 124 l of water per MJ. Corn stover- and wheat straw-based conversion pathways are most water efficient. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Conversion of Biomass Syngas to DME Using a Microchannel Reactor

    International Nuclear Information System (INIS)

    Hu, Jianli; Wang, Yong; Cao, Chunshe; Elliott, Douglas C.; Stevens, Don J.; White, James F.

    2005-01-01

    The capability of a microchannel reactor for direct synthesis of dimethylether (DME) from biomass syngas was explored. The reactor was operated in conjunction with a hybrid catalyst system consisting of methanol synthesis and dehydration catalysts, and the influence of reaction parameters on syngas conversion was investigated. The activities of different dehydration catalysts were compared under DME synthesis conditions. Reaction temperature and pressure exhibited similar positive effects on DME formation. A catalytic stability test of the hybrid catalyst system was performed for 880 hours, during which CO conversion only decreased from 88% to 81%. In the microchannel reactor, the catalyst deactivation rate appeared to be much slower than in a tubular fixed-bed reactor tested for comparison. Test results also indicated that the dehydration reaction rate and the water depletion rate via a water-gas-shift reaction should be compatible in order to achieve high selectivity to DME. Using the microchannel reactor, it was possible to achieve a space time yield almost three times higher than commercially demonstrated performance results. A side-by-side comparison indicated that the heat removal capability of the microchannel reactor was at least six times greater than that of a commercial slurry reactor under similar reaction conditions

  12. Catalytic conversion of nonfood woody biomass solids to organic liquids.

    Science.gov (United States)

    Barta, Katalin; Ford, Peter C

    2014-05-20

    This Account outlines recent efforts in our laboratories addressing a fundamental challenge of sustainability chemistry, the effective utilization of biomass for production of chemicals and fuels. Efficient methods for converting renewable biomass solids to chemicals and liquid fuels would reduce society's dependence on nonrenewable petroleum resources while easing the atmospheric carbon dioxide burden. The major nonfood component of biomass is lignocellulose, a matrix of the biopolymers cellulose, hemicellulose, and lignin. New approaches are needed to effect facile conversion of lignocellulose solids to liquid fuels and to other chemical precursors without the formation of intractable side products and with sufficient specificity to give economically sustainable product streams. We have devised a novel catalytic system whereby the renewable feedstocks cellulose, organosolv lignin, and even lignocellulose composites such as sawdust are transformed into organic liquids. The reaction medium is supercritical methanol (sc-MeOH), while the catalyst is a copper-doped porous metal oxide (PMO) prepared from inexpensive, Earth-abundant starting materials. This transformation occurs in a single stage reactor operating at 300-320 °C and 160-220 bar. The reducing equivalents for these transformations are derived by the reforming of MeOH (to H2 and CO), which thereby serves as a "liquid syngas" in the present case. Water generated by deoxygenation processes is quickly removed by the water-gas shift reaction. The Cu-doped PMO serves multiple purposes, catalyzing substrate hydrogenolysis and hydrogenation as well as the methanol reforming and shift reactions. This one-pot "UCSB process" is quantitative, giving little or no biochar residual. Provided is an overview of these catalysis studies beginning with reactions of the model compound dihydrobenzofuran that help define the key processes occurring. The initial step is phenyl-ether bond hydrogenolysis, and this is followed by

  13. Externalities of biomass based electricity production compared to power generation from coal in the Netherlands

    International Nuclear Information System (INIS)

    Faaij, A.; Meuleman, B.

    1997-12-01

    Externalities of electricity production from biomass and coal are investigated and compared for the Dutch context. Effects on economic activity and employment are investigated by means of Input/Output and multiplier tables. Valuations of damage from emissions to air are based on generic data from other studies. In addition, external costs are estimated for nitrogen leaching and for the use of agrochemicals for energy crop production. The average private costs for biomass and coal based power generation are projected to be 68 and 38 mECU/kWh respectively in the year 2005. It is assumed that biomass production takes place on fallow land. Coal mining is excluded from the analysis. If the quantified external damages and benefits are included the cost range for bio-electricity is 53-70 mECU/kWh and 45-72 mECU/kWh for coal. Indirect economic effects (increment of Gross Domestic Product) and the difference in CO2 emissions are the most important distinguishing factors between coal and biomass in economic terms. Damage costs of other emissions to air (NOx, SO2, dust and CO) are of the same order of magnitude for both coal and biomass (coal mining excluded). In this analysis environmental impacts of energy farming are compared mainly to fallow land focused on the use of fertilizers and agrochemicals. The related damage costs appear to be low but should be considered as a preliminary estimate only. The quantitative outcomes should not be considered as the external costs of the two fuel cycles studied. Many impacts have not been valued and large uncertainties persist e.g. with respect to the costs of climate change and numerous dose response relations. More detailed analysis is required with respect to macro-economic impacts. The results serve as a first indication, but the outcomes plead for the support of bio-electricity production and/or taxation of coal based power generation. 88 refs

  14. Measurement and modeling of advanced coal conversion processes. Annual report, October 1990--September 1991

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G.; Smoot, L.D.; Brewster, B.S. [Advanced Fuel Research, Inc., East Hartford, CT (United States)]|[Brigham Young Univ., Provo, UT (United States)

    1991-12-31

    The overall objective of this program is the development of predictive capability for the design, scale up, simulation, control and feedstock evaluation in advanced coal conversion devices. This program will merge significant advances made in measuring and quantitatively describing the mechanisms in coal conversion behavior. Comprehensive computer codes for mechanistic modeling of entrained-bed gasification. Additional capabilities in predicting pollutant formation will be implemented and the technology will be expanded to fixed-bed reactors.

  15. Chemistry of Furan Conversion into Aromatics and Olefins over HZSM-5: A Model Biomass Conversion Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Yu-Ting; Huber, George W.

    2011-06-03

    The conversion of furan (a model of cellulosic biomass) over HZSM-5 was investigated in a thermogravimetric analysis–mass spectrometry system, in situ Fourier transform infrared analysis, and in a continuous-flow fixed-bed reactor. Furan adsorbed as oligomers at room temperature with a 1.73 of adsorbed furan/Al ratio. These oligomers were polycyclic aromatic compounds that were converted to CO, CO₂, aromatics, and olefins at temperatures from 400 to 600 °C. Aromatics (e.g., benzene, toluene, and naphthalene), oligomer isomers (e.g., benzofuran, 2,2-methylenebisfuran, and benzodioxane), and heavy oxygenates (C₁₂{sub +} oligomers) were identified as intermediates formed inside HZSM-5 at different reaction temperatures. During furan conversion, graphite-type coke formed on the catalyst surface, which caused the aromatics and olefins formation to deactivate within the first 30 min of time on-stream. We have measured the effects of space velocity and temperature for furan conversion to help us understand the chemistry of biomass conversion inside zeolite catalysts. The major products for furan conversion included CO, CO₂, allene, C₂–C₆ olefins, benzene, toluene, styrene, benzofuran, indene, and naphthalene. The aromatics (benzene and toluene) and olefins (ethylene and propylene) selectivity decreased with increasing space velocity. Unsaturated hydrocarbons such as allene, cyclopentadiene, and aromatics selectivity increased with increasing space velocity. The product distribution was selective to olefins and CO at high temperatures (650 °C) but was selective to aromatics (benzene and toluene) at intermediate temperatures (450–600 °C). At low temperatures (450 °C), benzofuran and coke contributed 60% of the carbon selectivity. Several different reactions were occurring for furan conversion over zeolites. Some important reactions that we have identified in this study include Diels–Alder condensation (e.g., two furans form benzofuran and water

  16. Preparation of carbonized biomass water mixture and upgraded coal water mixture

    Energy Technology Data Exchange (ETDEWEB)

    Umar, D.F.; Usui, H.; Komoda, Y.; Daulay, B. [Research & Development Centre for Mineral & Coal Technology, Bandung (Indonesia)

    2006-11-15

    Biomass is the third largest primary energy resource in the world after coal and oil. Due to its huge potential, the renewable and the corresponding positive role for CO{sub 2} reduction, the use of carbonized biomass for energy purpose is expected to increase. The carbonized biomass comes from agricultural waste and forest by-product. Carbonized plant and carbonized coconut cell biomass were mixed with water to study the possibilities of slurry preparation as a carbonized biomass water mixture (CBWM). Beside that, the upgraded coal by an upgraded brown coal (UBC) process was also studied to produce a UBC water mixture (UBCWM) with high coal concentration. The rheological characteristics of CBWM and UBCWM have been conducted by using a stress controlled rheometer. The results indicate that the maximum concentrations of the carbonized plant, carbonized coconut cell biomass, and UBC were 35.9, 51.2, and 61.5 wt%, when respectively using 0.3 wt% of naphthalene sulfonic acid (NSF), polymethacrylate (PMA), and NSF as dispersing additives, and 0.1 wt% of carboxyl methyl cellulose (CMC) as a stabilizing additive.

  17. Research and evaluation of biomass resources/conversion/utilization systems. Biomass allocation model. Volume 1: Test and appendices A & B

    Science.gov (United States)

    Stringer, R. P.; Ahn, Y. K.; Chen, H. T.; Helm, R. W.; Nelson, E. T.; Shields, K. J.

    1981-08-01

    A biomass allocation model was developed to show the most profitable combination of biomass feedstocks, thermochemical conversion processes, and fuel products to serve the seasonal conditions in a regional market. This optimization model provides a tool for quickly calculating which of a large number of potential biomass missions is the most profitable mission. Other components of the system serve as a convenient storage and retrieval mechanism for biomass marketing and thermochemical conversion processing data. The system can be accessed through the use of a computer terminal, or it could be adapted to a microprocessor. A User's Manual for the system is included. Biomass derived fuels included in the data base are the following: medium Btu gas, low Btu gas, substitute natural gas, ammonia, methanol, electricity, gasoline, and fuel oil.

  18. Thermodynamic data for biomass conversion and waste incineration

    Energy Technology Data Exchange (ETDEWEB)

    Domalski, E.S.; Jobe, T.L. Jr; Milne, T.A.

    1986-09-01

    The general purpose of this collection of thermodynamic data of selected materials is to make property information available to the engineering community on chemical mixtures, polymers, composite materials, solid wastes, biomass, and materials not easily identifiable by a single stoichiometric formula. More than 700 materials have been compiled covering properties such as specific heat, gross heat of combustion, heat of fusion, heat of vaporization, and vapor pressure. The information was obtained from the master files of the NBS Chemical Thermodynamics Data Center, the annual issues of the Bulletin of Chemical Thermodynamics, intermittent examinations of the Chemical Abstracts subject indexes, individual articles by various authors, and other general reference sources. The compilation is organized into several broad categories; materials are listed alphabetically within each category. For each material, the physical state, information as to the composition or character of the material, the kind of thermodynamic property reported, the specific property values for the material, and citations to the reference list are given. In addition, appendix A gives an empirical formula that allows heats of combustion of carbonaceous materials to be predicted with surprising accuracy when the elemental composition is known. A spread sheet illustrates this predictability with examples from this report and elsewhere. Appendix B lists some reports containing heats of combustion not included in this publication. Appendix C contains symbols, units, conversion factors, and atomic weights used in evaluating and compiling the thermodynamic data.

  19. Modular High Temperature Gas-Cooled Reactor heat source for coal conversion

    International Nuclear Information System (INIS)

    Schleicher, R.W. Jr.; Lewis, A.C.

    1992-09-01

    In the industrial nations, transportable fuels in the form of natural gas and petroleum derivatives constitute a primary energy source nearly equivalent to that consumed for generating electric power. Nations with large coal deposits have the option of coal conversion to meet their transportable fuel demands. But these processes themselves consume huge amounts of energy and produce undesirable combustion by-products. Therefore, this represents a major opportunity to apply nuclear energy for both the environmental and energy conservation reasons. Because the most desirable coal conversion processes take place at 800 degree C or higher, only the High Temperature Gas-Cooled Reactors (HTGRs) have the potential to be adapted to coal conversion processes. This report provides a discussion of this utilization of HTGR reactors

  20. Laboratory Scale Coal And Biomass To Drop-In Fuels (CBDF) Production And Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lux, Kenneth [Altex Technologies Corporation, Sunnyvale, CA (United States); Imam, Tahmina [Altex Technologies Corporation, Sunnyvale, CA (United States); Chevanan, Nehru [Altex Technologies Corporation, Sunnyvale, CA (United States); Namazian, Mehdi [Altex Technologies Corporation, Sunnyvale, CA (United States); Wang, Xiaoxing [Pennsylvania State Univ., University Park, PA (United States); Song, Chunshan [Pennsylvania State Univ., University Park, PA (United States)

    2016-06-29

    This Final Technical Report describes the work and accomplishments of the project entitled, “Laboratory Scale Coal and Biomass to Drop-In Fuels (CBDF) Production and Assessment.” The main objective of the project was to fabricate and test a lab-scale liquid-fuel production system using coal containing different percentages of biomass such as corn stover and switchgrass at a rate of 2 liters per day. The system utilizes the patented Altex fuel-production technology, which incorporates advanced catalysts developed by Pennsylvania State University. The system was designed, fabricated, tested, and assessed for economic and environmental feasibility relative to competing technologies.

  1. Non-catalytic co-gasification of sub-bituminous coal and biomass

    Science.gov (United States)

    Nyendu, Guevara Che

    Fluidization characteristics and co-gasification of pulverized sub-bituminous coal, hybrid poplar wood, corn stover, switchgrass, and their mixtures were investigated. Co-gasification studies were performed over temperature range from 700°C to 900°C in different media (N2, CO2, steam) using a bubbling fluidized bed reactor. In fluidization experiments, pressure drop (Delta P) observed for coal-biomass mixtures was higher than those of single coal and biomass bed materials in the complete fluidization regime. There was no systematic trend observed for minimum fluidization velocity ( Umf) with increasing biomass content. However, porosity at minimum fluidization (εmf) increased with increasing biomass content. Channeling effects were observed in biomass bed materials and coal bed with 40 wt.% and 50 wt.% biomass content at low gas flowrates. The effect of coal pressure overshoot reduced with increasing biomass content. Co-gasification of coal and corn stover mixtures showed minor interactions. Synergetic effects were observed with 10 wt.% corn stover. Coal mixed with corn stover formed agglomerates during co-gasification experiments and the effect was severe with increase in corn stover content and at 900°C. Syngas (H2 + CO) concentrations obtained using CO2 as co-gasification medium were higher (~78 vol.% at 700°C, ~87 vol.% at 800°C, ~93 vol.% at 900°C) than those obtained with N2 medium (~60 vol.% at 700°C, ~65 vol.% at 800°C, ~75 vol.% at 900°C). Experiments involving co-gasification of coal with poplar showed no synergetic effects. Experimental yields were identical to predicted yields. However, synergetic effects were observed on H2 production when steam was used as the co-gasification medium. Additionally, the presence of steam increased H2/CO ratio up to 2.5 with 10 wt.% hybrid poplar content. Overall, char and tar yields decreased with increasing temperature and increasing biomass content, which led to increase in product gas.

  2. The effect of selective solvent absorption on coal conversion. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, J.W.

    1993-11-01

    Using a pair of different recycle oils from Wilsonville and {sup 1}H NMR, {sup 13}C NMR, gel permeation (GPC) chromatography, high pressure liquid chromatography (HPLC), and elemental analysis, no significant differences were observed between the composition of the recycle oil and that portion of the oil not absorbed by the coal. For these complex mixtures, coals are not selective absorbants. Since most of the heteroatoms responsible for most of the specific interactions have been removed by hydrogenolyses, this is perhaps not surprising. To address the issue of the role of hydrogen bond donors in the reused as hydrogen donor coal, tetralin and 2-t-butyltetralin were used as hydrogen donor solvents. This work is reported in detail in Section 2. The basic idea is that the presence of the t-butyl group on the aromatic ring will hinder or block diffusion of the hydrogen donor into the coal resulting in lower conversions and less hydrogen transferred with 2-t-butyltetralin than with tetralin. Observed was identical amounts of hydrogen transfer and nearly identical conversions to pyridine solubles for both hydrogen donors. Diffusion of hydrogen donors into the coal does not seem to play a significant role in coal conversion. Finally, in Section 3 is discussed the unfavorable impact on conversion of the structural rearrangements which occur when Illinois No. 6 coal is swollen with a solvent. We believe this rearrangement results in a more strongly associated solid leading to the diminution of coal reactions. Hydrogen donor diffusion does not seem to be a major factor in coal conversion while the structural rearrangement does. Both areas warrant further exploration.

  3. Catalytic conversion of nonfood woody biomass solids to organic liquids

    NARCIS (Netherlands)

    Barta, Katalin; Ford, Peter C

    CONSPECTUS: This Account outlines recent efforts in our laboratories addressing a fundamental challenge of sustainability chemistry, the effective utilization of biomass for production of chemicals and fuels. Efficient methods for converting renewable biomass solids to chemicals and liquid fuels

  4. Measurement and modeling of advanced coal conversion processes, Volume II

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G. [and others

    1993-06-01

    A two dimensional, steady-state model for describing a variety of reactive and nonreactive flows, including pulverized coal combustion and gasification, is presented. The model, referred to as 93-PCGC-2 is applicable to cylindrical, axi-symmetric systems. Turbulence is accounted for in both the fluid mechanics equations and the combustion scheme. Radiation from gases, walls, and particles is taken into account using a discrete ordinates method. The particle phase is modeled in a lagrangian framework, such that mean paths of particle groups are followed. A new coal-general devolatilization submodel (FG-DVC) with coal swelling and char reactivity submodels has been added.

  5. Cofiring biomass and coal for fossil fuel reduction and other benefits–Status of North American facilities in 2010

    Science.gov (United States)

    David Nicholls; John. Zerbe

    2012-01-01

    Cofiring of biomass and coal at electrical generation facilities is gaining in importance as a means of reducing fossil fuel consumption, and more than 40 facilities in the United States have conducted test burns. Given the large size of many coal plants, cofiring at even low rates has the potential to utilize relatively large volumes of biomass. This could have...

  6. Studies of coupled chemical and catalytic coal conversion methods

    Energy Technology Data Exchange (ETDEWEB)

    Stock, L.M.

    1990-01-01

    This report concerns our research on base-catalyzed coal solubilization and a new approach for hydrogen addition. The work on base-catalyzed, chemical solubilization is continuing. this report is focused on the hydrogenation research. Specifically it deals with the use of arene chromium carbonyl complexes as reagents for the addition of dideuterium to coal molecules. In one phase of the work, he has established that the aromatic hydrocarbons in a representative coal liquid can be converted in very good yield to arene chromium carbonyl compounds. In a second phase of the work directly related to our objective of improved methods for catalytic hydrogenation, he has established that the aromatic constituents of the same coal liquid add dideuterium in the presence of added napththalene chromium carbonyl.

  7. Coal liquefaction and gas conversion: Proceedings. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    Volume I contains papers presented at the following sessions: AR-Coal Liquefaction; Gas to Liquids; and Direct Liquefaction. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  8. Copyrolysis of Biomass and Coal: A Review of Effects of Copyrolysis Parameters, Product Properties, and Synergistic Mechanisms

    Science.gov (United States)

    2016-01-01

    Concerns in the last few decades regarding the environmental and socioeconomic impacts of the dependence on fossil fuels have resulted in calls for more renewable and alternative energy sources. This has led to recent interest in copyrolysis of biomass and coal. Numerous reviews have been found related to individual pyrolysis of coal and biomass. This review deals mainly with the copyrolysis of coal and biomass and then compares their results with those obtained using coal and biomass pyrolysis in detail. It is controversial whether there are synergistic or additive behaviours when coal and biomass are blended during copyrolysis. In this review, the effects of reaction parameters such as feedstock types, blending ratio, heating rate, temperature, and reactor types on the occurrence of synergy are discussed. Also, the main properties of the copyrolytic products are pointed out. Some possible synergistic mechanisms are also suggested. Additionally, several outlooks based on studies in the literature are also presented in this paper. PMID:27722171

  9. Copyrolysis of Biomass and Coal: A Review of Effects of Copyrolysis Parameters, Product Properties, and Synergistic Mechanisms

    Directory of Open Access Journals (Sweden)

    Cui Quan

    2016-01-01

    Full Text Available Concerns in the last few decades regarding the environmental and socioeconomic impacts of the dependence on fossil fuels have resulted in calls for more renewable and alternative energy sources. This has led to recent interest in copyrolysis of biomass and coal. Numerous reviews have been found related to individual pyrolysis of coal and biomass. This review deals mainly with the copyrolysis of coal and biomass and then compares their results with those obtained using coal and biomass pyrolysis in detail. It is controversial whether there are synergistic or additive behaviours when coal and biomass are blended during copyrolysis. In this review, the effects of reaction parameters such as feedstock types, blending ratio, heating rate, temperature, and reactor types on the occurrence of synergy are discussed. Also, the main properties of the copyrolytic products are pointed out. Some possible synergistic mechanisms are also suggested. Additionally, several outlooks based on studies in the literature are also presented in this paper.

  10. Combustion properties, water absorption and grindability of raw/torrefied biomass pellets and Silantek coal

    Science.gov (United States)

    Matali, Sharmeela; Rahman, Norazah Abdul; Idris, Siti Shawaliah; Yaacob, Nurhafizah

    2017-12-01

    Torrefaction, also known as mild pyrolysis, is proven to convert raw biomass into a value-added energy commodity particularly for application in combustion and co-firing systems with improved storage and handling properties. This paper aims to compare the characteristics of Malaysian bituminous coal i.e. Silantek coal with raw and torrefied biomass pellet originated from oil palm frond and fast growing tree species, Leucaena Leucocephala. Biomass samples were initially torrefied at 300 °C for 60 minutes. Resulting torrefied biomass pellets were analysed using a number of standard fuel characterisation analyses i.e. elemental analysis, proximate analysis and calorific content (high heating values) experiments. Investigations on combustion characteristics via dynamic thermogravimetric analysis (TGA), grindability and moisture uptake tests were also performed on the torrefied biomass pellets. Better quality bio-chars were produced as compared to its raw forms and with optimal process conditions, torrefaction may potentially produces a solid fuel with combustion reactivity and porosity equivalent to raw biomass while having compatible energy density and grindability to coal.

  11. Direct Coal -to-Liquids (CTL) for Jet Fuel Using Biomass-Derived Solvents

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, Satya P. [Battelle, Columbus, OH (United States); Garbark, Daniel B. [Battelle, Columbus, OH (United States); Taha, Rachid [Battelle, Columbus, OH (United States); Peterson, Rick [Battelle, Columbus, OH (United States)

    2017-09-30

    Battelle has demonstrated a novel and potentially breakthrough technology for a direct coal-to-liquids (CTL) process for producing jet fuel using biomass-derived coal solvents (bio-solvents). The Battelle process offers a significant reduction in capital and operating costs and a substantial reduction in greenhouse gas (GHG) emissions, without requiring carbon capture and storage (CCS). The results of the project are the advancement of three steps of the hybrid coal/biomass-to-jet fuel process to the technology readiness level (TRL) of 5. The project objectives were achieved over two phases. In Phase 1, all three major process steps were explored and refined at bench-scale, including: (1) biomass conversion to high hydrogen-donor bio-solvent; (2) coal dissolution in biomass-derived bio-solvent, without requiring molecular H2, to produce a synthetic crude (syncrude); and (3) two-stage catalytic hydrotreating/hydrogenation of syncrude to jet fuel and other distillates. In Phase 2, all three subsystems of the CTL process were scaled up to a pre-pilot scale, and an economic analysis was carried out. A total of over 40 bio-solvents were identified and prepared. The most unique attribute of Battelle’s bio-solvents is their ability to provide much-needed hydrogen to liquefy coal and thus increase its hydrogen content so much that the resulting syncrude is liquid at room temperature. Based on the laboratory-scale testing with bituminous coals from Ohio and West Virginia, a total of 12 novel bio-solvent met the goal of greater than 80% coal solubility, with 8 bio-solvents being as good as or better than a well-known but expensive hydrogen-donor solvent, tetralin. The Battelle CTL process was then scaled up to 1 ton/day (1TPD) at a pre-pilot facility operated in Morgantown, WV. These tests were conducted, in part, to produce enough material for syncrude-upgrading testing. To convert the Battelle-CTL syncrude into a form suitable as a blending stock for jet

  12. Conversion of Lignocellulosic Biomass to Nanocellulose: Structure and Chemical Process

    Directory of Open Access Journals (Sweden)

    H. V. Lee

    2014-01-01

    Full Text Available Lignocellulosic biomass is a complex biopolymer that is primary composed of cellulose, hemicellulose, and lignin. The presence of cellulose in biomass is able to depolymerise into nanodimension biomaterial, with exceptional mechanical properties for biocomposites, pharmaceutical carriers, and electronic substrate’s application. However, the entangled biomass ultrastructure consists of inherent properties, such as strong lignin layers, low cellulose accessibility to chemicals, and high cellulose crystallinity, which inhibit the digestibility of the biomass for cellulose extraction. This situation offers both challenges and promises for the biomass biorefinery development to utilize the cellulose from lignocellulosic biomass. Thus, multistep biorefinery processes are necessary to ensure the deconstruction of noncellulosic content in lignocellulosic biomass, while maintaining cellulose product for further hydrolysis into nanocellulose material. In this review, we discuss the molecular structure basis for biomass recalcitrance, reengineering process of lignocellulosic biomass into nanocellulose via chemical, and novel catalytic approaches. Furthermore, review on catalyst design to overcome key barriers regarding the natural resistance of biomass will be presented herein.

  13. Conversion of Lignocellulosic Biomass to Nanocellulose: Structure and Chemical Process

    Science.gov (United States)

    Lee, H. V.; Hamid, S. B. A.; Zain, S. K.

    2014-01-01

    Lignocellulosic biomass is a complex biopolymer that is primary composed of cellulose, hemicellulose, and lignin. The presence of cellulose in biomass is able to depolymerise into nanodimension biomaterial, with exceptional mechanical properties for biocomposites, pharmaceutical carriers, and electronic substrate's application. However, the entangled biomass ultrastructure consists of inherent properties, such as strong lignin layers, low cellulose accessibility to chemicals, and high cellulose crystallinity, which inhibit the digestibility of the biomass for cellulose extraction. This situation offers both challenges and promises for the biomass biorefinery development to utilize the cellulose from lignocellulosic biomass. Thus, multistep biorefinery processes are necessary to ensure the deconstruction of noncellulosic content in lignocellulosic biomass, while maintaining cellulose product for further hydrolysis into nanocellulose material. In this review, we discuss the molecular structure basis for biomass recalcitrance, reengineering process of lignocellulosic biomass into nanocellulose via chemical, and novel catalytic approaches. Furthermore, review on catalyst design to overcome key barriers regarding the natural resistance of biomass will be presented herein. PMID:25247208

  14. Technical challenges and opportunities in cogasification of coal and biomass

    Science.gov (United States)

    Jagpinder Singh Brar; Kaushlendra Singh; John. Zondlo

    2013-01-01

    Biomass gasification manufacturers are beginning to market 5 to 100 kW capacity gasifiers (e.g., Community Power Corporation (CPC), Littleton, CO and gasifier experimenters kit (GEK), AllPower Labs, Berkeley, CA) for producing electricity and synthetic gas (syngas). These gasifiers operate at 900 to 1000 °C, consuming 1.3 kg of biomass per hour for every kW...

  15. Rheology of fly ashes from coal and biomass co-combustion

    DEFF Research Database (Denmark)

    Arvelakis, Stelios; Frandsen, Flemming

    2010-01-01

    The presence of large amounts of alkali metals, chlorine and sulphur in most biomass fuels - compared to coal - can create serious ash-related problems such as deposition, agglomeration and/or corrosion. This paper discusses the viscosity characteristics of fly ash from the co-combustion of vario...... viscosity leading to higher stickiness of the ash particles. Wood co-firing has only minor effects, due to the composition of wood ash and the low percentage of wood in the coal/biomass blend.......The presence of large amounts of alkali metals, chlorine and sulphur in most biomass fuels - compared to coal - can create serious ash-related problems such as deposition, agglomeration and/or corrosion. This paper discusses the viscosity characteristics of fly ash from the co-combustion of various...... coal/biomass blends in a pilot scale pf-boiler. The produced data provide information on the melting of the ash and its flow characteristics, as a function of temperature, which may be used to modify the temperature profile of the boiler in order to avoid slagging. Straw co-firing lowers the ash...

  16. Externalities of biomass based electricity production compared to power generation from coal in the Netherlands

    NARCIS (Netherlands)

    Faaij, A.; Meuleman, B.

    1997-01-01

    Externalities of electricity production from biomass and coal are investigated and compared for the Dutch context. Effects on economic activity and employment are investigated with help of Input/Output and multiplier tables. Valuations of damage from emissions to air are based on generic data from

  17. Investigation of Coal-biomass Catalytic Gasification using Experiments, Reaction Kinetics and Computational Fluid Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Battaglia, Francine [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Agblevor, Foster [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Klein, Michael [Univ. of Delaware, Newark, DE (United States); Sheikhi, Reza [Northeastern Univ., Boston, MA (United States)

    2015-12-31

    A collaborative effort involving experiments, kinetic modeling, and computational fluid dynamics (CFD) was used to understand co-gasification of coal-biomass mixtures. The overall goal of the work was to determine the key reactive properties for coal-biomass mixed fuels. Sub-bituminous coal was mixed with biomass feedstocks to determine the fluidization and gasification characteristics of hybrid poplar wood, switchgrass and corn stover. It was found that corn stover and poplar wood were the best feedstocks to use with coal. The novel approach of this project was the use of a red mud catalyst to improve gasification and lower gasification temperatures. An important results was the reduction of agglomeration of the biomass using the catalyst. An outcome of this work was the characterization of the chemical kinetics and reaction mechanisms of the co-gasification fuels, and the development of a set of models that can be integrated into other modeling environments. The multiphase flow code, MFIX, was used to simulate and predict the hydrodynamics and co-gasification, and results were validated with the experiments. The reaction kinetics modeling was used to develop a smaller set of reactions for tractable CFD calculations that represented the experiments. Finally, an efficient tool was developed, MCHARS, and coupled with MFIX to efficiently simulate the complex reaction kinetics.

  18. NO Reduction over Biomass and Coal Char during Simultaneous Combustion

    DEFF Research Database (Denmark)

    Zhao, Ke; Glarborg, Peter; Jensen, Anker Degn

    2013-01-01

    This paper reports an experimental study of NO reduction over chars of straw, bark, bituminous coal, and lignite. The experiments were performed in a fixed bed reactor in the temperature range 850–1150 °C. The chars were generated by in situ pyrolysis at the reaction temperature to minimize further...

  19. Investigation of coals and coal conversion products by FT-IR methods

    Energy Technology Data Exchange (ETDEWEB)

    Romanchuk, V.V.; Ismagilov, M.S.; Korobetskii, I.A. [Clean Coal Technology and Certification Center Ltd., Kemerovo (Russian Federation)

    1996-12-31

    The influence of water content on coal pyrolysis was studied by Fourier transform infrared (FT-IR) spectroscopy. Three coals varying in rank were studied. The coal samples were previously dried at 200 C. Pyrolysis was carried out in a nitrogen flow reactor at temperature 450 C. The FT-IR examination showed that the aliphatic structures and hydroxyl functional groups were removed from chars, while aromatic hydrogen content increased during the pyrolysis. Several structural characteristics based on FT-IR data were calculated for coals and their chars. These structural characteristics showed increasing of aromatic hydrogen content during the drying.

  20. Development of liquefaction process of coal and biomass in supercritical water; Chorinkaisui wo mochiita sekitan biomass doji ekika process no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Nonaka, H.; Matsumura, Y.; Tsutsumi, A.; Yoshida, K. [The University of Tokyo, Tokyo (Japan). Faculty of Engineering; Masuno, Y.; Inaba, A. [National Institute for Resources and Environment, Tsukuba (Japan)

    1996-10-28

    Liquefaction of coal and biomass in supercritical water has been investigated, in which strong solubilization force of supercritical water against hydrocarbons is utilized. Free radicals are formed through the cleavage of covalent bonds in coal under the heating condition at around 400{degree}C during coal liquefaction. It is important to stabilize these unstable intermediate products by hydrogen transfer. On the other hand, hydrogen is not required for the liquefaction of biomass having higher H/C atomic ratio and oxygen content than those of coal. Co-liquefaction of coal and biomass was conducted using supercritical water, in which excess hydrogen from the liquefaction of biomass would be transferred to coal, resulting in the effective liquefaction of coal. Mixture of coal and cellulose was liquefied in supercritical water at 390{degree}C under the pressure of 25 MPa using a semi-continuous reactor, and the results were compared with those from the separate liquefaction of them. The co-liquefaction of coal and cellulose did not show any difference in the residue yield from the separate liquefaction of these, but led to the increased production of compounds with lower molecular weight. The liquefaction was completed in 15 minutes. 5 refs., 3 figs., 3 tabs.

  1. Co-gasification of Colombian coal and biomass in fluidized bed: An experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Jhon F. Velez; Farid Chejne; Carlos F. Valdes; Eder J. Emery; Carlos A. Londono [Universidad Nacional de Colombia, Antioquia (Colombia). Grupo de Termodinamica Aplicada y Energias Alternativas

    2009-03-15

    The main results of an experimental work on co-gasification of Colombian biomass/coal blends in a fluidized bed working at atmospheric pressure are reported in this paper. Several samples of blends were prepared by mixing 6-15wt% biomass (sawdust, rice or coffee husk) with coal. Experimental assays were carried out by using mixtures of different steams/blends (Rvc) and air/blend (Rac) ratios showing the feasibility to implement co-gasification as energetic alternative to produce fuel gas to heat and to generate electricity and the possibility of converting clean and efficiently the refuse coal to a low-heating value gas. 29 refs., 5 figs., 4 tabs.

  2. Gasification behavior of coal and woody biomass: Validation and parametrical study

    International Nuclear Information System (INIS)

    Adeyemi, Idowu; Janajreh, Isam; Arink, Thomas; Ghenai, Chaouki

    2017-01-01

    Highlights: • Numerical modeling and experimental diagnostics of entrained flow gasification. • Obtain the effect of gasification of Kentucky coal and wood waste. • Obtain the effect of equivalence ratio, pressure and temperature. • Kentucky coal produced higher gasification efficiency as compared to wood. • The gasification efficiency most sensitive to equivalence ratio. - Abstract: The entrained flow gasification of two feedstocks (Kentucky coal and woody biomass) have been investigated in this study both numerically and experimentally. Previously, there had been no study that investigated the centerline parameters during the experimental gasification of Kentucky coal and biomass utilizing drop tube reactor (DTR). These high quality centerline experiments provide enough data for high fidelity model development and used for an innovative gasifier design. This work investigates the gasification behavior of Kentucky coal and wood waste under different gasification parameters including equivalence ratio, pressure and temperature. The experimental study was conducted in the air-blown atmospheric DTR experimental facility at the Waste-2-Energy Laboratory at Masdar Institute. The measured centerline temperature, exit gas composition, and SEM images was obtained for model validation and to gain better insight into the gasification of the two different feedstock particles. The Lagrangian–Eulerian based numerical model predicted the experimental results reasonably. The effect of the fuel type on the gas composition along the centerline of the gasifier indicated that Kentucky coal attained higher gasification efficiency when compared to that of wood waste. Moreover, the gasification efficiency was most sensitive to the equivalence ratio.

  3. Measurement and modeling of advanced coal conversion processes, Volume III

    Energy Technology Data Exchange (ETDEWEB)

    Ghani, M.U.; Hobbs, M.L.; Hamblen, D.G. [and others

    1993-08-01

    A generalized one-dimensional, heterogeneous, steady-state, fixed-bed model for coal gasification and combustion is presented. The model, FBED-1, is a design and analysis tool that can be used to simulate a variety of gasification, devolatilization, and combustion processes. The model considers separate gas and solid temperatures, axially variable solid and gas flow rates, variable bed void fraction, coal drying, devolatilization based on chemical functional group composition, depolymerization, vaporization and crosslinking, oxidation, and gasification of char, and partial equilibrium in the gas phase.

  4. Advanced Systems for Preprocessing and Characterizing Coal-Biomass Mixtures as Next-Generation Fuels and Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Karmis, Michael [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Luttrell, Gerald [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Ripepi, Nino [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Bratton, Robert [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Dohm, Erich [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2014-09-30

    The research activities presented in this report are intended to address the most critical technical challenges pertaining to coal-biomass briquette feedstocks. Several detailed investigations were conducted using a variety of coal and biomass feedstocks on the topics of (1) coal-biomass briquette production and characterization, (2) gasification of coal-biomass mixtures and briquettes, (3) combustion of coal-biomass mixtures and briquettes, and (4) conceptual engineering design and economic feasibility of briquette production. The briquette production studies indicate that strong and durable co-firing feedstocks can be produced by co-briquetting coal and biomass resources commonly available in the United States. It is demonstrated that binderless coal-biomass briquettes produced at optimized conditions exhibit very high strength and durability, which indicates that such briquettes would remain competent in the presence of forces encountered in handling, storage and transportation. The gasification studies conducted demonstrate that coal-biomass mixtures and briquettes are exceptional gasification feedstocks, particularly with regard to the synergistic effects realized during devolatilization of the blended materials. The mixture combustion studies indicate that coal-biomass mixtures are exceptional combustion feedstocks, while the briquette combustion study indicates that the use of blended briquettes reduces NOx, CO2, and CO emissions, and requires the least amount of changes in the operating conditions of an existing coal-fired power plant. Similar results were obtained for the physical durability of the pilot-scale briquettes compared to the bench-scale tests. Finally, the conceptual engineering and feasibility analysis study for a commercial-scale briquetting production facility provides preliminary flowsheet and cost simulations to evaluate the various feedstocks, equipment selection and operating parameters.

  5. Interlaboratory comparison of mutagenesis testing of coal fly ash derived from differenct coal conversion technologies

    Energy Technology Data Exchange (ETDEWEB)

    Chrisp, C.; Hobbs, C.; Clark, R.; Kubitschek, H. E.

    1979-01-01

    This experiment showed that mutagenicity of fly ash derived from different coal conversion technologies, as determined by the Ames plate incorporation test, was similar in all three laboratories. The differences in mutagenic activity of each fly ash between laboratories with different solvent extraction methods were no greater than one order of magnitude. In addition, there were much smaller, but still significant differences in mutagenic activity between laboratories when the same solvent extract of a particular fly ash was tested in each laboratory. There were also significant differences in mutagenicity of the positive control mutagen (maximum of fivefold) between laboratories. Because of this difference in Ames test sensitivity between laboratories, the influence of the solvent extraction methods on differences in mutagenicity was not clear. However, the data suggested that either there were significant differences in the degree of sensitivity of Ames tests for different complex mixtures within each laboratory, or else there were differences in mutagen extraction efficiency between different solvent extraction methods. Both Ames test sensitivity and solvent extraction may be important. Further work would be necessary to separate the contribution of these two factors. An important aspect of further work would be to separate the contribution of the innate sensitivity of substrains of Ames tester strains in each laboratory from the possible effects of differences in Ames testing methodology. This could be done by testing the same extracts of fly ash and positive control mutagens with substrains of tester strains exchanged between laboratories. This work also implies that caution should be exercised in assuming that the same solvent would have the same efficiency for extraction of mutagens from different fly ashes even within the same laboratory.

  6. System applications CRC -Biomass + Coal; Aplicaciones Sistema CRC-Biomasa+Carbon

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    Main object of Phase I of the project is to analyse the technical-economic feasibility of the combined use of biomass and coal for power generation in the Spanish region of Andalusia, by means of new medium-size independent power plants or using biomass as supplementary fuel in existing large coal power plants, including: -Analysis and classification of biomass and coal resources in the region -Technical-economic study of conventional alternatives using the steam cycle -Analysis of efficiency improvement provided by advanced Rankine-cycle technologies, like the SMR cycle -Analysis of alternatives based on parallel combined cycles using gas turbines, including advanced solutions, like the EAPI and CRC-EAPI systems. -Description and evaluation of different biomass drying systems. -Description and evaluation of the three main biomass gasification systems currently under development: atmospheric direct, atmospheric indirect and pressurized. Main objects of Phase II of the project are to analyse a specific application of the EAPI system to a real cogeneration plant project and to analyse the application of the CRC2 system to a commercial supercritical power plant, including technical-economic study of both applications. (Author)

  7. Co-pyrolysis of low rank coals and biomass: Product distributions

    Energy Technology Data Exchange (ETDEWEB)

    Soncini, Ryan M.; Means, Nicholas C.; Weiland, Nathan T.

    2013-10-01

    Pyrolysis and gasification of combined low rank coal and biomass feeds are the subject of much study in an effort to mitigate the production of green house gases from integrated gasification combined cycle (IGCC) systems. While co-feeding has the potential to reduce the net carbon footprint of commercial gasification operations, the effects of co-feeding on kinetics and product distributions requires study to ensure the success of this strategy. Southern yellow pine was pyrolyzed in a semi-batch type drop tube reactor with either Powder River Basin sub-bituminous coal or Mississippi lignite at several temperatures and feed ratios. Product gas composition of expected primary constituents (CO, CO{sub 2}, CH{sub 4}, H{sub 2}, H{sub 2}O, and C{sub 2}H{sub 4}) was determined by in-situ mass spectrometry while minor gaseous constituents were determined using a GC-MS. Product distributions are fit to linear functions of temperature, and quadratic functions of biomass fraction, for use in computational co-pyrolysis simulations. The results are shown to yield significant nonlinearities, particularly at higher temperatures and for lower ranked coals. The co-pyrolysis product distributions evolve more tar, and less char, CH{sub 4}, and C{sub 2}H{sub 4}, than an additive pyrolysis process would suggest. For lignite co-pyrolysis, CO and H{sub 2} production are also reduced. The data suggests that evolution of hydrogen from rapid pyrolysis of biomass prevents the crosslinking of fragmented aromatic structures during coal pyrolysis to produce tar, rather than secondary char and light gases. Finally, it is shown that, for the two coal types tested, co-pyrolysis synergies are more significant as coal rank decreases, likely because the initial structure in these coals contains larger pores and smaller clusters of aromatic structures which are more readily retained as tar in rapid co-pyrolysis.

  8. Coal conversion and the HTR - basic elements of novel power supply concepts

    International Nuclear Information System (INIS)

    Buerger, F.H.

    1985-01-01

    A meeting under this title was held in Dortmund on 16 to 19 September, 1985, jointly by the VGB Technische Vereinigung der Grosskraftwerksbetreiber e.V., Essen, and the Vereinigte Elektrizitaetswerke Westfalen AG (VEW), Dortmund. The meeting was held in two sections: 'Gersteinwerk power plant - the combination unit K and the KUV coal conversion system' and '7th International conference on HTR technology'. Three technologies were discussed that will have a significant role on the future energy market, i.e., the HTR reactor line (first applied in the Hamm-Uentrop THTR reactor), the new generation of coal-fired power plants with combined gas/steam turbines, and the coal gasification technology. All three systems will make more efficient and less-polluting use of domestic coal by using HTR process heat, by converting coal to widen its range of applications, and by providing more efficient combination units for power plants. (orig./UA) [de

  9. Biomass Program 2007 Program Peer Review - Thermochemical Conversion Platform Summary

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-10-27

    This document discloses the comments provided by a review panel at the U.S. Department of Energy Office of the Biomass Program Peer Review held on November 15-16, 2007 in Baltimore, MD and the Biomass Program Peer Review for the Thermochemical Platform, held on July 9th and 10th in Golden, Colorado.

  10. Characterization of selected Ohio coals to predict their conversion behavior relative to 104 North American Coals. [Factors correlating with liquefaction behavior

    Energy Technology Data Exchange (ETDEWEB)

    Whitacre, T. P.; Hunt, T. J.; Kneller, W. A.

    1982-02-01

    Twenty-six coal samples from Ohio were collected as washed and seam samples, and lithobodies within the seams. Characterization of these samples included determination of % maceral, % anti R/sub max/, LTA, chlorine content and proximate/ultimate and qualitative mineral analyses. These data were compared to data from a similar project by Yarzab, R.F., et al., 1980 completed at Pennsylvania State University using tetralin as the hydrogen donor solvent. The characteristics of these coals were correlated with liquefaction conversion and other data accrued on 104 North American coals by statistical analyses. Utilizing percent carbon, sulfur, volatile matter, reflectance, vitrinite and total reactive macerals, Q-mode cluster analysis demonstrated that Ohio coals are more similar to the coals of the Interior province than to those of the Appalachian province. Linear multiple regression analysis for the 104 North American coals provided a prediction equation for conversion (R = .96). The predicted conversion values for the samples range from 58.8 to 79.6%, with the Lower Kittanning (No. 5) and the Middle Kittanning (No. 6) coal seams showing the highest predicted percent conversion (respectively, 73.4 and 72.2%). The moderately low FSI values for the No. 5 and No. 6 coals (respectively, 2.5 and 3) and their moderately high alkaline earth content (respectively, 0.69 and 0.74%) suggest that these coals possess the best overall properties for conversion. Stepwise regression has indicated that the most important coal characteristics affecting conversion are, in decreasing order of importance: % volatile matter, % vitrinite and % total sulfur. Conversion processes can be expected to produce higher yields with Ohio coals due to the presence of such mineral catalysts as pyrite and kaolinite. It is believed that the presence of these disposable catalysts increases the marketability of Ohio coals.

  11. Anaerobic treatment of phenolic coal conversion wastewater in semicontinuous cultures

    Energy Technology Data Exchange (ETDEWEB)

    Fedorak, P.M.; Hrudey, S.E.

    1986-01-01

    Effluent from the H-coal process was treated with methanogenic cultures. During a stable period, virtually all the phenol and p- and m-cresol was removed; thereafter, the three compounds began to appear in the outflow, o-Cresol was not degraded under these conditions. Methane production was monitored.

  12. Flow-through biological conversion of lignocellulosic biomass

    Science.gov (United States)

    Herring, Christopher D.; Liu, Chaogang; Bardsley, John

    2014-07-01

    The present invention is directed to a process for biologically converting carbohydrates from lignocellulosic biomass comprising the steps of: suspending lignocellulosic biomass in a flow-through reactor, passing a reaction solution into the reactor, wherein the solution is absorbed into the biomass substrate and at least a portion of the solution migrates through said biomass substrate to a liquid reservoir, recirculating the reaction solution in the liquid reservoir at least once to be absorbed into and migrate through the biomass substrate again. The biological converting of the may involve hydrolyzing cellulose, hemicellulose, or a combination thereof to form oligosaccharides, monomelic sugars, or a combination thereof; fermenting oligosaccharides, monomelic sugars, or a combination thereof to produce ethanol, or a combination thereof. The process can further comprise removing the reaction solution and processing the solution to separate the ethanol produced from non-fermented solids.

  13. Kinetic Study of Coal and Biomass Co-Pyrolysis Using Thermogravimetry

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ping [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Hedges, Sheila W. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Chaudharib, Kiran [West Virginia Univ., Morgantown, WV (United States). Department of Chemical Engineering; Turtonb, Richard [West Virginia Univ., Morgantown, WV (United States). Department of Chemical Engineering

    2013-10-29

    The objectives of this study are to investigate thermal behavior of coal and biomass blends in inert gas environment at low heating rates and to develop a simplified kinetic model using model fitting techniques based on TGA experimental data. Differences in thermal behavior and reactivity in co-pyrolysis of Powder River Basin (PRB) sub-bituminous coal and pelletized southern yellow pine wood sawdust blends at low heating rates are observed. Coal/wood blends have higher reactivity compared to coal alone in the lower temperature due to the high volatile matter content of wood. As heating rates increase, weight loss rates increase. The experiment data obtained from TGA has a better fit with proposed two step first order reactions model compared single first order reaction model.

  14. Considerations on valorization of biomass origin materials in co-combustion with coal in fluidized beds

    Energy Technology Data Exchange (ETDEWEB)

    I. Gulyurtlu; P. Abelha; H. Lopes; A. Crujeira; I. Cabrita [DEECA-INETI, Lisbon (Portugal)

    2007-07-01

    Co-combustion of biomass materials with coal is currently gaining increasing importance, in order to meet the targets on greenhouse gas emissions, defined in the Kyoto protocol. Co-firing of coal with biomass materials could be the short-term solution in reducing CO{sub 2} emissions from power stations. The work undertaken studied co-firing of meat and bone meal (MBM), olive cake and straw pellets with bituminous coals from Colombia (CC) and Poland (PC), which are commonly used in European power stations. The co-combustion studies were carried out on the pilot fluidized bed installation of INETI. Gaseous pollutants and solid concentration in flue gases and ashes from different locations were monitored. Results obtained indicate that the co-feeding of biomass materials did not present any problem and ensured stable combustion conditions and high efficiency. However, for temperatures above 800{sup o}C, bed agglomeration could be observed for all biomass species studied. Most of the combustion of biomass material, contrary to that of coal, was observed to take place in the riser where the temperature was as high as 150-250{sup o}C above that of the bed. SO{sub 2} and NOx levels were found to be lower. The emissions of dioxins could be considerable with fuels with high Cl as is the case with straw. However, mixing of fuels with high S content could lead to a strong reduction in dioxin emissions. Ashes produced from biomass combustion may be considered for further reutilization or landfilling. Other options depend on their characteristics, chemical composition and leaching behaviour. This was evaluated in this study.

  15. Biomass and fossil fuel conversion by pressurised fluidised bed gasification using hot gas ceramic filters as gas cleaning

    International Nuclear Information System (INIS)

    Jong, Wiebren de; Uenal, Oemer; Andries, Jans; Hein, K.R.G.; Spliethoff, Hartmut

    2003-01-01

    Gasification of biomass and fossil fuels, hot gas cleanup using a ceramic filter and combustion of LCV product gas in a combustor were performed using a 1.5 MWth test rig (pressurised bubbling fluidised bed gasifier) at Delft University and a 10-50 kWth system at Stuttgart University (DWSA) in the framework of experimental research on efficient, environmentally acceptable large-scale power generators based on fluidised bed gasification. The influence of operating conditions (pressure, temperature, stoichiometric ratio) on gasification (gas composition, conversion grades) was studied. The gasifiers were operated in a pressure range of 0.15-0.7 MPa and maximum temperatures of ca. 900 deg. C. The Delft gasifier has a 2 m high bed zone (diameter: 0.4 m) followed by a freeboard approximately 4 m high (diameter: 0.5 m). The IVD gasifier has a diameter of 0.1 m and a reactor length of 4 m. Carbon conversions during wood, miscanthus and brown coal gasification experiments were well above 80%. Fuel-nitrogen conversion to ammonia was above ca. 50% and the highest values were observed for biomass. The results are in line with other investigations with biomass bottom feeding. Deviation occurs compared with top feeding. Measurements are compared with simulation results of a reaction-kinetics-based model, using ASPEN PLUS, related to emission of components like fuel-nitrogen-derived species. Data from literature regarding initial biomass flash pyrolysis in the gasification process are used in the gasifier model and will be compared with simulation results from the FG-DVC model. Measurements and model predictions were in reasonably good agreement with each other

  16. White Pine Co. Public School System Biomass Conversion Heating Project

    Energy Technology Data Exchange (ETDEWEB)

    Paul Johnson

    2005-11-01

    The White Pine County School District and the Nevada Division of Forestry agreed to develop a pilot project for Nevada using wood chips to heat the David E. Norman Elementary School in Ely, Nevada. Consideration of the project was triggered by a ''Fuels for Schools'' grant that was brought to the attention of the School District. The biomass project that was part of a district-wide energy retrofit, called for the installation of a biomass heating system for the school, while the current fuel oil system remained as back-up. Woody biomass from forest fuel reduction programs will be the main source of fuel. The heating system as planned and completed consists of a biomass steam boiler, storage facility, and an area for unloading and handling equipment necessary to deliver and load fuel. This was the first project of it's kind in Nevada. The purpose of the DOE funded project was to accomplish the following goals: (1) Fuel Efficiency: Purchase and install a fuel efficient biomass heating system. (2) Demonstration Project: Demonstrate the project and gather data to assist with further research and development of biomass technology; and (3) Education: Educate the White Pine community and others about biomass and other non-fossil fuels.

  17. Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol

    Energy Technology Data Exchange (ETDEWEB)

    None

    2011-05-02

    The U.S. Department of Energy (DOE) promotes the production of ethanol and other liquid fuels from lignocellulosic biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass collection, conversion, and sustainability. As part of its involvement in the program, the National Renewable Energy Laboratory (NREL) investigates the production economics of these fuels.

  18. Alkali metals in combustion of biomass with coal

    NARCIS (Netherlands)

    Glazer, M.P.

    2007-01-01

    Growing demand for energy in the world, depletion of fossil fuels and green house effect require from us to utilize alternative, renewable sources of power. Biomass gained in the last few years more and more attention especially in Europe. Many research programs focused on the various forms of

  19. Electricity generation from solid biomass via co-combustion with coal. Energy and emission balances from a German case study

    International Nuclear Information System (INIS)

    Hartmann, D.; Kaltschmitt, M.

    1999-01-01

    The environmental effects of electricity production from different biofuels by means of co-combustion with hard coal in existing coal fired power plants are analysed and compared to electricity production from hard coal alone based on Life Cycle Analysis (LCA). The use of straw and residual wood at a 10% blend with coal in an existing power plant in the southern part of Germany shows that all investigated environmental effects are significantly lower if biomass is used instead of coal. Thus based on the available and proven technology of co-combustion of hard coal and biomass in existing power plants a significant contribution could be made to a more environmentally sound energy system compared to using coal alone. (author)

  20. An environmentally friendly technology for the carbonisation of low ranked coal and biomass

    Energy Technology Data Exchange (ETDEWEB)

    Wirtgen, G.; Weigandt, J.; Heil, J.; Thoste, V. [Aachen University of Technology, Aachen (Germany)

    2002-07-01

    Between 1997 and 2001 the Federal Institute for Geosciences and Natural Resources in connection with the Coking Group of the Aachen University of Technology developed a environmentally friendly process for the carbonisation of low ranked coals and biomass. The main tasks of finished investigations have been, to produce an economically competitive carbonisate to substitute wood and charcoal on local markets and to protect local forests. So far the project covered examinations on the behaviour of the pyrolysis of brown coals and biomass in a shaft reactor at Kuching, Malaysia, and a pilot rotary kiln reactor at Aachen. During test runs burning and briquetting tests were carried out with selected coals and biomass from Brazil, Thailand, Malaysia, Indonesia and the Phillipines. Also some coals from near east countries have been tested. To ensure thermally autarkic operation, the appropriate moisture and ash contents of the feed material were determined and a temperature based controlling system has been developed. Finally all tested materials allowed the production of a smokeless carbonisate under thermically autarkic operation. After finishing the test with a shaft reactor (feed up to 100 kg/h) the building of a rotary kiln pilot plant (feed 300 kg/h) as preproduction phase for commercial use (feed 3 - 5 t/h) is scheduled in 2002. First economic calculations on a rotary kiln operation demonstrated, that the carbonisate is competitive with local fuels such as kerosene, petroleum and gas. Additionally some carbonisates fit the quality standards for direct activation. 3 refs., 11 figs., 2 tabs.

  1. Multi-scale sustainability assessments for biomass-based and coal-based fuels in China.

    Science.gov (United States)

    Man, Yi; Xiao, Honghua; Cai, Wei; Yang, Siyu

    2017-12-01

    Transportation liquid fuels production is heavily depend on oil. In recent years, developing biomass based and coal based fuels are regarded as promising alternatives for non-petroleum based fuels in China. With the rapid growth of constructing and planning b biomass based and coal based fuels production projects, sustainability assessments are needed to simultaneously consider the resource, the economic, and the environmental factors. This paper performs multi-scale analyses on the biomass based and coal based fuels in China. The production cost, life cycle cost, and ecological life cycle cost (ELCC) of these synfuels are investigated to compare their pros to cons and reveal the sustainability. The results show that BTL fuels has high production cost. It lacks of economic attractiveness. However, insignificant resource cost and environmental cost lead to a substantially lower ELCC, which may indicate better ecological sustainability. CTL fuels, on the contrary, is lower in production cost and reliable for economic benefit. But its coal consumption and pollutant emissions are both serious, leading to overwhelming resource cost and environmental cost. A shifting from petroleum to CTL fuels could double the ELCC, posing great threat to the sustainability of the entire fuels industry. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Thermochemical conversion of biomass storage covers to reduce ammonia emissions from dairy manure Thermochemical conversion of biomass storage covers to reduce ammonia emissions from dairy manure

    Science.gov (United States)

    Manure storages, and in particular those storing digested manure, are a source of ammonia (NH3) emissions. Permeable manure storage covers can reduce NH3 emissions, however performance can decline as they degrade. Thermochemical conversion of biomass through pyrolysis and steam treatment could incre...

  3. Thermal Pretreatment of Wood for Co-gasification/co-firing of Biomass and Coal

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ping [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Howard, Bret [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Hedges, Sheila [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Morreale, Bryan [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Van Essendelft, Dirk [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Berry, David [National Energy Technology Lab. (NETL), Morgantown, WV (United States)

    2013-10-29

    Utilization of biomass as a co-feed in coal and biomass co-firing and co-gasification requires size reduction of the biomass. Reducing biomass to below 0.2 mm without pretreatment is difficult and costly because biomass is fibrous and compressible. Torrefaction is a promising thermal pretreatment process and has the advantages of increasing energy density, improving grindability, producing fuels with more homogenous compositions and hydrophobic behavior. Temperature is the most important factor for the torrefaction process. Biomass grindability is related to cell wall structure, thickness and composition. Thermal treatment such as torrefaction can cause chemical changes that significantly affect the strength of biomass. The objectives of this study are to understand the mechanism by which torrefaction improves the grindability of biomass and discuss suitable temperatures for thermal pretreatment for co-gasification/co-firing of biomass and coal. Wild cherry wood was selected as the model for this study. Samples were prepared by sawing a single tangential section from the heartwood and cutting it into eleven pieces. The samples were consecutively heated at 220, 260, 300, 350, 450 and 550⁰C for 0.5 hr under flowing nitrogen in a tube furnace. Untreated and treated samples were characterized for physical properties (color, dimensions and weight), microstructural changes by SEM, and cell wall composition changes and thermal behaviors by TGA and DSC. The morphology of the wood remained intact through the treatment range but the cell walls were thinner. Thermal treatments were observed to decompose the cell wall components. Hemicellulose decomposed over the range of ~200 to 300⁰C and resulted in weakening of the cell walls and subsequently improved grindability. Furthermore, wood samples treated above 300⁰C lost more than 39% in mass. Therefore, thermal pretreatment above the hemicelluloses decomposition temperature but below 300⁰C is probably sufficient to

  4. NEW SOLID FUELS FROM COAL AND BIOMASS WASTE; FINAL

    International Nuclear Information System (INIS)

    Hamid Farzan

    2001-01-01

    Under DOE sponsorship, McDermott Technology, Inc. (MTI), Babcock and Wilcox Company (B and W), and Minergy Corporation developed and evaluated a sludge derived fuel (SDF) made from sewage sludge. Our approach is to dry and agglomerate the sludge, combine it with a fluxing agent, if necessary, and co-fire the resulting fuel with coal in a cyclone boiler to recover the energy and to vitrify mineral matter into a non-leachable product. This product can then be used in the construction industry. A literature search showed that there is significant variability of the sludge fuel properties from a given wastewater plant (seasonal and/or day-to-day changes) or from different wastewater plants. A large sewage sludge sample (30 tons) from a municipal wastewater treatment facility was collected, dried, pelletized and successfully co-fired with coal in a cyclone-equipped pilot. Several sludge particle size distributions were tested. Finer sludge particle size distributions, similar to the standard B and W size distribution for sub-bituminous coal, showed the best combustion and slagging performance. Up to 74.6% and 78.9% sludge was successfully co-fired with pulverized coal and with natural gas, respectively. An economic evaluation on a 25-MW power plant showed the viability of co-firing the optimum SDF in a power generation application. The return on equity was 22 to 31%, adequate to attract investors and allow a full-scale project to proceed. Additional market research and engineering will be required to verify the economic assumptions. Areas to focus on are: plant detail design and detail capital cost estimates, market research into possible project locations, sludge availability at the proposed project locations, market research into electric energy sales and renewable energy sales opportunities at the proposed project location. As a result of this program, wastes that are currently not being used and considered an environmental problem will be processed into a renewable

  5. NEW SOLID FUELS FROM COAL AND BIOMASS WASTE

    Energy Technology Data Exchange (ETDEWEB)

    Hamid Farzan

    2001-09-24

    Under DOE sponsorship, McDermott Technology, Inc. (MTI), Babcock and Wilcox Company (B and W), and Minergy Corporation developed and evaluated a sludge derived fuel (SDF) made from sewage sludge. Our approach is to dry and agglomerate the sludge, combine it with a fluxing agent, if necessary, and co-fire the resulting fuel with coal in a cyclone boiler to recover the energy and to vitrify mineral matter into a non-leachable product. This product can then be used in the construction industry. A literature search showed that there is significant variability of the sludge fuel properties from a given wastewater plant (seasonal and/or day-to-day changes) or from different wastewater plants. A large sewage sludge sample (30 tons) from a municipal wastewater treatment facility was collected, dried, pelletized and successfully co-fired with coal in a cyclone-equipped pilot. Several sludge particle size distributions were tested. Finer sludge particle size distributions, similar to the standard B and W size distribution for sub-bituminous coal, showed the best combustion and slagging performance. Up to 74.6% and 78.9% sludge was successfully co-fired with pulverized coal and with natural gas, respectively. An economic evaluation on a 25-MW power plant showed the viability of co-firing the optimum SDF in a power generation application. The return on equity was 22 to 31%, adequate to attract investors and allow a full-scale project to proceed. Additional market research and engineering will be required to verify the economic assumptions. Areas to focus on are: plant detail design and detail capital cost estimates, market research into possible project locations, sludge availability at the proposed project locations, market research into electric energy sales and renewable energy sales opportunities at the proposed project location. As a result of this program, wastes that are currently not being used and considered an environmental problem will be processed into a renewable

  6. Pilot project concerning the establishment of a collective biomass conversion plant on the island of Mors

    International Nuclear Information System (INIS)

    1993-06-01

    This pilot project comprises a feasibility study in connection with plans to establish a biomass conversion plant, on the Danish island of Mors, which would provide methane to be used as fuel, in combination with natural gas, for a cogeneration plant serving six villages. The subjects of location, organization, the transportation of biomass, the design of the biomass conversion plant, economical aspects and conditions of the use of the methane are discussed as a basis for decisions in this respect. Environmental considerations are also dealt with. (AB)

  7. Study of the equilibrium of air-blown gasification of biomass to coal evolution fuels

    International Nuclear Information System (INIS)

    Biagini, Enrico

    2016-01-01

    Highlights: • Equilibrium model validated for coals, torrefied/green biomasses, in different gasifiers. • Maps of syngas composition, LHV and CGE for ER = 0–0.6, T = 500–2000 K, EBP = 0.004–0.158. • Effect of unconverted carbon, fuel moisture and overoxidation quantified. • Parameters for the maximum efficiency determined as functions of EBP. • EBP proven to be a good parameter for the quantitative comparison of different fuels. - Abstract: A non-stoichiometric equilibrium model based on the minimization of the Gibbs free energy was used to study the isothermal and adiabatic air-blown gasification of solid fuels on a carbonization curve from fossil (hard/brown coals, peat) to renewable (green biomasses and cellulose) fuels, including torrefied biofuels. The maps of syngas composition, heating value and process efficiency were provided as functions of equivalent ratio (oxygen-to-fuel ratio) in the range 0–0.6, temperature in 500–2000 K, and a fuel parameter, which allowed different cases to be quantitatively compared. The effect of fuel moisture, unconverted carbon and conditions to limit the tar formation was also studied. Cold gas efficiency >0.75 can be achieved for coals at high temperature, using entrained beds (which give low unconverted carbon), and improved by moisture/added steam. The bigger efficiency of green biomasses is only potential, as the practical limits (high temperature required to limit tar formation, moisture content and unconverted carbon in small gasifiers) strongly reduce the gasification performance. Torrefied biomasses (and plastics having an intermediate fuel parameter between coals and green biomasses) can attain high efficiency also in real conditions. The results shown in this work can be useful to evaluate the most promising feedstock (depending on its composition and possible pre-treatment/upgrading), define the operating conditions for maximizing the syngas heating value or the global efficiency, assess the

  8. Gas generation by co-gasification of biomass and coal in an autothermal fluidized bed gasifier

    International Nuclear Information System (INIS)

    Wang, Li-Qun; Chen, Zhao-Sheng

    2013-01-01

    In this study, thermochemical biomass and coal co-gasification were performed on an autothermal fluidized bed gasifier, with air and steam as oxidizing and gasifying media. The experiments were completed at reaction temperatures of 875 °C–975 °C, steam-to-biomass ratio of 1.2, and biomass-to-coal ratio of 4. This research aims to determine the effects of reaction temperature on gas composition, lower heating value (LHV), as well as energy and exergy efficiencies, of the product gas. Over the ranges of the test conditions used, the product gas LHV varies between 12 and 13.8 MJ/Nm 3 , and the exergy and energy efficiencies of the product gas are in the ranges of 50.7%–60.8% and 60.3%–85.1%, respectively. The results show that high reaction temperature leads to higher H 2 and CO contents, as well as higher exergy and energy efficiencies of the product gas. In addition, gas LHV decreases with temperature. The molar ratio of H 2 /CO is larger than 1 at temperatures above 925 °C. Our experimental analysis shows that co-gasification of biomass and coal in an autothermal fluidized bed gasifier for gas production is feasible and promising. -- Highlights: • An innovative steam co-gasification process for gas production was proposed. • Co-gasification of biomass and coal in an autothermal fluidized bed gasifier was tested. • High temperature favors H 2 production. • H 2 and CO contents increase, whereas CO 2 and CH 4 levels decrease with increase in T. • Exergy and energy efficiencies of gases increase with increase in T

  9. From coal to biomass gasification: Comparison of thermodynamic efficiency

    International Nuclear Information System (INIS)

    Prins, Mark J.; Ptasinski, Krzysztof J.; Janssen, Frans J.J.G.

    2007-01-01

    The effect of fuel composition on the thermodynamic efficiency of gasifiers and gasification systems is studied. A chemical equilibrium model is used to describe the gasifier. It is shown that the equilibrium model presents the highest gasification efficiency that can be possibly attained for a given fuel. Gasification of fuels with varying composition of organic matter, in terms of O/C and H/C ratio as illustrated in a Van Krevelen diagram, is compared. It was found that exergy losses in gasifying wood (O/C ratio around 0.6) are larger than those for coal (O/C ratio around 0.2). At a gasification temperature of 927 deg. C, a fuel with O/C ratio below 0.4 is recommended, which corresponds to a lower heating value above 23 MJ/kg. For gasification at 1227 deg. C, a fuel with O/C ratio below 0.3 and lower heating value above 26 MJ/kg is preferred. It could thus be attractive to modify the properties of highly oxygenated biofuels prior to gasification, e.g. by separation of wood into its components and gasification of the lignin component, thermal pre-treatment, and/or mixing with coal in order to enhance the heating value of the gasifier fuel

  10. Measurement and modeling of advanced coal conversion processes. 19th quarterly report, April 1, 1991--June 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G. [Advanced Fuel Research, Inc., East Hartford, CT (United States); Smoot, L.D.; Brewster, B.S. [Brigham Young Univ., Provo, UT (United States)

    1991-09-25

    The objectives of this study are to establish the mechanisms and rates of basic steps in coal conversion processes, to integrate and incorporate this information into comprehensive computer models for coal conversion processes, to evaluate these models and to apply them to gasification, mild gasification and combustion in heat engines. (VC)

  11. Superacid Catalyzed Coal Conversion Chemistry. Final Technical Report, September 1, 1983-September 1, 1986

    Science.gov (United States)

    Olah, G. A.

    1986-01-01

    This research project involved the study of a raw comparatively mild coal conversion process. The goal of the project was to study model systems to understand the basic chemistry involved and to provide a possible effective pretreatment of coal which significantly improves liquefaction-depolymerization under mild conditions. The conversion process operates at relatively low temperatures (170 degrees C) and pressures and uses an easily recyclable, stable superacid catalysts (HF-BF{sub 3}). It consequently offers an attractive alternative to currently available processes. From the present studies it appears that the modification of coal structure by electrophilic alkylation and subsequent reaction of alkylated coal with HF-BF{sub 3}-H{sub 2} system under mild conditions considerably improves the extractability of coal in pyridine and cyclohexane. On the other hand, nitration of coal and its subsequent reaction with HF-BF{sub 3}H{sub 2} decreases the pyridine and cyclohexane extractability. Study of model compounds under conditions identical with the superacidic HF/BF{sub 3}/H{sub 2} system provided significant information about the basic chemistry of the involved cleavage-hydrogenation reactions.

  12. Conversion of Low-Rank Wyoming Coals into Gasoline by Direct Liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Polyakov, Oleg

    2013-12-31

    Under the cooperative agreement program of DOE and funding from Wyoming State’s Clean Coal Task Force, Western Research Institute and Thermosolv LLC studied the direct conversion of Wyoming coals and coal-lignin mixed feeds into liquid fuels in conditions highly relevant to practice. During the Phase I, catalytic direct liquefaction of sub-bituminous Wyoming coals was investigated. The process conditions and catalysts were identified that lead to a significant increase of desirable oil fraction in the products. The Phase II work focused on systematic study of solvothermal depolymerization (STD) and direct liquefaction (DCL) of carbonaceous feedstocks. The effect of the reaction conditions (the nature of solvent, solvent/lignin ratio, temperature, pressure, heating rate, and residence time) on STD was investigated. The effect of a number of various additives (including lignin, model lignin compounds, lignin-derivable chemicals, and inorganic radical initiators), solvents, and catalysts on DCL has been studied. Although a significant progress has been achieved in developing solvothermal depolymerization, the side reactions – formation of considerable amounts of char and gaseous products – as well as other drawbacks do not render aqueous media as the most appropriate choice for commercial implementation of STD for processing coals and lignins. The trends and effects discovered in DCL point at the specific features of liquefaction mechanism that are currently underutilized yet could be exploited to intensify the process. A judicious choice of catalysts, solvents, and additives might enable practical and economically efficient direct conversion of Wyoming coals into liquid fuels.

  13. Sequencing of Multiple Clostridial Genomes Related to Biomass Conversion and Biofuel Production

    Energy Technology Data Exchange (ETDEWEB)

    Hemme, Christopher [University of Oklahoma; Mouttaki, Housna [University of Oklahoma; Lee, Yong-Jin [University of Oklahoma, Norman; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Saunders, Elizabeth H [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; He, Zhili [University of Oklahoma; Wu, Liyou [University of Oklahoma, Norman; Van Nostrand, Joy [University of Oklahoma, Norman; Henrissat, Bernard [Universite d' Aix-Marseille I & II; HE, Qiang [ORNL; Lawson, Paul A. [University of Oklahoma, Norman; Tanner, Ralph S. [University of Oklahoma, Norman; Lynd, Lee R [Thayer School of Engineering at Dartmouth; Wiegel, Juergen [University of Georgia, Athens, GA; Fields, Dr. Matthew Wayne [Montana State University; Arkin, Adam [Lawrence Berkeley National Laboratory (LBNL); Schadt, Christopher Warren [ORNL; Stevenson, Bradley S. [University of Oklahoma, Norman; McInerney, Michael J. [University of Oklahoma, Norman; Yang, Yunfeng [ORNL; Dong, Hailiang [Miami University, Oxford, OH; Xing, Defeng [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology; Ren, Nanqi [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology; Wang, Aijie [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology; Ding, Shi-You [National Energy Renewable Laboratory; Himmel, Michael E [National Renewable Energy Laboratory (NREL); Taghavi, Safiyh [Brookhaven National Laboratory (BNL)/U.S. Department of Energy; Van Der Lelie, Daniel [Brookhaven National Laboratory (BNL); Rubin, Edward M. [U.S. Department of Energy, Joint Genome Institute; Zhou, Jizhong [University of Oklahoma

    2010-01-01

    Modern methods to develop microbe-based biomass conversion processes require a system-level understanding of the microbes involved. Clostridium species have long been recognized as ideal candidates for processes involving biomass conversion and production of various biofuels and other industrial products. To expand the knowledge base for clostridial species relevant to current biofuel production efforts, we have sequenced the genomes of 20 species spanning multiple genera. The majority of species sequenced fall within the class III cellulosome-encoding Clostridium and the class V saccharolytic Thermoanaerobacteraceae. Species were chosen based on representation in the experimental literature as model organisms, ability to degrade cellulosic biomass either by free enzymes or by cellulosomes, ability to rapidly ferment hexose and pentose sugars to ethanol, and ability to ferment synthesis gas to ethanol. The sequenced strains significantly increase the number of noncommensal/nonpathogenic clostridial species and provide a key foundation for future studies of biomass conversion, cellulosome composition, and clostridial systems biology.

  14. Petrochemical from oil, natural gas, coal and biomass. Energy use, economics and innovation

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Tao

    2009-03-04

    The petrochemical industry is faced with the dual challenges of climate change and the security of energy supply. To deal with these challenges, it is necessary to identify technologies for the production of basic petrochemicals that could potentially improve energy efficiency and/or utilizing alternative primary energy sources, e.g. coal and biomass. This thesis explores the potential of novel process technologies. In total, 24 technological routes were studied and three aspects are analyzed: environment, economics and innovation. Regarding the environmental aspects, three conventional routes (i.e. utilizing naphtha and heavy feedstocks derived from crude oil and ethane derived from natural gas) are the most energy-efficient routes among all 24 routes studied. The total energy use of methane-based routes is 30% higher and that of coal and biomass-based routes is about 60-150% higher than that of the conventional routes. The total CO2 emissions of conventional and methane-based routes are similar. The total CO2 emissions of coal-based routes are by far the highest, with an exception of a coal-based route with CO2 capture and sequestration whose CO2 emissions are similar to those of the conventional routes. Biomass-based routes can avoid CO2 emissions due to biomass-based electricity cogeneration and the use of biomass-derived energy. Regarding the economic aspects, we performed an economic analysis of 24 routes using expected energy prices for the period of 2030-2050 found in the public literature. The costs of crude oil and natural gas-based routes are clearly higher than those of coal and biomass-based routes by $100-500 per ton light olefin value equivalent products. Production costs of coal and biomass-based routes are rather similar to each other. The effect of CO2 emissions costs (in the range of $0-100 per ton CO2) was tested and was found to be strong on the coal-based routes and also quite significant on the biomass-based routes. The effect on other routes

  15. Recent patents on genetic modification of plants and microbes for biomass conversion to biofuels.

    Science.gov (United States)

    Lubieniechi, Simona; Peranantham, Thinesh; Levin, David B

    2013-04-01

    Development of sustainable energy systems based on renewable biomass feedstocks is now a global effort. Lignocellulosic biomass contains polymers of cellulose, hemicellulose, and lignin, bound together in a complex structure. Liquid biofuels, such as ethanol, can be made from biomass via fermentation of sugars derived from the cellulose and hemicellulose within lignocellulosic materials, but pre-treatment of the biomass to release sugars for microbial conversion is a significant barrier to commercial success of lignocellulosic biofuel production. Strategies to reduce the energy and cost inputs required for biomass pre-treatment include genetic modification of plant materials to reduce lignin content. Significant efforts are also underway to create recombinant microorganisms capable of converting sugars derived from lignocellulosic biomass to a variety of biofuels. An alternative strategy to reduce the costs of cellulosic biofuel production is the use of cellulolytic microorganisms capable of direct microbial conversion of ligno-cellulosic biomass to fuels. This paper reviews recent patents on genetic modification of plants and microbes for biomass conversion to biofuels.

  16. Rationale for continuing R&D in direct coal conversion to produce high quality transportation fuels

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, R.D.; McIlvried, H.G. [Burns and Roe Services Corp., Pittsburgh, PA (United States); Gray, D. [Mitre Corp, McLean, VA (United States)] [and others

    1995-12-31

    For the foreseeable future, liquid hydrocarbon fuels will play a significant role in the transportation sector of both the United States and the world. Factors favoring these fuels include convenience, high energy density, and the vast existing infrastructure for their production and use. At present the U.S. consumes about 26% of the world supply of petroleum, but this situation is expected to change because of declining domestic production and increasing competition for imports from countries with developing economies. A scenario and time frame are developed in which declining world resources will generate a shortfall in petroleum supply that can be allieviated in part by utilizing the abundant domestic coal resource base. One option is direct coal conversion to liquid transportation fuels. Continued R&D in coal conversion technology will results in improved technical readiness that can significantly reduce costs so that synfuels can compete economically in a time frame to address the shortfall.

  17. Proceedings of the 2nd symposium on valves for coal conversion and utilization

    Energy Technology Data Exchange (ETDEWEB)

    Maxfield, D.A. (ed.)

    1981-01-01

    The 2nd symposium on valves for coal conversion and utilization was held October 15 to 17, 1980. It was sponsored by the US Department of Energy, Morgantown Energy Technology Center, in cooperation with the Valve Manufacturers Association. Seventeen papers have been entered individually into EDB and ERA. (LTN)

  18. Artificial Neural Networks for Thermochemical Conversion of Biomass

    DEFF Research Database (Denmark)

    Puig Arnavat, Maria; Bruno, Joan Carles

    2015-01-01

    Artificial neural networks (ANNs), extensively used in different fields, have been applied for modeling biomass gasification processes in fluidized bed reactors. Two ANN models are presented, one for circulating fluidized bed gasifiers and another for bubbling fluidized bed gasifiers. Both models...... other authors. The obtained results show that the percentage composition of the main four gas species in producer gas (CO, CO2, H2, CH4) and producer gas yield for a biomass fluidized bed gasifier, can be successfully predicted by applying neural networks. The results obtained show high agreement...

  19. Effect of biomass feedstock chemical and physical properties on energy conversion processes: Volume 2, Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Butner, R.S.; Elliott, D.C.; Sealock, L.J., Jr.; Pyne, J.W.

    1988-12-01

    This report presents an exploration of the relationships between biomass feedstocks and the conversion processes that utilize them. Specifically, it discusses the effect of the physical and chemical structure of biomass on conversion yields, rates, and efficiencies in a wide variety of available or experimental conversion processes. A greater understanding of the complex relationships between these conversion systems and the production of biomass for energy uses is required to help optimize the complex network of biomass production, collection, transportation, and conversion to useful energy products. The review of the literature confirmed the scarcity of research aimed specifically at identifying the effect of feedstock properties on conversion. In most cases, any mention of feedstock-related effects was limited to a few brief remarks (usually in qualitative terms) in the conclusions, or as a topic for further research. Attempts to determine the importance of feedstock parameters from published data were further hampered by the lack of consistent feedstock characterization and the difficulty of comparing results between different experimental systems. Further research will be required to establish quantitative relationships between feedstocks and performance criteria in conversion. 127 refs., 4 figs., 7 tabs.

  20. Study on CO2 gasification reactivity and physical characteristics of biomass, petroleum coke and coal chars.

    Science.gov (United States)

    Huo, Wei; Zhou, Zhijie; Chen, Xueli; Dai, Zhenghua; Yu, Guangsuo

    2014-05-01

    Gasification reactivities of six different carbonaceous material chars with CO2 were determined by a Thermogravimetric Analyzer (TGA). Gasification reactivities of biomass chars are higher than those of coke and coal chars. In addition, physical structures and chemical components of these chars were systematically tested. It is found that the crystalline structure is an important factor to evaluate gasification reactivities of different chars and the crystalline structures of biomass chars are less order than those of coke and coal chars. Moreover, initial gasification rates of these chars were measured at high temperatures and with relatively large particle sizes. The method of calculating the effectiveness factor η was used to quantify the effect of pore diffusion on gasification. The results show that differences in pore diffusion effects among gasification with various chars are prominent and can be attributed to different intrinsic gasification reactivities and physical characteristics of different chars. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. NO formation during oxy-fuel combustion of coal and biomass chars

    DEFF Research Database (Denmark)

    Zhao, Ke; Jensen, Anker Degn; Glarborg, Peter

    2014-01-01

    The yields of NO from combustion of bituminous coal, lignite, and biomass chars were investigated in O2/N2 and O2/CO 2 atmospheres. The experiments were performed in a laboratory-scale fixed-bed reactor in the temperature range of 850-1150 °C. To minimize thermal deactivation during char preparat......The yields of NO from combustion of bituminous coal, lignite, and biomass chars were investigated in O2/N2 and O2/CO 2 atmospheres. The experiments were performed in a laboratory-scale fixed-bed reactor in the temperature range of 850-1150 °C. To minimize thermal deactivation during char...

  2. Pyrolysis and liquefaction of acetone and mixed acetone/ tetralin swelled Mukah Balingian Malaysian sub-bituminous coal-The effect on coal conversion and oil yield

    International Nuclear Information System (INIS)

    Mohd Pauzi Abdullah; Mohd Azlan Mohd Ishak; Khudzir Ismail

    2008-01-01

    The effect of swelling on Mukah Balingian (MB) Malaysian sub-bituminous coal macrostructure was observed by pyrolysing the swelled coal via thermogravimetry under nitrogen at ambient pressure. The DTG curves of the pyrolyzed swelled coal samples show the presence of evolution peaks at temperature ranging from 235 - 295 degree Celsius that are due to releasing of light molecular weight hydrocarbons. These peaks, however, were not present in the untreated coal, indicating some changes in the coal macrostructure has occurred in the swelled coal samples. The global pyrolysis kinetics for coal that follows the first-order decomposition reaction was used to evaluate the activation energy of the pyrolyzed untreated and swelled coal samples. The results thus far have shown that the activation energy for the acetone and mixed acetone/ tetralin-swelled coal samples exhibit lower values than untreated coal, indicating less energy is required during the pyrolysis process due to the weakening of the coal-coal macromolecular interaction network. Moreover, liquefaction on the swelled coal samples that was carried out at temperatures ranging from 360 to 450 degree Celsius at 4 MPa of nitrogen pressure showed the enhancement of the coal conversion and oil yield at temperature of 420 degree Celsius, with retrogressive reaction started to dominate at higher temperature as indicated by decreased and increased in oil yield and high molecular weight pre-asphaltene, respectively. These observations suggest that the solvent swelling pre-treatment using acetone and mixed acetone/ tetralin can improve the coal conversion and oil yields at less severe liquefaction condition. (author)

  3. Nitrogen conversion during rapid pyrolysis of coal and petroleum coke in a high-frequency furnace

    International Nuclear Information System (INIS)

    Yuan, Shuai; Zhou, Zhi-jie; Li, Jun; Wang, Fu-chen

    2012-01-01

    Highlights: ► Use a high-frequency furnace to study N-conversion during rapid pyrolysis of coal. ► Scarcely reported N-conversion during rapid pyrolysis of petroleum coke was studied. ► Both of NH 3 and HCN can be formed directly from coal during rapid pyrolysis. ► NH 3 –N yields are higher than HCN–N yields in most conditions. ► NH 3 –N yields of petroleum coke increase with temperature and no HCN detected. -- Abstract: Rapid pyrolysis of three typical Chinese coals, lignite from Inner Mongolia, bituminous from Shenfu coalfield, and anthracite from Guizhou, as well as a petroleum coke were carried out in a drop-style high-frequency furnace. The reactor was induction coil heated and had a very small high-temperature zone, which could restrain secondary conversions of nitrogen products. The effects of temperature and coal rank on conversions of fuel-N to primary nitrogen products (char-N, HCN–N, NH 3 –N and (tar + N 2 )–N) have been investigated. The results showed that, the increasing temperature reduced the yields of char-N and promoted the conversion of fuel-N to N 2 . Char-N yields increased, while volatile-N yields decreased as the coal rank increased. In most of the conditions, NH 3 –N yields were higher than HCN–N yields during rapid pyrolysis of coal. In the case of petroleum coke, NH 3 –N yields increased gradually with the increasing temperature, but no HCN was detected. We argue that NH 3 –N can be formed directly through the primary pyrolysis without secondary reactions. Although volatile-N yields of lignite were higher than those of bituminous, yields of (HCN + NH 3 )–N in volatile-N of lignite were lower than those of bituminous. While the (HCN + NH 3 )–N yields of anthracite were the lowest of the three coals. Both of the (HCN + NH 3 )–N yields and (HCN + NH 3 )–N proportions in volatile-N of petroleum coke were lower than the three coals.

  4. EPRI-USDOE COOPERATIVE AGREEMENT: COFIRING BIOMASS WITH COAL

    Energy Technology Data Exchange (ETDEWEB)

    David A. Tillman

    2001-09-01

    The entire Electric Power Research Institute (EPRI) cofiring program has been in existence of some 9 years. This report presents a summary of the major elements of that program, focusing upon the following questions: (1) In pursuit of increased use of renewable energy in the US economy, why was electricity generation considered the most promising target, and why was cofiring pursued as the most effective near-term technology to use in broadening the use of biomass within the electricity generating arena? (2) What were the unique accomplishments of EPRI before the development of the Cooperative Agreement, which made developing the partnership with EPRI a highly cost-effective approach for USDOE? (3) What were the key accomplishments of the Cooperative Agreement in the development and execution of test and demonstration programs-accomplishments which significantly furthered the process of commercializing cofiring?

  5. Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbons: Dilute-Acid and Enzymatic Deconstruction of Biomass to Sugars and Catalytic Conversion of Sugars to Hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Davis, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tao, L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Scarlata, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tan, E. C. D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ross, J. [Harris Group Inc., New York, NY (United States); Lukas, J. [Harris Group Inc., New York, NY (United States); Sexton, D. [Harris Group Inc., New York, NY (United States)

    2015-03-01

    This report describes one potential conversion process to hydrocarbon products by way of catalytic conversion of lignocellulosic-derived hydrolysate. This model leverages expertise established over time in biomass deconstruction and process integration research at NREL, while adding in new technology areas for sugar purification and catalysis. The overarching process design converts biomass to die die diesel- and naphtha-range fuels using dilute-acid pretreatment, enzymatic saccharification, purifications, and catalytic conversion focused on deoxygenating and oligomerizing biomass hydrolysates.

  6. CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS (CFB AND CLB) FUELS IN PULVERIZED FUEL AND FIXED BED BURNERS

    Energy Technology Data Exchange (ETDEWEB)

    Kalyan Annamalai; John Sweeten; Saqib Mukhtar; Ben Thein; Gengsheng Wei; Soyuz Priyadarsan; Senthil Arumugam; Kevin Heflin

    2003-08-28

    Intensive animal feeding operations create large amounts of animal waste that must be safely disposed of in order to avoid environmental degradation. Cattle feedlots and chicken houses are two examples. In feedlots, cattle are confined to small pens and fed a high calorie grain-diet diet in preparation for slaughter. In chicken houses, thousands of chickens are kept in close proximity. In both of these operations, millions of tons of manure are produced every year. The manure could be used as a fuel by mixing it with coal in a 90:10 blend and firing it in an existing coal suspension fired combustion systems. This technique is known as co-firing, and the high temperatures produced by the coal will allow the biomass to be completely combusted. Reburn is a process where a small percentage of fuel called reburn fuel is injected above the NO{sub x} producing, conventional coal fired burners in order to reduce NO{sub x}. The manure could also be used as reburn fuel for reducing NO{sub x} in coal fired plants. An alternate approach of using animal waste is to adopt the gasification process using a fixed bed gasifier and then use the gases for firing in gas turbine combustors. In this report, the cattle manure is referred to as feedlot biomass (FB) and chicken manure as litter biomass (LB). The report generates data on FB and LB fuel characteristics. Co-firing, reburn, and gasification tests of coal, FB, LB, coal: FB blends, and coal: LB blends and modeling on cofiring, reburn systems and economics of use of FB and LB have also been conducted. The biomass fuels are higher in ash, lower in heat content, higher in moisture, and higher in nitrogen and sulfur (which can cause air pollution) compared to coal. Small-scale cofiring experiments revealed that the biomass blends can be successfully fired, and NO{sub x} emissions will be similar to or lower than pollutant emissions when firing coal. Further experiments showed that biomass is twice or more effective than coal when

  7. Experimental analysis of a combustion reactor under co-firing coal with biomass

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Fabyo Luiz; Bazzo, Edson; Oliveira Junior, Amir Antonio Martins de [Universidade Federal de Santa Catarina, Florianopolis, SC (Brazil). LabCET], e-mail: ebazzo@emc.ufsc.br; Bzuneck, Marcelo [Tractebel Energia S.A., Complexo Termeletrico Jorge Lacerda, Capivari de Baixo, SC (Brazil)], e-mail: marcelob@tractebelenergia.com.br

    2010-07-01

    Mitigation of greenhouse gases emission is one of the most important issues in energy engineering. Biomass is a potential renewable source but with limited use in large scale energy production because of the relative smaller availability as compared to fossil fuels, mainly to coal. Besides, the costs concerning transportation must be well analysed to determine its economic viability. An alternative for the use of biomass as a primary source of energy is the co-firing, that is the possibility of using two or more types of fuels combined in the combustion process. Biomass can be co-fired with coal in a fraction between 10 to 25% in mass basis (or 4 to 10% in heat-input basis) without seriously impacting the heat release characteristics of most boilers. Another advantage of cofiring, besides the significant reductions in fossil CO{sub 2} emissions, is the reduced emissions of NO{sub x} and SO{sub x}. As a result, co-firing is becoming attractive for power companies worldwide. This paper presents results of some experimental analysis on co-firing coal with rice straw in a combustion reactor. The influence of biomass thermal share in ash composition is also discussed, showing that alkali and earth alkaline compounds play the most important role on the fouling and slagging behavior when co-firing. Some fusibility correlations that can assist in the elucidation of these behavior are presented and discussed, and then applied to the present study. Results show that for a biomass thermal share up to 20%, significant changes are not expected in fouling and slagging behavior of ash. (author)

  8. FIA's volume-to-biomass conversion method (CRM) generally underestimates biomass in comparison to published equations

    Science.gov (United States)

    David. C. Chojnacky

    2012-01-01

    An update of the Jenkins et al. (2003) biomass estimation equations for North American tree species resulted in 35 generalized equations developed from published equations. These 35 equations, which predict aboveground biomass of individual species grouped according to a taxa classification (based on genus or family and sometimes specific gravity), generally predicted...

  9. A LOW COST AND HIGH QUALITY SOLID FUEL FROM BIOMASS AND COAL FINES

    Energy Technology Data Exchange (ETDEWEB)

    John T. Kelly; George Miller; Mehdi Namazian

    2001-07-01

    Use of biomass wastes as fuels in existing boilers would reduce greenhouse gas emissions, SO2 and NOx emissions, while beneficially utilizing wastes. However, the use of biomass has been limited by its low energy content and density, high moisture content, inconsistent configuration and decay characteristics. If biomass is upgraded by conventional methods, the cost of the fuel becomes prohibitive. Altex has identified a process, called the Altex Fuel Pellet (AFP) process, that utilizes a mixture of biomass wastes, including municipal biosolids, and some coal fines, to produce a strong, high energy content, good burning and weather resistant fuel pellet, that is lower in cost than coal. This cost benefit is primarily derived from fees that are collected for accepting municipal biosolids. Besides low cost, the process is also flexible and can incorporate several biomass materials of interest The work reported on herein showed the technical and economic feasibility of the AFP process. Low-cost sawdust wood waste and light fractions of municipal wastes were selected as key biomass wastes to be combined with biosolids and coal fines to produce AFP pellets. The process combines steps of dewatering, pellet extrusion, drying and weatherizing. Prior to pilot-scale tests, bench-scale test equipment was used to produce limited quantities of pellets for characterization. These tests showed which pellet formulations had a high potential. Pilot-scale tests then showed that extremely robust pellets could be produced that have high energy content, good density and adequate weatherability. It was concluded that these pellets could be handled, stored and transported using equipment similar to that used for coal. Tests showed that AFP pellets have a high combustion rate when burned in a stoker type systems. While NOx emissions under stoker type firing conditions was high, a simple air staging approach reduced emissions to below that for coal. In pulverized-fuel-fired tests it was

  10. Effect of fuel origin on synergy during co-gasification of biomass and coal in CO2.

    Science.gov (United States)

    Zhang, Yan; Zheng, Yan; Yang, Mingjun; Song, Yongchen

    2016-01-01

    The effect of fuel origin on synergy in coal/biomass blends during co-gasification has been assessed using a congruent-mass thermogravimetry analysis (TGA) method. Results revealed that synergy occurs when ash residuals are formed, followed by an almost complete gasification of biomass. Potassium species in biomass ash play a catalytic role in promoting gasification reactivity of coal char, which is a direct consequence of synergy during co-gasification. The SEM-EDS spectra provided conclusive evidence that the transfer of potassium from biomass to the surface of coal char occurs during co-pyrolysis/gasification. Biomass ash rich in silica eliminated synergy in coal/biomass blends but not to the extent of inhibiting the reaction rate of the blended chars to make it slower than that of separated ones. The best result in terms of synergy was concluded to be the combination of low-ash coal and K-rich biomass. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Thermo-economic evaluation and optimization of the thermo-chemical conversion of biomass into methanol

    International Nuclear Information System (INIS)

    Peduzzi, Emanuela; Tock, Laurence; Boissonnet, Guillaume; Maréchal, François

    2013-01-01

    In a carbon and resources constrained world, thermo-chemical conversion of lignocellulosic biomass into fuels and chemicals is regarded as a promising alternative to fossil resources derived products. Methanol is one potential product which can be used for the synthesis of various chemicals or as a fuel in fuel cells and internal combustion engines. This study focuses on the evaluation and optimization of the thermodynamic and economic performance of methanol production from biomass by applying process integration and optimization techniques. Results reveal the importance of the energy integration and in particular of the cogeneration of electricity for the efficient use of biomass. - Highlights: • A thermo-economic model for biomass conversion into methanol is developed. • Process integration and multi-objective optimization techniques are applied. • Results reveal the importance of energy integration for electricity co-generation

  12. Potential for Coal-to-Liquids Conversion in the United States-Fischer-Tropsch Synthesis

    International Nuclear Information System (INIS)

    Patzek, Tad W.; Croft, Gregory D.

    2009-01-01

    The United States has the world's largest coal reserves and Montana the highest potential for mega-mine development. Consequently, a large-scale effort to convert coal to liquids (CTL) has been proposed to create a major source of domestic transportation fuels from coal, and some prominent Montanans want to be at the center of that effort. We calculate that the energy efficiency of the best existing Fischer-Tropsch (FT) process applied to average coal in Montana is less than 1/2 of the corresponding efficiency of an average crude oil refining process. The resulting CO 2 emissions are 20 times (2000%) higher for CTL than for conventional petroleum products. One barrel of the FT fuel requires roughly 800 kg of coal and 800 kg of water. The minimum energy cost of subsurface CO 2 sequestration would be at least 40% of the FT fuel energy, essentially halving energy efficiency of the process. We argue therefore that CTL conversion is not the most valuable use for the coal, nor will it ever be, as long as it is economical to use natural gas for electric power generation. This finding results from the low efficiency inherent in FT synthesis, and is independent of the monumental FT plant construction costs, mine construction costs, acute lack of water, and the associated environmental impacts for Montana

  13. Application of Fischer–Tropsch Synthesis in Biomass to Liquid Conversion

    OpenAIRE

    Yongwu Lu; Fei Yu; Jin Hu

    2012-01-01

    Fischer–Tropsch synthesis is a set of catalytic processes that can be used to produce fuels and chemicals from synthesis gas (mixture of CO and H2), which can be derived from natural gas, coal, or biomass. Biomass to Liquid via Fischer–Tropsch (BTL-FT) synthesis is gaining increasing interests from academia and industry because of its ability to produce carbon neutral and environmentally friendly clean fuels; such kinds of fuels can help to meet the globally increasing energy demand and to me...

  14. Biomass valorisation by staged degasification A new pyrolysis-based thermochemical conversion option to produce value-added chemicals from lignocellulosic biomass

    NARCIS (Netherlands)

    de Wild, P. J.; den Uil, H.; Reith, J. H.; Kiel, J. H. A.; Heeres, H. J.

    Pyrolysis of lignocellulosic biomass leads to an array Of useful solid, liquid and gaseous products. Staged degasification is a pyrolysis-based conversion route to generate value-added chemicals from biomass. Because of different thermal stabilities of the main biomass constituents hemicellulose.

  15. Biomass

    International Nuclear Information System (INIS)

    Hernandez, L.A.

    1998-01-01

    Biomass constitutes the energetic form more important and of greater potential after solar energy (source of origin), being consumed in direct form through the combustion, or indirectly through the fossil fuels (those which originates) or by means of different technical of thermochemical and of biochemistry for its conversion and utilization. The current document describes the origin and the energetic characteristics of biomass, its energetic and environmental importance for a developing Country as Colombia, its possibilities of production and the technologies developed for its utilization and transformation, mainly, of the residual biomass

  16. Fungal Enzymes and Yeasts for Conversion of Plant Biomass to Bioenergy and High-Value Products

    DEFF Research Database (Denmark)

    Lange, Lene

    2017-01-01

    in the conversion of plant biomass to value-added products. These products provide a basis for substituting fossil-derived fuels, chemicals, and materials, as well as unlocking the biomass potential of the agricultural harvest to yield more food and feed. This article focuses on the mycological basis for the fungal...... contributed to mycology and environmental research? Future perspectives and approaches are listed, highlighting the importance of fungi in development of the bioeconomy....

  17. Explanatory note accompanying the database for standardized biomass characterization (and minimal biomass quality requirement for each biomass conversion technology)

    NARCIS (Netherlands)

    Elbersen, H.W.; Alakangas, E.; Elbersen, B.S.; Annevelink, E.; Ramirez Almeyda, Jacqueline; Lammens, T.M.

    2016-01-01

    The S2Biom project - Delivery of sustainable supply of non-food biomass to support a
    “resource-efficient” Bioeconomy in Europe - supports the sustainable delivery of nonfood
    biomass feedstock at local, regional and pan European level through developing
    strategies, and roadmaps that will

  18. Co-firing biomass and coal-progress in CFD modelling capabilities

    DEFF Research Database (Denmark)

    Kær, Søren Knudsen; Rosendahl, Lasse Aistrup; Yin, Chungen

    2005-01-01

    This paper discusses the development of user defined FLUENT™ sub models to improve the modelling capabilities in the area of large biomass particle motion and conversion. Focus is put on a model that includes the influence from particle size and shape on the reactivity by resolving intra-particle...

  19. Complex thermal energy conversion systems for efficient use of locally available biomass

    International Nuclear Information System (INIS)

    Kalina, Jacek

    2016-01-01

    This paper is focused on a theoretical study in search for new technological solutions in the field of electricity generation from biomass in small-scale distributed cogeneration systems. The purpose of this work is to draw readers' attention to possibilities of design complex multi-component hybrid and combined technological structures of energy conversion plants for effective use of locally available biomass resources. As an example, there is presented analysis of cogeneration system that consists of micro-turbine, high temperature fuel cell, inverted Bryton cycle module and biomass gasification island. The project assumes supporting use of natural gas and cooperation of the plant with a low-temperature district heating network. Thermodynamic parameters, energy conversion effectiveness and economic performance are examined. Results show relatively high energy conversion performance and on the other hand weak financial indices of investment projects at the current level of energy prices. It is however possible under certain conditions to define an optimistic business model that leads to a feasible project. - Highlights: • Concept of biomass energy conversion plant is proposed and theoretically analysed. • MCFC type fuel cell is fuelled with biomass gasification gas. • Natural gas fired microturbine is considered as a source of continuous power. • Inverted Bryton Cycle is considered for utilisation of high temperature exhaust gas.

  20. Biomass recalcitrance: a multi-scale, multi-factor, and conversion-specific property.

    Science.gov (United States)

    McCann, Maureen C; Carpita, Nicholas C

    2015-07-01

    Recalcitrance of plant biomass to enzymatic hydrolysis for biofuel production is thought to be a property conferred by lignin or lignin-carbohydrate complexes. However, chemical catalytic and thermochemical conversion pathways, either alone or in combination with biochemical and fermentative pathways, now provide avenues to utilize lignin and to expand the product range beyond ethanol or butanol. To capture all of the carbon in renewable biomass, both lignin-derived aromatics and polysaccharide-derived sugars need to be transformed by catalysts to liquid hydrocarbons and high-value co-products. We offer a new definition of recalcitrance as those features of biomass which disproportionately increase energy requirements in conversion processes, increase the cost and complexity of operations in the biorefinery, and/or reduce the recovery of biomass carbon into desired products. The application of novel processing technologies applied to biomass reveal new determinants of recalcitrance that comprise a broad range of molecular, nanoscale, and macroscale factors. Sampling natural genetic diversity within a species, transgenic approaches, and synthetic biology approaches are all strategies that can be used to select biomass for reduced recalcitrance in various pretreatments and conversion pathways. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  1. Catalytic Hydrothermal Conversion of Wet Biomass Feedstocks and Upgrading – Process Design and Optimization

    DEFF Research Database (Denmark)

    Hoffmann, Jessica; Toor, Saqib; Rosendahl, Lasse

    Liquid biofuels will play a major role for a more sustainable energy system of the future. The CatLiq® process is a 2nd generation biomass conversion process that is based on hydrothermal liquefaction. Hydrothermal liquefaction offers a very efficient and feedstock flexible way of converting...... biomass to bio-oil. Bio-oils from hydrothermal liquefaction are characterised by their high feedstock flexibility. Upgrading of complete bio-oils derived from hydrothermal conversion has not yet been extensively studied. Purpose of this work is to reduce the oxygen content of the bio-oil to improve...

  2. Establishment of a communal biomass conversion plant in the municipal area of Sydthy

    International Nuclear Information System (INIS)

    1992-09-01

    The report should form the basis for an application to the Danish Energy Agency regarding potentials for a planned biomass conversion plant demonstration project, including effective storage of liquid manures. A survey of the needed resources in the form of organic wastes is given in addition to a description of immediate heat demand and heat production prices. The location of the plant and the supply of manures are discussed and the design of the plant is described in detail. The concentration of the biomass after conversion in order to facilitate storage and the organization and financing of the project are elucidated in addition to agricultural, environmental and administrational aspects. (AB)

  3. Thermophilic Gram-Positive Biocatalysts for Biomass Conversion to Ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Shanmugam, K.T.; Ingram, L.O.; Maupin-Furlow, J.A.; Preston, J.F.; Aldrich, H.C.

    2003-12-01

    Production of energy from renewable sources is receiving increased attention due to the finite nature of fossil fuels and the environmental impact associated with the continued large scale use of fossil energy sources. Biomass, a CO2-neutral abundant resource, is an attractive alternate source of energy. Biomass-derived sugars, such as glucose, xylose, and other minor sugars, can be readily fermented to fuel ethanol and commodity chemicals. Extracellular cellulases produced by fungi are commercially developed for depolymerization of cellulose in biomass to glucose for fermentation by appropriate biocatalysts in a simultaneous saccharification and fermentation (SSF) process. Due to the differences in the optimum conditions for the activity of the fungal cellulases and the growth and fermentation characteristics of the current industrial biocatalysts, SSF of cellulose is envisioned at conditions that are not optimal for the fungal cellulase activity leading to higher than required cost of cellulase in SSF. We have isolated bacterial biocatalysts whose growth and fermentation requirements match the optimum conditions for commercial fungal cellulase activity (pH 5.0 and 50 deg. C). These isolates fermented both glucose and xylose, major components of cellulose and hemicellulose, respectively, to L(+)-lactic acid. Xylose was metabolized through the pentose-phosphate pathway by these organisms as evidenced by the fermentation profile and analysis of the fermentation products of 13C1-xylose by NMR. As expected for the metabolism of xylose by the pentose-phosphate pathway, 13C-lactate accounted for more than 90% of the total 13C-labeled products. All three strains fermented crystalline cellulose to lactic acid with the addition of fungal cellulase (Spezyme CE) (SSF) at an optimum of about 10 FPU/g cellulose. These isolates also fermented cellulose and sugar cane bagasse hemicellulose acid hydrolysate simultaneously. Based on fatty acid profile and 16S rRNA sequence, these

  4. Survey and conceptual flow sheets for coal conversion plant handling-preparation and ash/slag removal operations

    Energy Technology Data Exchange (ETDEWEB)

    Zapp, F.C.; Thomas, O.W.; Silverman, M.D.; Dyslin, D.A.; Holmes, J.M.

    1980-03-01

    This study was undertaken at the request of the Fossil Fuel Processing Division of the Department of Energy. The report includes a compilation of conceptual flow sheets, including major equipment lists, and the results of an availability survey of potential suppliers of equipment associated with the coal and ash/slag operations that will be required by future large coal conversion plant complexes. Conversion plant flow sheet operations and related equipment requirements were based on two representative bituminous coals - Pittsburgh and Kentucky No. 9 - and on nine coal conversion processes. It appears that almost all coal handling and preparation and ash/slag removal equipment covered by this survey, with the exception of some coal comminution equipment, either is on hand or can readily be fabricated to meet coal conversion plant capacity requirements of up to 50,000 short tons per day. Equipment capable of handling even larger capacities can be developed. This approach appears to be unjustified, however, because in many cases a reasonable or optimum number of trains of equipment must be considered when designing a conversion plant complex. The actual number of trains of equipment selected will be influenced by the total requied capacity of the complex, the minimum on-line capacity that can be tolerated in case of equipment failure, reliability of specific equipment types, and the number of reactors and related feed injection stations needed for the specific conversion process.

  5. Household fuels, low birth weight, and neonatal death in India: the separate impacts of biomass, kerosene, and coal.

    Science.gov (United States)

    Epstein, M B; Bates, M N; Arora, N K; Balakrishnan, K; Jack, D W; Smith, K R

    2013-08-01

    We examined the impact of maternal use of different household cooking fuels in India on low birth weight (LBWfuels for cooking - biomass, coal, and kerosene - using low-pollution fuels (gas and biogas) as the comparison "control" group. Taking socioeconomic and child-specific factors into account, we employed logistic regression to examine the impact of fuel use on fetal and infant health. The results indicate that household use of high-pollution fuels is significantly associated with increased odds of LBW and neonatal death. Compared to households using cleaner fuels (in which the mean birth weight is 2901g), the primary use of coal, kerosene, and biomass fuels is associated with significant decreases in mean birth weight (of -110g for coal, -107g for kerosene, and -78g for biomass). Kerosene and biomass fuel use are also associated with increased risk of LBW (pfuels. Copyright © 2012 Elsevier GmbH. All rights reserved.

  6. Interaction and kinetic analysis for coal and biomass co-gasification by TG-FTIR.

    Science.gov (United States)

    Xu, Chaofen; Hu, Song; Xiang, Jun; Zhang, Liqi; Sun, Lushi; Shuai, Chao; Chen, Qindong; He, Limo; Edreis, Elbager M A

    2014-02-01

    This study aims to investigate the interaction and kinetic behavior of CO2 gasification of coal, biomass and their blends by thermogravimetry analysis (TG). The gas products evolved from gasification were measured online with Fourier Transform Infrared Spectroscopy (FTIR) coupled with TG. Firstly, TG experiments indicated that interaction between the coals and biomasses mainly occurred during co-gasification process. The most significant synergistic interaction occurred for LN with SD at the blending mass ratio 4:1. Furthermore, thermal kinetic analysis indicated that the activation energy involved in co-gasification decreased as the SD content increased until the blending ratio of SD with coal reached 4:1. The rise of the frequency factor indicated that the increase of SD content favored their synergistic interaction. Finally, FTIR analysis of co-gasification of SD with LN indicated that except for CO, most gases including CH3COOH, C6H5OH, H2O, etc., were detected at around 50-700°C. Copyright © 2014. Published by Elsevier Ltd.

  7. Quantitative characterization of pulverized coal and biomass-coal blends in pneumatic conveying pipelines using electrostatic sensor arrays and data fusion techniques

    Science.gov (United States)

    Qian, Xiangchen; Yan, Yong; Shao, Jiaqing; Wang, Lijuan; Zhou, Hao; Wang, Chao

    2012-08-01

    Quantitative data about the dynamic behaviour of pulverized coal and biomass-coal blends in fuel injection pipelines allow power plant operators to detect variations in fuel supply and oscillations in the flow at an early stage, enable them to balance fuel distribution between fuel feeding pipes and ultimately to achieve higher combustion efficiency and lower greenhouse gas emissions. Electrostatic sensor arrays and data fusion algorithms are combined to provide a non-intrusive solution to the measurement of fuel particle velocity, relative solid concentration and flow stability under pneumatic conveying conditions. Electrostatic sensor arrays with circular and arc-shaped electrodes are integrated in the same sensing head to measure ‘averaged’ and ‘localized’ characteristics of pulverized fuel flow. Data fusion techniques are applied to optimize and integrate the results from the sensor arrays. Experimental tests were conducted on the horizontal section of a 150 mm bore pneumatic conveyor circulating pulverized coal and sawdust under various flow conditions. Test results suggest that pure coal particles travel faster and carry more electrostatic charge than biomass-coal blends. As more biomass particles are added to the flow, the overall velocity of the flow reduces, the electrostatic charge level on particles decreases and the flow becomes less stable compared to the pure coal flow.

  8. Process Design and Economics for the Conversion of Algal Biomass to Biofuels: Algal Biomass Fractionation to Lipid-and Carbohydrate-Derived Fuel Products

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-09-11

    The U.S. Department of Energy (DOE) promotes the production of a range of liquid fuels and fuel blendstocks from biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass production, conversion, and sustainability. As part of its involvement in this program, the National Renewable Energy Laboratory (NREL) investigates the conceptual production economics of these fuels. This includes fuel pathways from lignocellulosic (terrestrial) biomass, as well as from algal (aquatic) biomass systems.

  9. Design of generic coal conversion facilities: Process release---Direct coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    The direct liquefaction portion of the PETC generic direct coal liquefaction process development unit (PDU) is being designed to provide maximum operating flexibility. The PDU design will permit catalytic and non-catalytic liquefaction concepts to be investigated at their proof-of-the-concept stages before any larger scale operations are attempted. The principal variations from concept to concept are reactor configurations and types. These include thermal reactor, ebullating bed reactor, slurry phase reactor and fixed bed reactor, as well as different types of catalyst. All of these operating modes are necessary to define and identify the optimum process conditions and configurations for determining improved economical liquefaction technology.

  10. Review and analysis of the 1980-1989 biomass thermochemical conversion program

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, D.J.

    1994-09-01

    In the period between 1980 and 1989, the U.S. Department of Energy (DOE) sponsored research and development projects through its Biomass Thermochemical Conversion (BTC) Program. Thermochemical conversion technologies use elevated temperatures to convert biomass into more useful forms of energy such as fuel gases or transportation fuels. The BTC Program included a wide range of biomass conversion projects in the areas of gasification, pyrolysis, liquefaction, and combustion. This work formed the basis of the present DOE research and development efforts on advanced liquid fuel and power generation systems. At the beginning of Fiscal Year 1989, the management of the BTC Program was transferred from Pacific Northwest Laboratory (PNL) to National Renewable Energy Laboratory (NREL, formerly Solar Energy Research Institute). This document presents a summary of the research which was performed under the BTC Program during the 1981-1989 time frame. The document consists of an analysis of the research projects which were funded by the BTC Program and a bibliography of published documents. This work will help ensure that information from PNL`s BTC Program is available to those interested in biomass conversion technologies. The background of the BTC Program is discussed in the first chapter of this report. In addition, a brief summary of other related biomass research and development programs funded by the U.S. Department of Energy and others is presented with references where additional information can be found. The remaining chapters of the report present a detailed summary of the research projects which were funded by the BTC Program. The progress which was made on each project is summarized, the overall impact on biomass conversion is discussed, and selected references are provided.

  11. Morphology and microstructure of co-pyrolysis char from bituminous coal blended with lignocellulosic biomass: Effects of cellulose, hemicellulose and lignin

    International Nuclear Information System (INIS)

    Wu, Zhiqiang; Yang, Wangcai; Chen, Lin; Meng, Haiyu; Zhao, Jun; Wang, Shuzhong

    2017-01-01

    Highlights: • Influence of biomass model compounds on co-pyrolysis char structure was investigated. • Transformation of carbon structure was explored by Raman and spectral deconvolution. • Evolution of surface morphology was quantitatively described by the fractal analysis. • Three biomass model compounds showed different influence on the structure evolution. - Abstract: Co-pyrolysis of coal and lignocellulose biomass and coal is the key step of other co-thermochemical conversion, and conversion of co-pyrolysis char is the rate-determining step of co-gasification and co-combustion. In this paper, the influence of biomass model compounds (cellulose, hemicellulose, and lignin, abbreviated as CE, HCE and LIG) on the co-pyrolysis char structure transformation was investigated. Carbon structure and surface morphology of co-pyrolysis char were examined by Raman spectroscopy and scanning electron microscope (SEM). A comprehensive comparison of Raman spectral deconvolution methods based on various fitting functions and peak numbers was explored, and Gaussian-Lorentzian-function with no less than nine peaks showed the best performance. Three biomass model show different effects on the transformation of microstructure structure. The addition of CE increased the ordering of char structure. HCE promoted the disordering degree of microstructure structure and reached the maximum at 50% HCE mass ratio. The microstructure structure changes of co-pyrolysis char for 25% and 50% LIG mass ratios were not evident, while 75% LIG increased the disordering degree of the co-pyrolysis char. Fractal analysis was applied for describing the char surface morphology quantitatively with two and three-dimensional fractal dimensions. CE decreased the fractal dimensions of co-pyrolysis, and the influence of HCE and LIG depended on the mass ratio.

  12. Critical evaluation of high-temperature gas-cooled reactors applicable to coal conversion

    International Nuclear Information System (INIS)

    Spiewak, I.; Jones, J.E. Jr.; Rittenhouse, P.L.; DeStefano, J.R.; Delene, J.G.

    1975-12-01

    A critical review is presented of the technology and costs of very high-temperature gas-cooled reactors (VHTRs) applicable to nuclear coal conversion. Coal conversion processes suitable for coupling to reactors are described. Vendor concepts of the VHTR are summarized. The materials requirements as a function of process temperature in the range 1400 to 2000 0 F are analyzed. Components, environmental and safety factors, economics and nuclear fuel cycles are reviewed. It is concluded that process heat supply in the range 1400 to 1500 0 F could be developed with a high degree of assurance. Process heat at 1600 0 F would require considerably more materials development. While temperatures up to 2000 0 F appear to be attainable, considerably more research and risk were involved. A demonstration plant would be required as a step in the commercialization of the VHTR

  13. CO-FIRING COAL, FEEDLOT, AND LITTER BIOMASS (CFB AND LFB) FUELS IN PULVERIZED FUEL AND FIXED BED BURNERS

    Energy Technology Data Exchange (ETDEWEB)

    Kalyan Annamalai; John Sweeten; Saqib Mukhtar; Ben Thien; Gengsheng Wei; Soyuz Priyadarsan

    2002-01-15

    Intensive animal feeding operations create large amounts of animal waste that must be safely disposed of in order to avoid environmental degradation. Cattle feedlots and chicken houses are two examples. In feedlots, cattle are confined to small pens and fed a high calorie grain diet in preparation for slaughter. In chicken houses, thousands of chickens are kept in close proximity. In both of these operations, millions of tons of manure are produced every year. In this project a co-firing technology is proposed which would use manure that cannot be used for fertilizer, for power generation. Since the animal manure has economic uses as both a fertilizer and as a fuel, it is properly referred to as feedlot biomass (FB) for cow manure, or litter biomass (LB) for chicken manure. The biomass will be used a as a fuel by mixing it with coal in a 90:10 blend and firing it in existing coal fired combustion devices. This technique is known as co-firing, and the high temperatures produced by the coal will allow the biomass to be completely combusted. Therefore, it is the goal of the current research to develop an animal biomass cofiring technology. A cofiring technology is being developed by performing: (1) studies on fundamental fuel characteristics, (2) small scale boiler burner experiments, (3) gasifier experiments, (4) computer simulations, and (5) an economic analysis. The fundamental fuel studies reveal that biomass is not as high a quality fuel as coal. The biomass fuels are higher in ash, higher in moisture, higher in nitrogen and sulfur (which can cause air pollution), and lower in heat content than coal. Additionally, experiments indicate that the biomass fuels have higher gas content, release gases more readily than coal, and less homogeneous. Small-scale boiler experiments revealed that the biomass blends can be successfully fired, and NO{sub x} pollutant emissions produced will be similar to or lower than pollutant emissions when firing coal. This is a surprising

  14. Environmental impacts of thermochemical biomass conversion. Final report

    International Nuclear Information System (INIS)

    Elliott, D.C.; Hart, T.R.; Neuenschwander, G.G.; McKinney, M.D.; Norton, M.V.; Abrams, C.W.

    1995-06-01

    Thermochemical conversion in this study is limited to fast pyrolysis, upgrading of fast pyrolysis oils, and gasification. Environmental impacts of all types were considered within the project, but primary emphasis was on discharges to the land, air, and water during and after the conversion processes. The project discussed here is divided into five task areas: (1) pyrolysis oil analysis; (2) hydrotreating of pyrolysis oil; (3) gas treatment systems for effluent minimization; (4) strategic analysis of regulatory requirements; and (5) support of the IEA Environmental Systems Activity. The pyrolysis oil task was aimed at understanding the oil contaminants and potential means for their removal. The hydrotreating task was undertaken to better define one potential means for both improving the quality of the oil but also removing contaminants from the oil. Within Task 3, analyses were done to evaluate the results of gasification product treatment systems. Task 4 was a review and collection of regulatory requirements which would be applicable to the subject processes. The IEA support task included input to and participation in the IEA Bioenergy activity which directly relates to the project subject. Each of these tasks is described along with the results. Conclusions and recommendations from the overall project are given

  15. Environmental impacts of thermochemical biomass conversion. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D.C.; Hart, T.R.; Neuenschwander, G.G.; McKinney, M.D.; Norton, M.V.; Abrams, C.W. [Pacific Northwest Lab., Richland, WA (United States)

    1995-06-01

    Thermochemical conversion in this study is limited to fast pyrolysis, upgrading of fast pyrolysis oils, and gasification. Environmental impacts of all types were considered within the project, but primary emphasis was on discharges to the land, air, and water during and after the conversion processes. The project discussed here is divided into five task areas: (1) pyrolysis oil analysis; (2) hydrotreating of pyrolysis oil; (3) gas treatment systems for effluent minimization; (4) strategic analysis of regulatory requirements; and (5) support of the IEA Environmental Systems Activity. The pyrolysis oil task was aimed at understanding the oil contaminants and potential means for their removal. The hydrotreating task was undertaken to better define one potential means for both improving the quality of the oil but also removing contaminants from the oil. Within Task 3, analyses were done to evaluate the results of gasification product treatment systems. Task 4 was a review and collection of regulatory requirements which would be applicable to the subject processes. The IEA support task included input to and participation in the IEA Bioenergy activity which directly relates to the project subject. Each of these tasks is described along with the results. Conclusions and recommendations from the overall project are given.

  16. Development of a modeling approach to predict ash formation during co-firing of coal and biomass

    Energy Technology Data Exchange (ETDEWEB)

    Doshi, V. [School of Engineering, Monash University Sunway Campus, Jalan Lagoon Selatan, Bandar Sunway, Selangor (Malaysia); Vuthaluru, H.B. [Curtin University of Technology, Kent Street, Bentley 6104, Perth, Western Australia (Australia); Korbee, R. [HRL Technology, Ipswich, Queensland (Australia); Kiel, J.H.A. [ECN Biomass, Coal and Environmental Research, P.O. Box 1, 1755 ZG Petten (Netherlands)

    2009-09-15

    The scope of this paper includes the development of a modelling approach to predict the ash release behaviour and chemical composition of inorganics during co-firing of coal and biomass. In the present work, an advanced analytical method was developed and introduced to determine the speciation of biomass using pH extraction analysis. Biomass samples considered for the study include wood chips, wood bark and straw. The speciation data was used as an input to the chemical speciation model to predict the behaviour and release of ash. It was found that the main gaseous species formed during the combustion of biomass are KCl, NaCl, K{sub 2}SO{sub 4} and Na{sub 2}SO{sub 4}. Calculations of gas-to-particle formation were also carried out to determine the chemical composition of coal and biomass during cooling which takes place in the boiler. It was found that the heterogeneous condensation occurring on heat exchange surfaces of boilers is much more than homogeneous condensation. Preliminary studies of interaction between coal and biomass during ash formation process showed that Al, Si and S elements in coal may have a 'buffering' effect on biomass alkali metals, thus reducing the release of alkali-gases which act as precursors to ash deposition and corrosion during co-firing. The results obtained in this work are considered to be valuable and form the basis for accurately determining the ash deposition during co-firing. (author)

  17. Co-firing coal and biomass blends and their influence on the post-combustion CO2 capture installation

    Science.gov (United States)

    Więckol-Ryk, Angelika; Smoliński, Adam

    2017-10-01

    Co-firing of biomass with coal for energy production is a well-known technology and plays an important role in the electricity sector. The post-combustion capture integrated with biomass-fired power plants (Bio-CCS) seems to be a new alternative for reducing greenhouse gas emissions. This study refers to the best known and advanced technology for post-combustion CO2 capture (PCC) based on a chemical absorption in monoethanolamine (MEA). The co-firing of hard coal with four types of biomass was investigated using a laboratory fixed bed reactor system. The comparison of gaseous products emitted from the combustion of coal and different biomass blends were determined using gas chromatography. Research proved that co-firing of biomass in fossil fuel power plants is beneficial for PCC process. It may also reduce the corrosion of CO2 capture installation. The oxygen concentration in the flue gases from hard coal combustion was comparable with the respective value for a fuel blend of biomass content of 20% w/w. It was also noted that an increase in biomass content in a sample from 20 to 40 % w/w increased the concentration of oxygen in the flue gas streams. However, this concentration should not have a significant impact on the rate of amine oxidative degradation.

  18. Basic principles of classifying waste products of coal mining and conversion

    Energy Technology Data Exchange (ETDEWEB)

    Spirt, M.Ya.; Itkin, Yu.V.

    1980-03-01

    Suggests a method of classifying solid waste from coal mining, preparation and conversion. Classification parameters are: source of by-product; iron compound content; carbon content; degree of carbonization of organic material; sulfur content. Tables are presented showing types of waste and above stated parameters, and projected industrial use (combustion, gasification, ceramics, building materials, ballast for road surfacing, fire-proof materials, binders etc.). The project was carried out by the Institute of Fossil Fuels. (8 refs.) (In Russian)

  19. Co-combustion of low rank coal/waste biomass blends using dry air or oxygen

    International Nuclear Information System (INIS)

    Haykiri-Acma, H.; Yaman, S.; Kucukbayrak, S.

    2013-01-01

    Biomass species such as the rice husk and the olive milling residue, and a low quality Turkish coal, Soma Denis lignite, were burned in a thermal analyzer under pure oxygen and dry air up to 900 °C, and differential thermal analysis (DTA) and derivative thermogravimetric (DTG) analysis profiles were obtained. Co-combustion experiments of lignite/biomass blends containing 5–20 wt% of biomass were also performed. The effects of the oxidizer type and the blending ratio of biomass were evaluated considering some thermal reactivity indicators such as the maximum burning rate and its temperature, the maximum heat flow temperature, and the burnout levels. FTIR (Fourier transform infrared) spectroscopy and SEM (scanning electron microscopy) were used to characterize the samples, and the variations in the combustion characteristics of the samples were interpreted based on the differences in the intrinsic properties of the samples. - Highlights: ► Co-combustion of lignite/biomass blends. ► The effects of the oxidizer type and the blending ratio. ► Effects of intrinsic properties on combustion characteristics.

  20. Hydrogen-Rich Gas Production by Cogasification of Coal and Biomass in an Intermittent Fluidized Bed

    Directory of Open Access Journals (Sweden)

    Li-Qun Wang

    2013-01-01

    Full Text Available This paper presents the experimental results of cogasification of coal and biomass in an intermittent fluidized bed reactor, aiming to investigate the influences of operation parameters such as gasification temperature (T, steam to biomass mass ratio (SBMR, and biomass to coal mass ratio (BCMR on hydrogen-rich (H2-rich gas production. The results show that H2-rich gas free of N2 dilution is produced and the H2 yield is in the range of 18.25~68.13 g/kg. The increases of T, SBMR, and BCMR are all favorable for promoting the H2 production. Higher temperature contributes to higher CO and H2 contents, as well as H2 yield. The BCMR has a weak influence on gas composition, but the yield and content of H2 increase with BCMR, reaching a peak at the BCMR of 4. The H2 content and yield in the product gas increase with SBMR, whilst the content of CO increases first and then decreases correspondingly. At a typical case, the relative linear sensitivity coefficients of H2 production efficiency to T, SBMR, and BCMR were calculated. The results reveal that the order of the influence of the operation parameters on H2 production efficiency is T > SBMR > BCMR.

  1. Hydrogen-rich gas production by cogasification of coal and biomass in an intermittent fluidized bed.

    Science.gov (United States)

    Wang, Li-Qun; Chen, Zhao-Sheng

    2013-01-01

    This paper presents the experimental results of cogasification of coal and biomass in an intermittent fluidized bed reactor, aiming to investigate the influences of operation parameters such as gasification temperature (T), steam to biomass mass ratio (SBMR), and biomass to coal mass ratio (BCMR) on hydrogen-rich (H2-rich) gas production. The results show that H2-rich gas free of N2 dilution is produced and the H2 yield is in the range of 18.25~68.13 g/kg. The increases of T, SBMR, and BCMR are all favorable for promoting the H2 production. Higher temperature contributes to higher CO and H2 contents, as well as H2 yield. The BCMR has a weak influence on gas composition, but the yield and content of H2 increase with BCMR, reaching a peak at the BCMR of 4. The H2 content and yield in the product gas increase with SBMR, whilst the content of CO increases first and then decreases correspondingly. At a typical case, the relative linear sensitivity coefficients of H2 production efficiency to T, SBMR, and BCMR were calculated. The results reveal that the order of the influence of the operation parameters on H2 production efficiency is T > SBMR > BCMR.

  2. Implications of cellobiohydrolase glycosylation for use in biomass conversion

    Directory of Open Access Journals (Sweden)

    Decker Stephen R

    2008-05-01

    Full Text Available Abstract The cellulase producing ascomycete, Trichoderma reesei (Hypocrea jecorina, is known to secrete a range of enzymes important for ethanol production from lignocellulosic biomass. It is also widely used for the commercial scale production of industrial enzymes because of its ability to produce high titers of heterologous proteins. During the secretion process, a number of post-translational events can occur, however, that impact protein function and stability. Another ascomycete, Aspergillus niger var. awamori, is also known to produce large quantities of heterologous proteins for industry. In this study, T. reesei Cel7A, a cellobiohydrolase, was expressed in A. niger var. awamori and subjected to detailed biophysical characterization. The purified recombinant enzyme contains six times the amount of N-linked glycan than the enzyme purified from a commercial T. reesei enzyme preparation. The activities of the two enzyme forms were compared using bacterial (microcrystalline and phosphoric acid swollen (amorphous cellulose as substrates. This comparison suggested that the increased level of N-glycosylation of the recombinant Cel7A (rCel7A resulted in reduced activity and increased non-productive binding on cellulose. When treated with the N-glycosidase PNGaseF, the molecular weight of the recombinant enzyme approached that of the commercial enzyme and the activity on cellulose was improved.

  3. Characterization of second generation biomass under thermal conversion and the fate of nitrogen

    NARCIS (Netherlands)

    Giuntoli, J.

    2010-01-01

    This dissertation deals with the characterization of several biomass materials under thermal conversion conditions using small--scale equipment. The fuels are tested under the conditions of slow and fast heating rate pyrolysis and combustion, with the main goal of investigating the chemistry of

  4. Feedstock Supply System Design and Economics for Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels: Conversion Pathway: Biological Conversion of Sugars to Hydrocarbons The 2017 Design Case

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Kenney; Kara G. Cafferty; Jacob J. Jacobson; Ian J Bonner; Garold L. Gresham; William A. Smith; David N. Thompson; Vicki S. Thompson; Jaya Shankar Tumuluru; Neal Yancey

    2013-09-01

    The U.S. Department of Energy promotes the production of a range of liquid fuels and fuel blendstocks from lignocellulosic biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass collection, conversion, and sustainability. As part of its involvement in this program, the Idaho National Laboratory (INL) investigates the feedstock logistics economics and sustainability of these fuels. Between 2000 and 2012, INL conducted a campaign to quantify the economics and sustainability of moving biomass from standing in the field or stand to the throat of the biomass conversion process. The goal of this program was to establish the current costs based on conventional equipment and processes, design improvements to the current system, and to mark annual improvements based on higher efficiencies or better designs. The 2012 programmatic target was to demonstrate a delivered biomass logistics cost of $35/dry ton. This goal was successfully achieved in 2012 by implementing field and process demonstration unit-scale data from harvest, collection, storage, preprocessing, handling, and transportation operations into INL’s biomass logistics model. Looking forward to 2017, the programmatic target is to supply biomass to the conversion facilities at a total cost of $80/dry ton and on specification with in-feed requirements. The goal of the 2017 Design Case is to enable expansion of biofuels production beyond highly productive resource areas by breaking the reliance of cost-competitive biofuel production on a single, abundant, low-cost feedstock. If this goal is not achieved, biofuel plants are destined to be small and/or clustered in select regions of the country that have a lock on low-cost feedstock. To put the 2017 cost target into perspective of past accomplishments of the cellulosic ethanol pathway, the $80 target encompasses total delivered feedstock cost, including both grower payment and logistics costs, while meeting all

  5. Homogeneous catalysis for the conversion of biomass and biomass-derived platform chemicals

    NARCIS (Netherlands)

    Deuss, Peter J.; Barta, Katalin; de Vries, Johannes G.

    2014-01-01

    The transition from a petroleum-based infrastructure to an industry which utilises renewable resources is one of the key research challenges of the coming years. Biomass, consisting of inedible plant material that does not compete with our food production, is a suitable renewable feedstock. In

  6. Interaction and its induced inhibiting or synergistic effects during co-gasification of coal char and biomass char.

    Science.gov (United States)

    Ding, Liang; Zhang, Yongqi; Wang, Zhiqing; Huang, Jiejie; Fang, Yitian

    2014-12-01

    Co-gasification of coal char and biomass char was conducted to investigate the interactions between them. And random pore model (RPM) and modified random pore model (MRPM) were applied to describe the gasification behaviors of the samples. The results show that inhibiting effect was observed during co-gasification of corn stalk char with Hulunbeier lignite coal char, while synergistic effects were observed during co-gasification of corn stalk char with Shenmu bituminous coal char and Jincheng anthracite coal char. The inhibiting effect was attributed to the intimate contact and comparable gasification rate between biomass char and coal char, and the loss of the active form of potassium caused by the formation of KAlSiO4, which was proved to be inactive during gasification. While the synergistic effect was caused by the high potassium content of biomass char and the significant difference of reaction rate between coal char and biomass char during gasification. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Catalytic oxidative conversion of cellulosic biomass to formic acid and acetic acid with exceptionally high yields

    KAUST Repository

    Zhang, Jizhe

    2014-09-01

    Direct conversion of raw biomass materials to fine chemicals is of great significance from both economic and ecological perspectives. In this paper, we report that a Keggin-type vanadium-substituted phosphomolybdic acid catalyst, namely H4PVMo11O40, is capable of converting various biomass-derived substrates to formic acid and acetic acid with high selectivity in a water medium and oxygen atmosphere. Under optimized reaction conditions, H4PVMo11O40 gave an exceptionally high yield of formic acid (67.8%) from cellulose, far exceeding the values achieved in previous catalytic systems. Our study demonstrates that heteropoly acids are generally effective catalysts for biomass conversion due to their strong acidities, whereas the composition of metal addenda atoms in the catalysts has crucial influence on the reaction pathway and the product selectivity. © 2013 Elsevier B.V.

  8. Efficient conversion of solar energy to biomass and electricity.

    Science.gov (United States)

    Parlevliet, David; Moheimani, Navid Reza

    2014-01-01

    The Earth receives around 1000 W.m(-2) of power from the Sun and only a fraction of this light energy is able to be converted to biomass (chemical energy) via the process of photosynthesis. Out of all photosynthetic organisms, microalgae, due to their fast growth rates and their ability to grow on non-arable land using saline water, have been identified as potential source of raw material for chemical energy production. Electrical energy can also be produced from this same solar resource via the use of photovoltaic modules. In this work we propose a novel method of combining both of these energy production processes to make full utilisation of the solar spectrum and increase the productivity of light-limited microalgae systems. These two methods of energy production would appear to compete for use of the same energy resource (sunlight) to produce either chemical or electrical energy. However, some groups of microalgae (i.e. Chlorophyta) only require the blue and red portions of the spectrum whereas photovoltaic devices can absorb strongly over the full range of visible light. This suggests that a combination of the two energy production systems would allow for a full utilization of the solar spectrum allowing both the production of chemical and electrical energy from the one facility making efficient use of available land and solar energy. In this work we propose to introduce a filter above the algae culture to modify the spectrum of light received by the algae and redirect parts of the spectrum to generate electricity. The electrical energy generated by this approach can then be directed to running ancillary systems or producing extra illumination for the growth of microalgae. We have modelled an approach whereby the productivity of light-limited microalgae systems can be improved by at least 4% through using an LED array to increase the total amount of illumination on the microalgae culture.

  9. Conversion of biomass to biofuels by bacterial cellulosomes1

    Science.gov (United States)

    Thompson, Damien

    Lignocellulosic biomass waste has the potential to be converted to biofuels and other value-added chemicals in a renewable manner. However, a cost-effective depolymerization of polysaccharides is challenging technologically. In order to take on the challenge, one can use cocktails of bacterial or fungal enzymes, known as cellulases. Another promising approach, discussed here, is to employ certain bacteria, such as Clostridum thermocellum, that grow extracellular molecular complexes known as cellulosomes. A cellulosome mounts many different cellulases on a nonhydrolytic structural unit consisting of a number of the cohesin domains. The domains bind to their complementary dockerin domains belonging to the catalytic subunits. In this lecture, I will highlight results of the experimental and theoretical research on cellulosomes performed by the European consortium CellulosomePlus1 (Cajal Institute in Madrid, Weizmann Institute in Rehovot, Ludwig Maximillian's University in Munich, Institute of Physics in Warsaw, Oceanography Institute in Roscoff, University of Limerick and three industrial partners). The goals of the consortium include characterization and understanding the structure and function of several cellulosomes as well as the development of designer cellulosomes that would be more effective than their wild type versions. The subjects covered in the lecture include the role of the linkers on the properties of cellulases, effects of singlesite mutations on the mechanical and thermodynamic stabilities of cohesin c7A in the cellulosome of C. thermocellum, the non-local impact of such mutations, the mechanics of the cohesin-dockerin interface, protein-hexaose and protein-cellulose interactions, and the status of the implementation efforts. 1The European Framework Programme VII NMP grant 604530-2 (CellulosomePlus)

  10. Gasification of biomass and coal in a pressurised fluidised bed gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Andries, J.; Jong, W. de; Hein, K.R.G. [Technische Univ. Delft (Netherlands)

    1998-09-01

    During a 3 year (1996-1998) multinational JOULE project, partly funded by the EU, experimental and theoretical research is being done on co-gasification of biomass (pelletised straw and Miscanthus) and coal in a pressurised fluidised bed reactor. The influence of feedstock and operating conditions on gasification characteristics has been studied using a 1.5 MW{sub th} gasifier, which has been operated at a pressure of 5 bar and temperatures up to 900 C. The project and the test rig are described and results obtained in the first part of the project are presented and analysed. (orig.)

  11. Energy Conversion Loop: A Testbed for Nuclear Hybrid Energy Systems Use in Biomass Pyrolysis

    Science.gov (United States)

    Verner, Kelley M.

    Nuclear hybrid energy systems are a possible solution for contemporary energy challenges. Nuclear energy produces electricity without greenhouse gas emissions. However, nuclear power production is not as flexible as electrical grids demand and renewables create highly variable electricity. Nuclear hybrid energy systems are able to address both of these problems. Wasted heat can be used in processes such as desalination, hydrogen production, or biofuel production. This research explores the possible uses of nuclear process heat in bio-oil production via biomass pyrolysis. The energy conversion loop is a testbed designed and built to mimic the heat from a nuclear reactor. Small scale biomass pyrolysis experiments were performed and compared to results from the energy conversion loop tests to determine future pyrolysis experimentation with the energy conversion loop. Further improvements must be made to the energy conversion loop before more complex experiments may be performed. The current conditions produced by the energy conversion loop are not conducive for current biomass pyrolysis experimentation.tion.

  12. Assessment of the way of biomass transportation to the coal power plant with regard to the limitation of emissions of CO2

    International Nuclear Information System (INIS)

    Adamkiewicz, A.; Zenczak, W.

    2014-01-01

    One from the activities taken in Poland in aim of limitation of CO 2 , emission is coal and biomass combustion together in one boiler. Biomass is delivered to power station Dolna Odra in Szczecin by trucks, which are also a source of CO 2 , emission. The paper presents results of comparative analysis of CO 2 , emission from trucks during transportation of biomass to power station with actual reduction of emission through power station as result of substitution of part of coal by biomass.

  13. MINIMIZING NET CO2 EMISSIONS BY OXIDATIVE CO-PYROLYSIS OF COAL / BIOMASS BLENDS

    Energy Technology Data Exchange (ETDEWEB)

    Todd Lang; Robert Hurt

    2001-12-23

    This study presents a set of thermodynamic calculations on the optimal mode of solid fuel utilization considering a wide range of fuel types and processing technologies. The technologies include stand-alone combustion, biomass/coal cofiring, oxidative pyrolysis, and straight carbonization with no energy recovery but with elemental carbon storage. The results show that the thermodynamically optimal way to process solid fuels depends strongly on the specific fuels and technologies available, the local demand for heat or for electricity, and the local baseline energy-production method. Burning renewable fuels reduces anthropogenic CO{sub 2} emissions as widely recognized. In certain cases, however, other processing methods are equally or more effective, including the simple carbonization or oxidative pyrolysis of biomass fuels.

  14. Thermodynamic analyses of a biomass-coal co-gasification power generation system.

    Science.gov (United States)

    Yan, Linbo; Yue, Guangxi; He, Boshu

    2016-04-01

    A novel chemical looping power generation system is presented based on the biomass-coal co-gasification with steam. The effects of different key operation parameters including biomass mass fraction (Rb), steam to carbon mole ratio (Rsc), gasification temperature (Tg) and iron to fuel mole ratio (Rif) on the system performances like energy efficiency (ηe), total energy efficiency (ηte), exergy efficiency (ηex), total exergy efficiency (ηtex) and carbon capture rate (ηcc) are analyzed. A benchmark condition is set, under which ηte, ηtex and ηcc are found to be 39.9%, 37.6% and 96.0%, respectively. Furthermore, detailed energy Sankey diagram and exergy Grassmann diagram are drawn for the entire system operating under the benchmark condition. The energy and exergy efficiencies of the units composing the system are also predicted. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Experimental study on fragmental behavior of coals and biomasses during rapid pyrolysis.

    Science.gov (United States)

    Cui, Tongmin; Xu, Jianliang; Fan, Wenke; Chang, Qinghua; Yu, Guangsuo; Wang, Fuchen

    2016-12-01

    In order to study the primary fragmentation behavior of coals and biomasses, experiments of rapid pyrolysis were carried out. This work focused on the devolatilization and fragmentation characteristics including the solid/gas yield, particle density/morphology, particle size and fragmental probability (S f ). The effects of temperature, time and solid property were investigated. The viscous flow model was employed to characterize the pressure difference (ΔP), which was considered as the driving force of diffusion and fragmentation. The Ohm principle was used to establish the linear relation of devolatilization rate and fragmentation rate. The result showed that temperature and time have positive contribution to the fragmentation. The occurrence of fragmentation was observed more apparently with the decreasing of the ash content in the biomass. The pressure difference has a positive correlation with the fragmental rate, which shows the validity of application Ohm principle in the prediction of fragmenting process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Overview of recent advances in thermo-chemical conversion of biomass

    International Nuclear Information System (INIS)

    Zhang Linghong; Xu Chunbao; Champagne, Pascale

    2010-01-01

    Energy from biomass, bioenergy, is a perspective source to replace fossil fuels in the future, as it is abundant, clean, and carbon dioxide neutral. Biomass can be combusted directly to generate heat and electricity, and by means of thermo-chemical and bio-chemical processes it can be converted into bio-fuels in the forms of solid (e.g., charcoal), liquid (e.g., bio-oils, methanol and ethanol), and gas (e.g., methane and hydrogen), which can be used further for heat and power generation. This paper provides an overview of the principles, reactions, and applications of four fundamental thermo-chemical processes (combustion, pyrolysis, gasification, and liquefaction) for bioenergy production, as well as recent developments in these technologies. Some advanced thermo-chemical processes, including co-firing/co-combustion of biomass with coal or natural gas, fast pyrolysis, plasma gasification and supercritical water gasification, are introduced. The advantages and disadvantages, potential for future applications and challenges of these processes are discussed. The co-firing of biomass and coal is the easiest and most economical approach for the generation of bioenergy on a large-sale. Fast pyrolysis has attracted attention as it is to date the only industrially available technology for the production of bio-oils. Plasma techniques, due to their high destruction and reduction efficiencies for any form of waste, have great application potential for hazardous waste treatment. Supercritical water gasification is a promising approach for hydrogen generation from biomass feedstocks, especially those with high moisture contents.

  17. ELSAM/ELKRAFT: Draft for the plan of management for bio-energy. ELSAM/ELKRAFT: The electricity companies' programme for gasification of coal and biomass

    International Nuclear Information System (INIS)

    1992-08-01

    The Danish power companies have, since the middle of the 80's carried through a technology development effort for the use of bio-fuels in power (and dual-purpose power) plants. This note concerns the current status of the development and a sketch for an action programme for future effort. Straw is the largest unexploited potential. The use of bio-fuels does not produce so much carbon dioxide, but on the other hand biomass supply can fluctuate. Biofuels are also difficult to stoke, and expensive. Close co-operation between agriculture and forestry is necessary and risks are high for the involved sectors. It must be possible to use bio-fuels combined with coal to secure a sturdy and economic energy production, it is necessary to have a stable energy and industrial policy to maintain interest in the long term development effort, the contrasts of interest between natural gas and bio-fuels on the decentralized thermal power market must be clarified and the prices of bio-fuels must be made competitive by making supply and subsidies more effective. The main areas for future development are the bio-fuel resources, logistics and economy, straw in central power plants, gasification of coal and biomass, bio-fuels in decentralized cogeneration plants, biogas plants, conversion of biomass to synthetic fuels etc. A close co-ordination of ELSAM/ELKRAFT's development activities and cooperation between organizations in Denmark and abroad should be aimed at. (AB)

  18. Fungal Enzymes and Yeasts for Conversion of Plant Biomass to Bioenergy and High-Value Products.

    Science.gov (United States)

    Lange, Lene

    2017-01-01

    Fungi and fungal enzymes play important roles in the new bioeconomy. Enzymes from filamentous fungi can unlock the potential of recalcitrant lignocellulose structures of plant cell walls as a new resource, and fungi such as yeast can produce bioethanol from the sugars released after enzyme treatment. Such processes reflect inherent characteristics of the fungal way of life, namely, that fungi as heterotrophic organisms must break down complex carbon structures of organic materials to satisfy their need for carbon and nitrogen for growth and reproduction. This chapter describes major steps in the conversion of plant biomass to value-added products. These products provide a basis for substituting fossil-derived fuels, chemicals, and materials, as well as unlocking the biomass potential of the agricultural harvest to yield more food and feed. This article focuses on the mycological basis for the fungal contribution to biorefinery processes, which are instrumental for improved resource efficiency and central to the new bioeconomy. Which types of processes, inherent to fungal physiology and activities in nature, are exploited in the new industrial processes? Which families of the fungal kingdom and which types of fungal habitats and ecological specializations are hot spots for fungal biomass conversion? How can the best fungal enzymes be found and optimized for industrial use? How can they be produced most efficiently-in fungal expression hosts? How have industrial biotechnology and biomass conversion research contributed to mycology and environmental research? Future perspectives and approaches are listed, highlighting the importance of fungi in development of the bioeconomy.

  19. Fuel nitrogen conversion and release of nitrogen oxides during coal gangue calcination.

    Science.gov (United States)

    Zhang, Yingyi; Ge, Xinlei; Liu, Lili; Wang, Xidong; Zhang, Zuotai

    2015-05-01

    The pollution emission during the widespread utilization of coal gangue in construction industry has long been neglected. In present study, the NO x release behaviors in a simulation experiment of coal gangue calcination in construction industry were systematically investigated. The corresponding evolution of nitrogen functionalities in coal gangue was also discussed. Results showed that pyrrolic (N-5) and pyridine N-oxide (N-6-O) forms nitrogen were relatively abundant in the raw gangue. During calcination, the N-5 and N-6-O form nitrogen greatly decreased and converted to quaternary nitrogen (N-Q). It was found that NO2 was formed under slowly heating-up condition and at 600 °C under isothermal condition, while only NO was detected with further increase of temperature. From 600 to 1000 °C, the conversion ratio of fuel nitrogen to NO x increased from 8 to 12 %. The char nitrogen was found greatly contribute to NO formation, which may bring difficulty to the abatement of NO x emission during coal gangue calcination.

  20. Hydrogen transfer in the formation and destruction of retrograde products in coal conversion

    Energy Technology Data Exchange (ETDEWEB)

    McMillen, D.F.; Malhotra, R. [SRI International, Menlo Park, CA (United States)

    2006-06-01

    The conversion of coals to volatiles or liquids during pyrolysis and liquefaction is notoriously limited by the formation of retrograde products. Analysis of literature data for coals with grafted structures and for polymeric coal models demonstrates that the formation of volatile products from these materials does not correlate primarily with the weakness of the original bonding but correlates with the facility for retrogressive reaction. This analysis suggests further that simple recombination of resonance-stabilized radicals does not tend to yield true retrograde products, except in the case of aryloxy radicals. For pure hydrocarbon structural elements, radical addition to aromatic systems appears to be a key class of retrograde reactions, where the key factor is the kinetics of radical or H-atom loss from a cyclohexadienyl intermediate. We have used a mechanistic numerical model with a detailed set of radical reactions and thermochemically based kinetic parameters operating on a limited set of hydrocarbon structures to delineate important factors in mitigating retrograde processes. This showed that, not only the cleavage of critical bonds in the original coal structures but also the net prevention of retrogression may be due to the H-transfer-induced cleavage of strong bonds.

  1. Dairy Biomass-Wyoming Coal Blends Fixed Gasification Using Air-Steam for Partial Oxidation

    Directory of Open Access Journals (Sweden)

    Gerardo Gordillo

    2012-01-01

    Full Text Available Concentrated animal feeding operations such as dairies produce a large amount of manure, termed as dairy biomass (DB, which could serve as renewable feedstock for thermal gasification. DB is a low-quality fuel compared to fossil fuels, and hence the product gases have lower heat content; however, the quality of gases can be improved by blending with coals. This paper deals with air-steam fixed-bed counterflow gasification of dairy biomass-Wyoming coal blend (DBWC. The effects of equivalence ratio (1.6<Φ<6.4 and steam-to-fuel ratio (0.4

  2. Ensiling and hydrothermal pretreatment of grass: Consequences for enzymatic biomass conversion and total monosaccharide yields

    DEFF Research Database (Denmark)

    Ambye-Jensen, Morten; Johansen, Katja Salomon; Didion, Thomas

    2014-01-01

    Ensiling may act as a pretreatment of fresh grass biomass and increase the enzymatic conversion of structural carbohydrates to fermentable sugars. However, ensiling does not provide sufficient severity to be a standalone pretreatment method. Here, ensiling of grass is combined with hydrothermal...... treatment (HTT) with the aim of improving the enzymatic biomass convertibility and decrease the required temperature of the HTT. Results: Grass silage (Festulolium Hykor) was hydrothermally treated at temperatures of 170, 180, and 190°C for 10 minutes. Relative to HTT treated dry grass, ensiling increased...

  3. Rational control of nano-scale metal-catalysts for biomass conversion.

    Science.gov (United States)

    Wang, Yunzhu; De, Sudipta; Yan, Ning

    2016-05-07

    Nano-scale metal particles have huge potential due to their wide range of diverse catalytic applications. Recently, they have found numerous applications in the field of biomass conversion. The proposed contribution is aimed at providing a brief account of remarkable recent findings and advances in the design of metal-based nanocatalysts for biomass valorization. We have discussed the rational control of the size, shape, composition and surface properties of nano-scale metal catalysts. Following that, the interplay between various structural parameters and the catalytic properties in the transformation of cellulose, chitin, lignin and lipids has been critically discussed.

  4. Thermal conversion of biomass to valuable fuels, chemical feedstocks and chemicals

    Science.gov (United States)

    Peters, William A [Lexington, MA; Howard, Jack B [Winchester, MA; Modestino, Anthony J [Hanson, MA; Vogel, Fredreric [Villigen PSI, CH; Steffin, Carsten R [Herne, DE

    2009-02-24

    A continuous process for the conversion of biomass to form a chemical feedstock is described. The biomass and an exogenous metal oxide, preferably calcium oxide, or metal oxide precursor are continuously fed into a reaction chamber that is operated at a temperature of at least 1400.degree. C. to form reaction products including metal carbide. The metal oxide or metal oxide precursor is capable of forming a hydrolizable metal carbide. The reaction products are quenched to a temperature of 800.degree. C. or less. The resulting metal carbide is separated from the reaction products or, alternatively, when quenched with water, hydolyzed to provide a recoverable hydrocarbon gas feedstock.

  5. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 1: Introduction and summary and general assumptions. [energy conversion systems for electric power plants using coal - feasibility

    Science.gov (United States)

    Beecher, D. T.

    1976-01-01

    Nine advanced energy conversion concepts using coal or coal-derived fuels are summarized. They are; (1) open-cycle gas turbines, (2) combined gas-steam turbine cycles, (3) closed-cycle gas turbines, (4) metal vapor Rankine topping, (5) open-cycle MHD; (6) closed-cycle MHD; (7) liquid-metal MHD; (8) advanced steam; and (9) fuel cell systems. The economics, natural resource requirements, and performance criteria for the nine concepts are discussed.

  6. Microbial conversion of higher hydrocarbons to methane in oil and coal reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Martin; Beckmaann, Sabrina; Siegert, Michael; Grundger, Friederike; Richnow, Hans [Geomicrobiology Group, Federal Institute for Geosciences and Natural Resources (Germany)

    2011-07-01

    In recent years, oil production has increased enormously but almost half of the oil now remaining is heavy/biodegraded and cannot be put into production. There is therefore a need for new technology and for diversification of energy sources. This paper discusses the microbial conversion of higher hydrocarbons to methane in oil and coal reservoirs. The objective of the study is to identify microbial and geochemical controls on methanogenesis in reservoirs. A graph shows the utilization of methane for various purposes in Germany from 1998 to 2007. A degradation process to convert coal to methane is shown using a flow chart. The process for converting oil to methane is also given. Controlling factors include elements such as Fe, nitrogen and sulfur. Atmospheric temperature and reservoir pressure and temperature also play an important role. From the study it can be concluded that isotopes of methane provide exploration tools for reservoir selection and alkanes and aromatic compounds provide enrichment cultures.

  7. Renew, reduce or become more efficient? The climate contribution of biomass co-combustion in a coal-fired power plant

    NARCIS (Netherlands)

    Miedema, Jan H.; Benders, Rene M. J.; Moll, Henri C.; Pierie, Frank

    2017-01-01

    Within this paper, biomass supply chains, with different shares of biomass co-combustion in coal fired power plants, are analysed on energy efficiency, energy consumption, renewable energy production, and greenhouse gas (GHG) emissions and compared with the performance of a 100% coal supply chain

  8. Secondary reactions of tar during thermochemical biomass conversion[Dissertation 14341

    Energy Technology Data Exchange (ETDEWEB)

    Morf, P.O.

    2001-07-01

    This dissertation submitted to the Swiss Federal Institute of Technology in Zurich presents and discusses the results obtained during the examination of the processes involved in the formation and conversion of tar in biomass gasification plant. Details are given on the laboratory reactor system used to provide separated tar production and conversion for the purposes of the experiments carried out. The results of analyses made of the tar and the gaseous products obtained after its conversion at various temperatures are presented. The development of kinetic models using the results of the experiments that were carried out is described. The results of the experiments and modelling are compared with the corresponding results obtained using a full-scale down-draft, fixed-bed gasifier. The author is of the opinion that the reaction conditions found in full-scale gasifiers can be well simulated using heterogeneous tar conversion experiments using the lab reactor system.

  9. Reactor scale up for biological conversion of cellulosic biomass to ethanol.

    Science.gov (United States)

    Shao, Xiongjun; Lynd, Lee; Bakker, André; LaRoche, Richard; Wyman, Charles

    2010-05-01

    The absence of a systematic scale-up approach for biological conversion of cellulosic biomass to commodity products is a significant bottleneck to realizing the potential benefits offered by such conversion. Motivated by this, we undertook to develop a scale-up approach for conversion of waste paper sludge to ethanol. Physical properties of the system were measured and correlations were developed for their dependence upon cellulose conversion. Just-suspension of solid particles was identified as the scale up criterion based on experiments at lab scale. The impeller speed for just solids suspension at large scale was predicted using computational fluid dynamics simulations. The scale-up strategy was validated by analyzing mixing requirements such as solid-liquid mass transfer under the predicted level of agitation at large scale. The scale-up approach enhances the prediction of reactor performance and helps provide guidelines for the analysis and design of large scale bioreactors based on bench scale experimentation.

  10. Conversion analysis of a cylindrical biomass particle with a DEM-CFD coupling approach

    Directory of Open Access Journals (Sweden)

    Mohammad Mohseni

    2017-09-01

    Full Text Available Biomass as a renewable energy source has attracted more attention nowadays due to ecological and economical benefits. The main objective of this work is studying the biomass conversion with employing a DEM-CFD coupling approach. In this model, the solid particulates are considered as discrete elements coupled via heat, mass and momentum transfer to the surrounding gas as continuous phase. That is, a comprehensive three-dimensional numerical model is developed and applied to investigate the complex phenomena taking place during biomass conversion in a reactor. In this case, the physical and chemical processes as heat-up, drying, pyrolysis, gasification and combustion are taken into account based on the relevant homogeneous and heterogeneous reactions. This platform predicts the motion of discrete particles based on the newton's equations of motion; and the thermodynamic state of each particle is extended according to the related algorithms. The thermodynamic state estimates the temperature and species distributions inside the particle due to external heat sources and chemical reactions. The reaction rates are described with Arrhenius model, and the reactions in the gas phase are modeled using Partially Stirred Reactor (PaSR model with the standard k−ϵ turbulent model. The conductive and radiative heat transfer between particles as well as convective heat transfer between particles and gas phase are also observed. Due to layered behavior of biomass materials, the shape of particle is considered as cylindrical rather than spherical to predict more realistic results. In order to improve the numerical modeling of biomass conversion, a shrinkage model is also developed and validated with experimental data in literature.

  11. The Swedish Ash Programme 2002-2008. Biomass, wastes, peat - any solid fuel but coal

    Energy Technology Data Exchange (ETDEWEB)

    Bjurstroem, Henrik; Herbert, Roger

    2009-07-15

    In Sweden, producers of combustion residues have since 2002 implemented a collaborative applied RandD programme aimed at the utilisation of combustion residues (ash). The fuels are biomass, wastes, peat - any solid fuel but coal. In this report, the main lines of the programme are described: Covers for landfills and mine tailings; Civil works, e.g. road-buildings, where both geotechnical and environmental questions have been addressed; Cement and concrete applications; Compensating soils for removing biomass and the mineral nutrients in the biomass. The emphasis of the Programme is on environmental questions, even if technical questions have been treated. The time perspective in this context is much longer than the 3-5 years that are usual in an applied RandD programme, i.e. decades after ash has been placed on a site, e.g. in a road, or spread to forest soil. New test fields have been created in the programme and old test fields have been evaluated in order to gather available information

  12. A Review of the Role of Amphiphiles in Biomass to Ethanol Conversion

    Directory of Open Access Journals (Sweden)

    William Gibbons

    2013-04-01

    Full Text Available One of the concerns for economical production of ethanol from biomass is the large volume and high cost of the cellulolytic enzymes used to convert biomass into fermentable sugars. The presence of acetyl groups in hemicellulose and lignin in plant cell walls reduces accessibility of biomass to the enzymes and makes conversion a slow process. In addition to low enzyme accessibility, a rapid deactivation of cellulases during biomass hydrolysis can be another factor contributing to the low sugar recovery. As of now, the economical reduction in lignin content of the biomass is considered a bottleneck, and raises issues for several reasons. The presence of lignin in biomass reduces the swelling of cellulose fibrils and accessibility of enzyme to carbohydrate polymers. It also causes an irreversible adsorption of the cellulolytic enzymes that prevents effective enzyme activity and recycling. Amphiphiles, such as surfactants and proteins have been found to improve enzyme activity by several mechanisms of action that are not yet fully understood. Reduction in irreversible adsorption of enzyme to non-specific sites, reduction in viscosity of liquid and surface tension and consequently reduced contact of enzyme with air-liquid interface, and modifications in biomass chemical structure are some of the benefits derived from surface active molecules. Application of some of these amphiphiles could potentially reduce the capital and operating costs of bioethanol production by reducing fermentation time and the amount of enzyme used for saccharification of biomass. In this review article, the benefit of applying amphiphiles at various stages of ethanol production (i.e., pretreatment, hydrolysis and hydrolysis-fermentation is reviewed and the proposed mechanisms of actions are described.

  13. Biomass pre-extraction, hydrolysis and conversion process improvements fro an integrated biorefinery

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, Robert [Virdia, Inc., Danville, VA (United States)

    2014-12-23

    In this project, Virdia will show that it can improve the production of sugars suitable for the conversion into advanced biofuels from a range of woods. Several biomass feedstocks (Pine wood chips & Eucalyptus wood chips) will be tested on this new integrated biorefinery platform. The resultant drop-in biodiesel can be a cost-effective petroleum-replacement that can compete with projected market prices

  14. Technical, economic and environmental potential of co-firing of biomass in coal and natural gas fired power plants in the Netherlands

    International Nuclear Information System (INIS)

    Van Ree, R.; Korbee, R.; Eenkhoorn, S.; De Lange, T.; Groenendaal, B.

    2000-01-01

    In this paper the technical, economic, and environmental potential of co-firing of biomass in existing Dutch coal and natural gas fired power plants, and industrial combined-cycles (CC), is addressed. Main criteria that are considered are: the availability and contractibility of biomass for energy purposes; the (technical) operation of the conventional fossil fuel based processes may not be disturbed; the gaseous and liquid plant emissions have to comply to those applicable for power plants/CCs, the commercial applicability of the solid residues may not be negatively influenced; applicable additional biomass conversion technologies must be commercially available; the necessary additional investment costs must be acceptable from an economic point of view, and the co-firing option must result in a substantial CO 2 -emission reduction. The main result of the study described in the paper is the presentation of a clear and founded indication of the total co-firing potential of biomass in existing power plants and industrial CCs in the Netherlands. This potential is determined by considering both technical, economic, and environmental criteria. In spite of the fact that the co-firing potential for the specific Dutch situation is presented, the results of the criteria considered are more generally applicable, and therefore are also very interesting for potential co-firing initiatives outside of the Netherlands

  15. Economic and environmental evaluation of coal-and-biomass-to-liquids-and-electricity plants equipped with carbon capture and storage

    Science.gov (United States)

    Among various clean energy technologies, one innovative option for reducing greenhouse gas (GHG) emissions involves pairing carbon capture and storage (CCS) with the production of synthetic fuels and electricity from co-processed coal and biomass. With a relatively pure CO2 strea...

  16. Bioenergy Research Programme. Yearbook 1994. Utilization of bioenergy and biomass conversion

    International Nuclear Information System (INIS)

    Alakangas, E.

    1995-01-01

    BIOENERGIA Research Programme is one of energy technology programmes of the Finnish Ministry of Trade and Industry (in 1995 TEKES, Technology Development Center). The aim of Bioenergy Research Programme is to increase the use of economically profitable and environmentally sound bioenergy by improving the competitiveness of present peat and wood fuels. Research and development projects will also develop new economically competitive biofuels and new equipment and methods for production, handling and using of biofuels. The funding for 1994 was nearly 50 million FIM and project numbered 60. The research area of biomass conversion consisted of 8 projects in 1994, and the research area of bioenergy utilization of 13 projects. The results of these projects carried out in 1994 are presented in this publication. The aim of the biomass conversion research is to produce more bio-oils and electric power as well at wood processing industry as at power plants. The conversion research was pointed at refining of the waste liquors of pulping industry and the extracts of them into fuel oil and liquid engine fuels, on production of wood oil via flash pyrolysis, and on combustion tests. Other conversion studies dealt with production of fuel-grade ethanol. For utilization of agrobiomass in various forms of energy, a system study is introduced where special attention is how to use rapeseed oil unprocessed in heating boilers and diesel engines. Possibilities to produce agrofibre in investigated at a laboratory study

  17. Effective conversion of biomass tar into fuel gases in a microwave reactor

    Energy Technology Data Exchange (ETDEWEB)

    Anis, Samsudin, E-mail: samsudin-anis@yahoo.com [Department of Mechanical Engineering, Universitas Negeri Semarang, Kampus Sekaran, Gunungpati, 50229 Semarang, 8508101 (Indonesia); Zainal, Z. A., E-mail: mezainal@usm.my [School of Mechanical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang (Malaysia)

    2016-06-03

    This work deals with conversion of naphthalene (C{sub 10}H{sub 8}) as a biomass tar model compound by means of thermal and catalytic treatments. A modified microwave oven with a maximum output power of 700 W was used as the experimental reactor. Experiments were performed in a wide temperature range of 450-1200°C at a predetermined residence time of 0.24-0.5 s. Dolomite and Y-zeolite were applied to convert naphthalene catalytically into useful gases. Experimental results on naphthalene conversion showed that conversion efficiency and yield of gases increased significantly with the increase of temperature. More than 90% naphthalene conversion efficiency was achieved by thermal treatment at 1200°C and 0.5 s. Nevertheless, this treatment was unfavorable for fuel gases production. The main product of this treatment was soot. Catalytic treatment provided different results with that of thermal treatment in which fuel gases formation was found to be the important product of naphthalene conversion. At a high temperature of 900°C, dolomite had better conversion activity where almost 40 wt.% of naphthalene could be converted into hydrogen, methane and other hydrocarbon gases.

  18. Biomass-derived carbon composites for enrichment of dilute methane from underground coal mines.

    Science.gov (United States)

    Bae, Jun-Seok; Jin, Yonggang; Huynh, Chi; Su, Shi

    2018-04-03

    Ventilation air methane (VAM), which is the main source of greenhouse gas emissions from coal mines, has been a great challenge to deal with due to its huge flow rates and dilute methane levels (typically 0.3-1.0 vol%) with almost 100% humidity. As part of our continuous endeavor to further improve the methane adsorption capacity of carbon composites, this paper presents new carbon composites derived from macadamia nut shells (MNSs) and incorporated with carbon nanotubes (CNTs). These new carbon composites were fabricated in a honeycomb monolithic structure to tolerate dusty environment and to minimize pressure drop. This paper demonstrates the importance of biomass particle size distributions when formed in a composite and methane adsorption capacities at low pressures relevant to VAM levels. The selectivity of methane over nitrogen was about 10.4 at each relevant partial pressure, which was much greater than that (6.5) obtained conventionally (at very low pressures), suggesting that capturing methane in the presence of pre-adsorbed nitrogen would be a practical option. The equilibrium and dynamic performance of biomass-derived carbon composites were enhanced by 30 and 84%, respectively, compared to those of our previous carbon fiber composites. In addition, the presence of moisture in ventilation air resulted in a negligible effect on the dynamic VAM capture performance of the carbon composites, suggesting that our carbon composites have a great potential for site applications at coal mines because the cost and performance of solid adsorbents are critical factors to consider. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Small-Scale Coal-Biomass to Liquids Production Using Highly Selective Fischer-Tropsch Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Gangwal, Santosh K. [Southern Research Institute, Durham, NC (United States); McCabe, Kevin [Southern Research Institute, Durham, NC (United States)

    2015-04-30

    The research project advanced coal-to-liquids (CTL) and coal-biomass to liquids (CBTL) processes by testing and validating Chevron’s highly selective and active cobalt-zeolite hybrid Fischer-Tropsch (FT) catalyst to convert gasifier syngas predominantly to gasoline, jet fuel and diesel range hydrocarbon liquids, thereby eliminating expensive wax upgrading operations The National Carbon Capture Center (NCCC) operated by Southern Company (SC) at Wilsonville, Alabama served as the host site for the gasifier slip-stream testing/demonstration. Southern Research designed, installed and commissioned a bench scale skid mounted FT reactor system (SR-CBTL test rig) that was fully integrated with a slip stream from SC/NCCC’s transport integrated gasifier (TRIGTM). The test-rig was designed to receive up to 5 lb/h raw syngas augmented with bottled syngas to adjust the H2/CO molar ratio to 2, clean it to cobalt FT catalyst specifications, and produce liquid FT products at the design capacity of 2 to 4 L/day. It employed a 2-inch diameter boiling water jacketed fixed-bed heat-exchange FT reactor incorporating Chevron’s catalyst in Intramicron’s high thermal conductivity micro-fibrous entrapped catalyst (MFEC) packing to efficiently remove heat produced by the highly exothermic FT reaction.

  20. Energy conservation in coal conversion. Final report, September 15, 1977--September 1, 1978. Selected case studies and conservation methodologies

    Energy Technology Data Exchange (ETDEWEB)

    Purcupile, J.C.

    1978-09-01

    The purpose of this study is to apply the methodologies developed in the Energy Conservation in Coal Conversion August, 1977 Progress Report - Contract No. EY77S024196 - to an energy efficient, near-term coal conversion process design, and to develop additional, general techniques for studying energy conservation and utilization in coal conversion processes. The process selected for study was the Ralph M. Parsons Company of Pasadena, California ''Oil/Gas Complex, Conceptual Design/Economic Analysis'' as described in R and D Report No. 114 - Interim Report No. 4, published March, 1977, ERDA Contract No. E(49-18)-1975. Thirteen papers representing possible alternative methods of energy conservation or waste heat utilization have been entered individually into EDB and ERA. (LTN)

  1. Numerical modelling of biomass combustion: Solid conversion processes in a fixed bed furnace

    Science.gov (United States)

    Karim, Md. Rezwanul; Naser, Jamal

    2017-06-01

    Increasing demand for energy and rising concerns over global warming has urged the use of renewable energy sources to carry a sustainable development of the world. Bio mass is a renewable energy which has become an important fuel to produce thermal energy or electricity. It is an eco-friendly source of energy as it reduces carbon dioxide emissions. Combustion of solid biomass is a complex phenomenon due to its large varieties and physical structures. Among various systems, fixed bed combustion is the most commonly used technique for thermal conversion of solid biomass. But inadequate knowledge on complex solid conversion processes has limited the development of such combustion system. Numerical modelling of this combustion system has some advantages over experimental analysis. Many important system parameters (e.g. temperature, density, solid fraction) can be estimated inside the entire domain under different working conditions. In this work, a complete numerical model is used for solid conversion processes of biomass combustion in a fixed bed furnace. The combustion system is divided in to solid and gas phase. This model includes several sub models to characterize the solid phase of the combustion with several variables. User defined subroutines are used to introduce solid phase variables in commercial CFD code. Gas phase of combustion is resolved using built-in module of CFD code. Heat transfer model is modified to predict the temperature of solid and gas phases with special radiation heat transfer solution for considering the high absorptivity of the medium. Considering all solid conversion processes the solid phase variables are evaluated. Results obtained are discussed with reference from an experimental burner.

  2. Technical-economic assessment of the production of methanol from biomass. Conversion process analysis. Final research report

    Energy Technology Data Exchange (ETDEWEB)

    Wan, E.I.; Simmons, J.A.; Price, J.D.; Nguyen, T.D.

    1979-07-12

    A comprehensive engineering system study was conducted to assess various thermochemical processes suitable for converting biomass to methanol. A summary of the conversion process study results is presented here, delineating the technical and economic feasibilities of producing methanol fuel from biomass utilizing the currently available technologies. (MHR)

  3. Efficient conversion of lignocellulosic biomass to levulinic acid using acidic ionic liquids.

    Science.gov (United States)

    Khan, Amir Sada; Man, Zakaria; Bustam, Mohamad Azmi; Nasrullah, Asma; Ullah, Zahoor; Sarwono, Ariyanti; Shah, Faiz Ullah; Muhammad, Nawshad

    2018-02-01

    In the present research work, dicationic ionic liquids, containing 1,4-bis(3-methylimidazolium-1-yl) butane ([C 4 (Mim) 2 ]) cation with counter anions [(2HSO 4 )(H 2 SO 4 ) 0 ], [(2HSO 4 )(H 2 SO 4 ) 2 ] and [(2HSO 4 )(H 2 SO 4 ) 4 ] were synthesised. ILs structures were confirmed using 1 H NMR spectroscopy. Thermal stability, Hammett acidity, density and viscosity of ILs were determined. Various types of lignocellulosic biomass such as rubber wood, palm oil frond, bamboo and rice husk were converted into levulinic acid (LA). Among the synthesized ionic liquids, [C 4 (Mim) 2 ][(2HSO 4 )(H 2 SO 4 ) 4 ] showed higher % yield of LA up to 47.52 from bamboo biomass at 110°C for 60min, which is the better yield at low temperature and short time compared to previous reports. Surface morphology, surface functional groups and thermal stability of bamboo before and after conversion into LA were studied using SEM, FTIR and TGA analysis, respectively. This one-pot production of LA from agro-waste will open new opportunity for the conversion of sustainable biomass resources into valuable chemicals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Proceedings of the symposium on assessing the industrial hygiene monitoring needs for the coal conversion and oil shale industries

    Energy Technology Data Exchange (ETDEWEB)

    White, O. Jr. (ed.)

    1979-03-01

    This work was supported by the United States Department of Energy, Division of Biomedical and Environmental Research, Analysis and Assessment Program, through the Safety and Environmental Protection Division at Brookhaven National Laboratory. The symposium program included presentations centering around the themes: Recognition of Occupational Health Monitoring Requirements for the Coal Conversion and Oil Shale Industries and Status of Dosimetry Technology for Occupational Health Monitoring for the Coal Conversion and Oil Shale Industries. Sixteen papers have been entered individually into EDB and ERA; six had been entered previously from other sources. (LTN)

  5. A survey of Opportunities for Microbial Conversion of Biomass to Hydrocarbon Compatible Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Jovanovic, Iva; Jones, Susanne B.; Santosa, Daniel M.; Dai, Ziyu; Ramasamy, Karthikeyan K.; Zhu, Yunhua

    2010-09-01

    Biomass is uniquely able to supply renewable and sustainable liquid transportation fuels. In the near term, the Biomass program has a 2012 goal of cost competitive cellulosic ethanol. However, beyond 2012, there will be an increasing need to provide liquid transportation fuels that are more compatible with the existing infrastructure and can supply fuel into all transportation sectors, including aviation and heavy road transport. Microbial organisms are capable of producing a wide variety of fuel and fuel precursors such as higher alcohols, ethers, esters, fatty acids, alkenes and alkanes. This report surveys liquid fuels and fuel precurors that can be produced from microbial processes, but are not yet ready for commercialization using cellulosic feedstocks. Organisms, current research and commercial activities, and economics are addressed. Significant improvements to yields and process intensification are needed to make these routes economic. Specifically, high productivity, titer and efficient conversion are the key factors for success.

  6. Coal

    International Nuclear Information System (INIS)

    Muir, D.A.

    1991-01-01

    The international coal market trends are outlined and the place of Australian coal industry is discussed. It is shown that while the world supply and demand for coal has begun to tighten, the demand for coal is expected to remain strong in both Asia and Europe. Consequently, in 1991-1992 Australian black coal production and export returns are forecast to rise by 4% and 7% respectively. 1 fig

  7. Co-combustion of bituminous coal and biomass fuel blends: Thermochemical characterization, potential utilization and environmental advantage.

    Science.gov (United States)

    Zhou, Chuncai; Liu, Guijian; Wang, Xudong; Qi, Cuicui

    2016-10-01

    The thermochemical characteristics and gaseous trace pollutant behaviors during co-combustion medium-to-low ash bituminous coal with typical biomass residues (corn stalk and sawdust) were investigated. Lowering of ignition index, burnout temperature and activation energy in the major combustion stage are observed in the coal/biomass blends. The blending proportion of 20% and 30% are regarded as the optimum blends for corn stalk and sawdust, respectively, in according the limitations of heating value, activation energy, flame stability and base/acid ratio. The reductions of gaseous As, Cd, Cu, Pb, Zn and polycyclic aromatic hydrocarbon (PAHs) were 4.5%, 7.8%, 6.3%, 9.8%, 9.4% and 17.4%, respectively, when co-combustion coal with 20% corn stalk. The elevated capture of trace elements were found in coal/corn stalk blend, while the coal/sawdust blend has the better PAHs control potential. The reduction mechanisms of gaseous trace pollutants were attributed to the fuel property, ash composition and relative residence time during combustion. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. A comparative study between the coal-biomass briquette and raw coal in SO{sub 2} pollution and adverse effects in rabbits

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Shuqun; Zhou Yanrong; Wang Yi' nan; Wang Xun; Liu Yuanfu; Iwao Uchiyama; Wang Qiangyue; Kazuhiki Sakamoto [Chongqing University of Medical Sciences. Chongqing (China). School of Public Health

    2006-12-15

    This study was conducted to evaluate the adverse health effects on rabbits exposed to SO{sub 2} emitted indoors from burning coals, and compare differences between coal-biomass briquette (BB) and raw coal (RC). Thirty-six male rabbits were divided equally into three groups at random, and then exposed to burning RC, BB, and the third without burning coal (Control) for 90 days. Data showed that the average concentration of SO{sub 2} in 24 h in RC was 13.04 mg m{sup -3}, which was 5-fold greater than BB and 31-fold higher than control (0.41 mg m{sup -3}). After 45 days, the numbers of rabbits, with increased frequency of Comet cell was highest in RC. After 90 days, the % positive Comet cell was significant at 10.36% in RC, 5.42% in BB, and 1.73% in Control. There was a nonlinear dose-effect relationship between % positive Comet cell and the concentration of SO{sub 2}. The incidence of interstitial pneumonia was 6/12 in RC and 4/12 in BB showing severe squamous metaplasia with atypical hyperplasia in bronchial epithelia in RC animals. The results of study indicate that use of BB reduced the emission of SO{sub 2}; but the smoke emitted from burning coal still produced DNA damage.

  9. Quantifying above- and belowground biomass carbon loss with forest conversion in tropical lowlands of Sumatra (Indonesia).

    Science.gov (United States)

    Kotowska, Martyna M; Leuschner, Christoph; Triadiati, Triadiati; Meriem, Selis; Hertel, Dietrich

    2015-10-01

    Natural forests in South-East Asia have been extensively converted into other land-use systems in the past decades and still show high deforestation rates. Historically, lowland forests have been converted into rubber forests, but more recently, the dominant conversion is into oil palm plantations. While it is expected that the large-scale conversion has strong effects on the carbon cycle, detailed studies quantifying carbon pools and total net primary production (NPPtotal ) in above- and belowground tree biomass in land-use systems replacing rainforest (incl. oil palm plantations) are rare so far. We measured above- and belowground carbon pools in tree biomass together with NPPtotal in natural old-growth forests, 'jungle rubber' agroforests under natural tree cover, and rubber and oil palm monocultures in Sumatra. In total, 32 stands (eight plot replicates per land-use system) were studied in two different regions. Total tree biomass in the natural forest (mean: 384 Mg ha(-1) ) was more than two times higher than in jungle rubber stands (147 Mg ha(-1) ) and >four times higher than in monoculture rubber and oil palm plantations (78 and 50 Mg ha(-1) ). NPPtotal was higher in the natural forest (24 Mg ha(-1)  yr(-1) ) than in the rubber systems (20 and 15 Mg ha(-1)  yr(-1) ), but was highest in the oil palm system (33 Mg ha(-1)  yr(-1) ) due to very high fruit production (15-20 Mg ha(-1)  yr(-1) ). NPPtotal was dominated in all systems by aboveground production, but belowground productivity was significantly higher in the natural forest and jungle rubber than in plantations. We conclude that conversion of natural lowland forest into different agricultural systems leads to a strong reduction not only in the biomass carbon pool (up to 166 Mg C ha(-1) ) but also in carbon sequestration as carbon residence time (i.e. biomass-C:NPP-C) was 3-10 times higher in the natural forest than in rubber and oil palm plantations. © 2015 John Wiley & Sons Ltd.

  10. Process Design and Economics for the Production of Algal Biomass: Algal Biomass Production in Open Pond Systems and Processing Through Dewatering for Downstream Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Ryan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Markham, Jennifer [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kinchin, Christopher [National Renewable Energy Lab. (NREL), Golden, CO (United States); Grundl, Nicholas [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tan, Eric C.D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Humbird, David [DWH Process Consulting, Denver, CO (United States)

    2016-02-17

    This report describes in detail a set of aspirational design and process targets to better understand the realistic economic potential for the production of algal biomass for subsequent conversion to biofuels and/or coproducts, based on the use of open pond cultivation systems and a series of dewatering operations to concentrate the biomass up to 20 wt% solids (ash-free dry weight basis).

  11. Cost estimating relationships for coal conversion process units. Volume 1. Technical report. [Includes in some cases dependence on capacity and data references from which estimates were derived

    Energy Technology Data Exchange (ETDEWEB)

    Dodson, E.N.; Carden, H.W.; Curtis, R.L.; Heidler, L.M.; Roppel, J.D.

    1981-04-01

    Cost estimating relationships for commercial-scale coal conversion process units are developed in this study. The specific units include: coal preparation, oxygen plant, gasification, shift conversion, acid gas/CO/sub 2/ removal, sulfur recovery, and the dissolver. Also set forth is a detailed Cost Chart of Accounts, together with a discussion of cost analysis procedures and problems.

  12. Fractional Multistage Hydrothermal Liquefaction of Biomass and Catalytic Conversion into Hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Cortright, Randy [Virent, Inc., Madison, WI (United States); Rozmiarek, Robert [Virent, Inc., Madison, WI (United States); Dally, Brice [Virent, Inc., Madison, WI (United States); Holland, Chris [Virent, Inc., Madison, WI (United States)

    2017-08-31

    The objective of this project was to develop an improved multistage process for the hydrothermal liquefaction (HTL) of biomass to serve as a new front-end, deconstruction process ideally suited to feed Virent’s well-proven catalytic technology, which is already being scaled up. This process produced water soluble, partially de-oxygenated intermediates that are ideally suited for catalytic finishing to fungible distillate hydrocarbons. Through this project, Virent, with its partners, demonstrated the conversion of pine wood chips to drop-in hydrocarbon distillate fuels using a multi-stage fractional conversion system that is integrated with Virent’s BioForming® process. The majority of work was in the liquefaction task and included temperature scoping, solvent optimization, and separations.

  13. Feedstock Supply System Design and Economics for Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels Conversion Pathway: Fast Pyrolysis and Hydrotreating Bio-Oil Pathway "The 2017 Design Case"

    Energy Technology Data Exchange (ETDEWEB)

    Kevin L. Kenney; Kara G. Cafferty; Jacob J. Jacobson; Ian J. Bonner; Garold L. Gresham; J. Richard Hess; William A. Smith; David N. Thompson; Vicki S. Thompson; Jaya Shankar Tumuluru; Neal Yancey

    2014-01-01

    The U.S. Department of Energy promotes the production of liquid fuels from lignocellulosic biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass sustainable supply, logistics, conversion, and overall system sustainability. As part of its involvement in this program, Idaho National Laboratory (INL) investigates the feedstock logistics economics and sustainability of these fuels. Between 2000 and 2012, INL quantified and the economics and sustainability of moving biomass from the field or stand to the throat of the conversion process using conventional equipment and processes. All previous work to 2012 was designed to improve the efficiency and decrease costs under conventional supply systems. The 2012 programmatic target was to demonstrate a biomass logistics cost of $55/dry Ton for woody biomass delivered to fast pyrolysis conversion facility. The goal was achieved by applying field and process demonstration unit-scale data from harvest, collection, storage, preprocessing, handling, and transportation operations into INL’s biomass logistics model.

  14. Renew, reduce or become more efficient? The climate contribution of biomass co-combustion in a coal-fired power plant

    International Nuclear Information System (INIS)

    Miedema, Jan H.; Benders, René M.J.; Moll, Henri C.; Pierie, Frank

    2017-01-01

    Highlights: • Coal mining is more energy and CO 2 efficient than biomass production. • Co-combustion of 60% biomass with coal doubles mass transport compared to 100% coal. • Low co-combustion levels reduce GHG emissions, but the margins are small. • Total supply chain efficiency is the highest for the coal reference at 41.2%. - Abstract: Within this paper, biomass supply chains, with different shares of biomass co-combustion in coal fired power plants, are analysed on energy efficiency, energy consumption, renewable energy production, and greenhouse gas (GHG) emissions and compared with the performance of a 100% coal supply chain scenario, for a Dutch situation. The 60% biomass co-combustion supply chain scenarios show possibilities to reduce emissions up to 48%. The low co-combustion levels are effective to reduce GHG emissions, but the margins are small. Currently co-combustion of pellets is the norm. Co-combustion of combined torrefaction and pelleting (TOP) shows the best results, but is also the most speculative. The indicators from the renewable energy directive cannot be aligned. When biomass is regarded as scarce, co-combustion of small shares or no co-combustion is the best option from an energy perspective. When biomass is regarded as abundant, co-combustion of large shares is the best option from a GHG reduction perspective.

  15. Characterization of submicron particles during biomass burning and coal combustion periods in Beijing, China.

    Science.gov (United States)

    Zhang, J K; Cheng, M T; Ji, D S; Liu, Z R; Hu, B; Sun, Y; Wang, Y S

    2016-08-15

    An Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) was deployed along with other observation instruments to measure the characteristics of PM1 (particulate matter with a vacuum aerodynamic diameter of ≤1μm) during the biomass burning period (October 1 to 27; BBP) and the coal combustion period (December 10 to 31; CCP) in Beijing in 2014. The average PM1 mass concentrations during the BBP and CCP were 82.3 and 37.5μgm(-3), respectively. Nitrate, ammonium and other pollutants emitted by the burning processes, especially coal combustion, increased significantly in association with increased pollution levels. Positive matrix factorization (PMF) was applied to a unified high-resolution mass spectra database of organic species with NO(+) and NO2(+) ions to discover the relationships between organic and inorganic species. One inorganic factor was identified in both periods, and another five and four distinct organic factors were identified in the BBP and CCP, respectively. Secondary organic aerosols (SOAs) accounted for 55% of the total organic aerosols (OAs) during the BBP, which is higher than the proportion during the CCP (oxygenated OA, 40%). The organic nitrate and inorganic nitrate were first successfully separated through the PMF analysis based on the HR-ToF-AMS observations in Beijing, and organic nitrate components accounted for 21% and 18% of the total nitrate mass during the BBP and CCP, respectively. Although the PM1 mass concentration during the CCP was much lower than in the BBP, the average concentration of polycyclic aromatic hydrocarbons (PAHs) during the CCP (107.3±171.6ngm(-3)) was ~5 times higher than that in the BBP (21.9±21.7ngm(-3)). Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Economic and environmental evaluation of coal-and-biomass-to-liquids-and-electricity plants equipped with carbon capture and storage (data for figures and tables)

    Data.gov (United States)

    U.S. Environmental Protection Agency — Data used in the manuscript's tables and figures. Most data represent the modeled optimal capacity of the coal-and-biomass-to-liquid fuels-and-electricity (CBTLE)...

  17. Evaluation of Biomass and Coal Briquettes for a Spreader Stoker Boiler Using an Experimental Furnace --- Modeling and Test

    Science.gov (United States)

    Wiggins, Gavin Memminger

    The compliance of coal-fired boilers with emissions regulations is a concern for many facilities. The introduction of biomass briquettes in industrial boilers can help to reduce greenhouse gas emissions and coal usage. In this research project, a thermodynamic chemical equilibrium model was derived and analytical simulations performed for a coal boiler system for several types of biomass fuels such as beech, hickory, maple, poplar, white oak, willow, sawdust, torrefied willow, and switchgrass. The biomass emissions were compared to coal and charcoal emissions. The chemical equilibrium analysis numerically estimated the emissions of CO, CO2, NO, NO2, N 2O, SO2, and SO3. When examining the computer results, coal and charcoal emitted the highest CO, CO2, and SO x levels while the lowest (especially for SOx) were reached by the biomass fuels. Similarly, NOx levels were highest for the biomass and lowest for coal and charcoal. To validate these analytical results, a custom traveling grate furnace was designed and fabricated to evaluate different types of biofuels in the laboratory for operation temperatures and emissions. The furnace fuels tested included coal, charcoal, torrefied wood chips, and wood briquettes. As expected, the coal reached the highest temperature while the torrefied wood chips offered the lowest temperature. For CO and NO x emissions, the charcoal emitted the highest levels while the wood briquettes emitted the lowest levels. The highest SO2 emissions were reached by the coal while the lowest were emitted by the wood briquettes. When compared to the coal fuel, charcoal emissions for CO increased by 103%, NO and NOx decreased by 21% and 20% respectively, and SO2 levels decreased by 92%. For torrefied wood, emissions for CO increased by 17%, NO and NOx decreased by 58% and 57% respectively, and SO 2 decreased by 90%. For wood briquettes, emissions for CO decreased by 27%, NO and NOx decreased by 66%, and SO2 levels decreased by 97%. General trends in

  18. Laccases as a Potential Tool for the Efficient Conversion of Lignocellulosic Biomass: A Review

    Directory of Open Access Journals (Sweden)

    Úrsula Fillat

    2017-05-01

    Full Text Available The continuous increase in the world energy and chemicals demand requires the development of sustainable alternatives to non-renewable sources of energy. Biomass facilities and biorefineries represent interesting options to gradually replace the present industry based on fossil fuels. Lignocellulose is the most promising feedstock to be used in biorefineries. From a sugar platform perspective, a wide range of fuels and chemicals can be obtained via microbial fermentation processes, being ethanol the most significant lignocellulose-derived fuel. Before fermentation, lignocellulose must be pretreated to overcome its inherent recalcitrant structure and obtain the fermentable sugars. Usually, harsh conditions are required for pretreatment of lignocellulose, producing biomass degradation and releasing different compounds that are inhibitors of the hydrolytic enzymes and fermenting microorganisms. Moreover, the lignin polymer that remains in pretreated materials also affects biomass conversion by limiting the enzymatic hydrolysis. The use of laccases has been considered as a very powerful tool for delignification and detoxification of pretreated lignocellulosic materials, boosting subsequent saccharification and fermentation processes. This review compiles the latest studies about the application of laccases as useful and environmentally friendly delignification and detoxification technology, highlighting the main challenges and possible ways to make possible the integration of these enzymes in future lignocellulose-based industries.

  19. Assessment of materials technology of pressure vessels and piping for coal conversion systems

    Energy Technology Data Exchange (ETDEWEB)

    Canonico, D.A.; Cooper, R.H.; Foster, B.E.; McClung, R.W.; Nanstad, R.K.; Robinson, G.C.; Slaughter, G.M.

    1978-08-01

    The current technology of the materials, fabrication, and inspection of pressure vessels and piping for commercial coal conversion systems is reviewed. Comparison is made between the various codes applicable to these conversion systems. Areas of concern, such as material compatibility and fracture toughness, are cited. Recommendations are made that should increase the reliability of these components, the failure of which would result in a major outage of the plant. We believe that to date most of the current studies of various competing processes have emphasized the capital cost aspects to show potential competition with other energy sources but have not adequately examined the influence of design features on both potential maintenance and disruptive failure costs. It appears, for example, that the choice of vessel size (which is dictated by single vs multiple train process designs) has been examined primarily from the standpoint of capital costs. Maintenance, operation, relative part load capability, and relative probability of failure are unanswered questions. The materials having the most favorable mechanical properties and costs, unfortunately, are sensitive to various embrittling phenomena.

  20. Research and development to prepare and characterize robust coal/biomass mixtures for direct co-feeding into gasification systems

    Energy Technology Data Exchange (ETDEWEB)

    Felix, Larry [Inst. Of Gas Technology, Des Plaines, IL (United States); Farthing, William [Inst. Of Gas Technology, Des Plaines, IL (United States); Hoekman, S. Kent [Inst. Of Gas Technology, Des Plaines, IL (United States)

    2014-12-31

    This project was initiated on October 1, 2010 and utilizes equipment and research supported by the Department of Energy, National Energy Technology Laboratory, under Award Number DE- FE0005349. It is also based upon previous work supported by the Department of Energy, National Energy Technology Laboratory, under Award Numbers DOE-DE-FG36-01GOl1082, DE-FG36-02G012011 or DE-EE0000272. The overall goal of the work performed was to demonstrate and assess the economic viability of fast hydrothermal carbonization (HTC) for transforming lignocellulosic biomass into a densified, friable fuel to gasify like coal that can be easily blended with ground coal and coal fines and then be formed into robust, weather-resistant pellets and briquettes.

  1. Catalytic Conversion of Biomass to Fuels and Chemicals Using Ionic Liquids

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei; Zheng, Richard; Brown, Heather; Li, Joanne; Holladay, John; Cooper, Alan; Rao, Tony

    2012-04-13

    This project provides critical innovations and fundamental understandings that enable development of an economically-viable process for catalytic conversion of biomass (sugar) to 5-hydroxymethylfurfural (HMF). A low-cost ionic liquid (Cyphos 106) is discovered for fast conversion of fructose into HMF under moderate reaction conditions without any catalyst. HMF yield from fructose is almost 100% on the carbon molar basis. Adsorbent materials and adsorption process are invented and demonstrated for separation of 99% pure HMF product and recovery of the ionic liquid from the reaction mixtures. The adsorbent material appears very stable in repeated adsorption/regeneration cycles. Novel membrane-coated adsorbent particles are made and demonstrated to achieve excellent adsorption separation performances at low pressure drops. This is very important for a practical adsorption process because ionic liquids are known of high viscosity. Nearly 100% conversion (or dissolution) of cellulose in the catalytic ionic liquid into small molecules was observed. It is promising to produce HMF, sugars and other fermentable species directly from cellulose feedstock. However, several gaps were identified and could not be resolved in this project. Reaction and separation tests at larger scales are needed to minimize impacts of incidental errors on the mass balance and to show 99.9% ionic liquid recovery. The cellulose reaction tests were troubled with poor reproducibility. Further studies on cellulose conversion in ionic liquids under better controlled conditions are necessary to delineate reaction products, dissolution kinetics, effects of mass and heat transfer in the reactor on conversion, and separation of final reaction mixtures.

  2. Biomass gasification using nickel loaded brown coal char in fluidized bed gasifier at relatively low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Le, D.D.; Xiao, X.B.; Morishita, K.; Takarada, T. [Gunma University, Gumma (Japan)

    2009-07-01

    Our work focuses on developing nickel loaded brown coal char as a new catalyst to decompose tar and to enhance quality of product gas delivered from woody biomass pyrolysis at relatively low temperatures of 823 K and 923 K. It is carried out in two-stage fixed-bed reactor and a lab scale fluidized bed gasifier (FBG) under various conditions. Inside of gasifier is constructed by two beds, the primary one is a fluidized bed with sand. and the second one is a catalyst bed. The catalyst bed is used to evaluate and to compare catalytic activity between the new catalyst and a conventional Ni/Al{sub 2}O{sub 3} catalyst. The new catalyst is prepared by ion exchange method, dried at 380 K in nitrogen for 24 h, and is then calcined at 923 K in nitrogen for 90 min. The temperature as a function of gas yield and the effect of catalysts on gas yield in presence and absence of steam are investigated in this study. The new catalyst has shown high catalytic activity and stable activity and given the high quality of product gas in presence of steam.

  3. Cultivation of a native alga for biomass and biofuel accumulation in coal bed methane production water

    Science.gov (United States)

    Hodgskiss, Logan H.; Nagy, Justin; Barnhart, Elliott P.; Cunningham, Alfred B.; Fields, Matthew W.

    2016-01-01

    Coal bed methane (CBM) production has resulted in thousands of ponds in the Powder River Basin of low-quality water in a water-challenged region. A green alga isolate, PW95, was isolated from a CBM production pond, and analysis of a partial ribosomal gene sequence indicated the isolate belongs to the Chlorococcaceae family. Different combinations of macro- and micronutrients were evaluated for PW95 growth in CBM water compared to a defined medium. A small level of growth was observed in unamended CBM water (0.15 g/l), and biomass increased (2-fold) in amended CBM water or defined growth medium. The highest growth rate was observed in CBM water amended with both N and P, and the unamended CBM water displayed the lowest growth rate. The highest lipid content (27%) was observed in CBM water with nitrate, and a significant level of lipid accumulation was not observed in the defined growth medium. Growth analysis indicated that nitrate deprivation coincided with lipid accumulation in CBM production water, and lipid accumulation did not increase with additional phosphorus limitation. The presented results show that CBM production wastewater can be minimally amended and used for the cultivation of a native, lipid-accumulating alga.

  4. Process Design and Economics for the Conversion of Algal Biomass to Biofuels: Algal Biomass Fractionation to Lipid- and Carbohydrate-Derived Fuel Products

    Energy Technology Data Exchange (ETDEWEB)

    Davis, R.; Kinchin, C.; Markham, J.; Tan, E.; Laurens, L.; Sexton, D.; Knorr, D.; Schoen, P.; Lukas, J.

    2014-09-01

    Beginning in 2013, NREL began transitioning from the singular focus on ethanol to a broad slate of products and conversion pathways, ultimately to establish similar benchmarking and targeting efforts. One of these pathways is the conversion of algal biomass to fuels via extraction of lipids (and potentially other components), termed the 'algal lipid upgrading' or ALU pathway. This report describes in detail one potential ALU approach based on a biochemical processing strategy to selectively recover and convert select algal biomass components to fuels, namely carbohydrates to ethanol and lipids to a renewable diesel blendstock (RDB) product. The overarching process design converts algal biomass delivered from upstream cultivation and dewatering (outside the present scope) to ethanol, RDB, and minor coproducts, using dilute-acid pretreatment, fermentation, lipid extraction, and hydrotreating.

  5. Release of nitrogen precursors from coal and biomass residues in a bubbling fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    P. Abelha; I. Gulyurtlu; I. Cabrita [Instituto Nacional de Engenharia, Lisbon (Portugal)

    2008-01-15

    This work was undertaken with the aim of quantifying the relative amounts of NH{sub 3} and HCN released from different residues during their devolatilization under fluidized bed conditions. The results were compared with data collected for bituminous coals of different origin. The relation between amounts of HCN and NH{sub 3} released and the levels of NOX and N{sub 2}O formed during cocombustion was also addressed. The partitioning of nitrogen between volatiles and char was also quantified. The pyrolysis studies were undertaken in a small fluidized bed reactor of 80 mm of ID and 500 mm high using an inert atmosphere (N{sub 2}). The HCN and NH{sub 3} were quantified by bubbling the pyrolysis gases in absorbing solutions which were subsequently analyzed with selective electrodes. The combustion studies were carried out on a pilot installation. The fluidized bed combustor is square in cross section with each side being 300 mm long. There is secondary air supply to the freeboard at different heights to deal with high volatile fuels as almost all waste materials are. The temperatures in the bed and in the freeboard and that of the flue gases leaving the reactor were continuously monitored. The results obtained suggest that, while coal releases nitrogen mostly as HCN, residues like RDF and sewage sludge give out fuel-N in greater quantities as NH{sub 3}. Residues at fluidized bed combustion (FBC) temperatures release more than 80% of the fuel-N with the volatiles. The NH{sub 3} evolved during pyrolysis acted as a reducing agent on NOX emissions. The presence of calcium significantly reduces the emission of N{sub 2}O probably by interfering with HCN chemistry. With high amounts of residues in the fuel mixture, the relative importance of char on the nitrogen chemistry substantially decreases. By using cocombustion, it is possible to reduce fuel-N conversion to NOX and N{sub 2}O, by tuning the amounts of coal and residue in the mixture. 29 refs., 18 figs., 3 tabs.

  6. Superacid Catalyzed Coal Conversion Chemistry. 1st and 2nd Quarterly Technical Progress Reports, September 1, 1983-March 30, 1984.

    Science.gov (United States)

    Olah, G. A.

    1984-01-01

    In our laboratories we have previously developed a mild coal conversion process. This involves the use of a superacid system consisting of HF and BF{sub 3} in presence of hydrogen and/or a hydrogen donor solvent. In order to understand the chemistry involved in the process of depolymerization of coal by the HF:BF{sub 3}:H{sub 2} system we are carrying out a systematic study of a number of coal model compounds. The model compounds selected for present study have two benzene rings connected with various bridging units such as alkylidene, ether, sulfide etc. From studies so far carried out it appears that high pyridine extractibilities achieved by treating coal at temperature below 100 degrees C results from the cleavage of bridges such as present in bibenzyl, diphenyl methane, dibenzyl ether, dibenzyl sulfide etc. On the other hand the increased cyclohexane extractibility and distillability observed at relatively higher temperatures and hydrogen pressures reflects the hydrogenation and cleavage of the aromatic backbone in coal structure similar to what is seen in the conversion of model compounds such as biphenyl, diphenyl ether, diphenyl sulfide, anthracene, etc.

  7. Coal

    International Nuclear Information System (INIS)

    Teissie, J.; Bourgogne, D. de; Bautin, F.

    2001-12-01

    Coal world production represents 3.5 billions of tons, plus 900 millions of tons of lignite. 50% of coal is used for power generation, 16% by steel making industry, 5% by cement plants, and 29% for space heating and by other industries like carbo-chemistry. Coal reserves are enormous, about 1000 billions of tons (i.e. 250 years of consumption with the present day rate) but their exploitation will be in competition with less costly and less polluting energy sources. This documents treats of all aspects of coal: origin, composition, calorific value, classification, resources, reserves, production, international trade, sectoral consumption, cost, retail price, safety aspects of coal mining, environmental impacts (solid and gaseous effluents), different technologies of coal-fired power plants and their relative efficiency, alternative solutions for the recovery of coal energy (fuel cells, liquefaction). (J.S.)

  8. Systems and economic analysis of microalgae ponds for conversion of CO{sub 2} to biomass. Quarterly technical progress report, September 1993--December 1993

    Energy Technology Data Exchange (ETDEWEB)

    Benemann, J.R.; Oswald, W.J.

    1994-01-15

    This report provides an economic analysis and feasibility study for the utilization by microalgal systems of carbon dioxide generated from coal-fired power plants. The resulting biomass could be a fuel substitute for fossil fuels.

  9. A summary of the status of biomass conversion technologies and opportunities for their use in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Waddle, D.B.; Perlack, R.D. (Oak Ridge National Lab., TN (USA)); Wimberly, J. (Winrock International, Arlington, VA (USA))

    1990-01-01

    Biomass plays a significant role in energy use in developing countries: however, these resources are often used very inefficiently. Recent technology developments have made possible improved conversion efficiencies for utility scale technologies. These developments may be of interest in the wake of recent policy changes occurring in several developing countries, with respect to independent power production. Efforts are also being directed at developing biomass conversion technologies that can interface and/or compete with internal combustion engines for small, isolated loads. This paper reviews the technological status of biomass conversion technologies appropriate for commercial, industrial, and small utility applications in developing countries. Market opportunities, constraints, and technology developments are also discussed. 25 refs., 1 fig., 1 tab.

  10. Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbons: Dilute-Acid and Enzymatic Deconstruction of Biomass to Sugars and Biological Conversion of Sugars to Hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Davis, R.; Tao, L.; Tan, E. C. D.; Biddy, M. J.; Beckham, G. T.; Scarlata, C.; Jacobson, J.; Cafferty, K.; Ross, J.; Lukas, J.; Knorr, D.; Schoen, P.

    2013-10-01

    This report describes one potential conversion process to hydrocarbon products by way of biological conversion of lingnocellulosic-dervied sugars. The process design converts biomass to a hydrocarbon intermediate, a free fatty acid, using dilute-acid pretreatement, enzymatic saccharification, and bioconversion. Ancillary areas--feed handling, hydrolysate conditioning, product recovery and upgrading (hydrotreating) to a final blendstock material, wastewater treatment, lignin combusion, and utilities--are also included in the design.

  11. Directed plant cell-wall accumulation of iron: embedding co-catalyst for efficient biomass conversion.

    Science.gov (United States)

    Lin, Chien-Yuan; Jakes, Joseph E; Donohoe, Bryon S; Ciesielski, Peter N; Yang, Haibing; Gleber, Sophie-Charlotte; Vogt, Stefan; Ding, Shi-You; Peer, Wendy A; Murphy, Angus S; McCann, Maureen C; Himmel, Michael E; Tucker, Melvin P; Wei, Hui

    2016-01-01

    Plant lignocellulosic biomass is an abundant, renewable feedstock for the production of biobased fuels and chemicals. Previously, we showed that iron can act as a co-catalyst to improve the deconstruction of lignocellulosic biomass. However, directly adding iron catalysts into biomass prior to pretreatment is diffusion limited, and increases the cost of biorefinery operations. Recently, we developed a new strategy for expressing iron-storage protein ferritin intracellularly to accumulate iron as a catalyst for the downstream deconstruction of lignocellulosic biomass. In this study, we extend this approach by fusing the heterologous ferritin gene with a signal peptide for secretion into Arabidopsis cell walls (referred to here as FerEX). The transgenic Arabidopsis plants. FerEX. accumulated iron under both normal and iron-fertilized growth conditions; under the latter (iron-fertilized) condition, FerEX transgenic plants showed an increase in plant height and dry weight by 12 and 18 %, respectively, compared with the empty vector control plants. The SDS- and native-PAGE separation of cell-wall protein extracts followed by Western blot analyses confirmed the extracellular expression of ferritin in FerEX plants. Meanwhile, Perls' Prussian blue staining and X-ray fluorescence microscopy (XFM) maps revealed iron depositions in both the secondary and compound middle lamellae cell-wall layers, as well as in some of the corner compound middle lamella in FerEX. Remarkably, their harvested biomasses showed enhanced pretreatability and digestibility, releasing, respectively, 21 % more glucose and 34 % more xylose than the empty vector control plants. These values are significantly higher than those of our recently obtained ferritin intracellularly expressed plants. This study demonstrated that extracellular expression of ferritin in Arabidopsis can produce plants with increased growth and iron accumulation, and reduced thermal and enzymatic recalcitrance. The results are

  12. Energy efficient thermochemical conversion of very wet biomass to biofuels by integration of steam drying, steam electrolysis and gasification

    DEFF Research Database (Denmark)

    Clausen, Lasse Røngaard

    2017-01-01

    A novel system concept is presented for the thermochemical conversion of very wet biomasses such as sewage sludge and manure. The system integrates steam drying, solid oxide electrolysis cells (SOEC) and gasification for the production of synthetic natural gas (SNG). The system is analyzed...... by thermodynamic modelling and the analysis shows that the system can handle mechanically dried biomasses with a water content of 70 wt% and an ash content of up to 50 wt% (dry basis). A high tolerable ash content is an advantage because very wet biomasses, such as sewage sludge and manure, have a high ash content....... The analysis shows that the total efficiency of the novel system is 69–70% depending on the biomass ash content, while the biomass to SNG energy ratio is 165%, which is near the theoretical maximum because electrolytic hydrogen is supplied to the synthesis gas. It is proposed to combine the novel system...

  13. Biochemical Conversion Processes of Lignocellulosic Biomass to Fuels and Chemicals - A Review.

    Science.gov (United States)

    Brethauer, Simone; Studer, Michael H

    2015-01-01

    Lignocellulosic biomass - such as wood, agricultural residues or dedicated energy crops - is a promising renewable feedstock for production of fuels and chemicals that is available at large scale at low cost without direct competition for food usage. Its biochemical conversion in a sugar platform biorefinery includes three main unit operations that are illustrated in this review: the physico-chemical pretreatment of the biomass, the enzymatic hydrolysis of the carbohydrates to a fermentable sugar stream by cellulases and finally the fermentation of the sugars by suitable microorganisms to the target molecules. Special emphasis in this review is put on the technology, commercial status and future prospects of the production of second-generation fuel ethanol, as this process has received most research and development efforts so far. Despite significant advances, high enzyme costs are still a hurdle for large scale competitive lignocellulosic ethanol production. This could be overcome by a strategy termed 'consolidated bioprocessing' (CBP), where enzyme production, enzymatic hydrolysis and fermentation is integrated in one step - either by utilizing one genetically engineered superior microorganism or by creating an artificial co-culture. Insight is provided on both CBP strategies for the production of ethanol as well as of advanced fuels and commodity chemicals.

  14. Chemocatalytic Conversion of Cellulosic Biomass to Methyl Glycolate, Ethylene Glycol, and Ethanol.

    Science.gov (United States)

    Xu, Gang; Wang, Aiqin; Pang, Jifeng; Zhao, Xiaochen; Xu, Jinming; Lei, Nian; Wang, Jia; Zheng, Mingyuan; Yin, Jianzhong; Zhang, Tao

    2017-04-10

    Production of chemicals and fuels from renewable cellulosic biomass is important for the creation of a sustainable society, and it critically relies on the development of new and efficient transformation routes starting from cellulose. Here, a chemocatalytic conversion route from cellulosic biomass to methyl glycolate (MG), ethylene glycol (EG), and ethanol (EtOH) is reported. By using a tungsten-based catalyst, cellulose is converted into MG with a yield as high as 57.7 C % in a one-pot reaction in methanol at 240 °C and 1 MPa O 2 , and the obtained MG can be easily separated by distillation. Afterwards, it can be nearly quantitatively converted to EG at 200 °C and to EtOH at 280 °C with a selectivity of 50 % through hydrogenation over a Cu/SiO 2 catalyst. By this approach, the fine chemical MG, the bulk chemical EG, and the fuel additive EtOH can all be efficiently produced from renewable cellulosic materials, thus providing a new pathway towards mitigating the dependence on fossil resources. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Design and construction of coal/biomass to liquids (CBTL) process development unit (PDU) at the University of Kentucky Center for Applied Energy Research (CAER)

    Energy Technology Data Exchange (ETDEWEB)

    Placido, Andrew [Univ. of Kentucky, Lexington, KY (United States); Liu, Kunlei [Univ. of Kentucky, Lexington, KY (United States); Challman, Don [Univ. of Kentucky, Lexington, KY (United States); Andrews, Rodney [Univ. of Kentucky, Lexington, KY (United States); Jacques, David [Univ. of Kentucky, Lexington, KY (United States)

    2015-10-30

    This report describes a first phase of a project to design, construct and commission an integrated coal/biomass-to-liquids facility at a capacity of 1 bbl. /day at the University of Kentucky Center for Applied Energy Research (UK-CAER) – specifically for construction of the building and upstream process units for feed handling, gasification, and gas cleaning, conditioning and compression. The deliverables from the operation of this pilot plant [when fully equipped with the downstream process units] will be firstly the liquid FT products and finished fuels which are of interest to UK-CAER’s academic, government and industrial research partners. The facility will produce research quantities of FT liquids and finished fuels for subsequent Fuel Quality Testing, Performance and Acceptability. Moreover, the facility is expected to be employed for a range of research and investigations related to: Feed Preparation, Characteristics and Quality; Coal and Biomass Gasification; Gas Clean-up/ Conditioning; Gas Conversion by FT Synthesis; Product Work-up and Refining; Systems Analysis and Integration; and Scale-up and Demonstration. Environmental Considerations - particularly how to manage and reduce carbon dioxide emissions from CBTL facilities and from use of the fuels - will be a primary research objectives. Such a facility has required significant lead time for environmental review, architectural/building construction, and EPC services. UK, with DOE support, has advanced the facility in several important ways. These include: a formal EA/FONSI, and permits and approvals; construction of a building; selection of a range of technologies and vendors; and completion of the upstream process units. The results of this project are the FEED and detailed engineering studies, the alternate configurations and the as-built plant - its equipment and capabilities for future research and demonstration and its adaptability for re-purposing to meet other needs. These are described in

  16. Investigation on thermochemical behaviour of low rank Malaysian coal, oil palm biomass and their blends during pyrolysis via thermogravimetric analysis (TGA).

    Science.gov (United States)

    Idris, Siti Shawalliah; Abd Rahman, Norazah; Ismail, Khudzir; Alias, Azil Bahari; Abd Rashid, Zulkifli; Aris, Mohd Jindra

    2010-06-01

    This study aims to investigate the behaviour of Malaysian sub-bituminous coal (Mukah Balingian), oil palm biomass (empty fruit bunches (EFB), kernel shell (PKS) and mesocarp fibre (PMF)) and their respective blends during pyrolysis using thermogravimetric analysis (TGA). The coal/palm biomass blends were prepared at six different weight ratios and experiments were carried out under dynamic conditions using nitrogen as inert gas at various heating rates to ramp the temperature from 25 degrees C to 900 degrees C. The derivative thermogravimetric (DTG) results show that thermal decomposition of EFB, PMF and PKS exhibit one, two and three distinct evolution profiles, respectively. Apparently, the thermal profiles of the coal/oil palm biomass blends appear to correlate with the percentage of biomass added in the blends, thus, suggesting lack of interaction between the coal and palm biomass. First-order reaction model were used to determine the kinetics parameters for the pyrolysis of coal, palm biomass and their respective blends. (c) 2010 Elsevier Ltd. All rights reserved.

  17. Preparation for commercial demonstration of biomass-to-ethanol conversion technology. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The objective of this program was to complete the development of a commercially viable process to produce fuel ethanol from renewable cellulosic biomass. The program focused on pretreatment, enzymatic hydrolysis, and fermentation technologies where Amoco has a unique proprietary position. Assured access to low-cost feedstock is a cornerstone of attractive economics for cellulose to ethanol conversion in the 1990s. Most of Amoco`s efforts in converting cellulosic feedstocks to ethanol before 1994 focused on using paper from municipal solid waste as the feed. However, while many municipalities and MSW haulers expressed interest in Amoco`s technology, none were willing to commit funding to process development. In May, 1994 several large agricultural products companies showed interest in Amoco`s technology, particularly for application to corn fiber. Amoco`s initial work with corn fiber was encouraging. The project work plan was designed to provide sufficient data on corn fiber conversion to convince a major agriculture products company to participate in the construction of a commercial demonstration facility.

  18. Usage of waste products from thermal recycling of plastics waste in enhanced oil recovery or in-situ coal conversion

    Energy Technology Data Exchange (ETDEWEB)

    Fink, M.; Fink, J.K. [Montanuniversitaet Leoben (Austria)

    1998-09-01

    In this contribution a thermal method for crude oil mobilization and in-situ liquefaction of coal is discussed, which will finally yield more organic material, as which has been put in from plastics waste originally into the process. The conversion product from thermal treatment is pumped down into exhausted crude oil reservoirs, where the hydrogen can degrade the residual high viscous oil to cause it to become more prone to flow so that it can be recovered. Such a process will envision two goals: 1. more organic raw material (as crude oil) will be recovered than is initially put in as waste product. 2. atmospheric pollutants from the conversion plant will be trapped in the reservoir, which simplifies the construction of the plant. An analogous process may be performed with coal seams. Coal seams with their high porosity and large specific surface are believed to be in particular useful to filter atmospheric pollutants. Depending on the type of coal the mobilization of organic material by this process may be in the background. (orig./SR)

  19. Catalytic Process for the Conversion of Coal-derived Syngas to Ethanol

    Energy Technology Data Exchange (ETDEWEB)

    James Spivery; Doug Harrison; John Earle; James Goodwin; David Bruce; Xunhau Mo; Walter Torres; Joe Allison Vis Viswanathan; Rick Sadok; Steve Overbury; Viviana Schwartz

    2011-07-29

    The catalytic conversion of coal-derived syngas to C{sub 2+} alcohols and oxygenates has attracted great attention due to their potential as chemical intermediates and fuel components. This is particularly true of ethanol, which can serve as a transportation fuel blending agent, as well as a hydrogen carrier. A thermodynamic analysis of CO hydrogenation to ethanol that does not allow for byproducts such as methane or methanol shows that the reaction: 2 CO + 4 H{sub 2} {yields} C{sub 2}H{sub 5}OH + H{sub 2}O is thermodynamically favorable at conditions of practical interest (e.g,30 bar, {approx}< 250 C). However, when methane is included in the equilibrium analysis, no ethanol is formed at any conditions even approximating those that would be industrially practical. This means that undesired products (primarily methane and/or CO{sub 2}) must be kinetically limited. This is the job of a catalyst. The mechanism of CO hydrogenation leading to ethanol is complex. The key step is the formation of the initial C-C bond. Catalysts that are selective for EtOH can be divided into four classes: (a) Rh-based catalysts, (b) promoted Cu catalysts, (c) modified Fischer-Tropsch catalysts, or (d) Mo-sulfides and phosphides. This project focuses on Rh- and Cu-based catalysts. The logic was that (a) Rh-based catalysts are clearly the most selective for EtOH (but these catalysts can be costly), and (b) Cu-based catalysts appear to be the most selective of the non-Rh catalysts (and are less costly). In addition, Pd-based catalysts were studied since Pd is known for catalyzing CO hydrogenation to produce methanol, similar to copper. Approach. The overall approach of this project was based on (a) computational catalysis to identify optimum surfaces for the selective conversion of syngas to ethanol; (b) synthesis of surfaces approaching these ideal atomic structures, (c) specialized characterization to determine the extent to which the actual catalyst has these structures, and (d) testing

  20. Report of National Research Institute for Pollution and Resources for fiscal 1979. Research on conversion of coal to petroleum, research on coal liquefaction, high pressure liquid phase hydrogenation of coal by continuous test equipment, and manufacture of coal chemicals; 1979 nendo sekitan no yuka no kenkyu / sekitan no ekika no kenkyu / renzoku shiken sochi ni yoru sekitan no koatsu ekiso suisoka bunkai / coal chemicals no seizo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-07-01

    Research was conducted on conversion of coal to petroleum for the purpose of securing substitute liquid fuel. Recovery of hydrogen from the waste gas from the conversion process was explained, as were the conversion results from various coals produced in Japan. In coal liquefaction researches with the aim of manufacturing artificial petroleum, a report was made on each of the researches, i.e., the experiment results of coal liquefaction using various catalysts, manufacture of hydrogen by water gas reaction, catalytic action against coal paste, action of mixed oil and pressure against coal paste, result of hydrogen adding test for coal paste using an intermediate scale device, test result of secondary hydrogen addition for coal liquefied oil, and the test result of continuous secondary hydrogen addition for the liquefied oil. In the manufacture of fuel oil by hydro-cracking of coal or tar, a report was made on high pressure liquid phase hydrogenation of coal using a continuous testing device. Aromatic chemicals useful as chemical materials are supposed to be obtained by cutting inter-polymerized-unit bonding to make low molecules from the chemical structure of coal, removing surrounding radicals and simplifying it. A report was also made on the experiment of manufacturing coal chemicals by combination of high pressure liquid phase hydrogenation and hydro-dealkylation. (NEDO)

  1. Impact of various storage conditions on enzymatic activity, biomass components and conversion to ethanol yields from sorghum biomass used as a bioenergy crop.

    Science.gov (United States)

    Rigdon, Anne R; Jumpponen, Ari; Vadlani, Praveen V; Maier, Dirk E

    2013-03-01

    With increased mandates for biofuel production in the US, ethanol production from lignocellulosic substrates is burgeoning, highlighting the need for thorough examination of the biofuel production supply chain. This research focused on the impact storage has on biomass, particularly photoperiod-sensitive sorghum biomass. Biomass quality parameters were monitored and included biomass components, cellulose, hemicellulose and lignin, along with extra-cellular enzymatic activity (EEA) responsible for cellulose and hemicellulose degradation and conversion to ethanol yields. Analyses revealed dramatic decreases in uncovered treatments, specifically reduced dry matter content from 88% to 59.9%, cellulose content from 35.3% to 25%, hemicellulose content from 23.7% to 16.0% and ethanol production of 0.20 to 0.02gL(-1) after 6months storage along with almost double EEA activities. In contrast, biomass components, EEA and ethanol yields remained relatively stable in covered treatments, indicating covering of biomass during storage is essential for optimal substrate retention and ethanol yields. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Entrained Flow Gasification of Biomass

    DEFF Research Database (Denmark)

    Qin, Ke

    The present Ph. D. thesis describes experimental and modeling investigations on entrained flow gasification of biomass and an experimental investigation on entrained flow cogasification of biomass and coal. A review of the current knowledge of biomass entrained flow gasification is presented....... Biomass gasification experiments were performed in a laboratory-scale atmospheric pressure entrained flow reactor with the aim to investigate the effects of operating parameters and biomass types on syngas products. A wide range of operating parameters was involved: reactor temperature, steam/carbon ratio......, excess air ratio, oxygen concentration, feeder gas flow, and residence time. Wood, straw, and lignin were used as biomass fuels. In general, the carbon conversion was higher than 90 % in the biomass gasification experiments conducted at high temperatures (> 1200 °C). The biomass carbon...

  3. Acceleration of Enzymatic conversion of Agricultural Waste Biomass into Bio-fuels by Low Intensity Uniform Ultrasound Field

    Science.gov (United States)

    One of the most critical stages of conversion of agricultural waste biomass into biofuels employs hydrolysis reactions between highly specific enzymes and matching substrates (e.g. corn stover cellulose with cellulase) that produce soluble sugars, which then could be converted into ethanol. Despite ...

  4. Air pollution reduction with respect to the conversion of biomass into electricity and heat. Emission and cost indexes

    International Nuclear Information System (INIS)

    Bergsma, G.C.; Croezen, H.C.; De Weerd, G.; Van der Werff, T.

    1999-01-01

    Although biomass conversion is considered to be a CO2-free method of producing electricity and heat other emissions have to be taken into account: SO2, NOx, HCl, HF, Hg, Cd, dusts, etc. The aim of the study on the title subject is to support the Dutch Ministry of Housing, Planning and Environment (VROM) in the determination of feasible emission standards for bioconversion installations. The Centre for Energy conservation and clean technology (CE) compiled information on the costs for flue gas purification for different degrees of purification. Because of the fact that the composition of flue gases strongly depends on the biomass flow and the applied conversion technique, both biomass flows and conversion techniques must be distinguished. The following biomass conversion techniques were studied: large-scale combustion of wood wastes and sludges, large-scale gasification of wood wastes, cocombustion of wood wastes and sludges, small-scale combustion of wood wastes and chicken manure, small-scale gasification of wood wastes, and fermentation of wastes from vegetables, fruits and gardens. For each combination it is determined what the emissions are in case of a minimal flue gas purification, what the emissions are and how much additional costs are involved in case the regulations in the BLA (decree on air pollution of waste incineration) are taken into account, and what the emissions are and how much additional costs are involved for a number of levels in between the two fore-mentioned cases. refs

  5. The formation of impurities in fluidized-bed gasification of biomass, peat and coal; Epaepuhtauksien muodostuminen leijukerroskaasutuksessa

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E.; Laatikainen-Luntama, J.; Kurkela, M.; Leppaelahti, J.; Koljonen, T.; Oesch, P. [VTT Energy, Espoo (Finland); Alen, R. [Jyvaeskylae Univ. (Finland)

    1996-12-01

    The objective of this three-year-long project was to study the effects of different process parameters and bed materials on the formation of impurities in pressurized fluidized-bed gasification. The main emphasis of the project was focused on the formation of tars and nitrogen compounds in wood, peat and coal gasification. The aims of the research were to find out such operating conditions, where the formation of problematic high-molecular-weight tars can be minimised and to create a better understanding on the fate of fuel nitrogen in fluidized-bed gasifiers. Main part of the research was carried out in a bench-scale pressurised fluidized-bed reactor (ID 30 mm), where the effects of pressure, temperature, gas atmosphere and bed material were studied with different feedstocks. Most of the test series were carried out using the same feedstocks as earlier used in the PDU-scale fluidized-bed gasification tests of VTT (pine wood, pine bark, wheat straw, two peats, Rhenish brown coal, Polish and Illinois No.6 bituminous coals). The effects of operating parameters on the product yields (gas components, tars, char) were first studied under inert nitrogen atmosphere. The conversion of fuel nitrogen into ammonia and HCN were also determined for the different feedstocks over the different operating conditions. These studies showed that ammonia is the main fixed nitrogen compound of fluidized-bed pyrolysis with all the feedstocks studied. The conversions of fuel nitrogen into ammonia and HCN was highest with the high volatile fuels and lowest with the two hard coals. Gas atmosphere had a dramatic effect on the conversion of fuel nitrogen; much higher ammonia yields were determined in real gasification gas atmosphere than in inert pyrolysis carried out in N{sub 2} or Argon atmosphere. In addition to the pressurised fluidized-bed pyrolysis tests, laboratory scale pyrolysis research was carried out in order to compare the pyrolysis behaviour of the different feedstocks

  6. Coal

    International Nuclear Information System (INIS)

    Muir, D.A.

    1991-01-01

    It is estimated that World coal trade remained strong during the second quarter of 1991, with contributing factors including unseasonally large shipments to Japan for power generation, sustained Japanese steel production at around 112 Mt and some buildup in stocks in that country. Purchases by North Asian and European consumers also remained high. At the same time Soviet output and exports declined because of strikes and political unrest. In addition, exportable supplies in Poland fell. As a result the demand for Indonesian coal increased, and Australia exported larger than previously expected quantities of coal. ills

  7. Exploratory study of coal-conversion chemistry. Quarterly report, December 20, 1979-March 19, 1980. [Ortho and para-hydroxydiphenylmethanes

    Energy Technology Data Exchange (ETDEWEB)

    McMillen, Donald F.; Ogier, Walter C.; Ross, David S.; Nguyen, Quyen Cu

    1980-06-18

    This report describes work accomplished under two tasks: Task A, Mechanism of Cleavage of Key Bond Types Present in Coals and Task B, Catalysis of Conversion in CO-H/sub 2/O Systems. Under Task A, the mechanism of the anomalously rapid donor solvent conversion of ortho- and para-hydroxydiphenylmethanes to phenol and toluene has been shown to involve an ionically established enol-keto equilibrium followed by rate limiting homolytic scission of the weakly bonded keto form. Consistent with a rate-limiting second step, the overall conversion rate is not subject to catalysis of acids, bases, or radical initiators, substances which could increase the rate at which the tautomeric pre-equilibrium is achieved. The rate of conversion, however, is markedly enhanced by the addition of iron oxides, with the mixed oxide Fe/sub 3/O/sub 4/ being roughly ten times more active than Fe/sub 2/O/sub 3/. Addition of crushed fused silica was also found to significantly enhance the conversion rates. Under Task B, the conversion of coal to 50% benzene soluble coal products in CO/H/sub 2/O systems displays a striking dependence on the pH of the starting aqueous phase (measured at room temperature). Thus below a starting pH of 12.6, the product benzene solubility is about 10% and steeply climbs to the 50% level under more basic conditions. The operation of the water-gas shift reaction parallels the conversion, with CO/sub 2/ and H/sub 2/ formed as product gases and CO consumed in the basic systems where conversion is effective. Hydrogen used in place of CO is ineffective. In a test of the intermediacy of formate in the system the use of potassium formate with nitrogen as the charge gas was similarly ineffective. Formate thus cannot be an intermediate in the conversion. The use of Mo(VI) (as molybdate) was effective, and a pH dependence on its operation was also observed.

  8. A comparison of producer gas, biochar, and activated carbon from two distributed scale thermochemical conversion systems used to process forest biomass

    Science.gov (United States)

    Nathaniel Anderson; J. Greg Jones; Deborah Page-Dumroese; Daniel McCollum; Stephen Baker; Daniel Loeffler; Woodam Chung

    2013-01-01

    Thermochemical biomass conversion systems have the potential to produce heat, power, fuels and other products from forest biomass at distributed scales that meet the needs of some forest industry facilities. However, many of these systems have not been deployed in this sector and the products they produce from forest biomass have not been adequately described or...

  9. The prominent role of fungi and fungal enzymes in the ant-fungus biomass conversion symbiosis.

    Science.gov (United States)

    Lange, L; Grell, M N

    2014-06-01

    Molecular studies have added significantly to understanding of the role of fungi and fungal enzymes in the efficient biomass conversion, which takes place in the fungus garden of leaf-cutting ants. It is now clear that the fungal symbiont expresses the full spectrum of genes for degrading cellulose and other plant cell wall polysaccharides. Since the start of the genomics era, numerous interesting studies have especially focused on evolutionary, molecular, and organismal aspects of the biological and biochemical functions of the symbiosis between leaf-cutting ants (Atta spp. and Acromyrmex spp.) and their fungal symbiont Leucoagaricus gongylophorus. Macroscopic observations of the fungus-farming ant colony inherently depict the ants as the leading part of the symbiosis (the myrmicocentric approach, overshadowing the mycocentric aspects). However, at the molecular level, it is fungal enzymes that enable the ants to access the nutrition embedded in recalcitrant plant biomass. Our hypothesis is that the evolutionary events that established fungus-farming practice were predisposed by a fascinating fungal evolution toward increasing attractiveness to ants. This resulted in the ants allowing the fungus to grow in the nests and began to supply plant materials for more fungal growth. Molecular studies also confirm that specialized fungal structures, the gongylidia, with high levels of proteins and rich blend of enzymes, are essential for symbiosis. Harvested and used as ant feed, the gongylidia are the key factor for sustaining the highly complex leaf-cutting ant colony. This microbial upgrade of fresh leaves to protein-enriched animal feed can serve as inspiration for modern biorefinery technology.

  10. Demonstration of a Piston Plug feed System for Feeding Coal/Biomass Mixtures across a Pressure Gradient for Application to a Commercial CBTL System

    Energy Technology Data Exchange (ETDEWEB)

    Santosh Gangwal

    2011-06-30

    Producing liquid transportation fuels and power via coal and biomass to liquids (CBTL) and integrated gasification combined cycle (IGCC) processes can significantly improve the nation's energy security. The Energy Independence and Security Act of 2007 mandates increasing renewable fuels nearly 10-fold to >2.3 million barrels per day by 2022. Coal is abundantly available and coal to liquids (CTL) plants can be deployed today, but they will not become sustainable without large scale CO{sub 2} capture and storage. Co-processing of coal and biomass in CBTL processes in a 60 to 40 ratio is an attractive option that has the potential to produce 4 million barrels of transportation fuels per day by 2020 at the same level of CO{sub 2} emission as petroleum. In this work, Southern Research Institute (Southern) has made an attempt to address one of the major barriers to the development of large scale CBTL processes - cost effective/reliable dry-feeding of coal-biomass mixtures into a high pressure vessel representative of commercial entrained-flow gasifiers. Present method for dry coal feeding involves the use of pressurized lock-hopper arrangements that are not only very expensive with large space requirements but also have not been proven for reliably feeding coal-biomass mixtures without the potential problems of segregation and bridging. The project involved the development of a pilot-scale 250 lb/h high pressure dry coal-biomass mixture feeder provided by TKEnergi and proven for feeding biomass at a scale up to 6 ton/day. The aim of this project is to demonstrate cost effective feeding of coal-biomass mixtures (50:50 to 70:30) made from a variety of coals (bituminous, lignite) and biomass (wood, corn stover, switch grass). The feeder uses a hydraulic piston-based approach to produce a series of plugs of the mixture that act as a seal against high back-pressure of the gasification vessel in to which the mixture is being fed. The plugs are then fed one by one via a

  11. Design Concepts for Co-Production of Power, Fuels & Chemicals Via Coal/Biomass Mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Rao, A. D.; Chen, Q.; Samuelsen, G. S.

    2012-09-30

    The overall goal of the program is to develop design concepts, incorporating advanced technologies in areas such as oxygen production, feed systems, gas cleanup, component separations and gas turbines, for integrated and economically viable coal and biomass fed gasification facilities equipped with carbon capture and storage for the following scenarios: (i) coproduction of power along with hydrogen, (ii) coproduction of power along with fuels, (iii) coproduction of power along with petrochemicals, and (iv) coproduction of power along with agricultural chemicals. To achieve this goal, specifically the following objectives are met in this proposed project: (i) identify advanced technology options and innovative preliminary design concepts that synergistically integrate plant subsections, (ii) develop steady state system simulations to predict plant efficiency and environmental signature, (iii) develop plant cost estimates by capacity factoring major subsystems or by major equipment items where required, and then capital, operating and maintenance cost estimates, and (iv) perform techno- economic analyses for the above described coproduction facilities. Thermal efficiencies for the electricity only cases with 90% carbon capture are 38.26% and 36.76% (HHV basis) with the bituminous and the lignite feedstocks respectively. For the coproduction cases (where 50% of the energy exported is in the form of electricity), the electrical efficiency, as expected, is highest for the hydrogen coproduction cases while lowest for the higher alcohols (ethanol) coproduction cases. The electrical efficiencies for Fischer-Tropsch coproduction cases are slightly higher than those for the methanol coproduction cases but it should be noted that the methanol (as well as the higher alcohol) coproduction cases produce the finished coproduct while the Fischer-Tropsch coproduction cases produce a coproduct that requires further processing in a refinery. The cross comparison of the thermal

  12. Conversion and utilisation of biomass from Swedish agriculture; Foeraedling och avsaettning av jordbruksbaserade biobraenslen

    Energy Technology Data Exchange (ETDEWEB)

    Boerjesson, Paal

    2007-05-15

    Biomass feedstock from agriculture can be refined and converted into several different energy carriers and utilised for different energy services, such as production of heat, electricity or transportation fuel. The feedstock may be residues and by-products, such as straw and manure, or energy crops cultivated under different conditions depending on variations in regional and local conditions. Similar variations exist in the regional and local conditions for the refining and utilisation of the bioenergy and its by-products. The overall aim of this report is to analyse and describe the technical and physical conditions of different agriculture-based bioenergy systems using the existing infrastructure and potential new systems expected to be developed in the future. To which extent this technical/physical potential will be utilised in the future depends mainly on economic conditions and financial considerations. These aspects are not included in this study. Furthermore, potential possibilities to utilise existing infrastructure within the forest industry are not included. The report starts with an analysis and description of the energy efficiency of different bioenergy systems, from the production of the biomass to the final use of the refined energy carrier, expressed as the amount of heat, electricity or transportation fuel produced per hectare and year. The possibilities to co-produce different energy carries in bio-refineries are also analysed. The next part of the report includes an analysis of the variation in the regional conditions for the conversion and utilisation of the different energy carriers, based on existing infrastructure, for instance, district heating systems, individual heating systems, combined heat and power production, utilisation of by-products as feed in animal production, utilisation of digestion residues as fertilisers, the supply of forest fuels, etc. The report also includes a discussion of the environmental impact of an increased

  13. DEVELOPMENT OF A VALIDATED MODEL FOR USE IN MINIMIZING NOx EMISSIONS AND MAXIMIZING CARBON UTILIZATION WHEN CO-FIRING BIOMASS WITH COAL

    Energy Technology Data Exchange (ETDEWEB)

    Larry G. Felix; P. Vann Bush; Stephen Niksa

    2003-04-30

    In full-scale boilers, the effect of biomass cofiring on NO{sub x} and unburned carbon (UBC) emissions has been found to be site-specific. Few sets of field data are comparable and no consistent database of information exists upon which cofiring fuel choice or injection system design can be based to assure that NOX emissions will be minimized and UBC be reduced. This report presents the results of a comprehensive project that generated an extensive set of pilot-scale test data that were used to validate a new predictive model for the cofiring of biomass and coal. All testing was performed at the 3.6 MMBtu/hr (1.75 MW{sub t}) Southern Company Services/Southern Research Institute Combustion Research Facility where a variety of burner configurations, coals, biomasses, and biomass injection schemes were utilized to generate a database of consistent, scalable, experimental results (422 separate test conditions). This database was then used to validate a new model for predicting NO{sub x} and UBC emissions from the cofiring of biomass and coal. This model is based on an Advanced Post-Processing (APP) technique that generates an equivalent network of idealized reactor elements from a conventional CFD simulation. The APP reactor network is a computational environment that allows for the incorporation of all relevant chemical reaction mechanisms and provides a new tool to quantify NOx and UBC emissions for any cofired combination of coal and biomass.

  14. Development of High Yield Feedstocks and Biomass Conversion Technology for Renewable Energy

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Andrew G. [Univ. of Hawaii, Honolulu, HI (United States); Crow, Susan [Univ. of Hawaii, Honolulu, HI (United States); DeBeryshe, Barbara [Univ. of Hawaii, Honolulu, HI (United States); Ha, Richard [Hamakua Springs County Farms, Hilo, HI (United States); Jakeway, Lee [Hawaiian Commercial and Sugar Company, Puunene, HI (United States); Khanal, Samir [Univ. of Hawaii, Honolulu, HI (United States); Nakahata, Mae [Hawaiian Commercial and Sugar Company, Puunene, HI (United States); Ogoshi, Richard [Univ. of Hawaii, Honolulu, HI (United States); Shimizu, Erik [Univ. of Hawaii, Honolulu, HI (United States); Stern, Ivette [Univ. of Hawaii, Honolulu, HI (United States); Turano, Brian [Univ. of Hawaii, Honolulu, HI (United States); Turn, Scott [Univ. of Hawaii, Honolulu, HI (United States); Yanagida, John [Univ. of Hawaii, Honolulu, HI (United States)

    2015-04-09

    This project had two main goals. The first goal was to evaluate several high yielding tropical perennial grasses as feedstock for biofuel production, and to characterize the feedstock for compatible biofuel production systems. The second goal was to assess the integration of renewable energy systems for Hawaii. The project focused on high-yield grasses (napiergrass, energycane, sweet sorghum, and sugarcane). Field plots were established to evaluate the effects of elevation (30, 300 and 900 meters above sea level) and irrigation (50%, 75% and 100% of sugarcane plantation practice) on energy crop yields and input. The test plots were extensive monitored including: hydrologic studies to measure crop water use and losses through seepage and evapotranspiration; changes in soil carbon stock; greenhouse gas flux (CO2, CH4, and N2O) from the soil surface; and root morphology, biomass, and turnover. Results showed significant effects of environment on crop yields. In general, crop yields decrease as the elevation increased, being more pronounced for sweet sorghum and energycane than napiergrass. Also energy crop yields were higher with increased irrigation levels, being most pronounced with energycane and less so with sweet sorghum. Daylight length greatly affected sweet sorghum growth and yields. One of the energy crops (napiergrass) was harvested at different ages (2, 4, 6, and 8 months) to assess the changes in feedstock characteristics with age and potential to generate co-products. Although there was greater potential for co-products from younger feedstock, the increased production was not sufficient to offset the additional cost of harvesting multiple times per year. The feedstocks were also characterized to assess their compatibility with biochemical and thermochemical conversion processes. The project objectives are being continued through additional support from the Office of Naval Research, and the Biomass Research and Development

  15. Conversion of Levulinic Acid from Various Herbaceous Biomass Species Using Hydrochloric Acid and Effects of Particle Size and Delignification

    Directory of Open Access Journals (Sweden)

    Indra Neel Pulidindi

    2018-03-01

    Full Text Available Acid catalyzed hydrothermal conversion of levulinic acid (LA from various herbaceous materials including rice straw (RS, corn stover (CS, sweet sorghum bagasse (SSB, and Miscanthus (MS was evaluated. With 1 M HCl, 150 °C, 5 h, 20 g/L solid loading, the yields of LA from untreated RS, CS, SSB and MS based on the glucan content were 60.2, 75.1, 78.5 and 61.7 wt %, respectively. It was also found that the particle size had no significant effect on LA conversion yield with >3 h reaction time. With delignification using simulated green liquor (Na2CO3-Na2S, 20 wt % total titratable alkali (TTA, 40 wt % sulfidity at 200 °C for 15 min, lignin removal was in the range of 64.8–91.2 wt %. Removal of both lignin and xylan during delignification increased the glucan contents from 33.0–44.3 of untreated biomass to 61.7–68.4 wt % of treated biomass. Delignified biomass resulted in much lower conversion yield (50.4–56.0 wt % compared to 60.2–78.5 wt % of untreated biomass. Nonetheless, the concentration of LA in the product was enhanced by a factor of ~1.5 with delignification.

  16. Simulation of a process for the two-stage thermal conversion of biomass into the synthesis gas

    Science.gov (United States)

    Kosov, V. F.; Lavrenov, V. A.; Zaichenko, V. M.

    2015-11-01

    The paper presents results of simulation of a process for the two-stage thermal conversion of wood biomass into the synthesis gas. The first stage of process is pyrolysis of raw materials, the second stage is cracking of volatile pyrolysis products which blown through the char at a temperature of about 1000° C. Char is a porous biomass residue with carbon content about 90%. The simulation based on the results of experimental investigations of a pilot plant with capacity up to 50 kg of raw material per hour. The main result of simulation is estimation of an energy conversion efficiency of wood biomass into synthesis gas for three different operation modes. The first mode is conversion of biomass into fuel gas and char, and the char is not further used. The second mode is the same, but char used as fuel for producing heat for own demand of the process. The third mode includes gasification of char by means of water steam, aimed to obtaining an additional yield of synthesis gas. The simulation shown, that total efficiency of power plant was 17.1% in the first mode, 22.4% in the second mode and 22.6% in the third mode.

  17. Formation, molecular structure, and morphology of humins in biomass conversion: influence of feedstock and processing conditions.

    Science.gov (United States)

    van Zandvoort, Ilona; Wang, Yuehu; Rasrendra, Carolus B; van Eck, Ernst R H; Bruijnincx, Pieter C A; Heeres, Hero J; Weckhuysen, Bert M

    2013-09-01

    Neither the routes through which humin byproducts are formed, nor their molecular structure have yet been unequivocally established. A better understanding of the formation and physicochemical properties of humins, however, would aid in making biomass conversion processes more efficient. Here, an extensive multiple-technique-based study of the formation, molecular structure, and morphology of humins is presented as a function of sugar feed, the presence of additives (e.g., 1,2,4-trihydroxybenzene), and the applied processing conditions. Elemental analyses indicate that humins are formed through a dehydration pathway, with humin formation and levulinic acid yields strongly depending on the processing parameters. The addition of implied intermediates to the feedstocks showed that furan and phenol compounds formed during the acid-catalyzed dehydration of sugars are indeed included in the humin structure. IR spectra, sheared sum projections of solid-state 2DPASS (13) C NMR spectra, and pyrolysis GC-MS data indicate that humins consist of a furan-rich polymer network containing different oxygen functional groups. The structure is furthermore found to strongly depend on the type of feedstock. A model for the molecular structure of humins is proposed based on the data presented. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Production of renewable phenolic resins by thermochemical conversion of biomass: A review

    Energy Technology Data Exchange (ETDEWEB)

    Effendi, A.; Gerhauser, H.; Bridgwater, A.V. [Bio-Energy Research Group, Aston University, Birmingham B4 7ET (United Kingdom)

    2008-10-15

    This review covers the production and utilisation of liquids from the thermal processing of biomass and related materials to substitute for synthetic phenol and formaldehyde in phenol formaldehyde resins. These resins are primarily employed in the manufacture of wood panels such as plywood, MDF, particle-board and OSB. The most important thermal conversion methods for this purpose are fast pyrolysis and vacuum pyrolysis, pressure liquefaction and phenolysis. Many feedstocks have been tested for their suitability as sources of phenolics including hard and softwoods, bark and residual lignins. Resins have been prepared utilising either the whole liquid product, or a phenolics enriched fraction obtained after fractional condensation or further processing, such as solvent extraction. None of the phenolics production and fractionation techniques covered in this review are believed to allow substitution of 100% of the phenol content of the resin without impacting its effectiveness compared to commercial formulations based on petroleum derived phenol. This survey shows that considerable progress has been made towards reaching the goal of a price competitive renewable resin, but that further research is required to meet the twin challenges of low renewable resin cost and satisfactory quality requirements. Particular areas of concern are wood panel press times, variability of renewable resin properties, odour, lack of reactive sites compared to phenol and potential for increased emissions of volatile organic compounds. (author)

  19. Electrodialytic separation of levulinic acid catalytically synthesized from woody biomass for use in microbial conversion.

    Science.gov (United States)

    Habe, Hiroshi; Kondo, Susumu; Sato, Yuya; Hori, Tomoyuki; Kanno, Manabu; Kimura, Nobutada; Koike, Hideaki; Kirimura, Kohtaro

    2017-03-01

    Levulinic acid (LA) is produced by the catalytic conversion of a variety of woody biomass. To investigate the potential use of desalting electrodialysis (ED) for LA purification, electrodialytic separation of levulinate from both reagent and cedar-derived LA solution (40-160 g L -1 ) was demonstrated. When using reagent LA solution with pH5.0-6.0, the recovery rates of levulinate ranged from 68 to 99%, and the energy consumption for recovery of 1 kg of levulinate ranged from 0.18 to 0.27 kWh kg -1 . With cedar-derived LA solution (pH6.0), good agreement in levulinate recovery (88-99%), and energy consumption (0.18-0.22 kWh kg -1 ) were observed in comparison to the reagent LA solutions, although a longer operation time was required due to some impurities. The application of desalting ED was favorable for promoting microbial utilization of cedar-derived LA. From 0.5 mol L -1 of the ED-concentrated sodium levulinate solution, 95.6% of levulinate was recovered as LA calcium salt dihydrate by crystallization. This is the first report on ED application for LA recovery using more than 20 g L -1 LA solutions (40-160 g L -1 ). © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:448-453, 2017. © 2017 American Institute of Chemical Engineers.

  20. Bioenergy research programme. Yearbook 1996. Utilization of bioenergy and biomass conversion; Bioenergian tutkimusohjelma. Vuosikirja 1996. Bioenergian kaeyttoe ja biomassan jalostus

    Energy Technology Data Exchange (ETDEWEB)

    Nikku, P. [ed.

    1997-12-01

    The aim of the programme is to increase the use of economically profitable and environmentally sound bioenergy by improving the competitiveness of present peat and wood fuels. Research and development projects will also develop new economically competitive biofuels, new equipment and methods for production, handling and utilisation of biofuels. The total funding for 1996 was 27.3 million FIM and the number of projects 63. The number of projects concerning bioenergy use was 10 and biomass conversion 6. Results of the projects carried out in 1996 are presented in this publication. The aim of the bioenergy use is to develop and demonstrate at least 3-4 new equipment or methods for handling and use of biofuels. The equipment and/or methods should provide economically competitive and environmentally sound energy production. The second aim is to demonstrate 2-3 large-scale biofuel end-use technologies. Each of these should have a potential of 0.2- 0.3 million toe/a till the year 2000. The aims have been achieved in the field of fuel handling technologies and small-scale combustion concepts, but large-scale demonstration projects before the year 2000 seems to be a very challenging aim. The aim of the biomass conversion is to produce basic information on biomass conversion, to evaluate the quality of products, their usability, environmental effects of use as well as the total economy of the production. The objective of biomass conversion is to develop 2-3 new methods, which could be demonstrated, for the production and utilisation of liquefied, gasified and other converted biofuels. The production target is 0.2-0.3 million toe/a by the year 2000 at a competitive price level. The studies focused on the development of flash pyrolysis technology for biomass, and on the study of storage stability of imported wood oils and of their suitability for use in oil-fired boilers and diesel power plants

  1. Biochemical conversions of lignocellulosic biomass for sustainable fuel-ethanol production in the upper Midwest

    Science.gov (United States)

    Brodeur-Campbell, Michael J.

    Biofuels are an increasingly important component of worldwide energy supply. This research aims to understand the pathways and impacts of biofuels production, and to improve these processes to make them more efficient. In Chapter 2, a life cycle assessment (LCA) is presented for cellulosic ethanol production from five potential feedstocks of regional importance to the upper Midwest — hybrid poplar, hybrid willow, switchgrass, diverse prairie grasses, and logging residues — according to the requirements of Renewable Fuel Standard (RFS). Direct land use change emissions are included for the conversion of abandoned agricultural land to feedstock production, and computer models of the conversion process are used in order to determine the effect of varying biomass composition on overall life cycle impacts. All scenarios analyzed here result in greater than 60% reduction in greenhouse gas emissions relative to petroleum gasoline. Land use change effects were found to contribute significantly to the overall emissions for the first 20 years after plantation establishment. Chapter 3 is an investigation of the effects of biomass mixtures on overall sugar recovery from the combined processes of dilute acid pretreatment and enzymatic hydrolysis. Biomass mixtures studied were aspen, a hardwood species well suited to biochemical processing; balsam, a high-lignin softwood species, and switchgrass, an herbaceous energy crop with high ash content. A matrix of three different dilute acid pretreatment severities and three different enzyme loading levels was used to characterize interactions between pretreatment and enzymatic hydrolysis. Maximum glucose yield for any species was 70% of theoretical for switchgrass, and maximum xylose yield was 99.7% of theoretical for aspen. Supplemental β-glucosidase increased glucose yield from enzymatic hydrolysis by an average of 15%, and total sugar recoveries for mixtures could be predicted to within 4% by linear interpolation of the pure

  2. In Situ Catalytic Pyrolysis of Low-Rank Coal for the Conversion of Heavy Oils into Light Oils

    Directory of Open Access Journals (Sweden)

    Muhammad Nadeem Amin

    2017-01-01

    Full Text Available Lighter tars are largely useful in chemical industries but their quantity is quite little. Catalytic cracking is applied to improve the yield of light tars during pyrolysis. Consequently, in situ upgrading technique through a MoS2 catalyst has been explored in this research work. MoS2 catalyst is useful for the conversion of high energy cost into low energy cost. The variations in coal pyrolysis tar without and with catalyst were determined. Meanwhile, the obtained tar was analyzed using simulated distillation gas chromatograph and Elemental Analyzer. Consequently, the catalyst reduced the pitch contents and increased the fraction of light tar from 50 to 60 wt.% in coal pyrolysis tar. MoS2 catalyst increased the liquid yield from 18 to 33 (wt.%, db and decreased gas yield from 27 to 12 (wt.%, db compared to coal without catalyst. Moreover, it increased H content and hydrogen-to-carbon ratio by 7.9 and 3.3%, respectively, and reduced the contents of nitrogen, sulphur, and oxygen elements by 8.1%, 15.2%, and 23.9%, respectively, in their produced tars compared to coal without catalyst.

  3. Wabash Valley Integrated Gasification Combined Cycle, Coal to Fischer Tropsch Jet Fuel Conversion Study

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Jayesh [Lummus Technology Inc., Bloomfield, NJ (United States); Hess, Fernando [Lummus Technology Inc., Bloomfield, NJ (United States); Horzen, Wessel van [Lummus Technology Inc., Bloomfield, NJ (United States); Williams, Daniel [Lummus Technology Inc., Bloomfield, NJ (United States); Peevor, Andy [JM Davy, London (United Kingdom); Dyer, Andy [JM Davy, London (United Kingdom); Frankel, Louis [Canonsburgh, PA (United States)

    2016-06-01

    This reports examines the feasibility of converting the existing Wabash Integrated Gasification Combined Cycle (IGCC) plant into a liquid fuel facility, with the goal of maximizing jet fuel production. The fuels produced are required to be in compliance with Section 526 of the Energy Independence and Security Act of 2007 (EISA 2007 §526) lifecycle greenhouse gas (GHG) emissions requirements, so lifecycle GHG emissions from the fuel must be equal to or better than conventional fuels. Retrofitting an existing gasification facility reduces the technical risk and capital costs associated with a coal to liquids project, leading to a higher probability of implementation and more competitive liquid fuel prices. The existing combustion turbine will continue to operate on low cost natural gas and low carbon fuel gas from the gasification facility. The gasification technology utilized at Wabash is the E-Gas™ Technology and has been in commercial operation since 1995. In order to minimize capital costs, the study maximizes reuse of existing equipment with minimal modifications. Plant data and process models were used to develop process data for downstream units. Process modeling was utilized for the syngas conditioning, acid gas removal, CO2 compression and utility units. Syngas conversion to Fischer Tropsch (FT) liquids and upgrading of the liquids was modeled and designed by Johnson Matthey Davy Technologies (JM Davy). In order to maintain the GHG emission profile below that of conventional fuels, the CO2 from the process must be captured and exported for sequestration or enhanced oil recovery. In addition the power utilized for the plant’s auxiliary loads had to be supplied by a low carbon fuel source. Since the process produces a fuel gas with sufficient energy content to power the plant’s loads, this fuel gas was converted to hydrogen and exported to the existing gas turbine for low carbon power production. Utilizing low carbon fuel gas and

  4. Evaluation of Miscanthus sinensis biomass quality as feedstock for conversion into different bioenergy products

    NARCIS (Netherlands)

    Weijde, van der Tim; Kiesel, Andreas; Iqbal, Yasir; Muylle, Hilde; Dolstra, Oene; Visser, Richard G.F.; Lewandowski, Iris; Trindade, Luisa M.

    2017-01-01

    Miscanthus is a promising fiber crop with high potential for sustainable biomass production for a biobased economy. The effect of biomass composition on the processing efficiency of miscanthus biomass for different biorefinery value chains was evaluated, including combustion, anaerobic digestion

  5. Directed plant cell-wall accumulation of iron: embedding co-catalyst for efficient biomass conversion

    Science.gov (United States)

    Chien-Yuan Lin; Joseph E. Jakes; Bryon S. Donohoe; Peter N. Ciesielski; Haibing Yang; Sophie-Charlotte Gleber; Stefan Vogt; Shi-You Ding; Wendy A. Peer; Angus S. Murphy; Maureen C. McCann; Michael E. Himmel; Melvin P. Tucker; Hui Wei

    2016-01-01

    Background: Plant lignocellulosic biomass is an abundant, renewable feedstock for the production of biobased fuels and chemicals. Previously, we showed that iron can act as a co-catalyst to improve the deconstruction of lignocellulosic biomass. However, directly adding iron catalysts into biomass prior to pretreatment is diffusion limited,...

  6. Fuel characterization requirements for cofiring biomass in coal-fired boilers

    International Nuclear Information System (INIS)

    Prinzing, D.E.; Tillman, D.A.; Harding, N.S.

    1993-01-01

    The cofiring of biofuels with coal in existing boilers, or the cofiring of biofuels in combined cycle combustion turbine (CCCT) systems presents significant potential benefits to utilities, including reductions in SO 2 and NO x emissions as a function of reducing the mass flow of sulfur and nitrogen to the boiler, reducing CO 2 emissions from the combustion of fossil fuels; potentially reducing fuel costs both by the availability of wood residues and by the fact that biofuels are exempt from the proposed BTU tax; and providing support to industrial customers from the forest products industry. At the same time, cofiring requires careful attention to the characterization of the wood and coal, both singly and in combination. This paper reviews characterization requirements associated with cofiring biofuels and fossil fuels in boilers and CCCT installations with particular attention not only to such concerns as sulfur, nitrogen, moisture, and Btu content, but also to such issues as total ash content, base/acid ratio of the wood ash and the coal ash, alkali metal content in the wood ash and wood fuel (including converted fuels such as low Btu gas or pyrolytic oil), slagging and fouling indices, ash fusion temperature, and trace metal contents in the wood and coal. The importance of each parameter is reviewed, along with potential consequences of a failure to adequately characterize these parameters. The consequences of these parameters are reviewed with attention to firing biofuels with coal in pulverized coal (PC) and cyclone boilers, and firing biofuels with natural gas in CCCT installations

  7. Preparation, Characterization, and Activation of Co-Mo/Y Zeolite Catalyst for Coal Tar Conversion to Liquid Fuel

    Directory of Open Access Journals (Sweden)

    Didi Dwi Anggoro

    2017-05-01

    Full Text Available One of many efforts to convert coal tar into alternative liquid fuel is by hydrocracking. This research aims to determine the impregnation of Co-Mo/Y zeolite, its characteristics, the effect of impregnation temperature and time, and also the best Co-Mo/Y zeolite impregnation condition for the conversion of coal tar. This research was conducted in several steps, impregnating Co from Co(NO32.6H2O and Mo from (NH46Mo7O24.4H2O into Zeolite Y in liquid media, drying at 100 °C for 24 hours, and calcination at 550 °C for 3 hours. Coal tar was then reacted with hydrogen gas (as a reactant, and Co-Mo/Zeolite Y (as a catalyst was conducted at 350 °C. Characteristic analysis showed that Co and Mo had impregnated into the Y zeolite, as well as it made no change of catalyst’s structure and increased the total acidity. The higher of impregnation temperature was increased the catalyst crystallinity, total acidity, and yield of gasoline. The longer impregnation time was reduced crystallinity value, but total acidity and yield were increased. GC analysis showed that products included into the gasoline product (C8, C9, and C10. Copyright © 2017 BCREC Group. All rights reserved Received: 13rd November 2016; Revised: 12nd February 2017; Accepted: 16th February 2017 How to Cite: Anggoro, D.D., Buchori, L., Silaen, G.C., Utami, R.N. (2017. Preparation, Characterization, and Activation of Co-Mo/Y Zeolite Catalyst for Coal Tar Conversion to Liquid Fuel. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (2: 219-226 (doi:10.9767/bcrec.12.2.768.219-226 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.12.2.768.219-226

  8. Studies of coupled chemical and catalytic coal conversion methods. Tenth quarterly report, January--March 1990

    Energy Technology Data Exchange (ETDEWEB)

    Stock, L.M.

    1990-12-31

    This report concerns our research on base-catalyzed coal solubilization and a new approach for hydrogen addition. The work on base-catalyzed, chemical solubilization is continuing. this report is focused on the hydrogenation research. Specifically it deals with the use of arene chromium carbonyl complexes as reagents for the addition of dideuterium to coal molecules. In one phase of the work, he has established that the aromatic hydrocarbons in a representative coal liquid can be converted in very good yield to arene chromium carbonyl compounds. In a second phase of the work directly related to our objective of improved methods for catalytic hydrogenation, he has established that the aromatic constituents of the same coal liquid add dideuterium in the presence of added napththalene chromium carbonyl.

  9. Drivers of biomass co-firing in U.S. coal-fired power plants

    Science.gov (United States)

    Michael E. Goerndt; Francisco X. Aguilar; Kenneth Skog

    2013-01-01

    Substantial knowledge has been generated in the U.S. about the resource base for forest and other residue-derived biomass for bioenergy including co-firing in power plants. However, a lack of understanding regarding power plant-level operations and manager perceptions of drivers of biomass co-firing remains. This study gathered information from U.S. power plant...

  10. Characterization of substances in products, effluents, and wastes from coal conversion processes

    International Nuclear Information System (INIS)

    Petersen, M.R.

    1978-01-01

    Researchers at Pacific Northwest Laboratory (PNL) are investigating materials from synthetic fossil fuel processes. During the past year, samples have been collected from the Solvent Refining Coal Pilot Plant (SRC-I mode), Lignite Gasification Pilot Plant, Eyring Research Institute Gasifier, and Hanna III In Situ Coal Gasification Experiment. Inorganic and organic analyses have been performed, and comparisons of the data show some important differences in the potential emissions

  11. Development of a system for characterizing biomass quality of lignocellulosic feedstocks for biochemical conversion

    Science.gov (United States)

    Murphy, Patrick Thomas

    The purpose of this research was twofold: (i) to develop a system for screening lignocellulosic biomass feedstocks for biochemical conversion to biofuels and (ii) to evaluate brown midrib corn stover as feedstock for ethanol production. In the first study (Chapter 2), we investigated the potential of corn stover from bm1-4 hybrids for increased ethanol production and reduced pretreatment intensity compared to corn stover from the isogenic normal hybrid. Corn stover from hybrid W64A X A619 and respective isogenic bm hybrids was pretreated by aqueous ammonia steeping using ammonium hydroxide concentrations from 0 to 30%, by weight, and the resulting residues underwent simultaneous saccharification and cofermentation (SSCF) to ethanol. Dry matter (DM) digested by SSCF increased with increasing ammonium hydroxide concentration across all genotypes (P>0.0001) from 277 g kg-1 DM in the control to 439 g kg-1 DM in the 30% ammonium hydroxide pretreatment. The bm corn stover materials averaged 373 g kg-1 DM of DM digested by SSCF compared with 335 g kg-1 DM for the normal corn stover (PHTP) modifications to the original assay methods, including (i) using filter bags with batch sample processing, (ii) replacement of AIR with neutral detergent fiber (NDF) as a cell-wall isolation procedure, and (iii) elimination of the fermentation organism in the SSCF procedures used to determine biochemically available carbohydrates. The original and the HTP assay methods were compared using corn cobs, hybrid poplar, kenaf, and switchgrass. Biochemically available carbohydrates increased with the HTP methods in the corn cobs, hybrid poplar, and switchgrass, but remained the same in the kenaf. Total available carbohydrates increased and unavailable carbohydrates decreased with the HTP methods in the corn cobs and switchgrass and remained the same in the hybrid poplar and kenaf. There were no differences in total carbohydrates (CT) between the two methods. The final study evaluated the

  12. Effects of low-temperature catalytic pretreatments on coal structure and reactivity in liquefaction. Final technical report, Volume 1 - effects of solvents, catalysts and temperature conditions on conversion and structural changes of low-rank coals

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Lili [Pennsylvania State Univ., University Park, PA (United States); Schobert, Harold H. [Pennsylvania State Univ., University Park, PA (United States); Song, Chunshan [Pennsylvania State Univ., University Park, PA (United States)

    1998-01-01

    The main objectives of this project were to study the effects of low-temperature pretreatments on coal structure and their impacts on subsequent liquefaction. The effects of pretreatment temperatures, catalyst type, coal rank, and influence of solvent were examined. Specific objectives were to identify the basic changes in coal structure induced by catalytic and thermal pretreatments, and to determine the reactivity of the catalytically and thermally treated coals for liquefaction. In the original project management plan it was indicated that six coals would be used for the study. These were to include two each of bituminous, subbituminous, and lignite rank. For convenience in executing the experimental work, two parallel efforts were conducted. The first involved the two lignites and one subbituminous coal; and the second, the two bituminous coals and the remaining subbituminous coal. This Volume presents the results of the first portion of the work, studies on two lignites and one subbituminous coal. The remaining work accomplished under this project will be described and discussed in Volume 2 of this report. The objective of this portion of the project was to determine and compare the effects of solvents, catalysts and reaction conditions on coal liquefaction. Specifically, the improvements of reaction conversion, product distribution, as well as the structural changes in the coals and coal-derived products were examined. This study targeted at promoting hydrogenation of the coal-derived radicals, generated during thermal cleavage of chemical bonds, by using a good hydrogen donor-solvent and an effective catalyst. Attempts were also made in efforts to match the formation and hydrogenation of the free radicals and thus to prevent retrogressive reaction.

  13. Energy, Environmental, and Economic Analyses of Design Concepts for the Co-Production of Fuels and Chemicals with Electricity via Co-Gasification of Coal and Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Eric Larson; Robert Williams; Thomas Kreutz; Ilkka Hannula; Andrea Lanzini; Guangjian Liu

    2012-03-11

    The overall objective of this project was to quantify the energy, environmental, and economic performance of industrial facilities that would coproduce electricity and transportation fuels or chemicals from a mixture of coal and biomass via co-gasification in a single pressurized, oxygen-blown, entrained-flow gasifier, with capture and storage of CO{sub 2} (CCS). The work sought to identify plant designs with promising (Nth plant) economics, superior environmental footprints, and the potential to be deployed at scale as a means for simultaneously achieving enhanced energy security and deep reductions in U.S. GHG emissions in the coming decades. Designs included systems using primarily already-commercialized component technologies, which may have the potential for near-term deployment at scale, as well as systems incorporating some advanced technologies at various stages of R&D. All of the coproduction designs have the common attribute of producing some electricity and also of capturing CO{sub 2} for storage. For each of the co-product pairs detailed process mass and energy simulations (using Aspen Plus software) were developed for a set of alternative process configurations, on the basis of which lifecycle greenhouse gas emissions, Nth plant economic performance, and other characteristics were evaluated for each configuration. In developing each set of process configurations, focused attention was given to understanding the influence of biomass input fraction and electricity output fraction. Self-consistent evaluations were also carried out for gasification-based reference systems producing only electricity from coal, including integrated gasification combined cycle (IGCC) and integrated gasification solid-oxide fuel cell (IGFC) systems. The reason biomass is considered as a co-feed with coal in cases when gasoline or olefins are co-produced with electricity is to help reduce lifecycle greenhouse gas (GHG) emissions for these systems. Storing biomass-derived CO

  14. Solid waste management of coal conversion residuals from a commercial-size facility: environmental engineering aspects. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bern, J.; Neufeld, R. D.; Shapiro, M. A.

    1980-11-30

    Major residuals generated by the conversion process and its auxiliary operations include: (a) coal preparation wastes; (b) gasifier ash; (c) liquefaction solids-char; (d) tail gas or flue gas desulfurization sludge; (e) boiler flyash and bottom ash; (f) raw water treatment sludge, and; (g) biosludges from process wastewater treatment. Recovered sulfur may also require disposal management. Potential environmental and health impacts from each of the residues are described on the basis of characterization of the waste in the perspective of water quality degradation. Coal gasification and liquefaction systems are described in great detail with respect to their associated residuals. Management options are listed with the conclusion that land disposal of the major residual streams is the only viable choice. On-site versus off-site disposal is analyzed with the selection of on-site operations to reduce political, social and institutional pressures, and to optimize the costs of the system. Mechanisms for prevention of leachate generation are described, and various disposal site designs are outlined. It is concluded that co-disposal feasibility of some waste streams must be established in order to make the most preferred solid waste management system feasible. Capacity requirements for the disposal operation were calculated for a 50,000 bbl/day coal liquefaction plant or 250 million SCF/day gasification operation.

  15. Techno-economic Analysis for the Conversion of Lignocellulosic Biomass to Gasoline via the Methanol-to-Gasoline (MTG) Process

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Susanne B.; Zhu, Yunhua

    2009-05-01

    Biomass is a renewable energy resource that can be converted into liquid fuel suitable for transportation applications. As a widely available biomass form, lignocellulosic biomass can have a major impact on domestic transportation fuel supplies and thus help meet the Energy Independence and Security Act renewable energy goals (U.S. Congress 2007). With gasification technology, biomass can be converted to gasoline via methanol synthesis and methanol-to-gasoline (MTG) technologies. Producing a gasoline product that is infrastructure ready has much potential. Although the MTG technology has been commercially demonstrated with natural gas conversion, combining MTG with biomass gasification has not been shown. Therefore, a techno-economic evaluation for a biomass MTG process based on currently available technology was developed to provide information about benefits and risks of this technology. The economic assumptions used in this report are consistent with previous U.S. Department of Energy Office of Biomass Programs techno-economic assessments. The feedstock is assumed to be wood chips at 2000 metric ton/day (dry basis). Two kinds of gasification technologies were evaluated: an indirectly-heated gasifier and a directly-heated oxygen-blown gasifier. The gasoline selling prices (2008 USD) excluding taxes were estimated to be $3.20/gallon and $3.68/gallon for indirectly-heated gasified and directly-heated. This suggests that a process based on existing technology is economic only when crude prices are above $100/bbl. However, improvements in syngas cleanup combined with consolidated gasoline synthesis can potentially reduce the capital cost. In addition, improved synthesis catalysts and reactor design may allow increased yield.

  16. 11th annual conference on clean coal technology, proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    Topics covered at the conference include coal combustion technology, multi-purpose coal conversion technology (including entrained-bed coal flash pyrolysis process (CPX), hydrogen production from coal and coal liquefaction), coal ash utilization technology, next general technology (including dry coal cleaning technologies and coal conversion by supercritical water) and basic coal utilization technology (including ash behaviour during coal gasification).

  17. An artificial intelligence treatment of devolatilization for pulverized coal and biomass in co-fired flames

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, T.; Awais, M.M.; Lockwood, F.C. [Lahore University of Management & Science, Lahore (Pakistan)

    2003-02-01

    In most of the existing predictive procedures for devolatilization, combustion and emissions are modeled by a single-step, global chemical reaction, with the yield of volatile matter presumed to experience mixing-controlled combustion. Several more detailed multi-step coal devolatilization models have recently emerged. A common shortcoming of these models is that they require a large set of input data, involving kinetic parameters, gas precursor compositions, and additional parameters describing the coal's polymeric structure. The input data must be generated from an extensive series of experimental measurements for each coal of interest. Very significant computational expense and application restricted to coals, which have already been studied, are implied. All of these problems are exacerbated when coal blending or co-firing with renewable solid fuels, such as forest and agricultural waste, and sewage sludge, is considered. In this paper, a new approach based on neural networks is proposed; it is capable of handling a range of solid fuels. The model considers heating rate, fuel atomic ratios, and the temperature of the fuel particles to predict the volatiles released by the particles. The 'learning' properties of the model implicitly facilitate all the physical conditions, of devolatilization experiments, which were used during its training and validation phases. The neural-network model was implemented into an existing 3D CFD combustion code. The predictions for high- and low-NOx burners demonstrate improved prediction of in-flame data for reduced computational effort, one-fifth of that with the standard single-global-reaction devolatilization model. Its devolatilization predictions have also been compared with a detailed devolatilization model (FLASHCHAIN) and were found to be comparable.

  18. Determination of the Effect of Coal/Biomass-Derived Syngas Contaminants on the Performance of Fischer-Tropsch and Water-Gas-Shift Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Trembly, Jason; Cooper, Matthew; Farmer, Justin; Turk, Brian; Gupta, Raghubir

    2010-12-31

    Today, nearly all liquid fuels and commodity chemicals are produced from non-renewable resources such as crude oil and natural gas. Because of increasing scrutiny of carbon dioxide (CO{sub 2}) emissions produced using traditional fossil-fuel resources, the utilization of alternative feedstocks for the production of power, hydrogen, value-added chemicals, and high-quality hydrocarbon fuels such as diesel and substitute natural gas (SNG) is critical to meeting the rapidly growing energy needs of modern society. Coal and biomass are particularly attractive as alternative feedstocks because of the abundant reserves of these resources worldwide. The strategy of co-gasification of coal/biomass (CB) mixtures to produce syngas for synthesis of Fischer-Tropsch (FT) fuels offers distinct advantages over gasification of either coal or biomass alone. Co-feeding coal with biomass offers the opportunity to exploit economies of scale that are difficult to achieve in biomass gasification, while the addition of biomass to the coal gasifier feed leverages proven coal gasification technology and allows CO{sub 2} credit benefits. Syngas generated from CB mixtures will have a unique contaminant composition because coal and biomass possess different concentrations and types of contaminants, and the final syngas composition is also strongly influenced by the gasification technology used. Syngas cleanup for gasification of CB mixtures will need to address this unique contaminant composition to support downstream processing and equipment. To investigate the impact of CB gasification on the production of transportation fuels by FT synthesis, RTI International conducted thermodynamic studies to identify trace contaminants that will react with water-gas-shift and FT catalysts and built several automated microreactor systems to investigate the effect of single components and the synergistic effects of multiple contaminants on water-gas-shift and FT catalyst performance. The contaminants

  19. Strain selection, biomass to biofuel conversion, and resource colocation have strong impacts on the economic performance of algae cultivation sites

    Directory of Open Access Journals (Sweden)

    Erik R. Venteris

    2014-09-01

    Full Text Available Decisions involving strain selection, biomass to biofuel technology, and the location of cultivation facilities can strongly influence the economic viability of an algae-based biofuel enterprise. We summarize our past results in a new analysis to explore the relative economic impact of these design choices. Our growth model is used to predict average biomass production for two saline strains (Nannocloropsis salina, Arthrospira sp., one fresh to brackish strain (Chlorella sp., DOE strain 1412, and one freshwater strain (order Sphaeropleales. Biomass to biofuel conversion is compared between lipid extraction (LE and hydrothermal liquefaction (HTL technologies. National-scale models of water, CO2 (as flue gas, land acquisition, site leveling, construction of connecting roads, and transport of HTL oil to existing refineries are used in conjunction with estimates of fuel value (from HTL to prioritize and select from 88,692 unit farms (UF, 405 ha in pond area, a number sufficient to produce 136E+9 L yr-1 of renewable diesel (36 billion gallons yr-1. Strain selection and choice of conversion technology have large economic impacts, with differences between combinations of strains and biomass to biofuel technologies being up to $10 million dollars yr-1 UF-1. Results based on the most productive strain, HTL-based fuel conversion, and resource costs show that the economic potential between geographic locations within the selection can differ by up to $4 million yr-1 UF-1, with 1.8 BGY of production possible from the most cost-effective sites. The local spatial variability in site rank is extreme, with very high and low sites within 10s of km of each other. Colocation with flue gas sources has a strong influence on rank, but the most costly resource component varies from site to site. The highest rank UFs are located predominantly in Florida and Texas, but most states south of 37°N latitude contain promising locations.

  20. Techno-economic Analysis for the Thermochemical Conversion of Lignocellulosic Biomass to Ethanol via Acetic Acid Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yunhua; Jones, Susanne B.

    2009-04-01

    Biomass is a renewable energy resource that can be converted into liquid fuel suitable for transportation applications. As a widely available biomass form, lignocellulosic biomass can have a major impact on domestic transportation fuel supplies and thus help meet the Energy Independence and Security Act renewable energy goals (U.S. Congress 2007). This study performs a techno-economic analysis of the thermo chemical conversion of biomass to ethanol, through methanol and acetic acid, followed by hydrogenation of acetic acid to ethanol. The conversion of syngas to methanol and methanol to acetic acid are well-proven technologies with high conversions and yields. This study was undertaken to determine if this highly selective route to ethanol could provide an already established economically attractive route to ethanol. The feedstock was assumed to be wood chips at 2000 metric ton/day (dry basis). Two types of gasification technologies were evaluated: an indirectly-heated gasifier and a directly-heated oxygen-blown gasifier. Process models were developed and a cost analysis was performed. The carbon monoxide used for acetic acid synthesis from methanol and the hydrogen used for hydrogenation were assumed to be purchased and not derived from the gasifier. Analysis results show that ethanol selling prices are estimated to be $2.79/gallon and $2.81/gallon for the indirectly-heated gasifier and the directly-heated gasifier systems, respectively (1stQ 2008$, 10% ROI). These costs are above the ethanol market price for during the same time period ($1.50 - $2.50/gal). The co-production of acetic acid greatly improves the process economics as shown in the figure below. Here, 20% of the acetic acid is diverted from ethanol production and assumed to be sold as a co-product at the prevailing market prices ($0.40 - $0.60/lb acetic acid), resulting in competitive ethanol production costs.

  1. A techno-economic evaluation of a biomass energy conversion park

    NARCIS (Netherlands)

    Dael, Van M.; Passel, van S.; Pelkmans, L.; Guisson, R.; Reumermann, P.; Luzardo, N.M.; Witters, N.; Broeze, J.

    2013-01-01

    Biomass as a renewable energy source has many advantages and is therefore recognized as one of the main renewable energy sources to be deployed in order to attain the target of 20% renewable energy use of final energy consumption by 2020 in Europe. In this paper the concept of a biomass Energy

  2. Biological CO2 conversion to acetate in subsurface coal-sand formation using a high-pressure reactor system.

    Science.gov (United States)

    Ohtomo, Yoko; Ijiri, Akira; Ikegawa, Yojiro; Tsutsumi, Masazumi; Imachi, Hiroyuki; Uramoto, Go-Ichiro; Hoshino, Tatsuhiko; Morono, Yuki; Sakai, Sanae; Saito, Yumi; Tanikawa, Wataru; Hirose, Takehiro; Inagaki, Fumio

    2013-01-01

    Geological CO2 sequestration in unmineable subsurface oil/gas fields and coal formations has been proposed as a means of reducing anthropogenic greenhouse gasses in the atmosphere. However, the feasibility of injecting CO2 into subsurface depends upon a variety of geological and economic conditions, and the ecological consequences are largely unpredictable. In this study, we developed a new flow-through-type reactor system to examine potential geophysical, geochemical and microbiological impacts associated with CO2 injection by simulating in-situ pressure (0-100 MPa) and temperature (0-70°C) conditions. Using the reactor system, anaerobic artificial fluid and CO2 (flow rate: 0.002 and 0.00001 ml/min, respectively) were continuously supplemented into a column comprised of bituminous coal and sand under a pore pressure of 40 MPa (confined pressure: 41 MPa) at 40°C for 56 days. 16S rRNA gene analysis of the bacterial components showed distinct spatial separation of the predominant taxa in the coal and sand over the course of the experiment. Cultivation experiments using sub-sampled fluids revealed that some microbes survived, or were metabolically active, under CO2-rich conditions. However, no methanogens were activated during the experiment, even though hydrogenotrophic and methylotrophic methanogens were obtained from conventional batch-type cultivation at 20°C. During the reactor experiment, the acetate and methanol concentration in the fluids increased while the δ(13)Cacetate, H2 and CO2 concentrations decreased, indicating the occurrence of homo-acetogenesis. 16S rRNA genes of homo-acetogenic spore-forming bacteria related to the genus Sporomusa were consistently detected from the sandstone after the reactor experiment. Our results suggest that the injection of CO2 into a natural coal-sand formation preferentially stimulates homo-acetogenesis rather than methanogenesis, and that this process is accompanied by biogenic CO2 conversion to acetate.

  3. Biological CO2 conversion to acetate in subsurface coal-sand formation using a high-pressure reactor system

    Directory of Open Access Journals (Sweden)

    Yoko eOhtomo

    2013-12-01

    Full Text Available Geological CO2 sequestration in unmineable subsurface oil/gas fields and coal formations has been proposed as a means of reducing anthropogenic greenhouse gasses in the atmosphere. However, the feasibility of injecting CO2 into subsurface depends upon a variety of geological and economic conditions, and the ecological consequences are largely unpredictable. In this study, we developed a new flow-through-type reactor system to examine potential geophysical, geochemical and microbiological impacts associated with CO2 injection by simulating in situ pressure (0–100 MPa and temperature (0–70°C conditions. Using the reactor system, anaerobic artificial fluid and CO2 (flow rate: 0.002 and 0.00001 mL/min, respectively were continuously supplemented into a column comprised of bituminous coal and sand under a pore pressure of 40 MPa (confined pressure: 41 MPa at 40°C for 56 days. 16S rRNA gene analysis of the bacterial components showed distinct spatial separation of the predominant taxa in the coal and sand over the course of the experiment. Cultivation experiments using sub-sampled fluids revealed that some microbes survived, or were metabolically active, under CO2-rich conditions. However, no methanogens were activated during the experiment, even though hydrogenotrophic and methylotrophic methanogens were obtained from conventional batch-type cultivation at 20°C. During the reactor experiment, the acetate and methanol concentration in the fluids increased while the δ13Cacetate, H2 and CO2 concentrations decreased, indicating the occurrence of homo-acetogenesis. 16S rRNA genes of homo-acetogenic spore-forming bacteria related to the genus Sporomusa were consistently detected from the sandstone after the reactor experiment. Our results suggest that the injection of CO2 into a natural coal-sand formation preferentially stimulates homo-acetogenesis rather than methanogenesis, and that this process is accompanied by biogenic CO2 conversion to

  4. Mass spectra features of biomass burning boiler and coal burning boiler emitted particles by single particle aerosol mass spectrometer.

    Science.gov (United States)

    Xu, Jiao; Li, Mei; Shi, Guoliang; Wang, Haiting; Ma, Xian; Wu, Jianhui; Shi, Xurong; Feng, Yinchang

    2017-11-15

    In this study, single particle mass spectra signatures of both coal burning boiler and biomass burning boiler emitted particles were studied. Particle samples were suspended in clean Resuspension Chamber, and analyzed by ELPI and SPAMS simultaneously. The size distribution of BBB (biomass burning boiler sample) and CBB (coal burning boiler sample) are different, as BBB peaks at smaller size, and CBB peaks at larger size. Mass spectra signatures of two samples were studied by analyzing the average mass spectrum of each particle cluster extracted by ART-2a in different size ranges. In conclusion, BBB sample mostly consists of OC and EC containing particles, and a small fraction of K-rich particles in the size range of 0.2-0.5μm. In 0.5-1.0μm, BBB sample consists of EC, OC, K-rich and Al_Silicate containing particles; CBB sample consists of EC, ECOC containing particles, while Al_Silicate (including Al_Ca_Ti_Silicate, Al_Ti_Silicate, Al_Silicate) containing particles got higher fractions as size increase. The similarity of single particle mass spectrum signatures between two samples were studied by analyzing the dot product, results indicated that part of the single particle mass spectra of two samples in the same size range are similar, which bring challenge to the future source apportionment activity by using single particle aerosol mass spectrometer. Results of this study will provide physicochemical information of important sources which contribute to particle pollution, and will support source apportionment activities. Copyright © 2017. Published by Elsevier B.V.

  5. Studies of materials found in products and wastes from coal-conversion processes

    International Nuclear Information System (INIS)

    Petersen, M.R.; Fruchter, J.S.

    1979-01-01

    Researchers at Pacific Northwest Laboratory (PNL) have been investigating materials from synthetic fossil-fuel processes. During this past year, solids from the Lignite Gasification Pilot Plant and samples from the Solvent Refined Coal Pilot Plant (SRC-II mode) have been analyzed for organic and inorganic constituents. Observations on these samples are summarized

  6. Advanced gasifier and water gas shift technologies for low cost coal conversion to high hydrogen syngas

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, Andrew Kramer [Gas Technology Inst., Des Plaines, IL (United States)

    2016-09-30

    The Gas Technology Institute (GTI) and team members RTI International (RTI), Coanda Research and Development, and Nexant, are developing and maturing a portfolio of technologies to meet the United States Department of Energy (DOE) goals for lowering the cost of producing high hydrogen syngas from coal for use in carbon capture power and coal-to-liquids/chemicals. This project matured an advanced pilot-scale gasifier, with scalable and commercially traceable components, to readiness for use in a first-of-a-kind commercially-relevant demonstration plant on the scale of 500-1,000 tons per day (TPD). This was accomplished through cold flow simulation of the gasifier quench zone transition region at Coanda and through an extensive hotfire gasifier test program on highly reactive coal and high ash/high ash fusion temperature coals at GTI. RTI matured an advanced water gas shift process and catalyst to readiness for testing at pilot plant scale through catalyst development and testing, and development of a preliminary design basis for a pilot scale reactor demonstrating the catalyst. A techno-economic analysis was performed by Nexant to assess the potential benefits of the gasifier and catalyst technologies in the context of power production and methanol production. This analysis showed an 18%reduction in cost of power and a 19%reduction in cost of methanol relative to DOE reference baseline cases.

  7. Monetization of Nigeria coal by conversion to hydrocarbon fuels through Fischer-Tropsch process

    Energy Technology Data Exchange (ETDEWEB)

    Oguejiofor, G.C. [Nnamdi Azikiwe University, Awka (Nigeria). Dept. of Chemical Engineering

    2008-07-01

    Given the instability of crude oil prices and the disruptions in crude oil supply chains, this article offers a complementing investment proposal through diversification of Nigeria's energy source and dependence. Therefore, the following issues were examined and reported: A comparative survey of coal and hydrocarbon reserve bases in Nigeria was undertaken and presented. An excursion into the economic, environmental, and technological justifications for the proposed diversification and roll-back to coal-based resource was also undertaken and presented. The technology available for coal beneficiation for environmental pollution control was reviewed and reported. The Fischer-Tropsch synthesis and its advances into Sasol's slurry phase distillate process were reviewed. Specifically, the adoption of Sasol's advanced synthol process and the slurry phase distillate process were recommended as ways of processing the products of coal gasification. The article concludes by discussing all the above-mentioned issues with regard to value addition as a means of wealth creation and investment.

  8. Genetic Modification of Short Rotation Poplar Biomass Feedstock for Efficient Conversion to Ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Dinus, R.J.

    2000-08-30

    The Bioenergy Feedstock Development Program, Environmental Sciences Division, Oak Ridge National Laboratory is developing poplars (Populus species and hybrids) as sources of renewable energy, i.e., ethanol. Notable increases in adaptability, volume productivity, and pest/stress resistance have been achieved via classical selection and breeding and intensified cultural practices. Significant advances have also been made in the efficiencies of harvesting and handling systems. Given these and anticipated accomplishments, program leaders are considering shifting some attention to genetically modifying feedstock physical and chemical properties, so as to improve the efficiency with which feedstocks can be converted to ethanol. This report provides an in-depth review and synthesis of opportunities for and feasibilities of genetically modifying feedstock qualities via classical selection and breeding, marker-aided selection and breeding, and genetic transformation. Information was collected by analysis of the literature, with emphasis on that published since 1995, and interviews with prominent scientists, breeders, and growers. Poplar research is well advanced, and literature is abundant. The report therefore primarily reflects advances in poplars, but data from other species, particularly other shortrotation hardwoods, are incorporated to fill gaps. An executive summary and recommendations for research, development, and technology transfer are provided immediately after the table of contents. The first major section of the report describes processes most likely to be used for conversion of poplar biomass to ethanol, the various physical and chemical properties of poplar feedstocks, and how such properties are expected to affect process efficiency. The need is stressed for improved understanding of the impact of change on both overall process and individual process step efficiencies. The second part documents advances in trait measurement instrumentation and methodology

  9. The solar thermal gasification of coal-energy conversion efficiency and CO2 mitigation potential

    International Nuclear Information System (INIS)

    Zedtwitz, P. von; Steinfeld, A.

    2003-01-01

    The steam-gasification of coal (peat, lignite, bituminous, and anthracite) into syngas is investigated using concentrated solar energy as the source of high-temperature process heat. The advantages of the solar-driven process are threefold: (1) the discharge of pollutants is avoided; (2) the gaseous products are not contaminated by combustion byproducts; and (3) the calorific value of the fuel is upgraded. A second-law analysis is carried out for a blackbody solar cavity-receiver/reactor operated at 1350 K and subjected to a mean solar flux concentration ratio of 2000. Two technically viable routes for generating electricity using the gasification products are examined: (1) syngas is used to fuel a 55%-efficient combined Brayton-Rankine cycle; and (2) syngas is further processed to H 2 (by water-gas shift reaction followed by H 2 /CO 2 separation) which is used to fuel a 65%-efficient fuel cell. The maximum exergy efficiency, defined as the ratio of electric power output to the thermal power input (solar power+heating value of reactants), reaches 50% for the combined cycle route and 46% for the fuel cell route. Both of these routes offer a net gain in the electrical output by a factor varying in the range 1.7-1.9, depending on the coal type and the power generation route, vis-a-vis the direct use of coal for fueling a 35%-efficient Rankine cycle. Specific CO 2 emissions amounts to 0.49-0.56 kg CO 2 /kWh e , about half as much as the specific emissions discharged by conventional coal-fired power plants. Solar/coal hybrid processes, such as the one examined in this paper, offer important intermediate solutions towards a sustainable energy supply system

  10. Coal conversion rate in 1t/d PSU liquefaction reactor; 1t/d PSU ekika hannoto ni okeru sekitan tenka sokudo no kento

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, K.; Imada, K. [Nippon Steel Corp., Tokyo (Japan); Nogami, Y.; Inokuchi, K. [Mitsui SRC Development Co. Ltd., Tokyo (Japan)

    1996-10-28

    To investigate the coal liquefaction characteristics, coal slurry samples were taken from the outlets of the reactors and slurry preheater of NEDOL process 1 t/d process supporting unit (PSU), and were analyzed. Tanito Harum coal was used for liquefaction, and the slurry was prepared with recycle solvent. Liquefaction was performed using synthetic iron sulfide catalyst at reaction temperatures, 450 and 465{degree}C. Solubility of various solid samples was examined against n-hexane, toluene, and tetrahydrofuran (THF). When considering the decrease of IMO (THF-insoluble and ash) as a characteristic of coal conversion reaction, around 20% at the outlet of the slurry preheater, around 70% within the first reactor, and several percents within the successive second and third reactors were converted against supplied coal. Increase of reaction temperature led to the increase of evaporation of oil fraction, which resulted in the decrease of actual slurry flow rate and in the increase of residence time. Thus, the conversion of coal was accelerated by the synergetic effect of temperature and time. Reaction rate constant of the coal liquefaction was around 2{times}10{sup -1} [min{sup -1}], which increased slightly with increasing the reaction temperature from 450 to 465{degree}C. 3 refs., 5 figs., 1 tab.

  11. A review of thermo-chemical conversion of biomass into biofuels-focusing on gas cleaning and up-grading process steps

    OpenAIRE

    Brandin, Jan; Hulteberg, Christian; Kusar, Henrik

    2017-01-01

    It is not easy to replace fossil-based fuels in the transport sector, however, an appealing solution is to use biomass and waste for the production of renewable alternatives. Thermochemical conversion of biomass for production of synthetic transport fuels by the use of gasification is a promising way to meet these goals. One of the key challenges in using gasification systems with biomass and waste as feedstock is the upgrading of the raw gas produced in the gasifier. These materials replacin...

  12. Systems Based Approaches for Thermochemical Conversion of Biomass to Bioenergy and Bioproducts

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Steven [Auburn Univ., AL (United States)

    2016-07-11

    Auburn’s Center for Bioenergy and Bioproducts conducts research on production of synthesis gas for use in power generation and the production of liquid fuels. The overall goal of our gasification research is to identify optimal processes for producing clean syngas to use in production of fuels and chemicals from underutilized agricultural and forest biomass feedstocks. This project focused on construction and commissioning of a bubbling-bed fluidized-bed gasifier and subsequent shakedown of the gasification and gas cleanup system. The result of this project is a fully commissioned gasification laboratory that is conducting testing on agricultural and forest biomass. Initial tests on forest biomass have served as the foundation for follow-up studies on gasification under a more extensive range of temperatures, pressures, and oxidant conditions. The laboratory gasification system consists of a biomass storage tank capable of holding up to 6 tons of biomass; a biomass feeding system, with loss-in-weight metering system, capable of feeding biomass at pressures up to 650 psig; a bubbling-bed fluidized-bed gasification reactor capable of operating at pressures up to 650 psig and temperatures of 1500oF with biomass flowrates of 80 lb/hr and syngas production rates of 37 scfm; a warm-gas filtration system; fixed bed reactors for gas conditioning; and a final quench cooling system and activated carbon filtration system for gas conditioning prior to routing to Fischer-Tropsch reactors, or storage, or venting. This completed laboratory enables research to help develop economically feasible technologies for production of biomass-derived synthesis gases that will be used for clean, renewable power generation and for production of liquid transportation fuels. Moreover, this research program provides the infrastructure to educate the next generation of engineers and scientists needed to implement these technologies.

  13. Process Design and Economics for the Conversion of Lignocellulosic Biomass to High Octane Gasoline: Thermochemical Research Pathway with Indirect Gasification and Methanol Intermediate

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Talmadge, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Dutta, Abhijit [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hensley, Jesse [National Renewable Energy Lab. (NREL), Golden, CO (United States); Schaidle, Josh [National Renewable Energy Lab. (NREL), Golden, CO (United States); Biddy, Mary J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Humbird, David [DWH Process Consulting, Denver, CO (United States); Snowden-Swan, Lesley J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ross, Jeff [Harris Group, Inc., Seattle, WA (United States); Sexton, Danielle [Harris Group, Inc., Seattle, WA (United States); Yap, Raymond [Harris Group, Inc., Seattle, WA (United States); Lukas, John [Harris Group, Inc., Seattle, WA (United States)

    2015-03-01

    The U.S. Department of Energy (DOE) promotes research for enabling cost-competitive liquid fuels production from lignocellulosic biomass feedstocks. The research is geared to advance the state of technology (SOT) of biomass feedstock supply and logistics, conversion, and overall system sustainability. As part of their involvement in this program, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) investigate the economics of conversion pathways through the development of conceptual biorefinery process models. This report describes in detail one potential conversion process for the production of high octane gasoline blendstock via indirect liquefaction (IDL). The steps involve the conversion of biomass to syngas via indirect gasification followed by gas cleanup and catalytic syngas conversion to a methanol intermediate; methanol is then further catalytically converted to high octane hydrocarbons. The conversion process model leverages technologies previously advanced by research funded by the Bioenergy Technologies Office (BETO) and demonstrated in 2012 with the production of mixed alcohols from biomass. Biomass-derived syngas cleanup via tar and hydrocarbons reforming was one of the key technology advancements as part of that research. The process described in this report evaluates a new technology area with downstream utilization of clean biomass-syngas for the production of high octane hydrocarbon products through a methanol intermediate, i.e., dehydration of methanol to dimethyl ether (DME) which subsequently undergoes homologation to high octane hydrocarbon products.

  14. The 3R anthracite clean coal technology: Economical conversion of brown coal to anthracite type clean coal by low temperature carbonization pre-treatment process

    Directory of Open Access Journals (Sweden)

    Someus Edward

    2006-01-01

    Full Text Available The preventive pre-treatment of low grade solid fuels is safer, faster, better, and less costly vs. the "end-of-the-pipe" post treatment solutions. The "3R" (Recycle-Reduce-Reuse integrated environment control technology provides preventive pre-treatment of low grade solid fuels, such as brown coal and contaminated solid fuels to achieve high grade cleansed fuels with anthracite and coke comparable quality. The goal of the 3R technology is to provide cost efficient and environmentally sustainable solutions by preventive pre-treatment means for extended operations of the solid fuel combustion power plants with capacity up to 300 MWe power capacities. The 3R Anthracite Clean Coal end product and technology may advantageously be integrated to the oxyfuel-oxy-firing, Foster Wheeler anthracite arc-fired utility type boiler and Heat Pipe Reformer technologies in combination with CO2 capture and storage programs. The 3R technology is patented original solution. Advantages. Feedstock flexibility: application of pre-treated multi fuels from wider fuel selection and availability. Improved burning efficiency. Technology flexibility: efficient and advantageous inter-link to proven boiler technologies, such as oxyfuel and arcfired boilers. Near zero pollutants for hazardous-air-pollutants: preventive separation of halogens and heavy metals into small volume streams prior utilization of cleansed fuels. >97% organic sulphur removal achieved by the 3R thermal pre-treatment process. Integrated carbon capture and storage (CCS programs: the introduction of monolitic GHG gas is improving storage safety. The 3R technology offers significant improvements for the GHG CCS conditions. Cost reduction: decrease of overall production costs when all real costs are calculated. Improved safety: application of preventive measures. For pre-treatment a specific purpose designed, developed, and patented pyrolysis technology used, consisting of a horizontally arranged externally

  15. Synergistic combination of biomass torrefaction and co-gasification: Reactivity studies.

    Science.gov (United States)

    Zhang, Yan; Geng, Ping; Liu, Rui

    2017-12-01

    Two typical biomass feedstocks obtained from woody wastes and agricultural residues were torrefied or mildly pyrolized in a fixed-bed reactor. Effects of the torrefaction conditions on product distributions, compositional and energetic properties of the solid products, char gasification reactivity, and co-gasification behavior between coal and torrefied solids were systematically investigated. Torrefaction pretreatment produced high quality bio-solids with not only increased energy density, but also concentrated alkali and alkaline earth metals (AAEM). As a consequence of greater retention of catalytic elements in the solid products, the chars derived from torrefied biomass exhibited a faster conversion than those derived from raw biomass during CO 2 gasification. Furthermore, co-gasification of coal/torrefied biomass blends exhibited stronger synergy compared to the coal/raw biomass blends. The results and insights provided by this study filled a gap in understanding synergy during co-gasification of coal and torrefied biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Integrated Biorefinery for Conversion of Biomass to Ethanol, Synthesis Gas, and Heat

    Energy Technology Data Exchange (ETDEWEB)

    Leon, Gerson [Abengoa Bioenergy, Hugoton, KS (United States)

    2017-06-20

    Goal of the project was to Design, build and operate a commercial scale bioethanol facility that uses sustainable biomass feedstock, drastically reduces greenhouse gas (GHG) emissions while achieving output production, yield and cost targets.

  17. Breeding Energy Cane Cultivars as a Biomass Feedstock for Coal Replacement

    Science.gov (United States)

    Research and advanced breeding have demonstrated that energy cane possesses all of the attributes desirable in a biofuel feedstock: extremely good biomass yield in a small farming footprint; negative/neutral carbon footprint; maximum outputs from minimum inputs; well-established growing model for fa...

  18. Evaluation of Biomass Gasification to Produce Reburning Fuel for Coal-Fired Boilers

    Science.gov (United States)

    Gasification and reburning testing with biomass and other wastes is of interest to both the U.S. EPA and the Italian Ministry of the Environment & Territory. Gasification systems that use biofuels or wastes as feedstock can provide a clean, efficient source of synthesis gas and p...

  19. Conversion of a hard coal fired power plant into a modern combined cycle

    Energy Technology Data Exchange (ETDEWEB)

    Brandauer, M. [Badenwerk AG, Karlsruhe (Germany)

    1997-12-31

    The repowering of a coal fired power plant into a modern combined cycle is described. The plant is located in Karlsruhe, Germany. The hard coal fired boiler is replaced by a gas turbine with a heat recovery steam generator. The initial steam turbine as well as major components of the water-steam cycle were revised and integrated in the new plant. To guarantee fast start-up times, an unfired once through type steam generator was chosen. The heat recovery steam generator is connected to a gas turbine, firing natural gas or fuel oil no. 2. In repowering the plant, thermal efficiency increased from 38% for the steam power plant to about 58% in combined cycle application. 6 refs., 5 figs., 3 tabs.

  20. Conversion to use of digital chest images for surveillance of coal workers' pneumoconiosis (black lung).

    Science.gov (United States)

    Levine, Betty A; Ingeholm, Mary Lou; Prior, Fred; Mun, Seong K; Freedman, Matthew; Weissman, David; Attfield, Michael; Wolfe, Anita; Petsonk, Edward

    2009-01-01

    To protect the health of active U.S. underground coal miners, the National Institute for Occupational Safety and Health (NIOSH) has a mandate to carry out surveillance for coal workers' pneumoconiosis, commonly known as Black Lung (PHS 2001). This is accomplished by reviewing chest x-ray films obtained from miners at approximately 5-year intervals in approved x-ray acquisition facilities around the country. Currently, digital chest images are not accepted. Because most chest x-rays are now obtained in digital format, NIOSH is redesigning the surveillance program to accept and manage digital x-rays. This paper highlights the functional and security requirements for a digital image management system for a surveillance program. It also identifies the operational differences between a digital imaging surveillance network and a clinical Picture Archiving Communication Systems (PACS) or teleradiology system.

  1. Ab initio calculations and kinetic modeling of thermal conversion of methyl chloride: implications for gasification of biomass

    DEFF Research Database (Denmark)

    Singla, Mallika; Rasmussen, Morten Lund; Hashemi, Hamid

    2018-01-01

    . In the present work, the thermal conversion of CH3Cl under gasification conditions was investigated. A detailed chemical kinetic model for pyrolysis and oxidation of methyl chloride was developed and validated against selected experimental data from the literature. Key reactions of CH2Cl with O2 and C2H4......Limitations in current hot gas cleaning methods for chlorine species from biomass gasification may be a challenge for end use such as gas turbines, engines, and fuel cells, all requiring very low levels of chlorine. During devolatilization of biomass, chlorine is released partly as methyl chloride...... in low-temperature gasification. The present work illustrates how ab initio theory and chemical kinetic modeling can help to resolve emission issues for thermal processes in industrial scale....

  2. Biological CO2 conversion to acetate in subsurface coal-sand formation using a high-pressure reactor system

    Science.gov (United States)

    Ohtomo, Y.; Ijiri, A.; Ikegawa, Y.; Tsutsumi, M.; Imachi, H.; Uramoto, G.; Hoshino, T.; Morono, Y.; Tanikawa, W.; Hirose, T.; Inagaki, F.

    2013-12-01

    belonged to a methylotrophic methanogen within the genus Methanosarcina. For the acetate-fed culture, no cell proliferation and methane-production were observed after two-years incubation. During the injection of CO2 and fluid, increase of dissolved CH4 concentration was observed, of which δ13CCH4 were constantly similar to those of the absorbed coal-bed methane (δ13CCBM, ~70‰), suggesting the enhanced gas recovery with fluid flow. The output volume of CO2 (ΣCO2out, 22.1 to 125.6 mM) was smaller than initial concentration (ΣCO2in, 138.38 mM), which can be explained by either adsorption on coal, formation of carbonate minerals, or microbial consumption. Increase of acetate concentration in the fluids was also observed, whereas δ13Cacetate depleted during experiment. Considering with the decrease of additive H2, it is most likely that homo-acetogenesis would occur during experiments, which is consistent with detection of Sporomusa-related 16S rRNA genes, homo-acetogenic bacterium, in cloning analysis of sandstone after experiment. Decrease of formate concentrations and increase of δ13Cformate indicate bacterial consumption of formate and isotopic fractionation. Our results suggest that CO2 injection to natural coal-sand formation stimulates homo-acetogenesis rather than methanogenesis, accompanied by biogenic CO2 conversion to acetate.

  3. Subtask 3.11 - Production of CBTL-Based Jet Fuels from Biomass-Based Feedstocks and Montana Coal

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Ramesh

    2014-06-01

    The Energy & Environmental Research Center (EERC), in partnership with the U.S. Department of Energy (DOE) and Accelergy Corporation, an advanced fuels developer with technologies exclusively licensed from Exxon Mobil, undertook Subtask 3.11 to use a recently installed bench-scale direct coal liquefaction (DCL) system capable of converting 45 pounds/hour of pulverized, dried coal to a liquid suitable for upgrading to fuels and/or chemicals. The process involves liquefaction of Rosebud mine coal (Montana coal) coupled with an upgrading scheme to produce a naphthenic fuel. The upgrading comprises catalytic hydrotreating and saturation to produce naphthenic fuel. A synthetic jet fuel was prepared by blending equal volumes of naphthenic fuel with similar aliphatic fuel derived from biomass and 11 volume % of aromatic hydrocarbons. The synthetic fuel was tested using standard ASTM International techniques to determine compliance with JP-8 fuel. The composite fuel thus produced not only meets but exceeds the military aviation fuel-screening criteria. A 500-milliliter synthetic jet fuel sample which met internal screening criteria was submitted to the Air Force Research Laboratory (AFRL) at Wright–Patterson Air Force Base, Dayton, Ohio, for evaluation. The sample was confirmed by AFRL to be in compliance with U.S. Air Force-prescribed alternative aviation fuel initial screening criteria. The results show that this fuel meets or exceeds the key specification parameters for JP-8, a petroleum-based jet fuel widely used by the U.S. military. JP-8 specifications include parameters such as freeze point, density, flash point, and others; all of which were met by the EERC fuel sample. The fuel also exceeds the thermal stability specification of JP-8 fuel as determined by the quartz crystalline microbalance (QCM) test also performed at an independent laboratory as well as AFRL. This means that the EERC fuel looks and acts identically to petroleum-derived jet fuel and can be used

  4. Materials technology for coal-conversion processes. Progress report, January-March 1980

    Energy Technology Data Exchange (ETDEWEB)

    Ellingson, William A.

    1980-06-01

    The program entails nondestructive testing, failure analysis, and studies of erosive wear, corrosion, and refractory degradation. Analysis of recent refractory-slag interaction tests suggests that as the chromia content is increased from 10 to 32%, the primary reaction product changes from calcium hexaluminate to spinel, significantly increasing the corrosion resistance of the refractory. Field reliability of the high-temperature ultrasonic erosion scanner was demonstrated at both a coal liquefaction plant (SRC at Tacoma, WA) and a coal gasification plant (Morgantown, WV). Continuous high-temperature operation has been demonstrated and an accuracy of +-0.025 mm seems achievable. Equipment has been ordered for field tests of passive acoustic systems at Exxon. This includes a four-channel tape recorder, differential amplifiers, and signal conditioners. Corrosion studies have been completed on effects of multicomponent gas environments on corrosion mechanisms and uniaxial tensile properties of Fe-Ni-Cr alloys. Results of these and other tests utilizing 10,000-h exposures suggest that corrosion rates of 0.6 mm/y can be expected. Failure analysis activities included studies of compressor diaphragms from the Grand Forks Energy Technology Center coal-liquefaction continuous-process unit. Cracks were found in two of the three diaphragms. Failure of an internal solids transfer line from HYGAS appears to have been caused by severe localized sulfidation of the high-nickel Inconel 182 weld metal used to fabricate the line.

  5. Product quality optimization in an integrated biorefinery: Conversion of pistachio nutshell biomass to biofuels and activated biochars via pyrolysis

    International Nuclear Information System (INIS)

    Işıtan, Seçil; Ceylan, Selim; Topcu, Yıldıray; Hintz, Chloe; Tefft, Juliann; Chellappa, Thiago; Guo, Jicheng; Goldfarb, Jillian L.

    2016-01-01

    Highlights: • Pyrolysis temperature key variable in manipulating biofuel quality. • Pyrolysis temperature does not impact activated biochar surface area. • Activation temperature key variable to optimize surface area of pistachio biochar. • Statistical model accurately predicts surface area of biochar, especially above 600 m 2 /g. - Abstract: An economically viable transition to a renewable, sustainable energy future hinges on the ability to simultaneously produce multiple high value products from biomass precursors. Though there is considerable literature on the thermochemical conversion of biomass to biofuels and biochars, there are few holistic examinations that seek to understand trade-offs between biofuel quality and the associated pyrolysis conditions on activated carbons made from the resulting biochars. Using an Ordinary Least Squares regression analysis, this study probes the impact of pyrolysis and activation temperature on surface areas and pore volumes for 28 carbon dioxide-activated carbons. Activation temperature has the largest single impact of any other variable; increasing the temperature from 800 to 900 °C leads to an increase in surface area of more than 300 m 2 /g. Contrary to some prior results, pyrolysis temperature has minimal effect on the resulting surface area and pore volume, suggesting that optimizing the temperature at which biofuels are extracted will have little impact on carbon dioxide-activated carbons. Increasing pyrolysis temperature increases methane formation but decreases gaseous hydrocarbons. Bio-oil obtained at lower pyrolysis temperatures shows fewer oxygenated compounds, indicating a greater stability, but higher pyrolysis temperatures maximize production of key biorefinery intermediaries such as furans. By analyzing data in such a holistic manner, it may be possible to optimize the production of biofuels and activated carbons from biomass by minimizing the amount of raw materials and energy necessary to maximize

  6. Stability of Transition-metal Carbides in Liquid Phase Reactions Relevant for Biomass-Based Conversion

    NARCIS (Netherlands)

    Souza Macêdo, L.; Stellwagen, D.R.; Teixeira da Silva, V.; Bitter, J.H.

    2015-01-01

    Transition-metal carbides have been employed for biobased conversions aiming to replace the rare noble metals. However, when reactions are in liquid phase, many authors have observed catalyst deactivation. The main routes of deactivation in liquid phase biobased conversions are coke deposition,

  7. Experimental Studies of Coal and Biomass Fuel Synthesis and Flame Characterization for Aircraft Engines (Year Two)

    Science.gov (United States)

    2011-03-31

    first stage comprised a concentric tube heat exchanger, cooled with a mixture of ethylene glycol and water, and a Swagelok coalescence filter. The... ethylene glycol and water, and a coalescing filter. The second stage was comprised of a cold-finger-type vapor trap (Figure 1.9) cooled externally...fundamentals of fast-pyrolysis and fast-hydropyrolysis. Experiments were performed with cellulose particles of 20-50 μm as representative of biomass

  8. Pyrolysis kinetics study of three biomass solid wastes for thermochemical conversion into liquid fuels

    Science.gov (United States)

    Tuly, S. S.; Parveen, M.; Islam, M. R.; Rahman, M. S.; Haniu, H.

    2017-06-01

    Pyrolysis has been considered as the most efficient way of producing liquid fuel from biomass and its wastes. In this study the thermal degradation characteristics and pyrolysis kinetics of three selected biomass samples of Jute stick (Corchorus capsularis), Japanese cedar wood (Cryptomeria japonica) and Tamarind seed (Tamarindus indica) have been investigated in a nitrogen atmosphere at heating rates of 10°C/min and 60°C/min over a temperature range of 30°C to 800°C. The weight loss region for the three biomass solid wastes has shifted to a higher temperature range and the weight loss rate has increased with increasing heating rate. In this case, the three biomass samples have represented the similar behavior. The initial reaction temperature has decreased with increasing heating rate but the reaction range and reaction rate have increased. The percentage of total weight loss is higher for cedar wood than jute stick and tamarind seed. For the three biomass wastes, the overall rate equation has been modeled properly by one simplified equation and from here it is possible to determine kinetic parameters of unreacted materials based on Arrhenious form. The calculated rate equation compares thoroughly well with the measured TG and DTG data.

  9. Exploring the Perspectives of Alternative Fuels Production. Towards alternative fuels with zero, or negative greenhouse gas emissions, considering coal, biomass and carbon capture and storage

    International Nuclear Information System (INIS)

    Eerhart, A.J.J.E.

    2009-05-01

    In this report it is shown that future improvements in the production process of Fischer-Tropsch fuels can reduce costs and produce CO2 neutral gasoline and diesel. Major benefits lie in the improvement of the overall temperature profile of the plant at higher temperatures and carbon capture and storage. Based on literature studies, it was found that future technologies can operate at higher temperatures, and thus a better integration of heating and cooling. It was found that the future model of a CBTL (Coal and Biomass To Liquids) plant can produce liquids at a break-even oil price (BEOP) of 58.60 USD/barrel at 100% coal, with similar greenhouse gas emissions compared to liquids produced by conventional means today. However, once biomass is introduced at a ratio of 33% - 67% biomass, a CBTL plant becomes neutral in terms of GHG emissions. The BEOP for this neutral scenario is 69.60 USD/barrel. Looking at the 100% biomass scenario, the BEOP becomes 82.77 USD/barrel. The greenhouse gas emissions at this point are negative, meaning that more CO2 is captured during the process than is needed to grow biomass. This in effect makes a CBTL plant a carbon sink. By introducing future technologies and improvements, such as membrane technology for CCS (Carbon dioxide Capture and Storage), higher FTS (Fischer-Tropsch Synthesis) catalyst selectivities and an overall better temperature profile, the BEOP for the 100% coal scenario drops from 58.60 to 45.27 USD/barrel. The BEOP for the neutral scenario drops from 69.60 to 57.99 USD/barrel. The BEOP for the 100% biomass scenario drops from 82.77 to 69.07 USD/barrel. For the neutral scenario, the BEOP drops from 69.60 to 57.99 USD/barrel. If one assumes that a BEOP of 60 USD/barrel is economically reasonable, one can calculate the level of a carbon tax, once a carbon tax regime is imposed. For SOTA (state-of-the-art) 100% coal, FS (Future Scenario) 100%, FS 50% coal and FS 33% coal, there is no need for a carbon tax to reach 60 USD

  10. Use of artificial intelligence techniques for optimisation of co-combustion of coal with biomass

    Energy Technology Data Exchange (ETDEWEB)

    Tan, C.K.; Wilcox, S.J.; Ward, J. [University of Glamorgan, Pontypridd (United Kingdom). Division of Mechanical Engineering

    2006-03-15

    The optimisation of burner operation in conventional pulverised-coal-fired boilers for co-combustion applications represents a significant challenge This paper describes a strategic framework in which Artificial Intelligence (AI) techniques can be applied to solve such an optimisation problem. The effectiveness of the proposed system is demonstrated by a case study that simulates the co-combustion of coal with sewage sludge in a 500-kW pilot-scale combustion rig equipped with a swirl stabilised low-NOx burner. A series of Computational Fluid Dynamics (CFD) simulations were performed to generate data for different operating conditions, which were then used to train several Artificial Neural Networks (ANNs) to predict the co-combustion performance. Once trained, the ANNs were able to make estimations of unseen situations in a fraction of the time taken by the CFD simulation. Consequently, the networks were capable of representing the underlying physics of the CFD models and could be executed efficiently for a large number of iterations as required by optimisation techniques based on Evolutionary Algorithms (EAs). Four operating parameters of the burner, namely the swirl angles and flow rates of the secondary and tertiary combustion air were optimised with the objective of minimising the NOx and CO emissions as well as the unburned carbon at the furnace exit. The results suggest that ANNs combined with EAs provide a useful tool for optimising co-combustion processes.

  11. Coal conversion and aquatic environments: overview of impacts and strategies for monitoring. Environmental Sciences Division publication No. 1112

    Energy Technology Data Exchange (ETDEWEB)

    Roop, R. D.; Sanders, F. S.; Barnthouse, L. W.

    1977-01-01

    Impact assessment and environmental monitoring are difficult but crucial steps needed to ensure the environmentally safe development of coal conversion technologies. This paper summarizes strategies for impact assessment and monitoring developed at Oak Ridge National Laboratory for DOE's program to build demonstration facilities. Impacts on aquatic environments depend heavily on the abiotic and biotic characteristics of the site and details of facility design. Key issues include availability of water, use of ''zero-discharge'' designs, and methods of handling solid wastes. In monitoring programs emphasis is placed on (1) thorough use of existing data, (2) use of a synoptic reconnaissance survey, criteria for choosing parameters to be measured, and the search for ecologically meaningful, cost-effective methods.

  12. Coal-92

    International Nuclear Information System (INIS)

    Hillring, B.; Sparre, C.

    1992-11-01

    Swedish consumption of coal and coke during 1991 and trends in technology, environment and market aspects of coal use are reported. Steam coal use in the heating sector was unchanged from 1991, 1.2 Mtons. Reduced consumption in smaller district heating units (due to conversion to biofuels and gas) was compensated by increased use for power generation in cogeneration plants. Coal consumption in industry fell 0.10 Mton to 0.84 Mton due to lower production in one industry branch. Import of steam coal was 1.1 Mton (down 0.5 Mton from 1990) since new rules for strategic reserves allowed a reduction of stocks. During the last five years stocks have been reduced by 2 Mtons. Import of metallurgical coal was 1.6 Mton, unchanged from 1990. The report also gives statistics for the coal using plants in Sweden, on coal R and D, and on emission laws for coal firing. (9 tabs., 2 figs.)

  13. Bioenergy Research Programme, Yearbook 1995. Utilization of bioenergy and biomass conversion; Bioenergian tutkimusohjelma, vuosikirja 1995. Bioenergian kaeyttoe ja biomassan jalostus

    Energy Technology Data Exchange (ETDEWEB)

    Alakangas, E. [ed.

    1996-12-31

    Bioenergy Research Programme is one of the energy technology research programmes of the Technology Development Centre TEKES. The aim of the bioenergy Research Programme is to increase, by using technical research and development, the economically profitable and environmentally sound utilisation of bioenergy, to improve the competitiveness of present peat and wood fuels, and to develop new competitive fuels and equipment related to bioenergy. The funding for 1995 was nearly 52 million FIM and the number of projects 66. The research area of biomass conversion consisted of 8 projects in 1995, and the research area of bioenergy utilization of 14 projects. The results of these projects carried out in 1995 are presented in this publication. The aim of the biomass conversion is to produce more bio-oils and electric power as well as wood processing industry as at power plants than it is possible at present appliances. The conversion research was pointed at refining of the waste liquors of pulping industry and the extracts of them into fuel-oil and liquid engine fuels, on production of wood oil via flash pyrolysis, and on combustion tests. Other conversion studies dealt with production of fuel-grade ethanol. For utilization of agrobiomass in various forms of energy, a system study is introduced where special attention is how to use rapeseed oil unprocessed in heating boilers and diesel engines. The main aim of the research in bioenergy utilization is to create the technological potential for increasing the bioenergy use. The aim is further defined as to get into commercial phase 3-4 new techniques or methods and to start several demonstrations, which will have 0.2-0.3 million toe bioenergy utilization potential

  14. Catalytic biomass conversion methods, catalysts, and methods of making the same

    Science.gov (United States)

    Delgass, William Nicholas; Agrawal, Rakesh; Ribeiro, Fabio Henrique; Saha, Basudeb; Yohe, Sara Lynn; Abu-Omar, Mahdi M; Parsell, Trenton; Dietrich, Paul James; Klein, Ian Michael

    2017-10-10

    Described herein are processes for one-step delignification and hydrodeoxygenation of lignin fraction a biomass feedstock. The lignin feedstock is derived from by-products of paper production and biorefineries. Additionally described is a process for converting biomass-derived oxygenates to lower oxygen-content compounds and/or hydrocarbons in the liquid or vapor phase in a reactor system containing hydrogen and a catalyst comprised of a hydrogenation function and/or an oxophilic function and/or an acid function. Finally, also described herein is a process for converting biomass-derived oxygenates to lower oxygen-content compounds and/or hydrocarbons in the liquid or vapor phase in a reactor system containing hydrogen and a catalyst comprised of a hydrogenation function and/or an oxophilic function and/or an acid function.

  15. Design of generic coal conversion facilities: Production of oxygenates from synthesis gas---A technology review

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    This report concentrates on the production of oxygenates from coal via gasification and indirect liquefaction. At the present the majority of oxygenate synthesis programs are at laboratory scale. Exceptions include commercial and demonstration scale plants for methanol and higher alcohols production, and ethers such as MTBE. Research and development work has concentrated on elucidating the fundamental transport and kinetic limitations governing various reactor configurations. But of equal or greater importance has been investigations into the optimal catalyst composition and process conditions for the production of various oxygenates.

  16. Investigation of thermochemical conversions of coal pitches using high resolution PMR and IR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kekin, N.A.; Belkina, T.V.; Stepanenko, M.A.; Gordienko, V.G.

    1982-01-01

    The hydrogen bonds in organic compounds present in coal pitch and fractions were investigated by infrared spectroscopy and proton magnetic resonance. The investigation was extended to include pitch that was thermally treated at 360 degrees C to raise the softening point to 85-90 degrees C. The infrared spectra revealed hydrogen present in OH groups, NH groups, COOH groups, unsaturated carbon double bonds, and multiple carbon double bonds. It was also determined that thermal treating increased the hydrogen present in aromatic compounds and decreased hydrogen present in aliphatic forms. (JMT)

  17. Synthesis, Characterization and Evaluation of Tin-containing Silicates for Biomass Conversion

    DEFF Research Database (Denmark)

    Tolborg, Søren

    The transition to renewable carbon sources such as biomass will require entirely new catalytic processes and result in completely new products. An entire industry is built up around the chemicals that are available from fossil resources but will be unfeasible to prepare from other carbon sources......-MFI. An important part of making the transition to more renewable resources is to have attractive alternatives to switch to. This means new, interesting chemicals easily obtainable from the most abundant biomass-derived sugars need to be found. The findings and processes investigated and discussed here should...

  18. Anaerobic treatability of a phenolic coal conversion wastewater after diisopropyl ether extraction

    Energy Technology Data Exchange (ETDEWEB)

    Kindzierski, W.B.; Fedorak, P.M.; Hrudey, S.E. (University of Alberta, Edmonton, AB (Canada). Dept. of Civil Engineering)

    1991-04-01

    The combined treatment requirements for a high strength phenolic wastewater were examined in semicontinuous methogenic cultures. Selective pH adjustment of H-coal wastewater followed by diisopropyl ether extraction was used to control the phenolic concentration fed to the serum bottle cultures. This pretreatment did not completely remove the unidentified inhibitory compounds(s) from the wastewater. Thus the addition of activated carbon to the cultures and a reduced feed rate were required to stabilize their activity. However, by the end of the 250-day test period, the cultures were maintained with a 12.5-day hydraulic retention time and were fed approx. 9 parts pH 9-extracted H-coal wastewater and 1 part inorganic nutrient solution. The influent phenol concentration was near 900 mg/l, whereas the effluent concentration was {lt} mg/l. Residual dissolved diisopropyl ether did not inhibit the anaerobic process nor was it biodegraded to methane. 26 refs., 4 figs., 3 tabs.

  19. Materials technology for coal-conversion processes. Eighteenth quarterly report, April-June 1979

    Energy Technology Data Exchange (ETDEWEB)

    Ellingson, W. A.

    1979-11-01

    A 500-h test run, exposing 11 water-cooled refractories to basic slag (B/A = 1.5), was completed. High chromia content and high density again appeared to be significant factors contributing to the corrosion resistance of refractories used for slag containment. A literature review on high-temperature ultrasonic coupling was completed and suggested that studies on long-term (months to years) pressure-coupling stability are needed. Flow-induced acoustic-energy studies (relevant to acoustic leak detection) suggested that a 20% coal-water slurry flowing through an orifice under pressure produces acoustic-energy excitation mainly at frequencies < 65 kHz, and that a better correlation between acoustic rms levels and flow rate is obtained as the differential pressure is increased. Corrosion studies of Type 310 stainless steel at 1000/sup 0/C with various P/sub O2/ and P/sub S2/ suggested that titanium addition increases the corrosion rate relative to that of commercially available steels. Fluid-bed corrosion studies showed that at temperatures of 800-1000 K addition of salt has no effect on the corrosion behavior of any material examined. Failure analyses were performed on a cyclone nozzle from the Westinghouse Waltz-Mill combined cycle coal-gasification plant and an external cyclone from the Morgantown Energy Technology Center Stirred-bed Gasifier.

  20. Techno-economic analysis of biomass to fuel conversion via the MixAlco process.

    Science.gov (United States)

    Pham, Viet; Holtzapple, Mark; El-Halwagi, Mahmoud

    2010-11-01

    MixAlco is a robust process that converts biomass to fuels and chemicals. A key feature of the MixAlco process is the fermentation, which employs a mixed culture of acid-forming microorganisms to convert biomass components (carbohydrates, proteins, and fats) to carboxylate salts. Subsequently, these intermediate salts are chemically converted to hydrocarbon fuels (gasoline, jet fuel, and diesel). This work focuses on process synthesis, simulation, integration, and cost estimation of the MixAlco process. For the base-case capacity of 40 dry tonne feedstock per hour, the total capital investment is US $5.54/annual gallon of hydrocarbon fuels (US $3.79/annual gallon of ethanol equivalent), and the minimum selling price [with 10% return on investment (ROI), internal hydrogen production, and US $60/tonne biomass] is US $2.56/gal hydrocarbon, which is equivalent to US $1.75/gal ethanol. If plant capacity is increased to 400 tph, the minimum selling price of biomass-derived hydrocarbon fuels is US $1.76/gal hydrocarbon (US $1.20/gal ethanol equivalent), which can compete without subsidies with petroleum-derived hydrocarbons when crude oil sells for about US $65/bbl. At 40 tph, using the average tipping fee for municipal solid waste (US $45/dry tonne) and current price of external hydrogen (US $1/kg), the minimum selling price is only US $1.24/gal hydrocarbon (US $0.85/gal ethanol equivalent).

  1. Development of an efficient catalyst for the pyrolytic conversion of biomass into transport fuel

    NARCIS (Netherlands)

    Nguyen, T.S.

    2014-01-01

    Fast pyrolysis is a promising technique to convert biomass into a liquid fuel/fuel precursor, known as bio-oil. However, compared to conventional crude oil, bio-oil has much higher oxygen content which results in various detrimental properties and limits its application. Thus the first part of this

  2. Combustion, pyrolysis, gasification, and liquefaction of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Reed, T.B.

    1980-09-01

    All the products now obtained from oil can be provided by thermal conversion of the solid fuels biomass and coal. As a feedstock, biomass has many advantages over coal and has the potential to supply up to 20% of US energy by the year 2000 and significant amounts of energy for other countries. However, it is imperative that in producing biomass for energy we practice careful land use. Combustion is the simplest method of producing heat from biomass, using either the traditional fixed-bed combustion on a grate or the fluidized-bed and suspended combustion techniques now being developed. Pyrolysis of biomass is a particularly attractive process if all three products - gas, wood tars, and charcoal - can be used. Gasification of biomass with air is perhaps the most flexible and best-developed process for conversion of biomass to fuel today, yielding a low energy gas that can be burned in existing gas/oil boilers or in engines. Oxygen gasification yields a gas with higher energy content that can be used in pipelines or to fire turbines. In addition, this gas can be used for producing methanol, ammonia, or gasoline by indirect liquefaction. Fast pyrolysis of biomass produces a gas rich in ethylene that can be used to make alcohols or gasoline. Finally, treatment of biomass with high pressure hydrogen can yield liquid fuels through direct liquefaction.

  3. Thermochemical Conversion of Woody Biomass to Fuels and Chemicals Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Pendse, Hemant P. [Univ. of Maine, Orono, ME (United States)

    2015-09-30

    Maine and its industries identified more efficient utilization of biomass as a critical economic development issue. In Phase I of this implementation project, a research team was assembled, research equipment was implemented and expertise was demonstrated in pyrolysis, hydrodeoxygenation of pyrolysis oils, catalyst synthesis and characterization, and reaction engineering. Phase II built upon the infrastructure to innovate reaction pathways and process engineering, and integrate new approaches for fuels and chemical production within pulp and paper and other industries within the state. This research cluster brought together chemists, engineers, physicists and students from the University of Maine, Bates College, and Bowdoin College. The project developed collaborations with Oak Ridge National Laboratory and Brookhaven National Laboratory. The specific research projects within this proposal were of critical interest to the DoE - in particular the biomass program within EERE and the catalysis/chemical transformations program within BES. Scientific and Technical Merit highlights of this project included: (1) synthesis and physical characterization of novel size-selective catalyst/supports using engineered mesoporous (1-10 nm diameter pores) materials, (2) advances in fundamental knowledge of novel support/ metal catalyst systems tailored for pyrolysis oil upgrading, (3) a microcalorimetric sensing technique, (4) improved methods for pyrolysis oil characterization, (5) production and characterization of woody biomass-derived pyrolysis oils, (6) development of two new patented bio oil pathways: thermal deoxygenation (TDO) and formate assisted pyrolysis (FASP), and (7) technoeconomics of pyrolysis of Maine forest biomass. This research cluster has provided fundamental knowledge to enable and assess pathways to thermally convert biomass to hydrocarbon fuels and chemicals.

  4. Thermochemical conversion of biomass in smouldering combustion across scales: The roles of heterogeneous kinetics, oxygen and transport phenomena.

    Science.gov (United States)

    Huang, Xinyan; Rein, Guillermo

    2016-05-01

    The thermochemical conversion of biomass in smouldering combustion is investigated here by combining experiments and modeling at two scales: matter (1mg) and bench (100g) scales. Emphasis is put on the effect of oxygen (0-33vol.%) and oxidation reactions because these are poorly studied in the literature in comparison to pyrolysis. The results are obtained for peat as a representative biomass for which there is high-quality experimental data published previously. Three kinetic schemes are explored, including various steps of drying, pyrolysis and oxidation. The kinetic parameters are found using the Kissinger-Genetic Algorithm method, and then implemented in a one-dimensional model of heat and mass transfer. The predictions are validated with thermogravimetric and bench-scale experiments and then analyzed to unravel the role of heterogeneous reaction. This is the first time that the influence of oxygen on biomass smouldering is explained in terms of both chemistry and transport phenomena across scales. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Co-firing Bosnian coals with woody biomass: Experimental studies on a laboratory-scale furnace and 110 MWe power unit

    Directory of Open Access Journals (Sweden)

    Smajevic Izet

    2012-01-01

    Full Text Available This paper presents the findings of research into cofiring two Bosnian cola types, brown coal and lignite, with woody biomass, in this case spruce sawdust. The aim of the research was to find the optimal blend of coal and sawdust that may be substituted for 100% coal in large coal-fired power stations in Bosnia and Herzegovina. Two groups of experimental tests were performed in this study: laboratory testing of co-firing and trial runs on a large-scale plant based on the laboratory research results. A laboratory experiment was carried out in an electrically heated and entrained pulverized-fuel flow furnace. Coal-sawdust blends of 93:7% by weight and 80:20% by weight were tested. Co-firing trials were conducted over a range of the following process variables: process temperature, excess air ratio and air distribution. Neither of the two coal-sawdust blends used produced any significant ash-related problems provided the blend volume was 7% by weight sawdust and the process temperature did not exceed 1250ºC. It was observed that in addition to the nitrogen content in the co-fired blend, the volatile content and particle size distribution of the mixture also influenced the level of NOx emissions. The brown coal-sawdust blend generated a further reduction of SO2 due to the higher sulphur capture rate than for coal alone. Based on and following the laboratory research findings, a trial run was carried out in a large-scale utility - the Kakanj power station, Unit 5 (110 MWe, using two mixtures; one in which 5%/wt and one in which 7%/wt of brown coal was replaced with sawdust. Compared to a reference firing process with 100% coal, these co-firing trials produced a more intensive redistribution of the alkaline components in the slag in the melting chamber, with a consequential beneficial effect on the deposition of ash on the superheater surfaces of the boiler. The outcome of the tests confirms the feasibility of using 7%wt of sawdust in combination

  6. Exergy efficiency of light conversion into biomass in the macroalga Ulva sp. (Chlorophyta) cultivated under the pulsed light in a photobioreactor.

    Science.gov (United States)

    Habiby, Oz; Nahor, Omri; Israel, Alvaro; Liberzon, Alexander; Golberg, Alexander

    2018-03-14

    Marine macroalgae are a potential feedstock for biorefineries that can reduce dependence on fossil fuels and contribute to bioeconomy. New knowledge and technologies for efficient conversion of solar energy into macroalgae biomass are needed to increase biomass yields and energy conversion efficiency. In this work, we show that the green macroalgae from Ulva sp. can grow under the pulsed light in a photobioreactor with higher exergy conversion efficiency in comparison to cultivation under constant light with the same intensity. In the tested frequencies, 1-40 Hz and duty cycles (DC) 1-100%, DC has a stronger impact on the growth rate than frequency. The efficiency of light transformation into biomass increased with decreasing DC. Pulsating with DC 20% led to 60% of the biomass chemical energy yield for the respective constant light (DC 100%). Models of Ulva sp. growth rate and exergy conversion efficiency as a function of pulsating light parameters were developed. These results open new directions to enhance solar to chemical energy conversion through macroalgae by controlling the light distribution in the macroalgal biomass. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. Biomass Conversion Strategies and the Renewable Production of Hydrogen using Heterogeneous Metal Catalysts

    Science.gov (United States)

    Carrasquillo-Flores, Ronald

    Biomass is a renewable carbon source that can be processed into fuels and chemicals in a biorefinery. However, there are a number of challenges that need to be overcome for biomass utilization to be viable. The work presented herein aims to address two existing challenges in biomass processing schemes, namely the efficient utilization of all fractions of lignocellulosic biomass and the renewable production of the hydrogen necessary to reduce the oxygen functionalities native in biomass. First, lignin was depolymerized to produce a renewable phenolic solvent mixture. Biphasic reactions with this solvent and aqueous solution of glucose or xylose produce 5-hydroxymethylfurfural (HMF) and furfural, respectively, at high yields. HMF and furfuryl alcohol could also be upgraded into levulinic acid at high yields. The yields are due to the capacity of the solvent to partition these molecules and prevent their degradation. Second, propyl guaiacol, a component of the phenolic solvent, was used for biphasic reactions where ball milled biomass substrates were used. These substrates are converted to furfural and HMF at high yields due to the partition of these molecules into the solvent and the on-demand production of glucose and xylose from the substrate, minimizing the formation of humins. A study of the water-gas shift reaction over Pt-based catalysts was conducted. Alloying Pt with Re was found to increase the catalytic activity and microkinetic modeling revealed Pt is a good representation of the active site and Re acts as a promoter slightly destabilizing CO binding. A study on formic acid decomposition over Au catalysts was performed. Experiments, density functional theory and microkinetic modeling results indicate the reaction proceeds completely on highly undercoordinated Au atoms with any high coordination atom being largely inert. Motivated by the results on Au catalysts, the metal-support interaction was investigated for the reverse water-gas shift reaction. Using a

  8. Determination of saccharides and ethanol from biomass conversion using Raman spectroscopy: Effects of pretreatment and enzyme composition

    Energy Technology Data Exchange (ETDEWEB)

    Shih, Chien-Ju [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    This dissertation focuses on the development of facile and rapid quantitative Raman spectroscopy measurements for the determination of conversion products in producing bioethanol from corn stover. Raman spectroscopy was chosen to determine glucose, xylose and ethanol in complex hydrolysis and fermentation matrices. Chapter 1 describes the motives and main goals of this work, and includes an introduction to biomass, commonly used pretreatment methods, hydrolysis and fermentation reactions. The principles of Raman spectroscopy, its advantages and applications related to biomass analysis are also illustrated. Chapter 2 and 3 comprise two published or submitted manuscripts, and the thesis concludes with an appendix. In Chapter 2, a Raman spectroscopic protocol is described to study the efficiency of enzymatic hydrolysis of cellulose by measuring the main product in hydrolysate, glucose. Two commonly utilized pretreatment methods were investigated in order to understand their effect on glucose measurements by Raman spectroscopy. Second, a similar method was set up to determine the concentration of ethanol in fermentation broth. Both of these measurements are challenged by the presence of complex matrices. In Chapter 3, a quantitative comparison of pretreatment protocols and the effect of enzyme composition are studied using systematic methods. A multipeak fitting algorithm was developed to analyze spectra of hydrolysate containing two analytes: glucose and xylose. Chapter 4 concludes with a future perspective of this research area. An appendix describes a convenient, rapid spectrophotometric method developed to measure cadmium in water. This method requires relatively low cost instrumentation and can be used in microgravity, such as space shuttles or the International Space Station. This work was performed under the supervision of Professor Marc Porter while at Iowa State University. Research related to producing biofuel from bio-renewable resources, especially

  9. RESIDUES FROM COAL CONVERSION AND UTILIZATION: ADVANCED MINERALOGICAL CHARACTERIZATION AND DISPOSED BYPRODUCT DIAGENESIS

    Energy Technology Data Exchange (ETDEWEB)

    Gregory J. McCarthy; Dean G. Grier

    1998-03-01

    The goals of the project are two-fold: (1) to upgrade semi-quantitative X-ray diffraction (QXRD) methods presently used in analyzing complex coal combustion by-product (CCB) systems, with the quantitative Rietveld method, and (2) to apply this method to a set of by-product materials that have been disposed or utilized for a long period (5 years or more) in contact with the natural environment, to further study the nature of CCB diagenesis. The project is organized into three tasks to accomplish these two goals: (1) thorough characterization of a set of previously analyzed disposed by-product materials, (2) development of a set of CCB-specific protocols for Rietveld QXRD, and (3) characterization of an additional set of disposed CCB materials, including application of the protocols for Rietveld QXRD developed in Task 2.

  10. RESIDUES FROM COAL CONVERSION AND UTILIZATION: ADVANCED MINERALOGICAL CHARACTERIZATION AND DISPOSED BYPRODUCT DIAGENESIS

    Energy Technology Data Exchange (ETDEWEB)

    Gregory J. McCarthy; Dean G. Grier

    1998-09-01

    The goals of the project are two-fold: (1) to upgrade semi-quantitative X-ray diffraction (QXRD) methods presently used in analyzing complex coal combustion by-product (CCB) systems, with the quantitative Rietveld method, and (2) to apply this method to a set of by-product materials that have been disposed or utilized for a long period (5 years or more) in contact with the natural environment, to further study the nature of CCB diagenesis. The project is organized into three tasks to accomplish these two goals: (1) thorough characterization of a set of previously analyzed disposed by-product materials, (2) development of a set of CCB-specific protocols for Rietveld QXRD, and (3) characterization of an additional set of disposed CCB materials, including application of the protocols for Rietveld QXRD developed in Task 2.

  11. Materials technology for coal-conversion processes. Sixteenth quarterly report, October--December 1978

    Energy Technology Data Exchange (ETDEWEB)

    Ellingson, W A

    1978-01-01

    Refractories for slag containment, nondestructive evaluation methods, corrosion, erosion, and component failures were studied. Analysis of coal slags reveal ferritic contents of 18 to 61%, suggesting a partial pressure of 0/sub 2/ in the slagging zone of approx. 10/sup -2/ to 10/sup -4/ Pa. A second field test of the high-temperature ultrasonic erosion-monitoring system was completed. Ultrasonic inspecton of the HYGAS cyclone separator shows a reduced erosive-wear rate at 5000 h in the stellite region. The acoustic leak-detection system for valves was field tested using a 150-mm-dia. valve with a range of pressures from 0.34 to 4.05 MPa. Results suggest a linear relation between detected rms levels and leak rates. Studies on acoustic emissions from refractory concrete continued with further development of a real-time data acquisition system. Corrosion studies were conducted on Incoloy 800, Type 310 stainless steel, Inconel 671 and U.S. Steel Alloy 18-18-2 (as-received, thermally aged, and preexposed for 3.6 Ms to multicomponent gas mixtures). Results suggest a decrease in ultimate tensile strength and flow stress after preexposure. Examination of commercial iron- and nickel-base alloys after 100-h exposures in atmospheric-pressure fluidized-bed combustors suggests that the addition of 0.3 mole % CaCl/sub 2/ to the fluidized bed has no effect on the corrosion behavior of these materials; however, 0.5 mole % NaCl increased the corrosion rate of all materials. Failure-analysis activities included (1) the design and assembly of thermowells (Haynes Alloy 188 and slurry-coated Type 310 stainless steel) and (2) examination of components from the Synthane boiler explosion, the IGT Steam--Iron Pilot Plant, the HYGAS Ash Agglomerating Gasifier, and the Westinghouse Coal Gasification PDU.

  12. Detoxification of biomass derived acetate via metabolic conversion to ethanol, acetone, isopropanol, or ethyl acetate

    Energy Technology Data Exchange (ETDEWEB)

    Sillers, William Ryan; Van Dijken, Hans; Licht, Steve; Shaw, IV, Arthur J.; Gilbert, Alan Benjamin; Argyros, Aaron; Froehlich, Allan C.; McBride, John E.; Xu, Haowen; Hogsett, David A.; Rajgarhia, Vineet B.

    2017-03-28

    One aspect of the invention relates to a genetically modified thermophilic or mesophilic microorganism, wherein a first native gene is partially, substantially, or completely deleted, silenced, inactivated, or down-regulated, which first native gene encodes a first native enzyme involved in the metabolic production of an organic acid or a salt thereof, thereby increasing the native ability of said thermophilic or mesophilic microorganism to produce lactate or acetate as a fermentation product. In certain embodiments, the aforementioned microorganism further comprises a first non-native gene, which first non-native gene encodes a first non-native enzyme involved in the metabolic production of lactate or acetate. Another aspect of the invention relates to a process for converting lignocellulosic biomass to lactate or acetate, comprising contacting lignocellulosic biomass with a genetically modified thermophilic or mesophilic microorganism.

  13. Romania biomass energy. Country study

    International Nuclear Information System (INIS)

    Burnham, M.; Easterly, J.L.; Mark, P.E.; Keller, A.

    1995-01-01

    The present report was prepared under contract to UNIDO to conduct a case study of biomass energy use and potential in Romania. The purpose of the case study is to provide a specific example of biomass energy issues and potential in the context of the economic transition under way in eastern Europe. The transition of Romania to a market economy is proceeding at a somewhat slower pace than in other countries of eastern Europe. Unfortunately, the former regime forced the use of biomass energy with inadequate technology and infrastructure, particularly in rural areas. The resulting poor performance thus severely damaged the reputation of biomass energy in Romania as a viable, reliable resource. Today, efforts to rejuvenate biomass energy and tap into its multiple benefits are proving challenging. Several sound biomass energy development strategies were identified through the case study, on the basis of estimates of availability and current use of biomass resources; suggestions for enhancing potential biomass energy resources; an overview of appropriate conversion technologies and markets for biomass in Romania; and estimates of the economic and environmental impacts of the utilization of biomass energy. Finally, optimal strategies for near-, medium- and long-term biomass energy development, as well as observations and recommendations concerning policy, legislative and institutional issues affecting the development of biomass energy in Romania are presented. The most promising near-term biomass energy options include the use of biomass in district heating systems; cofiring of biomass in existing coal-fired power plants or combined heat and power plants; and using co-generation systems in thriving industries to optimize the efficient use of biomass resources. Mid-term and long-term opportunities include improving the efficiency of wood stoves used for cooking and heating in rural areas; repairing the reputation of biogasification to take advantage of livestock wastes

  14. DEVELOPMENT OF A VALIDATED MODEL FOR USE IN MINIMIZING NOx EMISSIONS AND MAXIMIZING CARBON UTILIZATION WHEN CO-FIRING BIOMASS WITH COAL

    Energy Technology Data Exchange (ETDEWEB)

    Larry G. Felix; P. Vann Bush

    2002-04-30

    This is the sixth Quarterly Technical Report for DOE Cooperative Agreement No. DE-FC26-00NT40895. A statement of the project objectives is included in the Introduction of this report. Two additional biomass co-firing test burns were conducted during this quarter. In the first test (Test 10), up to 20% by weight dry hardwood sawdust and switchgrass was compiled with Galatia coal and injected through the dual-register burner. Galatia coal is a medium-sulfur Illinois Basin coal ({approx}1.0% S). The dual-register burner is a generic low-NO{sub x} burner that incorporates two independent wind boxes. In the second test (Test 11), regular ({approx}70% passing 200 mesh) and finely ground ({approx}90% passing 200 mesh) Pratt Seam coal was injected through the single-register burner to determine if coal grind affects NO{sub x} and unburned carbon emissions. The results of these tests are presented in this quarterly report. Significant progress has been made in implementing a modeling approach to combine reaction times and temperature distributions from computational fluid dynamic models of the pilot-scale combustion furnace with char burnout and chemical reaction kinetics to predict NO{sub x} emissions and unburned carbon levels in the furnace exhaust. No additional results of CFD modeling have been received as delivery of the Configurable Fireside Simulator is expected during the next quarter. Preparations are under way for continued pilot-scale combustion experiments with the single-register burner and a low-volatility bituminous coal. Some delays have been experienced in the acquisition and processing of biomass. Finally, a project review was held at the offices of Southern Research in Birmingham, on February 27, 2002.

  15. DEVELOPMENT OF A VALIDATED MODEL FOR USE IN MINIMIZING NOx EMISSIONS AND MAXIMIZING CARBON UTILIZATION WHEN CO-FIRING BIOMASS WITH COAL

    International Nuclear Information System (INIS)

    Larry G. Felix; P. Vann Bush

    2002-01-01

    This is the sixth Quarterly Technical Report for DOE Cooperative Agreement No. DE-FC26-00NT40895. A statement of the project objectives is included in the Introduction of this report. Two additional biomass co-firing test burns were conducted during this quarter. In the first test (Test 10), up to 20% by weight dry hardwood sawdust and switchgrass was compiled with Galatia coal and injected through the dual-register burner. Galatia coal is a medium-sulfur Illinois Basin coal ((approx)1.0% S). The dual-register burner is a generic low-NO(sub x) burner that incorporates two independent wind boxes. In the second test (Test 11), regular ((approx)70% passing 200 mesh) and finely ground ((approx)90% passing 200 mesh) Pratt Seam coal was injected through the single-register burner to determine if coal grind affects NO(sub x) and unburned carbon emissions. The results of these tests are presented in this quarterly report. Significant progress has been made in implementing a modeling approach to combine reaction times and temperature distributions from computational fluid dynamic models of the pilot-scale combustion furnace with char burnout and chemical reaction kinetics to predict NO(sub x) emissions and unburned carbon levels in the furnace exhaust. No additional results of CFD modeling have been received as delivery of the Configurable Fireside Simulator is expected during the next quarter. Preparations are under way for continued pilot-scale combustion experiments with the single-register burner and a low-volatility bituminous coal. Some delays have been experienced in the acquisition and processing of biomass. Finally, a project review was held at the offices of Southern Research in Birmingham, on February 27, 2002

  16. Combined hydrothermal liquefaction and catalytic hydrothermal gasification system and process for conversion of biomass feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.; Neuenschwander, Gary G.; Hart, Todd R.

    2017-09-12

    A combined hydrothermal liquefaction (HTL) and catalytic hydrothermal gasification (CHG) system and process are described that convert various biomass-containing sources into separable bio-oils and aqueous effluents that contain residual organics. Bio-oils may be converted to useful bio-based fuels and other chemical feedstocks. Residual organics in HTL aqueous effluents may be gasified and converted into medium-BTU product gases and directly used for process heating or to provide energy.

  17. Conversion of lignocellulosic biomass to green fuel oil over sodium based catalysts

    NARCIS (Netherlands)

    Nguyen, T.S.; Zabeti, M.; Lefferts, Leonardus; Brem, Gerrit; Seshan, Kulathuiyer

    2013-01-01

    Upgrading of biomass pyrolysis vapors over 20 wt.% Na2CO3/γ-Al2O3 catalyst was studied in a lab-scale fix-bed reactor at 500 °C. Characterization of the catalyst using SEM and XRD has shown that sodium carbonate is well-dispersed on the support γ-Al2O3. TGA and 23Na MAS NMR suggested the formation

  18. Towards a better understanding of biomass suspension co-firing impacts via investigating a coal flame and a biomass flame in a swirl-stabilized burner flow reactor under same conditions

    DEFF Research Database (Denmark)

    Yin, Chungen; Rosendahl, Lasse; Kær, Søren Knudsen

    2012-01-01

    increases the residence time of coal particles. Both the factors favor a complete burnout of the coal particles. The higher volatile yields of the straw produce more off-gas, requiring more O2 for the fast gas phase combustion and causing the off-gas to proceed to a much larger volume in the reactor prior...... to mixing with oxidizer. For the pulverized straw particles of a few hundred microns in diameters, the intra-particle conversion is found to be a secondary issue at most in their combustion. The simulations also show that a simple switch of the straw injection mode can not improve the burnout of the straw...

  19. Impact of Contaminants Present in Coal-Biomass Derived Synthesis Gas on Water-gas Shift and Fischer-Tropsch Synthesis Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Alptekin, Gokhan [TDA Research, Inc., Wheat Ridge, CO (United States)

    2013-02-15

    Co-gasification of biomass and coal in large-scale, Integrated Gasification Combined Cycle (IGCC) plants increases the efficiency and reduces the environmental impact of making synthesis gas ("syngas") that can be used in Coal-Biomass-to-Liquids (CBTL) processes for producing transportation fuels. However, the water-gas shift (WGS) and Fischer-Tropsch synthesis (FTS) catalysts used in these processes may be poisoned by multiple contaminants found in coal-biomass derived syngas; sulfur species, trace toxic metals, halides, nitrogen species, the vapors of alkali metals and their salts (e.g., KCl and NaCl), ammonia, and phosphorous. Thus, it is essential to develop a fundamental understanding of poisoning/inhibition mechanisms before investing in the development of any costly mitigation technologies. We therefore investigated the impact of potential contaminants (H2S, NH3, HCN, AsH3, PH3, HCl, NaCl, KCl, AS3, NH4NO3, NH4OH, KNO3, HBr, HF, and HNO3) on the performance and lifetime of commercially available and generic (prepared in-house) WGS and FT catalysts.

  20. Nanostructured materials and their role as heterogeneous catalysts in the conversion of biomass to biofuels

    Science.gov (United States)

    Cadigan, Chris

    Prior to the discovery of inexpensive and readily available fossil fuels, the world relied heavily on biomass to provide its energy needs. Due to a worldwide growth in demand for fossil fuels coupled with the shrinkage of petroleum resources, and mounting economic, political, and environmental concerns, it has become more pressing to develop sustainable fuels and chemicals from biomass. The present dissertation studies multiple nanostructured catalysts investigated in various processes related to gasification of biomass into synthesis gas, and further upgrading to biofuels and value added chemicals. These reactions include: syngas conditioning, alcohol synthesis from carbon monoxide hydrogenation, and steam reforming ethanol to form higher hydrocarbons. Nanomaterials were synthesized, characterized, studied in given reactions, and then further characterized post-reaction. Overall goals were aimed at determining catalytic activities towards desired products and determining which material properties were most desirable based on experimental results. Strategies to improve material design for second-generation materials are suggested based on promising reaction results coupled with pre and post reaction characterization analysis.

  1. High-performance liquid-catalyst fuel cell for direct biomass-into-electricity conversion.

    Science.gov (United States)

    Liu, Wei; Mu, Wei; Deng, Yulin

    2014-12-01

    Herein, we report high-performance fuel cells that are catalyzed solely by polyoxometalate (POM) solution without any solid metal or metal oxide. The novel design of the liquid-catalyst fuel cells (LCFC) changes the traditional gas-solid-surface heterogeneous reactions to liquid-catalysis reactions. With this design, raw biomasses, such as cellulose, starch, and even grass or wood powders can be directly converted into electricity. The power densities of the fuel cell with switchgrass (dry powder) and bush allamanda (freshly collected) are 44 mW cm(-2) and 51 mW cm(-2) respectively. For the cellulose-based biomass fuel cell, the power density is almost 3000 times higher than that of cellulose-based microbial fuel cells. Unlike noble-metal catalysts, POMs are tolerant to most organic and inorganic contaminants. Therefore, almost any raw biomass can be used directly to produce electricity without prior purification. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Preliminary draft industrial siting administration permit application: Socioeconomic factors technical report. Final technical report, November 1980-May 1982. [Proposed WyCoalGas project in Converse County, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    Under the with-project scenario, WyCoalGas is projected to make a difference in the long-range future of Converse County. Because of the size of the proposed construction and operations work forces, the projected changes in employment, income, labor force, and population will alter Converse County's economic role in the region. Specifically, as growth occurs, Converse County will begin to satisfy a larger portion of its own higher-ordered demands, those that are currently being satisfied by the economy of Casper. Business-serving and household-serving activities, currently absent, will find the larger income and population base forecast to occur with the WyCoalGas project desirable. Converse County's economy will begin to mature, moving away from strict dependence on extractive industries to a more sophisticated structure that could eventually appeal to national, and certainly, regional markets. The technical demand of the WyCoalGas plant will mean a significant influx of varying occupations and skills. The creation of basic manufacturing, advanced trade and service sectors, and concomitant finance and transportation firms will make Converse County more economically autonomous. The county will also begin to serve market center functions for the smaller counties of eastern Wyoming that currently rely on Casper, Cheyenne or other distant market centers. The projected conditions expected to exist in the absence of the WyCoalGas project, the socioeconomic conditions that would accompany the project, and the differences between the two scenarios are considered. The analysis is keyed to the linkages between Converse County and Natrona County.

  3. Biomass Gasifier ''Tars'': Their Nature, Formation, and Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Milne, T. A.; Evans, R. J. (National Renewable Energy Laboratory); Abatzaglou, N. (Kemestrie, Inc.)

    1998-11-01

    The main purpose of this review is to update the information on gasification tar, the most cumbersome and problematic parameter in any gasification commercialization effort. The work aims to present to the community the scientific and practical aspects of tar formation and conversion (removal) during gasification as a function of the various technological and technical parameters and variables.

  4. Strain selection, biomass to biofuel conversion, and resource colocation have strong impacts on the economic performance of algae cultivation sites

    Energy Technology Data Exchange (ETDEWEB)

    Venteris, Erik R.; Wigmosta, Mark S.; Coleman, Andre M.; Skaggs, Richard

    2014-09-16

    Decisions involving strain selection, biomass to biofuel technology, and the location of cultivation facilities can strongly influence the economic viability of an algae-based biofuel enterprise. In this contribution we summarize our past results in a new analysis to explore the relative economic impact of these design choices. We present strain-specific growth model results from two saline strains (Nannocloropsis salina, Arthrospira sp.), a fresh to brackish strain (Chlorella sp., DOE strain 1412), and a freshwater strain of the order Sphaeropleales. Biomass to biofuel conversion is compared between lipid extraction (LE) and hydrothermal liquefaction (HTL) technologies. National-scale models of water, CO2 (as flue gas), land acquisition, site leveling, construction of connecting roads, and transport of HTL oil to existing refineries are used in conjunction with estimates of fuel value (from HTL) to prioritize and select from 88,692 unit farms (UF, 405 ha in pond area), a number sufficient to produce 136E+9 L yr-1 of renewable diesel (36 billion gallons yr-1, BGY). Strain selection and choice of conversion technology have large economic impacts, with differences between combinations of strains and biomass to biofuel technologies being up to $10 million dollars yr-1 UF-1. Results based on the most productive species, HTL-based fuel conversion, and resource costs show that the economic potential between geographic locations within the selection can differ by up to $4 million yr-1 UF-1, with 2.0 BGY of production possible from the most cost-effective sites. The local spatial variability in site rank is extreme, with very high and low rank sites within 10s of km of each other. Colocation with flue gas sources has a strong influence on site rank, but the most costly resource component varies from site to site. The highest rank sites are located predominantly in Florida and Texas, but most states south of 37°N latitude contain promising locations. Keywords: algae

  5. Commercial liquid-metal MHD conversion systems coupled to LMFBR and coal-fired fluidized bed combustors

    International Nuclear Information System (INIS)

    Amend, W.E.; Brunsvold, A.; Pierson, E.S.

    1975-01-01

    The constraints imposed on two-phase liquid-metal MHD (LMMHD) when employed in commercial power plants with practical heat sources have not previously been studied. The coupling of a LMMHD power system with an LMFBR and a coal-fired fluidized bed combustor are considered. Two MHD systems are considered. The first is a dual cycle where heat is added to both the liquid metal and the gas, and the gas may expand through a gas turbine after the MHD generator. The second system, a binary cycle, differs in that a significant portion of the sensible heat in the gas entering the compression loop is converted to useful power in a steam bottoming cycle. The effect of liquid-metal vapor carry-over into the gas loop is included. The couplings of the LMMHD system with the heat sources and with the steam plants were studied in depth. The results of the study of each interface are presented parametrically for each heat source and energy conversion system. Operating points have been selected and the complete schematic of each system considered is presented along with all thermodynamic state points and fluid flow rates. All system parameters and component efficiencies were selected to be consistent with near term technology and good engineering design principles. These criteria yielded a system performance of 37 percent for an LMFBR operating with a maximum reactor coolant temperature of 1200 0 F when the pure LMMHD energy converter was used. A LMMHD/steam binary cycle is shown to be capable of achieving a thermal efficiency of 44.8 percent when used with the same heat source. Results with the coal fluidized bed combustor as a heat source show even higher performance levels (about 50 percent efficiency) since the maximum cycle temperature is increased

  6. Conversion of levulinic acid into γ-valerolactone using Fe3(CO)12: mimicking a biorefinery setting by exploiting crude liquors from biomass acid hydrolysis.

    Science.gov (United States)

    Metzker, Gustavo; Burtoloso, Antonio C B

    2015-09-28

    The conversion of biomass-derived levulinic acid (LA) into gamma-valerolactone (GVL) using formic acid (FA) and Fe3(CO)12 as the catalyst precursor was achieved in 92% yield. To mimic a biorefinery setting, crude liquor (containing 20% LA) from the acid hydrolysis of sugarcane biomass in a pilot plant facility was directly converted into GVL in good yield (50%), without the need for isolating LA.

  7. Conversion of coal-fired bottom ash to fuel and construction materials.

    Science.gov (United States)

    Koca, Huseyin; Aksoy, Derya Oz; Ucar, Reyhan; Koca, Sabiha

    2017-07-01

    In this study, solid wastes taken from Seyitomer coal-fired power plant bottom ashes were subjected to experimental research to obtain a carbon-rich fraction. The possible recycling opportunities of remaining inorganic fraction in the cement and concrete industry was also investigated. Flotation technique was used to separate unburned carbon from inorganic bottom ashes. Collector type, collector, dispersant and frother amounts, and pulp density are the most important variables in the flotation technique. A number of flotation collectors were tested in the experiments including new era flotation reactives. Optimum collector, dispersant and frother dosages as well as optimum pulp density were also determined. After experimental work, an inorganic fraction was obtained, which included 5.41% unburned carbon with 81.56% weight yield. These properties meets the industrial specifications for the cement and concrete industry. The carbon content of the concentrate fraction, obtained in the same experiment, was enhanced to 49.82%. This fraction accounts for 18.44% of the total amount and can be mixed to the power plant fuel. Therefore total amount of the solid waste can possibly be recycled according to experimental results.

  8. Nondestructive inspection of plasma-sprayed metallic coatings for coal conversion equipment

    Energy Technology Data Exchange (ETDEWEB)

    Scott, G.W.; Snyder, S.D.; Simpson, W.A. Jr.

    1979-12-01

    This report describes the results of a project to develop nondestructive inspection techniques for metallic wear- and process-resistant coatings used in coal system components. Physical properties, especially porosity, and the nominal 0.25 mm (0.010 in.) thickness complicate the inspection of these coatings. The class of coatings selected for laboratory evaluation were CoCrAlY (cobalt-chromium-aluminum-yttrium) types; the specific material used was a Union Carbide spray powder, UCAR LCO-7, which is Co-22.8% Cr-12.9% Al-0.6% Y, sprayed onto alloy 800 substrates. The desired inspection techniques were to: (1) detect cracks or holes in the coating; (2) measure the coating thickness from the coated side; and (3) detect lamellar flaws or separations within the coating layer or between the coating and the substrate. Surface methods (such as liquid penetrant), eddy currents, and radiography were investigated for crack and hole detection; eddy currents, x-ray fluorescence, and ultrasonics were investigated for thickness measurement; and ultrasonics and infrared thermography were investigated for lamellar flaw detection. In general, we determined that significant development effort was required to adapt even the more common and highly developed techniques to the coating inspection problems. Significant progress was made in a number of the investigations undertaken, but financial restraints prevented completion of the planned work.

  9. Elemental and thermo-chemical analysis of oil palm fronds for biomass energy conversion

    Science.gov (United States)

    Guangul, Fiseha Mekonnen; Sulaiman, Shaharin Anwar; Raghavan, Vijay R.

    2012-06-01

    Oil palm frond is the most abundant yet untapped biomass waste in Malaysia. This paper investigates the characteristics of raw oil palm fronds and its ash to evaluate its potential utilization as a biomass fuel for gasification process using single throat downdraft gasifier. The morphological nature, elemental content, proximate and ultimate analysis and calorific value were studied. Field emission scanning electron microscopy and x-ray fluorescence were used to investigate the surface morphology, elemental and mineralogical nature of oil palm frond and its ash. The results were compared with other agricultural and forestry biomass wastes. From proximate analysis volatile matter, fixed carbon and ash were found to be 83.5%, 15.2% and 1.3%, respectively on dry basis. From ultimate analysis result values of 44.58%, 4.53%, 0.71% and 0.07% for carbon, hydrogen, nitrogen and sulfur were found respectively on dry basis. Oxygen was determined by difference and found to be 48.81%. The proximate and ultimate analysis results indicate that oil palm frond is better than agricultural wastes and less than most forestry wastes to use as a feedstock in the gasification process in order to get a better quality of syngas. The amount of ash content in OPF was found to be much less than in agricultural wastes and higher than most forestry wastes. From x-ray fluorescence analysis CaO and K2O were found as the major oxides in oil palm fronds and rice husk ash with the amount of 28.46% and 15.71% respectively. The overall results of oil palm fronds were found to be satisfactory to use as a feedstock for the process of gasification.

  10. Large-scale biodiesel production using flue gas from coal-fired power plants with Nannochloropsis microalgal biomass in open raceway ponds.

    Science.gov (United States)

    Zhu, Baohua; Sun, Faqiang; Yang, Miao; Lu, Lin; Yang, Guanpin; Pan, Kehou

    2014-12-01

    The potential use of microalgal biomass as a biofuel source has raised broad interest. Highly effective and economically feasible biomass generating techniques are essential to realize such potential. Flue gas from coal-fired power plants may serve as an inexpensive carbon source for microalgal culture, and it may also facilitate improvement of the environment once the gas is fixed in biomass. In this study, three strains of the genus Nannochloropsis (4-38, KA2 and 75B1) survived this type of culture and bloomed using flue gas from coal-fired power plants in 8000-L open raceway ponds. Lower temperatures and solar irradiation reduced the biomass yield and lipid productivities of these strains. Strain 4-38 performed better than the other two as it contained higher amounts of triacylglycerols and fatty acids, which are used for biodiesel production. Further optimization of the application of flue gas to microalgal culture should be undertaken. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Synthesis, Characterization and Evaluation of Tin-containing Silicates for Biomass Conversion

    OpenAIRE

    Tolborg, Søren; Riisager, Anders; Sádaba, Irantzu

    2016-01-01

    Skiftet til fornybare kulstofkilder såsom biomasse vil kræve helt nye katalytiske processer og resultere i fuldstændig nye produkter og kemikalier. En hel industri er bygget op omkring de kemikalier, der er tilgængelige fra fossile ressourcer. Kemikalier det ikke vil være muligt at fremstille fra andre kulstofkilder. Denne afhandling med titlen ”Syntese, karakterisering og evaluering af tin-holdige silikater til omdannelse af biomasse” beskriver fremstillingen og brugen af adskillige, vigtige...

  12. Circulating fluidized-bed technologies for the conversion of biomass into energy

    International Nuclear Information System (INIS)

    Greil, C.; Hirschfelder, H.

    1995-01-01

    The paper introduces circulating fluidized-bed (CFB) combustion and CFB gasification. CFB combustion units are state-of-the-art and have proven their ability to convert biomass into power and/or steam. The existing units and projects in developing countries are discussed as examples of conventional technology. To illustrate advanced technologies, CFB gasification is discussed. Important process parameters of plants already in operation or under construction in developed countries are shown, Criteria for the selection of CFB combustion or gasification based on available feedstocks and products required are discussed. Finally, a procedure for implementing Lurgi's CFB technology in developing countries is proposed. (author)

  13. Biological research survey for the efficient conversion of biomass to biofuels.

    Energy Technology Data Exchange (ETDEWEB)

    Kent, Michael Stuart; Andrews, Katherine M. (Computational Biosciences)

    2007-01-01

    The purpose of this four-week late start LDRD was to assess the current status of science and technology with regard to the production of biofuels. The main focus was on production of biodiesel from nonpetroleum sources, mainly vegetable oils and algae, and production of bioethanol from lignocellulosic biomass. One goal was to assess the major technological hurdles for economic production of biofuels for these two approaches. Another goal was to compare the challenges and potential benefits of the two approaches. A third goal was to determine areas of research where Sandia's unique technical capabilities can have a particularly strong impact in these technologies.

  14. DEVELOPMENT OF A VALIDATED MODEL FOR USE IN MINIMIZING NOx EMISSIONS AND MAXIMIZING CARBON UTILIZATION WHEN CO-FIRING BIOMASS WITH COAL

    Energy Technology Data Exchange (ETDEWEB)

    Larry G. Felix; P. Vann Bush

    2002-10-26

    This is the eighth Quarterly Technical Report for DOE Cooperative Agreement No. DE-FC26-00NT40895. A statement of the project objectives is included in the Introduction of this report. The final biomass co-firing test burn was conducted during this quarter. In this test (Test 14), up to 20% by weight dry switchgrass was comilled with Jim Walters No.7 mine coal and injected through the single-register burner. Jim Walters No.7 coal is a low-volatility, low-sulfur ({approx}0.7% S) Eastern bituminous coal. The results of this test are presented in this quarterly report. Progress has continued to be made in implementing a modeling approach to combine reaction times and temperature distributions from computational fluid dynamic models of the pilot-scale combustion furnace with char burnout and chemical reaction kinetics to predict NO{sub x} emissions and unburned carbon levels in the furnace exhaust. The REI Configurable Fireside Simulator (CFS) is now in regular use. Presently, the CFS is being used to generate CFD calculations for completed tests with Powder River Basin coal and low-volatility (Jim Walters No.7 Mine) coal. Niksa Energy Associates will use the results of these CFD simulations to complete their validation of the NOx/LOI predictive model. Work has started on the project final report.

  15. Assessment of the way of biomass transportation to the coal power plant with regard to the limitation of emissions of CO{sub 2}; Beurteilung der Befoerderungsweise der Biomasse in das Kohlenkraftwerk im Blick auf die Beschraenkung der Emission von CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Adamkiewicz, A. [Maritime Univ. of Szczecin (Poland). Faculty of Mechanical Engineering; Zenczak, W. [West Pomeranian Univ. of Technology, Szczecin (Poland). Fakultaet fuer Meerestechnik und Transport

    2014-07-01

    One from the activities taken in Poland in aim of limitation of CO{sub 2}, emission is coal and biomass combustion together in one boiler. Biomass is delivered to power station Dolna Odra in Szczecin by trucks, which are also a source of CO{sub 2}, emission. The paper presents results of comparative analysis of CO{sub 2}, emission from trucks during transportation of biomass to power station with actual reduction of emission through power station as result of substitution of part of coal by biomass.

  16. Environmental assessment of gasification technology for biomass conversion to energy in comparison with other alternatives

    DEFF Research Database (Denmark)

    Nguyen, T Lan T; Hermansen, John Erik; Nielsen, Rasmus Glar

    2013-01-01

    This paper assesses the environmental performance of biomass gasification for electricity production based on wheat straw and compares it with that of alternatives such as straw-fired electricity production and fossil fuel-fired electricity production. In the baseline simulation, we assume...... that the combustion of biomass and fossil fuel references for electricity production takes place in a combined heat and power plant, but as a sensitivity analysis, we also consider combustion in a condensing mode power plant where only electricity is produced. Our results show that the production of 1 k......Wh of electricity from straw through gasification would lead to a global warming potential of 0.08 kg CO2e, non-renewable energy use of 0.2 MJ primary, acidification of 1.3 g SO2e, respiratory inorganics of 0.08 g PM2.5e and eutrophication potential of -1.9 g NO3e. The production of electricity from straw based...

  17. Assesment of the energy quality of the synthesis gas produced from biomass derived fuels conversion: Part I: Liquid Fuels, Ethanol

    International Nuclear Information System (INIS)

    Arteaga Perez, Luis E; Casas, Yannay; Peralta, Luis M; Granda, Daikenel; Prieto, Julio O

    2011-01-01

    The use of biofuels plays an important role to increase the efficiency and energetic safety of the energy processes in the world. The main goal of the present research is to study from the thermodynamics and kinetics the effect of the operational variables on the thermo-conversion processes of biomass derived fuels focused on ethanol reforming. Several models are developed to assess the technological proposals. The minimization of Gibbs free energy is the criterion applied to evaluate the performance of the different alternatives considering the equilibrium constraints. All the models where validated on an experimental data base. The gas composition, HHV and the ratio H2/CO are used as measures for the process efficiency. The operational parameters are studied in a wide range (reactants molar ratio, temperature and oxygen/fuel ratio). (author)

  18. Fuel-nitrogen conversion in the combustion of small amines using dimethylamine and ethylamine as biomass-related model fuels

    DEFF Research Database (Denmark)

    Lucassen, Arnas; Zhang, Kuiwen; Warkentin, Julia

    2012-01-01

    Laminar premixed flames of the two smallest isomeric amines, dimethylamine and ethylamine, were investigated under one-dimensional low-pressure (40mbar) conditions with the aim to elucidate pathways that may contribute to fuel-nitrogen conversion in the combustion of biomass. For this, identical...... flames of both fuels diluted with 25% Ar were studied for three different stoichiometries (Φ=0.8, 1.0, and 1.3) using in situ molecular-beam mass spectrometry (MBMS). Quantitative mole fractions of reactants, products and numerous stable and reactive intermediates were determined by electron ionization...... (EI) MBMS with high mass resolution to separate overlapping features from species with different heavy elements by exact mass. Species assignment was assisted by using single-photon vacuum-ultraviolet (VUV) photoionization (PI) MBMS. The results indicate formation of a number of nitrogenated...

  19. Recent progress in the development of solid catalysts for biomass conversion into high value-added chemicals

    Science.gov (United States)

    Hara, Michikazu; Nakajima, Kiyotaka; Kamata, Keigo

    2015-06-01

    In recent decades, the substitution of non-renewable fossil resources by renewable biomass as a sustainable feedstock has been extensively investigated for the manufacture of high value-added products such as biofuels, commodity chemicals, and new bio-based materials such as bioplastics. Numerous solid catalyst systems for the effective conversion of biomass feedstocks into value-added chemicals and fuels have been developed. Solid catalysts are classified into four main groups with respect to their structures and substrate activation properties: (a) micro- and mesoporous materials, (b) metal oxides, (c) supported metal catalysts, and (d) sulfonated polymers. This review article focuses on the activation of substrates and/or reagents on the basis of groups (a)-(d), and the corresponding reaction mechanisms. In addition, recent progress in chemocatalytic processes for the production of five industrially important products (5-hydroxymethylfurfural, lactic acid, glyceraldehyde, 1,3-dihydroxyacetone, and furan-2,5-dicarboxylic acid) as bio-based plastic monomers and their intermediates is comprehensively summarized.

  20. Waste biomass to liquids: Low temperature conversion of sugarcane bagasse to bio-oil. The effect of combined hydrolysis treatments

    International Nuclear Information System (INIS)

    Cunha, Josilaine A.; Pereira, Marcelo M.; Valente, Ligia M.M.; Ramirez de la Piscina, Pilar; Homs, Narcis; Santos, Margareth Rose L.

    2011-01-01

    This article describes the influence of different sugarcane bagasse hydrolysis pretreatments on modifications to biomass feedstock and the characteristics of the resultant pyrolysis products. Sugarcane bagasse was pretreated with acid, alkaline or sequential acid/alkaline solutions and pretreated samples were then subjected to a low temperature conversion (LTC) process under He or O 2 /He atmospheres at 350-450 o C. Both pretreated samples and sugarcane bagasse in natura were analyzed by determination of their chemical composition and by thermogravimetric, FTIR and SEM analyses. The gases yielded during LTC were monitored on-line by quadrupole mass spectrometry, and the liquid fractions obtained were characterized by FTIR and 1 H and 13 C NMR. Irrespective of the sugarcane bagasse pretreatment applied, the main bio-oil component obtained was levoglucosan. However, the LTC yield of bio-oil depended on the hydrolysis treatment of the biomass and decreased in the presence of O 2 . The acid hydrolysis pretreatment increased the LTC bio-oil yield notably. -- Highlights: → Sugarcane bagasse modified by acid, alkaline or sequential acid/alkaline hydrolysis. → LTC-pyrolysis at 350-450 o C under He or O 2 /He of pretreated sugarcane bagasse. → Yield of bio-oil depended on hydrolysis treatment and decreased in presence of O 2. → The acid hydrolysis pretreatment increased the LTC bio-oil yield notably (72% in He). → Levoglucosan was the main bio-oil component obtained.

  1. Process Design and Economics for Conversion of Lignocellulosic Biomass to Ethanol: Thermochemical Pathway by Indirect Gasification and Mixed Alcohol Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, A.; Talmadge, M.; Hensley, J.; Worley, M.; Dudgeon, D.; Barton, D.; Groendijk, P.; Ferrari, D.; Stears, B.; Searcy, E. M.; Wright, C. T.; Hess, J. R.

    2011-05-01

    This design report describes an up-to-date benchmark thermochemical conversion process that incorporates the latest research from NREL and other sources. Building on a design report published in 2007, NREL and its subcontractor Harris Group Inc. performed a complete review of the process design and economic model for a biomass-to-ethanol process via indirect gasification. The conceptual design presented herein considers the economics of ethanol production, assuming the achievement of internal research targets for 2012 and nth-plant costs and financing. The design features a processing capacity of 2,205 U.S. tons (2,000 metric tonnes) of dry biomass per day and an ethanol yield of 83.8 gallons per dry U.S. ton of feedstock. The ethanol selling price corresponding to this design is $2.05 per gallon in 2007 dollars, assuming a 30-year plant life and 40% equity financing with a 10% internal rate of return and the remaining 60% debt financed at 8% interest. This ethanol selling price corresponds to a gasoline equivalent price of $3.11 per gallon based on the relative volumetric energy contents of ethanol and gasoline.

  2. Recent progress in the development of solid catalysts for biomass conversion into high value-added chemicals

    International Nuclear Information System (INIS)

    Hara, Michikazu; Nakajima, Kiyotaka; Kamata, Keigo

    2015-01-01

    In recent decades, the substitution of non-renewable fossil resources by renewable biomass as a sustainable feedstock has been extensively investigated for the manufacture of high value-added products such as biofuels, commodity chemicals, and new bio-based materials such as bioplastics. Numerous solid catalyst systems for the effective conversion of biomass feedstocks into value-added chemicals and fuels have been developed. Solid catalysts are classified into four main groups with respect to their structures and substrate activation properties: (a) micro- and mesoporous materials, (b) metal oxides, (c) supported metal catalysts, and (d) sulfonated polymers. This review article focuses on the activation of substrates and/or reagents on the basis of groups (a)–(d), and the corresponding reaction mechanisms. In addition, recent progress in chemocatalytic processes for the production of five industrially important products (5-hydroxymethylfurfural, lactic acid, glyceraldehyde, 1,3-dihydroxyacetone, and furan-2,5-dicarboxylic acid) as bio-based plastic monomers and their intermediates is comprehensively summarized. (focus issue review)

  3. Ab initio calculations and kinetic modeling of thermal conversion of methyl chloride: implications for gasification of biomass.

    Science.gov (United States)

    Singla, Mallika; Rasmussen, Morten Lund; Hashemi, Hamid; Wu, Hao; Glarborg, Peter; Pelucchi, Matteo; Faravelli, Tiziano; Marshall, Paul

    2018-01-24

    Limitations in current hot gas cleaning methods for chlorine species from biomass gasification may be a challenge for end use such as gas turbines, engines, and fuel cells, all requiring very low levels of chlorine. During devolatilization of biomass, chlorine is released partly as methyl chloride. In the present work, the thermal conversion of CH 3 Cl under gasification conditions was investigated. A detailed chemical kinetic model for pyrolysis and oxidation of methyl chloride was developed and validated against selected experimental data from the literature. Key reactions of CH 2 Cl with O 2 and C 2 H 4 for which data are scarce were studied by ab initio methods. The model was used to analyze the fate of methyl chloride in gasification processes. The results indicate that CH 3 Cl emissions will be negligible for most gasification technologies, but could be a concern for fluidized bed gasifiers, in particular in low-temperature gasification. The present work illustrates how ab initio theory and chemical kinetic modeling can help to resolve emission issues for thermal processes in industrial scale.

  4. Biotechnological conversion of waste cooking olive oil into lipid-rich biomass using Aspergillus and Penicillium strains.

    Science.gov (United States)

    Papanikolaou, S; Dimou, A; Fakas, S; Diamantopoulou, P; Philippoussis, A; Galiotou-Panayotou, M; Aggelis, G

    2011-05-01

    In this study, we have investigated the biochemical behaviour of Aspergillus sp. (five strains) and Penicillium expansum (one strain) fungi cultivated on waste cooking olive oil. The production of lipid-rich biomass was the main target of the work. In parallel, the biosynthesis of other extracellular metabolites (organic acids) and enzyme (lipase) and the substrate fatty acid specificity of the strains were studied. Carbon-limited cultures were performed on waste oil, added in the growth medium at 15g l(-1) , and high biomass quantities were produced (up to c.18g l(-1) , conversion yield of c. 1·0 g of dry biomass formed per g of fat consumed or higher). Cellular lipids were accumulated in notable quantities in almost all cultures. Aspergillus sp. ATHUM 3482 accumulated lipid up to 64·0% (w/w) in dry fungal mass. In parallel, extracellular lipase activity was quantified, and it was revealed to be strain and fermentation time dependent, with a maximum quantity of 645 U ml(-1) being obtained by Aspergillus niger NRRL 363. Storage lipid content significantly decreased at the stationary growth phase. Some differences in the fatty acid composition of both cellular and residual lipids when compared with the initial substrate fat used were observed; in various cases, cellular lipids more saturated and enriched with arachidic acid were produced. Aspergillus strains produced oxalic acid up to 5·0 g l(-1) . Aspergillus and Penicillium strains are able to convert waste cooking olive oil into high-added-value products.   Increasing fatty wastes amounts are annually produced. The current study provided an alternative way of biovalourization of these materials, by using them as substrates, to produce added-value compounds. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  5. Development of direct conversion method for microalgal biodiesel production using wet biomass of Nannochloropsis salina.

    Science.gov (United States)

    Kim, Tae-Hyoung; Suh, William I; Yoo, Gursong; Mishra, Sanjiv K; Farooq, Wasif; Moon, Myounghoon; Shrivastav, Anupama; Park, Min S; Yang, Ji-Won

    2015-09-01

    In this work, the effects of several factors, such as temperature, reaction time, and solvent and acid quantity on in situ transesterification yield of wet Nannochloropsis salina were investigated. Under equivalent total solvent volume to biomass ratio, pure alcohol showed higher yield compared to alcohol-chloroform solvent. For esterifying 200 mg of wet cells, 2 ml of methanol and 1 ml of ethanol was sufficient to complete in situ transesterification. Under temperatures of 105 °C or higher, 2.5% and 5% concentrations of sulfuric acid was able to successfully convert more than 90% of lipid within 30 min when methanol and ethanol was used as solvents respectively. Also, it was verified that the optimal condition found in small-scale experiments is applicable to larger scale using 2 L scale reactor as well. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Techno-economic Analysis for the Thermochemical Conversion of Biomass to Liquid Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yunhua; Tjokro Rahardjo, Sandra A.; Valkenburt, Corinne; Snowden-Swan, Lesley J.; Jones, Susanne B.; Machinal, Michelle A.

    2011-06-01

    ). This study is part of an ongoing effort within the Department of Energy to meet the renewable energy goals for liquid transportation fuels. The objective of this report is to present a techno-economic evaluation of the performance and cost of various biomass based thermochemical fuel production. This report also documents the economics that were originally developed for the report entitled “Biofuels in Oregon and Washington: A Business Case Analysis of Opportunities and Challenges” (Stiles et al. 2008). Although the resource assessments were specific to the Pacific Northwest, the production economics presented in this report are not regionally limited. This study uses a consistent technical and economic analysis approach and assumptions to gasification and liquefaction based fuel production technologies. The end fuels studied are methanol, ethanol, DME, SNG, gasoline and diesel.

  7. Utilization of biomass: Conversion of model compounds to hydrocarbons over zeolite H-ZSM-5

    DEFF Research Database (Denmark)

    Mentzel, Uffe Vie; Holm, Martin Spangsberg

    2011-01-01

    Zeolite catalyzed deoxygenation of small oxygenates present in bio-oil or selected as model compounds was performed under Methanol-to-Hydrocarbons (MTH) like reaction conditions using H-ZSM-5 as the catalyst. Co-feeding of the oxygenates with methanol generally decreases catalyst lifetime due...... to coking and results in higher selectivity towards aromatics compared to conversion of pure methanol. The reaction pattern of the different oxygenates did not simply follow the effective H/C ratio of the additives since structural isomers with identical effective H/C ratios showed significant differences...

  8. Biological conversion of biomass to methane, the effect of reactor design on kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Geisser, H R; Pfeffer, J T

    1977-12-01

    An experimental program was conducted to evaluate the effect of reactor type on methane production. This study showed that if a balanced population of organisms can be maintained in the initial stage, multi-stage fermentation is more efficient than a complex mix system. However, when the system is stressed, failure in the multi-stage system is more rapid. If the objective is to maximize the conversion of solids to methane, a staged system will produce more methane per unit volume of reactor. If the objective is to maximize the methane production per unit volume of reactor, a single stage complete-mix reactor operating near the critical retention time is required.

  9. Actual development of the conversion of energy sources of minor value in so-called bio coal. A comparison of pyrolysis process with the HTC process; Aktuelle Entwicklung bei der Konversion von minderwertigen Energietraegern in die so genannte Biokohle. Ein Vergleich von Pyrolyse- und HTC-Verfahren

    Energy Technology Data Exchange (ETDEWEB)

    Neudeck, Diana; Roedger, Jan-Markus [HAWK Hochschule fuer angewandte Wissenschaft und Kunst, Goettingen (Germany); Loewen, Achim

    2012-07-01

    The conversion of biomass with low quality into biochar through pyrolysis or hydro-thermal carbonization is suitable to substitute lignite and hard coal as a fuel and thereby improve the carbon footprint of a firing plant: Additionally there is the possibility to apply biochar to fields. Carbon compounds, stabilized by the carbonization process, could simultaneously increase crop yields and sequester carbon for mid- and long term. This paper compares the two processes pyrolysis and hydrothermal carbonization regarding input-material, process-parameters, product-properties and possible applications for each product. The aim is to give an overview which process with given parameters leads to which final product and application. (orig.)

  10. Sampling and analysis of trace-organic constituents in ambient and workplace air at coal-conversion facilities

    Energy Technology Data Exchange (ETDEWEB)

    Flotard, R D

    1980-07-01

    A review of the recent literature reveals that current sampling procedures involve the use of glass fiber filters for particulate-sorbed organics and sorbent resins such as Tenax GC and XAD-2 for vapor-phase organics. Ultra trace-organic analysis of air pollutants or particulates may require the collection of a large (1000 to 3000 m/sup 3/) sample by a high volume air sampler. Personal air sampling requires a smaller (approx. = 0.5 m/sup 3/) and a portable collection apparatus. Trapped organic chemicals are recovered by solvent extraction or thermal desorption of the collector. Recovered organics are separated by using liquid chromatography or gas chromatography and are identified by ultraviolet or fluorescence spectroscopy, gas chromatography, or mass spectrometry. For quantification, standards are added to the air stream during sampling or to the filter or resin following sampling. Analysis of the requirement for air sampling in and around coal conversion plants, coupled with the findings of the literature review, indicates that a combined particulate-filter and solvent-extractable-resin sampling unit should be used to collect both particulate-sorbed organics and vapor-phase organics from workplace or ambient plant air. Such a sampler was developed for stationary, moderate-to-high-volume air sampling. Descriptions of the sampler are provided together with sampling efficiency information and recommendations for a sampling procedure.

  11. Enzyme activities and microbial biomass in topsoil layer during spontaneous succession in spoil heaps after brown coal mining

    Energy Technology Data Exchange (ETDEWEB)

    Baldrian, P.; Trogl, J.; Frouz, J.; Snajdr, J.; Valaskova, V.; Merhautova, V.; Cajthaml, T.; Herinkova, J. [ASCR, Prague (Czech Republic). Institute for Microbiology

    2008-09-15

    Changes in the activity of extracellular enzymes (cellobiohydrolase, beta-glucosidase, beta-xylosidase, chitinase, arylsulfatase and phosphatases) and the changes in microbial community and abiotic properties in the topsoil layer, as well as soil abiotic properties during primary succession were investigated in a brown coal mine deposit area near Sokolov, Czech Republic. The study considered the chronosequence of 4 post-mining plots, 4-, 12-, 21 - and 45-year old. The 4-year old site had no vegetation cover. Herbs and grasses (mainly Calamagrostis epigeios) were present on the 12-year old plot, shrubs (Salix caprea) occurred on the 21-year old plot and tree cover (Betula spp. and Populus tremuloides) developed on the 45-year old plot. Soil pH gradually decreased with site age, while the content of K, C and N peaked in the 21-year old site, being significantly lower in the 45-year old site and much lower in the 4- and 12-year old sites. Phosphatase activities were strongly affected by seasonality while the activities of all the other enzymes measured were more influenced by the effects of succession age and soil layer than by seasonality. Succession age was also the most important factor affecting the total and bacterial PLFA contents, followed by the effects of soil layer and season while for the fungal biomass content-related properties (ergosterol, fungal PLFA and the fungal/bacterial PLFA ratio), season was the most important. Activities of individual enzymes in the topsoil (0-5 cm depth) were significantly affected by both site age and season. Cellobiohydrolase and beta-xylosidase were more affected by site age while chitinase and phosphatases were more affected by season. Enzyme activity increased with succession age. Comparison of the effect of site and season on enzyme activity showed that season played a principal role in the enzyme activity of the entire 0-5 cm component of topsoil, as well the soil layers when evaluated separately.

  12. Effects on NOx and SO2 Emissions during Co-Firing of Coal With Woody Biomass in Air Staging and Reburning

    Directory of Open Access Journals (Sweden)

    Nihad Hodžić

    2018-02-01

    Full Text Available Co-firing coal with different types of biomass is increasingly being applied in thermal power plants in Europe. The main motive for the use of biomass as the second fuel in coal-fired power plants is the reduction of CO2 emissions, and related financial benefits in accordance with the relevant international regulations and agreements. Likewise, the application of primary measures in the combustion chamber, which also includes air staging and/or reburning, results in a significant reduction in emission of polluting components of flue gases, in particular NOx emissions. In addition to being efficient and their application to new and future thermoblocks is practically unavoidable, their application and existing conventional combustion chamber does not require significant constructional interventions and is therefore relatively inexpensive. In this work results of experimental research of co-firing coals from Middle Bosnian basin with waste woody biomass are presented. Previously formed fuel test matrix is subjected to pulverized combustion under various temperatures and various technical and technological conditions. First of all it refers to the different mass ratio of fuel components in the mixture, the overall coefficient of excess air and to the application of air staging and/or reburning. Analysis of the emissions of components of the flue gases are presented and discussed. The impact of fuel composition and process temperature on the values of the emissions of components of the flue gas is determined. Additionally, it is shown that other primary measures in the combustion chamber are resulting in more or less positive effects in terms of reducing emissions of certain components of the flue gases into the environment. Thus, for example, the emission of NOx of 989 mg/ measured in conventional combustion, with the simultaneous application of air staging and reburning is reduced to 782 mg/, or by about 21%. The effects of the primary measures

  13. Catalytic routes from biomass to fuels

    DEFF Research Database (Denmark)

    Riisager, Anders

    2014-01-01

    The carbon-based chemicals and fuels that are necessary to meet the energy demand for our society originate presently almost exclusively from inexpensive fossil resources – coal, oil and natural gas. The forecast of diminishing and more expensive petroleum reserves has, however, engaged...... the chemical industry to find new feasible chemocatalytic routes to convert the components of lignocellulosic plant biomass (green biomass) as well as aquatic biomass (blue biomass) into potential platform chemicals that can replace the fossil based chemicals in order to leave the chemical supply and value...... chain unaffected. This presentation will survey the status of biofuels production from different sources, and discuss the sustainability of making transportation fuels from biomass. Furthermore, recently developed chemocatalytic technologies that allow efficient conversion of lignocellulosic biomass...

  14. YEAR 2 BIOMASS UTILIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Christopher J. Zygarlicke

    2004-11-01

    cofiring coal with waste paper, sunflower hulls, and wood waste showed a broad spectrum of chemical and physical characteristics, according to American Society for Testing and Materials (ASTM) C618 procedures. Higher-than-normal levels of magnesium, sodium, and potassium oxide were observed for the biomass-coal fly ash, which may impact utilization in cement replacement in concrete under ASTM requirements. Other niche markets for biomass-derived fly ash were explored. Research was conducted to develop/optimize a catalytic partial oxidation-based concept for a simple, low-cost fuel processor (reformer). Work progressed to evaluate the effects of temperature and denaturant on ethanol catalytic partial oxidation. A catalyst was isolated that had a yield of 24 mole percent, with catalyst coking limited to less than 15% over a period of 2 hours. In biodiesel research, conversion of vegetable oils to biodiesel using an alternative alkaline catalyst was demonstrated without the need for subsequent water washing. In work related to biorefinery technologies, a continuous-flow reactor was used to react ethanol with lactic acid prepared from an ammonium lactate concentrate produced in fermentations conducted at the EERC. Good yields of ester were obtained even though the concentration of lactic acid in the feed was low with respect to the amount of water present. Esterification gave lower yields of ester, owing to the lowered lactic acid content of the feed. All lactic acid fermentation from amylose hydrolysate test trials was completed. Management activities included a decision to extend several projects to December 31, 2003, because of delays in receiving biomass feedstocks for testing and acquisition of commercial matching funds. In strategic studies, methods for producing acetate esters for high-value fibers, fuel additives, solvents, and chemical intermediates were discussed with several commercial entities. Commercial industries have an interest in efficient biomass

  15. Engineering a Synthetic Microbial Consortium for Comprehensive Conversion of Algae Biomass into Terpenes for Advanced Biofuels and Bioproducts

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Weihua [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Wu, Benjamin Chiau-Pin [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Davis, Ryan Wesley [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2015-10-01

    Recent strategies for algae-based biofuels have primarily focused on biodiesel production by exploiting high algal lipid yields under nutrient stress conditions. However, under conditions supporting robust algal biomass accumulation, carbohydrate and proteins typically comprise up to ~80% of the ash-free dry weight of algae biomass. Therefore, comprehensive utilization of algal biomass for production of multipurpose intermediate- to high-value bio-based products will promote scale-up of algae production and processing to commodity volumes. Terpenes are hydrocarbon and hydrocarbon-like (C:O>10:1) compounds with high energy density, and are therefore potentially promising candidates for the next generation of value added bio-based chemicals and “drop-in” replacements for petroleum-based fuels. In this study, we demonstrated the feasibility of bioconversion of proteins into sesquiterpene compounds as well as comprehensive bioconversion of algal carbohydrates and proteins into biofuels. To achieve this, the mevalonate pathway was reconstructed into an E. coli chassis with six different terpene synthases (TSs). Strains containing the various TSs produced a spectrum of sesquiterpene compounds in minimal medium containing amino acids as the sole carbon source. The sesquiterpene production was optimized through three different regulation strategies using chamigrene synthase as an example. The highest total terpene titer reached 166 mg/L, and was achieved by applying a strategy to minimize mevalonate accumulation in vivo. The highest yields of total terpene were produced under reduced IPTG induction levels (0.25 mM), reduced induction temperature (25°C), and elevated substrate concentration (20 g/L amino acid mixture). A synthetic bioconversion consortium consisting of two engineering E. coli strains (DH1-TS and YH40-TS) with reconstructed terpene biosynthetic pathways was designed for comprehensive single-pot conversion of algal carbohydrates and proteins to

  16. RESIDUES FROM COAL CONVERSION AND UTILIZATION: ADVANCED MINERALOGICAL CHARACTERIZATION AND DISPOSED BYPRODUCT DIAGENESIS

    Energy Technology Data Exchange (ETDEWEB)

    Gregory J. McCarthy; Dean G. Grier

    2001-01-01

    Prior to the initiation of this study, understanding of the long-term behavior of environmentally-exposed Coal Combustion By-Products (CCBs) was lacking in (among others) two primary areas addressed in this work. First, no method had been successfully applied to achieve full quantitative analysis of the partitioning of chemical constituents into reactive or passive crystalline or noncrystalline compounds. Rather, only semi-quantitative methods were available, with large associated errors. Second, our understanding of the long-term behavior of various CCBs in contact with the natural environment was based on a relatively limited set of study materials. This study addressed these areas with two objectives, producing (1) a set of protocols for fully quantitative phase analysis using the Rietveld Quantitative X-ray Diffraction (RQXRD) method and (2) greater understanding of the hydrologic and geochemical nature of the long-term behavior of disposed and utilized CCBs. The RQXRD technique was initially tested using (1) mixtures of National Institute of Standards and Technology (NIST) crystalline standards, and (2) mixtures of synthetic reagents simulating various CCBs, to determine accuracy and precision of the method, and to determine the most favorable protocols to follow in order to efficiently quantify multi-phase mixtures. Four sets of borehole samples of disposed or utilized CCBs were retrieved and analyzed by RQXRD according to the protocols developed under the first objective. The first set of samples, from a Class F ash settling pond in Kentucky disposed for up to 20 years, showed little mineralogical alteration, as expected. The second set of samples, from an embankment in Indiana containing a mixture of chain-grate (stoker) furnace ash and fluidized bed combustion (FBC) residues, showed formation of the mineral thaumasite, as observed in previously studied exposed FBC materials. Two high-calcium CCBs studied, including a dry-process flue gas desulfurization

  17. Hemicellulases and auxiliary enzymes for improved conversion of lignocellulosic biomass to monosaccharides

    Directory of Open Access Journals (Sweden)

    Hermanson Spencer

    2011-02-01

    Full Text Available Abstract Background High enzyme loading is a major economic bottleneck for the commercial processing of pretreated lignocellulosic biomass to produce fermentable sugars. Optimizing the enzyme cocktail for specific types of pretreated biomass allows for a significant reduction in enzyme loading without sacrificing hydrolysis yield. This is especially important for alkaline pretreatments such as Ammonia fiber expansion (AFEX pretreated corn stover. Hence, a diverse set of hemicellulases supplemented along with cellulases is necessary for high recovery of monosaccharides. Results The core fungal cellulases in the optimal cocktail include cellobiohydrolase I [CBH I; glycoside hydrolase (GH family 7A], cellobiohydrolase II (CBH II; GH family 6A, endoglucanase I (EG I; GH family 7B and β-glucosidase (βG; GH family 3. Hemicellulases tested along with the core cellulases include xylanases (LX1, GH family 10; LX2, GH family 10; LX3, GH family 10; LX4, GH family 11; LX5, GH family 10; LX6, GH family 10, β-xylosidase (LβX; GH family 52, α-arabinofuranosidase (LArb, GH family 51 and α-glucuronidase (LαGl, GH family 67 that were cloned, expressed and/or purified from different bacterial sources. Different combinations of these enzymes were tested using a high-throughput microplate based 24 h hydrolysis assay. Both family 10 (LX3 and family 11 (LX4 xylanases were found to most efficiently hydrolyze AFEX pretreated corn stover in a synergistic manner. The optimal mass ratio of xylanases (LX3 and LX4 to cellulases (CBH I, CBH II and EG I is 25:75. LβX (0.6 mg/g glucan is crucial to obtaining monomeric xylose (54% xylose yield, while LArb (0.6 mg/g glucan and LαGl (0.8 mg/g glucan can both further increase xylose yield by an additional 20%. Compared with Accellerase 1000, a purified cocktail of cellulases supplemented with accessory hemicellulases will not only increase both glucose and xylose yields but will also decrease the total enzyme loading

  18. DEVELOPMENT OF A VALIDATED MODEL FOR USE IN MINIMIZING NOx EMISSIONS AND MAXIMIZING CARBON UTILIZATION WHEN CO-FIRING BIOMASS WITH COAL

    Energy Technology Data Exchange (ETDEWEB)

    Larry G. Felix; P. Vann Bush

    2002-07-01

    This is the seventh Quarterly Technical Report for DOE Cooperative Agreement No. DE-FC26-00NT40895. A statement of the project objectives is included in the Introduction of this report. Two additional biomass co-firing test burns were conducted during this quarter. In the first test (Test 12), up to 20% by weight dry hardwood sawdust and switchgrass was comilled with Galatia coal and injected through the single-register burner. Liquid ammonia was intermittently added to the primary air stream to increase fuel-bound nitrogen and simulate cofiring with chicken litter. Galatia coal is a medium-sulfur ({approx} 1.2% S), high chlorine ({approx}0.5%) Illinois Basin coal. In the second test (Test 13), up to 20% by weight dry hardwood sawdust and switchgrass was comilled with Jim Walters No.7 mine coal and injected through the single-register burner. Jim Walters No.7 coal is a low-volatility, low-sulfur ({approx} 0.7% S) Eastern bituminous coal. The results of these tests are presented in this quarterly report. Progress has continued to be made in implementing a modeling approach to combine reaction times and temperature distributions from computational fluid dynamic models of the pilot-scale combustion furnace with char burnout and chemical reaction kinetics to predict NO{sub x} emissions and unburned carbon levels in the furnace exhaust. The Configurable Fireside Simulator has been delivered from REI, Inc. and is being tested with exiting CFD solutions. Preparations are under way for a final pilot-scale combustion experiment using the single-register burner fired with comilled mixtures of Jim Walters No.7 low-volatility bituminous coal and switchgrass. Because of the delayed delivery of the Configurable Fireside Simulator, it is planned to ask for a no-cost time extension for the project until the end of this calendar year. Finally, a paper describing this project that included preliminary results from the first four cofiring tests was presented at the 12th European

  19. Ionizing Radiation Conversion of Lignocellulosic Biomass from Sugarcane Bagasse to Production Ethanol Biofuel

    International Nuclear Information System (INIS)

    Duarte, C.L.; Mori, M.N.; Oikawa, H.; Finguerut, J.; Galvão, A.; Nagatomi, H.R.; Célia, M.

    2010-01-01

    Sugarcane bagasse has been considered as a substrate for single cell protein, animal feed, and renewable energy production. Sugarcane bagasse generally contain up to 45% glucose polymer cellulose, 40% hemicelluloses, and 20% lignin. Pure cellulose is readily depolymerised by radiation, but in biomass, the cellulose is intimately bonded with lignin, that protect it from radiation effects. The objective of this study is the evaluation of the electron beam irradiation as a pre-treatment to enzymatic hydrolysis of cellulose in order to facilitate its fermentation and improves the production of ethanol biofuel. Samples of sugarcane bagasse were obtained in sugar/ethanol Iracema Mill sited in Piracicaba, Brazil, and were irradiated using Radiation Dynamics Electron Beam Accelerator with 1.5 MeV energy and 37kW, in batch systems. The applied absorbed doses of the fist sampling, Bagasse A, were 20 kGy, 50 kGy, 100 kGy and 200 kGy. After the evaluation the preliminary obtained results, it was applied lower absorbed doses in the second assay: 5 kGy, 10 kGy, 20 kGy, 30 kGy, 50 kGy, 70 kGy, 100 kGy and 150 kGy. The electron beam processing took to changes in the sugarcane bagasse structure and composition, lignin and cellulose cleavage. The yield of enzymatic hydrolyzes of cellulose increase about 75 % with 30 kGy of absorbed dose. (author)

  20. Technical Aspects of Acceleration of Enzymatic Conversion of Corn Stover Biomass into Bio-fuels by Low Intensity, Uniform Ultrasound Field

    Science.gov (United States)

    One of the most critical stages of conversion of plant biomass into biofuels employs hydrolysis reactions between highly specific enzymes and matching substrates (e.g. corn stover cellulose with cellulase) that produce soluble sugars, which then could be converted into ethanol. Important benefits of...

  1. The experience of burning the high-moistured waste of biomass conversion

    Energy Technology Data Exchange (ETDEWEB)

    Fincker, F.Z.; Zysin, L.V.; Kubyshkin, I.B. [MGVP Polytechenergo, St. Petersburg (Russian Federation)

    1993-12-31

    Industrially developed countries have a large stock of operating boiler plants to utilize timber industry waste materials (bagasse, bark, wood chips, hydrolytic lignine, sawdust, etc.) for biogenesis of energy. Standard combustion methods employing a bed or flare process cannot guarantee a reliable and economic boiler plant operation with abruptly changing biomass characteristic features. The moisture content in bark or lignin can vary from 50 to 75% during an hour. Particle sizes can vary from powdered to very large, and can have a hundred thousand times size difference. Large metal and mineral inclusions into the starting fuel also complicate the process. The low-temperature whirling combustion technology developed in Russia was taken as a basic. An economical and stable operation of boilers has been achieved by means of up-to-date vortex chamber aerial dynamics, the use of unique devices of fuel feed and preparation with screening the waste materials into sizes. The firing chamber is equipped with a multi-chamber device where screening and fuel particles preparation with the removal of noncombustible inclusions take place. At presenting the firing chamber with multi-step process of burning is in operation with 20 boilers. The firm {open_quotes}POLYTECHENERGO,{close_quotes} a developer and producer of such equipment, carries out the modernization of the boiler plant without changes in the its thermal circuit. In most of cases no replacement of draught means is needed. Competitive with the proposed low-temperature whirling technological process can be only a fluidized bed process, but due to the complexity in service, low reliability, high energy expenditures, such chambers at present are very few. The capital expenses one existing boilers updating for a fluidized bed process exceed the expenses on a low-temperature whirling process by 15--20 fold.

  2. A Path Forward for Low Carbon Power from Biomass

    Directory of Open Access Journals (Sweden)

    Amanda D. Cuellar

    2015-02-01

    Full Text Available The two major pathways for energy utilization from biomass are conversion to a liquid fuel (i.e., biofuels or conversion to electricity (i.e., biopower. In the United States (US, biomass policy has focused on biofuels. However, this paper will investigate three options for biopower: low co-firing (co-firing scenarios refer to combusting a given percentage of biomass with coal (5%–10% biomass, medium co-firing (15%–20% biomass, and dedicated biomass firing (100% biomass. We analyze the economic and greenhouse gas (GHG emissions impact of each of these options, with and without CO2 capture and storage (CCS. Our analysis shows that in the absence of land use change emissions, all biomass co-combustion scenarios result in a decrease in GHG emissions over coal generation alone. The two biggest barriers to biopower are concerns about carbon neutrality of biomass fuels and the high cost compared to today’s electricity prices. This paper recommends two policy actions. First, the need to define sustainability criteria and initiate a certification process so that biomass providers have a fixed set of guidelines to determine whether their feedstocks qualify as renewable energy sources. Second, the need for a consistent, predictable policy that provides the economic incentives to make biopower economically attractive.

  3. Biological conversion of biomass to methane. Final report, June 1, 1976-January 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Pfeffer, J T

    1980-02-01

    An experimental methane fermentation system was constructed for the purpose of evaluating the processng requirements and conversion efficiencies associated with production of methane from various organic feed stocks. The fermentation reactors had an operating volume 0.775 m/sup 3/. This permitted operation with an approximate continuous feed of milled organics including beef feedlot manure, corn stover, wheat straw and alfalfa hay. A thermochemical pretreatment was applied to the corn stover and wheat straw in order to increase the biodegradability of these substrates. Working with these large units provided sufficient volumes of fermented slurry for evaluation of the dewatering properties of these slurries. Kinetic data were obtained by operating four reactors at different retention times. These data were used to calculate a first order rate constant and the percent of substrate volatile solids that were biodegradable. These data were obtained on beef feed lot manure at 40/sup 0/C and 60/sup 0/C nominal fermentation temperatures. Data from the fermentation of corn stover showed that the biodegradability of the stover volatile solids was only 36 percent at the thermophilic fermentation temperature. The first order rate constant was found to be 0.25 day/sup -1/. Thermochemical pretreatment increased the biodegradability of stover volatile solids to 71 percent. The final substrate tested was a green crop that was field dried - alfalfa. Significant foaming problems were encountered with this material. The volatile solids were found to be 74 percent biodegradable at a fermentation temperature of 60/sup 0/C. (MHR)

  4. Decentralized energy conversion of biomass from Amstelland. The feasibility of decentralized use of energy from green wastes in the municipality Amstelveen and its environs

    International Nuclear I