WorldWideScience

Sample records for biomass carbon stocks

  1. Measuring Biomass and Carbon Stock in Resprouting Woody Plants

    Science.gov (United States)

    Matula, Radim; Damborská, Lenka; Nečasová, Monika; Geršl, Milan; Šrámek, Martin

    2015-01-01

    Resprouting multi-stemmed woody plants form an important component of the woody vegetation in many ecosystems, but a clear methodology for reliable measurement of their size and quick, non-destructive estimation of their woody biomass and carbon stock is lacking. Our goal was to find a minimum number of sprouts, i.e., the most easily obtainable, and sprout parameters that should be measured for accurate sprout biomass and carbon stock estimates. Using data for 5 common temperate woody species, we modelled carbon stock and sprout biomass as a function of an increasing number of sprouts in an interaction with different sprout parameters. The mean basal diameter of only two to five of the thickest sprouts and the basal diameter and DBH of the thickest sprouts per stump proved to be accurate estimators for the total sprout biomass of the individual resprouters and the populations of resprouters, respectively. Carbon stock estimates were strongly correlated with biomass estimates, but relative carbon content varied among species. Our study demonstrated that the size of the resprouters can be easily measured, and their biomass and carbon stock estimated; therefore, resprouters can be simply incorporated into studies of woody vegetation. PMID:25719601

  2. Biomass models to estimate carbon stocks for hardwood tree species

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Peinado, R.; Montero, G.; Rio, M. del

    2012-11-01

    To estimate forest carbon pools from forest inventories it is necessary to have biomass models or biomass expansion factors. In this study, tree biomass models were developed for the main hardwood forest species in Spain: Alnus glutinosa, Castanea sativa, Ceratonia siliqua, Eucalyptus globulus, Fagus sylvatica, Fraxinus angustifolia, Olea europaea var. sylvestris, Populus x euramericana, Quercus canariensis, Quercus faginea, Quercus ilex, Quercus pyrenaica and Quercus suber. Different tree biomass components were considered: stem with bark, branches of different sizes, above and belowground biomass. For each species, a system of equations was fitted using seemingly unrelated regression, fulfilling the additivity property between biomass components. Diameter and total height were explored as independent variables. All models included tree diameter whereas for the majority of species, total height was only considered in the stem biomass models and in some of the branch models. The comparison of the new biomass models with previous models fitted separately for each tree component indicated an improvement in the accuracy of the models. A mean reduction of 20% in the root mean square error and a mean increase in the model efficiency of 7% in comparison with recently published models. So, the fitted models allow estimating more accurately the biomass stock in hardwood species from the Spanish National Forest Inventory data. (Author) 45 refs.

  3. Biomass and Carbon Stocks of Sofala Bay Mangrove Forests

    Directory of Open Access Journals (Sweden)

    Almeida A. Sitoe

    2014-08-01

    Full Text Available Mangroves could be key ecosystems in strategies addressing the mitigation of climate changes through carbon storage. However, little is known regarding the carbon stocks of these ecosystems, particularly below-ground. This study was carried out in the mangrove forests of Sofala Bay, Central Mozambique, with the aim of quantifying carbon stocks of live and dead plant and soil components. The methods followed the procedures developed by the Center for International Forestry Research (CIFOR for mangrove forests. In this study, we developed a general allometric equation to estimate individual tree biomass and soil carbon content (up to 100 cm depth. We estimated the carbon in the whole mangrove ecosystem of Sofala Bay, including dead trees, wood debris, herbaceous, pneumatophores, litter and soil. The general allometric equation for live trees derived was [Above-ground tree dry weight (kg = 3.254 × exp(0.065 × DBH], root mean square error (RMSE = 4.244, and coefficient of determination (R2 = 0.89. The average total carbon storage of Sofala Bay mangrove was 218.5 Mg·ha−1, of which around 73% are stored in the soil. Mangrove conservation has the potential for REDD+ programs, especially in regions like Mozambique, which contains extensive mangrove areas with high deforestation and degradation rates.

  4. Temporal Assessment of Growing Stock, Biomass and Carbon Stock of Indian Forests

    Energy Technology Data Exchange (ETDEWEB)

    Manhas, R.K.; Negi, J.D.S.; Chauhan, P.S. [Forest Ecology and Environment Division, Forest Research Institute, Dehradun, 248 006, Uttaranchal (India); Kumar, R. [Forest Survey of India, Dehradun, 248 001, Uttaranchal (India)

    2006-01-15

    The dynamics of terrestrial ecosystems depends on interactions between carbon, nutrient and hydrological cycles. Terrestrial ecosystems retain carbon in live biomass (aboveground and belowground), decomposing organic matter, and soil. Carbon is exchanged naturally between these systems and the atmosphere through photosynthesis, respiration, decomposition, and combustion. Human activities change carbon stock in these pools and exchanges between them and the atmosphere through land-use, land-use change, and forestry. In the present study we estimated the wood (stem) biomass, growing stock (GS) and carbon stock of Indian forests for 1984 and 1994. The forest area, wood biomass, GS, and carbon stock were 63.86 Mha, 4327.99 Mm{sup 3}, 2398.19 Mt and 1085.06 Mt respectively in 1984 and with the reduction in forest area, 63.34 Mha, in 1994, wood biomass (2395.12 Mt) and carbon stock (1083.69 Mt) also reduced subsequently. The Conifers, of temperate region, stocked maximum carbon in their woods, 28.88 to 65.21 t C/ha, followed by Mangrove forests, 28.24 t C/ha, Dipterocarp forests, 28.00 t C/ha, and Shorea robusta forests, 24.07 t C/ha. Boswellia serrata, with 0.22 Mha forest area, stocked only 3.91 t C/ha. To have an idea of rate of carbon loss the negative changes (loss of forest area) in forest area occurred during 1984-1994 (10yrs) and 1991-1994 (4yrs) were also estimated. In India, land-use changes and fuelwood requirements are the main cause of negative change. Total 24.75 Mt C was lost during 1984-1994 and 21.35 Mt C during 1991-94 at a rate of 2.48 Mt C/yr and 5.35 Mt C/yr respectively. While in other parts of India negative change is due to multiple reasons like fuelwood, extraction of non-wood forest products (NWFPs), illicit felling etc., but in the northeastern region of the country shifting cultivation is the only reason for deforestation. Decrease in forest area due to shifting cultivation accounts for 23.0% of the total deforestation in India, with an annual

  5. Accounting for Biomass Carbon Stock Change Due to Wildfire in Temperate Forest Landscapes in Australia

    Science.gov (United States)

    Keith, Heather; Lindenmayer, David B.; Mackey, Brendan G.; Blair, David; Carter, Lauren; McBurney, Lachlan; Okada, Sachiko; Konishi-Nagano, Tomoko

    2014-01-01

    Carbon stock change due to forest management and disturbance must be accounted for in UNFCCC national inventory reports and for signatories to the Kyoto Protocol. Impacts of disturbance on greenhouse gas (GHG) inventories are important for many countries with large forest estates prone to wildfires. Our objective was to measure changes in carbon stocks due to short-term combustion and to simulate longer-term carbon stock dynamics resulting from redistribution among biomass components following wildfire. We studied the impacts of a wildfire in 2009 that burnt temperate forest of tall, wet eucalypts in south-eastern Australia. Biomass combusted ranged from 40 to 58 tC ha−1, which represented 6–7% and 9–14% in low- and high-severity fire, respectively, of the pre-fire total biomass carbon stock. Pre-fire total stock ranged from 400 to 1040 tC ha−1 depending on forest age and disturbance history. An estimated 3.9 TgC was emitted from the 2009 fire within the forest region, representing 8.5% of total biomass carbon stock across the landscape. Carbon losses from combustion were large over hours to days during the wildfire, but from an ecosystem dynamics perspective, the proportion of total carbon stock combusted was relatively small. Furthermore, more than half the stock losses from combustion were derived from biomass components with short lifetimes. Most biomass remained on-site, although redistributed from living to dead components. Decomposition of these components and new regeneration constituted the greatest changes in carbon stocks over ensuing decades. A critical issue for carbon accounting policy arises because the timeframes of ecological processes of carbon stock change are longer than the periods for reporting GHG inventories for national emissions reductions targets. Carbon accounts should be comprehensive of all stock changes, but reporting against targets should be based on human-induced changes in carbon stocks to incentivise mitigation activities

  6. Accounting for biomass carbon stock change due to wildfire in temperate forest landscapes in Australia.

    Science.gov (United States)

    Keith, Heather; Lindenmayer, David B; Mackey, Brendan G; Blair, David; Carter, Lauren; McBurney, Lachlan; Okada, Sachiko; Konishi-Nagano, Tomoko

    2014-01-01

    Carbon stock change due to forest management and disturbance must be accounted for in UNFCCC national inventory reports and for signatories to the Kyoto Protocol. Impacts of disturbance on greenhouse gas (GHG) inventories are important for many countries with large forest estates prone to wildfires. Our objective was to measure changes in carbon stocks due to short-term combustion and to simulate longer-term carbon stock dynamics resulting from redistribution among biomass components following wildfire. We studied the impacts of a wildfire in 2009 that burnt temperate forest of tall, wet eucalypts in south-eastern Australia. Biomass combusted ranged from 40 to 58 tC ha(-1), which represented 6-7% and 9-14% in low- and high-severity fire, respectively, of the pre-fire total biomass carbon stock. Pre-fire total stock ranged from 400 to 1040 tC ha(-1) depending on forest age and disturbance history. An estimated 3.9 TgC was emitted from the 2009 fire within the forest region, representing 8.5% of total biomass carbon stock across the landscape. Carbon losses from combustion were large over hours to days during the wildfire, but from an ecosystem dynamics perspective, the proportion of total carbon stock combusted was relatively small. Furthermore, more than half the stock losses from combustion were derived from biomass components with short lifetimes. Most biomass remained on-site, although redistributed from living to dead components. Decomposition of these components and new regeneration constituted the greatest changes in carbon stocks over ensuing decades. A critical issue for carbon accounting policy arises because the timeframes of ecological processes of carbon stock change are longer than the periods for reporting GHG inventories for national emissions reductions targets. Carbon accounts should be comprehensive of all stock changes, but reporting against targets should be based on human-induced changes in carbon stocks to incentivise mitigation activities.

  7. Inventory-based estimates of forest biomass carbon stocks in China: A comparison of three methods

    Science.gov (United States)

    Zhaodi Guo; Jingyun Fang; Yude Pan; Richard. Birdsey

    2010-01-01

    Several studies have reported different estimates for forest biomass carbon (C) stocks in China. The discrepancy among these estimates may be largely attributed to the methods used. In this study, we used three methods [mean biomass density method (MBM), mean ratio method (MRM), and continuous biomass expansion factor (BEF) method (abbreviated as CBM)] applied to...

  8. Biomasse et stocks de carbone des forêts tropicales africaines (synthèse bibliographique

    Directory of Open Access Journals (Sweden)

    Loubota Panzou, GJ.

    2016-01-01

    Full Text Available Biomass and carbon stocks of tropical African forests. A review. Introduction. Quantifying the biomass and carbon stocks contained in tropical forests has become an international priority for the implementation of the REDD+ mechanism. Forest biomass is estimated at three successive levels: the tree, the stand and the region level. This paper reviews the state of the art regarding the estimation of biomass and carbon stocks in tropical African forests. Literature. This review highlights the fact that very few allometric equations, equations used for estimating the biomass of the tree using non-destructive measurements (diameter, height, have been established for tropical African forests. At the stand level, the review highlights the spatial and temporal variations in biomass between forest types in Central and Eastern Africa. While biomass recovery after a disturbance (logging, for instance is rather quick, a great deal of uncertainty still remains regarding the spatial variation in biomass, and there is no consensus on a regional biomass map. The quality of biomass mapping in tropical Africa strongly depends on the type of remotely-sensed data being used (optical, RADAR or LIDAR, and the allometric equation used to convert forest inventory data into biomass. Conclusions. Based on the lack of precision of the available allometric equations and forest inventory data and the large spatial scale involved, many uncertainties persist in relation to the estimation of the biomass and carbon stocks contained in African tropical forests.

  9. First Assessment of Carbon Stock in the Belowground Biomass of Brazilian Mangroves

    Directory of Open Access Journals (Sweden)

    DANIEL M.C. SANTOS

    2017-08-01

    Full Text Available ABSTRACT Studies on belowground roots biomass have increasingly reported the importance of the contribution of this compartment in carbon stock maintenance in mangrove forests. To date, there are no estimates of this contribution in Brazilian mangrove forests, although the country has the second largest area of mangroves worldwide. For this study, trenches dug in fringing forests in Guaratiba State Biological Reserve (Rio de Janeiro, Brazil were used to evaluate the contribution of the different classes of roots and the vertical stratification of carbon stock. The total carbon stock average in belowground roots biomass in these forests was 104.41 ± 20.73 tC.ha−1. From that, an average of 84.13 ± 21.34 tC.ha−1 corresponded to the carbon stock only in fine roots, which have diameters smaller than 5 mm and are responsible for over 80% of the total belowground biomass. Most of the belowground carbon stock is concentrated in the first 40 cm below the surface (about 70%. The root:shoot ratio in this study is 1.14. These estimates demonstrate that the belowground roots biomass significantly contributes, more than 50%, to the carbon stock in mangrove forests. And the mangrove root biomass can be greater than that of other Brazilian ecosystems.

  10. Contribution of dead wood to biomass and carbon stocks in the Caribbean: St. John, U.S. Virgin Islands

    Science.gov (United States)

    Sonja N. Oswalt; Thomas J. Brandeis

    2008-01-01

    Dead wood is a substantial carbon stock in terrestrial forest ecosystems and hence a critical component of global carbon cycles. Given the limited amounts of dead wood biomass and carbon stock information for Caribbean forests, our objectives were to: (1) describe the relative contribution of down woody materials (DWM) to carbon stocks on the island of St. John; (2)...

  11. Decadal change of forest biomass carbon stocks and tree demography in the Delaware River Basin

    Science.gov (United States)

    Bing Xu; Yude Pan; Alain F. Plante; Arthur Johnson; Jason Cole; Richard Birdsey

    2016-01-01

    Quantifying forest biomass carbon (C) stock change is important for understanding forest dynamics and their feedbacks with climate change. Forests in the northeastern U.S. have been a net carbon sink in recent decades, but C accumulation in some northern hardwood forests has been halted due to the impact of emerging stresses such as invasive pests, land use change and...

  12. Contrasts in Areas of Rubber Tree Clones in Regard to Soil and Biomass Carbon Stocks

    Directory of Open Access Journals (Sweden)

    Anderson Ribeiro Diniz

    2015-10-01

    Full Text Available ABSTRACT Rubber tree (Hevea brasiliensis crop may accumulate significant amounts of carbon either in biomass or in the soil. However, a comprehensive understanding of the potential of the C stock among different rubber tree clones is still distant, since clones are typically developed to exhibit other traits, such as better yield and disease tolerance. Thus, the aim of this study was to address differences among different areas planted to rubber clones. We hypothesized that different rubber tree clones, developed to adapt to different environmental and biological constrains, diverge in terms of soil and plant biomass C stocks. Clones were compared in respect to soil C stocks at four soil depths and the total depth (0.00-0.05, 0.05-0.10, 0.10-0.20, 0.20-0.40, and 0.00-0.40 m, and in the different compartments of the tree biomass. Five different plantings of rubber clones (FX3864, FDR 5788, PMB 1, MDX 624, and CDC 312 of seven years of age were compared, which were established in a randomized block design in the experimental field in Rio de Janeiro State. No difference was observed among plantings of rubber tree clones in regard to soil C stocks, even considering the total stock from 0.00-0.40 m depth. However, the rubber tree clones were different from each other in terms of total plant C stocks, and this contrast was predominately due to only one component of the total C stock, tree biomass. For biomass C stock, the MDX 624 rubber tree clone was superior to other clones, and the stem was the biomass component which most accounted for total C biomass. The contrast among rubber clones in terms of C stock is mainly due to the biomass C stock; the aboveground (tree biomass and the belowground (soil compartments contributed differently to the total C stock, 36.2 and 63.8 %, respectively. Rubber trees did not differ in relation to C stocks in the soil, but the right choice of a rubber clone is a reliable approach for sequestering C from the air in the

  13. Tropical Soil Carbon Stocks do not Reflect Aboveground Forest Biomass Across Geological and Rainfall Gradients

    Science.gov (United States)

    Cusack, D. F.; Markesteijn, L.; Turner, B. L.

    2016-12-01

    Soil organic carbon (C) dynamics present a large source of uncertainty in global C cycle models, and inhibit our ability to predict effects of climate change. Tropical wet and seasonal forests exert a disproportionate influence on the global C cycle relative to their land area because they are the most C-rich ecosystems on Earth, containing 25-40% of global terrestrial C stocks. While significant advances have been made to map aboveground C stocks in tropical forests, determining soil C stocks using remote sensing technology is still not possible for closed-canopy forests. It is unclear to what extent aboveground C stocks can be used to predict soil C stocks across tropical forests. Here we present 1-m-deep soil organic C stocks for 42 tropical forest sites across rainfall and geological gradients in Panama. We show that soil C stocks do not correspond to aboveground plant biomass or to litterfall productivity in these humid tropical forests. Rather, soil C stocks were strongly and positively predicted by fine root biomass, soil clay content, and rainfall (R2 = 0.47, p chemical characteristics form an important basis for improving model estimates of soil C stocks and predictions of climate change effects on tropical C storage.

  14. A universal approach to estimate biomass and carbon stock in tropical forests using generic allometric models.

    Science.gov (United States)

    Vieilledent, G; Vaudry, R; Andriamanohisoa, S F D; Rakotonarivo, O S; Randrianasolo, H Z; Razafindrabe, H N; Rakotoarivony, C Bidaud; Ebeling, J; Rasamoelina, M

    2012-03-01

    Allometric equations allow aboveground tree biomass and carbon stock to be estimated from tree size. The allometric scaling theory suggests the existence of a universal power-law relationship between tree biomass and tree diameter with a fixed scaling exponent close to 8/3. In addition, generic empirical models, like Chave's or Brown's models, have been proposed for tropical forests in America and Asia. These generic models have been used to estimate forest biomass and carbon worldwide. However, tree allometry depends on environmental and genetic factors that vary from region to region. Consequently, theoretical models that include too few ecological explicative variables or empirical generic models that have been calibrated at particular sites are unlikely to yield accurate tree biomass estimates at other sites. In this study, we based our analysis on a destructive sample of 481 trees in Madagascar spiny dry and moist forests characterized by a high rate of endemism (> 95%). We show that, among the available generic allometric models, Chave's model including diameter, height, and wood specific gravity as explicative variables for a particular forest type (dry, moist, or wet tropical forest) was the only one that gave accurate tree biomass estimates for Madagascar (R2 > 83%, bias allometric models. When biomass allometric models are not available for a given forest site, this result shows that a simple height-diameter allometry is needed to accurately estimate biomass and carbon stock from plot inventories.

  15. Carbon stock in forest aboveground biomass –comparison based on Landsat data

    Czech Academy of Sciences Publication Activity Database

    Pechanec, V.; Stržínek, F.; Purkyt, Jan; Štěrbová, Lenka; Cudlín, Pavel

    2017-01-01

    Roč. 63, 2-3 (2017), s. 126-132 ISSN 2454-0358 R&D Projects: GA MŠk(CZ) LO1415 Grant - others:EHP,MF ČR(CZ) EHP-CZ02-OV-1-014-2014 Program:CZ02 Institutional support: RVO:67179843 Keywords : aboveground biomass * carbon stock * remote sensing data * vegetation indices * Czech Republic Subject RIV: EH - Ecology, Behaviour OBOR OECD: Environmental sciences (social aspects to be 5.7)

  16. Forest biomass carbon stocks and variation in Tibet’s carbon-dense forests from 2001 to 2050

    Science.gov (United States)

    Sun, Xiangyang; Wang, Genxu; Huang, Mei; Chang, Ruiying; Ran, Fei

    2016-01-01

    Tibet’s forests, in contrast to China’s other forests, are characterized by primary forests, high carbon (C) density and less anthropogenic disturbance, and they function as an important carbon pool in China. Using the biomass C density data from 413 forest inventory sites and a spatial forest age map, we developed an allometric equation for the forest biomass C density and forest age to assess the spatial biomass C stocks and variation in Tibet’s forests from 2001 to 2050. The results indicated that the forest biomass C stock would increase from 831.1 Tg C in 2001 to 969.4 Tg C in 2050, with a net C gain of 3.6 Tg C yr−1 between 2001 and 2010 and a decrease of 1.9 Tg C yr−1 between 2040 and 2050. Carbon tends to allocate more in the roots of fir forests and less in the roots of spruce and pine forests with increasing stand age. The increase of the biomass carbon pool does not promote significant augmentation of the soil carbon pool. Our findings suggest that Tibet’s mature forests will remain a persistent C sink until 2050. However, afforestation or reforestation, especially with the larger carbon sink potential forest types, such as fir and spruce, should be carried out to maintain the high C sink capacity. PMID:27703215

  17. Re-evaluation of forest biomass carbon stocks and lessons from the world's most carbon-dense forests

    Science.gov (United States)

    Keith, Heather; Mackey, Brendan G.; Lindenmayer, David B.

    2009-01-01

    From analysis of published global site biomass data (n = 136) from primary forests, we discovered (i) the world's highest known total biomass carbon density (living plus dead) of 1,867 tonnes carbon per ha (average value from 13 sites) occurs in Australian temperate moist Eucalyptus regnans forests, and (ii) average values of the global site biomass data were higher for sampled temperate moist forests (n = 44) than for sampled tropical (n = 36) and boreal (n = 52) forests (n is number of sites per forest biome). Spatially averaged Intergovernmental Panel on Climate Change biome default values are lower than our average site values for temperate moist forests, because the temperate biome contains a diversity of forest ecosystem types that support a range of mature carbon stocks or have a long land-use history with reduced carbon stocks. We describe a framework for identifying forests important for carbon storage based on the factors that account for high biomass carbon densities, including (i) relatively cool temperatures and moderately high precipitation producing rates of fast growth but slow decomposition, and (ii) older forests that are often multiaged and multilayered and have experienced minimal human disturbance. Our results are relevant to negotiations under the United Nations Framework Convention on Climate Change regarding forest conservation, management, and restoration. Conserving forests with large stocks of biomass from deforestation and degradation avoids significant carbon emissions to the atmosphere, irrespective of the source country, and should be among allowable mitigation activities. Similarly, management that allows restoration of a forest's carbon sequestration potential also should be recognized. PMID:19553199

  18. Species diversity, biomass, and carbon stock assessments of a natural mangrove forest in palawan, philippines

    International Nuclear Information System (INIS)

    Abino, A.C.; Lee, Y.J.; Castillo, J.A.A

    2014-01-01

    Philippines claims international recognition for its mangrove-rich ecosystem which play significant functions from the viewpoint of ecosystem services and climate change mitigation. In this study, we assessed the species diversity of the natural mangrove forest of Bahile, Puerto Princesa City, Palawan and evaluated its potential to sequester and store carbon. Sixteen plots with a size of 10 m * 10 m were established using quadrat sampling technique to identify, record, and measure the trees. Diversity index and allometric equations were utilized to determine species diversity, and biomass and carbon stocks. Sediment samples in undisturbed portions using a 30 cm high and 5 cm diameter corer were collected in all plots to determine near-surface sediment carbon. The diversity index (H = 0.9918) was very low having a total of five true mangrove species identified dominated by Rhizophora apiculata Bl. with an importance value index of 148.1%. Among the stands, 74% of the total biomass was attributed to the above-ground (561.2 t ha-1) while 26% was credited to the roots (196.5 t ha-1). The total carbon sequestered and stored in the above-ground and root biomass were 263.8 t C ha-1 (50%) and 92.3 t C ha-1 (17%), respectively. Sediments contained 33% (173.75 t C ha-1) of the mangrove C-stocks. Stored carbon was equivalent to 1944.5 t CO/sub 2/ ha-1. These values suggest that Bahile natural mangrove forest has a potential to sequester and store substantial amounts of atmospheric carbon, hence the need for sustainable management and protection of this important coastal ecosystem. (author)

  19. Recent changes in the estimation of standing dead tree biomass and carbon stocks in the U.S. forest inventory

    Science.gov (United States)

    Grant M. Domke; Christopher W. Woodall; James E. Smith

    2012-01-01

    Until recently, standing dead tree biomass and carbon (C) has been estimated as a function of live tree growing stock volume in the U.S. Forest Service, Forest Inventory and Analysis (FIA) Program. Traditional estimates of standing dead tree biomass/C attributes were based on merchantability standards that did not reflect density reductions or structural loss due to...

  20. Estimating carbon stock in secondary forests: decisions and uncertainties associated with allometric biomass models.

    NARCIS (Netherlands)

    Breugel, van M.; Ransijn, J.; Craven, D.; Bongers, F.; Hall, J.

    2011-01-01

    Secondary forests are a major terrestrial carbon sink and reliable estimates of their carbon stocks are pivotal for understanding the global carbon balance and initiatives to mitigate CO2 emissions through forest management and reforestation. A common method to quantify carbon stocks in forests is

  1. Mixed-species allometric equations and estimation of aboveground biomass and carbon stocks in restoring degraded landscape in northern Ethiopia

    Science.gov (United States)

    Mokria, Mulugeta; Mekuria, Wolde; Gebrekirstos, Aster; Aynekulu, Ermias; Belay, Beyene; Gashaw, Tadesse; Bräuning, Achim

    2018-02-01

    Accurate biomass estimation is critical to quantify the changes in biomass and carbon stocks following the restoration of degraded landscapes. However, there is lack of site-specific allometric equations for the estimation of aboveground biomass (AGB), which consequently limits our understanding of the contributions of restoration efforts in mitigating climate change. This study was conducted in northwestern Ethiopia to develop a multi-species allometric equation and investigate the spatial and temporal variation of C-stocks following the restoration of degraded landscapes. We harvested and weighed 84 trees from eleven dominant species from six grazing exclosures and adjacent communal grazing land. We observed that AGB correlates significantly with diameter at stump height D 30 (R 2 = 0.78 P Ethiopia over space and time. The estimated C-stocks can be used as a reference against which future changes in C-stocks can be compared.

  2. Global 1-degree Maps of Forest Area, Carbon Stocks, and Biomass, 1950-2010

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides global forest area, forest growing stock, and forest biomass data at 1-degree resolution for the period 1950-2010. The data set is based on a...

  3. Biomass and Soil Carbon Stocks in Wet Montane Forest, Monteverde Region, Costa Rica: Assessments and Challenges for Quantifying Accumulation Rates

    Directory of Open Access Journals (Sweden)

    Lawrence H. Tanner

    2016-01-01

    Full Text Available We measured carbon stocks at two forest reserves in the cloud forest region of Monteverde, comparing cleared land, experimental secondary forest plots, and mature forest at each location to assess the effectiveness of reforestation in sequestering biomass and soil carbon. The biomass carbon stock measured in the mature forest at the Monteverde Institute is similar to other measurements of mature tropical montane forest biomass carbon in Costa Rica. Local historical records and the distribution of large trees suggest a mature forest age of greater than 80 years. The forest at La Calandria lacks historical documentation, and dendrochronological dating is not applicable. However, based on the differences in tree size, above-ground biomass carbon, and soil carbon between the Monteverde Institute and La Calandria sites, we estimate an age difference of at least 30 years of the mature forests. Experimental secondary forest plots at both sites have accumulated biomass at lower than expected rates, suggesting local limiting factors, such as nutrient limitation. We find that soil carbon content is primarily a function of time and that altitudinal differences between the study sites do not play a role.

  4. [Tree above-ground biomass allometries for carbon stocks estimation in the Caribbean mangroves in Colombia].

    Science.gov (United States)

    Yepes, Adriana; Zapata, Mauricio; Bolivar, Jhoanata; Monsalve, Alejandra; Espinosa, Sandra Milena; Sierra-Correa, Paula Cristina; Sierra, Andrés

    2016-06-01

    The distribution of carbon in “Blue Carbon” ecosystems such as mangroves is little known, when compared with the highly known terrestrial forests, despite its particular and recognized high productivity and carbon storage capacity. The objective of this study was to analyze the above ground biomass (AGB) of the species Rhizophora mangle and Avicennia germinans from the Marine Protected Area of Distrito de Manejo Integrado (DMI), Cispatá-Tinajones-La Balsa, Caribbean Colombian coast. With official authorization, we harvested and studied 30 individuals of each species, and built allometric models in order to estimate AGB. Our AGB results indicated that the studied mangrove forests of the DMI Colombian Caribbean was of 129.69 ± 20.24 Mg/ha, equivalent to 64.85 ± 10.12 MgC/ha. The DMI has an area of 8 570.9 ha in mangrove forests, and we estimated that the total carbon potential stored was about 555 795.93 Mg C. The equations generated in this study can be considered as an alternative for the assessment of carbon stocks in AGB of mangrove forests in Colombia; as other available AGB allometric models do not discriminate mangrove forests, despite being particular ecosystems. They can be used for analysis at a more detailed scale and are considered useful to determine the carbon storage potential of mangrove forests, as a country alternative to support forest conservation and emission reduction strategies. In general, the potential of carbon storage from Colombian Caribbean mangrove forests is important and could promote the country leadership of the “blue carbon” stored.

  5. Influence of windthrows and tree species on forest soil plant biomass and carbon stocks

    Science.gov (United States)

    Veselinovic, B.; Hager, H.

    2012-04-01

    The role of forests has generally been recognized in climate change mitigation and adaptation strategies and policies (e.g. Kyoto Protocol within articles 3.3 and 3.4, RES-E Directive of EU, Country Biomass Action Plans etc.). Application of mitigation actions, to decrease of CO2-emissions and, as the increase of carbon(C)-stocks and appropriate GHG-accounting has been hampered due to a lack of reliable data and good statistical models for the factors influencing C-sequestration in and its release from these systems (e.g. natural and human induced disturbances). Highest uncertainties are still present for estimation of soil C-stocks, which is at the same time the second biggest C-reservoir on earth. Spruce monocultures have been a widely used management practice in central Europe during the past century. Such stands are in lower altitudes (e.g. submontane to lower montane elevation zone) and on heavy soils unstable and prone to disturbances, especially on blowdown. As the windthrow-areas act as CO2-source, we hypothesize that conversion to natural beech and oak forests will provide sustainable wood supply and higher stability of stands against blowdown, which simultaneously provides the long-term belowground C-sequestration. This work focuses on influence of Norway spruce, Common beech and Oak stands on belowground C-dynamics (mineral soil, humus and belowground biomass) taking into consideration the increased impact of windthrows on spruce monocultures as a result of climate change. For this purpose the 300-700m altitude and pseudogley (planosols/temporally logged) soils were chosen in order to evaluate long-term impacts of the observed tree species on belowground C-dynamics and human induced disturbances on secondary spruce stands. Using the false chronosequence approach, the C-pools have been estimated for different compartments and age classes. The sampling of forest floor and surface vegetation was done using 30x30 (homogenous plots) and 50x50cm (inhomogeneous

  6. Spatial complexities in aboveground carbon stocks of a semi-arid mangrove community: A remote sensing height-biomass-carbon approach

    Science.gov (United States)

    Hickey, S. M.; Callow, N. J.; Phinn, S.; Lovelock, C. E.; Duarte, C. M.

    2018-01-01

    Mangroves are integral to ecosystem services provided by the coastal zone, in particular carbon (C) sequestration and storage. Allometric relationships linking mangrove height to estimated biomass and C stocks have been developed from field sampling, while various forms of remote sensing has been used to map vegetation height and biomass. Here we combine both these approaches to investigate spatial patterns in living biomass of mangrove forests in a small area of mangrove in north-west Australia. This study used LiDAR data and Landsat 8 OLI (Operational Land Imager) with allometric equations to derive mangrove height, biomass, and C stock estimates. We estimated the study site, Mangrove Bay, a semi-arid site in north-western Australia, contained 70 Mg ha-1 biomass and 45 Mg C ha-1 organic C, with total stocks of 2417 Mg biomass and 778 Mg organic C. Using spatial statistics to identify the scale of clustering of mangrove pixels, we found that living biomass and C stock declined with increasing distance from hydrological features (creek entrance: 0-150 m; y = -0.00041x + 0.9613, R2 = 0.96; 150-770 m; y = -0.0008x + 1.6808, R2 = 0.73; lagoon: y = -0.0041x + 3.7943, R2 = 0.78). Our results illustrate a set pattern of living C distribution within the mangrove forest, and then highlight the role hydrologic features play in determining C stock distribution in the arid zone.

  7. Co-assessment of biomass and soil organic carbon stocks in a future reservoir area located in Southeast Asia.

    Science.gov (United States)

    Descloux, Stéphane; Chanudet, Vincent; Poilvé, Hervé; Grégoire, Alain

    2011-02-01

    An assessment of the organic carbon stock present in living or dead vegetation and in the soil on the 450 km2 of the future Nam Theun 2 hydroelectric reservoir in Lao People's Democratic Republic was made. Nine land cover types were defined on the studied area: dense, medium, light, degraded, and riparian forests; agricultural soil; swamps; water; and others (roads, construction sites, and so on). Their geographical distribution was assessed by remote sensing using two 2008 SPOT 5 images. The area is mainly covered by dense and light forests (59%), while agricultural soil and swamps account for 11% and 2%, respectively. For each of these cover types, except water, organic carbon density was measured in the five pools defined by the Intergovernmental Panel on Climate Change: aboveground biomass, litter, deadwood, belowground biomass, and soil organic carbon. The area-weighted mean carbon densities for these pools were estimated at 45.4, 2.0, 2.2, 3.4, and 62.2 tC/ha, respectively, i.e., a total of about 115±15 tC/ha for a soil thickness of 30 cm, corresponding to a total flooded organic carbon stock of 5.1±0.7 MtC. This value is much lower than the carbon density for some South American reservoirs for example where total organic carbon stocks range from 251 to 326 tC/ha. It can be mainly explained by (1) the higher biomass density of South American tropical primary rainforest than of forests in this study and (2) the high proportion of areas with low carbon density, such as agricultural or slash-and-burn zones, in the studied area.

  8. Allometric Equations for Estimating Biomass and Carbon Stocks in the Temperate Forests of North-Western Mexico

    Directory of Open Access Journals (Sweden)

    Benedicto Vargas-Larreta

    2017-07-01

    Full Text Available This paper presents new equations for estimating above-ground biomass (AGB and biomass components of seventeen forest species in the temperate forests of northwestern Mexico. A data set corresponding to 1336 destructively sampled oak and pine trees was used to fit the models. The generalized method of moments was used to simultaneously fit systems of equations for biomass components and AGB, to ensure additivity. In addition, the carbon content of each tree component was calculated by the dry combustion method, in a TOC analyser. The results of cross-validation indicated that the fitted equations accounted for on average 91%, 82%, 83% and 76% of the observed variance in stem wood and stem bark, branch and foliage biomass, respectively, whereas the total AGB equations explained on average 93% of the total observed variance in AGB. The inclusion of total height (h or diameter at breast height2 × total height (d2h as a predictor in the d-only based equations systems slightly improved estimates for stem wood, stem bark and total above-ground biomass, and greatly improved the estimates produced by the branch and foliage biomass equations. The predictive power of the proposed equations is higher than that of existing models for the study area. The fitted equations were used to estimate stand level AGB stocks from data on growing stock in 429 permanent sampling plots. Three machine-learning techniques were used to model the estimated stand level AGB and carbon contents; the selected models were used to map the AGB and carbon distributions in the study area, for which mean values of respectively 129.84 Mg ha−1 and 63.80 Mg ha−1 were obtained.

  9. Allometric Models for Predicting Aboveground Biomass and Carbon Stock of Tropical Perennial C4 Grasses in Hawaii

    Directory of Open Access Journals (Sweden)

    Adel H. Youkhana

    2017-05-01

    Full Text Available Biomass is a promising renewable energy option that provides a more environmentally sustainable alternative to fossil resources by reducing the net flux of greenhouse gasses to the atmosphere. Yet, allometric models that allow the prediction of aboveground biomass (AGB, biomass carbon (C stock non-destructively have not yet been developed for tropical perennial C4 grasses currently under consideration as potential bioenergy feedstock in Hawaii and other subtropical and tropical locations. The objectives of this study were to develop optimal allometric relationships and site-specific models to predict AGB, biomass C stock of napiergrass, energycane, and sugarcane under cultivation practices for renewable energy and validate these site-specific models against independent data sets generated from sites with widely different environments. Several allometric models were developed for each species from data at a low elevation field on the island of Maui, Hawaii. A simple power model with stalk diameter (D was best related to AGB and biomass C stock for napiergrass, energycane, and sugarcane, (R2 = 0.98, 0.96, and 0.97, respectively. The models were then tested against data collected from independent fields across an environmental gradient. For all crops, the models over-predicted AGB in plants with lower stalk D, but AGB was under-predicted in plants with higher stalk D. The models using stalk D were better for biomass prediction compared to dewlap H (Height from the base cut to most recently exposed leaf dewlap models, which showed weak validation performance. Although stalk D model performed better, however, the mean square error (MSE-systematic was ranged from 23 to 43 % of MSE for all crops. A strong relationship between model coefficient and rainfall was existed, although these were irrigated systems; suggesting a simple site-specific coefficient modulator for rainfall to reduce systematic errors in water-limited areas. These allometric equations

  10. Allometric Models for Predicting Aboveground Biomass and Carbon Stock of Tropical Perennial C4Grasses in Hawaii.

    Science.gov (United States)

    Youkhana, Adel H; Ogoshi, Richard M; Kiniry, James R; Meki, Manyowa N; Nakahata, Mae H; Crow, Susan E

    2017-01-01

    Biomass is a promising renewable energy option that provides a more environmentally sustainable alternative to fossil resources by reducing the net flux of greenhouse gasses to the atmosphere. Yet, allometric models that allow the prediction of aboveground biomass (AGB), biomass carbon (C) stock non-destructively have not yet been developed for tropical perennial C 4 grasses currently under consideration as potential bioenergy feedstock in Hawaii and other subtropical and tropical locations. The objectives of this study were to develop optimal allometric relationships and site-specific models to predict AGB, biomass C stock of napiergrass, energycane, and sugarcane under cultivation practices for renewable energy and validate these site-specific models against independent data sets generated from sites with widely different environments. Several allometric models were developed for each species from data at a low elevation field on the island of Maui, Hawaii. A simple power model with stalk diameter (D) was best related to AGB and biomass C stock for napiergrass, energycane, and sugarcane, ( R 2 = 0.98, 0.96, and 0.97, respectively). The models were then tested against data collected from independent fields across an environmental gradient. For all crops, the models over-predicted AGB in plants with lower stalk D, but AGB was under-predicted in plants with higher stalk D. The models using stalk D were better for biomass prediction compared to dewlap H (Height from the base cut to most recently exposed leaf dewlap) models, which showed weak validation performance. Although stalk D model performed better, however, the mean square error (MSE)-systematic was ranged from 23 to 43 % of MSE for all crops. A strong relationship between model coefficient and rainfall was existed, although these were irrigated systems; suggesting a simple site-specific coefficient modulator for rainfall to reduce systematic errors in water-limited areas. These allometric equations provide a

  11. Spatial complexities in aboveground carbon stocks of a semi-arid mangrove community: A remote sensing height-biomass-carbon approach

    KAUST Repository

    Hickey, S.M.

    2017-11-10

    Mangroves are integral to ecosystem services provided by the coastal zone, in particular carbon (C) sequestration and storage. Allometric relationships linking mangrove height to estimated biomass and C stocks have been developed from field sampling, while various forms of remote sensing has been used to map vegetation height and biomass. Here we combine both these approaches to investigate spatial patterns in living biomass of mangrove forests in a small area of mangrove in north-west Australia. This study used LiDAR data and Landsat 8 OLI (Operational Land Imager) with allometric equations to derive mangrove height, biomass, and C stock estimates. We estimated the study site, Mangrove Bay, a semi-arid site in north-western Australia, contained 70 Mg ha−1 biomass and 45 Mg C ha−1 organic C, with total stocks of 2417 Mg biomass and 778 Mg organic C. Using spatial statistics to identify the scale of clustering of mangrove pixels, we found that living biomass and C stock declined with increasing distance from hydrological features (creek entrance: 0–150 m; y = −0.00041x + 0.9613, R2 = 0.96; 150–770 m; y = −0.0008x + 1.6808, R2 = 0.73; lagoon: y = −0.0041x + 3.7943, R2 = 0.78). Our results illustrate a set pattern of living C distribution within the mangrove forest, and then highlight the role hydrologic features play in determining C stock distribution in arid zone.

  12. The contribution of trees outside forests to national tree biomass and carbon stocks--a comparative study across three continents.

    Science.gov (United States)

    Schnell, Sebastian; Altrell, Dan; Ståhl, Göran; Kleinn, Christoph

    2015-01-01

    In contrast to forest trees, trees outside forests (TOF) often are not included in the national monitoring of tree resources. Consequently, data about this particular resource is rare, and available information is typically fragmented across the different institutions and stakeholders that deal with one or more of the various TOF types. Thus, even if information is available, it is difficult to aggregate data into overall national statistics. However, the National Forest Monitoring and Assessment (NFMA) programme of FAO offers a unique possibility to study TOF resources because TOF are integrated by default into the NFMA inventory design. We have analysed NFMA data from 11 countries across three continents. For six countries, we found that more than 10% of the national above-ground tree biomass was actually accumulated outside forests. The highest value (73%) was observed for Bangladesh (total forest cover 8.1%, average biomass per hectare in forest 33.4 t ha(-1)) and the lowest (3%) was observed for Zambia (total forest cover 63.9%, average biomass per hectare in forest 32 t ha(-1)). Average TOF biomass stocks were estimated to be smaller than 10 t ha(-1). However, given the large extent of non-forest areas, these stocks sum up to considerable quantities in many countries. There are good reasons to overcome sectoral boundaries and to extend national forest monitoring programmes on a more systematic basis that includes TOF. Such an approach, for example, would generate a more complete picture of the national tree biomass. In the context of climate change mitigation and adaptation, international climate mitigation programmes (e.g. Clean Development Mechanism and Reduced Emission from Deforestation and Degradation) focus on forest trees without considering the impact of TOF, a consideration this study finds crucial if accurate measurements of national tree biomass and carbon pools are required.

  13. Changes in Biomass Carbon and Soil Organic Carbon Stocks following the Conversion from a Secondary Coniferous Forest to a Pine Plantation.

    Directory of Open Access Journals (Sweden)

    Shuaifeng Li

    Full Text Available The objectives of this study were to estimate changes of tree carbon (C and soil organic carbon (SOC stock following a conversion in land use, an issue that has been only insufficiently addressed. For this study, we examined a chronosequence of 2 to 54-year-old Pinus kesiya var. langbianensis plantations that replaced the original secondary coniferous forest (SCF in Southwest China due to clearing. C stocks considered here consisted of tree, understory, litter, and SOC (0-1 m. The results showed that tree C stocks ranged from 0.02±0.001 Mg C ha-1 to 141.43±5.29 Mg C ha-1, and increased gradually with the stand age. Accumulation of tree C stocks occurred in 20 years after reforestaion and C stock level recoverd to SCF. The maximum of understory C stock was found in a 5-year-old stand (6.74±0.7 Mg C ha-1 with 5.8 times that of SCF, thereafter, understory C stock decreased with the growth of plantation. Litter C stock had no difference excluding effects of prescribed burning. Tree C stock exhibited a significant decline in the 2, 5-year-old stand following the conversion to plantation, but later, increased until a steady state-level in the 20, 26-year-old stand. The SOC stocks ranged from 81.08±10.13 Mg C ha-1 to 160.38±17.96 Mg C ha-1. Reforestation significantly decreased SOC stocks of plantation in the 2-year-old stand which lost 42.29 Mg C ha-1 in the 1 m soil depth compared with SCF by reason of soil disturbance from sites preparation, but then subsequently recovered to SCF level. SOC stocks of SCF had no significant difference with other plantation. The surface profile (0-0.1 m contained s higher SOC stocks than deeper soil depth. C stock associated with tree biomass represented a higher proportion than SOC stocks as stand development proceeded.

  14. Changes in Biomass Carbon and Soil Organic Carbon Stocks following the Conversion from a Secondary Coniferous Forest to a Pine Plantation.

    Science.gov (United States)

    Li, Shuaifeng; Su, Jianrong; Liu, Wande; Lang, Xuedong; Huang, Xiaobo; Jia, Chengxinzhuo; Zhang, Zhijun; Tong, Qing

    2015-01-01

    The objectives of this study were to estimate changes of tree carbon (C) and soil organic carbon (SOC) stock following a conversion in land use, an issue that has been only insufficiently addressed. For this study, we examined a chronosequence of 2 to 54-year-old Pinus kesiya var. langbianensis plantations that replaced the original secondary coniferous forest (SCF) in Southwest China due to clearing. C stocks considered here consisted of tree, understory, litter, and SOC (0-1 m). The results showed that tree C stocks ranged from 0.02±0.001 Mg C ha-1 to 141.43±5.29 Mg C ha-1, and increased gradually with the stand age. Accumulation of tree C stocks occurred in 20 years after reforestaion and C stock level recoverd to SCF. The maximum of understory C stock was found in a 5-year-old stand (6.74±0.7 Mg C ha-1) with 5.8 times that of SCF, thereafter, understory C stock decreased with the growth of plantation. Litter C stock had no difference excluding effects of prescribed burning. Tree C stock exhibited a significant decline in the 2, 5-year-old stand following the conversion to plantation, but later, increased until a steady state-level in the 20, 26-year-old stand. The SOC stocks ranged from 81.08±10.13 Mg C ha-1 to 160.38±17.96 Mg C ha-1. Reforestation significantly decreased SOC stocks of plantation in the 2-year-old stand which lost 42.29 Mg C ha-1 in the 1 m soil depth compared with SCF by reason of soil disturbance from sites preparation, but then subsequently recovered to SCF level. SOC stocks of SCF had no significant difference with other plantation. The surface profile (0-0.1 m) contained s higher SOC stocks than deeper soil depth. C stock associated with tree biomass represented a higher proportion than SOC stocks as stand development proceeded.

  15. Soil structure, microbial biomass and carbon and nitrogen stocks as influenced by conventional tillage and conservation techniques

    Science.gov (United States)

    Abrougui, Khaoula; Khemis, Chiheb; Cornelis, Wim; Chehaibi, Sayed

    2017-04-01

    To evaluate the impact of tillage systems on soil environment, it is necessary to quantify the modifications to physical, chemical and biological properties. The objective of this study was to evaluate the short-term impact of different tillage systems in organic farming on soil resistance to penetration, bulk density, microbial biomass, organic matter, and carbon and nitrogen stocks. The tillage systems included conventional tillage (CT), 'agronomic' tillage (AT) and superficial (shallow) tillage (ST), with ST being a non-inversion practice. Tests were carried out on alluvial poorly developed soil (10% clay, 57% silt, 33% sand) in the Higher Institute of Agronomy of Chott Meriem (Tunisia). The soil resistance to penetration was measured with a penetrologger till 50 cm depth along with soil water content measurements. Bulk density (g cm-3) was measured by a cylinder densimeter on samples collected every 10 cm till 30 cm depth. Microbial biomass is a determining factor in soil biological quality because of its role in the regulation, transformation and storage of nutrients. To count the germs, we used the method of enumeration after incorporation into agar. The Walkley and Black method was used for the determination of soil organic matter, and Kjeldahl's for the analysis of total nitrogen content. Carbon and nitrogen stocks (t ha-1) were then calculated as a function of carbon and nitrogen contents, bulk density and the horizon depth. Shallow tillage without inversion ST showed the best values in terms of soil resistance and bulk density. Indeed, soil resistance was 3.1, 2.4 and 2 MPa under CT, AT and ST respectively at 40 cm depth. By adopting this conservation technique, we noted an increase in organic matter with 53% as compared to CT (from 1.9% to 2.9%) and thus a significant increase in C (from 12.5 to 14.5 g kg-1) and N (from 5 to 8 g kg-1) stocks, particularly in the topsoil. In fact, the increase of organic matter in the topsoil constituted a reserve of

  16. Global estimates of carbon stock changes in living forest biomass: EDGARv4.3 - time series from 1990 to 2010

    Science.gov (United States)

    Petrescu, A. M. R.; Abad-Viñas, R.; Janssens-Maenhout, G.; Blujdea, V. N. B.; Grassi, G.

    2012-08-01

    While the Emissions Database for Global Atmospheric Research (EDGAR) focuses on global estimates for the full set of anthropogenic activities, the Land Use, Land-Use Change and Forestry (LULUCF) sector might be the most diverse and most challenging to cover consistently for all countries of the world. Parties to United Nations Framework Convention on Climate Change (UNFCCC) are required to provide periodic estimates of greenhouse gas (GHG) emissions, following the latest approved methodological guidance by the International Panel on Climate Change (IPCC). The current study aims to consistently estimate the carbon (C) stock changes from living forest biomass for all countries of the world, in order to complete the LULUCF sector in EDGAR. In order to derive comparable estimates for developing and developed countries, it is crucial to use a single methodology with global applicability. Data for developing countries are generally poor, such that only the Tier 1 methods from either the IPCC Good Practice Guide for Land Use, Land-Use Change and Forestry (GPG-LULUCF) 2003 or the IPCC 2006 Guidelines can be applied to these countries. For this purpose, we applied the IPCC Tier 1 method at global level following both IPCC GPG-LULUCF 2003 and IPCC 2006, using spatially coarse activity data (i.e. area, obtained combining two different global forest maps: the Global Land Cover map and the eco-zones subdivision of the Global Ecological Zone (GEZ) map) in combination with the IPCC default C stocks and C stock change factors. Results for the C stock changes were calculated separately for gains, harvest, fires (Global Fire Emissions Database version 3, GFEDv.3) and net deforestation for the years 1990, 2000, 2005 and 2010. At the global level, results obtained with the two sets of IPCC guidance differed by about 40 %, due to different assumptions and default factors. The IPCC Tier 1 method unavoidably introduced high uncertainties due to the "globalization" of parameters. When the

  17. Accounting for density reduction and structural loss in standing dead trees: Implications for forest biomass and carbon stock estimates in the United States.

    Science.gov (United States)

    Domke, Grant M; Woodall, Christopher W; Smith, James E

    2011-11-24

    Standing dead trees are one component of forest ecosystem dead wood carbon (C) pools, whose national stock is estimated by the U.S. as required by the United Nations Framework Convention on Climate Change. Historically, standing dead tree C has been estimated as a function of live tree growing stock volume in the U.S.'s National Greenhouse Gas Inventory. Initiated in 1998, the USDA Forest Service's Forest Inventory and Analysis program (responsible for compiling the Nation's forest C estimates) began consistent nationwide sampling of standing dead trees, which may now supplant previous purely model-based approaches to standing dead biomass and C stock estimation. A substantial hurdle to estimating standing dead tree biomass and C attributes is that traditional estimation procedures are based on merchantability paradigms that may not reflect density reductions or structural loss due to decomposition common in standing dead trees. The goal of this study was to incorporate standing dead tree adjustments into the current estimation procedures and assess how biomass and C stocks change at multiple spatial scales. Accounting for decay and structural loss in standing dead trees significantly decreased tree- and plot-level C stock estimates (and subsequent C stocks) by decay class and tree component. At a regional scale, incorporating adjustment factors decreased standing dead quaking aspen biomass estimates by almost 50 percent in the Lake States and Douglas-fir estimates by more than 36 percent in the Pacific Northwest. Substantial overestimates of standing dead tree biomass and C stocks occur when one does not account for density reductions or structural loss. Forest inventory estimation procedures that are descended from merchantability standards may need to be revised toward a more holistic approach to determining standing dead tree biomass and C attributes (i.e., attributes of tree biomass outside of sawlog portions). Incorporating density reductions and structural

  18. Methods for biomass stock estimation in Mediterranean maquis systems

    OpenAIRE

    Sirca C; Caddeo A; Spano D; Bacciu V; Marras S

    2016-01-01

    As a result of Kyoto Protocol agreements, the scientific community increased its efforts to enhance the availability of biomass and organic carbon stock data in forest ecosystems. Nevertheless, a considerable data shortage has been recognized in estimating the stock of above-ground biomass (AGB) in Mediterranean maquis systems. This work aims at contributing in addressing such shortage by testing quick and non-disruptive methods to estimate the AGB stock in maquis species. Two methodologies w...

  19. Using measured stocks of biomass and litter carbon to constrain modelled estimates of sequestration of soil organic carbon under contrasting mixed-species environmental plantings.

    Science.gov (United States)

    Paul, Keryn I; England, Jacqueline R; Baker, Thomas G; Cunningham, Shaun C; Perring, Michael P; Polglase, Phil J; Wilson, Brian; Cavagnaro, Timothy R; Lewis, Tom; Read, Zoe; Madhavan, Dinesh B; Herrmann, Tim

    2018-02-15

    Reforestation of agricultural land with mixed-species environmental plantings of native trees and shrubs contributes to abatement of greenhouse gas emissions through sequestration of carbon, and to landscape remediation and biodiversity enhancement. Although accumulation of carbon in biomass is relatively well understood, less is known about associated changes in soil organic carbon (SOC) following different types of reforestation. Direct measurement of SOC may not be cost effective where rates of SOC sequestration are relatively small and/or highly spatially-variable, thereby requiring intensive sampling. Hence, our objective was to develop a verified modelling approach for determining changes in SOC to facilitate the inclusion of SOC in the carbon accounts of reforestation projects. We measured carbon stocks of biomass, litter and SOC (0-30cm) in 125 environmental plantings (often paired to adjacent agricultural sites), representing sites of varying productivity across the Australian continent. After constraining a carbon accounting model to observed measures of growth, allocation of biomass, and rates of litterfall and litter decomposition, the model was calibrated to maximise the efficiency of prediction of SOC and its fractions. Uncertainties in both measured and modelled results meant that efficiencies of prediction of SOC across the 125 contrasting plantings were only moderate, at 39-68%. Data-informed modelling nonetheless improved confidence in outputs from scenario analyses, confirming that: (i) reforestation on agricultural land highly depleted in SOC (i.e. previously under cropping) had the highest capacity to sequester SOC, particularly where rainfall was relatively high (>600mmyear -1 ), and; (ii) decreased planting width and increased stand density and the proportion of eucalypts enhanced rates of SOC sequestration. These results improve confidence in predictions of SOC following environmental reforestation under varying conditions. The calibrated

  20. Accounting for density reduction and structural loss in standing dead trees: Implications for forest biomass and carbon stock estimates in the United States

    Directory of Open Access Journals (Sweden)

    Domke Grant M

    2011-11-01

    Full Text Available Abstract Background Standing dead trees are one component of forest ecosystem dead wood carbon (C pools, whose national stock is estimated by the U.S. as required by the United Nations Framework Convention on Climate Change. Historically, standing dead tree C has been estimated as a function of live tree growing stock volume in the U.S.'s National Greenhouse Gas Inventory. Initiated in 1998, the USDA Forest Service's Forest Inventory and Analysis program (responsible for compiling the Nation's forest C estimates began consistent nationwide sampling of standing dead trees, which may now supplant previous purely model-based approaches to standing dead biomass and C stock estimation. A substantial hurdle to estimating standing dead tree biomass and C attributes is that traditional estimation procedures are based on merchantability paradigms that may not reflect density reductions or structural loss due to decomposition common in standing dead trees. The goal of this study was to incorporate standing dead tree adjustments into the current estimation procedures and assess how biomass and C stocks change at multiple spatial scales. Results Accounting for decay and structural loss in standing dead trees significantly decreased tree- and plot-level C stock estimates (and subsequent C stocks by decay class and tree component. At a regional scale, incorporating adjustment factors decreased standing dead quaking aspen biomass estimates by almost 50 percent in the Lake States and Douglas-fir estimates by more than 36 percent in the Pacific Northwest. Conclusions Substantial overestimates of standing dead tree biomass and C stocks occur when one does not account for density reductions or structural loss. Forest inventory estimation procedures that are descended from merchantability standards may need to be revised toward a more holistic approach to determining standing dead tree biomass and C attributes (i.e., attributes of tree biomass outside of sawlog

  1. Consequences of alternative tree-level biomass estimation procedures on U.S. forest carbon stock estimates

    Science.gov (United States)

    Grant M. Domke; Christopher W. Woodall; James E. Smith; James A. Westfall; Ronald E. McRoberts

    2012-01-01

    Forest ecosystems are the largest terrestrial carbon sink on earth and their management has been recognized as a relatively cost-effective strategy for offsetting greenhouse gas emissions. Forest carbon stocks in the U.S. are estimated using data from the USDA Forest Service, Forest Inventory and Analysis (FIA) program. In an attempt to balance accuracy with...

  2. Modelisation du stock de biomasse et dynamique de sequestration ...

    African Journals Online (AJOL)

    Mots clés: Jatropha curcas, séquestration, carbone, Bénin, Afrique de l'Ouest. English Title: Biomass stock modeling and dynamics of mineral and carbon sequestration of Jatropha curcas L. under different soil types in Benin. English Abstract. In West Africa, carbon sequestration function of Jatropha curcas shrubs and their ...

  3. Carbon stock estimates for forests in the Castilla y Leon region, Spain. A GIS based method for evaluating spatial distribution of residual biomass for bio-energy

    Energy Technology Data Exchange (ETDEWEB)

    Gil, Maria Victoria; Blanco, Daniel; Carballo, Maria Teresa; Calvo, Luis Fernando [Chemical Engineering, Institute of Natural Resources, University of Leon, Avenida de Portugal, 41, 24071 Leon (Spain)

    2011-01-15

    Analysis of aboveground biomass and carbon stocks (as equivalent CO{sub 2}) was performed in the Castilla y Leon region, Spain. Data from the second and third Spanish Forest Inventories (1996 and 2006) were used. Total aboveground biomass was calculated using allometric biomass equations and biomass expansion factors (BEF), the first method giving higher values. Forests of Castilla y Leon stored 77,051,308 Mg of biomass, with a mean of 8.18 Mg ha{sup -1}, in 1996 and 135,531,737 Mg of biomass, with a mean of 14.4 Mg ha{sup -1}, in 2006. The total equivalent CO{sub 2} in this region's forests increased 9,608,824 Mg year{sup -1} between 1996 and 2006. In relation to the Kyoto Protocol, the Castilla y Leon forests have sequestered 3 million tons of CO{sub 2} per year, which represents 6.4% of the total regional emission of CO{sub 2}. A Geographic Information System (GIS) based method was also used to assess the geographic distribution of residual forest biomass for bio-energy in the region. The forest statistics data on area of each species were used. The fraction of vegetation cover, land slope and protected areas were also considered. The residual forest biomass in Castilla y Leon was 1,464,991 Mg year{sup -1}, or 1.90% of the total aboveground biomass in 1996. The residual forest biomass was concentrated in specific zones of the Castilla y Leon region, suitable for the location of industries that utilize biomass as energy source. The energy potential of the residual forest biomass in the Castilla y Leon region is 7350 million MJ per year. (author)

  4. Evaluation of carbon stocks in above- and below-ground biomass in Central Africa: case study of Lesio-louna tropical rainforest of Congo

    Science.gov (United States)

    Liu, X.; Ekoungoulou, R.; Loumeto, J. J.; Ifo, S. A.; Bocko, Y. E.; Koula, F. E.

    2014-07-01

    The study was aimed to estimate the carbon stocks of above- and below-ground biomass in Lesio-louna forest of Congo. The methodology of allometric equations was used to measure the carbon stocks of Lesio-louna natural forest. We are based precisely on the model II which is also called non-destructive method or indirect method of measuring carbon stocks. While there has been use of parameters such as the DBH and wood density. The research was done with 22 circular plots each 1256 m2. In the 22 plots studied, 19 plots are in the gallery forest and three plots in the secondary forest. Also, 22 circular plots were distributed in 5 sites studies of Lesio-louna forest, including: Inkou forest island, Iboubikro, Ngoyili, Blue lake and Ngambali. So, there are two forest types (secondary forest and gallery forest) in this forest ecosystem. In the 5 sites studied, we made measurements on a total of 347 trees with 197 trees for the class of 10-30 cm diameter, 131 trees for the class of 30-60 cm diameter and 19 trees in the diameter class > 60 cm. The results show that in the whole forest, average carbon stock for the 22 plots of the study was 168.601 t C ha-1 for AGB, or 81% and 39.551 t C ha-1 for BGB, or 19%. The total carbon stocks in all the biomass was 3395.365 t C for AGB, which is 3.395365 × 10-6 Gt C and 909.689934 t C for BGB, which was 9.09689934 × 10-7 Gt C. In this forest, the carbon stock was more important in AGB compared to BGB with respectively 3395.365 t C against 909.689934 t C. Plot10 (AGB = 363.899 t C ha-1 and BGB = 85.516 t C ha-1) was the most dominant in terms of carbon quantification in Lesio-louna.

  5. Age-related and stand-wise estimates of carbon stocks and sequestration in the aboveground coarse wood biomass of wetland forests in the northern Pantanal, Brazil

    Science.gov (United States)

    Schöngart, J.; Arieira, J.; Felfili Fortes, C.; Cezarine de Arruda, E.; Nunes da Cunha, C.

    2011-11-01

    In this study we use allometric models combined with tree ring analysis to estimate carbon stocks and sequestration in the aboveground coarse wood biomass (AGWB) of wetland forests in the Pantanal, located in central South America. In four 1-ha plots in stands characterized by the pioneer tree species Vochysia divergens Pohl (Vochysiaceae) forest inventories (trees ≥10 cm diameter at breast height, D) have been performed and converted to estimates of AGWB by two allometric models using three independent parameters (D, tree height H and wood density ρ). We perform a propagation of measurement errors to estimate uncertainties in the estimates of AGWB. Carbon stocks of AGWB vary from 7.8 ± 1.5 to 97.2 ± 14.4 Mg C ha-1 between the four stands. From models relating tree ages determined by dendrochronological techniques to C-stocks in AGWB we derived estimates for C-sequestration which differs from 0.50 ± 0.03 to 3.34 ± 0.31 Mg C ha-1 yr-1. Maps based on geostatistic techniques indicate the heterogeneous spatial distribution of tree ages and C-stocks of the four studied stands. This distribution is the result of forest dynamics due to the colonizing and retreating of V. divergens and other species associated with pluriannual wet and dry episodes in the Pantanal, respectively. Such information is essential for the management of the cultural landscape of the Pantanal wetlands.

  6. Biomass carbon, nitrogen and phosphorus stocks in hybrid poplar buffers, herbaceous buffers and natural woodlots in the riparian zone on agricultural land.

    Science.gov (United States)

    Fortier, Julien; Truax, Benoit; Gagnon, Daniel; Lambert, France

    2015-05-01

    In many temperate agricultural areas, riparian forests have been converted to cultivated land, and only narrow strips of herbaceous vegetation now buffer many farm streams. The afforestation of these riparian zones has the potential to increase carbon (C) storage in agricultural landscapes by creating a new biomass sink for atmospheric CO2. Occurring at the same time, the storage of nitrogen (N) and phosphorus (P) in plant biomass, is an important water quality function that may greatly vary with types of riparian vegetation. The objectives of this study were (1) to compare C, N and P storage in aboveground, belowground and detrital biomass for three types of riparian vegetation cover (9-year-old hybrid poplar buffers, herbaceous buffers and natural woodlots) across four agricultural sites and (2) to determine potential vegetation cover effects on soil nutrient supply rate in the riparian zone. Site level comparisons suggest that 9-year-old poplar buffers have stored 9-31 times more biomass C, 4-10 times more biomass N, and 3-7 times more biomass P than adjacent non managed herbaceous buffers, with the largest differences observed on the more fertile sites. The conversion of these herbaceous buffers to poplar buffers could respectively increase C, N and P storage in biomass by 3.2-11.9 t/ha/yr, 32-124 kg/ha/yr and 3.2-15.6 kg/ha/yr, over 9 years. Soil NO3 and P supply rates during the summer were respectively 57% and 66% lower in poplar buffers than in adjacent herbaceous buffers, potentially reflecting differences in nutrient storage and cycling between the two buffer types. Biomass C ranged 49-160 t/ha in woodlots, 33-110 t/ha in poplar buffers and 3-4 t/ha in herbaceous buffers. Similar biomass C stocks were found in the most productive poplar buffer and three of the four woodlots studied. Given their large and varied biomass C stocks, conservation of older riparian woodlots is equally important for C balance management in farmland. In addition, the

  7. Above – Ground Standing Biomass and Carbon Stock Dynamics under a Varied Degree of Anthropogenic Pressure in Tropical Rain Forests of Uttara Kannada District, Western Ghats, India

    Directory of Open Access Journals (Sweden)

    D. M. Bhat

    2011-06-01

    Full Text Available Above-ground standing biomass and carbon-stock dynamics were monitored for 25 years (from 1984 to 2009 in six 1- ha permanent forest sites subjected to different levels of anthropogenic pressure in tropical rain forests of Uttara Kannada district,Western Ghats, south India. Over the years, total loss of trees ranged from 97 to 761 (23.95- 60 .7% trees/ha, removal of trees by people ranged from 42 to 559 (5.5-55.17% trees/ha and number of trees dead ranged from 55-370 (5.52-38.38% trees/ha, leading to reduction in basal area in two sites (-1.81 m2/ha, and -1.73 m2/ha. In four sites, basal area increased from 0.98 to 22.19 m2/ha, because of compensatory growth of surviving trees and added above-ground standing biomass ranging from 6.40 to 144.67 t/ha. Tree recruitment ranged from 214 to 1,840 trees/ha and it was more than the number of trees lost in four sites, indicating faster recovery of tree density. In the 25th year, recruits formed 28.34 - 85.06% of the stand tree density and shared 1.20-18.47% of the stand basal area and accounted for 1.0 -14.67% of the above- ground standing biomass and carbon stock, making all six sites as C-sinks. In general, the rate of carbon accumulation in forests of Uttara Kannada district was 1.13 t C /ha /yr , of which, 0.58 ± 1.18 t C /ha/year was contributed by surviving trees and 0.55 ± 0.33 t C/ha/year was added by recruits. With proper management strategies, the C-sequestration potential in the forests can be elevated and by reforesting degraded area, the carbon sink can be enhanced in the Western Ghats region. Role of recruits in forest dynamics must be considered while planning and management of forests to enhance carbon stocks.

  8. Aboveground Biomass and Carbon Stocks of an Undisturbed Regenerating Sal (Shorea Robusta Gaertn. F. Forest Of Goalpara District, Assam, Northeast India

    Directory of Open Access Journals (Sweden)

    Debajit Rabha

    2014-12-01

    Full Text Available The present paper deals with the above ground biomass and carbon stocks of an undisturbed Sal forest of Goalpara district, Assam, Northeast India. The average AGB and C were recorded 239.45 ± 12.8 Mg ha-1 and 119.73 ± 6.4 Mg ha-1. Density distribution curve indicates the high carbon sequestration potential of the stand in near future which further helps in climate change mitigation. Currently, conservation measures are well imposed in combine effort of local community and government. Legal involvement of local community in conservation exercises along with the forest department might be very effective in management of Sal forests.DOI: http://dx.doi.org/10.3126/ije.v3i4.11743   International Journal of EnvironmentVolume-3, Issue-4, Sep-Nov 2014Page: 147-155 

  9. Age-related and stand-wise estimates of carbon stocks and sequestration in the aboveground coarse wood biomass of wetland forests in the northern Pantanal, Brazil

    Directory of Open Access Journals (Sweden)

    J. Schöngart

    2011-11-01

    Full Text Available In this study we use allometric models combined with tree ring analysis to estimate carbon stocks and sequestration in the aboveground coarse wood biomass (AGWB of wetland forests in the Pantanal, located in central South America. In four 1-ha plots in stands characterized by the pioneer tree species Vochysia divergens Pohl (Vochysiaceae forest inventories (trees ≥10 cm diameter at breast height, D have been performed and converted to estimates of AGWB by two allometric models using three independent parameters (D, tree height H and wood density ρ. We perform a propagation of measurement errors to estimate uncertainties in the estimates of AGWB. Carbon stocks of AGWB vary from 7.8 ± 1.5 to 97.2 ± 14.4 Mg C ha−1 between the four stands. From models relating tree ages determined by dendrochronological techniques to C-stocks in AGWB we derived estimates for C-sequestration which differs from 0.50 ± 0.03 to 3.34 ± 0.31 Mg C ha−1 yr−1. Maps based on geostatistic techniques indicate the heterogeneous spatial distribution of tree ages and C-stocks of the four studied stands. This distribution is the result of forest dynamics due to the colonizing and retreating of V. divergens and other species associated with pluriannual wet and dry episodes in the Pantanal, respectively. Such information is essential for the management of the cultural landscape of the Pantanal wetlands.

  10. Global estimates of carbon stock changes in living forest biomass: EDGARv4.3 – time series from 1990 to 2010

    Directory of Open Access Journals (Sweden)

    G. Grassi

    2012-08-01

    Full Text Available While the Emissions Database for Global Atmospheric Research (EDGAR focuses on global estimates for the full set of anthropogenic activities, the Land Use, Land-Use Change and Forestry (LULUCF sector might be the most diverse and most challenging to cover consistently for all countries of the world. Parties to United Nations Framework Convention on Climate Change (UNFCCC are required to provide periodic estimates of greenhouse gas (GHG emissions, following the latest approved methodological guidance by the International Panel on Climate Change (IPCC. The current study aims to consistently estimate the carbon (C stock changes from living forest biomass for all countries of the world, in order to complete the LULUCF sector in EDGAR. In order to derive comparable estimates for developing and developed countries, it is crucial to use a single methodology with global applicability. Data for developing countries are generally poor, such that only the Tier 1 methods from either the IPCC Good Practice Guide for Land Use, Land-Use Change and Forestry (GPG-LULUCF 2003 or the IPCC 2006 Guidelines can be applied to these countries. For this purpose, we applied the IPCC Tier 1 method at global level following both IPCC GPG-LULUCF 2003 and IPCC 2006, using spatially coarse activity data (i.e. area, obtained combining two different global forest maps: the Global Land Cover map and the eco-zones subdivision of the Global Ecological Zone (GEZ map in combination with the IPCC default C stocks and C stock change factors. Results for the C stock changes were calculated separately for gains, harvest, fires (Global Fire Emissions Database version 3, GFEDv.3 and net deforestation for the years 1990, 2000, 2005 and 2010. At the global level, results obtained with the two sets of IPCC guidance differed by about 40 %, due to different assumptions and default factors. The IPCC Tier 1 method unavoidably introduced high uncertainties due to the "globalization" of parameters

  11. CARBON STOCKS AND STOCK CHANGES IN AGROFORESTRY PRACTICES: A REVIEW

    Directory of Open Access Journals (Sweden)

    Humphrey Agevi

    2017-05-01

    Full Text Available Trees on farmlands and agricultural lands play a crucial role in small holder farmers’ livelihoods in addition to carbon regulation through carbon sequestration. These trees have received much attention recently due to their contribution to climate change mitigation through carbon storage. Quantification of carbon stocks in these trees has always proven difficult due to the spatial extent of these trees and methodological difficulties encountered during measurement. This paper reviews a number of studies done in quantification of biomass and soil carbon stocks in agroforestry within tropics. Most appropriate method employed in determination of carbon stock changes is through use of allometric equations. The equations use parameters like diameter at breast height (DBH, height, crown area which can be measured during field inventory. DBH has always proven to be the best parameter to be used in the equation since it is easy to measure and it does not need expensive equipments.  Apart from trees, soils in agricultural lands have the capacity to store carbon and help mitigate effects of climate change. It then identifies the gap that future research can be done for accurate carbon quantification.

  12. Estimating carbon stock in secondary forests

    DEFF Research Database (Denmark)

    Breugel, Michiel van; Ransijn, Johannes; Craven, Dylan

    2011-01-01

    of trees and species for destructive biomass measurements. We assess uncertainties associated with these decisions using data from 94 secondary forest plots in central Panama and 244 harvested trees belonging to 26 locally abundant species. AGB estimates from species-specific models were used to assess......Secondary forests are a major terrestrial carbon sink and reliable estimates of their carbon stocks are pivotal for understanding the global carbon balance and initiatives to mitigate CO2 emissions through forest management and reforestation. A common method to quantify carbon stocks in forests...... is the use of allometric regression models to convert forest inventory data to estimates of aboveground biomass (AGB). The use of allometric models implies decisions on the selection of extant models or the development of a local model, the predictor variables included in the selected model, and the number...

  13. High-resolution three-dimensional mapping of forest structure and aboveground biomass stocks in blue carbon ecosystems with airborne Lidar, TanDEM-X and WorldView Stereo

    Science.gov (United States)

    Fatoyinbo, T.; Lagomasino, D.; Simard, M.; Lee, S. K.; Feliciano, E. A.; Trettin, C.

    2017-12-01

    Vegetated coastal ecosystems, also called Blue Carbon ecosystems are highly efficient carbon sinks and have been shown to play a role in ameliorating the effect of increasing global climate change by capturing significant amounts of carbon into sediments and plant biomass. Mangrove-lined estuaries and coastal ecosystems are significant to global biogeochemical processes and regulate the structure, productivity and function of adjacent coastal ecosystems disproportionately to their land cover. Here we present recent efforts by the CMS Total Blue Carbon Stocks in Africa Project to estimate total (above and belowground) carbon stocks in East and Central Africa using in situ, high resolution stereo, airborne lidar and spaceborne SAR data. We generated Mangrove extent and change maps and canopy height estimates for the 2000 and 2015 eras that were used as input to carry out stratified field plot samples of above, below and soil Carbon stocks in the Rufiji Delta, Tanzania, Zambezi Delta, Mozambique and Pongara National Park, Gabon. By combining the field measurements and remotely sensed data, we estimated countrywide mangrove total carbon stocks. Uncertainties of estimates associated with different remote sensing input data were also calculated and will be presented. In this talk, we will give an overview of recent efforts to quantify mangrove forest 3-D structure, composition and change at high resolution globally in the context of estimating forest biomass and blue carbon stocks. Our presentation covers field and remotely sensed investigations and describes unique remotely sensed datasets produced and collected at NASA, with an emphasis on recently collected airborne Lidar and Radar from the AfriSAR campaign. Specifically, we will present new results focusing on the validation and comparison of independent mangrove canopy height and biomass measurements from commercial airborne lidar, LVIS, TanDEM-X, UAVSAR and World View, from Gabon, Mozambique and Tanzania.

  14. Accounting for density reduction and structural loss in standing dead trees: Implications for forest biomass and carbon stock estimates in the United States

    Science.gov (United States)

    Grant M. Domke; Christopher W. Woodall; James E. Smith

    2011-01-01

    Standing dead trees are one component of forest ecosystem dead wood carbon (C) pools, whose national stock is estimated by the U.S. as required by the United Nations Framework Convention on Climate Change. Historically, standing dead tree C has been estimated as a function of live tree growing stock volume in the U.S.'s National Greenhouse Gas Inventory. Initiated...

  15. Carbon stocks and flux in French forests

    International Nuclear Information System (INIS)

    Dupouey, Jean-Luc; Pignard, Gerome; Badeau, Vincent; Thimonier, A.; Dhote, Jean-Francois; Nepveu, G.; Berges, L.; Augusto, L.; Belkacem, S.; Nys, C.

    2000-01-01

    Forests contain most of the carbon stored in the earth's biomass (81 %) and could play a role in CO 2 mitigation to a certain extent. We estimate French forest carbon stocks in biomass to be 860 MtC on 14.5 million hectares of forests, and 1,140 MtC in forest soils. Total carbon in the 14.5 million hectares of French forests is estimated at 2,000 MtC. Average annual flux for the 1979/91 period is 10.5 MtC/y, i.e. 10 % of national fossil fuel emissions. The main causes of this net carbon uptake are the rapid increase of forest area, increasing productivity due to environmental changes, ageing or, in some localized areas, more intensive silviculture practices. These carbon sinks are not offset by the harvesting level which remains low on average (61 % of the annual volume growth). Forestry carbon mitigation options applicable in France are discussed. The need for global economic and ecological budgets (including carbon stocks, soil fertility and biodiversity) of the possible alternatives is stressed. (authors)

  16. Evaluation of Four Methods for Predicting Carbon Stocks of Korean Pine Plantations in Heilongjiang Province, China.

    Science.gov (United States)

    Gao, Huilin; Dong, Lihu; Li, Fengri; Zhang, Lianjun

    2015-01-01

    A total of 89 trees of Korean pine (Pinus koraiensis) were destructively sampled from the plantations in Heilongjiang Province, P.R. China. The sample trees were measured and calculated for the biomass and carbon stocks of tree components (i.e., stem, branch, foliage and root). Both compatible biomass and carbon stock models were developed with the total biomass and total carbon stocks as the constraints, respectively. Four methods were used to evaluate the carbon stocks of tree components. The first method predicted carbon stocks directly by the compatible carbon stocks models (Method 1). The other three methods indirectly predicted the carbon stocks in two steps: (1) estimating the biomass by the compatible biomass models, and (2) multiplying the estimated biomass by three different carbon conversion factors (i.e., carbon conversion factor 0.5 (Method 2), average carbon concentration of the sample trees (Method 3), and average carbon concentration of each tree component (Method 4)). The prediction errors of estimating the carbon stocks were compared and tested for the differences between the four methods. The results showed that the compatible biomass and carbon models with tree diameter (D) as the sole independent variable performed well so that Method 1 was the best method for predicting the carbon stocks of tree components and total. There were significant differences among the four methods for the carbon stock of stem. Method 2 produced the largest error, especially for stem and total. Methods 3 and Method 4 were slightly worse than Method 1, but the differences were not statistically significant. In practice, the indirect method using the mean carbon concentration of individual trees was sufficient to obtain accurate carbon stocks estimation if carbon stocks models are not available.

  17. Seasonal variability in biological carbon biomass standing stocks and production in the surface layers of the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Ramaiah, N.; Fernandes, V.; Paul, J.T.; Jyothibabu, R.; Gauns, M.; Jayraj, E.A.

    ) and northeast monsoon (NEM, Dec 2005-January 2006). Chl a carbon during SuM, FIM, SpIM and NEM averaged 688, 767, 1212 and 1057 mg C m sup(-2) in the western Bay 9WB) 518, 904, 789 and 1023 mg C m sup(-2) in the central Bay. Primary productivity (PP) averaged...

  18. THE Eucalyptus sp. AGE PLANTATIONS INFLUENCING THE CARBON STOCKS

    Directory of Open Access Journals (Sweden)

    Charlote Wink

    2013-06-01

    Full Text Available http://dx.doi.org/10.5902/198050989279The tree growth and biomass accumulation, as well as the maintenance of forest residue at the soil surface can act in the removal of carbon from the atmosphere through the cycling process of plant material. The objective was to study the influence of Eucalyptus sp. Plantations with 20, 44 and 240 months of age on the variation of carbon in soil and biomass. The carbon in the soil depth was determined by CHNS auto-analyzer and carbon in the vegetation was determined by the biomass in each forest, considering a factor of 0.45 of the dry mass. We determined the density and particle size distribution of soil. For the comparison between plantations, there was analysis of variance and comparison of means of carbon in vegetation and soil, considering the 5% level of probability. The carbon content and stock in the soil were low, indicating that a natural feature of the category of Paleuldt, or the growth of eucalyptus forests, replacing the field native vegetation did not aggregate a significant increase in the carbon. Although, there was a significant increase carbon in aboveground biomass. It includes forest biomass and litter. So, despite the values ​​of carbon stocks are low, it identified a greater average total in the soil compared to the stock aboveground. Furthermore, this increase aboveground (tree and litter compartments can be considered significant between the eucalyptus plantations of different ages.

  19. Carbon Fiber from Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Milbrandt, Anelia [Clean Energy Manufacturing Analysis Center, Godlen, CO (United States); Booth, Samuel [Clean Energy Manufacturing Analysis Center, Godlen, CO (United States)

    2016-09-01

    Carbon fiber (CF), known also as graphite fiber, is a lightweight, strong, and flexible material used in both structural (load-bearing) and non-structural applications (e.g., thermal insulation). The high cost of precursors (the starting material used to make CF, which comes predominately from fossil sources) and manufacturing have kept CF a niche market with applications limited mostly to high-performance structural materials (e.g., aerospace). Alternative precursors to reduce CF cost and dependence on fossil sources have been investigated over the years, including biomass-derived precursors such as rayon, lignin, glycerol, and lignocellulosic sugars. The purpose of this study is to provide a comprehensive overview of CF precursors from biomass and their market potential. We examine the potential CF production from these precursors, the state of technology and applications, and the production cost (when data are available). We discuss their advantages and limitations. We also discuss the physical properties of biomass-based CF, and we compare them to those of polyacrylonitrile (PAN)-based CF. We also discuss manufacturing and end-product considerations for bio-based CF, as well as considerations for plant siting and biomass feedstock logistics, feedstock competition, and risk mitigation strategies. The main contribution of this study is that it provides detailed technical and market information about each bio-based CF precursor in one document while other studies focus on one precursor at a time or a particular topic (e.g., processing). Thus, this publication allows for a comprehensive view of the CF potential from all biomass sources and serves as a reference for both novice and experienced professionals interested in CF production from alternative sources.

  20. Carbon stock in topsoil, standing floor litter and above ground ...

    African Journals Online (AJOL)

    This paper provides information on carbon stock at the habitat level in the above ground biomass (ABG), standing floor litter and soils in a 10 year-old Tectona grandis plantation following restoration of a degraded secondary forest at Obafemi Awolowo University, Ile-Ife Nigeria. Four sample plots 25 m x 25 m, two in Tectona ...

  1. Quantificação de biomassa e estimativa de estoque de carbono em uma capoeira da Zona da Mata Mineira Quantification of biomass and estimation of carbon stock in a capoeira in the Minas Gerais forest zone

    Directory of Open Access Journals (Sweden)

    Sabina Cerruto Ribeiro

    2010-06-01

    Full Text Available Este estudo teve como objetivo quantificar os estoques de volume, de biomassa total com casca e de carbono em um fragmento de Floresta Estacional Semidecidual em estádio secundário médio (capoeira na Zona da Mata mineira, no Município de Viçosa, MG. Para a conversão de volume em biomassa foram obtidas estimativas de densidade básica das 10 espécies de maior valor de importância (VI. O estoque de carbono foi determinado considerando-se que a biomassa seca contém cerca de 50% de carbono. Foram contabilizadas 31 espécies arbóreas, distribuídas em 29 gêneros e 21 famílias. A biomassa total média das árvores foi de 38,99 t.ha-1, o que correspondeu a um estoque de carbono de 19,50 ± 8,08 tC.ha-1. O valor encontrado foi considerado baixo quando comparado com o de outros estudos. Uma explicação para isso podem ser as influências sofridas pelo uso anterior da área e a ação de efeitos de borda na capoeira, o que contribuiu para a menor estocagem de biomassa e de carbono. As estimativas obtidas para a capoeira podem ser usadas como subsídios para a elaboração de projetos de florestamento/reflorestamento do Mecanismo de Desenvolvimento Limpo.The preseant of Semideciduous Seasonal Forest in mid-secondary succession stage (capoeira located in the Minas Gerais forest zone, in Viçosa, the State of Minas Gerais, Brazil. For the volume conversion in biomass, estimates of basic density of 10 species with higher IV (Importance Value were obtained. The stock of carbon was determined considering that the dry biomass contains, approximately, 50% carbon. 31 tree species were registered, distributed in 29 genera and 21 families. The trees' average total biomass was 38.99 t.ha-1, which corresponded to a carbon stock of 19.50 ± 8.08 tC.ha-1. The value found is considered low when compared to other studies. Influences of prior use and edge effects may explain the low biomass and carbon stock found. The estimates obtained for the capoeira can be

  2. Black Carbon Contribution to Organic Carbon Stocks in Urban Soil.

    Science.gov (United States)

    Edmondson, Jill L; Stott, Iain; Potter, Jonathan; Lopez-Capel, Elisa; Manning, David A C; Gaston, Kevin J; Leake, Jonathan R

    2015-07-21

    Soil holds 75% of the total organic carbon (TOC) stock in terrestrial ecosystems. This comprises ecosystem-derived organic carbon (OC) and black carbon (BC), a recalcitrant product of the incomplete combustion of fossil fuels and biomass. Urban topsoils are often enriched in BC from historical emissions of soot and have high TOC concentrations, but the contribution of BC to TOC throughout the urban soil profile, at a regional scale is unknown. We sampled 55 urban soil profiles across the North East of England, a region with a history of coal burning and heavy industry. Through combined elemental and thermogravimetic analyses, we found very large total soil OC stocks (31-65 kg m(-2) to 1 m), exceeding typical values reported for UK woodland soils. BC contributed 28-39% of the TOC stocks, up to 23 kg C m(-2) to 1 m, and was affected by soil texture. The proportional contribution of the BC-rich fraction to TOC increased with soil depth, and was enriched in topsoil under trees when compared to grassland. Our findings establish the importance of urban ecosystems in storing large amounts of OC in soils and that these soils also capture a large proportion of BC particulates emitted within urban areas.

  3. Carbon stock in different ages and plantation systemof cocoa: allometric approach

    Directory of Open Access Journals (Sweden)

    Fitria Yuliasmara

    2009-08-01

    Full Text Available Indonesia has 1.5 million hectare of cocoa plantation in 2008. which hasstrategic position in carbon dioxide absorption to decrease global warming. Biomass approach method in plants carbon stock estimation specific for cocoa is still not available. The aim of this research is to determine carbon stock in 1—30 years ages of cocoa plants and to measure carbon stock in various cocoa planting systems using specific allometric formula of carbon stock estimation. Regression model on plant biomass estimation was estimated based on height, diameter, and their combination. Carbon stock estimation in different ages and plan tation system of cocoa was conducted by randomized completely block design with 3 replications. The result showed that model Y:áDâ as the best allometric formula, where Y is plant biomass, D is diameter at the breast hight, â is a constant with a value of 0.1208 and á was a constant of 1.98. Increasing of carbon stock in cocoa plantations was proportional to the ages of the plants according to the polinomial equation Y=0.0518X2+2.8976X–4.524. Agroforestry system increased carbon stock in cocoa plantation. Cocoa-Paraserianthes falcataria plantation system produce highest of carbon stock in 7 years. Key words : Carbon stock, allometric, cocoa, ages of plant, planting system.

  4. Carbon stock loss from deforestation through 2013 in Brazilian Amazonia.

    Science.gov (United States)

    Nogueira, Euler Melo; Yanai, Aurora M; Fonseca, Frederico O R; Fearnside, Philip Martin

    2015-03-01

    The largest carbon stock in tropical vegetation is in Brazilian Amazonia. In this ~5 million km(2) area, over 750,000 km(2) of forest and ~240,000 km(2) of nonforest vegetation types had been cleared through 2013. We estimate current carbon stocks and cumulative gross carbon loss from clearing of premodern vegetation in Brazil's 'Legal Amazonia' and 'Amazonia biome' regions. Biomass of 'premodern' vegetation (prior to major increases in disturbance beginning in the 1970s) was estimated by matching vegetation classes mapped at a scale of 1 : 250,000 and 29 biomass means from 41 published studies for vegetation types classified as forest (2317 1-ha plots) and as either nonforest or contact zones (1830 plots and subplots of varied size). Total biomass (above and below-ground, dry weight) underwent a gross reduction of 18.3% in Legal Amazonia (13.1 Pg C) and 16.7% in the Amazonia biome (11.2 Pg C) through 2013, excluding carbon loss from the effects of fragmentation, selective logging, fires, mortality induced by recent droughts and clearing of forest regrowth. In spite of the loss of carbon from clearing, large amounts of carbon were stored in stands of remaining vegetation in 2013, equivalent to 149 Mg C ha(-1) when weighted by the total area covered by each vegetation type in Legal Amazonia. Native vegetation in Legal Amazonia in 2013 originally contained 58.6 Pg C, while that in the Amazonia biome contained 56 Pg C. Emissions per unit area from clearing could potentially be larger in the future because previously cleared areas were mainly covered by vegetation with lower mean biomass than the remaining vegetation. Estimates of original biomass are essential for estimating losses to forest degradation. This study offers estimates of cumulative biomass loss, as well as estimates of premodern carbon stocks that have not been represented in recent estimates of deforestation impacts. © 2014 John Wiley & Sons Ltd.

  5. Edaphic controls on soil organic carbon stocks in restored grasslands

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, Sarah L.; Jastrow, Julie D.; Grimley, David A.; Gonzalez-Meler, Miquel A.

    2015-08-01

    Cultivation of undisturbed soils dramatically depletes organic carbon stocks at shallow depths, releasing a substantial quantity of stored carbon to the atmosphere. Restoration of native ecosystems can help degraded soils rebuild a portion of the depleted soil organic matter. However, the rate and magnitude of soil carbon accrual can be highly variable from site to site. Thus, a better understanding of the mechanisms controlling soil organic carbon stocks is necessary to improve predictions of soil carbon recovery. We measured soil organic carbon stocks and a suite of edaphic factors in the upper 10 cm of a series of restored tallgrass prairies representing a range of drainage conditions. Our findings suggest that factors related to soil organic matter stabilization mechanisms (texture, polyvalent cations) were key predictors of soil organic carbon, along with variables that influence plant and microbial biomass (available phosphorus, pH) and soil moisture. Exchangeable soil calcium was the strongest single predictor, explaining 74% of the variation in soil organic carbon, followed by clay content,which explained 52% of the variation. Our results demonstrate that the cumulative effects of even relatively small differences in these edaphic properties can have a large impact on soil carbon stocks when integrated over several decades.

  6. Carbon Stock and Carbon Cycle of Wetland Ecosystem

    OpenAIRE

    Zeng, Zhangquan; Zhang, Canming; Li, Jiao; Yang, Nan; Li, Xiquan; Niu, Yandong; Wu, Zijian

    2014-01-01

    Wetland ecosystem is an essential ecosystem in the world. Its organic carbon stock and carbon cycle are important basis of global carbon cycle researches and also major contents of global climate change researches. Researches have shown that wetland protection and restoration can promote carbon accumulation and reduce emission of greenhouse gases. This paper discussed influence of carbon stock and carbon balance of wetland ecosystem and emission of greenhouse gases, as well as the relationshi...

  7. Land use change and terrestrial carbon stocks in Senegal

    Science.gov (United States)

    Woomer, P.L.; Tieszen, L.L.; Tappan, G.; Toure, A.; Sall, M.

    2004-01-01

    Environmental degradation resulting from long-term drought and land use change has affected terrestrial carbon (C) stocks within Africa's Sahel. We estimated Senegal's terrestrial carbon stocks in 1965, 1985, and 2000 using an inventory procedure involving satellite images revealing historical land use change, and recent field measurements of standing carbon stocks occurring in soil and plants. Senegal was divided into eight ecological zones containing 11 land uses. In 2000, savannas, cultivated lands, forests, and steppes were the four largest land uses in Senegal, occupying 70, 22, 2.7, and 2.3 percent of Senegal's 199,823 km2. System C stocks ranged from 9 t C ha−1 in degraded savannas in the north, to 113 t C ha−1 in the remnant forests of the Senegal River Valley. This approach resulted in estimated total C stocks of 1019 and 727 MT C between 1965 and 2000, respectively, indicating a loss of 292 MT C over 35 years. The proportion of C residing in biomass decreased with time, from 55 percent in 1965 to 38 percent in 2000. Calculated terrestrial C flux for 1993 was −7.5 MT C year−1 and had declined by 17 percent over the previous 18 years. Most of the terrestrial C flux in 1993 was attributed to biomass C reduction. Human disturbance accounted for only 22 percent of biomass C loss in 1993, suggesting that the effects of long-term Sahelian drought continue to play an overriding role in ecosystem change. Some carbon mitigation strategies for Senegal were investigated, including potential C sequestration levels. Opportunities for C mitigation exist but are constrained by available knowledge and access to resources.

  8. Community monitoring of carbon stocks for REDD+

    DEFF Research Database (Denmark)

    Brofeldt, Søren; Theilade, Ida; Burgess, Neil David

    2014-01-01

    Reducing emissions from deforestation and forest degradation in developing countries, and the role of conservation, sustainable management of forests, and enhancement of forest carbon stocks in developing countries (REDD+) is a potentially powerful international policy mechanism that many tropica...

  9. Carbon stocks assessment in subtropical forest types of Kashmir Himalayas

    International Nuclear Information System (INIS)

    Shaheen, H.; Khan, R.W.A.; Hussain, K.; Ullah, T.S.; Mehmood, A.

    2016-01-01

    Estimation of carbon sequestration in forest ecosystem is necessary to mitigate impacts of climate change. Current research project was focused to assess the Carbon contents in standing trees and soil of different subtropical forest sites in Kashmir. Tree biomass was estimated by using allometric equations whereas Soil carbon was calculated by Walkey-Black titration method. Total carbon stock was computed as 186.27 t/ha with highest value of 326 t/ha recorded from Pinus roxburghii forest whereas lowest of 75.86 t/ha at mixed forest. Average biomass carbon was found to be 151.38 t/ha with a maximum value of 294.7 t/ha and minimum of 43.4 t/ha. Pinus roxburghii was the most significant species having biomass value of 191.8 t/ha, followed by Olea cuspidata (68.9 t/ha), Acacia modesta (12.71 t/ha), Dalbergia sissoo (12.01 t/ha), Broussonetia papyrifera (5.93 t/ha), Punica granatum (2.27 t/ha), Mallotus philippensis (2.2 t/ha), Albizia lebbeck (1.8t/ha), Ficus palmata (1.51 t/ha), Acacia arabica (1.4 t/ha), Melia azedarach, (1.14 t/ha) and Ficus carica (1.07 t/ha) respectively. Recorded value of tree density was 492/ha; average DBH was 87.27 cm; tree height was 13.3m; and regeneration value was 83 seedlings/ha. Soil carbon stocks were found to be 34.89 t/ha whereas agricultural soil carbon was calculated as 27.18 t/ha. Intense deforestation was represented by a stump density of 147.4/ha. The results of Principal Component Analysis (PCA) revealed the distinct species clusters on the basis of location, biomass and Carbon stock values. Pinus roxburghii and Olea cuspidata were found to be the major contributors of carbon stock having maximum vector lengths in the PCA Biplot. Forest in the area needs to be managed in a sustainable manner to increase its carbon sequestration potential. (author)

  10. Carbon Stock Assesment on Mangrove Forest Ecosystem in Jorong Ujuang Labuang District Agam West Sumatera Province

    OpenAIRE

    Oktaviona, Silvi; Amin, Bintal; Ghalib, Musrifin

    2017-01-01

    Mangrove is a tree that normally grows in the intertidal zone of marine coastal environments. This study aims to estimate the carbon content of mangrove forest ecosystems within a certain area, to analyze biomass differences, carbon stocks and CO2 uptake and to analyze the effect of mangrove density on biomass, carbon stock and CO2 uptake. This research held on February 2017 by survey method and used the data of mangrove species, it's number and diameter of breast height (DBH) on each sub plo...

  11. The uncertainty of modeled soil carbon stock change for Finland

    Science.gov (United States)

    Lehtonen, Aleksi; Heikkinen, Juha

    2013-04-01

    Countries should report soil carbon stock changes of forests for Kyoto Protocol. Under Kyoto Protocol one can omit reporting of a carbon pool by verifying that the pool is not a source of carbon, which is especially tempting for the soil pool. However, verifying that soils of a nation are not a source of carbon in given year seems to be nearly impossible. The Yasso07 model was parametrized against various decomposition data using MCMC method. Soil carbon change in Finland between 1972 and 2011 were simulated with Yasso07 model using litter input data derived from the National Forest Inventory (NFI) and fellings time series. The uncertainties of biomass models, litter turnoverrates, NFI sampling and Yasso07 model were propagated with Monte Carlo simulations. Due to biomass estimation methods, uncertainties of various litter input sources (e.g. living trees, natural mortality and fellings) correlate strongly between each other. We show how original covariance matrices can be analytically combined and the amount of simulated components reduce greatly. While doing simulations we found that proper handling correlations may be even more essential than accurate estimates of standard errors. As a preliminary results, from the analysis we found that both Southern- and Northern Finland were soil carbon sinks, coefficient of variations (CV) varying 10%-25% when model was driven with long term constant weather data. When we applied annual weather data, soils were both sinks and sources of carbon and CVs varied from 10%-90%. This implies that the success of soil carbon sink verification depends on the weather data applied with models. Due to this fact IPCC should provide clear guidance for the weather data applied with soil carbon models and also for soil carbon sink verification. In the UNFCCC reporting carbon sinks of forest biomass have been typically averaged for five years - similar period for soil model weather data would be logical.

  12. Benchmark map of forest carbon stocks in tropical regions across three continents.

    Science.gov (United States)

    Saatchi, Sassan S; Harris, Nancy L; Brown, Sandra; Lefsky, Michael; Mitchard, Edward T A; Salas, William; Zutta, Brian R; Buermann, Wolfgang; Lewis, Simon L; Hagen, Stephen; Petrova, Silvia; White, Lee; Silman, Miles; Morel, Alexandra

    2011-06-14

    Developing countries are required to produce robust estimates of forest carbon stocks for successful implementation of climate change mitigation policies related to reducing emissions from deforestation and degradation (REDD). Here we present a "benchmark" map of biomass carbon stocks over 2.5 billion ha of forests on three continents, encompassing all tropical forests, for the early 2000s, which will be invaluable for REDD assessments at both project and national scales. We mapped the total carbon stock in live biomass (above- and belowground), using a combination of data from 4,079 in situ inventory plots and satellite light detection and ranging (Lidar) samples of forest structure to estimate carbon storage, plus optical and microwave imagery (1-km resolution) to extrapolate over the landscape. The total biomass carbon stock of forests in the study region is estimated to be 247 Gt C, with 193 Gt C stored aboveground and 54 Gt C stored belowground in roots. Forests in Latin America, sub-Saharan Africa, and Southeast Asia accounted for 49%, 25%, and 26% of the total stock, respectively. By analyzing the errors propagated through the estimation process, uncertainty at the pixel level (100 ha) ranged from ± 6% to ± 53%, but was constrained at the typical project (10,000 ha) and national (>1,000,000 ha) scales at ca. ± 5% and ca. ± 1%, respectively. The benchmark map illustrates regional patterns and provides methodologically comparable estimates of carbon stocks for 75 developing countries where previous assessments were either poor or incomplete.

  13. Using basal area to estimate aboveground carbon stocks in forests: La Primavera Biosphere's Reserve, Mexico

    NARCIS (Netherlands)

    Balderas Torres, Arturo; Lovett, Jonathan Cranidge

    2012-01-01

    Increasing use of woody plants for greenhouse gas mitigation has led to demand for rapid, cost-effective estimation of forest carbon stocks. Bole diameter is readily measured and basal area can be correlated to biomass and carbon through application of allometric equations. We explore different

  14. Spatial distribution of regional whole tree carbon stocks and fluxes of forests in Europe

    NARCIS (Netherlands)

    Schelhaas, M.J.; Nabuurs, G.J.

    2001-01-01

    This report presents carbon stocks and fluxes of the whole-tree biomass of European forests and other wooded land, distinguished into coniferous, deciduous and mixed forests. The results are presented at the European, the national and (where possible)the regional level. Results concerning carbon

  15. Ecosystem carbon stocks of micronesian mangrove forests

    Science.gov (United States)

    J. Boone Kauffman; Chris Heider; Thomas G. Cole; Kathleen A. Dwire; Daniel C. Donato

    2011-01-01

    Among the least studied ecosystem services of mangroves is their value as global carbon (C) stocks. This is significant as mangroves are subject to rapid rates of deforestation and therefore could be significant sources of atmospheric emissions. Mangroves could be key ecosystems in strategies addressing the mitigation of climate change though reduced deforestation. We...

  16. Ecosystem carbon stocks in Pinus palustris forests

    Science.gov (United States)

    Lisa Samuelson; Tom Stokes; John R. Butnor; Kurt H. Johnsen; Carlos A. Gonzalez-Benecke; Pete Anderson; Jason Jackson; Lorenzo Ferrari; Tim A. Martin; Wendell P. Cropper

    2014-01-01

    Longleaf pine (Pinus palustris Mill.) restoration in the southeastern United States offers opportunities for carbon (C) sequestration. Ecosystem C stocks are not well understood in longleaf pine forests, which are typically of low density and maintained by prescribed fire. The objectives of this research were to develop allometric equations for...

  17. Long rotation swidden systems maintain higher carbon stocks than rubber plantations

    DEFF Research Database (Denmark)

    Bruun, Thilde Bech; Berry, Nicholas; De Neergaard, Andreas

    2018-01-01

    are poorly quantified. We undertook a chronosequence study to quantify changes in ecosystem carbon stocks following conversion from swidden agriculture to rubber plantations in Northern Laos. We measured above-ground biomass stocks and collected volume specific soil samples across rubber plantations......Conversion of shifting cultivation to rubber (Hevea brasiliensis) plantations is one of the dominant land use changes in montane mainland areas of Southeast Asia, with the area of rubber expected to quadruple by 2050. However, the impacts of this transition on total ecosystem carbon stocks...... established between 2 and 18 years prior to the study, and fallows used in a swidden system. The carbon stock in the upper 40 cm of the soil was almost 20% lower after 18 years of rubber than in the swidden system fallows, suggesting a SOC loss of 0.74 ± 0.2 Mg C ha−1 yr−1. Rates of biomass accumulation...

  18. Relevance of carbon stocks of marine sediments for national greenhouse gas inventories of maritime nations.

    Science.gov (United States)

    Avelar, Silvania; van der Voort, Tessa S; Eglinton, Timothy I

    2017-12-01

    Determining national carbon stocks is essential in the framework of ongoing climate change mitigation actions. Presently, assessment of carbon stocks in the context of greenhouse gas (GHG)-reporting on a nation-by-nation basis focuses on the terrestrial realm, i.e., carbon held in living plant biomass and soils, and on potential changes in these stocks in response to anthropogenic activities. However, while the ocean and underlying sediments store substantial quantities of carbon, this pool is presently not considered in the context of national inventories. The ongoing disturbances to both terrestrial and marine ecosystems as a consequence of food production, pollution, climate change and other factors, as well as alteration of linkages and C-exchange between continental and oceanic realms, highlight the need for a better understanding of the quantity and vulnerability of carbon stocks in both systems. We present a preliminary comparison of the stocks of organic carbon held in continental margin sediments within the Exclusive Economic Zone of maritime nations with those in their soils. Our study focuses on Namibia, where there is a wealth of marine sediment data, and draws comparisons with sediment data from two other countries with different characteristics, which are Pakistan and the United Kingdom. Results indicate that marine sediment carbon stocks in maritime nations can be similar in magnitude to those of soils. Therefore, if human activities in these areas are managed, carbon stocks in the oceanic realm-particularly over continental margins-could be considered as part of national GHG inventories. This study shows that marine sediment organic carbon stocks can be equal in size or exceed terrestrial carbon stocks of maritime nations. This provides motivation both for improved assessment of sedimentary carbon inventories and for reevaluation of the way that carbon stocks are assessed and valued. The latter carries potential implications for the management of

  19. Relevance of carbon stocks of marine sediments for national greenhouse gas inventories of maritime nations

    Directory of Open Access Journals (Sweden)

    Silvania Avelar

    2017-05-01

    Full Text Available Abstract Background Determining national carbon stocks is essential in the framework of ongoing climate change mitigation actions. Presently, assessment of carbon stocks in the context of greenhouse gas (GHG-reporting on a nation-by-nation basis focuses on the terrestrial realm, i.e., carbon held in living plant biomass and soils, and on potential changes in these stocks in response to anthropogenic activities. However, while the ocean and underlying sediments store substantial quantities of carbon, this pool is presently not considered in the context of national inventories. The ongoing disturbances to both terrestrial and marine ecosystems as a consequence of food production, pollution, climate change and other factors, as well as alteration of linkages and C-exchange between continental and oceanic realms, highlight the need for a better understanding of the quantity and vulnerability of carbon stocks in both systems. We present a preliminary comparison of the stocks of organic carbon held in continental margin sediments within the Exclusive Economic Zone of maritime nations with those in their soils. Our study focuses on Namibia, where there is a wealth of marine sediment data, and draws comparisons with sediment data from two other countries with different characteristics, which are Pakistan and the United Kingdom. Results Results indicate that marine sediment carbon stocks in maritime nations can be similar in magnitude to those of soils. Therefore, if human activities in these areas are managed, carbon stocks in the oceanic realm—particularly over continental margins—could be considered as part of national GHG inventories. Conclusions This study shows that marine sediment organic carbon stocks can be equal in size or exceed terrestrial carbon stocks of maritime nations. This provides motivation both for improved assessment of sedimentary carbon inventories and for reevaluation of the way that carbon stocks are assessed and valued. The

  20. Allometric models and aboveground biomass stocks of a West African Sudan Savannah watershed in Benin.

    Science.gov (United States)

    Chabi, Adéyèmi; Lautenbach, Sven; Orekan, Vincent Oladokoun Agnila; Kyei-Baffour, Nicholas

    2016-12-01

    The estimation of forest biomass changes due to land-use change is of significant importance for estimates of the global carbon budget. The accuracy of biomass density maps depends on the availability of reliable allometric models used in combination with data derived from satellites images and forest inventory data. To reduce the uncertainty in estimates of carbon emissions resulting from deforestation and forest degradation, better information on allometric equations and the spatial distribution of aboveground biomass stocks in each land use/land cover (LULC) class is needed for the different ecological zones. Such information has been sparse for the West African Sudan Savannah zone. This paper provides new data and results for this important zone. The analysis combines satellite images and locally derived allometric models based on non-destructive measurements to estimate aboveground biomass stocks at the watershed level in the Sudan Savannah zone in Benin. We compared three types of empirically fitted allometric models of varying model complexity with respect to the number of input parameters that are easy to measure at the ground: model type I based only on the diameter at breast height (DBH), type II which used DBH and tree height and model type III which used DBH, tree height and wood density as predictors. While for most LULC classes model III outperformed the other models even the simple model I showed a good performance. The estimated mean dry biomass density values and attached standard error for the different LULC class were 3.28 ± 0.31 (for cropland and fallow), 3.62 ± 0.36 (for Savanna grassland), 4.86 ± 1.03 (for Settlements), 14.05 ± 0.72 (for Shrub savanna), 45.29 ± 2.51 (for Savanna Woodland), 46.06 ± 14.40 (for Agroforestry), 94.58 ± 4.98 (for riparian forest and woodland), 162 ± 64.88 (for Tectona grandis plantations), 179.62 ± 57.61 (for Azadirachta indica plantations), 25.17 ± 7.46 (for Gmelina arborea plantations

  1. Allometric models and aboveground biomass stocks of a West African Sudan Savannah watershed in Benin

    Directory of Open Access Journals (Sweden)

    Adéyèmi Chabi

    2016-08-01

    Full Text Available Abstract Background The estimation of forest biomass changes due to land-use change is of significant importance for estimates of the global carbon budget. The accuracy of biomass density maps depends on the availability of reliable allometric models used in combination with data derived from satellites images and forest inventory data. To reduce the uncertainty in estimates of carbon emissions resulting from deforestation and forest degradation, better information on allometric equations and the spatial distribution of aboveground biomass stocks in each land use/land cover (LULC class is needed for the different ecological zones. Such information has been sparse for the West African Sudan Savannah zone. This paper provides new data and results for this important zone. The analysis combines satellite images and locally derived allometric models based on non-destructive measurements to estimate aboveground biomass stocks at the watershed level in the Sudan Savannah zone in Benin. Results We compared three types of empirically fitted allometric models of varying model complexity with respect to the number of input parameters that are easy to measure at the ground: model type I based only on the diameter at breast height (DBH, type II which used DBH and tree height and model type III which used DBH, tree height and wood density as predictors. While for most LULC classes model III outperformed the other models even the simple model I showed a good performance. The estimated mean dry biomass density values and attached standard error for the different LULC class were 3.28 ± 0.31 (for cropland and fallow, 3.62 ± 0.36 (for Savanna grassland, 4.86 ± 1.03 (for Settlements, 14.05 ± 0.72 (for Shrub savanna, 45.29 ± 2.51 (for Savanna Woodland, 46.06 ± 14.40 (for Agroforestry, 94.58 ± 4.98 (for riparian forest and woodland, 162 ± 64.88 (for Tectona grandis plantations, 179.62 ± 57.61 (for Azadirachta indica plantations, 25.17

  2. From berries to blocks: carbon stock quantification of a California vineyard.

    Science.gov (United States)

    Morandé, Jorge Andres; Stockert, Christine M; Liles, Garrett C; Williams, John N; Smart, David R; Viers, Joshua H

    2017-12-01

    Quantifying terrestrial carbon (C) stocks in vineyards represents an important opportunity for estimating C sequestration in perennial cropping systems. Considering 7.2 M ha are dedicated to winegrape production globally, the potential for annual C capture and storage in this crop is of interest to mitigate greenhouse gas emissions. In this study, we used destructive sampling to measure C stocks in the woody biomass of 15-year-old Cabernet Sauvignon vines from a vineyard in California's northern San Joaquin Valley. We characterize C stocks in terms of allometric variation between biomass fractions of roots, aboveground wood, canes, leaves and fruits, and then test correlations between easy-to-measure variables such as trunk diameter, pruning weights and harvest weight to vine biomass fractions. Carbon stocks at the vineyard block scale were validated from biomass mounds generated during vineyard removal. Total vine C was estimated at 12.3 Mg C ha -1 , of which 8.9 Mg C ha -1 came from perennial vine biomass. Annual biomass was estimated at 1.7 Mg C ha -1 from leaves and canes and 1.7 Mg C ha -1 from fruit. Strong, positive correlations were found between the diameter of the trunk and overall woody C stocks (R 2  = 0.85), pruning weights and leaf and fruit C stocks (R 2  = 0.93), and between fruit weight and annual C stocks (R 2  = 0.96). Vineyard C partitioning obtained in this study provides detailed C storage estimations in order to understand the spatial and temporal distribution of winegrape C. Allometric equations based on simple and practical biomass and biometric measurements could enable winegrape growers to more easily estimate existing and future C stocks by scaling up from berries and vines to vineyard blocks.

  3. From berries to blocks: carbon stock quantification of a California vineyard

    Directory of Open Access Journals (Sweden)

    Jorge Andres Morandé

    2017-02-01

    Full Text Available Abstract Background Quantifying terrestrial carbon (C stocks in vineyards represents an important opportunity for estimating C sequestration in perennial cropping systems. Considering 7.2 M ha are dedicated to winegrape production globally, the potential for annual C capture and storage in this crop is of interest to mitigate greenhouse gas emissions. In this study, we used destructive sampling to measure C stocks in the woody biomass of 15-year-old Cabernet Sauvignon vines from a vineyard in California’s northern San Joaquin Valley. We characterize C stocks in terms of allometric variation between biomass fractions of roots, aboveground wood, canes, leaves and fruits, and then test correlations between easy-to-measure variables such as trunk diameter, pruning weights and harvest weight to vine biomass fractions. Carbon stocks at the vineyard block scale were validated from biomass mounds generated during vineyard removal. Results Total vine C was estimated at 12.3 Mg C ha−1, of which 8.9 Mg C ha−1 came from perennial vine biomass. Annual biomass was estimated at 1.7 Mg C ha−1 from leaves and canes and 1.7 Mg C ha−1 from fruit. Strong, positive correlations were found between the diameter of the trunk and overall woody C stocks (R2 = 0.85, pruning weights and leaf and fruit C stocks (R2 = 0.93, and between fruit weight and annual C stocks (R2 = 0.96. Conclusions Vineyard C partitioning obtained in this study provides detailed C storage estimations in order to understand the spatial and temporal distribution of winegrape C. Allometric equations based on simple and practical biomass and biometric measurements could enable winegrape growers to more easily estimate existing and future C stocks by scaling up from berries and vines to vineyard blocks.

  4. Stocks of organic carbon in Estonian soils

    Directory of Open Access Journals (Sweden)

    Kõlli, Raimo

    2009-06-01

    Full Text Available The soil organic carbon (SOC stocks (Mg ha–1 ofautomorphic mineral (9 soil groups, hydromorphic mineral (7, and lowland organic soils (4 are given for the soil cover or solum layer as a whole and also for its epipedon (topsoil layer. The SOC stocks for forest, arable lands, and grasslands and for the entire Estonian soil cover were calculated on the basis of the mean SOC stock and distribution area of the respective soil type. In the Estonian soil cover (42 400 km2, a total of 593.8 ± 36.9 Tg of SOC is retained, with 64.9% (385.3 ± 27.5 Tg in the epipedon layer (O, H, and A horizons and 35.1% in the subsoil (B and E horizons. The pedo-ecological regularities of SOC retention in soils are analysed against the background of the Estonian soil ordination net.

  5. Carbonic Acid Pretreatment of Biomass

    Energy Technology Data Exchange (ETDEWEB)

    G. Peter van Walsum; Kemantha Jayawardhana; Damon Yourchisin; Robert McWilliams; Vanessa Castleberry

    2003-05-31

    This project sought to address six objectives, outlined below. The objectives were met through the completion of ten tasks. 1) Solidify the theoretical understanding of the binary CO2/H2O system at reaction temperatures and pressures. The thermodynamics of pH prediction have been improved to include a more rigorous treatment of non-ideal gas phases. However it was found that experimental attempts to confirm theoretical pH predictions were still off by a factor of about 1.8 pH units. Arrhenius experiments were carried out and the activation energy for carbonic acid appears to be substantially similar to sulfuric acid. Titration experiments have not yet confirmed or quantified the buffering or acid suppression effects of carbonic acid on biomass. 2) Modify the carbonic acid pretreatment severity function to include the effect of endogenous acid formation and carbonate buffering, if necessary. It was found that the existing severity functions serve adequately to account for endogenous acid production and carbonate effects. 3) Quantify the production of soluble carbohydrates at different reaction conditions and severity. Results show that carbonic acid has little effect on increasing soluble carbohydrate concentrations for pretreated aspen wood, compared to pretreatment with water alone. This appears to be connected to the release of endogenous acids by the substrate. A less acidic substrate such as corn stover would derive benefit from the use of carbonic acid. 4) Quantify the production of microbial inhibitors at selected reaction conditions and severity. It was found that the release of inhibitors was correlated to reaction severity and that carbonic acid did not appear to increase or decrease inhibition compared to pretreatment with water alone. 5) Assess the reactivity to enzymatic hydrolysis of material pretreated at selected reaction conditions and severity. Enzymatic hydrolysis rates increased with severity, but no advantage was detected for the use of carbonic

  6. Evaluation of carbon storage in soil and plant biomass of primary ...

    African Journals Online (AJOL)

    Carbon sequestration in a forest ecosystem is an important determinant of the local and regional carbon stock. This study monitored forest types and carbon storage in both biomass and soil within primary mixed deciduous forests (PMDF) and secondary mixed deciduous forests (SMDF). One study plot measuring 50 x 50 m ...

  7. A tree biomass and carbon estimation system

    Science.gov (United States)

    Emily B. Schultz; Thomas G. Matney; Donald L. Grebner

    2013-01-01

    Appropriate forest management decisions for the developing woody biofuel and carbon credit markets require inventory and growth-and-yield systems reporting component tree dry weight biomass estimates. We have developed an integrated growth-and-yield and biomass/carbon calculator. The objective was to provide Mississippi’s State inventory system with bioenergy economic...

  8. Correlation analysis between forest carbon stock and spectral vegetation indices in Xuan Lien Nature Reserve, Thanh Hoa, Viet Nam

    Science.gov (United States)

    Dung Nguyen, The; Kappas, Martin

    2017-04-01

    In the last several years, the interest in forest biomass and carbon stock estimation has increased due to its importance for forest management, modelling carbon cycle, and other ecosystem services. However, no estimates of biomass and carbon stocks of deferent forest cover types exist throughout in the Xuan Lien Nature Reserve, Thanh Hoa, Viet Nam. This study investigates the relationship between above ground carbon stock and different vegetation indices and to identify the most likely vegetation index that best correlate with forest carbon stock. The terrestrial inventory data come from 380 sample plots that were randomly sampled. Individual tree parameters such as DBH and tree height were collected to calculate the above ground volume, biomass and carbon for different forest types. The SPOT6 2013 satellite data was used in the study to obtain five vegetation indices NDVI, RDVI, MSR, RVI, and EVI. The relationships between the forest carbon stock and vegetation indices were investigated using a multiple linear regression analysis. R-square, RMSE values and cross-validation were used to measure the strength and validate the performance of the models. The methodology presented here demonstrates the possibility of estimating forest volume, biomass and carbon stock. It can also be further improved by addressing more spectral bands data and/or elevation.

  9. Soil carbon stocks in Sarawak, Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Padmanabhan, E., E-mail: Eswaran_padmanabhan@petronas.com.my [Department of Geosciences, Faculty of Geosciences and Petroleum Engineering, Universiti Teknologi PETRONAS, Tronoh, 31750, Perak (Malaysia); Eswaran, H.; Reich, P.F. [USDA-Natural Resources Conservation Service, Washington, DC 20250 (United States)

    2013-11-01

    The relationship between greenhouse gas emission and climate change has led to research to identify and manage the natural sources and sinks of the gases. CO{sub 2}, CH{sub 4}, and N{sub 2}O have an anthropic source and of these CO{sub 2} is the least effective in trapping long wave radiation. Soil carbon sequestration can best be described as a process of removing carbon dioxide from the atmosphere and relocating into soils in a form that is not readily released back into the atmosphere. The purpose of this study is to estimate carbon stocks available under current conditions in Sarawak, Malaysia. SOC estimates are made for a standard depth of 100 cm unless the soil by definition is less than this depth, as in the case of lithic subgroups. Among the mineral soils, Inceptisols tend to generally have the highest carbon contents (about 25 kg m{sup −2} m{sup −1}), while Oxisols and Ultisols rate second (about 10–15 kg m{sup −2} m{sup −1}). The Oxisols store a good amount of carbon because of an appreciable time-frame to sequester carbon and possibly lower decomposition rates for the organic carbon that is found at 1 m depths. Wet soils such as peatlands tend to store significant amounts of carbon. The highest values estimated for such soils are about 114 kg m{sup −2} m{sup −1}. Such appreciable amounts can also be found in the Aquepts. In conclusion, it is pertinent to recognize that degradation of the carbon pool, just like desertification, is a real process and that this irreversible process must be addressed immediately. Therefore, appropriate soil management practices should be instituted to sequester large masses of soil carbon on an annual basis. This knowledge can be used effectively to formulate strategies to prevent forest fires and clearing: two processes that can quickly release sequestered carbon to the atmosphere in an almost irreversible manner. - Highlights: • Soil carbon stocks in different soils in Sarawak • In depth discussion of

  10. Carbon Stock in Integrated Field Laboratory Faculty of Agriculture University of Lampung

    OpenAIRE

    Irwan Sukri Banuwa; Tika Mutiasari; Henrie Buchori; Muhajir Utomo

    2016-01-01

    This study aimed to determine the amount of carbon stock and CO2 plant uptake in the Integrated Field Laboratory (IFL) Faculty of Agriculture University of Lampung. The research was conducted from April to November 2015. The study was arranged in a completely randomized block design (CRBD), consisting of five land units as treatment with four replications for each treatment. Biomass of woody plants was estimated using allometric equation, biomass of understorey plants was estimate...

  11. Data for developing allometric models and evaluating carbon stocks of the Zambezi Teak Forests in Zambia

    NARCIS (Netherlands)

    Ngoma, Justine; Moors, E.J.; Kruijt, B.; Speer, James H.; Vinya, Royd; Chidumayo, Emmanuel N.; Leemans, H.B.J.

    2018-01-01

    This paper presents data on carbon stocks of tropical tree species along a rainfall gradient. The data was generated from the Sesheke, Namwala, and Kabompo sites in Zambia. Though above-ground data was generated for all these three sites, we uprooted trees to determine below-ground biomass from the

  12. Soil carbon stocks in Sarawak, Malaysia.

    Science.gov (United States)

    Padmanabhan, E; Eswaran, H; Reich, P F

    2013-11-01

    The relationship between greenhouse gas emission and climate change has led to research to identify and manage the natural sources and sinks of the gases. CO2, CH4, and N2O have an anthropic source and of these CO2 is the least effective in trapping long wave radiation. Soil carbon sequestration can best be described as a process of removing carbon dioxide from the atmosphere and relocating into soils in a form that is not readily released back into the atmosphere. The purpose of this study is to estimate carbon stocks available under current conditions in Sarawak, Malaysia. SOC estimates are made for a standard depth of 100 cm unless the soil by definition is less than this depth, as in the case of lithic subgroups. Among the mineral soils, Inceptisols tend to generally have the highest carbon contents (about 25 kg m(-2) m(-1)), while Oxisols and Ultisols rate second (about 10-15 kg m(-2) m(-1)). The Oxisols store a good amount of carbon because of an appreciable time-frame to sequester carbon and possibly lower decomposition rates for the organic carbon that is found at 1m depths. Wet soils such as peatlands tend to store significant amounts of carbon. The highest values estimated for such soils are about 114 kg m(-2) m(-1). Such appreciable amounts can also be found in the Aquepts. In conclusion, it is pertinent to recognize that degradation of the carbon pool, just like desertification, is a real process and that this irreversible process must be addressed immediately. Therefore, appropriate soil management practices should be instituted to sequester large masses of soil carbon on an annual basis. This knowledge can be used effectively to formulate strategies to prevent forest fires and clearing: two processes that can quickly release sequestered carbon to the atmosphere in an almost irreversible manner. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Mapping soil organic carbon stock in the area of Neamtu Catchment, Northeastern Romania

    Science.gov (United States)

    Breaban, Ana-Ioana; Bobric, Elena-Diana; Breaban, Iuliana-Gabriela; Rusu, Eugen

    2017-04-01

    The quantification of soil organic carbon stocks and its spatial extent is directly influenced by the land cover. The aim of the study is to quantify both the spatial distribution of soil organic carbon and stocks under different soil types and land uses in an area of 41.808,04 ha in northeastern part of Romania. It has been studied the evolution of carbon stocks over time, taking into account the change of land use between 1990-2012 under 5 classes: forests, pastures, arable land, orchard and built spaces. Common soils are Cambisols, Fluvisols, Phaezems, and Luvisols, forest being the predominant land use. The most important loss of soil organic carbon occurs as a result of changes in the supply of biomass supplying litter and therefore the process of bioaccumulation. The samples were collected from 100 representative soil profiles and analyzed with Analytik Jena multi N/C 2100 with HT 1300 solid module. Based on the soil organic carbon, C/N ratio and texture the values of those parameters varied from high values in Ao and Bv horizons to lower values in C horizon. In order to model soil organic carbon concentration were used different interpolation techniques (regression and ordinary -kriging, IDW) at different sampling densities for each depth to 100 cm, using a Gaussian approach to estimate the uncertainty. It is noticeable that soil organic carbon had a positive correlation with different types of land uses and a negative correlation with the elevation, being a decreasing trend of the carbon stocks sequestered in biomass, litter and soil. In the upper part of the profiles, the soil organic carbon stock considerably varied for forest land between 6.5-7.23 kg C/sqm) and agricultural land (3.67-4.65 kg C/sqm). The kriging regression evidenced a good variability of the calculated root mean square errors of the predicted soil organic carbon stocks.

  14. Woody debris volume depletion through decay: Implications for biomass and carbon accounting

    Science.gov (United States)

    Shawn Fraver; Amy M. Milo; John B. Bradford; Anthony W. D’Amato; Laura Kenefic; Brian J. Palik; Christopher W. Woodall; John. Brissette

    2013-01-01

    Woody debris decay rates have recently received much attention because of the need to quantify temporal changes in forest carbon stocks. Published decay rates, available for many species, are commonly used to characterize deadwood biomass and carbon depletion. However, decay rates are often derived from reductions in wood density through time, which when used to model...

  15. Carbon stock of Moso bamboo (Phyllostachys pubescens) forests along a latitude gradient in the subtropical region of China.

    Science.gov (United States)

    Xu, Mengjie; Ji, Haibao; Zhuang, Shunyao

    2018-01-01

    Latitude is an important factor that influences the carbon stock of Moso bamboo (Phyllostachys pubescens) forests. Accurate estimation of the carbon stock of Moso bamboo forest can contribute to sufficient evaluation of forests in carbon sequestration worldwide. Nevertheless, the effect of latitude on the carbon stock of Moso bamboo remains unclear. In this study, a field survey with 36 plots of Moso bamboo forests along a latitude gradient was conducted to investigate carbon stock. Results showed that the diameter at breast height (DBH) of Moso bamboo culms increased from 8.37 cm to 10.12 cm that well fitted by Weibull model, whereas the bamboo culm density decreased from 4722 culm ha-1 to 3400 culm ha-1 with increasing latitude. The bamboo biomass carbon decreased from 60.58 Mg C ha-1 to 48.31 Mg C ha-1 from north to south. The total carbon stock of Moso bamboo forests, which comprises soil and biomass carbon, ranged from 87.83 Mg C ha-1 to 119.5 Mg C ha-1 and linearly increased with latitude. As a fast-growing plant, Moso bamboo could be harvested amounts of 6.0 Mg C ha-1 to 7.6 Mg C ha-1 annually, which indicates a high potential of this species for carbon sequestration. Parameters obtained in this study can be used to accurately estimate the carbon stock of Moso bamboo forest to establish models of the global carbon balance.

  16. The zero inflation of standing dead tree carbon stocks

    Science.gov (United States)

    Christopher W. Woodall; David W. MacFarlane

    2012-01-01

    Given the importance of standing dead trees in numerous forest ecosystem attributes/processes such as carbon (C) stocks, the USDA Forest Service’s Forest Inventory and Analysis (FIA) program began consistent nationwide sampling of standing dead trees in 1999. Modeled estimates of standing dead tree C stocks are currently used as the official C stock estimates for the...

  17. Aboveground vs. Belowground Carbon Stocks in African Tropical Lowland Rainforest: Drivers and Implications.

    Directory of Open Access Journals (Sweden)

    Sebastian Doetterl

    Full Text Available African tropical rainforests are one of the most important hotspots to look for changes in the upcoming decades when it comes to C storage and release. The focus of studying C dynamics in these systems lies traditionally on living aboveground biomass. Belowground soil organic carbon stocks have received little attention and estimates of the size, controls and distribution of soil organic carbon stocks are highly uncertain. In our study on lowland rainforest in the central Congo basin, we combine both an assessment of the aboveground C stock with an assessment of the belowground C stock and analyze the latter in terms of functional pools and controlling factors.Our study shows that despite similar vegetation, soil and climatic conditions, soil organic carbon stocks in an area with greater tree height (= larger aboveground carbon stock were only half compared to an area with lower tree height (= smaller aboveground carbon stock. This suggests that substantial variability in the aboveground vs. belowground C allocation strategy and/or C turnover in two similar tropical forest systems can lead to significant differences in total soil organic C content and C fractions with important consequences for the assessment of the total C stock of the system.We suggest nutrient limitation, especially potassium, as the driver for aboveground versus belowground C allocation. However, other drivers such as C turnover, tree functional traits or demographic considerations cannot be excluded. We argue that large and unaccounted variability in C stocks is to be expected in African tropical rain-forests. Currently, these differences in aboveground and belowground C stocks are not adequately verified and implemented mechanistically into Earth System Models. This will, hence, introduce additional uncertainty to models and predictions of the response of C storage of the Congo basin forest to climate change and its contribution to the terrestrial C budget.

  18. Aboveground vs. Belowground Carbon Stocks in African Tropical Lowland Rainforest: Drivers and Implications.

    Science.gov (United States)

    Doetterl, Sebastian; Kearsley, Elizabeth; Bauters, Marijn; Hufkens, Koen; Lisingo, Janvier; Baert, Geert; Verbeeck, Hans; Boeckx, Pascal

    2015-01-01

    African tropical rainforests are one of the most important hotspots to look for changes in the upcoming decades when it comes to C storage and release. The focus of studying C dynamics in these systems lies traditionally on living aboveground biomass. Belowground soil organic carbon stocks have received little attention and estimates of the size, controls and distribution of soil organic carbon stocks are highly uncertain. In our study on lowland rainforest in the central Congo basin, we combine both an assessment of the aboveground C stock with an assessment of the belowground C stock and analyze the latter in terms of functional pools and controlling factors. Our study shows that despite similar vegetation, soil and climatic conditions, soil organic carbon stocks in an area with greater tree height (= larger aboveground carbon stock) were only half compared to an area with lower tree height (= smaller aboveground carbon stock). This suggests that substantial variability in the aboveground vs. belowground C allocation strategy and/or C turnover in two similar tropical forest systems can lead to significant differences in total soil organic C content and C fractions with important consequences for the assessment of the total C stock of the system. We suggest nutrient limitation, especially potassium, as the driver for aboveground versus belowground C allocation. However, other drivers such as C turnover, tree functional traits or demographic considerations cannot be excluded. We argue that large and unaccounted variability in C stocks is to be expected in African tropical rain-forests. Currently, these differences in aboveground and belowground C stocks are not adequately verified and implemented mechanistically into Earth System Models. This will, hence, introduce additional uncertainty to models and predictions of the response of C storage of the Congo basin forest to climate change and its contribution to the terrestrial C budget.

  19. Biomass carbon accumulation in aging Japanese cedar plantations in Xitou, central Taiwan.

    Science.gov (United States)

    Cheng, Chih-Hsin; Hung, Chih-Yu; Chen, Chiou-Peng; Pei, Chuang-Wun

    2013-12-01

    Japanese cedar (Chrytomeria japonica D. Don) is an important plantation species in Taiwan and represents 10% of total plantation area. It was first introduced in 1910 and widely planted in the northern and central mountainous areas of Taiwan. However, a change in forest management from exotic species to native species in 1980 had resulted in few new Japanese cedar plantations being established. Most Japanese cedar plantations are now between 30 and 50 years old and reaching their rotation period. It is of interest to know whether these plantations could be viable for future carbon sequestration through the accumulations of stand carbon stocks. Twelve even-aged Japanese cedar stands along a stand age gradient from 37 to 93 years were selected in Xitou of central Taiwan. The study aims were to investigate the basic stand characteristics and biomass carbon stock in current Japanese cedar stands, and determine the relationships among stand characteristics, tree biomass carbon, and stand age. Our results indicate that existing Japanese cedar plantations are still developing and their live tree biomass carbon continues to accumulate. At stands with a stand age of 90 years, tree density, canopy height, mean diameter at breast height, basal area, and live tree biomass carbon stocks reach to nearly 430 tree ha -1 , 27 m, 48 cm, 82 m 2 ha -1 and 300 Mg C ha -1 , respectively. Therefore, with no harvesting, current Japanese cedar plantations provide a carbon sink by storing carbon in tree biomass.

  20. A New Synthetic Global Biomass Carbon Map for the year 2010

    Science.gov (United States)

    Spawn, S.; Lark, T.; Gibbs, H.

    2017-12-01

    Satellite technologies have facilitated a recent boom in high resolution, large-scale biomass estimation and mapping. These data are the input into a wide range of global models and are becoming the gold standard for required national carbon (C) emissions reporting. Yet their geographical and/or thematic scope may exclude some or all parts of a given country or region. Most datasets tend to focus exclusively on forest biomass. Grasslands and shrublands generally store less C than forests but cover nearly twice as much global land area and may represent a significant portion of a given country's biomass C stock. To address these shortcomings, we set out to create synthetic, global above- and below-ground biomass maps that combine recently-released satellite based data of standing forest biomass with novel estimates for non-forest biomass stocks that are typically neglected. For forests we integrated existing publicly available regional, global and biome-specific biomass maps and modeled below ground biomass using empirical relationships described in the literature. For grasslands, we developed models for both above- and below-ground biomass based on NPP, mean annual temperature and precipitation to extrapolate field measurements across the globe. Shrubland biomass was extrapolated from existing regional biomass maps using environmental factors to generate the first global estimate of shrub biomass. Our new synthetic map of global biomass carbon circa 2010 represents an update to the IPCC Tier-1 Global Biomass Carbon Map for the Year 2000 (Ruesch and Gibbs, 2008) using the best data currently available. In the absence of a single seamless remotely sensed map of global biomass, our synthetic map provides the only globally-consistent source of comprehensive biomass C data and is valuable for land change analyses, carbon accounting, and emissions modeling.

  1. Stocks of carbon and nitrogen and partitioning between above- and belowground pools in the Brazilian coastal Atlantic Forest elevation range.

    Science.gov (United States)

    Vieira, Simone A; Alves, Luciana F; Duarte-Neto, Paulo J; Martins, Susian C; Veiga, Larissa G; Scaranello, Marcos A; Picollo, Marisa C; Camargo, Plinio B; do Carmo, Janaina B; Neto, Eráclito Sousa; Santos, Flavio A M; Joly, Carlos A; Martinelli, Luiz A

    2011-11-01

    We estimated carbon and nitrogen stocks in aboveground biomass (AGB) and belowground biomass (BGB) along an elevation range in forest sites located on the steep slopes of the Serra do Mar on the north coast of the State of São Paulo, southeast Brazil. In elevations of 100 m (lowland), 400 m (submontane), and 1000 m (montane) four 1-ha plots were established, and above- (live and dead) and belowground (live and dead) biomass were determined. Carbon and nitrogen concentrations in each compartment were determined and used to convert biomass into carbon and nitrogen stocks. The carbon aboveground stock (C(AGB)) varied along the elevation range from approximately 110 to 150 Mg·ha(-1), and nitrogen aboveground stock (N(AGB)), varied from approximately 1.0 to 1.9 Mg·ha(-1). The carbon belowground stock (C(BGB)) and the nitrogen belowground stock (N(BGB)) were significantly higher than the AGB and varied along the elevation range from approximately 200-300 Mg·ha(-1), and from 14 to 20 Mg·ha(-1), respectively. Finally, the total carbon stock (C(TOTAL)) varied from approximately 320 to 460 Mg·ha(-1), and the nitrogen total stock (N(TOTAL)) from approximately 15 to 22 Mg·ha(-1). Most of the carbon and nitrogen stocks were found belowground and not aboveground as normally found in lowland tropical forests. The above- and belowground stocks, and consequently, the total stocks of carbon and nitrogen increased significantly with elevation. As the soil and air temperature also decreased significantly with elevation, we found a significantly inverse relationship between carbon and nitrogen stocks and temperature. Using this inverse relationship, we made a first approach estimate that an increase of 1°C in soil temperature would decrease the carbon and nitrogen stocks in approximately 17 Mg·ha(-1) and 1 Mg·ha(-1) of carbon and nitrogen, respectively.

  2. Scenarios in tropical forest degradation: carbon stock trajectories for REDD+

    Directory of Open Access Journals (Sweden)

    Rafael B. de Andrade

    2017-03-01

    Full Text Available Abstract Background Human-caused disturbance to tropical rainforests—such as logging and fire—causes substantial losses of carbon stocks. This is a critical issue to be addressed in the context of policy discussions to implement REDD+. This work reviews current scientific knowledge about the temporal dynamics of degradation-induced carbon emissions to describe common patterns of emissions from logging and fire across tropical forest regions. Using best available information, we: (i develop short-term emissions factors (per area for logging and fire degradation scenarios in tropical forests; and (ii describe the temporal pattern of degradation emissions and recovery trajectory post logging and fire disturbance. Results Average emissions from aboveground biomass were 19.9 MgC/ha for logging and 46.0 MgC/ha for fire disturbance, with an average period of study of 3.22 and 2.15 years post-disturbance, respectively. Longer-term studies of post-logging forest recovery suggest that biomass accumulates to pre-disturbance levels within a few decades. Very few studies exist on longer-term (>10 years effects of fire disturbance in tropical rainforests, and recovery patterns over time are unknown. Conclusions This review will aid in understanding whether degradation emissions are a substantial component of country-level emissions portfolios, or whether these emissions would be offset by forest recovery and regeneration.

  3. Spatial distribution of whole-tree carbon stocks and fluxes across the forests of Europe: where are the options for bio-energy?

    NARCIS (Netherlands)

    Nabuurs, G.J.; Schelhaas, M.J.

    2003-01-01

    This paper presents carbon stocks and fluxes of the whole-tree biomass of European forests and other wooded land, distinguished by coniferous, deciduous and mixed forests. The results are presented at the European, national and (where possible) regional level. Results concerning carbon stocks, and

  4. Monitoring and estimating tropical forest carbon stocks: making REDD a reality

    International Nuclear Information System (INIS)

    Gibbs, Holly K; Brown, Sandra; Niles, John O; Foley, Jonathan A

    2007-01-01

    Reducing carbon emissions from deforestation and degradation in developing countries is of central importance in efforts to combat climate change. Key scientific challenges must be addressed to prevent any policy roadblocks. Foremost among the challenges is quantifying nations' carbon emissions from deforestation and forest degradation, which requires information on forest clearing and carbon storage. Here we review a range of methods available to estimate national-level forest carbon stocks in developing countries. While there are no practical methods to directly measure all forest carbon stocks across a country, both ground-based and remote-sensing measurements of forest attributes can be converted into estimates of national carbon stocks using allometric relationships. Here we synthesize, map and update prominent forest biomass carbon databases to create the first complete set of national-level forest carbon stock estimates. These forest carbon estimates expand on the default values recommended by the Intergovernmental Panel on Climate Change's National Greenhouse Gas Inventory Guidelines and provide a range of globally consistent estimates

  5. Measuring and modeling carbon stock change estimates for US forests and uncertainties from apparent inter-annual variability

    Science.gov (United States)

    James E. Smith; Linda S. Heath

    2015-01-01

    Our approach is based on a collection of models that convert or augment the USDA Forest Inventory and Analysis program survey data to estimate all forest carbon component stocks, including live and standing dead tree aboveground and belowground biomass, forest floor (litter), down deadwood, and soil organic carbon, for each inventory plot. The data, which include...

  6. Biomass energy and the global carbon balance

    International Nuclear Information System (INIS)

    Hall, D.O.; House, J.I.

    1994-01-01

    Studies on climate change and energy production increasingly recognise the crucial role of biological systems. Carbon sinks in forests (above and below ground), CO 2 emissions from deforestation, planting trees for carbon storage, and biomass as a substitute for fossil fuels are some of the key issues which arise. Halting deforestation is of paramount importance, but there is also great potential for reforestation of degraded lands, agroforestry and improved forest management. It is concluded that biomass energy plantations and other types of energy cropping could be a more effective strategy for carbon mitigation than simply growing trees as a carbon store, particularly on higher productivity lands. Use of the biomass produced as an energy source has the added advantage of a wide range of other environmental, social and economic benefits. (author)

  7. Carbon stock of oil palm plantations and tropical forests in Malaysia

    DEFF Research Database (Denmark)

    Kho, Lip Khoon; Jepsen, Martin Rudbeck

    2015-01-01

    cultivation (fallow forests) and 3) oil palm plantations. The forest ecosystems are classified by successional stage and edaphic conditions and represent samples along a forest succession continuum spanning pioneer species in shifting cultivation fallows to climax vegetation in old-growth forests. Total......In Malaysia, the main land change process is the establishment of oil palm plantations on logged-over forests and areas used for shifting cultivation, which is the traditional farming system. While standing carbon stocks of old-growth forest have been the focus of many studies, this is less...... the case for Malaysian fallow systems and oil palm plantations. Here, we collate and analyse Malaysian datasets on total carbon stocks for both above- and below-ground biomass. We review the current knowledge on standing carbon stocks of 1) different forest ecosystems, 2) areas subject to shifting...

  8. Global carbon stocks and potential emissions due to mangrove deforestation from 2000 to 2012

    Science.gov (United States)

    Hamilton, Stuart E.; Friess, Daniel A.

    2018-02-01

    Mangrove forests store high densitie of organic carbon, which, when coupled with high rates of deforestation, means that mangroves have the potential to contribute substantially to carbon emissions. Consequently, mangroves are strong candidates for inclusion in nationally determined contributions (NDCs) to the United Nations Framework Convention on Climate Change (UNFCCC), and payments for ecosystem services (PES) programmes that financially incentivize the conservation of forested carbon stocks. This study quantifies annual mangrove carbon stocks from 2000 to 2012 at the global, national and sub-national levels, and global carbon emissions resulting from deforestation over the same time period. Globally, mangroves stored 4.19 Pg of carbon in 2012, with Indonesia, Brazil, Malaysia and Papua New Guinea accounting for more than 50% of the global stock. 2.96 Pg of the global carbon stock is contained within the soil and 1.23 Pg in the living biomass. Two percent of global mangrove carbon was lost between 2000 and 2012, equivalent to a maximum potential of 316,996,250 t of CO2 emissions.

  9. Approaches to greenhouse gas accounting methods for biomass carbon

    International Nuclear Information System (INIS)

    Downie, Adriana; Lau, David; Cowie, Annette; Munroe, Paul

    2014-01-01

    This investigation examines different approaches for the GHG flux accounting of activities within a tight boundary of biomass C cycling, with scope limited to exclude all other aspects of the lifecycle. Alternative approaches are examined that a) account for all emissions including biogenic CO 2 cycling – the biogenic method; b) account for the quantity of C that is moved to and maintained in the non-atmospheric pool – the stock method; and c) assume that the net balance of C taken up by biomass is neutral over the short-term and hence there is no requirement to include this C in the calculation – the simplified method. This investigation demonstrates the inaccuracies in both emissions forecasting and abatement calculations that result from the use of the simplified method, which is commonly accepted for use. It has been found that the stock method is the most accurate and appropriate approach for use in calculating GHG inventories, however short-comings of this approach emerge when applied to abatement projects, as it does not account for the increase in biogenic CO 2 emissions that are generated when non-CO 2 GHG emissions in the business-as-usual case are offset. Therefore the biogenic method or a modified version of the stock method should be used to accurately estimate GHG emissions abatement achieved by a project. This investigation uses both the derivation of methodology equations from first principles and worked examples to explore the fundamental differences in the alternative approaches. Examples are developed for three project scenarios including; landfill, combustion and slow-pyrolysis (biochar) of biomass. -- Highlights: • Different approaches can be taken to account for the GHG emissions from biomass. • Simplification of GHG accounting methods is useful, however, can lead to inaccuracies. • Approaches used currently are often inadequate for practises that store carbon. • Accounting methods for emissions forecasting can be inadequate for

  10. Lidar and Hyperspectral Remote Sensing for the Analysis of Coniferous Biomass Stocks and Fluxes

    Science.gov (United States)

    Halligan, K. Q.; Roberts, D. A.

    2006-12-01

    Airborne lidar and hyperspectral data can improve estimates of aboveground carbon stocks and fluxes through their complimentary responses to vegetation structure and biochemistry. While strong relationships have been demonstrated between lidar-estimated vegetation structural parameters and field data, research is needed to explore the portability of these methods across a range of topographic conditions, disturbance histories, vegetation type and climate. Additionally, research is needed to evaluate contributions of hyperspectral data in refining biomass estimates and determination of fluxes. To address these questions we are a conducting study of lidar and hyperspectral remote sensing data across sites including coniferous forests, broadleaf deciduous forests and a tropical rainforest. Here we focus on a single study site, Yellowstone National Park, where tree heights, stem locations, above ground biomass and basal area were mapped using first-return small-footprint lidar data. A new method using lidar intensity data was developed for separating the terrain and vegetation components in lidar data using a two-scale iterative local minima filter. Resulting Digital Terrain Models (DTM) and Digital Canopy Models (DCM) were then processed to retrieve a diversity of vertical and horizontal structure metrics. Univariate linear models were used to estimate individual tree heights while stepwise linear regression was used to estimate aboveground biomass and basal area. Three small-area field datasets were compared for their utility in model building and validation of vegetation structure parameters. All structural parameters were linearly correlated with lidar-derived metrics, with higher accuracies obtained where field and imagery data were precisely collocated . Initial analysis of hyperspectral data suggests that vegetation health metrics including measures of live and dead vegetation and stress indices may provide good indicators of carbon flux by mapping vegetation

  11. The Role of Composition, Invasives, and Maintenance Emissions on Urban Forest Carbon Stocks

    Science.gov (United States)

    Horn, Josh; Escobedo, Francisco J.; Hinkle, Ross; Hostetler, Mark; Timilsina, Nilesh

    2015-02-01

    There are few field-based, empirical studies quantifying the effect of invasive trees and palms and maintenance-related carbon emissions on changes in urban forest carbon stocks. We estimated carbon (C) stock changes and tree maintenance-related C emissions in a subtropical urban forest by re-measuring a subsample of residential permanent plots during 2009 and 2011, using regional allometric biomass equations, and surveying residential homeowners near Orlando, FL, USA. The effect of native, non-native, invasive tree species and palms on C stocks and sequestration was also quantified. Findings show 17.8 tC/ha in stocks and 1.2 tC/ha/year of net sequestration. The most important species both by frequency of C stocks and sequestration were Quercus laurifolia Michx. and Quercus virginiana Mill., accounting for 20 % of all the trees measured; 60 % of carbon stocks and over 75 % of net C sequestration. Palms contributed to less than 1 % of the total C stocks. Natives comprised two-thirds of the tree population and sequestered 90 % of all C, while invasive trees and palms accounted for 5 % of net C sequestration. Overall, invasive and exotic trees had a limited contribution to total C stocks and sequestration. Annual tree-related maintenance C emissions were 0.1 % of total gross C sequestration. Plot-level tree, palm, and litter cover were correlated to C stocks and net sequestration. Findings can be used to complement existing urban forest C offset accounting and monitoring protocols and to better understand the role of invasive woody plants on urban ecosystem service provision.

  12. The role of composition, invasives, and maintenance emissions on urban forest carbon stocks.

    Science.gov (United States)

    Horn, Josh; Escobedo, Francisco J; Hinkle, Ross; Hostetler, Mark; Timilsina, Nilesh

    2015-02-01

    There are few field-based, empirical studies quantifying the effect of invasive trees and palms and maintenance-related carbon emissions on changes in urban forest carbon stocks. We estimated carbon (C) stock changes and tree maintenance-related C emissions in a subtropical urban forest by re-measuring a subsample of residential permanent plots during 2009 and 2011, using regional allometric biomass equations, and surveying residential homeowners near Orlando, FL, USA. The effect of native, non-native, invasive tree species and palms on C stocks and sequestration was also quantified. Findings show 17.8 tC/ha in stocks and 1.2 tC/ha/year of net sequestration. The most important species both by frequency of C stocks and sequestration were Quercus laurifolia Michx. and Quercus virginiana Mill., accounting for 20% of all the trees measured; 60% of carbon stocks and over 75% of net C sequestration. Palms contributed to less than 1% of the total C stocks. Natives comprised two-thirds of the tree population and sequestered 90% of all C, while invasive trees and palms accounted for 5 % of net C sequestration. Overall, invasive and exotic trees had a limited contribution to total C stocks and sequestration. Annual tree-related maintenance C emissions were 0.1% of total gross C sequestration. Plot-level tree, palm, and litter cover were correlated to C stocks and net sequestration. Findings can be used to complement existing urban forest C offset accounting and monitoring protocols and to better understand the role of invasive woody plants on urban ecosystem service provision.

  13. Combined influence of sedimentation and vegetation on the soil carbon stocks of a coastal wetland in the Changjiang estuary

    Science.gov (United States)

    Zhang, Tianyu; Chen, Huaipu; Cao, Haobing; Ge, Zhenming; Zhang, Liquan

    2017-07-01

    Coastal wetlands play an important role in the global carbon cycle. Large quantities of sediment deposited in the Changjiang (Yangtze) estuary by the Changjiang River promote the propagation of coastal wetlands, the expansion of saltmarsh vegetation, and carbon sequestration. In this study, using the Chongming Dongtan Wetland in the Changjiang estuary as the study area, the spatial and temporal distribution of soil organic carbon (SOC) stocks and the influences of sedimentation and vegetation on the SOC stocks of the coastal wetland were examined in 2013. There was sediment accretion in the northern and middle areas of the wetland and in the Phragmites australis marsh in the southern area, and sediment erosion in the Scirpus mariqueter marsh and the bare mudflat in the southern area. More SOC accumulated in sediments of the vegetated marsh than in the bare mudflat. The total organic carbon (TOC) stocks increased in the above-ground biomass from spring to autumn and decreased in winter; in the below-ground biomass, they gradually increased from spring to winter. The TOC stocks were higher in the below-ground biomass than in the above-ground biomass in the P. australis and Spartina alterniflora marshes, but were lower in the below-ground biomass in S. mariqueter marsh. Stocks of SOC showed temporal variation and increased gradually in all transects from spring to winter. The SOC stocks tended to decrease from the high marsh down to the bare mudflat along the three transects in the order: P. australis marsh > S. alterniflora marsh > S. mariqueter marsh > bare mudflat. The SOC stocks of the same vegetation type were higher in the northern and middle transects than in the southern transect. These results suggest that interactions between sedimentation and vegetation regulate the SOC stocks in the coastal wetland in the Changjiang estuary.

  14. Carbon Stocks of Fine Woody Debris in Coppice Oak Forests at Different Development Stages

    Directory of Open Access Journals (Sweden)

    Ender Makineci

    2017-06-01

    Full Text Available Dead woody debris is a significant component of the carbon cycle in forest ecosystems. This study was conducted in coppice-originated oak forests to determine carbon stocks of dead woody debris in addition to carbon stocks of different ecosystem compartments from the same area and forests which were formerly elucidated. Weight and carbon stocks of woody debris were determined with recent samplings and compared among development stages (diameter at breast height (DBH, D1.3m, namely small-diameter forests (SDF = 0–8 cm, medium diameter forests (MDF = 8–20 cm, and large-diameter forests (LDF = 20–36 cm. Total woody debris was collected in samplings; as bilateral diameters of all woody debris parts were less than 10 cm, all woody parts were in the “fine woody debris (FWD” class. The carbon concentrations of FWD were about 48% for all stages. Mass (0.78–4.92 Mg·ha−1 and carbon stocks (0.38–2.39 Mg·ha−1 of FWD were significantly (p > 0.05 different among development stages. FWD carbon stocks were observed to have significant correlation with D1.3m, age, basal area, and carbon stocks of aboveground biomass (Spearman rank correlation coefficients; 0.757, 0.735, 0.709, and 0.694, respectively. The most important effects on carbon budgets of fine woody debris were determined to be coppice management and intensive utilization. Also, national forestry management, treatments of traditional former coppice, and conversion to high forest were emphasized as having substantial effects.

  15. Soil and biomass carbon re-accumulation after landslide disturbances

    Science.gov (United States)

    Schomakers, Jasmin; Jien, Shih-Hao; Lee, Tsung-Yu; Huang-Chuan, Jr.; Hseu, Zeng-Yei; Lin, Zan Liang; Lee, Li-Chin; Hein, Thomas; Mentler, Axel; Zehetner, Franz

    2017-07-01

    In high-standing islands of the Western Pacific, typhoon-triggered landslides occasionally strip parts of the landscape of its vegetative cover and soil layer and export large amounts of biomass and soil organic carbon (OC) from land to the ocean. After such disturbances, new vegetation colonizes the landslide scars and OC starts to re-accumulate. In the subtropical mountains of Taiwan and in other parts of the world, bamboo (Bambusoideae) species may invade at a certain point in the succession of recovering landslide scars. Bamboo has a high potential for carbon sequestration because of its fast growth and dense rooting system. However, it is still largely unknown how these properties translate into soil OC re-accumulation rates after landslide disturbance. In this study, a chronosequence was established on four former landslide scars in the Central Mountain Range of Taiwan, ranging in age from 6 to 41 years post disturbance as determined by landslide mapping from remote sensing. The younger landslide scars were colonized by Miscanthus floridulus, while after approx. 15 to 20 years of succession, bamboo species (Phyllostachys) were dominating. Biomass and soil OC stocks were measured on the recovering landslide scars and compared to an undisturbed Cryptomeria japonica forest stand in the area. After initially slow re-vegetation, biomass carbon accumulated in Miscanthus stands with mean annual accretion rates of 2 ± 0.5 Mg C ha- 1 yr- 1. Biomass carbon continued to increase after bamboo invasion and reached 40% of that in the reference forest site after 41 years of landslide recovery. Soil OC accumulation rates were 2.0 Mg C ha- 1 yr- 1, 6 to 41 years post disturbance reaching 64% of the level in the reference forest. Our results from this in-situ study suggest that recovering landslide scars are strong carbon sinks once an initial lag period of vegetation re-establishment is overcome.

  16. Carbon sequestration rate and aboveground biomass carbon potential of three young species in lower Gangetic plain.

    Science.gov (United States)

    Jana, Bipal K; Biswas, Soumyajit; Majumder, Mrinmoy; Roy, Pankaj K; Mazumdar, Asis

    2011-07-01

    Carbon is sequestered by the plant photosynthesis and stored as biomass in different parts of the tree. Carbon sequestration rate has been measured for young species (6 years age) of Shorea robusta at Chadra forest in Paschim Medinipur district, Albizzia lebbek in Indian Botanic Garden in Howrah district and Artocarpus integrifolia at Banobitan within Kolkata in the lower Gangetic plain of West Bengal in India by Automated Vaisala Made Instrument GMP343 and aboveground biomass carbon has been analyzed by CHN analyzer. The specific objective of this paper is to measure carbon sequestration rate and aboveground biomass carbon potential of three young species of Shorea robusta, Albizzia lebbek and Artocarpus integrifolia. The carbon sequestration rate (mean) from the ambient air during winter season as obtained by Shorea robusta, Albizzia lebbek and Artocarpus integrifolia were 11.13 g/h, 14.86 g/h and 4.22g/h, respectively. The annual carbon sequestration rate from ambient air were estimated at 8.97 t C ha(-1) by Shorea robusta, 11.97 t C ha(-1) by Albizzia lebbek and 3.33 t C ha(-1) by Artocarpus integrifolia. The percentage of carbon content (except root) in the aboveground biomass of Shorea robusta, Albizzia lebbek and Artocarpus integrifolia were 47.45, 47.12 and 43.33, respectively. The total aboveground biomass carbon stock per hectare as estimated for Shorea robusta, Albizzia lebbek and Artocarpus integrifolia were 5.22 t C ha(-1) , 6.26 t C ha(-1) and 7.28 t C ha(-1), respectively in these forest stands.

  17. Biodiversity, carbon stocks and community monitoring in traditional agroforestry practices

    DEFF Research Database (Denmark)

    Hartoyo, Adisti Permatasari Putri; Siregar, Iskandar Z.; Supriyanto

    2016-01-01

    Traditional agroforestry practices in Berau, East Kalimantan, are suitable land use types to conserve that potentially support the implementation of REDD+. The objectives of this research are to assess biodiversity and carbon stock in various traditional agroforestry practices, also to determine...... the accuracy of the ability levels of local community in biodiversity and carbon stock monitoring. This paper presents the implementation plan and preliminary data in Kampung Birang and Kampung Merabu, in Berau district. Professional forester-led methods of biodiversity and carbon stock assessment follow...

  18. Carbon Stock Stratification of Peat Soils in South Kalimantan, Indonesia

    OpenAIRE

    Siti Nurzakiah; Muhammad Noor; Dedi Nursyamsi

    2015-01-01

    Carbon stock in peat soils is very high, it is necessary to prudent in its management because peat soils is emitting greenhouse gases such as CO2 during land clearing due to oxidation of peat layer.  This research was conducted to study soil carbon stock stratification in relation to soil physical and chemical properties. The carbon stock stratification was based on maturity degrees of peat.  The study was conducted in Pulau Damar Village, Hulu Sungai Utara District, South Kalimantan Province...

  19. Analysis of results of biomass forest inventory in northeastern Amazon for development of REDD+ carbon project

    Directory of Open Access Journals (Sweden)

    LEONEL N.C. MELLO

    2016-03-01

    Full Text Available ABSTRACT In Brazil, a significant reduction in deforestation rates occurred during the last decade. In spite of that fact, the average annual rates are still too high, approximately 400.000 ha/year (INPE/Prodes. The projects of emissions reduction through avoided deforestation (REED+ are an important tool to reduce deforestation rates in Brazil. Understanding the amazon forest structure, in terms of biomass stock is key to design avoided deforestation strategies. In this work, we analyze data results from aboveground biomass of 1,019.346,27 hectares in the state of Pará. It was collected data from 16,722 trees in 83 random independent plots. It was tested 4 allometric equations, for DBH > 10cm: Brown et al. (1989, Brown and Lugo (1999, Chambers et al. (2000, Higuchi et al. (1998. It revealed that the biggest carbon stock of above ground biomass is stocked on the interval at DBH between 30cm and 80cm. This biomass compartment stocks 75.70% of total biomass in Higuchi et al. (1998 equation, 75.56% of total biomass in Brown et al. (1989 equation, 78.83% of total biomass in Chambers et al. (2000 equation, and 73.22% in Brown and Lugo (1999 equation.

  20. Spatial distribution of soil organic carbon stocks in France

    Directory of Open Access Journals (Sweden)

    M. P. Martin

    2011-05-01

    Full Text Available Soil organic carbon plays a major role in the global carbon budget, and can act as a source or a sink of atmospheric carbon, thereby possibly influencing the course of climate change. Changes in soil organic carbon (SOC stocks are now taken into account in international negotiations regarding climate change. Consequently, developing sampling schemes and models for estimating the spatial distribution of SOC stocks is a priority. The French soil monitoring network has been established on a 16 km × 16 km grid and the first sampling campaign has recently been completed, providing around 2200 measurements of stocks of soil organic carbon, obtained through an in situ composite sampling, uniformly distributed over the French territory.

    We calibrated a boosted regression tree model on the observed stocks, modelling SOC stocks as a function of other variables such as climatic parameters, vegetation net primary productivity, soil properties and land use. The calibrated model was evaluated through cross-validation and eventually used for estimating SOC stocks for mainland France. Two other models were calibrated on forest and agricultural soils separately, in order to assess more precisely the influence of pedo-climatic variables on SOC for such soils.

    The boosted regression tree model showed good predictive ability, and enabled quantification of relationships between SOC stocks and pedo-climatic variables (plus their interactions over the French territory. These relationships strongly depended on the land use, and more specifically, differed between forest soils and cultivated soil. The total estimate of SOC stocks in France was 3.260 ± 0.872 PgC for the first 30 cm. It was compared to another estimate, based on the previously published European soil organic carbon and bulk density maps, of 5.303 PgC. We demonstrate that the present estimate might better represent the actual SOC stock distributions of France, and consequently that the

  1. Monitoring of soil organic carbon and nitrogen stocks in different ...

    African Journals Online (AJOL)

    Soil organic carbon (SOC) and soil nitrogen (SN) are the principal components in soil quality assessment, and in mitigation the global greenhouse effect. In Iran, little information exists on the stocks of SOC and SN. SOC and SN stocks are a function of the SOC and SN concentrations and the bulk density of the soil that are ...

  2. Estimating litter carbon stocks on forest land in the United States.

    Science.gov (United States)

    Domke, Grant M; Perry, Charles H; Walters, Brian F; Woodall, Christopher W; Russell, Matthew B; Smith, James E

    2016-07-01

    Forest ecosystems are the largest terrestrial carbon sink on earth, with more than half of their net primary production moving to the soil via the decomposition of litter biomass. Therefore, changes in the litter carbon (C) pool have important implications for global carbon budgets and carbon emissions reduction targets and negotiations. Litter accounts for an estimated 5% of all forest ecosystem carbon stocks worldwide. Given the cost and time required to measure litter attributes, many of the signatory nations to the United Nations Framework Convention on Climate Change report estimates of litter carbon stocks and stock changes using default values from the Intergovernmental Panel on Climate Change or country-specific models. In the United States, the country-specific model used to predict litter C stocks is sensitive to attributes on each plot in the national forest inventory, but these predictions are not associated with the litter samples collected over the last decade in the national forest inventory. Here we present, for the first time, estimates of litter carbon obtained using more than 5000 field measurements from the national forest inventory of the United States. The field-based estimates mark a 44% reduction (2081±77Tg) in litter carbon stocks nationally when compared to country-specific model predictions reported in previous United Framework Convention on Climate Change submissions. Our work suggests that Intergovernmental Panel on Climate Change defaults and country-specific models used to estimate litter carbon in temperate forest ecosystems may grossly overestimate the contribution of this pool in national carbon budgets. Published by Elsevier B.V.

  3. Climate change mitigation by carbon stock - the case of semi-arid West Africa

    Science.gov (United States)

    Lykke, A. M.; Barfod, A. S.; Tinggaard Svendsen, G.; Greve, M.; Svenning, J.-C.

    2009-11-01

    Semi-arid West Africa has not been integrated into the afforestation/reforestation (AR) carbon market. Most projects implemented under the Clean Development Mechanism (CDM) have focused on carbon emission reductions from industry and energy consumption, whereas only few (only one in West Africa) have been certified for AR carbon sequestration. A proposed mechanism, Reducing Emissions from Deforestation and Degradation (REDD) to be discussed under COP15 aims to reduce emissions by conserving already existing forests. REDD has high potential for carbon stocking at low costs, but focuses primarily on rain forest countries and excludes semi-arid West Africa from the preliminary setup. African savannas have potential to store carbon in the present situation with degrading ecosystems and relatively low revenues from crops and cattle, especially if it is possible to combine carbon stocking with promotion of secondary crops such as food resources and traditional medicines harvested on a sustainable basis. Methods for modelling and mapping of potential carbon biomass are being developed, but are still in a preliminary state. Although economic benefits from the sale of carbon credits are likely to be limited, carbon stocking is an interesting option if additional benefits are considered such as improved food security and protection of biodiversity.

  4. Carbon Stock in Integrated Field Laboratory Faculty of Agriculture University of Lampung

    Directory of Open Access Journals (Sweden)

    Irwan Sukri Banuwa

    2016-05-01

    Full Text Available This study aimed to determine the amount of carbon stock and CO2 plant uptake in the Integrated Field Laboratory (IFL Faculty of Agriculture University of Lampung. The research was conducted from April to November 2015. The study was arranged in a completely randomized block design (CRBD, consisting of five land units as treatment with four replications for each treatment. Biomass of woody plants was estimated using allometric equation, biomass of understorey plants was estimated using plant dry weight equation, and organic C content in plants and soils were analyzed using a Walkey and Black method. The results showed that land unit consisting of densely woody plants significantly affects total biomass of woody plants, organic C content in woody plants and total carbon content (above and below ground. The highest amount of woody plant biomass was observed in land unit 5, i.e. 1,196.88 Mg ha-1, and above ground total carbon was 437.19 Mg ha-1. IFL Faculty of Agriculture University of Lampung has a total carbon stock of 2,051.90 Mg and capacity to take up total CO2 of 6,656.88 Mg.

  5. PHYTOSOCIOLOGICAL AND CARBON STOCK ANALYSIS IN THE TREE LAYER OF A SEMIDECIDUOUS FOREST FRAGMENT

    Directory of Open Access Journals (Sweden)

    Ricardo de Oliveira Gaspar

    2014-06-01

    Full Text Available http://dx.doi.org/10.5902/1980509814569The studies directed to quantify the carbon fixed stocks by natural forests are in ample evidence, as well as discussion about the effectiveness of the recovery of degraded areas as a strategy to reduce atmospheric CO2 levels. In this sense, this study had two purposes: i quantify the carbon stocks present in the shoot biomass of a tropical semi-deciduous Montana fragment, which belongs to the Atlantic Forest biome in Minas Gerais state and; ii incorporate the variable carbon stock in the horizontal phytosociological analysis structure and compare the results to those obtained by the standard methodology without using the variable in the calculation of the species importance value. The results indicate that the carbon stock equals to the fragments found at the intermediate succession stage, and that the carbon variable use greatly influences the species importance value. This methodology serves as a support for the selection of species which present the greatest potential to sequester carbon and may support programs for the remnant restoration of the Atlantic Forest biome.

  6. Decadal Change in Forest Carbon Stocks in the Delaware River Basin

    Science.gov (United States)

    Xu, B.; Plante, A. F.; Pan, Y.; Johnson, A. H.

    2013-12-01

    Forest carbon dynamics at different scales are controlled by different factors, which may alter the forest structure and processes. Long-term measurements of biomass and soil carbon stocks in a nested watershed DRB provide good opportunity for monitoring forest carbon dynamics at multiple scale, calibrating a regional forest process model, and exploring the carbon-water interaction. The Delaware River Basin (DRB) is an ideal watershed for forest carbon cycle research because the basin features diverse forest types and land-use history, and includes physiographic provinces representative of the eastern US. In 2001-2003, the Delaware River Basin Monitoring and Research Initiative established 66 forest plots in three intensive monitoring research sites (nested sub-watersheds in DRB) using Forest Service inventory protocols and enhanced measurements. Mean biomass carbon density was 235.7 × 93.7 Mg C ha-1 in French Creek, 193.2 × 83.9 Mg C ha-1 in Delaware Water Gap, and 264.7 × 74.4 Mg C ha-1 in Neversink River Basin. Soil carbon density (including forest floor and mineral soil to depth of 20 cm) was 80.1 Mg C ha-1, 85.4 Mg C ha-1, and 88.6 Mg C ha-1, respectively. These plots were revisited and re-measured in 2012-2013. In French Creek, where the biomass remeasurement was conducted in fall 2012, results show that, the average biomass carbon density increased by 17.9 Mg C ha-1 over the past decade. Changes in live biomass (live tree, sapling, shrub, herb etc.) and dead biomass (dead tree, coarse woody debris, litter, duff etc.) contribute equally to the total biomass change. However, in a few plots total biomass carbon density decreased by 7.6 to 43.1 Mg C ha-1 due to disturbance from logging or invasive species. Based on the preliminary result, the different effects of climatic, topographic and geological factors on carbon stocks could be detected among the small watersheds. But within a watershed, changes in biomass and soil carbon stocks may depend mainly on

  7. Unifying Dynamic Prognostic Phenology, Heterogeneous Soil and Vegetation Fluxes, and Ecosystem Biomass and Carbon Stocks To Predict the Terrestrial Carbon Cycle and Land-Atmosphere Exchanges in the Simple Biosphere Model (SiB4)

    Science.gov (United States)

    Haynes, K. D.; Baker, I. T.; Denning, S.

    2016-12-01

    Future climate projections require process-based models that incorporate the mechanisms and feedbacks controlling the carbon cycle. Over the past three decades, land surface models have been key contributors to Earth system models, evolving from predicting latent (LE) and sensible (SH) heat fluxes to energy and water budgets, momentum transfer, and terrestrial carbon exchange and storage. This study presents the latest version of the Simple Biosphere Model (SiB4), which builds on a compilation of previous versions and adds a new mechanistic-based scheme that fully predicts the terrestrial carbon cycle. The main SiB4 updates can be summarized as follows: (i) Incorporation of carbon pools that use new respiration and transfer methods, (ii) Creation of a new dynamic phenology scheme that uses mechanistic-based seasonal stages, and (iii) Unification of carbon pools, phenology and disturbance to close the carbon cycle. SiB4 removes the dependence on satellite-based vegetation indices, and instead uses a single mathematical framework to prognose self-consistent land-atmosphere exchanges of carbon, water, energy, radiation, and momentum, as well as carbon storage. Since grasslands cover 30% of land and are highly seasonal, we investigated forty grass sites. Diurnal cycles of gross primary productivity (GPP), ecosystem respiration (RE), net ecosystem exchange (NEE), LE and SH have third-quartile root mean squared (RMS) errors less than 2.0 µmol m-2 s-1, 1.9 µmol m-2 s-1, 2.0 µmol m-2 s-1, 42 W m-2, and 78 W m-2, respectively. On the synoptic timeframe, all sites have significant LE correlation coefficients of non-seasonal daily data; and all but one have significant SH correlations. Mean seasonal cycles for leaf area index (LAI), GPP, RE, LE, and SH have third-quartile normalized RMS errors less than 32%, 25%, 28%, 16%, and 48%, respectively. On multi-year timescales, daily correlations of LAI, GPP, RE, and LE are all statistically significant, with third-quartile RMS

  8. Estimate of biomass and carbon pools in disturbed and undisturbed oak forests in Tunisia

    Directory of Open Access Journals (Sweden)

    Lobna Zribi

    2016-07-01

    Full Text Available Aim of the study. To estimate biomass and carbon accumulation in a young and disturbed forest (regenerated after a tornado and an aged cork oak forest (undisturbed forest as well as its distribution among the different pools (tree, litter and soil. Area of study. The north west of Tunisia Material and methods. Carbon stocks were evaluated in the above and belowground cork oak trees, the litter and the 150 cm of the soil. Tree biomass was estimated in both young and aged forests using allometric biomass equations developed for wood stem, cork stem, wood branch, cork branch, leaves, roots and total tree biomass based on combinations of diameter at breast height, total height and crown length as independent variables. Main results. Total tree biomass in forests was 240.58 Mg ha-1 in the young forest and 411.30 Mg ha-1 in the aged forest with a low root/shoot ratio (0.41 for young forest and 0.31 for aged forest. Total stored carbon was 419.46 Mg C ha-1 in the young forest and 658.09 Mg C ha-1 in the aged forest. Carbon stock (Mg C ha-1 was estimated to be113.61(27.08% and 194.08 (29.49% in trees, 3.55 (0.85% and 5.73 (0.87% in litter and 302.30 (72.07% and 458.27 (69.64% in soil in the young and aged forests, respectively. Research highlights. Aged undisturbed forest had the largest tree biomass but a lower potential for accumulation of carbon in the future; in contrast, young disturbed forest had both higher growth and carbon storage potential. Keywords: Tree biomass; disturbance; allometry; cork oak forests; soil organic carbon stock.

  9. Effects of vegetation's degradation on carbon stock, morphological ...

    African Journals Online (AJOL)

    Effects of vegetation's degradation on carbon stock, morphological, physical and chemical characteristics of soils within the mangrove forest of the Rio del Rey Estuary: Case study – Bamusso (South-West Cameroon)

  10. Forest Carbon Stocks in Woody Plants of Tara Gedam Forest ...

    African Journals Online (AJOL)

    The overall objective of this study was to estimate the carbon stock potentials of Tara Gedam forest as potential sink for climate change mitigation. Forest plays an important role in the global carbon cycle as carbon sinks of the terrestrial ecosystem. The data was collected from the field by measuring plants with a DBH of ...

  11. Aboveground carbon in Quebec forests: stock quantification at the provincial scale and assessment of temperature, precipitation and edaphic properties effects on the potential stand-level stocking.

    Science.gov (United States)

    Duchesne, Louis; Houle, Daniel; Ouimet, Rock; Lambert, Marie-Claude; Logan, Travis

    2016-01-01

    Biological carbon sequestration by forest ecosystems plays an important role in the net balance of greenhouse gases, acting as a carbon sink for anthropogenic CO2 emissions. Nevertheless, relatively little is known about the abiotic environmental factors (including climate) that control carbon storage in temperate and boreal forests and consequently, about their potential response to climate changes. From a set of more than 94,000 forest inventory plots and a large set of spatial data on forest attributes interpreted from aerial photographs, we constructed a fine-resolution map (∼375 m) of the current carbon stock in aboveground live biomass in the 435,000 km(2) of managed forests in Quebec, Canada. Our analysis resulted in an area-weighted average aboveground carbon stock for productive forestland of 37.6 Mg ha(-1), which is lower than commonly reported values for similar environment. Models capable of predicting the influence of mean annual temperature, annual precipitation, and soil physical environment on maximum stand-level aboveground carbon stock (MSAC) were developed. These models were then used to project the future MSAC in response to climate change. Our results indicate that the MSAC was significantly related to both mean annual temperature and precipitation, or to the interaction of these variables, and suggest that Quebec's managed forests MSAC may increase by 20% by 2041-2070 in response to climate change. Along with changes in climate, the natural disturbance regime and forest management practices will nevertheless largely drive future carbon stock at the landscape scale. Overall, our results allow accurate accounting of carbon stock in aboveground live tree biomass of Quebec's forests, and provide a better understanding of possible feedbacks between climate change and carbon storage in temperate and boreal forests.

  12. Carbon Stock Stratification of Peat Soils in South Kalimantan, Indonesia

    Directory of Open Access Journals (Sweden)

    Siti Nurzakiah

    2015-05-01

    Full Text Available Carbon stock in peat soils is very high, it is necessary to prudent in its management because peat soils is emitting greenhouse gases such as CO2 during land clearing due to oxidation of peat layer.  This research was conducted to study soil carbon stock stratification in relation to soil physical and chemical properties. The carbon stock stratification was based on maturity degrees of peat.  The study was conducted in Pulau Damar Village, Hulu Sungai Utara District, South Kalimantan Province on land use rubber.  The location of the study area was determined by using the purposive sampling method.  All data obtained were analyzed by Excel spreadsheets and drawn on a CorelDraw 12. The results showed that the amount of carbon stock was influenced by the maturity degrees of peats, peat sapric degres has higher carbon stock than of hemik and fibric with a ratio of  2.0: 1.5: 1.  The relationship between soil carbon stock with soil physic (Bulk Density, BD and chemical properties (pH, Eh, Fe, and total-N were not significantly.

  13. Carbon stocks and potential carbon storage in the mangrove forests of China.

    Science.gov (United States)

    Liu, Hongxiao; Ren, Hai; Hui, Dafeng; Wang, Wenqing; Liao, Baowen; Cao, Qingxian

    2014-01-15

    Mangrove forests provide important ecosystem services, and play important roles in terrestrial and oceanic carbon (C) cycling. Although the C stocks or storage in terrestrial ecosystems in China have been frequently assessed, the C stocks in mangrove forests have often been overlooked. In this study, we estimated the C stocks and the potential C stocks in China's mangrove forests by combining our own field data with data from the National Mangrove Resource Inventory Report and from other published literature. The results indicate that mangrove forests in China store about 6.91 ± 0.57 Tg C, of which 81.74% is in the top 1 m soil, 18.12% in the biomass of mangrove trees, and 0.08% in the ground layer (i.e. mangrove litter and seedlings). The potential C stocks are as high as 28.81 ± 4.16 Tg C. On average, mangrove forests in China contain 355.25 ± 82.19 Mg C ha(-1), which is consistent with the global average of mangrove C density at similar latitudes, but higher than the average C density in terrestrial forests in China. Our results suggest that C storage in mangroves can be increased by selecting high C-density species for afforestation and stand improvement, and even more by increasing the mangrove area. The information gained in this study will facilitate policy decisions concerning the restoration of mangrove forests in China. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Carbon stocks of tropical coastal wetlands within the karstic landscape of the Mexican Caribbean.

    Science.gov (United States)

    Adame, Maria Fernanda; Kauffman, J Boone; Medina, Israel; Gamboa, Julieta N; Torres, Olmo; Caamal, Juan P; Reza, Miriam; Herrera-Silveira, Jorge A

    2013-01-01

    Coastal wetlands can have exceptionally large carbon (C) stocks and their protection and restoration would constitute an effective mitigation strategy to climate change. Inclusion of coastal ecosystems in mitigation strategies requires quantification of carbon stocks in order to calculate emissions or sequestration through time. In this study, we quantified the ecosystem C stocks of coastal wetlands of the Sian Ka'an Biosphere Reserve (SKBR) in the Yucatan Peninsula, Mexico. We stratified the SKBR into different vegetation types (tall, medium and dwarf mangroves, and marshes), and examined relationships of environmental variables with C stocks. At nine sites within SKBR, we quantified ecosystem C stocks through measurement of above and belowground biomass, downed wood, and soil C. Additionally, we measured nitrogen (N) and phosphorus (P) from the soil and interstitial salinity. Tall mangroves had the highest C stocks (987±338 Mg ha(-1)) followed by medium mangroves (623±41 Mg ha(-1)), dwarf mangroves (381±52 Mg ha(-1)) and marshes (177±73 Mg ha(-1)). At all sites, soil C comprised the majority of the ecosystem C stocks (78-99%). Highest C stocks were measured in soils that were relatively low in salinity, high in P and low in N∶P, suggesting that P limits C sequestration and accumulation potential. In this karstic area, coastal wetlands, especially mangroves, are important C stocks. At the landscape scale, the coastal wetlands of Sian Ka'an covering ≈172,176 ha may store 43.2 to 58.0 million Mg of C.

  15. Carbon stocks and fluxes in the high latitudes

    DEFF Research Database (Denmark)

    Chadburn, Sarah E.; Krinner, Gerhard; Porada, Philipp

    2017-01-01

    It is important that climate models can accurately simulate the terrestrial carbon cycle in the Arctic due to the large and potentially labile carbon stocks found in permafrost-affected environments, which can lead to a positive climate feedback, along with the possibility of future carbon sinks...... from northward expansion of vegetation under climate warming. Here we evaluate the simulation of tundra carbon stocks and fluxes in three land surface schemes that each form part of major Earth system models (JSBACH, Germany; JULES, UK; ORCHIDEE, France). We use a site-level approach in which...

  16. How can soil organic carbon stocks in agriculture be maintained or increased?

    Science.gov (United States)

    Don, Axel; Leifeld, Jens

    2015-04-01

    CO2 emissions from soils are 10 times higher than anthropogenic CO2 emissions from fossil burning with around 60 Pg C a-1. At the same time around 60 Pg of carbon is added to the soils as litter from roots and leaves. Thus, the balance between both fluxes is supposed to be zero for the global earth system in steady state without human perturbations. However, the global carbon flux has been altered by humans since thousands of years by extracting biomass carbon as food, feed and fiber with global estimate of 40% of net primary productivity (NPP). This fraction is low in forests but agricultural systems, in particular croplands, are systems with a high net exported carbon fraction. Soils are mainly input driven systems. Agricultural soils depend on input to compensate directly for i) respiration losses, ii) extraction of carbon (and nitrogen) and depletion (e.g. via manure) or indirectly via enhances NPP (e.g. via fertilization management). In a literature review we examined the role of biomass extraction and carbon input via roots, crop residues and amendments (manure, slurry etc.) to agricultural soil's carbon stocks. Recalcitrance of biomass carbon was found to be of minor importance for long-term carbon storage. Thus, also the impact of crop type on soil carbon dynamics seems mainly driven by the amount of crop residuals of different crop types. However, we found distinct differences in the efficiency of C input to refill depleted soil C stocks between above ground C input or below ground root litter C input, with root-C being more efficient due to slower turnover rates. We discuss the role of different measures to decrease soil carbon turnover (e.g. decreased tillage intensity) as compared to measures that increase C input (e.g. cover crops) in the light of global developments in agricultural management with ongoing specialization and segregation between catch crop production and dairy farms.

  17. Deforestation and Carbon Stock Loss in Brazil's Amazonian Settlements.

    Science.gov (United States)

    Yanai, Aurora Miho; Nogueira, Euler Melo; de Alencastro Graça, Paulo Maurício Lima; Fearnside, Philip Martin

    2017-03-01

    We estimate deforestation and the carbon stock in 2740 (82 %) of the 3325 settlements in Brazil's Legal Amazonia region. Estimates are made both using available satellite data and a carbon map for the "pre-modern" period (prior to 1970). We used data from Brazil's Project for Monitoring Deforestation in Amazonia updated through 2013 and from the Brazilian Biomes Deforestation Monitoring Project (PMDBBS) updated through 2010. To obtain the pre-modern and recent carbon stocks we performed an intersection between a carbon map and a map derived from settlement boundaries and deforestation data. Although the settlements analyzed occupied only 8 % of Legal Amazonia, our results indicate that these settlements contributed 17 % (160,410 km 2 ) of total clearing (forest + non-forest) in Legal Amazonia (967,003 km 2 ). This represents a clear-cutting of 41 % of the original vegetation in the settlements. Out of this total, 72 % (115,634 km 2 ) was in the "Federal Settlement Project" (PA) category. Deforestation in settlements represents 20 % (2.6 Pg C) of the total carbon loss in Legal Amazonia (13.1 Pg C). The carbon stock in remaining vegetation represents 3.8 Pg C, or 6 % of the total remaining carbon stock in Legal Amazonia (58.6 Pg C) in the periods analyzed. The carbon reductions in settlements are caused both by the settlers and by external actors. Our findings suggest that agrarian reform policies contributed directly to carbon loss. Thus, the implementation of new settlements should consider potential carbon stock losses, especially if settlements are created in areas with high carbon stocks.

  18. ESTIMATING CARBON STOCK CHANGES OF MANGROVE FORESTS USING SATELLITE IMAGERY AND AIRBORNE LiDAR DATA IN THE SOUTH SUMATRA STATE, INDONESIA

    Directory of Open Access Journals (Sweden)

    Y. Maeda

    2016-06-01

    Full Text Available The purposes of this study were 1 to estimate the biomass in the mangrove forests using satellite imagery and airborne LiDAR data, and 2 to estimate the amount of carbon stock changes using biomass estimated. The study area is located in the coastal area of the South Sumatra state, Indonesia. This area is approximately 66,500 ha with mostly flat land features. In this study, the following procedures were carried out: (1 Classification of types of tree species using Satellite imagery in the study area, (2 Development of correlation equations between spatial volume based on LiDAR data and biomass stock based on field survey for each types of tree species, and estimation of total biomass stock and carbon stock using the equation, and (3 Estimation of carbon stock change using Chronological Satellite Imageries. The result showed the biomass and the amount of carbon stock changes can be estimated with high accuracy, by combining the spatial volume based on airborne LiDAR data with the tree species classification based on satellite imagery. Quantitative biomass monitoring is in demand for projects related to REDD+ in developing countries, and this study showed that combining airborne LiDAR data with satellite imagery is one of the effective methods of monitoring for REDD+ projects.

  19. Carbon stocks, tree diversity and their relation to soil properties in a Neotropical rainforest of South-East Mexico

    Science.gov (United States)

    Navarrete-Segueda, Armando; Siebe-Grabach, Christina; Ibarra-Manríquez, Guillermo; Martínez-Ramos, Miguel; Vázquez-Selem, Lorenzo

    2015-04-01

    Site heterogeneity at the local scale is an important factor for the generation of ecosystem services across the landscape. Several investigations at regional or local scale have identified the important role of soil properties and topography to determine tree diversity and productivity in tropical forests. We studied how the characteristics of soils affect the tree richness and carbon storage in the tropical rain forest of south-east Mexico. We compared carbon stocks on above-ground dry biomass of living trees, litter and soil organic carbon in 9 plots of 5000 m2 distributed in three contrasting soil-topographic units in neotropical forest (Floodplains/Low altitude hills/Steep slopes) all under the same climate. In each plot, landform features and soil properties to rooting depths were determined. We obtained richness and biomass values of trees with diameter at breast height (DBH) ≥ 10 cm. In each plot, litter and soil samples were taken for quantifying carbon in laboratory and allometric equations were applied to relate tree biomass (root and aerial) with carbon. We used cluster analysis as classification technique to compare richness between units. The relationship between soil properties and tree richness was obtained based on a canonical correspondence analysis. Both the classification and ordination techniques showed that plant diversity and richness respond to soil conditions. The variation was positively correlated with pH, total nitrogen, soil aeration, water retention capacity and exchange aluminum. The richness is smaller in floodplains, but this unit, with higher water and nutrient storage capacity, shows the largest carbon stocks. In contrast, limiting site for tree growth have less total carbon. Low altitude hills are much more heterogeneous in soil properties but also richer in tree species. The soil in this land unit has small rooting depth and available water holding capacity. Additionally, in this soil carbon stock is greater than the carbon

  20. Impacts of post-harvest slash and live-tree retention on biomass and nutrient stocks in Populus tremuloides Michx.-dominated forests, northern Minnesota, USA

    Science.gov (United States)

    Klockow, Paul A.; D'Amato, Anthony W.; Bradford, John B.

    2013-01-01

    Globally, there is widespread interest in using forest-derived biomass as a source of bioenergy. While conventional timber harvesting generally removes only merchantable tree boles, harvesting biomass feedstock can remove all forms of woody biomass (i.e., live and dead standing woody vegetation, downed woody debris, and stumps) resulting in a greater loss of biomass and nutrients as well as more severe habitat alteration. To investigate the potential impacts of this practice, this study examined the initial impacts (pre- and post-harvest) of various levels of slash and live-tree retention on biomass and nutrient stocks, including carbon (C), nitrogen (N), calcium (Ca), potassium (K), and phosphorus (P), in Populus tremuloides Michx.-dominated forests of northern Minnesota, USA. Treatments examined included three levels of slash retention, whole-tree harvest (WTH), 20% slash retention (20SR), and stem-only harvest (SOH), factored with three levels of green-tree retention, no trees retained (NONE), dispersed retention (DISP), and aggregate retention (AGR). Slash retention was the primary factor affecting post-harvest biomass and nutrient stocks, including woody debris pools. Compared to the unharvested control, stocks of biomass, carbon, and nutrients, including N, Ca, K, and P, in woody debris were higher in all treatments. Stem-only harvests typically contained greater biomass and nutrient stocks than WTH, although biomass and nutrients within 20SR, a level recommended by biomass harvesting guidelines in the US and worldwide, generally did not differ from WTH or SOH. Biomass in smaller-diameter slash material (typically 2.5-22.5 cm in diameter) dominated the woody debris pool following harvest regardless of slash retention level. Trends among treatments in this diameter range were generally similar to those in the total woody debris pool. Specifically, SOH contained significantly greater amounts of biomass than WTH while 20SR was not different from either WTH or

  1. Blue carbon stocks in Baltic Sea eelgrass (Zostera marina) meadows

    DEFF Research Database (Denmark)

    Rohr, Maria Emilia; Bostrom, Christoffer; Canal-Vergés, Paula

    2016-01-01

    in Finland and 10 in Denmark to explore seagrass carbon stocks (C-org stock) and carbon accumulation rates (C-org accumulation) in the Baltic Sea area. The study sites represent a gradient from sheltered to exposed locations in both regions to reflect expected minimum and maximum stocks and accumulation....... The C-org stock integrated over the top 25 cm of the sediment averaged 627 g C m(-2) in Finland, while in Denmark the average C-org stock was over 6 times higher (4324 g Cm-2). A conservative estimate of the total organic carbon pool in the regions ranged between 6.98 and 44.9 t C ha(-1). Our results...... suggest that the Finnish eelgrass meadows are minor carbon sinks compared to the Danish meadows, and that majority of the C-org produced in the Finnish meadows is exported. Our analysis further showed that >40% of the variation in the C-org stocks was explained by sediment characteristics, i.e. dry...

  2. Carbon stocks and dynamics under improved tropical pasture and silvopastoral

    NARCIS (Netherlands)

    Mosquera Vidal, O.; Buurman, P.; Ramirez, B.L.; Amezquita, M.C.

    2012-01-01

    To evaluate the effect of land use change on soil organic carbon, the carbon contents and stocks of primary forest, degraded pasture, and four improved pasture systems in Colombian Amazonia were compared in a flat and a sloping landscape. The improved pastures were Brachiaria humidicola, and

  3. Estimating forest carbon stocks in tropical dry forests of Zimbabwe ...

    African Journals Online (AJOL)

    Estimation and mapping of forest dendrometric characteristics such as carbon stocks using remote sensing techniques is fundamental for improved understanding of the role of forests in the carbon cycle and climate change. In this study, we tested whether and to what extent spectral transforms, i.e. vegetation indices ...

  4. Forest Carbon Stocks in Woody Plants of Mount Zequalla Monastery ...

    African Journals Online (AJOL)

    Carbon sequestration through forestry has the potential to play a significant role in ameliorating global environmental problems such as atmospheric accumulation of GHG's and climate change.The present study was undertaken to estimate forest carbon stock along altitudinal gradient in Mount Zequalla Monastery forest.

  5. Climate legacies drive global soil carbon stocks in terrestrial ecosystems.

    Science.gov (United States)

    Delgado-Baquerizo, Manuel; Eldridge, David J; Maestre, Fernando T; Karunaratne, Senani B; Trivedi, Pankaj; Reich, Peter B; Singh, Brajesh K

    2017-04-01

    Climatic conditions shift gradually over millennia, altering the rates at which carbon (C) is fixed from the atmosphere and stored in the soil. However, legacy impacts of past climates on current soil C stocks are poorly understood. We used data from more than 5000 terrestrial sites from three global and regional data sets to identify the relative importance of current and past (Last Glacial Maximum and mid-Holocene) climatic conditions in regulating soil C stocks in natural and agricultural areas. Paleoclimate always explained a greater amount of the variance in soil C stocks than current climate at regional and global scales. Our results indicate that climatic legacies help determine global soil C stocks in terrestrial ecosystems where agriculture is highly dependent on current climatic conditions. Our findings emphasize the importance of considering how climate legacies influence soil C content, allowing us to improve quantitative predictions of global C stocks under different climatic scenarios.

  6. Biomass Carbon in the South Mexican Pacific Coast: Exploring Mangrove Potential to REDD+ Mechanisms

    Science.gov (United States)

    Bejarano, M.; Amezcua-Torrijos, I.

    2014-12-01

    Mangroves have the highest carbon stocks amongst tropical forests. In Mexico, however, little is known about their potential to mitigate climate change. In this work, we estimated biomass carbon stocks in the Southern Mexican Pacific Coast (~69,000 ha). We quantified above and belowground biomass carbon stocks at (1) the regional scale along two environmental strata (i.e. dry and wet), and (2) at the local scale along three geomorphological types of mangroves (i.e. fringe, estuarine and basin). Regional strata were defined using intensity and influence of rivers and, the mean annual precipitation and evapotranspiration ratio (i.e., wet dry). By lowering the stressing environmental conditions (e.g., low salinity and high sediment accumulation), we expected the highest stocks in mangroves growing in wet and estuarine strata at the regional scale and local scale, respectively. Quantifications were carried out in sixty-six sites chosen through stratified randomized design in which six strata were obtained by a full combination of regional and local strata. In all strata, aboveground carbon represents 64-67% of total carbon. Total biomass carbon was higher in wet than dry stratum (W: 87.3 ± 6.9, D: 47.0 ± 5.0, p<0.001). While at local scale, total biomass carbon was high in estuarine mangroves of both wet and dry regions (W: 91.6 ± 7.8, D: 77.6 ± 14.8, p<0.001), and these were statistically similar to fringe wet mangroves (110.9 ± 24.2, p<0.001), the stratum with the highest total carbon. Following a conservative approach, the Mexican Southern Pacific Coast is storing near 20,344 Gg CO2e. If the historical annual deforestation rate of 0.54% continues, this region could emit between 0.03 and 14.4 Gg of CO2e ha/year, out of which wet estuarine mangroves would have the highest emission values. Evidence suggests that these mangroves are the most important strata in which REDD+ mechanisms could be implemented due to (1) their carbon stocks, and (2) their highest

  7. Blue carbon stocks in Baltic Sea eelgrass (Zostera marina) meadows

    DEFF Research Database (Denmark)

    Rohr, Maria Emilia; Bostrom, Christoffer; Canal-Vergés, Paula

    2016-01-01

    Although seagrasses cover only a minor fraction of the ocean seafloor, their carbon sink capacity accounts for nearly one-fifth of the total oceanic carbon burial and thus play a critical structural and functional role in many coastal ecosystems. We sampled 10 eelgrass (Zostera marina) meadows...... in Finland and 10 in Denmark to explore seagrass carbon stocks (C-org stock) and carbon accumulation rates (C-org accumulation) in the Baltic Sea area. The study sites represent a gradient from sheltered to exposed locations in both regions to reflect expected minimum and maximum stocks and accumulation....... The C-org stock integrated over the top 25 cm of the sediment averaged 627 g C m(-2) in Finland, while in Denmark the average C-org stock was over 6 times higher (4324 g Cm-2). A conservative estimate of the total organic carbon pool in the regions ranged between 6.98 and 44.9 t C ha(-1). Our results...

  8. The Effect of Land use/cover change on Biomass Stock in Dryland ...

    African Journals Online (AJOL)

    The Effect of Land use/cover change on Biomass Stock in Dryland Areas of Eastern Uganda. ... Journal of Applied Sciences and Environmental Management ... Therefore, there is need for increased use of remote sensing and GIS to quantify change patterns at local scales for essential monitoring and assessment of land ...

  9. What is the value of biomass remote sensing data for blue carbon inventories?

    Science.gov (United States)

    Byrd, K. B.; Simard, M.; Crooks, S.; Windham-Myers, L.

    2015-12-01

    The U.S. is testing approaches for accounting for carbon emissions and removals associated with wetland management according to 2013 IPCC Wetlands Supplement guidelines. Quality of reporting is measured from low (Tier 1) to high (Tier 3) depending upon data availability and analytical capacity. The use of satellite remote sensing data to derive carbon stocks and flux provides a practical approach for moving beyond IPCC Tier 1, the global default factor approach, to support Tier 2 or Tier 3 quantification of carbon emissions or removals. We are determining the "price of precision," or the extent to which improved satellite data will continue to increase the accuracy of "blue carbon" accounting. Tidal marsh biomass values are needed to quantify aboveground carbon stocks and stock changes, and to run process-based models of carbon accumulation. Maps of tidal marsh biomass have been produced from high resolution commercial and moderate resolution Landsat satellite data with relatively low error [percent normalized RMSE (%RMSE) from 7 to 14%]. Recently for a brackish marsh in Suisun Bay, California, we used Landsat 8 data to produce a biomass map that applied the Wide Dynamic Range Vegetation Index (WDRVI) (ρNIR*0.2 - ρR)/(ρNIR*0.2+ρR) to fully vegetated pixels and the Simple Ratio index (ρRed/ρGreen) to pixels with a mix of vegetation and water. Overall RMSE was 208 g/m2, while %RMSE = 13.7%. Also, preliminary use of airborne and spaceborne RADAR data in coastal Louisiana produced a marsh biomass map with 30% error. The integration of RADAR and LiDAR with optical remote sensing data has the potential to further reduce error in biomass estimation. In 2017, nations will report back to the U.N. Framework Convention on Climate Change on their experience in applying the Wetlands Supplement guidelines. These remote sensing efforts will mark an important step toward quantifying human impacts to wetlands within the global carbon cycle.

  10. Carbon stock and carbon turnover in boreal and temperate forests - Integration of remote sensing data and global vegetation models

    Science.gov (United States)

    Thurner, Martin; Beer, Christian; Carvalhais, Nuno; Forkel, Matthias; Tito Rademacher, Tim; Santoro, Maurizio; Tum, Markus; Schmullius, Christiane

    2016-04-01

    Long-term vegetation dynamics are one of the key uncertainties of the carbon cycle. There are large differences in simulated vegetation carbon stocks and fluxes including productivity, respiration and carbon turnover between global vegetation models. Especially the implementation of climate-related mortality processes, for instance drought, fire, frost or insect effects, is often lacking or insufficient in current models and their importance at global scale is highly uncertain. These shortcomings have been due to the lack of spatially extensive information on vegetation carbon stocks, which cannot be provided by inventory data alone. Instead, we recently have been able to estimate northern boreal and temperate forest carbon stocks based on radar remote sensing data. Our spatially explicit product (0.01° resolution) shows strong agreement to inventory-based estimates at a regional scale and allows for a spatial evaluation of carbon stocks and dynamics simulated by global vegetation models. By combining this state-of-the-art biomass product and NPP datasets originating from remote sensing, we are able to study the relation between carbon turnover rate and a set of climate indices in northern boreal and temperate forests along spatial gradients. We observe an increasing turnover rate with colder winter temperatures and longer winters in boreal forests, suggesting frost damage and the trade-off between frost adaptation and growth being important mortality processes in this ecosystem. In contrast, turnover rate increases with climatic conditions favouring drought and insect outbreaks in temperate forests. Investigated global vegetation models from the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP), including HYBRID4, JeDi, JULES, LPJml, ORCHIDEE, SDGVM, and VISIT, are able to reproduce observation-based spatial climate - turnover rate relationships only to a limited extent. While most of the models compare relatively well in terms of NPP, simulated

  11. Organic carbon stocks and sequestration rates of forest soils in Germany

    Science.gov (United States)

    Grüneberg, Erik; Ziche, Daniel; Wellbrock, Nicole

    2014-01-01

    The National Forest Soil Inventory (NFSI) provides the Greenhouse Gas Reporting in Germany with a quantitative assessment of organic carbon (C) stocks and changes in forest soils. Carbon stocks of the organic layer and the mineral topsoil (30 cm) were estimated on the basis of ca. 1.800 plots sampled from 1987 to 1992 and resampled from 2006 to 2008 on a nationwide grid of 8 × 8 km. Organic layer C stock estimates were attributed to surveyed forest stands and CORINE land cover data. Mineral soil C stock estimates were linked with the distribution of dominant soil types according to the Soil Map of Germany (1 : 1 000 000) and subsequently related to the forest area. It appears that the C pool of the organic layer was largely depending on tree species and parent material, whereas the C pool of the mineral soil varied among soil groups. We identified the organic layer C pool as stable although C was significantly sequestered under coniferous forest at lowland sites. The mineral soils, however, sequestered 0.41 Mg C ha−1 yr−1. Carbon pool changes were supposed to depend on stand age and forest transformation as well as an enhanced biomass input. Carbon stock changes were clearly attributed to parent material and soil groups as sandy soils sequestered higher amounts of C, whereas clayey and calcareous soils showed small gains and in some cases even losses of soil C. We further showed that the largest part of the overall sample variance was not explained by fine-earth stock variances, rather by the C concentrations variance. The applied uncertainty analyses in this study link the variability of strata with measurement errors. In accordance to other studies for Central Europe, the results showed that the applied method enabled a reliable nationwide quantification of the soil C pool development for a certain period. PMID:24616061

  12. Organic carbon stocks and sequestration rates of forest soils in Germany.

    Science.gov (United States)

    Grüneberg, Erik; Ziche, Daniel; Wellbrock, Nicole

    2014-08-01

    The National Forest Soil Inventory (NFSI) provides the Greenhouse Gas Reporting in Germany with a quantitative assessment of organic carbon (C) stocks and changes in forest soils. Carbon stocks of the organic layer and the mineral topsoil (30 cm) were estimated on the basis of ca. 1.800 plots sampled from 1987 to 1992 and resampled from 2006 to 2008 on a nationwide grid of 8 × 8 km. Organic layer C stock estimates were attributed to surveyed forest stands and CORINE land cover data. Mineral soil C stock estimates were linked with the distribution of dominant soil types according to the Soil Map of Germany (1 : 1 000 000) and subsequently related to the forest area. It appears that the C pool of the organic layer was largely depending on tree species and parent material, whereas the C pool of the mineral soil varied among soil groups. We identified the organic layer C pool as stable although C was significantly sequestered under coniferous forest at lowland sites. The mineral soils, however, sequestered 0.41 Mg C ha(-1) yr(-1) . Carbon pool changes were supposed to depend on stand age and forest transformation as well as an enhanced biomass input. Carbon stock changes were clearly attributed to parent material and soil groups as sandy soils sequestered higher amounts of C, whereas clayey and calcareous soils showed small gains and in some cases even losses of soil C. We further showed that the largest part of the overall sample variance was not explained by fine-earth stock variances, rather by the C concentrations variance. The applied uncertainty analyses in this study link the variability of strata with measurement errors. In accordance to other studies for Central Europe, the results showed that the applied method enabled a reliable nationwide quantification of the soil C pool development for a certain period. © 2014 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  13. Environmental analyse of soil organic carbon stock changes in Slovakia

    Science.gov (United States)

    Koco, Š.; Barančíková, G.; Skalský, R.; Tarasovičová, Z.; Gutteková, M.; Halas, J.; Makovníková, J.; Novákova, M.

    2012-04-01

    The content and quality of soil organic matter is one of the basic soil parameters on which soil production functioning depends as well as it is active in non production soil functions like an ecological one especially. Morphologic segmentation of Slovakia has significant influence of structure in using agricultural soil in specific areas of our territory. Also social changes of early 90´s of 20´th century made their impact on change of using of agricultural soil (transformation from large farms to smaller ones, decreasing the number of livestock). This research is studying changes of development of soil organic carbon stock (SOC) in agricultural soil of Slovakia as results of climatic as well as social and political changes which influenced agricultury since last 40 years. The main goal of this research is an analysis of soil organic carbon stock since 1970 until now at specific agroclimatic regions of Slovakia and statistic analysis of relation between modelled data of SOC stock and soil quality index value. Changes of SOC stock were evaluated on the basis SOC content modeling using RothC-26.3 model. From modeling of SOC stock results the outcome is that in that time the soil organic carbon stock was growing until middle 90´s years of 20´th century with the highest value in 1994. Since that year until new millennium SOC stock is slightly decreasing. After 2000 has slightly increased SOC stock so far. According to soil management SOC stock development on arable land is similar to overall evolution. In case of grasslands after slight growth of SOC stock since 1990 the stock is in decline. This development is result of transformational changes after 1989 which were specific at decreasing amount of organic carbon input from organic manure at grassland areas especially. At warmer agroclimatic regions where mollic fluvisols and chernozems are present and where are soils with good quality and steady soil organic matter (SOM) the amount of SOC in monitored time is

  14. Estimating Forest Carbon Stock in Alpine and Arctic Ecotones of the Urals

    Directory of Open Access Journals (Sweden)

    V. A. Usoltsev

    2014-10-01

    Full Text Available This paper reports on measured carbon stocks in the forests of two tree line ecotones of the Ural region where climate change might improve growing conditions. The first is an alpine ecotone that is represented by an altitudinal gradient of the spruce-dominated forests on the Western slope of the Tylaiskii Kamen Mountain (Western part of the Konzhakovskii-Tylaiskii-Serebryanskii Mountain system, 59°30′N, 59°00′E, at the alpine timber line that has risen from 864 to 960 m above sea level in the course of the last 100 years. The second is an arctic ecotone in larch-dominated forests at the lower course of the Pur river (67°N, 78°E, at the transition zone between closed floodplain forests and open or island-like communities of upland forests on tundra permafrost. According to our results, there are large differences in the carbon of the aboveground biomass of both ecotones across environmental gradients. In the alpine tree line ecotone, a 19-fold drop of the carbon stocks was detected between the lower and higher altitudinal levels. In the arctic ecotone the aboveground biomass carbon stock of forests of similar densities (1300 to 1700 trees per ha was 7 times as much in the river flood bed, and 5 times as much in mature, dense forests as the low density forests at higher elevations. Twelve regression equations describing dependencies of the aboveground tree biomass (stems, branches, foliage, total aboveground part upon stem diameter of the tree are proposed, which can be used to estimating the biological productivity (carbon of spruce and larch forests on Tylaiskii Kamen Mountain and the lower Pur river and on surrounding areas on the base of traditional forest mensuration have been proposed. In order to reduce the labor intensity of a coming determination of forest biomass the average values of density and dry matter content in the biomass fractions are given that were obtained by taking our sample trees.The results can be useful in

  15. Carbon stock assessment of two agroforestry systems in a tropical forest reserve in the Philippines

    Energy Technology Data Exchange (ETDEWEB)

    Lasco, R.D.; Sales, R.F.; Estrella, R.; Saplaco, S.R.; Castillo, A.S.A.; Cruz, R.V.O.; Pulhin, F.B. [University of Philippines Los Banos, Laguna (Philippines). College of Forestry & Natural Resources Environmental Forestry Programme

    2001-07-01

    Carbon dioxide is the most abundant greenhouse gas (GHG) that causes global warming. Thus, land uses such as an agroforestry system have a significant role in moderating climate change since they can be sources and sinks of carbon. The aim of the study was to generate data on the carbon stocks of two agroforestry systems, specifically a Gmelina arborea-Theobroma cacao multistorey system and an alley cropping system with Gliricidia sepium hedges at the agroforestry research and demonstration area inside a forest reserve in Southern Luzon, Philippines. The multistorey system had a mean biomass of 258 Mg C ha{sup -1} and a carbon density of 185 Mg C ha{sup -1}. Carbon was stored in the various pools in the following order of magnitude: soil > tree biomass (above-ground) > necromass > understorey vegetation > roots. The Gliricidia hedgerow had a biomass density of 3.8 Mg C ha{sup -1}; total carbon density was 93 Mg C ha{sup -1}, of which 92 Mg C ha{sup -1} was in the soil.

  16. Increased soil organic carbon stocks under agroforestry: A survey of six different sites in France

    Science.gov (United States)

    Cardinael, Rémi; Chevallier, Tiphaine; Cambou, Aurélie; Beral, Camille; Barthes, Bernard; Dupraz, Christian; Kouakoua, Ernest; Chenu, Claire

    2017-04-01

    Introduction: Agroforestry systems are land use management systems in which trees are grown in combination with crops or pasture in the same field. In silvoarable systems, trees are intercropped with arable crops, and in silvopastoral systems trees are combined with pasture for livestock. These systems may produce forage and timber as well as providing ecosystem services such as climate change mitigation. Carbon (C) is stored in the aboveground and belowground biomass of the trees, and the transfer of organic matter from the trees to the soil can increase soil organic carbon (SOC) stocks. Few studies have assessed the impact of agroforestry systems on carbon storage in soils in temperate climates, as most have been undertaken in tropical regions. Methods: This study assessed five silvoarable systems and one silvopastoral system in France. All sites had an agroforestry system with an adjacent, purely agricultural control plot. The land use management in the inter-rows in the agroforestry systems and in the control plots were identical. The age of the study sites ranged from 6 to 41 years after tree planting. Depending on the type of soil, the sampling depth ranged from 20 to 100 cm and SOC stocks were assessed using equivalent soil masses. The aboveground biomass of the trees was also measured at all sites. Results: In the silvoarable systems, the mean organic carbon stock accumulation rate in the soil was 0.24 (0.09-0.46) Mg C ha-1 yr-1 at a depth of 30 cm and 0.65 (0.004-1.85) Mg C ha-1 yr-1 in the tree biomass. Increased SOC stocks were also found in deeper soil layers at two silvoarable sites. Young plantations stored additional SOC but mainly in the soil under the rows of trees, possibly as a result of the herbaceous vegetation growing in the rows. At the silvopastoral site, the SOC stock was significantly greater at a depth of 30-50 cm than in the control. Overall, this study showed the potential of agroforestry systems to store C in both soil and biomass in

  17. Northern peatland carbon stocks and dynamics: a review

    Directory of Open Access Journals (Sweden)

    Z. C. Yu

    2012-10-01

    Full Text Available Peatlands contain a large belowground carbon (C stock in the biosphere, and their dynamics have important implications for the global carbon cycle. However, there are still large uncertainties in C stock estimates and poor understanding of C dynamics across timescales. Here I review different approaches and associated uncertainties of C stock estimates in the literature, and on the basis of the literature review my best estimate of C stocks and uncertainty is 500 ± 100 (approximate range gigatons of C (Gt C in northern peatlands. The greatest source of uncertainty for all the approaches is the lack or insufficient representation of data, including depth, bulk density and carbon accumulation data, especially from the world's large peatlands. Several ways to improve estimates of peat carbon stocks are also discussed in this paper, including the estimates of C stocks by regions and further utilizations of widely available basal peat ages.

    Changes in peatland carbon stocks over time, estimated using Sphagnum (peat moss spore data and down-core peat accumulation records, show different patterns during the Holocene, and I argue that spore-based approach underestimates the abundance of peatlands in their early histories. Considering long-term peat decomposition using peat accumulation data allows estimates of net carbon sequestration rates by peatlands, or net (ecosystem carbon balance (NECB, which indicates more than half of peat carbon (> 270 Gt C was sequestrated before 7000 yr ago during the Holocene. Contemporary carbon flux studies at 5 peatland sites show much larger NECB during the last decade (32 ± 7.8 (S.E. g C m−2 yr–1 than during the last 7000 yr (∼ 11 g C m−2 yr–1, as modeled from peat records across northern peatlands. This discrepancy highlights the urgent need for carbon accumulation data and process understanding, especially at decadal and centennial timescales

  18. Ground cover rice production system facilitates soil carbon and nitrogen stocks at regional scale

    Science.gov (United States)

    Liu, M.; Dannenmann, M.; Lin, S.; Saiz, G.; Yan, G.; Yao, Z.; Pelster, D.; Tao, H.; Sippel, S.; Tao, Y.; Zhang, Y.; Zheng, X.; Zuo, Q.; Butterbach-Bahl, K.

    2015-02-01

    Rice production is increasingly challenged by irrigation water scarcity, however covering paddy rice soils with films (ground cover rice production system: GCRPS) can significantly reduce water demand as well as overcome temperature limitations at the beginning of the vegetation period resulting in increased grain yields in colder regions of rice production with seasonal water shortages. It has been speculated that the increased soil aeration and temperature under GCRPS may result in losses of soil organic carbon and nitrogen stocks. Here we report on a regional scale experiment, conducted by sampling paired adjacent Paddy and GCRPS fields at 49 representative sites in the Shiyan region, which is typical for many mountainous areas across China. Parameters evaluated included soil C and N stocks, soil physical and chemical properties, potential carbon mineralization rates, fractions of soil organic carbon and stable carbon isotopic composition of plant leaves. Furthermore, root biomass was quantified at maximum tillering stage at one of our paired sites. Against expectations the study showed that: (1) GCRPS significantly increased soil organic C and N stocks 5-20 years following conversion of production systems, (2) there were no differences between GCRPS and Paddy in soil physical and chemical properties for the various soil depths with the exception of soil bulk density, (3) GCRPS had lower mineralization potential for soil organic C compared with Paddy over the incubation period, (4) GCRPS showed lower δ15N in the soils and plant leafs indicating less NH3 volatilization in GCRPS than in Paddy; and (5) GCRPS increased yields and root biomass in all soil layers down to 40 cm depth. Our results suggest that GCRPS is an innovative rice production technique that not only increases yields using less irrigation water, but that it also is environmentally beneficial due to increased soil C and N stocks at regional scale.

  19. Biomass production and carbon storage of Populus ×canadensis ...

    African Journals Online (AJOL)

    euramericana (Dode) Guinier ex Piccarolo) clone I-214 have good potential for biomass production. The objective of the study was estimation of biomass using allometric equations and estimation of carbon allocation according to tree components.

  20. Quantificação de biomassa e estimativa de estoque de carbono em uma floresta madura no município de Viçosa, Minas Gerais Quantification of biomass and estimation of carbon stock in a mature forest in the municipal district of Viçosa, Minas Gerais

    Directory of Open Access Journals (Sweden)

    Sabina Cerruto Ribeiro

    2009-10-01

    Full Text Available O objetivo deste trabalho foi quantificar a biomassa de fuste sem casca e o carbono estocado em uma floresta madura localizada no Município de Viçosa (MG. A quantificação da biomassa foi feita pelo método não destrutivo, por meio do uso de uma densidade média da madeira das espécies de maior valor de importância. Foram contabilizadas 319 espécies arbóreas, pertencentes a 177 gêneros e 60 famílias. A quantificação da biomassa do fuste sem casca resultou em estimativas de 166,67 t.ha-1, o que correspondeu a 83,34 tC.ha-1. As estimativas obtidas para a floresta madura podem ser usadas como referência para o estabelecimento de projetos de florestamento/reflorestamento, no âmbito do Mecanismo de Desenvolvimento Limpo, estabelecido no Protocolo de Quioto.The objective of this study was to quantify the stem biomass without bark and the carbon stock in a mature forest located in the municipal district of Viçosa (MG. The biomass quantification was performed using the non-destructive method, by the use of a mean wood density of species of greater importance value. Three hundred and nineteen tree species were registered, belonging to 177 genera and 60 families. The quantification of the biomass resulted in 166,67 t.ha-1, which corresponds to 83,34 tC.ha-1. The estimates obtained for the mature forest can be used as a reference for the establishment of afforestation/reforestation projects in the scope of the Clean Development Mechanism.

  1. Global patterns in mangrove soil carbon stocks and losses

    Science.gov (United States)

    Atwood, Trisha B.; Connolly, Rod M.; Almahasheer, Hanan; Carnell, Paul E.; Duarte, Carlos M.; Ewers Lewis, Carolyn J.; Irigoien, Xabier; Kelleway, Jeffrey J.; Lavery, Paul S.; Macreadie, Peter I.; Serrano, Oscar; Sanders, Christian J.; Santos, Isaac; Steven, Andrew D. L.; Lovelock, Catherine E.

    2017-07-01

    Mangrove soils represent a large sink for otherwise rapidly recycled carbon (C). However, widespread deforestation threatens the preservation of this important C stock. It is therefore imperative that global patterns in mangrove soil C stocks and their susceptibility to remineralization are understood. Here, we present patterns in mangrove soil C stocks across hemispheres, latitudes, countries and mangrove community compositions, and estimate potential annual CO2 emissions for countries where mangroves occur. Global potential CO2 emissions from soils as a result of mangrove loss were estimated to be ~7.0 Tg CO2e yr-1. Countries with the highest potential CO2 emissions from soils are Indonesia (3,410 Gg CO2e yr-1) and Malaysia (1,288 Gg CO2e yr-1). The patterns described serve as a baseline by which countries can assess their mangrove soil C stocks and potential emissions from mangrove deforestation.

  2. Global patterns in mangrove soil carbon stocks and losses

    KAUST Repository

    Atwood, Trisha B.

    2017-06-26

    Mangrove soils represent a large sink for otherwise rapidly recycled carbon (C). However, widespread deforestation threatens the preservation of this important C stock. It is therefore imperative that global patterns in mangrove soil C stocks and their susceptibility to remineralization are understood. Here, we present patterns in mangrove soil C stocks across hemispheres, latitudes, countries and mangrove community compositions, and estimate potential annual CO2 emissions for countries where mangroves occur. Global potential CO2 emissions from soils as a result of mangrove loss were estimated to be ~7.0 Tg CO2e yr−1. Countries with the highest potential CO2 emissions from soils are Indonesia (3,410 Gg CO2e yr−1) and Malaysia (1,288 Gg CO2e yr−1). The patterns described serve as a baseline by which countries can assess their mangrove soil C stocks and potential emissions from mangrove deforestation.

  3. Tree height and tropical forest biomass estimation

    Science.gov (United States)

    M.O. Hunter; M. Keller; D. Vitoria; D.C. Morton

    2013-01-01

    Tropical forests account for approximately half of above-ground carbon stored in global vegetation. However, uncertainties in tropical forest carbon stocks remain high because it is costly and laborious to quantify standing carbon stocks. Carbon stocks of tropical forests are determined using allometric relations between tree stem diameter and height and biomass....

  4. Improved model calculation of atmospheric CO2 increment in affecting carbon stock of tropical mangrove forest

    Directory of Open Access Journals (Sweden)

    Raghab Ray

    2013-04-01

    Full Text Available Because of the difficulties in setting up arrangements in the intertidal zone for free-air carbon dioxide enrichment experimentation, the responses to increasing atmospheric carbon dioxide in mangrove forests are poorly studied. This study applied box model to overcome this limitation, and the relative changes in present level of reservoirs organic carbon contents in response to the future increase of atmospheric carbon dioxide were examined in the Avicennia-dominated mangrove forest at the land–ocean boundary of the northeast coast of the Bay of Bengal. The above- and below-ground biomass (AGB+BGB and sediment held different carbon stock (53.20±2.87Mg C ha−1 (mega gram carbon per hectare versus 18.52±2.77Mg C ha−1. Carbon uptake (0.348mg C m−2s−1 is more than offset by losses from plant emission (0.257mg C m−2s−1, and litter fall (13.52µg C m−2s−1 was more than soil CO2 and CH4 emission (8.36 and 1.39µg C m−2s−1, respectively. Across inventory plots, Sundarban mangrove forest carbon storage in above- and below-ground live trees and soil increased by 18.89 and 5.94Mg C ha−1 between June 2009 and December 2011. Box model well predicted the dynamics of above- and below-ground biomass and soil organic carbon, and increasing atmospheric carbon dioxide concentrations could be the cause of 1.1- and 1.57-fold increases in carbon storage in live biomass and soil, respectively, across Sundarban mangrove forest rather than recovery from past disturbances.

  5. Grassland management impacts on soil carbon stocks: a new synthesis.

    Science.gov (United States)

    Conant, Richard T; Cerri, Carlos E P; Osborne, Brooke B; Paustian, Keith

    2017-03-01

    Grassland ecosystems cover a large portion of Earths' surface and contain substantial amounts of soil organic carbon. Previous work has established that these soil carbon stocks are sensitive to management and land use changes: grazing, species composition, and mineral nutrient availability can lead to losses or gains of soil carbon. Because of the large annual carbon fluxes into and out of grassland systems, there has been growing interest in how changes in management might shift the net balance of these flows, stemming losses from degrading grasslands or managing systems to increase soil carbon stocks (i.e., carbon sequestration). A synthesis published in 2001 assembled data from hundreds of studies to document soil carbon responses to changes in management. Here we present a new synthesis that has integrated data from the hundreds of studies published after our previous work. These new data largely confirm our earlier conclusions: improved grazing management, fertilization, sowing legumes and improved grass species, irrigation, and conversion from cultivation all tend to lead to increased soil C, at rates ranging from 0.105 to more than 1 Mg C·ha -1 ·yr -1 . The new data include assessment of three new management practices: fire, silvopastoralism, and reclamation, although these studies are limited in number. The main area in which the new data are contrary to our previous synthesis is in conversion from native vegetation to grassland, where we find that across the studies the average rate of soil carbon stock change is low and not significant. The data in this synthesis confirm that improving grassland management practices and conversion from cropland to grassland improve soil carbon stocks. © 2016 by the Ecological Society of America.

  6. Carbon, energy and forest biomass: new opportunities and needs for forest management in Italy

    Directory of Open Access Journals (Sweden)

    2005-01-01

    Full Text Available Forest biomass provides a relevant fraction of world energy needs, not only in developing Countries. In Italy, several factors are presently contributing to a new interest for this resource, ranging from regulatory quotas for renewables to the increasing price of fossil fuel to the emergence of a European carbon stock exchange. This focus on renewable resources constitutes an important opportunity for the forest sector and for society by and large, but because of the potential dimensions of the emerging market it also requires new planning instruments, in order to avoid a sudden and widespread resumption of coppice management and a reduction of standing carbon stock in forest ecosystems, which would run contrary to the objectives of the Kyoto Protocol. An example of the future demand for biomasses in Central Italy is presented, based on the possible use of fuelwood in new coal-fired power plants by the 'co-firing' technology.

  7. A Study of Phytolith-occluded Carbon Stock in Monopodial Bamboo in China

    Science.gov (United States)

    Yang, Jie; Wu, Jiasen; Jiang, Peikun; Xu, Qiufang; Zhao, Peiping; He, Shanqiong

    2015-08-01

    Bamboo plants have been proven to be rich in phytolith-occluded carbon (PhytOC) and play an important role in reducing atmospheric concentrations of CO2. The object of this paper was to obtain more accurate methods for estimation of PhytOC stock in monopodial bamboo because previous studies may have underestimated it. Eight monopodial bamboo species, widely distributed across China, were selected and sampled for this study in their own typical distribution areas. There were differences (P  branch > culm. The average PhytOC stored in aboveground biomass and PhytOC production flux contributed by aboveground biomass varied substantially, and they were 3.28 and 1.57 times corresponding dates in leaves, with the highest in Phyllostachys glauca McClure and lowest in Indocalamus tessellatus (Munro) Keng f. It can be concluded that it could be more accurate to estimate PhytOC stock or PhytOC production flux by basing on whole aboveground biomass rather than on leaf or leaf litter only. The whole biomass should be collected for more estimation of bamboo PhytOC sequestration capacity in the future.

  8. Soil and vegetation carbon stocks in Brazilian Western Amazonia: relationships and ecological implications for natural landscapes.

    Science.gov (United States)

    Schaefer, C E G R; do Amaral, E F; de Mendonça, B A F; Oliveira, H; Lani, J L; Costa, L M; Fernandes Filho, E I

    2008-05-01

    The relationships between soils attributes, soil carbon stocks and vegetation carbon stocks are poorly know in Amazonia, even at regional scale. In this paper, we used the large and reliable soil database from Western Amazonia obtained from the RADAMBRASIL project and recent estimates of vegetation biomass to investigate some environmental relationships, quantifying C stocks of intact ecosystem in Western Amazonia. The results allowed separating the western Amazonia into 6 sectors, called pedo-zones: Roraima, Rio Negro Basin, Tertiary Plateaux of the Amazon, Javari-Juruá-Purus lowland, Acre Basin and Rondonia uplands. The highest C stock for the whole soil is observed in the Acre and in the Rio Negro sectors. In the former, this is due to the high nutrient status and high clay activity, whereas in the latter, it is attributed to a downward carbon movement attributed to widespread podzolization and arenization, forming spodic horizons. The youthful nature of shallow soils of the Javari-Juruá-Purus lowlands, associated with high Al, results in a high phytomass C/soil C ratio. A similar trend was observed for the shallow soils from the Roraima and Rondonia highlands. A consistent east-west decline in biomass carbon in the Rio Negro Basin sector is associated with increasing rainfall and higher sand amounts. It is related to lesser C protection and greater C loss of sandy soils, subjected to active chemical leaching and widespread podzolization. Also, these soils possess lower cation exchangeable capacity and lower water retention capacity. Zones where deeply weathered Latosols dominate have a overall pattern of high C sequestration, and greater than the shallower soils from the upper Amazon, west of Madeira and Negro rivers. This was attributed to deeper incorporation of carbon in these clayey and highly pedo-bioturbated soils. The results highlight the urgent need for refining soil data at an appropriate scale for C stocks calculations purposes in Amazonia. There

  9. Climate warming can accelerate carbon fluxes without changing soil carbon stocks

    Science.gov (United States)

    Ziegler, Susan E.; Benner, Ronald; Billings, Sharon A.; Edwards, Kate A.; Philben, Michael; Zhu, Xinbiao; Laganière, Jerome

    2017-02-01

    Climate warming enhances multiple ecosystem C fluxes, but the net impact of changing C fluxes on soil organic carbon (SOC) stocks over decadal to centennial time scales remains unclear. We investigated the effects of climate on C fluxes and soil C stocks using space-for-time substitution along a boreal forest climate gradient encompassing spatially replicated sites at each of three latitudes. All regions had similar SOC concentrations and stocks (5.6 to 6.7 kg C m-2). The three lowest latitude forests exhibited the highest productivity across the transect, with tree biomass:age ratios and litterfall rates 300% and 125% higher than those in the highest latitude forests, respectively. Likewise, higher soil respiration rates ( 55%) and dissolved organic C fluxes ( 300%) were observed in the lowest latitude forests compared to those in the highest latitude forests. The mid-latitude forests exhibited intermediate values for these indices and fluxes. The mean radiocarbon content (∆14C) of mineral-associated SOC (+9.6 ‰) was highest in the lowest latitude forests, indicating a more rapid turnover of soil C compared to the mid- and highest latitude soils (∆14C of -35 and -30 ‰, respectively). Indicators of the extent of soil organic matter decomposition, including C:N, δ13C, and amino acid and alkyl-C:O-alkyl-C indices, revealed highly decomposed material across all regions. These data indicate that the lowest latitude forests experience accelerated C fluxes that maintain relatively young but highly decomposed SOC. Collectively, these observations of within-biome soil C responses to climate demonstrate that the enhanced rates of SOC loss that typically occur with warming can be balanced by enhanced rates of C inputs.

  10. Climate change mitigation by carbon stocking

    DEFF Research Database (Denmark)

    Lykke, Anne Mette; Barfod, Anders S.; Svendsen, Gert Tinggaard

    2009-01-01

    Semi-arid West Africa has not been integrated into the afforestation/reforestation (AR) carbon market. Most projects implemented under the Clean Development Mechanism (CDM) have focused on carbon emission reductions from industry and energy consumption, whereas only few (only one in West Africa) ...

  11. Estimate of biomass and carbon pools in disturbed and undisturbed oak forests in Tunisia

    Energy Technology Data Exchange (ETDEWEB)

    Zribi, L.; Chaar, H.; Khaldi, A.; Henchi, B.; Mouillot, F.; Gharbi, F.

    2016-07-01

    Aim of the study. To estimate biomass and carbon accumulation in a young and disturbed forest (regenerated after a tornado) and an aged cork oak forest (undisturbed forest) as well as its distribution among the different pools (tree, litter and soil). Area of study. The north west of Tunisia. Material and methods. Carbon stocks were evaluated in the above and belowground cork oak trees, the litter and the 150 cm of the soil. Tree biomass was estimated in both young and aged forests using allometric biomass equations developed for wood stem, cork stem, wood branch, cork branch, leaves, roots and total tree biomass based on combinations of diameter at breast height, total height and crown length as independent variables. Main results. Total tree biomass in forests was 240.58 Mg ha-1 in the young forest and 411.30 Mg ha-1 in the aged forest with a low root/shoot ratio (0.41 for young forest and 0.31 for aged forest). Total stored carbon was 419.46 Mg C ha-1 in the young forest and 658.09 Mg C ha-1 in the aged forest. Carbon stock (Mg C ha-1) was estimated to be113.61(27.08%) and 194.08 (29.49%) in trees, 3.55 (0.85%) and 5.73 (0.87%) in litter and 302.30 (72.07%) and 458.27 (69.64%) in soil in the young and aged forests, respectively. Research highlights. Aged undisturbed forest had the largest tree biomass but a lower potential for accumulation of carbon in the future; in contrast, young disturbed forest had both higher growth and carbon storage potential. (Author)

  12. Distribution, stock, and influencing factors of soil organic carbon in ...

    Indian Academy of Sciences (India)

    40

    Distribution, stock, and influencing factors of soil organic carbon. 1 in an alpine meadow in the hinterland of the Qinghai-Tibetan. 2. Plateau. 3. XUCHAO ZHU1 and MING'AN SHAO2,3,*. 4. 1State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science,. 5. Chinese Academy of Sciences, 210008, Nanjing, ...

  13. Soil organic carbon and nitrogen stocks along a seasonal wetland ...

    African Journals Online (AJOL)

    Ecosystems of central and southern Africa are occupied by some of the largest seasonal wetlands commonly called dambos. Dambos are likely to store huge stocks of soil organic carbon (SOC) because of their saturated conditions. However, most available literature report average SOC concentrations while ignoring ...

  14. Ground cover rice production systems increase soil carbon and nitrogen stocks at regional scale

    Science.gov (United States)

    Liu, M.; Dannenmann, M.; Lin, S.; Saiz, G.; Yan, G.; Yao, Z.; Pelster, D. E.; Tao, H.; Sippel, S.; Tao, Y.; Zhang, Y.; Zheng, X.; Zuo, Q.; Butterbach-Bahl, K.

    2015-08-01

    Rice production is increasingly limited by water scarcity. Covering paddy rice soils with films (so-called ground cover rice production system: GCRPS) can significantly reduce water demand as well as overcome temperature limitations at the beginning of the growing season, which results in greater grain yields in relatively cold regions and also in those suffering from seasonal water shortages. However, it has been speculated that both increased soil aeration and temperature under GCRPS result in lower soil organic carbon and nitrogen stocks. Here we report on a regional-scale experiment conducted in Shiyan, a typical rice-producing mountainous area of China. We sampled paired adjacent paddy and GCRPS fields at 49 representative sites. Measured parameters included soil carbon (C) and nitrogen (N) stocks (to 1 m depth), soil physical and chemical properties, δ15N composition of plants and soils, potential C mineralization rates, and soil organic carbon (SOC) fractions at all sampling sites. Root biomass was also quantified at one intensively monitored site. The study showed that: (1) GCRPS increased SOC and N stocks 5-20 years following conversion from traditional paddy systems; (2) there were no differences between GCRPS and paddy systems in soil physical and chemical properties for the various soil depths, with the exception of soil bulk density; (3) GCRPS increased above-ground and root biomass in all soil layers down to a 40 cm depth; (4) δ15N values were lower in soils and plant leaves indicating lower NH3 volatilization losses from GCRPS than in paddy systems; and (5) GCRPS had lower C mineralization potential than that observed in paddy systems over a 200-day incubation period. Our results suggest that GCRPS is an innovative production technique that not only increases rice yields using less irrigation water, but that it also increases SOC and N stocks.

  15. Vegetation Structure and Carbon Stocks of Two Protected Areas within the South-Sudanian Savannas of Burkina Faso

    Directory of Open Access Journals (Sweden)

    Mohammad Qasim

    2016-09-01

    Full Text Available Savannas and adjacent vegetation types like gallery forests are highly valuable ecosystems contributing to several ecosystem services including carbon budgeting. Financial mechanisms such as REDD+ (Reduced Emissions from Deforestation and Forest Degradation can provide an opportunity for developing countries to alleviate poverty through conservation of its forestry resources. However, for availing such opportunities carbon stock assessments are essential. Therefore, a research study for this purpose was conducted at two protected areas (Nazinga Game Ranch and Bontioli Nature Reserve in Burkina Faso. Similarly, analysis of various vegetation parameters was also conducted to understand the overall vegetation structure of these two protected areas. For estimating above ground biomass, existing allometric equations for dry tropical woody vegetation types were used. Compositional structure was described by applying tree species and family importance indices. The results show that both sites collectively contain a mean carbon stock of 3.41 ± 4.98 Mg·C·ha−1. Among different savanna vegetation types, gallery forests recorded the highest mean carbon stock of 9.38 ± 6.90 Mg·C·ha−1. This study was an attempt at addressing the knowledge gap particularly on carbon stocks of protected savannas—it can serve as a baseline for carbon stocks for future initiatives such as REDD+ within these areas.

  16. A Canadian upland forest soil profile and carbon stocks database.

    Science.gov (United States)

    Shaw, Cindy; Hilger, Arlene; Filiatrault, Michelle; Kurz, Werner

    2018-04-01

    "A Canadian upland forest soil profile and carbon stocks database" was compiled in phases over a period of 10 years to address various questions related to modeling upland forest soil carbon in a national forest carbon accounting model. For 3,253 pedons, the SITES table contains estimates for soil organic carbon stocks (Mg/ha) in organic horizons and mineral horizons to a 100-cm depth, soil taxonomy, leading tree species, mean annual temperature, annual precipitation, province or territory, terrestrial ecozone, and latitude and longitude, with an assessment of the quality of information about location. The PROFILES table contains profile data (16,167 records by horizon) used to estimate the carbon stocks that appear in the SITES table, plus additional soil chemical and physical data, where provided by the data source. The exceptions to this are estimates for soil carbon stocks based on Canadian National Forest Inventory data (NFI [2006] in REFERENCES table), where data were collected by depth increment rather than horizon and, therefore, total soil carbon stocks were calculated separately before being entered into the SITES table. Data in the PROFILES table include the carbon stock estimate for each horizon (corrected for coarse fragment content), and the data used to calculate the carbon stock estimate, such as horizon thickness, bulk density, and percent organic carbon. The PROFILES table also contains data, when reported by the source, for percent carbonate carbon, pH, percent total nitrogen, particle size distribution (percent sand, silt, clay), texture class, exchangeable cations, cation and total exchange capacity, and percent Fe and Al. An additional table provides references (REFERENCES table) for the source data. Earlier versions of the database were used to develop national soil carbon modeling categories based on differences in carbon stocks linked to soil taxonomy and to examine the potential of using soil taxonomy and leading tree species to improve

  17. Organic carbon stock modelling for the quantification of the carbon sinks in terrestrial ecosystems

    Science.gov (United States)

    Durante, Pilar; Algeet, Nur; Oyonarte, Cecilio

    2017-04-01

    Given the recent environmental policies derived from the serious threats caused by global change, practical measures to decrease net CO2 emissions have to be put in place. Regarding this, carbon sequestration is a major measure to reduce atmospheric CO2 concentrations within a short and medium term, where terrestrial ecosystems play a basic role as carbon sinks. Development of tools for quantification, assessment and management of organic carbon in ecosystems at different scales and management scenarios, it is essential to achieve these commitments. The aim of this study is to establish a methodological framework for the modeling of this tool, applied to a sustainable land use planning and management at spatial and temporal scale. The methodology for carbon stock estimation in ecosystems is based on merger techniques between carbon stored in soils and aerial biomass. For this purpose, both spatial variability map of soil organic carbon (SOC) and algorithms for calculation of forest species biomass will be created. For the modelling of the SOC spatial distribution at different map scales, it is necessary to fit in and screen the available information of soil database legacy. Subsequently, SOC modelling will be based on the SCORPAN model, a quantitative model use to assess the correlation among soil-forming factors measured at the same site location. These factors will be selected from both static (terrain morphometric variables) and dynamic variables (climatic variables and vegetation indexes -NDVI-), providing to the model the spatio-temporal characteristic. After the predictive model, spatial inference techniques will be used to achieve the final map and to extrapolate the data to unavailable information areas (automated random forest regression kriging). The estimated uncertainty will be calculated to assess the model performance at different scale approaches. Organic carbon modelling of aerial biomass will be estimate using LiDAR (Light Detection And Ranging

  18. Local involvement in measuring and governing carbon stocks in China, Vietnam, Indonesia and Laos

    Science.gov (United States)

    Michael Køie. Poulsen

    2013-01-01

    An important element of MRV is to ensure accurate measurements of carbon stocks. Measuring trees on the ground may be needed for ground truthing of remote sensing results. It can also provide more accurate carbon stock monitoring than remote sensing alone. Local involvement in measuring trees for monitoring of carbon stocks may be advantageous in several ways....

  19. Effects of multiple interacting disturbances and salvage logging on forest carbon stocks

    Science.gov (United States)

    John B. Bradford; Shawn Fraver; Amy M. Milo; Anthony W. D' Amato; Brian J. Palik

    2012-01-01

    Climate change is anticipated to increase the frequency of disturbances, potentially impacting carbon stocks in terrestrial ecosystems. However, little is known about the implications of either multiple disturbances or post-disturbance forest management activities on ecosystem carbon stocks. This study quantified how forest carbon stocks responded to stand-replacing...

  20. How accurately can soil organic carbon stocks and stock changes be quantified by soil inventories?

    Directory of Open Access Journals (Sweden)

    M. Schrumpf

    2011-05-01

    Full Text Available Precise determination of changes in organic carbon (OC stocks is prerequisite to understand the role of soils in the global cycling of carbon and to verify changes in stocks due to management. A large dataset was collected to form base to repeated soil inventories at 12 CarboEurope sites under different climate and land-use, and with different soil types. Concentration of OC, bulk density (BD, and fine earth fraction were determined to 60 cm depth at 100 sampling points per site. We investigated (1 time needed to detect changes in soil OC, assuming future re-sampling of 100 cores; (2 the contribution of different sources of uncertainties to OC stocks; (3 the effect of OC stock calculation on mass rather than volume base for change detection; and (4 the potential use of pedotransfer functions (PTF for estimating BD in repeated inventories.

    The period of time needed for soil OC stocks to change strongly enough to be detectable depends on the spatial variability of soil properties, the depth increment considered, and the rate of change. Cropland sites, having small spatial variability, had lower minimum detectable differences (MDD with 100 sampling points (105 ± 28 gC m−2 for the upper 10 cm of the soil than grassland and forest sites (206 ± 64 and 246 ± 64 gC m−2 for 0–10 cm, respectively. Expected general trends in soil OC indicate that changes could be detectable after 2–15 yr with 100 samples if changes occurred in the upper 10 cm of stone-poor soils. Error propagation analyses showed that in undisturbed soils with low stone contents, OC concentrations contributed most to OC stock variability while BD and fine earth fraction were more important in upper soil layers of croplands and in stone rich soils. Though the calculation of OC stocks based on equivalent soil masses slightly decreases the chance to detect changes with time at most sites except for the croplands, it is still recommended to

  1. Carbon stocks in mangroves, salt marshes, and salt barrens in Tampa Bay, Florida, USA: Vegetative and soil characteristics.

    Science.gov (United States)

    Moyer, R. P.; Radabaugh, K.; Chappel, A. R.; Powell, C.; Bociu, I.; Smoak, J. M.

    2017-12-01

    When compared to other terrestrial environments, coastal "blue carbon" habitats such as salt marshes and mangrove forests sequester disproportionately large amounts of carbon as standing plant biomass and sedimentary peat deposits. This study quantified total carbon stocks in vegetation and soil of 17 salt marshes, salt barrens, and mangrove forests in Tampa Bay, Florida, USA. The sites included natural, restored, and created wetlands of varying ages and degrees of anthropogenic impacts. The average vegetative carbon stock in mangrove forests was 60.1 ± 2.7 Mg ha-1. Mangrove forests frequently consisted of a few large Avicennia germinans trees with smaller, abundant Rhizophora mangle and/or Laguncularia racemosa trees. The average vegetative carbon stock was 11.8 ± 3.7 Mg ha-1 for salt marshes and 2.0 ± 1.2 Mg ha-1 for salt barrens. Vegetative carbon did not significantly differ between natural and newly created salt marsh habitats, indicating that mature restored wetlands can be included with natural wetlands for the calculation of vegetative carbon in coastal blue carbon assessments. Peat deposits were generally less than 50 cm thick and organic content rapidly decreased with depth in all habitats. Soil in this study was analyzed in 1 cm intervals; the accuracy of subsampling or binning soil into depth intervals of 2-5 cm was also assessed. In most cases, carbon stock values obtained from these larger sampling intervals were not statistically different from values obtained from sampling at 1 cm intervals. In the first 15 cm, soil in mangrove forests contained an average of 15.1% organic carbon by weight, salt marshes contained 6.5%, and salt barrens contained 0.8%. Total carbon stock in mangroves was 187.1±17.3 Mg ha-1, with 68% of that carbon stored in soil. Salt marshes contained an average of 65.2±25.3 Mg ha-1 (82% soil carbon) and salt barrens had carbon stocks of 21.4±7.4 Mg ha-1 (89% soil carbon). These values were much lower than global averages for

  2. Effects of biomass utilization on the carbon balance of Finnish forests

    Science.gov (United States)

    Sievänen, Risto; Salminen, Olli; Kallio, Maarit

    2015-04-01

    The boreal forests cover three fourths of the land area of Finland. About 80 per cent of the total forest area is managed for commercial forestry. The forests produce timber for wood processing and pulp and paper industries and provide also bioenergy. The harvests of timber vary depending on demand of products of forest industry; the harvest level has been on average about 70 per cent of growth in recent years. The utilization of forest biomass is therefore the most important factor affecting the carbon balance of Finnish forests. We made projections of carbon balance of Finnish forests during 2012-2050 based on scenarios of timber and bioenergy demands. To assess the changes in carbon stock of forests, we combined three models: a large-scale forestry model, the soil carbon model Yasso07 for mineral soils, and a method based on emission factors for peatland soils. We considered two harvest scenarios based on the recent projections of plausible levels (min, max) of timber demand. For the bioenergy demand, we compared cases in which the wood energy use was low or high. In the past decades, the Finnish forests have been a steadily growing and substantial carbon sink. Its size has been more than 40% of the national GHG emissions during 1990-2012. The planned use of wood from the forests to forest and energy industry does not threaten the increasing trend of the forest sink; with the lowest use of forest biomass the sink may even match the national GHG emissions until 2050. The stock change of trees is the most important component of carbon balance of forests; it accounts for approximately 80 % of the total stock change. Trees and mineral soils act as carbon sinks and the drained peatland soils as a carbon source. By comparing the scenarios of wood energy use we conclude that the amount of carbon emissions avoided by replacing fossil fuels with stemwood is outweighed by the loss in carbon sequestration.

  3. Mapping and estimating the total living biomass and carbon in low-biomass woodlands using Landsat 8 CDR data

    Directory of Open Access Journals (Sweden)

    Belachew Gizachew

    2016-06-01

    Full Text Available Abstract Background A functional forest carbon measuring, reporting and verification (MRV system to support climate change mitigation policies, such as REDD+, requires estimates of forest biomass carbon, as an input to estimate emissions. A combination of field inventory and remote sensing is expected to provide those data. By linking Landsat 8 and forest inventory data, we (1 developed linear mixed effects models for total living biomass (TLB estimation as a function of spectral variables, (2 developed a 30 m resolution map of the total living carbon (TLC, and (3 estimated the total TLB stock of the study area. Inventory data consisted of tree measurements from 500 plots in 63 clusters in a 15,700 km2 study area, in miombo woodlands of Tanzania. The Landsat 8 data comprised two climate data record images covering the inventory area. Results We found a linear relationship between TLB and Landsat 8 derived spectral variables, and there was no clear evidence of spectral data saturation at higher biomass values. The root-mean-square error of the values predicted by the linear model linking the TLB and the normalized difference vegetation index (NDVI is equal to 44 t/ha (49 % of the mean value. The estimated TLB for the study area was 140 Mt, with a mean TLB density of 81 t/ha, and a 95 % confidence interval of 74–88 t/ha. We mapped the distribution of TLC of the study area using the TLB model, where TLC was estimated at 47 % of TLB. Conclusion The low biomass in the miombo woodlands, and the absence of a spectral data saturation problem suggested that Landsat 8 derived NDVI is suitable auxiliary information for carbon monitoring in the context of REDD+, for low-biomass, open-canopy woodlands.

  4. Impact of priming on global soil carbon stocks.

    Science.gov (United States)

    Guenet, Bertrand; Camino-Serrano, Marta; Ciais, Philippe; Tifafi, Marwa; Maignan, Fabienne; Soong, Jennifer L; Janssens, Ivan A

    2018-01-24

    Fresh carbon input (above and belowground) contributes to soil carbon sequestration, but also accelerates decomposition of soil organic matter through biological priming mechanisms. Currently, poor understanding precludes the incorporation of these priming mechanisms into the global carbon models used for future projections. Here, we show that priming can be incorporated based on a simple equation calibrated from incubation and verified against independent litter manipulation experiments in the global land surface model, ORCHIDEE. When incorporated into ORCHIDEE, priming improved the model's representation of global soil carbon stocks and decreased soil carbon sequestration by 51% (12 ± 3 Pg C) during the period 1901-2010. Future projections with the same model across the range of CO 2 and climate changes defined by the IPCC-RCP scenarios reveal that priming buffers the projected changes in soil carbon stocks - both the increases due to enhanced productivity and new input to the soil, and the decreases due to warming-induced accelerated decomposition. Including priming in Earth system models leads to different projections of soil carbon changes, which are challenging to verify at large spatial scales. © 2018 John Wiley & Sons Ltd.

  5. Activated carbon briquettes from biomass materials.

    Science.gov (United States)

    Amaya, Alejandro; Medero, Natalia; Tancredi, Néstor; Silva, Hugo; Deiana, Cristina

    2007-05-01

    Disposal of biomass wastes, produced in different agricultural activities, is frequently an environmental problem. A solution for such situation is the recycling of these residues for the production of activated carbon, an adsorbent which has several applications, for instance in the elimination of contaminants. For some uses, high mechanical strength and good adsorption characteristics are required. To achieve this, carbonaceous materials are conformed as pellets or briquettes, in a process that involves mixing and pressing of char with adhesive materials prior to activation. In this work, the influence of the operation conditions on the mechanical and surface properties of briquettes was studied. Eucalyptus wood and rice husk from Uruguay were used as lignocellulosic raw materials, and concentrated grape must from Cuyo Region-Argentina, as a binder. Different wood:rice and solid:binder ratios were used to prepare briquettes in order to study their influence on mechanical and surface properties of the final products.

  6. Combining satellite, aerial and ground measurements to assess forest carbon stocks in Democratic Republic of Congo

    Science.gov (United States)

    Beaumont, Benjamin; Bouvy, Alban; Stephenne, Nathalie; Mathoux, Pierre; Bastin, Jean-François; Baudot, Yves; Akkermans, Tom

    2015-04-01

    Monitoring tropical forest carbon stocks changes has been a rising topic in the recent years as a result of REDD+ mechanisms negotiations. Such monitoring will be mandatory for each project/country willing to benefit from these financial incentives in the future. Aerial and satellite remote sensing technologies offer cost advantages in implementing large scale forest inventories. Despite the recent progress made in the use of airborne LiDAR for carbon stocks estimation, no widely operational and cost effective method has yet been delivered for central Africa forest monitoring. Within the Maï Ndombe region of Democratic Republic of Congo, the EO4REDD project develops a method combining satellite, aerial and ground measurements. This combination is done in three steps: [1] mapping and quantifying forest cover changes using an object-based semi-automatic change detection (deforestation and forest degradation) methodology based on very high resolution satellite imagery (RapidEye), [2] developing an allometric linear model for above ground biomass measurements based on dendrometric parameters (tree crown areas and heights) extracted from airborne stereoscopic image pairs and calibrated using ground measurements of individual trees on a data set of 18 one hectare plots and [3] relating these two products to assess carbon stocks changes at a regional scale. Given the high accuracies obtained in [1] (> 80% for deforestation and 77% for forest degradation) and the suitable, but still to be improved with a larger calibrating sample, model (R² of 0.7) obtained in [2], EO4REDD products can be seen as a valid and replicable option for carbon stocks monitoring in tropical forests. Further improvements are planned to strengthen the cost effectiveness value and the REDD+ suitability in the second phase of EO4REDD. This second phase will include [A] specific model developments per forest type; [B] measurements of afforestation, reforestation and natural regeneration processes and

  7. Community Monitoring of Carbon Stocks for REDD+: Does Accuracy and Cost Change over Time?

    Directory of Open Access Journals (Sweden)

    Søren Brofeldt

    2014-07-01

    Full Text Available Reducing emissions from deforestation and forest degradation in developing countries, and the role of conservation, sustainable management of forests, and enhancement of forest carbon stocks in developing countries (REDD+ is a potentially powerful international policy mechanism that many tropical countries are working towards implementing. Thus far, limited practical consideration has been paid to local rights to forests and forest resources in REDD+ readiness programs, beyond noting the importance of these issues. Previous studies have shown that community members can reliably and cost-effectively monitor forest biomass. At the same time, this can improve local ownership and forge important links between monitoring activities and local decision-making. Existing studies have, however, been static assessments of biomass at one point in time. REDD+ programs will require repeated surveys of biomass over extended time frames. Here, we examine trends in accuracy and costs of local forest monitoring over time. We analyse repeated measurements by community members and professional foresters of 289 plots over two years in four countries in Southeast Asia. This shows, for the first time, that with repeated measurements community members’ biomass measurements become increasingly accurate and costs decline. These findings provide additional support to available evidence that community members can play a strong role in monitoring forest biomass in the local implementation of REDD+.

  8. Benchmark values for forest soil carbon stocks in Europe

    DEFF Research Database (Denmark)

    De Vos, Bruno; Cools, Nathalie; Ilvesniemi, Hannu

    2015-01-01

    confirmed global patterns reported for forest soils: ~ 50% of SOC was stored in the upper 20 cm, and ~ 55–65% in the upper 30 cm of soil. Assuming 163 Mha of European forest cover and by using various scaling up procedures, we estimated total stocks at 3.50–3.94 Gt C in forest floors and 21.4–22.7 Gt C......Soil organic carbon (SOC) stocks in forest floors and in mineral and peat forest soils were estimated at the European scale. The assessment was based on measured C concentration, bulk density, coarse fragments and effective soil depth data originating from 4914 plots in 22 EU countries belonging...... to the UN/ECE ICP Forests 16 × 16 km Level I network. Plots were sampled and analysed according to harmonized methods during the 2nd European Forest Soil Condition Survey. Using continuous carbon density depth functions, we estimated SOC stocks to 30-cm and 1-m depth, and stratified these stocks according...

  9. Carbon Stock Assessment Using Remote Sensing and Forest Inventory Data in Savannakhet, Lao PDR

    Directory of Open Access Journals (Sweden)

    Phutchard Vicharnakorn

    2014-06-01

    Full Text Available Savannakhet Province, Lao People’s Democratic Republic (PDR, is a small area that is connected to Thailand, other areas of Lao PDR, and Vietnam via road No. 9. This province has been increasingly affected by carbon dioxide (CO2 emitted from the transport corridors that have been developed across the region. To determine the effect of the CO2 increases caused by deforestation and emissions, the total above-ground biomass (AGB and carbon stocks for different land-cover types were assessed. This study estimated the AGB and carbon stocks (t/ha of vegetation and soil using standard sampling techniques and allometric equations. Overall, 81 plots, each measuring 1600 m2, were established to represent samples from dry evergreen forest (DEF, mixed deciduous forest (MDF, dry dipterocarp forest (DDF, disturbed forest (DF, and paddy fields (PFi. In each plot, the diameter at breast height (DBH and height (H of the overstory trees were measured. Soil samples (composite n = 2 were collected at depths of 0–30 cm. Soil carbon was assessed using the soil depth, soil bulk density, and carbon content. Remote sensing (RS; Landsat Thematic Mapper (TM image was used for land-cover classification and development of the AGB estimation model. The relationships between the AGB and RS data (e.g., single TM band, various vegetation indices (VIs, and elevation were investigated using a multiple linear regression analysis. The results of the total carbon stock assessments from the ground data showed that the MDF site had the highest value, followed by the DEF, DDF, DF, and PFi sites. The RS data showed that the MDF site had the highest area coverage, followed by the DDF, PFi, DF, and DEF sites. The results indicated significant relationships between the AGB and RS data. The strongest correlation was found for the PFi site, followed by the MDF, DDF, DEF, and DF sites.

  10. Estimating urban trees and carbon stock potentials for mitigating climate change in Lagos: Case of Ikeja Government Reserved Area (GRA)

    Science.gov (United States)

    Elias, P. O.; Faderin, A.

    2014-12-01

    Urban trees are a component of the urban infrastructure which offers diverse services including environmental, aesthetic and economic. The accumulation of carbon in the atmosphere resulting from the indiscriminate distribution of human populations and urban activities with the unsustainable consumption of natural resources contributes to global environmental change especially in coastal cities like Lagos. Carbon stocks and sequestration by urban trees are increasingly recognized to play significant roles for mitigating climate change. This paper focuses on the estimation of carbon stock and sequestration through biomass estimation and quantification in Ikeja GRA, Lagos. Ikeja possesses a characteristic feature as a microcosm of Lagos due to the wide range of land uses. A canopy assessment of tree population was carried out using itree canopy software. A GPS survey was used to collect an inventory of all trees showing their location, spatial distribution and other attributes. The analysis of the carbon storage and sequestration potential of both actual and potential tree planting sites involved biomass estimations from tree allometry equations. Trees were identified at species level and measurements of their dendrometric values were recorded and integrated into the GIS database to estimate biomass of trees and carbon storage. The trees in the study area were estimated to have a biomass of 441.9 mg and carbon storage of 221.395 kg/tree. By considering the potential tree planting sites the estimated carbon stored increased to 11,352.73 kg. Carbon sequestration value in the study area was found to be 1.6790 tonnes for the existing trees and 40.707 tonnes for the potential tree planting sites (PTPS). The estimation of carbon storage and sequestration values of trees are important incentives for carbon accounting/footprints and monitoring of climate change mitigation which has implications for evaluation and monitoring of urban ecosystem.

  11. Above- and below-ground carbon stocks in an indigenous tree (Mytilaria laosensis) plantation chronosequence in subtropical China.

    Science.gov (United States)

    Ming, Angang; Jia, Hongyan; Zhao, Jinlong; Tao, Yi; Li, Yuanfa

    2014-01-01

    More than 60% of the total area of tree plantations in China is in subtropical, and over 70% of subtropical plantations consist of pure stands of coniferous species. Because of the poor ecosystem services provided by pure coniferous plantations and the ecological instability of these stands, a movement is under way to promote indigenous broadleaf plantation cultivation as a promising alternative. However, little is known about the carbon (C) stocks in indigenous broadleaf plantations and their dependence on stand age. Thus, we studied above- and below-ground biomass and C stocks in a chronosequence of Mytilaria laosensis plantations in subtropical China; stands were 7, 10, 18, 23, 29 and 33 years old. Our assessments included tree, shrub, herb and litter layers. We used plot-level inventories and destructive tree sampling to determine vegetation C stocks. We also measured soil C stocks by analyses of soil profiles to 100 cm depth. C stocks in the tree layer dominated the above-ground ecosystem C pool across the chronosequence. C stocks increased with age from 7 to 29 years and plateaued thereafter due to a reduction in tree growth rates. Minor C stocks were found in the shrub and herb layers of all six plantations and their temporal fluctuations were relatively small. C stocks in the litter and soil layers increased with stand age. Total above-ground ecosystem C also increased with stand age. Most increases in C stocks in below-ground and total ecosystems were attributable to increases in soil C content and tree biomass. Therefore, considerations of C sequestration potential in indigenous broadleaf plantations must take stand age into account.

  12. A framework for assessing global change risks to forest carbon stocks in the United States.

    Directory of Open Access Journals (Sweden)

    Christopher W Woodall

    Full Text Available Among terrestrial environments, forests are not only the largest long-term sink of atmospheric carbon (C, but are also susceptible to global change themselves, with potential consequences including alterations of C cycles and potential C emission. To inform global change risk assessment of forest C across large spatial/temporal scales, this study constructed and evaluated a basic risk framework which combined the magnitude of C stocks and their associated probability of stock change in the context of global change across the US. For the purposes of this analysis, forest C was divided into five pools, two live (aboveground and belowground biomass and three dead (dead wood, soil organic matter, and forest floor with a risk framework parameterized using the US's national greenhouse gas inventory and associated forest inventory data across current and projected future Köppen-Geiger climate zones (A1F1 scenario. Results suggest that an initial forest C risk matrix may be constructed to focus attention on short- and long-term risks to forest C stocks (as opposed to implementation in decision making using inventory-based estimates of total stocks and associated estimates of variability (i.e., coefficient of variation among climate zones. The empirical parameterization of such a risk matrix highlighted numerous knowledge gaps: 1 robust measures of the likelihood of forest C stock change under climate change scenarios, 2 projections of forest C stocks given unforeseen socioeconomic conditions (i.e., land-use change, and 3 appropriate social responses to global change events for which there is no contemporary climate/disturbance analog (e.g., severe droughts in the Lake States. Coupling these current technical/social limits of developing a risk matrix to the biological processes of forest ecosystems (i.e., disturbance events and interaction among diverse forest C pools, potential positive feedbacks, and forest resiliency/recovery suggests an operational

  13. Carbon stock and its responses to climate change in Central Asia.

    Science.gov (United States)

    Li, Chaofan; Zhang, Chi; Luo, Geping; Chen, Xi; Maisupova, Bagila; Madaminov, Abdullo A; Han, Qifei; Djenbaev, Bekmamat M

    2015-05-01

    Central Asia has a land area of 5.6 × 10(6) km(2) and contains 80-90% of the world's temperate deserts. Yet it is one of the least characterized areas in the estimation of the global carbon (C) stock/balance. This study assessed the sizes and spatiotemporal patterns of C pools in Central Asia using both inventory (based on 353 biomass and 284 soil samples) and process-based modeling approaches. The results showed that the C stock in Central Asia was 31.34-34.16 Pg in the top 1-m soil with another 10.42-11.43 Pg stored in deep soil (1-3 m) of the temperate deserts. They amounted to 18-24% of the global C stock in deserts and dry shrublands. The C stock was comparable to that of the neighboring regions in Eurasia or major drylands around the world (e.g. Australia). However, 90% of Central Asia C pool was stored in soil, and the fraction was much higher than in other regions. Compared to hot deserts of the world, the temperate deserts in Central Asia had relatively high soil organic carbon density. The C stock in Central Asia is under threat from dramatic climate change. During a decadal drought between 1998 and 2008, which was possibly related to protracted La Niña episodes, the dryland lost approximately 0.46 Pg C from 1979 to 2011. The largest C losses were found in northern Kazakhstan, where annual precipitation declined at a rate of 90 mm decade(-1) . The regional C dynamics were mainly determined by changes in the vegetation C pool, and the SOC pool was stable due to the balance between reduced plant-derived C influx and inhibited respiration. © 2015 John Wiley & Sons Ltd.

  14. Global Tree Cover and Biomass Carbon on Agricultural Land: The contribution of agroforestry to global and national carbon budgets

    Science.gov (United States)

    Zomer, Robert J.; Neufeldt, Henry; Xu, Jianchu; Ahrends, Antje; Bossio, Deborah; Trabucco, Antonio; van Noordwijk, Meine; Wang, Mingcheng

    2016-01-01

    Agroforestry systems and tree cover on agricultural land make an important contribution to climate change mitigation, but are not systematically accounted for in either global carbon budgets or national carbon accounting. This paper assesses the role of trees on agricultural land and their significance for carbon sequestration at a global level, along with recent change trends. Remote sensing data show that in 2010, 43% of all agricultural land globally had at least 10% tree cover and that this has increased by 2% over the previous ten years. Combining geographically and bioclimatically stratified Intergovernmental Panel on Climate Change (IPCC) Tier 1 default estimates of carbon storage with this tree cover analysis, we estimated 45.3 PgC on agricultural land globally, with trees contributing >75%. Between 2000 and 2010 tree cover increased by 3.7%, resulting in an increase of >2 PgC (or 4.6%) of biomass carbon. On average, globally, biomass carbon increased from 20.4 to 21.4 tC ha−1. Regional and country-level variation in stocks and trends were mapped and tabulated globally, and for all countries. Brazil, Indonesia, China and India had the largest increases in biomass carbon stored on agricultural land, while Argentina, Myanmar, and Sierra Leone had the largest decreases. PMID:27435095

  15. Quantifying allometric model uncertainty for plot-level live tree biomass stocks with a data-driven, hierarchical framework

    Science.gov (United States)

    Brian J. Clough; Matthew B. Russell; Grant M. Domke; Christopher W. Woodall

    2016-01-01

    Accurate uncertainty assessments of plot-level live tree biomass stocks are an important precursor to estimating uncertainty in annual national greenhouse gas inventories (NGHGIs) developed from forest inventory data. However, current approaches employed within the United States’ NGHGI do not specifically incorporate methods to address error in tree-scale biomass...

  16. Estimates of Forest Biomass Carbon Storage in Liaoning Province of Northeast China: A Review and Assessment

    Science.gov (United States)

    Yu, Dapao; Wang, Xiaoyu; Yin, You; Zhan, Jinyu; Lewis, Bernard J.; Tian, Jie; Bao, Ye; Zhou, Wangming; Zhou, Li; Dai, Limin

    2014-01-01

    Accurate estimates of forest carbon storage and changes in storage capacity are critical for scientific assessment of the effects of forest management on the role of forests as carbon sinks. Up to now, several studies reported forest biomass carbon (FBC) in Liaoning Province based on data from China's Continuous Forest Inventory, however, their accuracy were still not known. This study compared estimates of FBC in Liaoning Province derived from different methods. We found substantial variation in estimates of FBC storage for young and middle-age forests. For provincial forests with high proportions in these age classes, the continuous biomass expansion factor method (CBM) by forest type with age class is more accurate and therefore more appropriate for estimating forest biomass. Based on the above approach designed for this study, forests in Liaoning Province were found to be a carbon sink, with carbon stocks increasing from 63.0 TgC in 1980 to 120.9 TgC in 2010, reflecting an annual increase of 1.9 TgC. The average carbon density of forest biomass in the province has increased from 26.2 Mg ha−1 in 1980 to 31.0 Mg ha−1 in 2010. While the largest FBC occurred in middle-age forests, the average carbon density decreased in this age class during these three decades. The increase in forest carbon density resulted primarily from the increased area and carbon storage of mature forests. The relatively long age interval in each age class for slow-growing forest types increased the uncertainty of FBC estimates by CBM-forest type with age class, and further studies should devote more attention to the time span of age classes in establishing biomass expansion factors for use in CBM calculations. PMID:24586881

  17. Effect of tree species on carbon stocks in forest floor and mineral soil and implications for soil carbon inventories

    NARCIS (Netherlands)

    Schulp, Catharina J E; Nabuurs, Gert Jan; Verburg, Peter H.; de Waal, Rein W.

    2008-01-01

    Forest soil organic carbon (SOC) and forest floor carbon (FFC) stocks are highly variable. The sampling effort required to assess SOC and FFC stocks is therefore large, resulting in limited sampling and poor estimates of the size, spatial distribution, and changes in SOC and FFC stocks in many

  18. The effect of cassava-based bioethanol production on above-ground carbon stocks: A case study from Southern Mali

    International Nuclear Information System (INIS)

    Vang Rasmussen, Laura; Rasmussen, Kjeld; Birch-Thomsen, Torben; Kristensen, Søren B.P.; Traoré, Oumar

    2012-01-01

    Increasing energy use and the need to mitigate climate change make production of liquid biofuels a high priority. Farmers respond worldwide to this increasing demand by converting forests and grassland into biofuel crops, but whether biofuels offer carbon savings depends on the carbon emissions that occur when land use is changed to biofuel crops. This paper reports the results of a study on cassava-based bioethanol production undertaken in the Sikasso region in Southern Mali. The paper outlines the estimated impacts on above-ground carbon stocks when land use is changed to increase cassava production. The results show that expansion of cassava production for bioethanol will most likely lead to the conversion of fallow areas to cassava. A land use change from fallow to cassava creates a reduction in the above-ground carbon stocks in the order of 4–13 Mg C ha −1 , depending on (a) the age of the fallow, (b) the allometric equation used and (c) whether all trees are removed or the larger, useful trees are preserved. This ‘carbon debt’ associated with the above-ground biomass loss would take 8–25 years to repay if fossil fuels are replaced with cassava-based bioethanol. - Highlights: ► Demands for biofuels make production of cassava-based bioethanol a priority. ► Farmers in Southern Mali are likely to convert fallow areas to cassava production. ► Converting fallow to cassava creates reductions in above-ground carbon stocks. ► Estimates of carbon stock reductions include that farmers preserve useful trees. ► The carbon debt associated with above-ground biomass loss takes 8–25 years to repay.

  19. Patterns of biomass and carbon distribution across a chronosequence of Chinese pine (Pinus tabulaeformis forests.

    Directory of Open Access Journals (Sweden)

    Jinlong Zhao

    Full Text Available Patterns of biomass and carbon (C storage distribution across Chinese pine (Pinus tabulaeformis natural secondary forests are poorly documented. The objectives of this study were to examine the biomass and C pools of the major ecosystem components in a replicated age sequence of P. tabulaeformis secondary forest stands in Northern China. Within each stand, biomass of above- and belowground tree, understory (shrub and herb, and forest floor were determined from plot-level investigation and destructive sampling. Allometric equations using the diameter at breast height (DBH were developed to quantify plant biomass. C stocks in the tree and understory biomass, forest floor, and mineral soil (0-100 cm were estimated by analyzing the C concentration of each component. The results showed that the tree biomass of P. tabulaeformis stands was ranged from 123.8 Mg·ha-1 for the young stand to 344.8 Mg·ha-1 for the mature stand. The understory biomass ranged from 1.8 Mg·ha-1 in the middle-aged stand to 3.5 Mg·ha-1 in the young stand. Forest floor biomass increased steady with stand age, ranging from 14.9 to 23.0 Mg·ha-1. The highest mean C concentration across the chronosequence was found in tree branch while the lowest mean C concentration was found in forest floor. The observed C stock of the aboveground tree, shrub, forest floor, and mineral soil increased with increasing stand age, whereas the herb C stock showed a decreasing trend with a sigmoid pattern. The C stock of forest ecosystem in young, middle-aged, immature, and mature stands were 178.1, 236.3, 297.7, and 359.8 Mg C ha-1, respectively, greater than those under similar aged P. tabulaeformis forests in China. These results are likely to be integrated into further forest management plans and generalized in other contexts to evaluate C stocks at the regional scale.

  20. Towards a global harmonized permafrost soil organic carbon stock estimates.

    Science.gov (United States)

    Hugelius, G.; Mishra, U.; Yang, Y.

    2017-12-01

    Permafrost affected soils store disproportionately large amount of organic carbon stocks due to multiple cryopedogenic processes. Previous permafrost soil organic carbon (SOC) stock estimates used a variety of approaches and reported substantial uncertainty in SOC stocks of permafrost soils. Here, we used spatially referenced data of soil-forming factors (topographic attributes, land cover types, climate, and bedrock geology) and SOC pedon description data (n = 2552) in a regression kriging approach to predict the spatial and vertical heterogeneity of SOC stocks across the Northern Circumpolar and Tibetan permafrost regions. Our approach allowed us to take into account both environmental correlation and spatial autocorrelation to separately estimate SOC stocks and their spatial uncertainties (95% CI) for three depth intervals at 250 m spatial resolution. In Northern Circumpolar region, our results show 1278.1 (1009.33 - 1550.45) Pg C in 0-3 m depth interval, with 542.09 (451.83 - 610.15), 422.46 (306.48 - 550.82), and 313.55 (251.02 - 389.48) Pg C in 0 - 1, 1 - 2, and 2 - 3 m depth intervals, respectively. In Tibetan region, our results show 26.68 (9.82 - 79.92) Pg C in 0 - 3 m depth interval, with 13.98 (6.2 - 32.96), 6.49 (1.73 - 25.86), and 6.21 (1.889 - 20.90) Pg C in 0 - 1, 1 - 2, and 2 - 3 m depth intervals, respectively. Our estimates show large spatial variability (50 - 100% coefficient of variation, depending upon the study region and depth interval) and higher uncertainty range in comparison to existing estimates. We will present the observed controls of different environmental factors on SOC at the AGU meeting.

  1. ORGANIC CARBON AND CARBON STOCK: RELATIONS WITH PHYSICAL INDICATORS AND SOIL AGGREGATION IN AREAS CULTIVATED WITH SUGAR CANE

    Directory of Open Access Journals (Sweden)

    Diego Tolentino de Lima

    2017-08-01

    Full Text Available Soil organic carbon and carbon stock influence, directly or indirectly, most of soil aggregate stability indicators. The objective of this study was to quantify the production of dry biomass (DB, total organic carbon (TOC and carbon stock (CStk in soil, and to evaluate their influence on some indicators of aggregation in an Oxisol at a Cerrado biome in Uberaba-MG, Brazil. The design was completely randomized blocks, in two evaluation periods: three and six cuts, at six depths (0-0.1, 0.1-0.2, 0.2-0.3, 0.3-0.4, 0.4-0.5 and 0.5-0.6 m. It was evaluated: soil density (SD, volumetric humidity (VH, aggregate stability index (AEI, weighted mean diameter (WDA, mean diameter (GDA, index of aggregates with diameter greater than 2 mm (AI and sensitivity index (SI, replicated by 4. The best AEI of the soil and the highest TOC contents were found in the most superficial layers, 0 to 0.2 m, for both cuttings. The greater values of TOC and CStk, occurred at the sixth cut area, where there was a higher amount of DB on soil surface. The higher levels of organic matter did not provide higher AEI in the area of sixth cut, when compared to that of the third cut. The TOC and CStk levels in both areas generally had a positive influence on soil aggregation indicators for both cuts.

  2. Current and potential carbon stocks in Moso bamboo forests in China.

    Science.gov (United States)

    Li, Pingheng; Zhou, Guomo; Du, Huaqiang; Lu, Dengsheng; Mo, Lufeng; Xu, Xiaojun; Shi, Yongjun; Zhou, Yufeng

    2015-06-01

    Bamboo forests provide important ecosystem services and play an important role in terrestrial carbon cycling. Of the approximately 500 bamboo species in China, Moso bamboo (Phyllostachys pubescens) is the most important one in terms of distribution, timber value, and other economic values. In this study, we estimated current and potential carbon stocks in China's Moso bamboo forests and in their products. The results showed that Moso bamboo forests in China stored about 611.15 ± 142.31 Tg C, 75% of which was in the top 60 cm soil, 22% in the biomass of Moso bamboos, and 3% in the ground layer (i.e., bamboo litter, shrub, and herb layers). Moso bamboo products store 10.19 ± 2.54 Tg C per year. The potential carbon stocks reach 1331.4 ± 325.1 Tg C, while the potential C stored in products is 29.22 ± 7.31 Tg C a(-1). Our results indicate that Moso bamboo forests and products play a critical role in C sequestration. The information gained in this study will facilitate policy decisions concerning carbon sequestration and management of Moso bamboo forests in China. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. A remote sensing-based model of tidal marsh aboveground carbon stocks for the conterminous United States

    Science.gov (United States)

    Byrd, Kristin B.; Ballanti, Laurel; Thomas, Nathan; Nguyen, Dung; Holmquist, James R.; Simard, Marc; Windham-Myers, Lisamarie

    2018-05-01

    Remote sensing based maps of tidal marshes, both of their extents and carbon stocks, have the potential to play a key role in conducting greenhouse gas inventories and implementing climate mitigation policies. Our objective was to generate a single remote sensing model of tidal marsh aboveground biomass and carbon that represents nationally diverse tidal marshes within the conterminous United States (CONUS). We developed the first calibration-grade, national-scale dataset of aboveground tidal marsh biomass, species composition, and aboveground plant carbon content (%C) from six CONUS regions: Cape Cod, MA, Chesapeake Bay, MD, Everglades, FL, Mississippi Delta, LA, San Francisco Bay, CA, and Puget Sound, WA. Using the random forest machine learning algorithm, we tested whether imagery from multiple sensors, Sentinel-1 C-band synthetic aperture radar, Landsat, and the National Agriculture Imagery Program (NAIP), can improve model performance. The final model, driven by six Landsat vegetation indices and with the soil adjusted vegetation index as the most important (n = 409, RMSE = 310 g/m2, 10.3% normalized RMSE), successfully predicted biomass for a range of marsh plant functional types defined by height, leaf angle and growth form. Model results were improved by scaling field-measured biomass calibration data by NAIP-derived 30 m fraction green vegetation. With a mean plant carbon content of 44.1% (n = 1384, 95% C.I. = 43.99%-44.37%), we generated regional 30 m aboveground carbon density maps for estuarine and palustrine emergent tidal marshes as indicated by a modified NOAA Coastal Change Analysis Program map. We applied a multivariate delta method to calculate uncertainties in regional carbon densities and stocks that considered standard error in map area, mean biomass and mean %C. Louisiana palustrine emergent marshes had the highest C density (2.67 ± 0.004 Mg/ha) of all regions, while San Francisco Bay brackish/saline marshes had the highest C density of all

  4. Biomass Carbon Content in Schima- Castanopsis Forest of Midhills of Nepal: A Case Study from Jaisikuna Community Forest, Kaski

    Directory of Open Access Journals (Sweden)

    Sushma Tripathi

    2018-01-01

    Full Text Available Community forests of Nepal’s midhills have high potentiality to sequester carbon. This paper tries to analyze the biomass carbon stock in Schima-Castanopsis forest of Jaisikuna community forests of Kaski district, Nepal. Forest area was divided into two blocks and 18 sample plots (9 in each block which were laid randomly. Diameter at Breast Height (DBH and height of trees (DBH≥5cm were measured using the DBH tape and clinometer. Leaf litter, herbs, grasses and seedlings were collected from 1*1m2 plot and fresh weight was taken. For calculating carbon biomass is multiplied by default value 0.47. The AGTB carbon content of Chilaune, Katus and other species were found 19.56 t/ha, 18.66 t/ha and 3.59 t/ha respectively. The AGTB of Chilaune dominated, Katus dominated and whole forest was found 43.78 t/ha, 39.83 t/ha and 41.81 t/ha respectively. Carbon content at leaf litter, herbs, grasses and seedlings was found 2.73 t/ha. Below ground biomass carbon at whole forest was found 6.27 t/ha. Total biomass and carbon of the forest was found 108.09 t/ha and 50.80 t/ha respectively. Difference in biomass and carbon content at Chilaune dominated block and Katus dominated block was found insignificant. This study record very low biomass carbon content than average of Nepal's forest but this variation in carbon stock is not necessarily due to dominant species present in the forest. Carbon estimation at forest of different elevation, aspect and location are recommended for further research. International Journal of EnvironmentVolume-6, Issue-4, Sep-Nov 2017, page: 72-84

  5. Woody debris volume depletion through decay: implications for biomass and carbon accounting

    Science.gov (United States)

    Fraver, Shawn; Milo, Amy M.; Bradford, John B.; D'Amato, Anthony W.; Kenefic, Laura; Palik, Brian J.; Woodall, Christopher W.; Brissette, John

    2013-01-01

    Woody debris decay rates have recently received much attention because of the need to quantify temporal changes in forest carbon stocks. Published decay rates, available for many species, are commonly used to characterize deadwood biomass and carbon depletion. However, decay rates are often derived from reductions in wood density through time, which when used to model biomass and carbon depletion are known to underestimate rate loss because they fail to account for volume reduction (changes in log shape) as decay progresses. We present a method for estimating changes in log volume through time and illustrate the method using a chronosequence approach. The method is based on the observation, confirmed herein, that decaying logs have a collapse ratio (cross-sectional height/width) that can serve as a surrogate for the volume remaining. Combining the resulting volume loss with concurrent changes in wood density from the same logs then allowed us to quantify biomass and carbon depletion for three study species. Results show that volume, density, and biomass follow distinct depletion curves during decomposition. Volume showed an initial lag period (log dimensions remained unchanged), even while wood density was being reduced. However, once volume depletion began, biomass loss (the product of density and volume depletion) occurred much more rapidly than density alone. At the temporal limit of our data, the proportion of the biomass remaining was roughly half that of the density remaining. Accounting for log volume depletion, as demonstrated in this study, provides a comprehensive characterization of deadwood decomposition, thereby improving biomass-loss and carbon-accounting models.

  6. Carbon stocks and fluxes in managed peatlands in northern Borneo

    Science.gov (United States)

    Arn Teh, Yit; Manning, Frances; Cook, Sarah; Zin Zawawi, Norliyana; Sii, Longwin; Hill, Timothy; Page, Susan; Whelan, Mick; Evans, Chris; Gauci, Vincent; Chocholek, Melanie; Khoon Kho, Lip

    2017-04-01

    Oil palm is the largest agricultural crop in the tropics and accounts for 13 % of current tropical land area. Patterns of land-atmosphere exchange from oil palm ecosystems therefore have potentially important implications for regional and global C budgets due to the large scale of land conversion. This is particularly true for oil palm plantations on peat because of the large C stocks held by tropical peat soils that are potential sensitivity to human disturbance. Here we report preliminary findings on C stocks and fluxes from a long-term, multi-scale project in Sarawak, Malaysia that aims to quantify the impacts of oil palm conversion on C and greenhouse gas fluxes from oil palm recently established on peat. Land-atmosphere fluxes were determined using a combination of top-down and bottom-up methods (eddy covariance, canopy/stem and soil flux measurements, net primary productivity). Fluvial fluxes were determined by quantifying rates of dissolved and particulate organic C export. Ecosystem C dynamics were determined using the intensive C plot method, which quantified all major C stocks and fluxes, including plant and soil stocks, leaf litterfall, aboveground biomass production, root production, stem/canopy respiration, root-rhizosphere respiration, and heterotrophic soil respiration. Preliminary analysis indicates that vegetative aboveground biomass in these 7 year old plantations was 8.9-11.9 Mg C ha-1, or approximately one-quarter of adjacent secondary forest. Belowground biomass was 5.6-6.5 Mg C ha-1; on par with secondary forests. Soil C stocks in the 0-30 cm depth was 233.1-240.8 Mg C ha-1, or 32-36% greater than soil C stocks in secondary forests at the same depth (176.8 Mg C ha-1). Estimates of vegetative aboveground and belowground net primary productivity were 1.3-1.7 Mg C ha-1 yr-1 and 0.8-0.9 Mg C ha-1 yr-1, respectively. Fruit brunch production was approximately 67 Mg C ha-1over 7 yearsor 9.6 Mg C ha-1 yr-1. Total soil respiration rates were 18 Mg C ha

  7. [Regional and global estimates of carbon stocks and carbon sequestration capacity in forest ecosystems: A review].

    Science.gov (United States)

    Liu, Wei-wei; Wang, Xiao-ke; Lu, Fei; Ouyang, Zhi-yun

    2015-09-01

    As a dominant part of terrestrial ecosystems, forest ecosystem plays an important role in absorbing atmospheric CO2 and global climate change mitigation. From the aspects of zonal climate and geographical distribution, the present carbon stocks and carbon sequestration capacity of forest ecosystem were comprehensively examined based on the review of the latest literatures. The influences of land use change on forest carbon sequestration were analyzed, and factors that leading to the uncertainty of carbon sequestration assessment in forest ecosystem were also discussed. It was estimated that the current forest carbon stock was in the range of 652 to 927 Pg C and the carbon sequestration capacity was approximately 4.02 Pg C · a(-1). In terms of zonal climate, the carbon stock and carbon sequestration capacity of tropical forest were the maximum, about 471 Pg C and 1.02-1.3 Pg C · a(-1) respectively; then the carbon stock of boreal forest was about 272 Pg C, while its carbon sequestration capacity was the minimum, approximately 0.5 Pg C · a(-1); for temperate forest, the carbon stock was minimal, around 113 to 159 Pg C and its carbon sequestration capacity was 0.8 Pg C · a(-1). From the aspect of geographical distribution, the carbon stock of forest ecosystem in South America was the largest (187.7-290 Pg C), then followed by European (162.6 Pg C), North America (106.7 Pg C), Africa (98.2 Pg C) and Asia (74.5 Pg C), and Oceania (21.7 Pg C). In addition, carbon sequestration capacity of regional forest ecosystem was summed up as listed below: Tropical South America forest was the maximum (1276 Tg C · a(-1)), then were Tropical Africa (753 Tg C · a(-1)), North America (248 Tg C · a(-1)) and European (239 Tg C · a(-1)), and East Asia (98.8-136.5 Tg C · a(-1)) was minimum. To further reduce the uncertainty in the estimations of the carbon stock and carbon sequestration capacity of forest ecosystem, comprehensive application of long-term observation, inventories

  8. Carbon and nutrient stocks of three Fabaceae trees used for forest restoration and subjected to fertilization in Amazonia.

    Science.gov (United States)

    Jaquetti, Roberto K; Gonçalves, José Francisco C

    2017-01-01

    Amazonia is crucial to global carbon cycle. Deforestation continues to be one of the main causes of the release of C into the atmosphere, but forest restoration plantations can reverse this scenario. However, there is still diffuse information about the C and nutrient stocks in the vegetation biomass. We investigated the carbon and nutrient stocks of Fabaceae trees (Inga edulis, Schizolobium amazonicum and Dipteryx odorata) subjected to fertilization treatments (T1 - no fertilization; T2 - chemical; T3 - organic; and T4 - organic and chemical fertilization) in a degraded area of the Balbina Hydroelectric Dam, AM - Brazil. As an early successional species, I. edulis stocked more C and nutrients than the other two species independent of the fertilization treatment, and S. amazonicum stocked more C than D. odorata under T1 and T4. The mixed species plantation had the potential to stock 4.1 Mg C ha-1 year-1, while I. edulis alone could stock 9.4 Mg C ha-1 year-1. Mixing species that rapidly assimilate C and are of significant ecological and commercial value (e.g., Fabaceae trees) represents a good way to restore degraded areas. Our results suggest that the tested species be used for forest restoration in Amazonia.

  9. Carbon and nutrient stocks of three Fabaceae trees used for forest restoration and subjected to fertilization in Amazonia

    Directory of Open Access Journals (Sweden)

    ROBERTO K. JAQUETTI

    2017-08-01

    Full Text Available ABSTRACT Amazonia is crucial to global carbon cycle. Deforestation continues to be one of the main causes of the release of C into the atmosphere, but forest restoration plantations can reverse this scenario. However, there is still diffuse information about the C and nutrient stocks in the vegetation biomass. We investigated the carbon and nutrient stocks of Fabaceae trees (Inga edulis, Schizolobium amazonicum and Dipteryx odorata subjected to fertilization treatments (T1 - no fertilization; T2 - chemical; T3 - organic; and T4 - organic and chemical fertilization in a degraded area of the Balbina Hydroelectric Dam, AM - Brazil. As an early successional species, I. edulis stocked more C and nutrients than the other two species independent of the fertilization treatment, and S. amazonicum stocked more C than D. odorata under T1 and T4. The mixed species plantation had the potential to stock 4.1 Mg C ha-1 year-1, while I. edulis alone could stock 9.4 Mg C ha-1 year-1. Mixing species that rapidly assimilate C and are of significant ecological and commercial value (e.g., Fabaceae trees represents a good way to restore degraded areas. Our results suggest that the tested species be used for forest restoration in Amazonia.

  10. Soil Organic Carbon Fractions and Stocks Respond to Restoration Measures in Degraded Lands by Water Erosion

    Science.gov (United States)

    Nie, Xiaodong; Li, Zhongwu; Huang, Jinquan; Huang, Bin; Xiao, Haibing; Zeng, Guangming

    2017-05-01

    Assessing the degree to which degraded soils can be recovered is essential for evaluating the effects of adopted restoration measures. The objective of this study was to determine the restoration of soil organic carbon under the impact of terracing and reforestation. A small watershed with four typical restored plots (terracing and reforestation (four different local plants)) and two reference plots (slope land with natural forest (carbon-depleted) and abandoned depositional land (carbon-enriched)) in subtropical China was studied. The results showed that soil organic carbon, dissolved organic carbon and microbial biomass carbon concentrations in the surface soil (10 cm) of restored lands were close to that in abandoned depositional land and higher than that in natural forest land. There was no significant difference in soil organic carbon content among different topographic positions of the restored lands. Furthermore, the soil organic carbon stocks in the upper 60 cm soils of restored lands, which were varied between 50.08 and 62.21 Mg C ha-1, were higher than 45.90 Mg C ha-1 in natural forest land. Our results indicated that the terracing and reforestation could greatly increase carbon sequestration and accumulation and decrease carbon loss induced by water erosion. And the combination measures can accelerate the restoration of degraded soils when compared to natural forest only. Forest species almost have no impact on the total amount of soil organic carbon during restoration processes, but can significantly influence the activity and stability of soil organic carbon. Combination measures which can provide suitable topography and continuous soil organic carbon supply could be considered in treating degraded soils caused by water erosion.

  11. Soil Organic Carbon Fractions and Stocks Respond to Restoration Measures in Degraded Lands by Water Erosion.

    Science.gov (United States)

    Nie, Xiaodong; Li, Zhongwu; Huang, Jinquan; Huang, Bin; Xiao, Haibing; Zeng, Guangming

    2017-05-01

    Assessing the degree to which degraded soils can be recovered is essential for evaluating the effects of adopted restoration measures. The objective of this study was to determine the restoration of soil organic carbon under the impact of terracing and reforestation. A small watershed with four typical restored plots (terracing and reforestation (four different local plants)) and two reference plots (slope land with natural forest (carbon-depleted) and abandoned depositional land (carbon-enriched)) in subtropical China was studied. The results showed that soil organic carbon, dissolved organic carbon and microbial biomass carbon concentrations in the surface soil (10 cm) of restored lands were close to that in abandoned depositional land and higher than that in natural forest land. There was no significant difference in soil organic carbon content among different topographic positions of the restored lands. Furthermore, the soil organic carbon stocks in the upper 60 cm soils of restored lands, which were varied between 50.08 and 62.21 Mg C ha -1 , were higher than 45.90 Mg C ha -1 in natural forest land. Our results indicated that the terracing and reforestation could greatly increase carbon sequestration and accumulation and decrease carbon loss induced by water erosion. And the combination measures can accelerate the restoration of degraded soils when compared to natural forest only. Forest species almost have no impact on the total amount of soil organic carbon during restoration processes, but can significantly influence the activity and stability of soil organic carbon. Combination measures which can provide suitable topography and continuous soil organic carbon supply could be considered in treating degraded soils caused by water erosion.

  12. Comparisons of allometric and climate-derived estimates of tree coarse root carbon stocks in forests of the United States.

    Science.gov (United States)

    Russell, Matthew B; Domke, Grant M; Woodall, Christopher W; D'Amato, Anthony W

    2015-12-01

    Refined estimation of carbon (C) stocks within forest ecosystems is a critical component of efforts to reduce greenhouse gas emissions and mitigate the effects of projected climate change through forest C management. Specifically, belowground C stocks are currently estimated in the United States' national greenhouse gas inventory (US NGHGI) using nationally consistent species- and diameter-specific equations applied to individual trees. Recent scientific evidence has pointed to the importance of climate as a driver of belowground C stocks. This study estimates belowground C using current methods applied in the US NGHGI and describes a new approach for merging both allometric models with climate-derived predictions of belowground C stocks. Climate-adjusted predictions were variable depending on the region and forest type of interest, but represented an increase of 368.87 Tg of belowground C across the US, or a 6.4 % increase when compared to currently-implemented NGHGI estimates. Random forests regressions indicated that aboveground biomass, stand age, and stand origin (i.e., planted versus artificial regeneration) were useful predictors of belowground C stocks. Decreases in belowground C stocks were modeled after projecting mean annual temperatures at various locations throughout the US up to year 2090. By combining allometric equations with trends in temperature, we conclude that climate variables can be used to adjust the US NGHGI estimates of belowground C stocks. Such strategies can be used to determine the effects of future global change scenarios within a C accounting framework.

  13. Improved Forest Biomass and Carbon Estimations Using Texture Measures from WorldView-2 Satellite Data

    Directory of Open Access Journals (Sweden)

    Sandra Eckert

    2012-03-01

    Full Text Available Accurate estimation of aboveground biomass and carbon stock has gained importance in the context of the United Nations Framework Convention on Climate Change (UNFCCC and the Kyoto Protocol. In order to develop improved forest stratum–specific aboveground biomass and carbon estimation models for humid rainforest in northeast Madagascar, this study analyzed texture measures derived from WorldView-2 satellite data. A forest inventory was conducted to develop stratum-specific allometric equations for dry biomass. On this basis, carbon was calculated by applying a conversion factor. After satellite data preprocessing, vegetation indices, principal components, and texture measures were calculated. The strength of their relationships with the stratum-specific plot data was analyzed using Pearson’s correlation. Biomass and carbon estimation models were developed by performing stepwise multiple linear regression. Pearson’s correlation coefficients revealed that (a texture measures correlated more with biomass and carbon than spectral parameters, and (b correlations were stronger for degraded forest than for non-degraded forest. For degraded forest, the texture measures of Correlation, Angular Second Moment, and Contrast, derived from the red band, contributed to the best estimation model, which explained 84% of the variability in the field data (relative RMSE = 6.8%. For non-degraded forest, the vegetation index EVI and the texture measures of Variance, Mean, and Correlation, derived from the newly introduced coastal blue band, both NIR bands, and the red band, contributed to the best model, which explained 81% of the variability in the field data (relative RMSE = 11.8%. These results indicate that estimation of tropical rainforest biomass/carbon, based on very high resolution satellite data, can be improved by (a developing and applying forest stratum–specific models, and (b including textural information in addition to spectral information.

  14. Impacts of Frequent Burning on Live Tree Carbon Biomass and Demography in Post-Harvest Regrowth Forest

    Directory of Open Access Journals (Sweden)

    Luke Collins

    2014-04-01

    Full Text Available The management of forest ecosystems to increase carbon storage is a global concern. Fire frequency has the potential to shift considerably in the future. These shifts may alter demographic processes and growth of tree species, and consequently carbon storage in forests. Examination of the sensitivity of forest carbon to the potential upper and lower extremes of fire frequency will provide crucial insight into the magnitude of possible change in carbon stocks associated with shifts in fire frequency. This study examines how tree biomass and demography of a eucalypt forest regenerating after harvest is affected by two experimentally manipulated extremes in fire frequency (i.e., ~3 year fire intervals vs. unburnt sustained over a 23 year period. The rate of post-harvest biomass recovery of overstorey tree species, which constituted ~90% of total living tree biomass, was lower within frequently burnt plots than unburnt plots, resulting in approximately 20% lower biomass in frequently burnt plots by the end of the study. Significant differences in carbon biomass between the two extremes in frequency were only evident after >15–20 years of sustained treatment. Reduced growth rates and survivorship of smaller trees on the frequently burnt plots compared to unburnt plots appeared to be driving these patterns. The biomass of understorey trees, which constituted ~10% of total living tree biomass, was not affected by frequent burning. These findings suggest that future shifts toward more frequent fire will potentially result in considerable reductions in carbon sequestration across temperate forest ecosystems in Australia.

  15. SOM and Biomass C Stocks in Degraded and Undisturbed Andean and Coastal Nothofagus Forests of Southwestern South America

    Directory of Open Access Journals (Sweden)

    Francis Dube

    2016-12-01

    Full Text Available Grazing and over-exploitation can severely degrade soil in native forests. Considering that productivity in ecosystems is related to soil organic matter (SOM content and quality, the objectives of this study were to: (1 determine the influence of degraded (DEF, partly-degraded (PDF, and undisturbed (UNF Nothofagus forests on the stocks of carbon (C in tree biomass and SOM; (2 evaluate fractions of SOM as indicators of sustainable management; and (3 use the Century model to determine the potential gains of soil organic C (SOC. The forests are located in the Andes and Coastal mountains of southern Chile. The SOM was fractionated to separate the light fraction (LF, macroaggregates (>212 µm, mesoaggregates (212–53 µm, and microaggregates (<53 µm. In two measurement periods, the SOC stocks at 0–20 cm and 20–40 cm depths in macroaggregates were on average 100% higher in the Andean UNF, and SOC was over twice as much at 20–40 cm depth in Andean DEF. Century simulations showed that improved silvopastoral management would gradually increase total SOC in degraded soils of both sites, especially the Ultisol with a 15% increase between 2016 and 2216 (vs. 7% in the Andisol. Greater SOC in macroaggregates (p < 0.05 of UNF indicate a condition of higher sustainability and better management over the years.

  16. Above ground standing biomass and carbon storage in village bamboos in North East India

    Energy Technology Data Exchange (ETDEWEB)

    Jyoti Nath, Arun; Das, Ashesh Kumar [Department of Ecology and Environmental Science, Assam University, Silchar 788011, Assam (India); Das, Gitasree [Department of Statistics, North Eastern Hill University, Shillong 793022, Meghalaya (India)

    2009-09-15

    Bamboo forms an important component in the traditional landscape of North East India. For biomass estimation of village bamboos of Barak Valley, North East India, allometric relationships were developed by harvest method describing leaf, branch and culm biomass with DBH as an independent variable using a log linear model. The culm density of the stand was 8950 culms ha{sup -1} during 2005 of which 67% of growing stock was represented by Bambusa cacharensis, 17.88% by Bambusa vulgaris and 15.12% by Bambusa balcooa. Above ground stand biomass was 121.51 t ha{sup -1} of which 86% was contributed by culm component followed by branch (10%) and leaf (4%). With respect to species, B. cacharensis made up to 46% of total stand biomass followed by B. vulgaris (28%) and B. balcooa (26%). Carbon storage in the above ground biomass was 61.05 t ha{sup -1}. Allocation of C was more in culm components (53.05 t ha{sup -1}) than in branch (5.81 t ha{sup -1}) and leaf (2.19 t ha{sup -1}). Carbon storage in the litter floor mass was 2.40 t ha{sup -1}, of which leaf litter made up the highest amount (1.37 t ha{sup -1}) followed by sheath (0.86 t ha{sup -1}) and branch (0.17 t ha{sup -1}). Carbon stock in the soil up to 30 cm depth was 57.3 t ha{sup -1}. Gross C stock in the plantation was estimated to be 120.75 t ha{sup -1}. Carbon storage estimated in the bamboo stand of present study offers insights into the opportunity of village bamboos in the rural landscape for carbon storage through carbon sequestration. Management and utilization of village bamboos as a potential source of carbon sink by smallholder farmers are discussed in the context of their livelihood security and the Millennium Development Goals of the United Nations. (author)

  17. Biomass derived porous nitrogen doped carbon for electrochemical devices

    Directory of Open Access Journals (Sweden)

    Litao Yan

    2017-04-01

    Full Text Available Biomass derived porous nanostructured nitrogen doped carbon (PNC has been extensively investigated as the electrode material for electrochemical catalytic reactions and rechargeable batteries. Biomass with and without containing nitrogen could be designed and optimized to prepare PNC via hydrothermal carbonization, pyrolysis, and other methods. The presence of nitrogen in carbon can provide more active sites for ion absorption, improve the electronic conductivity, increase the bonding between carbon and sulfur, and enhance the electrochemical catalytic reaction. The synthetic methods of natural biomass derived PNC, heteroatomic co- or tri-doping into biomass derived carbon and the application of biomass derived PNC in rechargeable Li/Na batteries, high energy density Li–S batteries, supercapacitors, metal-air batteries and electrochemical catalytic reaction (oxygen reduction and evolution reactions, hydrogen evolution reaction are summarized and discussed in this review. Biomass derived PNCs deliver high performance electrochemical storage properties for rechargeable batteries/supercapacitors and superior electrochemical catalytic performance toward hydrogen evolution, oxygen reduction and evolution, as promising electrodes for electrochemical devices including battery technologies, fuel cell and electrolyzer. Keywords: Biomass, Nitrogen doped carbon, Batteries, Fuel cell, Electrolyzer

  18. CMS: Forest Carbon Stocks, Emissions, and Net Flux for the Conterminous US: 2005-2010

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides maps of estimated carbon in forests of the 48 continental states of the US for the years 2005-2010. Carbon (termed committed carbon) stocks...

  19. Predicting future UK housing stock and carbon emissions

    International Nuclear Information System (INIS)

    Natarajan, Sukumar; Levermore, Geoffrey J.

    2007-01-01

    This paper presents a novel method for exploring future transformations in the UK housing stock. The method is shown to be more robust and faster than existing methods through various tests. A Java-based implementation of the method in a new model of the UK housing stock, DECarb, is examined using a back-cast scenario from 1970 to 1996. The results show an average difference of -5.4% between predicted and actual energy demand. Comparison with predicted carbon emissions from the BRE's BREHOMES model shows a difference of around -0.9% for the same period. These results suggest that DECarb is likely to be an effective tool in examining future scenarios since the same objects and processes used in back-casting in the model are also used in forecasting. The model has an open framework and could therefore significantly benefit ongoing domestic and non-domestic climate futures research

  20. Biomass and carbon pools of disturbed riparian forests

    Science.gov (United States)

    Laura A. B. Giese; W. M. Aust; Randall K. Kolka; Carl C. Trettin

    2003-01-01

    Quantification of carbon pools as affected by forest age/development can facilitate riparian restoration and increase awareness of the potential for forests to sequester global carbon. Riparian forest biomass and carbon pools were quantified for four riparian forests representing different seral stages in the South Carolina Upper Coastal Plain. Three of the riparian...

  1. Investigation into calculating tree biomass and carbon in the FIADB using a biomass expansion factor approach

    Science.gov (United States)

    Linda S. Heath; Mark Hansen; James E. Smith; Patrick D. Miles

    2009-01-01

    The official U.S. forest carbon inventories (U.S. EPA 2008) have relied on tree biomass estimates that utilize diameter based prediction equations from Jenkins and others (2003), coupled with U.S. Forest Service, Forest Inventory and Analysis (FIA) sample tree measurements and forest area estimates. However, these biomass prediction equations are not the equations used...

  2. Impacts of fire management on aboveground tree carbon stocks in Yosemite and Sequoia & Kings Canyon National Parks

    Science.gov (United States)

    Matchett, John R.; Lutz, James A.; Tarnay, Leland W.; Smith, Douglas G.; Becker, Kendall M.L.; Brooks, Matthew L.

    2015-01-01

    Forest biomass on Sierra Nevada landscapes constitutes one of the largest carbon stocks in California, and its stability is tightly linked to the factors driving fire regimes. Research suggests that fire suppression, logging, climate change, and present management practices in Sierra Nevada forests have altered historic patterns of landscape carbon storage, and over a century of fire suppression and the resulting accumulation in surface fuels have been implicated in contributing to recent increases in high severity, stand-replacing fires. For over 30 years, fire management at Yosemite (YOSE) and Sequoia & Kings Canyon (SEKI) national parks has led the nation in restoring fire to park landscapes; however, the impacts on the stability and magnitude of carbon stocks have not been thoroughly examined.

  3. Method for creating high carbon content products from biomass oil

    Science.gov (United States)

    Parker, Reginald; Seames, Wayne

    2012-12-18

    In a method for producing high carbon content products from biomass, a biomass oil is added to a cracking reactor vessel. The biomass oil is heated to a temperature ranging from about 100.degree. C. to about 800.degree. C. at a pressure ranging from about vacuum conditions to about 20,700 kPa for a time sufficient to crack the biomass oil. Tar is separated from the cracked biomass oil. The tar is heated to a temperature ranging from about 200.degree. C. to about 1500.degree. C. at a pressure ranging from about vacuum conditions to about 20,700 kPa for a time sufficient to reduce the tar to a high carbon content product containing at least about 50% carbon by weight.

  4. Carbon Sequestration Potential in Aboveground Biomass of Hybrid Eucalyptus Plantation Forest

    Directory of Open Access Journals (Sweden)

    Siti Latifah

    2013-04-01

    Full Text Available Forests are a significant part of the global carbon cycle. Forests sequester carbon by conducting photosynthesis, which is the process of converting light energy to chemical energy and storing it in the chemical bonds of sugar. Carbon sequestration through forestry has the potential to play a significant role in ameliorating global environmental problems such as atmospheric accumulation of GHG's and climate change.  The present investigation was carried out to determine carbon sequestration potential of hybrid Eucalyptus. This study was conducted primarily to develop a prediction model of carbon storage capacity for plantation forest of hybrid Eucalyptus in Aek Nauli, Simalungun District, North Sumatera. Models were tested and assessed for statistical validity and accuracy in predicting biomass and carbon, based on determination coefficient (R and correlation coefficient (r, aggregative deviation percentage (AgD, and the average deviation percentage (AvD. The best general model to estimate the biomass of hybrid Eucalyptus was Y = 1351,09x^0,876. e^(0,094.  Results showed that hybrid Eucalyptus had an average above-ground biomass in year 0 (the land without the eucalyptus trees up to year 3 as large as 1.36, 11.56, 43.18, and 63.84 t ha. The carbon content of hybrid Eucalyptus were 0.61, 5.2, 19.43 t^(-1, and 28,73  t^(-1 C ha while the carbon sequestration potential were 2.23, 19.08, 71.31, and 105.43 t^(-1 CO  ha^(-1 respectively.Keywords: biomass, carbon stock, model, hybrid Eucalyptus, plantation forest

  5. Variation of biomass and carbon pools with forest type in temperate forests of Kashmir Himalaya, India.

    Science.gov (United States)

    Dar, Javid Ahmad; Sundarapandian, Somaiah

    2015-02-01

    An accurate characterization of tree, understory, deadwood, floor litter, and soil organic carbon (SOC) pools in temperate forest ecosystems is important to estimate their contribution to global carbon (C) stocks. However, this information on temperate forests of the Himalayas is lacking and fragmented. In this study, we measured C stocks of tree (aboveground and belowground biomass), understory (shrubs and herbaceous), deadwood (standing and fallen trees and stumps), floor litter, and soil from 111 plots of 50 m × 50 m each, in seven forest types: Populus deltoides (PD), Juglans regia (JR), Cedrus deodara (CD), Pinus wallichiana (PW), mixed coniferous (MC), Abies pindrow (AP), and Betula utilis (BU) in temperate forests of Kashmir Himalaya, India. The main objective of the present study is to quantify the ecosystem C pool in these seven forest types. The results showed that the tree biomass ranged from 100.8 Mg ha(-1) in BU forest to 294.8 Mg ha(-1) for the AP forest. The understory biomass ranged from 0.16 Mg ha(-1) in PD forest to 2.36 Mg ha(-1) in PW forest. Deadwood biomass ranged from 1.5 Mg ha(-1) in PD forest to 14.9 Mg ha(-1) for the AP forest, whereas forest floor litter ranged from 2.5 Mg ha(-1) in BU and JR forests to 3.1 Mg ha(-1) in MC forest. The total ecosystem carbon stocks varied from 112.5 to 205.7 Mg C ha(-1) across all the forest types. The C stocks of tree, understory, deadwood, litter, and soil ranged from 45.4 to 135.6, 0.08 to 1.18, 0.7 to 6.8, 1.1 to 1.4, and 39.1-91.4 Mg ha(-1), respectively, which accounted for 61.3, 0.2, 1.4, 0.8, and 36.3 % of the total carbon stock. BU forest accounted 65 % from soil C and 35 % from biomass, whereas PD forest contributed only 26 % from soil C and 74 % from biomass. Of the total C stock in the 0-30-cm soil, about 55 % was stored in the upper 0-10 cm. Soil C stocks in BU forest were significantly higher than those in other forests. The variability of C pools of different ecosystem components is

  6. Impacts of disturbance history on annual carbon stocks and fluxes in southeastern US forests during 1986-2010 using remote sensing, forest inventory data, and a carbon cycle model

    Science.gov (United States)

    Gu, H.; Zhou, Y.; Williams, C. A.

    2017-12-01

    Accurate assessment of forest carbon storage and uptake is central to policymaking aimed at mitigating climate change and understanding the role forests play in the global carbon cycle. Disturbance events are highly heterogeneous in space and time, impacting forest carbon dynamics and challenging the quantification and reporting of carbon stocks and fluxes. This study documents annual carbon stocks and fluxes from 1986 and 2010 mapped at 30-m resolution across southeastern US forests, characterizing how they respond to disturbances and ensuing regrowth. Forest inventory data (FIA) are used to parameterize a carbon cycle model (CASA) to represent post-disturbance carbon trajectories of carbon pools and fluxes with time following harvest, fire and bark beetle disturbances of varying severity and across forest types and site productivity settings. Time since disturbance at 30 meters is inferred from two remote-sensing data sources: disturbance year (NAFD, MTBS and ADS) and biomass (NBCD 2000) intersected with FIA-derived curves of biomass accumulation with stand age. All of these elements are combined to map carbon stocks and fluxes at a 30-m resolution for the year 2010, and to march backward in time for continuous, annual reporting. Results include maps of annual carbon stocks and fluxes for forests of the southeastern US, and analysis of spatio-temporal patterns of carbon sources/sinks at local and regional scales.

  7. Irrigating grazed pasture decreases soil carbon and nitrogen stocks.

    Science.gov (United States)

    Mudge, Paul L; Kelliher, Francis M; Knight, Trevor L; O'Connell, Denis; Fraser, Scott; Schipper, Louis A

    2017-02-01

    The sustainability of using irrigation to produce food depends not only on the availability of sufficient water, but also on the soil's 'response' to irrigation. Stocks of carbon (C) and nitrogen (N) are key components of soil organic matter (SOM), which is important for sustainable agricultural production. While there is some information about the effects of irrigation on soil C stocks in cropping systems, there is a paucity of such studies in pastoral food production systems. For this study, we sampled soils from 34 paired, irrigated and unirrigated pasture sites across New Zealand (NZ) and analysed these for total C and N. On average, irrigated pastures had significantly (P stocks and the length of time under irrigation. This study suggests SOM will decrease when pastures under a temperate climate are irrigated. On this basis, increasing the area of temperate pasture land under irrigation would result in more CO 2 in the atmosphere and may directly and indirectly increase N leaching to groundwater. Given the large and increasing area of land being irrigated both in NZ and on a global scale, there is an urgent need to determine whether the results found in this study are also applicable in other regions and under different land management systems (e.g. arable). © 2016 John Wiley & Sons Ltd.

  8. Landscape-Scale Controls on Aboveground Forest Carbon Stocks on the Osa Peninsula, Costa Rica.

    Directory of Open Access Journals (Sweden)

    Philip Taylor

    Full Text Available Tropical forests store large amounts of carbon in tree biomass, although the environmental controls on forest carbon stocks remain poorly resolved. Emerging airborne remote sensing techniques offer a powerful approach to understand how aboveground carbon density (ACD varies across tropical landscapes. In this study, we evaluate the accuracy of the Carnegie Airborne Observatory (CAO Light Detection and Ranging (LiDAR system to detect top-of-canopy tree height (TCH and ACD across the Osa Peninsula, Costa Rica. LiDAR and field-estimated TCH and ACD were highly correlated across a wide range of forest ages and types. Top-of-canopy height (TCH reached 67 m, and ACD surpassed 225 Mg C ha-1, indicating both that airborne CAO LiDAR-based estimates of ACD are accurate in tall, high-biomass forests and that the Osa Peninsula harbors some of the most carbon-rich forests in the Neotropics. We also examined the relative influence of lithologic, topoedaphic and climatic factors on regional patterns in ACD, which are known to influence ACD by regulating forest productivity and turnover. Analyses revealed a spatially nested set of factors controlling ACD patterns, with geologic variation explaining up to 16% of the mapped ACD variation at the regional scale, while local variation in topographic slope explained an additional 18%. Lithologic and topoedaphic factors also explained more ACD variation at 30-m than at 100-m spatial resolution, suggesting that environmental filtering depends on the spatial scale of terrain variation. Our result indicate that patterns in ACD are partially controlled by spatial variation in geologic history and geomorphic processes underpinning topographic diversity across landscapes. ACD also exhibited spatial autocorrelation, which may reflect biological processes that influence ACD, such as the assembly of species or phenotypes across the landscape, but additional research is needed to resolve how abiotic and biotic factors

  9. The Use of Mixed Effects Models for Obtaining Low-Cost Ecosystem Carbon Stock Estimates in Mangroves of the Asia-Pacific

    Science.gov (United States)

    Bukoski, Jacob J.; Broadhead, Jeremy S.; Donato, Daniel C.; Murdiyarso, Daniel; Gregoire, Timothy G.

    2017-01-01

    Mangroves provide extensive ecosystem services that support local livelihoods and international environmental goals, including coastal protection, biodiversity conservation and the sequestration of carbon (C). While voluntary C market projects seeking to preserve and enhance forest C stocks offer a potential means of generating finance for mangrove conservation, their implementation faces barriers due to the high costs of quantifying C stocks through field inventories. To streamline C quantification in mangrove conservation projects, we develop predictive models for (i) biomass-based C stocks, and (ii) soil-based C stocks for the mangroves of the Asia-Pacific. We compile datasets of mangrove biomass C (197 observations from 48 sites) and soil organic C (99 observations from 27 sites) to parameterize the predictive models, and use linear mixed effect models to model the expected C as a function of stand attributes. The most parsimonious biomass model predicts total biomass C stocks as a function of both basal area and the interaction between latitude and basal area, whereas the most parsimonious soil C model predicts soil C stocks as a function of the logarithmic transformations of both latitude and basal area. Random effects are specified by site for both models, which are found to explain a substantial proportion of variance within the estimation datasets and indicate significant heterogeneity across-sites within the region. The root mean square error (RMSE) of the biomass C model is approximated at 24.6 Mg/ha (18.4% of mean biomass C in the dataset), whereas the RMSE of the soil C model is estimated at 4.9 mg C/cm3 (14.1% of mean soil C). The results point to a need for standardization of forest metrics to facilitate meta-analyses, as well as provide important considerations for refining ecosystem C stock models in mangroves. PMID:28068361

  10. Effects of stand and inter-specific stocking on maximizing standing tree carbon stocks in the eastern United States

    Science.gov (United States)

    Christopher W. Woodall; Anthony W. D' Amato; John B. Bradford; Andrew O. Finley

    2011-01-01

    There is expanding interest in management strategies that maximize forest carbon (C) storage to mitigate increased atmospheric carbon dioxide. The tremendous tree species diversity and range of stand stocking found across the eastern United States presents a challenge for determining optimal combinations for the maximization of standing tree C storage. Using a...

  11. A forward-looking, national-scale remote sensing-based model of tidal marsh aboveground carbon stocks

    Science.gov (United States)

    Holmquist, J. R.; Byrd, K. B.; Ballanti, L.; Nguyen, D.; Simard, M.; Windham-Myers, L.; Thomas, N.

    2017-12-01

    Remote sensing based maps of tidal marshes, both of their extents and carbon stocks, have the potential to play a key role in conducting greenhouse gas inventories and implementing climate mitigation policies. Our goal was to generate a single remote sensing model of tidal marsh aboveground biomass and carbon that represents nationally diverse tidal marshes within the conterminous United States (CONUS). To meet this objective we developed the first national-scale dataset of aboveground tidal marsh biomass, species composition, and aboveground plant carbon content (%C) from six CONUS regions: Cape Cod, MA, Chesapeake Bay, MD, Everglades, FL, Mississippi Delta, LA, San Francisco Bay, CA, and Puget Sound, WA. Using the random forest algorithm we tested Sentinel-1 radar backscatter metrics and Landsat vegetation indices as predictors of biomass. The final model, driven by six Landsat vegetation indices and with the soil adjusted vegetation index as the most important (n=409, RMSE=310 g/m2, 10.3% normalized RMSE), successfully predicted biomass and carbon for a range of marsh plant functional types defined by height, leaf angle and growth form. Model error was reduced by scaling field measured biomass by Landsat fraction green vegetation derived from object-based classification of National Agriculture Imagery Program imagery. We generated 30m resolution biomass maps for estuarine and palustrine emergent tidal marshes as indicated by a modified NOAA Coastal Change Analysis Program map for each region. With a mean plant %C of 44.1% (n=1384, 95% C.I.=43.99% - 44.37%) we estimated mean aboveground carbon densities (Mg/ha) and total carbon stocks for each wetland type for each region. Louisiana palustrine emergent marshes had the highest C density (2.67 ±0.08 Mg/ha) of all regions, while San Francisco Bay brackish/saline marshes had the highest C density of all estuarine emergent marshes (2.03 ±0.06 Mg/ha). This modeling and data synthesis effort will allow for aboveground

  12. Carbon stocks of intact mangroves and carbon emissions arising from their conversion in the Dominican Republic.

    Science.gov (United States)

    Kauffman, J Boone; Heider, Chris; Norfolk, Jennifer; Payton, Frederick

    2014-04-01

    Mangroves are recognized to possess a variety of ecosystem services including high rates of carbon sequestration and storage. Deforestation and conversion of these ecosystems continue to be high and have been predicted to result in significant carbon emissions to the atmosphere. Yet few studies have quantified the carbon stocks or losses associated with conversion of these ecosystems. In this study we quantified the ecosystem carbon stocks of three common mangrove types of the Caribbean as well as those of abandoned shrimp ponds in areas formerly occupied by mangrove-a common land-use conversion of mangroves throughout the world. In the mangroves of the Montecristi Province in Northwest Dominican Republic we found C stocks ranged from 706 to 1131 Mg/ha. The medium-statured mangroves (3-10 m in height) had the highest C stocks while the tall (> 10 m) mangroves had the lowest ecosystem carbon storage. Carbon stocks of the low mangrove (shrub) type (stocks of abandoned shrimp ponds were 95 Mg/ha or approximately 11% that of the mangroves. Using a stock-change approach, the potential emissions from the conversion of mangroves to shrimp ponds ranged from 2244 to 3799 Mg CO2e/ha (CO2 equivalents). This is among the largest measured C emissions from land use in the tropics. The 6260 ha of mangroves and converted mangroves in the Montecristi Province are estimated to contain 3,841,490 Mg of C. Mangroves represented 76% of this area but currently store 97% of the carbon in this coastal wetland (3,696,722 Mg C). Converted lands store only 4% of the total ecosystem C (144,778 Mg C) while they comprised 24% of the area. By these metrics the replacement of mangroves with shrimp and salt ponds has resulted in estimated emissions from this region totaling 3.8 million Mg CO2e or approximately 21% of the total C prior to conversion. Given the high C stocks of mangroves, the high emissions from their conversion, and the other important functions and services they provide, their

  13. A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xiaofeng [ORNL; Thornton, Peter E [ORNL; Post, Wilfred M [ORNL

    2013-01-01

    Soil microbes play a pivotal role in regulating land-atmosphere interactions; the soil microbial biomass carbon (C), nitrogen (N), phosphorus (P) and C:N:P stoichiometry are important regulators for soil biogeochemical processes; however, the current knowledge on magnitude, stoichiometry, storage, and spatial distribution of global soil microbial biomass C, N, and P is limited. In this study, 3087 pairs of data points were retrieved from 281 published papers and further used to summarize the magnitudes and stoichiometries of C, N, and P in soils and soil microbial biomass at global- and biome-levels. Finally, global stock and spatial distribution of microbial biomass C and N in 0-30 cm and 0-100 cm soil profiles were estimated. The results show that C, N, and P in soils and soil microbial biomass vary substantially across biomes; the fractions of soil nutrient C, N, and P in soil microbial biomass are 1.6% in a 95% confidence interval of (1.5%-1.6%), 2.9% in a 95% confidence interval of (2.8%-3.0%), and 4.4% in a 95% confidence interval of (3.9%-5.0%), respectively. The best estimates of C:N:P stoichiometries for soil nutrients and soil microbial biomass are 153:11:1, and 47:6:1, respectively, at global scale, and they vary in a wide range among biomes. Vertical distribution of soil microbial biomass follows the distribution of roots up to 1 m depth. The global stock of soil microbial biomass C and N were estimated to be 15.2 Pg C and 2.3 Pg N in the 0-30 cm soil profiles, and 21.2 Pg C and 3.2 Pg N in the 0-100 cm soil profiles. We did not estimate P in soil microbial biomass due to data shortage and insignificant correlation with soil total P and climate variables. The spatial patterns of soil microbial biomass C and N were consistent with those of soil organic C and total N, i.e. high density in northern high latitude, and low density in low latitudes and southern hemisphere.

  14. A Path Forward for Low Carbon Power from Biomass

    Directory of Open Access Journals (Sweden)

    Amanda D. Cuellar

    2015-02-01

    Full Text Available The two major pathways for energy utilization from biomass are conversion to a liquid fuel (i.e., biofuels or conversion to electricity (i.e., biopower. In the United States (US, biomass policy has focused on biofuels. However, this paper will investigate three options for biopower: low co-firing (co-firing scenarios refer to combusting a given percentage of biomass with coal (5%–10% biomass, medium co-firing (15%–20% biomass, and dedicated biomass firing (100% biomass. We analyze the economic and greenhouse gas (GHG emissions impact of each of these options, with and without CO2 capture and storage (CCS. Our analysis shows that in the absence of land use change emissions, all biomass co-combustion scenarios result in a decrease in GHG emissions over coal generation alone. The two biggest barriers to biopower are concerns about carbon neutrality of biomass fuels and the high cost compared to today’s electricity prices. This paper recommends two policy actions. First, the need to define sustainability criteria and initiate a certification process so that biomass providers have a fixed set of guidelines to determine whether their feedstocks qualify as renewable energy sources. Second, the need for a consistent, predictable policy that provides the economic incentives to make biopower economically attractive.

  15. Carbon Stock of Seagrass Community in Barranglompo Island, Makassar (Stok Karbon pada Komunitas Lamun di Pulau Barranglompo, Makassar

    Directory of Open Access Journals (Sweden)

    Supriadi Supriadi

    2014-03-01

    Full Text Available Konsep blue carbon yang diperkenalkan oleh UNEP, FAO dan UNESCO pada tahun 2009 memasukkan padang lamun sebagai salah satu ekosistem yang mempunyai peran dalam penyerapan karbon global. Karbon yang diserap disimpan dan dialirkan dalam beberapa kompartemen, antara lain di sedimen, herbivora, kolom air, ekosistem lain dan dalam bentuk biomassa. Penelitian dilakukan di Pulau Barranglompo, Makassar, untuk melihat potensi stok karbon yang tersimpan dalam biomassa lamun. Kepadatan lamun diukur dengan melakukan sampling menggunakan metode transek kuadrat dengan ukuran 50cm x 50cm. Sedangkan untuk biomassa dilakukan dengan transek 20cm x 20cm. Hubungan antara kepadatan, biomassa dan kandungan karbon dari lamun digunakan untuk menentukan jumlah stok karbon. Kepadatan lamun disurvei pada 236 titik, sedangkan untuk pengambilan sampel biomassa dilakukan pada 30 titik. Hasil penelitian menunjukkan bahwa komunitas lamun mempunyai total stok karbon sebesar 73,86 ton dari total luas padang lamun 64,3 ha. Karbon di bawah substrat sebesar 56,55 ton (76,3%, lebih tinggi dibanding karbon di atas substrat yang hanya 17,57 ton (23,7%. Jenis lamun Enhalus acoroides menyumbang lebih dari 70% terhadap total stok karbon. Berdasarkan kelas karbon, kontribusi terbesar ditemukan pada kelas 100-200 gC.m-2 sebesar 29,41 ton (39,7%. Hasil ini menunjukkan bahwa ekosistem lamun berperan sangat penting dalam menjaga stok karbon di laut sehingga perlu mendapatkan perhatian untuk konservasinya. Kata kunci: konsep blue karbon, lamun, Barranglompo   Blue carbon concept as introduced by UNEP, FAO and UNESCO in 2009 included seagrass beds as one ecosystem having a significant role in global carbon absorption. Absorbed carbon was stored and distributed in various compartments such as in sediments, herbivores, water column, other ecosystems and in form of biomass. The research was conducted in Barranglompo Island, Makassar City to analyze the potency of carbon stock that stored within

  16. Is torrefaction of polysaccharides-rich biomass equivalent to carbonization of lignin-rich biomass?

    Science.gov (United States)

    Bilgic, E; Yaman, S; Haykiri-Acma, H; Kucukbayrak, S

    2016-01-01

    Waste biomass species such as lignin-rich hazelnut shell (HS) and polysaccharides-rich sunflower seed shell (SSS) were subjected to torrefaction at 300°C and carbonization at 600°C under nitrogen. The structural variations in torrefied and carbonized biomasses were compared. Also, the burning characteristics under dry air and pure oxygen (oxy-combustion) conditions were investigated. It was concluded that the effects of carbonization on HS are almost comparable with the effects of torrefaction on SSS in terms of devolatilization and deoxygenation potentials and the increases in carbon content and the heating value. Consequently, it can be proposed that torrefaction does not provide efficient devolatilization from the lignin-rich biomass while it is relatively more efficient for polysaccharides-rich biomass. Heat-induced variations in biomass led to significant changes in the burning characteristics under both burning conditions. That is, low temperature reactivity of biomass reduced considerably and the burning shifted to higher temperatures with very high burning rates. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. 'Blue Carbon' and Nutrient Stocks of Salt Marshes at a Temperate Coastal Lagoon (Ria de Aveiro, Portugal).

    Science.gov (United States)

    Sousa, Ana I; Santos, Danielle B; Silva, Eduardo Ferreira da; Sousa, Lisa P; Cleary, Daniel F R; Soares, Amadeu M V M; Lillebø, Ana I

    2017-01-25

    Ria de Aveiro is a mesotidal coastal lagoon with one of the largest continuous salt marshes in Europe. The objective of this work was to assess C, N and P stocks of Spartina maritima (low marsh pioneer halophyte) and Juncus maritimus (representative of mid-high marsh halophytes) combined with the contribution of Halimione portulacoides, Sarcocornia perennis, and Bolbochenous maritimus to the lagoon ≈4400 ha marsh area. A multivariate analysis (PCO), taking into account environmental variables and the annual biomass and nutrient dynamics, showed that there are no clear seasonal or spatial differences within low or mid-high marshes, but clearly separates J. maritimus and S. maritima marshes. Calculations of C, N and P stocks in the biomass of the five most representative halophytes plus the respective rhizosediment (25 cm depth), and taking into account their relative coverage, represents 252053 Mg C, 38100 Mg N and 7563 Mg P. Over 90% of the stocks are found within mid-high marshes. This work shows the importance of this lagoon's salt marshes on climate and nutrients regulation, and defines the current condition concerning the 'blue carbon' and nutrient stocks, as a basis for prospective future scenarios of salt marsh degradation or loss, namely under SLR context.

  18. Carbon and Nitrogen Stocks and Humic Fractions in Brazilian Organosols

    Directory of Open Access Journals (Sweden)

    Gustavo Souza Valladares

    Full Text Available ABSTRACT Despite limited geographic expression of Organosols in Brazil, their high carbon storage capacity and natural environmental vulnerability justifies further studies on C and N stocks in these soils and their relationship to the nature of organic matter. Evaluation of physical and chemical properties of organic soils and their ability to store C is important so as to develop sustainable management practices for their preservation. The objectives of the study were to measure the total organic carbon stock (OCst, total nitrogen stock (Nst, and humic fractions in Organosols from different environments and regions of Brazil, and to correlate the data with soil chemical (pH, P, K, Ca2+, Mg2+, Al3+, H+Al, CEC, V and physical properties (soil bulk density, Bd; organic matter density, OMd; total pore space, TPS; minimum residue, MinR; and proportion of mineral matter, MM, and degree of organic matter decomposition (rubbed fiber content; pyrophosphate index, PyI; and von Post index. For that purpose, 18 Organosol profiles, in a total of 49 horizons, were sampled under different land usage and plant coverage conditions. The profiles were located in the following Brazilian states - Alagoas, Bahia, Distrito Federal, Espírito Santo, Mato Grosso do Sul, Minas Gerais, Paraná, Rio de Janeiro, Rio Grande do Sul, Santa Catarina, and São Paulo. The OCst and Nst varied significantly among horizons and profiles. The Organosols exhibited, on average, 203.59 Mg ha-1 OCst and 8.30 Mg ha-1 Nst, and the highest values were found in profiles with pasture usage. The content of the humic fraction (humin, HUM; fulvic acid, FAF; and humic acid, HAF and C storage varied in the soil horizons and profiles according to the degree of decomposition and other factors of soil formation. The OCst, Nst, OMd and the C stocks in the humic fractions were positively correlated. The values of acidity were lower in the soils with higher contents of mineral material, and low p

  19. Rainforest burning and the global carbon budget: Biomass, combustion efficiency, and charcoal formation in the Brazilian Amazon

    Science.gov (United States)

    Fearnside, Philip M.; Leal, Niwton; Fernandes, Fernando Moreira

    1993-01-01

    Biomass present before and after burning was measured in forest cleared for pasture in a cattle ranch (Fazenda Dimona) near Manaus, Amazonas, Brazil. Aboveground dry weight biomass loading averaged 265 t ha-1 (standard deviation (SD) = 110, n = 6 quadrats) at Fazenda Dimona, which corresponds to approximately 311 t ha-1 total dry weight biomass. A five-category visual classification at 200 points showed highly variable burn quality. Postburn aboveground biomass loading was evaluated by cutting and weighing of 100 m2 quadrats and by line intersect sampling. Quadrats had a mean dry weight of 187 t ha-1 (SD = 69, n = 10), a 29.3% reduction from the preburn mean in the same clearing. Line intersect estimates in 1.65 km of transects indicated that 265 m3 ha-1 (approximately 164 t ha-1 of aboveground dry matter) survived burning. Using carbon contents measured for different biomass components (all ˜50% carbon) and assuming a carbon content of 74.8% for charcoal (from other studies near Manaus), the destructive measurements imply a 27.6% reduction of aboveground carbon pools. Charcoal composed 2.5% of the dry weight of the remains in the postburn destructive quadrats and 2.8% of the volume in the line intersect transects. Thus approximately 2.7% of the preburn aboveground carbon stock was converted to charcoal, substantially less than is generally assumed in global carbon models. The findings confirm high values for biomass in central Amazonia. High variability indicates the need for further studies in many localities and for making maximum use of less laborious indirect methods of biomass estimation. While indirect methods are essential for regional estimates of average biomass, only direct weighing such as that reported here can yield information on combustion efficiency and charcoal formation. Both high biomass and low percentage of charcoal formation suggest the significant potential contribution of forest burning to global climate changes from CO2 and trace gases.

  20. Where did the US forest biomass/carbon go?

    Science.gov (United States)

    Christopher William. Woodall

    2012-01-01

    In Apr. 2012, with the submission of the 1990-2010 US Greenhouse Gas (GHG) Inventory to the United Nations Framework Convention on Climate Change (UNFCCC), the official estimates of aboveground live tree carbon stocks within managed forests of the United States will drop by approximately 14%, compared with last year's inventory. It does not stop there, dead wood...

  1. Tropical Africa: Land use, biomass, and carbon estimates for 1980

    Energy Technology Data Exchange (ETDEWEB)

    Brown, S. [Environmental Protection Agency, Corvallis, OR (United States). Western Ecology Division; Gaston, G. [Environmental Protection Agency, Corvallis, OR (United States). National Research Council; Daniels, R.C. [ed.] [Oak Ridge National Lab., TN (United States)

    1996-06-01

    This document describes the contents of a digital database containing maximum potential aboveground biomass, land use, and estimated biomass and carbon data for 1980 and describes a methodology that may be used to extend this data set to 1990 and beyond based on population and land cover data. The biomass data and carbon estimates are for woody vegetation in Tropical Africa. These data were collected to reduce the uncertainty associated with the possible magnitude of historical releases of carbon from land use change. Tropical Africa is defined here as encompassing 22.7 x 10{sup 6} km{sup 2} of the earth`s land surface and includes those countries that for the most part are located in Tropical Africa. Countries bordering the Mediterranean Sea and in southern Africa (i.e., Egypt, Libya, Tunisia, Algeria, Morocco, South Africa, Lesotho, Swaziland, and Western Sahara) have maximum potential biomass and land cover information but do not have biomass or carbon estimate. The database was developed using the GRID module in the ARC/INFO{sup TM} geographic information system. Source data were obtained from the Food and Agriculture Organization (FAO), the U.S. National Geophysical Data Center, and a limited number of biomass-carbon density case studies. These data were used to derive the maximum potential and actual (ca. 1980) aboveground biomass-carbon values at regional and country levels. The land-use data provided were derived from a vegetation map originally produced for the FAO by the International Institute of Vegetation Mapping, Toulouse, France.

  2. Altitudinal analysis of carbon stocks in the Antisana páramo, Ecuadorian Andes

    NARCIS (Netherlands)

    Minaya Maldonado, Veronica; Corzo, Gerald; Romero-Saltos, Hugo; Van Der Kwast, Johannes; Lantinga, Egbert; Galárraga-Sánchez, Remigio; Mynett, A.E.

    2016-01-01

    Aims The importance of quantifying carbon stocks in terrestrial ecosystems is crucial for determining climate change dynamics. However, the present regional assessments of carbon stocks in tropical grasslands are extrapolated to unsampled areas with a high degree of uncertainty and without

  3. Altitudinal analysis of carbon stocks in the Antisana páramo, Ecuadorian Andes

    NARCIS (Netherlands)

    Minaya, Verónica; Corzo, Gerald; Romero-Saltos, Hugo; Kwast, van der J.; Lantinga, E.A.; Galärraga-Sánchez, Remigio; Mynett, Arthur

    2016-01-01


    Aims The importance of quantifying carbon stocks in terrestrial ecosystems is crucial for determining climate change dynamics. However, the present regional assessments of carbon stocks in tropical grasslands are extrapolated to unsampled areas with a high degree of uncertainty and without

  4. Carbon stocks on forestland of the United States, with emphaisis on USDA Forest Service ownership

    Science.gov (United States)

    Linda S. Heath; James E. Smith; Christopher W. Woodall; Dave Azuma; Karen L. Waddell

    2011-01-01

    The U.S. Department of Agriculture Forest Service (USFS) manages one-fifth of the area of forestland in the United States. The Forest Service Roadmap for responding to climate change identified assessing and managing carbon stocks and change as a major element of its plan. This study presents methods and results of estimating current forest carbon stocks and change in...

  5. Carbon stocks on forestland of the United States, with emphasis on USDA Forest Service ownership

    Science.gov (United States)

    Linda S. Heath; James E. Smith; Christopher W. Woodall; David L. Azuma; Karen L. Waddell

    2011-01-01

    The U.S. Department of Agriculture Forest Service (USFS) manages one-fifth of the area of forestland in the United States. The Forest Service Roadmap for responding to climate change identified assessing and managing carbon stocks and change as a major element of its plan. This study presents methods and results of estimating current forest carbon stocks and change in...

  6. High-resolution forest carbon stocks and emissions in the Amazon

    Science.gov (United States)

    G. P. Asner; George V. N. Powell; Joseph Mascaro; David E. Knapp; John K. Clark; James Jacobson; Ty Kennedy-Bowdoin; Aravindh Balaji; Guayana Paez-Acosta; Eloy Victoria; Laura Secada; Michael Valqui; R. Flint. Hughes

    2010-01-01

    Efforts to mitigate climate change through the Reduced Emissions from Deforestation and Degradation (REDD) depend on mapping and monitoring of tropical forest carbon stocks and emissions over large geographic areas. With a new integrated use of satellite imaging, airborne light detection and ranging, and field plots, we mapped aboveground carbon stocks and emissions at...

  7. Agricultural management explains historic changes in regional soil carbon stocks

    Science.gov (United States)

    van Wesemael, Bas; Paustian, Keith; Meersmans, Jeroen; Goidts, Esther; Barancikova, Gabriela; Easter, Mark

    2010-01-01

    Agriculture is considered to be among the economic sectors having the greatest greenhouse gas mitigation potential, largely via soil organic carbon (SOC) sequestration. However, it remains a challenge to accurately quantify SOC stock changes at regional to national scales. SOC stock changes resulting from SOC inventory systems are only available for a few countries and the trends vary widely between studies. Process-based models can provide insight in the drivers of SOC changes, but accurate input data are currently not available at these spatial scales. Here we use measurements from a soil inventory dating from the 1960s and resampled in 2006 covering the major soil types and agricultural regions in Belgium together with region-specific land use and management data and a process-based model. The largest decreases in SOC stocks occurred in poorly drained grassland soils (clays and floodplain soils), consistent with drainage improvements since 1960. Large increases in SOC in well drained grassland soils appear to be a legacy effect of widespread conversion of cropland to grassland before 1960. SOC in cropland increased only in sandy lowland soils, driven by increasing manure additions. Modeled land use and management impacts accounted for more than 70% of the variation in observed SOC changes, and no bias could be demonstrated. There was no significant effect of climate trends since 1960 on observed SOC changes. SOC monitoring networks are being established in many countries. Our results demonstrate that detailed and long-term land management data are crucial to explain the observed SOC changes for such networks. PMID:20679194

  8. Agricultural management explains historic changes in regional soil carbon stocks.

    Science.gov (United States)

    van Wesemael, Bas; Paustian, Keith; Meersmans, Jeroen; Goidts, Esther; Barancikova, Gabriela; Easter, Mark

    2010-08-17

    Agriculture is considered to be among the economic sectors having the greatest greenhouse gas mitigation potential, largely via soil organic carbon (SOC) sequestration. However, it remains a challenge to accurately quantify SOC stock changes at regional to national scales. SOC stock changes resulting from SOC inventory systems are only available for a few countries and the trends vary widely between studies. Process-based models can provide insight in the drivers of SOC changes, but accurate input data are currently not available at these spatial scales. Here we use measurements from a soil inventory dating from the 1960s and resampled in 2006 covering the major soil types and agricultural regions in Belgium together with region-specific land use and management data and a process-based model. The largest decreases in SOC stocks occurred in poorly drained grassland soils (clays and floodplain soils), consistent with drainage improvements since 1960. Large increases in SOC in well drained grassland soils appear to be a legacy effect of widespread conversion of cropland to grassland before 1960. SOC in cropland increased only in sandy lowland soils, driven by increasing manure additions. Modeled land use and management impacts accounted for more than 70% of the variation in observed SOC changes, and no bias could be demonstrated. There was no significant effect of climate trends since 1960 on observed SOC changes. SOC monitoring networks are being established in many countries. Our results demonstrate that detailed and long-term land management data are crucial to explain the observed SOC changes for such networks.

  9. Variability in above- and belowground carbon stocks in a Siberian larch watershed

    Science.gov (United States)

    Webb, Elizabeth E.; Heard, Kathryn; Natali, Susan M.; Bunn, Andrew G.; Alexander, Heather D.; Berner, Logan T.; Kholodov, Alexander; Loranty, Michael M.; Schade, John D.; Spektor, Valentin; Zimov, Nikita

    2017-09-01

    Permafrost soils store between 1330 and 1580 Pg carbon (C), which is 3 times the amount of C in global vegetation, almost twice the amount of C in the atmosphere, and half of the global soil organic C pool. Despite the massive amount of C in permafrost, estimates of soil C storage in the high-latitude permafrost region are highly uncertain, primarily due to undersampling at all spatial scales; circumpolar soil C estimates lack sufficient continental spatial diversity, regional intensity, and replication at the field-site level. Siberian forests are particularly undersampled, yet the larch forests that dominate this region may store more than twice as much soil C as all other boreal forest types in the continuous permafrost zone combined. Here we present above- and belowground C stocks from 20 sites representing a gradient of stand age and structure in a larch watershed of the Kolyma River, near Chersky, Sakha Republic, Russia. We found that the majority of C stored in the top 1 m of the watershed was stored belowground (92 %), with 19 % in the top 10 cm of soil and 40 % in the top 30 cm. Carbon was more variable in surface soils (10 cm; coefficient of variation (CV) = 0.35 between stands) than in the top 30 cm (CV = 0.14) or soil profile to 1 m (CV = 0.20). Combined active-layer and deep frozen deposits (surface - 15 m) contained 205 kg C m-2 (yedoma, non-ice wedge) and 331 kg C m-2 (alas), which, even when accounting for landscape-level ice content, is an order of magnitude more C than that stored in the top meter of soil and 2 orders of magnitude more C than in aboveground biomass. Aboveground biomass was composed of primarily larch (53 %) but also included understory vegetation (30 %), woody debris (11 %) and snag (6 %) biomass. While aboveground biomass contained relatively little (8 %) of the C stocks in the watershed, aboveground processes were linked to thaw depth and belowground C storage. Thaw depth was negatively related to stand age, and soil C density

  10. Variability in above- and belowground carbon stocks in a Siberian larch watershed

    Directory of Open Access Journals (Sweden)

    E. E. Webb

    2017-09-01

    Full Text Available Permafrost soils store between 1330 and 1580 Pg carbon (C, which is 3 times the amount of C in global vegetation, almost twice the amount of C in the atmosphere, and half of the global soil organic C pool. Despite the massive amount of C in permafrost, estimates of soil C storage in the high-latitude permafrost region are highly uncertain, primarily due to undersampling at all spatial scales; circumpolar soil C estimates lack sufficient continental spatial diversity, regional intensity, and replication at the field-site level. Siberian forests are particularly undersampled, yet the larch forests that dominate this region may store more than twice as much soil C as all other boreal forest types in the continuous permafrost zone combined. Here we present above- and belowground C stocks from 20 sites representing a gradient of stand age and structure in a larch watershed of the Kolyma River, near Chersky, Sakha Republic, Russia. We found that the majority of C stored in the top 1 m of the watershed was stored belowground (92 %, with 19 % in the top 10 cm of soil and 40 % in the top 30 cm. Carbon was more variable in surface soils (10 cm; coefficient of variation (CV  =  0.35 between stands than in the top 30 cm (CV  =  0.14 or soil profile to 1 m (CV  =  0.20. Combined active-layer and deep frozen deposits (surface – 15 m contained 205 kg C m−2 (yedoma, non-ice wedge and 331 kg C m−2 (alas, which, even when accounting for landscape-level ice content, is an order of magnitude more C than that stored in the top meter of soil and 2 orders of magnitude more C than in aboveground biomass. Aboveground biomass was composed of primarily larch (53 % but also included understory vegetation (30 %, woody debris (11 % and snag (6 % biomass. While aboveground biomass contained relatively little (8 % of the C stocks in the watershed, aboveground processes were linked to thaw depth and

  11. Global socioeconomic carbon stocks in long-lived products 1900-2008

    Science.gov (United States)

    Lauk, Christian; Haberl, Helmut; Erb, Karl-Heinz; Gingrich, Simone; Krausmann, Fridolin

    2012-09-01

    A better understanding of the global carbon cycle as well as of climate change mitigation options such as carbon sequestration requires the quantification of natural and socioeconomic stocks and flows of carbon. A so-far under-researched aspect of the global carbon budget is the accumulation of carbon in long-lived products such as buildings and furniture. We present a comprehensive assessment of global socioeconomic carbon stocks and the corresponding in- and outflows during the period 1900-2008. These data allowed calculation of the annual carbon sink in socioeconomic stocks during this period. The study covers the most important socioeconomic carbon fractions, i.e. wood, bitumen, plastic and cereals. Our assessment was mainly based on production and consumption data for plastic, bitumen and wood products and the respective fractions remaining in stocks in any given year. Global socioeconomic carbon stocks were 2.3 GtC in 1900 and increased to 11.5 GtC in 2008. The share of wood in total C stocks fell from 97% in 1900 to 60% in 2008, while the shares of plastic and bitumen increased to 16% and 22%, respectively. The rate of gross carbon sequestration in socioeconomic stocks increased from 17 MtC yr-1 in 1900 to a maximum of 247 MtC yr-1 in 2007, corresponding to 2.2%-3.4% of global fossil-fuel-related carbon emissions. We conclude that while socioeconomic carbon stocks are not negligible, their growth over time is not a major climate change mitigation option and there is an only modest potential to mitigate climate change by the increase of socioeconomic carbon stocks.

  12. Impact of mooring activities on carbon stocks in seagrass meadows

    KAUST Repository

    Serrano, O.

    2016-03-16

    Boating activities are one of the causes that threaten seagrass meadows and the ecosystem services they provide. Mechanical destruction of seagrass habitats may also trigger the erosion of sedimentary organic carbon (Corg) stocks, which may contribute to increasing atmospheric CO2. This study presents the first estimates of loss of Corg stocks in seagrass meadows due to mooring activities in Rottnest Island, Western Australia. Sediment cores were sampled from seagrass meadows and from bare but previously vegetated sediments underneath moorings. The Corg stores have been compromised by the mooring deployment from 1930s onwards, which involved both the erosion of existing sedimentary Corg stores and the lack of further accumulation of Corg. On average, undisturbed meadows had accumulated ~6.4 Kg Corg m−2 in the upper 50 cm-thick deposits at a rate of 34 g Corg m−2 yr−1. The comparison of Corg stores between meadows and mooring scars allows us to estimate a loss of 4.8 kg Corg m−2 in the 50 cm-thick deposits accumulated over ca. 200 yr as a result of mooring deployments. These results provide key data for the implementation of Corg storage credit offset policies to avoid the conversion of seagrass ecosystems and contribute to their preservation.

  13. Effects of multiple interacting disturbances and salvage logging on forest carbon stocks

    Science.gov (United States)

    Bradford, J.B.; Fraver, S.; Milo, A.M.; D'Amato, A.W.; Palik, B.; Shinneman, D.J.

    2012-01-01

    Climate change is anticipated to increase the frequency of disturbances, potentially impacting carbon stocks in terrestrial ecosystems. However, little is known about the implications of either multiple disturbances or post-disturbance forest management activities on ecosystem carbon stocks. This study quantified how forest carbon stocks responded to stand-replacing blowdown and wildfire, both individually and in combination with and without post-disturbance salvage operations, in a sub-boreal jack pine ecosystem. Individually, blowdown or fire caused similar decreases in live carbon and total ecosystem carbon. However, whereas blowdown increased carbon in down woody material and forest floor, fire increased carbon in standing snags, a difference that may have consequences for long-term carbon cycling patterns. Fire after the blowdown caused substantial additional reduction in ecosystem carbon stocks, suggesting that potential increases in multiple disturbance events may represent a challenge for sustaining ecosystem carbon stocks. Salvage logging, as examined here, decreased carbon stored in snags and down woody material but had no significant effect on total ecosystem carbon stocks.

  14. Biomass energy for carbon mitigation by year 2000

    International Nuclear Information System (INIS)

    Wright, L.

    1993-01-01

    The United States has established a goal of stabilizing green-house gas emissions at 1990 levels by the year 2000. While energy conservation is likely to provide the most immediate reductions in CO 2 emission, biomass energy is one of the few energy production options currently available for displacing fossil fuels. Several sources of biomass are available but not all offer the same level of environmental benefits. Discussed are the following: waste and residues; existing forest resources; energy crops; efficient conversion processes; meeting carbon dioxide emissions reductions by using biomass fuels

  15. Carbon negative energy systems using biomass and nuclear energy

    International Nuclear Information System (INIS)

    Hori, Masao

    2015-01-01

    To cope with both the global warming issue and sustainable world energy supply issue, a Carbon Negative Energy System is investigated, which accomplishes the carbon dioxide removal and the hydrocarbon fuel supply integrally by the synergistic biomass-nuclear process. A vision for the Carbon Negative Energy System in Year 2065 is presented quantitatively, as follows; Primary Energy: Renewables and nuclear energy (No fossil fuels) 20.8 GtonOE, Electricity: 75% of the primary energy used for electricity generation, Fuel supply: 25% of the primary energy used for biomass-nuclear hydrocarbon fuel production, Carbon dioxide removal: 1.1 ∼ 4.5 GtonC removed from the global carbon cycle. (author)

  16. Biomass energy development and carbon dioxide mitigation options

    International Nuclear Information System (INIS)

    Hall, D.O.; House, J.I.

    1995-01-01

    Studies on climate change and energy production increasingly recognize the crucial role of biological systems. Carbon sinks in forests (above and below ground), CO 2 emissions from deforestation, planting trees for carbon storage, and biomass as a substitute for fossil fuels are some of the key issues which arise. Halting deforestation is of paramount importance, but there is also great potential for reforestation of degraded lands, agroforestry and improved forest management. We conclude that biomass energy plantations and other types of energy cropping could be a more effective strategy for carbon mitigation than simply growing trees as a carbon store. Using the biomass for production of modern energy carriers such as electricity, and liquid and gaseous fuels also has a wide range of other environmental, social and economic benefits. In order for biomass projects to succeed, it is necessary to ensure that these benefits are felt locally as well as nationally, furthermore, environmental sustainability of bioenergy projects is an essential requirement. The constraints to achieving environmentally-acceptable biomass production are not insurmountable. Rather they should be seen as scientific and entrepreneurial opportunities which will yield numerous advantages at local, national and international levels in the long term. (au) 76 refs

  17. ABILITY OF LANDSAT-8 OLI DERIVED TEXTURE METRICS IN ESTIMATING ABOVEGROUND CARBON STOCKS OF COPPICE OAK FORESTS

    Directory of Open Access Journals (Sweden)

    A. Safari

    2016-06-01

    Full Text Available The role of forests as a reservoir for carbon has prompted the need for timely and reliable estimation of aboveground carbon stocks. Since measurement of aboveground carbon stocks of forests is a destructive, costly and time-consuming activity, aerial and satellite remote sensing techniques have gained many attentions in this field. Despite the fact that using aerial data for predicting aboveground carbon stocks has been proved as a highly accurate method, there are challenges related to high acquisition costs, small area coverage, and limited availability of these data. These challenges are more critical for non-commercial forests located in low-income countries. Landsat program provides repetitive acquisition of high-resolution multispectral data, which are freely available. The aim of this study was to assess the potential of multispectral Landsat 8 Operational Land Imager (OLI derived texture metrics in quantifying aboveground carbon stocks of coppice Oak forests in Zagros Mountains, Iran. We used four different window sizes (3×3, 5×5, 7×7, and 9×9, and four different offsets ([0,1], [1,1], [1,0], and [1,-1] to derive nine texture metrics (angular second moment, contrast, correlation, dissimilar, entropy, homogeneity, inverse difference, mean, and variance from four bands (blue, green, red, and infrared. Totally, 124 sample plots in two different forests were measured and carbon was calculated using species-specific allometric models. Stepwise regression analysis was applied to estimate biomass from derived metrics. Results showed that, in general, larger size of window for deriving texture metrics resulted models with better fitting parameters. In addition, the correlation of the spectral bands for deriving texture metrics in regression models was ranked as b4>b3>b2>b5. The best offset was [1,-1]. Amongst the different metrics, mean and entropy were entered in most of the regression models. Overall, different models based on derived

  18. Ability of LANDSAT-8 Oli Derived Texture Metrics in Estimating Aboveground Carbon Stocks of Coppice Oak Forests

    Science.gov (United States)

    Safari, A.; Sohrabi, H.

    2016-06-01

    The role of forests as a reservoir for carbon has prompted the need for timely and reliable estimation of aboveground carbon stocks. Since measurement of aboveground carbon stocks of forests is a destructive, costly and time-consuming activity, aerial and satellite remote sensing techniques have gained many attentions in this field. Despite the fact that using aerial data for predicting aboveground carbon stocks has been proved as a highly accurate method, there are challenges related to high acquisition costs, small area coverage, and limited availability of these data. These challenges are more critical for non-commercial forests located in low-income countries. Landsat program provides repetitive acquisition of high-resolution multispectral data, which are freely available. The aim of this study was to assess the potential of multispectral Landsat 8 Operational Land Imager (OLI) derived texture metrics in quantifying aboveground carbon stocks of coppice Oak forests in Zagros Mountains, Iran. We used four different window sizes (3×3, 5×5, 7×7, and 9×9), and four different offsets ([0,1], [1,1], [1,0], and [1,-1]) to derive nine texture metrics (angular second moment, contrast, correlation, dissimilar, entropy, homogeneity, inverse difference, mean, and variance) from four bands (blue, green, red, and infrared). Totally, 124 sample plots in two different forests were measured and carbon was calculated using species-specific allometric models. Stepwise regression analysis was applied to estimate biomass from derived metrics. Results showed that, in general, larger size of window for deriving texture metrics resulted models with better fitting parameters. In addition, the correlation of the spectral bands for deriving texture metrics in regression models was ranked as b4>b3>b2>b5. The best offset was [1,-1]. Amongst the different metrics, mean and entropy were entered in most of the regression models. Overall, different models based on derived texture metrics

  19. Hydrocarbon and carbon monoxide emissions from biomass burning in Brazil

    Science.gov (United States)

    Greenberg, J. P.; Zimmerman, P. R.; Heidt, L.; Pollock, W.

    1984-02-01

    Field measurements of hydrocarbon emissions from biomass burning in the cerrado (grasslands) and selva (tropical forest) regions of Brazil in 1979 and 1980 are characterized and quantified here. Regional consequences of burning activities include increased background mixing ratios of carbon monoxide and ozone, as well as reduced visibility, over extensive areas. Global extrapolation of the emission rate of hydrocarbons from these fires indicates that 6×1013 g C of gas phase hydrocarbons and 8×1014 g CO may be released annually from biomass burning. These emissions contribute significantly to the global budgets of hydrocarbons and carbon monoxide.

  20. Translating Forest Change to Carbon Emissions and Removals By Linking Disturbance Products, Biomass Maps, and Carbon Cycle Modeling in a Comprehensive Carbon Monitoring Framework for the Conterminous US Forests

    Science.gov (United States)

    Williams, C. A.; Gu, H.

    2016-12-01

    Protecting forest carbon stores and uptake is central to national and international policies aimed at mitigating climate change. The success of such polices relies on high quality, accurate reporting (Tier 3) that earns the greatest financial value of carbon credits and hence incentivizes forest conservation and protection. Methods for Tier 3 Measuring, Reporting, and Verification (MRV) are still in development, generally involving some combination of direct remote sensing, ground based inventorying, and computer modeling, but have tended to emphasize assessments of live aboveground carbon stocks with a less clear connection to the real target of MRV which is carbon emissions and removals. Most existing methods are also ambiguous as to the mechanisms that underlie carbon accumulation, and any have limited capacity for forecasting carbon dynamics over time. This paper reports on the design and implementation of a new method for Tier 3 MRV, decision support, and forecasting that is being applied to assess forest carbon dynamics across the conterminous US. The method involves parameterization of a carbon cycle model (CASA) to match yield data from the US forest inventory (FIA). A range of disturbance types and severities are imposed in the model to estimate resulting carbon emissions, carbon uptake, and carbon stock changes post-disturbance. Resulting trajectories are then applied to landscapes at the 30-m pixel level based on two remote-sensing based data products. One documents the year, type, and severity of disturbance in recent decades. The second documents aboveground biomass which is used to estimate time since disturbance and associated carbon fluxes and stocks. Results will highlight high-resolution (30 m) annual carbon stocks and fluxes from 1990 to 2010 for select regions of interest across the US. Spatial analyses reveal regional patterns in US forest carbon stocks and fluxes as they respond to forest types, climate, and disturbances. Temporal analyses

  1. Experimental measurement of the biomass of Olea europaea L ...

    African Journals Online (AJOL)

    The C stock evaluation methodology made in this research and the calculation of biomass expansion factor can be considered as the first scientific contribution in estimating productivity, CO2 sequestration, carbon stocks and yield of olive groves. Key words: Biomass, biomass expansion factor, Intergovernmental Panel on ...

  2. Large-scale carbon stock assessment of woody vegetation in tropical dry deciduous forest of Sathanur reserve forest, Eastern Ghats, India.

    Science.gov (United States)

    Gandhi, Durai Sanjay; Sundarapandian, Somaiah

    2017-04-01

    Tropical dry forests are one of the most widely distributed ecosystems in tropics, which remain neglected in research, especially in the Eastern Ghats. Therefore, the present study was aimed to quantify the carbon storage in woody vegetation (trees and lianas) on large scale (30, 1 ha plots) in the dry deciduous forest of Sathanur reserve forest of Eastern Ghats. Biomass of adult (≥10 cm DBH) trees was estimated by species-specific allometric equations using diameter and wood density of species whereas in juvenile tree population and lianas, their respective general allometric equations were used to estimate the biomass. The fractional value 0.4453 was used to convert dry biomass into carbon in woody vegetation of tropical dry forest. The mean aboveground biomass value of juvenile tree population was 1.86 Mg/ha. The aboveground biomass of adult trees ranged from 64.81 to 624.96 Mg/ha with a mean of 245.90 Mg/ha. The mean aboveground biomass value of lianas was 7.98 Mg/ha. The total biomass of woody vegetation (adult trees + juvenile population of trees + lianas) ranged from 85.02 to 723.46 Mg/ha, with a mean value of 295.04 Mg/ha. Total carbon accumulated in woody vegetation in tropical dry deciduous forest ranged from 37.86 to 322.16 Mg/ha with a mean value of 131.38 Mg/ha. Adult trees accumulated 94.81% of woody biomass carbon followed by lianas (3.99%) and juvenile population of trees (1.20%). Albizia amara has the greatest biomass and carbon stock (58.31%) among trees except for two plots (24 and 25) where Chloroxylon swietenia contributed more to biomass and carbon stock. Similarly, Albizia amara (52.4%) showed greater carbon storage in juvenile population of trees followed by Chloroxylon swietenia (21.9%). Pterolobium hexapetalum (38.86%) showed a greater accumulation of carbon in liana species followed by Combretum albidum (33.04%). Even though, all the study plots are located within 10 km radius, they show a significant spatial variation among

  3. Evaluating the Potential of Commercial Forest Inventory Data to Report on Forest Carbon Stock and Forest Carbon Stock Changes for REDD+ under the UNFCCC

    Directory of Open Access Journals (Sweden)

    Danae Maniatis

    2011-01-01

    Full Text Available In the context of the adoption at the 16th Conference of the Parties in 2010 on the REDD+ mitigation mechanism, it is important to obtain reliable data on the spatiotemporal variation of forest carbon stocks and changes (called Emission Factor, EF. A re-occurring debate in estimating EF for REDD+ is the use of existing field measurement data. We provide an assessment of the use of commercial logging inventory data and ecological data to estimate a conservative EF (REDD+ phase 2 or to report on EF following IPCC Guidance and Guidelines (REDD+ phase 3. The data presented originate from five logging companies dispersed over Gabon, totalling 2,240 plots of 0.3 hectares.We distinguish three Forest Types (FTs in the dataset based on floristic conditions. Estimated mean aboveground biomass (AGB in the FTs ranges from 312 to 333 Mg ha−1. A 5% accuracy is reached with the number of plots put in place for the FTs and a low sampling uncertainty obtained (± 10 to 13 Mg ha−1. The data could be used to estimate a conservative EF in REDD+ phase 2 and only partially to report on EF following tier 2 requirements for a phase 3.

  4. Catalytic processing of coal and biomass to carbon materials

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, B.N.; Shchipko, M.L.; Golovin, Y.G.; Ugay, M.Y. [Krasnoyarsk State University, Krasnoyarsk (Russian Federation). Inst. of Chemistry of Natural Organic Materials

    1996-12-31

    The synthesis of carbon materials is rather new and promising field of a catalyst application. The high potentialities of catalytic processes in the carbon materials production are connected with the catalyst ability to regulate the structure and some properties of carbon products, to increase the process affectivity and ecological safety. The new catalytic methods, developed by authors for the producing of different types of carbon products from coal and biomass raw materials, are described in the present paper. 6 refs., 2 figs., 1 tab.

  5. Potential increases in natural disturbance rates could offset forest management impacts on ecosystem carbon stocks.

    Science.gov (United States)

    John B. Bradford; Nicholas R. Jensen; Grant M. Domke; Anthony W. D' Amato

    2013-01-01

    Forested ecosystems contain the majority of the world’s terrestrial carbon, and forest management has implications for regional and global carbon cycling. Carbon stored in forests changes with stand age and is affected by natural disturbance and timber harvesting. We examined how harvesting and disturbance interact to influence forest carbon stocks over the Superior...

  6. Whole-island carbon stocks in the tropical Pacific: Implications for mangrove conservation and upland restoration

    Science.gov (United States)

    D.C. Donato; J.B. Kauffman; R.A. Mackenzie; A. Ainsworth; A.Z. Pfleeger

    2012-01-01

    Management of forest carbon (C) stocks is an increasingly prominent land-use issue. Knowledge of carbon storage in tropical forests is improving, but regional variations are still poorly understood, and this constrains forest management and conservation efforts associated with carbon valuation mechanisms (e.g., carbon markets). This deficiency is especially pronounced...

  7. Mapping soil organic carbon stocks by robust geostatistical and boosted regression models

    Science.gov (United States)

    Nussbaum, Madlene; Papritz, Andreas; Baltensweiler, Andri; Walthert, Lorenz

    2013-04-01

    Carbon (C) sequestration in forests offsets greenhouse gas emissions. Therefore, quantifying C stocks and fluxes in forest ecosystems is of interest for greenhouse gas reporting according to the Kyoto protocol. In Switzerland, the National Forest Inventory offers comprehensive data to quantify the aboveground forest biomass and its change in time. Estimating stocks of soil organic C (SOC) in forests is more difficult because the variables needed to quantify stocks vary strongly in space and precise quantification of some of them is very costly. Based on data from 1'033 plots we modeled SOC stocks of the organic layer and the mineral soil to depths of 30 cm and 100 cm for the Swiss forested area. For the statistical modeling a broad range of covariates were available: Climate data (e. g. precipitation, temperature), two elevation models (resolutions 25 and 2 m) with respective terrain attributes and spectral reflectance data representing vegetation. Furthermore, the main mapping units of an overview soil map and a coarse scale geological map were used to coarsely represent the parent material of the soils. The selection of important covariates for SOC stocks modeling out of a large set was a major challenge for the statistical modeling. We used two approaches to deal with this problem: 1) A robust restricted maximum likelihood method to fit linear regression model with spatially correlated errors. The large number of covariates was first reduced by LASSO (Least Absolute Shrinkage and Selection Operator) and then further narrowed down to a parsimonious set of important covariates by cross-validation of the robustly fitted model. To account for nonlinear dependencies of the response on the covariates interaction terms of the latter were included in model if this improved the fit. 2) A boosted structured regression model with componentwise linear least squares or componentwise smoothing splines as base procedures. The selection of important covariates was done by the

  8. The effect of long-term changes in plant inputs on soil carbon stocks

    Science.gov (United States)

    Georgiou, K.; Li, Z.; Torn, M. S.

    2017-12-01

    Soil organic carbon (SOC) is the largest actively-cycling terrestrial reservoir of C and an integral component of thriving natural and managed ecosystems. C input interventions (e.g., litter removal or organic amendments) are common in managed landscapes and present an important decision for maintaining healthy soils in sustainable agriculture and forestry. Furthermore, climate and land-cover change can also affect the amount of plant C inputs that enter the soil through changes in plant productivity, allocation, and rooting depth. Yet, the processes that dictate the response of SOC to such changes in C inputs are poorly understood and inadequately represented in predictive models. Long-term litter manipulations are an invaluable resource for exploring key controls of SOC storage and validating model representations. Here we explore the response of SOC to long-term changes in plant C inputs across a range of biomes and soil types. We synthesize and analyze data from long-term litter manipulation field experiments, and focus our meta-analysis on changes to total SOC stocks, microbial biomass carbon, and mineral-associated (`protected') carbon pools and explore the relative contribution of above- versus below-ground C inputs. Our cross-site data comparison reveals that divergent SOC responses are observed between forest sites, particularly for treatments that increase C inputs to the soil. We explore trends among key variables (e.g., microbial biomass to SOC ratios) that inform soil C model representations. The assembled dataset is an important benchmark for evaluating process-based hypotheses and validating divergent model formulations.

  9. Influence of different tree-harvesting intensities on forest soil carbon stocks in boreal and northern temperate forest ecosystems

    DEFF Research Database (Denmark)

    Clarke, Nicholas; Gundersen, Per; Jönsson-Belyazid, Ulrika

    2015-01-01

    processes involved, and under which conditions the size of the removals becomes critical. At present, the uncertainty gap between the scientific results and the need for practically useable management guidelines and other governance measures might be bridged by expert opinions given to authorities......Effective forest governance measures are crucial to ensure sustainable management of forests, but so far there has been little specific focus in boreal and northern temperate forests on governance measures in relation to management effects, including harvesting effects, on soil organic carbon (SOC......) stocks. This paper reviews the findings in the scientific literature concerning the effects of harvesting of different intensities on SOC stocks and fluxes in boreal and northern temperate forest ecosystems to evaluate the evidence for significant SOC losses following biomass removal. An overview...

  10. The Use of Mixed Effects Models for Obtaining Low-Cost Ecosystem Carbon Stock Estimates in Mangroves of the Asia-Pacific

    Science.gov (United States)

    Bukoski, J. J.; Broadhead, J. S.; Donato, D.; Murdiyarso, D.; Gregoire, T. G.

    2016-12-01

    Mangroves provide extensive ecosystem services that support both local livelihoods and international environmental goals, including coastal protection, water filtration, biodiversity conservation and the sequestration of carbon (C). While voluntary C market projects that seek to preserve and enhance forest C stocks offer a potential means of generating finance for mangrove conservation, their implementation faces barriers due to the high costs of quantifying C stocks through measurement, reporting and verification (MRV) activities. To streamline MRV activities in mangrove C forestry projects, we develop predictive models for (i) biomass-based C stocks, and (ii) soil-based C stocks for the mangroves of the Asia-Pacific. We use linear mixed effect models to account for spatial correlation in modeling the expected C as a function of stand attributes. The most parsimonious biomass model predicts total biomass C stocks as a function of both basal area and the interaction between latitude and basal area, whereas the most parsimonious soil C model predicts soil C stocks as a function of the logarithmic transformations of both latitude and basal area. Random effects are specified by site for both models, and are found to explain a substantial proportion of variance within the estimation datasets. The root mean square error (RMSE) of the biomass C model is approximated at 24.6 Mg/ha (18.4% of mean biomass C in the dataset), whereas the RMSE of the soil C model is estimated at 4.9 mg C/cm 3 (14.1% of mean soil C). A substantial proportion of the variation in soil C, however, is explained by the random effects and thus the use of the SOC model may be most valuable for sites in which field measurements of soil C exist.

  11. Carbon stocks and fluxes in tropical lowland dipterocarp rainforests in Sabah, Malaysian Borneo.

    Directory of Open Access Journals (Sweden)

    Philippe Saner

    Full Text Available Deforestation in the tropics is an important source of carbon C release to the atmosphere. To provide a sound scientific base for efforts taken to reduce emissions from deforestation and degradation (REDD+ good estimates of C stocks and fluxes are important. We present components of the C balance for selectively logged lowland tropical dipterocarp rainforest in the Malua Forest Reserve of Sabah, Malaysian Borneo. Total organic C in this area was 167.9 Mg C ha⁻¹±3.8 (SD, including: Total aboveground (TAGC: 55%; 91.9 Mg C ha⁻¹±2.9 SEM and belowground carbon in trees (TBGC: 10%; 16.5 Mg C ha⁻¹±0.5 SEM, deadwood (8%; 13.2 Mg C ha⁻¹±3.5 SEM and soil organic matter (SOM: 24%; 39.6 Mg C ha⁻¹±0.9 SEM, understory vegetation (3%; 5.1 Mg C ha⁻¹±1.7 SEM, standing litter (<1%; 0.7 Mg C ha⁻¹±0.1 SEM and fine root biomass (<1%; 0.9 Mg C ha⁻¹±0.1 SEM. Fluxes included litterfall, a proxy for leaf net primary productivity (4.9 Mg C ha⁻¹ yr⁻¹±0.1 SEM, and soil respiration, a measure for heterotrophic ecosystem respiration (28.6 Mg C ha⁻¹ yr⁻¹±1.2 SEM. The missing estimates necessary to close the C balance are wood net primary productivity and autotrophic respiration.Twenty-two years after logging TAGC stocks were 28% lower compared to unlogged forest (128 Mg C ha⁻¹±13.4 SEM; a combined weighted average mean reduction due to selective logging of -57.8 Mg C ha⁻¹ (with 95% CI -75.5 to -40.2. Based on the findings we conclude that selective logging decreased the dipterocarp stock by 55-66%. Silvicultural treatments may have the potential to accelerate the recovery of dipterocarp C stocks to pre-logging levels.

  12. Carbon Stocks and Fluxes in Tropical Lowland Dipterocarp Rainforests in Sabah, Malaysian Borneo

    Science.gov (United States)

    Saner, Philippe; Loh, Yen Yee; Ong, Robert C.; Hector, Andy

    2012-01-01

    Deforestation in the tropics is an important source of carbon C release to the atmosphere. To provide a sound scientific base for efforts taken to reduce emissions from deforestation and degradation (REDD+) good estimates of C stocks and fluxes are important. We present components of the C balance for selectively logged lowland tropical dipterocarp rainforest in the Malua Forest Reserve of Sabah, Malaysian Borneo. Total organic C in this area was 167.9 Mg C ha−1±3.8 (SD), including: Total aboveground (TAGC: 55%; 91.9 Mg C ha−1±2.9 SEM) and belowground carbon in trees (TBGC: 10%; 16.5 Mg C ha−1±0.5 SEM), deadwood (8%; 13.2 Mg C ha−1±3.5 SEM) and soil organic matter (SOM: 24%; 39.6 Mg C ha−1±0.9 SEM), understory vegetation (3%; 5.1 Mg C ha−1±1.7 SEM), standing litter (<1%; 0.7 Mg C ha−1±0.1 SEM) and fine root biomass (<1%; 0.9 Mg C ha−1±0.1 SEM). Fluxes included litterfall, a proxy for leaf net primary productivity (4.9 Mg C ha−1 yr−1±0.1 SEM), and soil respiration, a measure for heterotrophic ecosystem respiration (28.6 Mg C ha−1 yr−1±1.2 SEM). The missing estimates necessary to close the C balance are wood net primary productivity and autotrophic respiration. Twenty-two years after logging TAGC stocks were 28% lower compared to unlogged forest (128 Mg C ha−1±13.4 SEM); a combined weighted average mean reduction due to selective logging of −57.8 Mg C ha−1 (with 95% CI −75.5 to −40.2). Based on the findings we conclude that selective logging decreased the dipterocarp stock by 55–66%. Silvicultural treatments may have the potential to accelerate the recovery of dipterocarp C stocks to pre-logging levels. PMID:22235319

  13. Colossal carbon! Disturbance and biomass dynamics in Alaska's national forests

    Science.gov (United States)

    John Kirkland; Tara Barrett

    2016-01-01

    The Chugach and Tongass National Forests are changing, possibly in response to global warming. Forested areas within Alaska's temperate rain forests are creeping into areas that were previously too cold or too wet. These forests are also becoming denser. As biomass increases, the amount of carbon stored in the forest also increases. Tara Barrett, a...

  14. Inverted edge effects on carbon stocks in human-dominated landscapes

    Science.gov (United States)

    Romitelli, I.; Keller, M.; Vieira, S. A.; Metzger, J. P.; Reverberi Tambosi, L.

    2017-12-01

    Although the importance of tropical forests to regulate greenhouse gases is well documented, little is known about what factors affect the ability of these forests to store carbon in human-dominated landscapes. Among those factors, the landscape structure, particularly the amount of forest cover, the type of matrix and edge effects, can have important roles. We tested how carbon stock is influenced by a combination of factors of landscape composition (pasture and forest cover), landscape configuration (edge effect) and relief factors (slope, elevation and aspect). To test those relationships, we performed a robust carbon stock estimation with inventory and LiDAR data in human-dominated landscapes from the Brazilian Atlantic forest region. The study area showed carbon stock mean 45.49 ± 9.34 Mg ha-1. The interaction between forest cover, edge effect and slope was the best combination explanatory of carbon stock. We observed an inverted edge effect pattern where carbon stock is higher close to the edges of the studied secondary forests. This inverted edge effect observed contradicts the usual pattern reported in the literature for mature forests. We suppose this pattern is related with a positive effect that edge conditions can have stimulating forest regeneration, but the underlying processes to explain the observed pattern should still be tested. Those results suggest that Carbon stocks in human-dominated and fragmented landscapes can be highly affected by the landscape structure, and particularly that edges conditions can favor carbon sequestration in regenerating tropical forests.

  15. Deforestation impacts on soil organic carbon stocks in the Semiarid Chaco Region, Argentina.

    Science.gov (United States)

    Villarino, Sebastián Horacio; Studdert, Guillermo Alberto; Baldassini, Pablo; Cendoya, María Gabriela; Ciuffoli, Lucía; Mastrángelo, Matias; Piñeiro, Gervasio

    2017-01-01

    Land use change affects soil organic carbon (SOC) and generates CO 2 emissions. Moreover, SOC depletion entails degradation of soil functions that support ecosystem services. Large areas covered by dry forests have been cleared in the Semiarid Chaco Region of Argentina for cropping expansion. However, deforestation impacts on the SOC stock and its distribution in the soil profile have been scarcely reported. We assessed these impacts based on the analysis of field data along a time-since-deforestation-for-cropping chronosequence, and remote sensing indices. Soil organic C was determined up to 100cm depth and physically fractionated into mineral associated organic carbon (MAOC) and particulate organic C (POC). Models describing vertical distribution of SOC were fitted. Total SOC, POC and MAOC stocks decreased markedly with increasing cropping age. Particulate organic C was the most sensitive fraction to cultivation. After 10yr of cropping SOC loss was around 30%, with greater POC loss (near 60%) and smaller MAOC loss (near 15%), at 0-30cm depth. Similar relative SOC losses were observed in deeper soil layers (30-60 and 60-100cm). Deforestation and subsequent cropping also modified SOC vertical distribution. Soil organic C loss was negatively associated with the proportion of maize in the rotation and total crop biomass inputs, but positively associated with the proportion of soybean in the rotation. Without effective land use polices, deforestation and agricultural expansion can lead to rapid soil degradation and reductions in the provision of important ecosystem services. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. A remote sensing-based model of tidal marsh aboveground carbon stocks for the conterminous United States

    Science.gov (United States)

    Byrd, Kristin B.; Ballanti, Laurel; Thomas, Nathan; Nguyen, Dung; Holmquist, James R.; Simard, Marc; Windham-Myers, Lisamarie

    2018-01-01

    Remote sensing based maps of tidal marshes, both of their extents and carbon stocks, have the potential to play a key role in conducting greenhouse gas inventories and implementing climate mitigation policies. Our objective was to generate a single remote sensing model of tidal marsh aboveground biomass and carbon that represents nationally diverse tidal marshes within the conterminous United States (CONUS). We developed the first calibration-grade, national-scale dataset of aboveground tidal marsh biomass, species composition, and aboveground plant carbon content (%C) from six CONUS regions: Cape Cod, MA, Chesapeake Bay, MD, Everglades, FL, Mississippi Delta, LA, San Francisco Bay, CA, and Puget Sound, WA. Using the random forest machine learning algorithm, we tested whether imagery from multiple sensors, Sentinel-1 C-band synthetic aperture radar, Landsat, and the National Agriculture Imagery Program (NAIP), can improve model performance. The final model, driven by six Landsat vegetation indices and with the soil adjusted vegetation index as the most important (n = 409, RMSE = 310 g/m2, 10.3% normalized RMSE), successfully predicted biomass for a range of marsh plant functional types defined by height, leaf angle and growth form. Model results were improved by scaling field-measured biomass calibration data by NAIP-derived 30 m fraction green vegetation. With a mean plant carbon content of 44.1% (n = 1384, 95% C.I. = 43.99%–44.37%), we generated regional 30 m aboveground carbon density maps for estuarine and palustrine emergent tidal marshes as indicated by a modified NOAA Coastal Change Analysis Program map. We applied a multivariate delta method to calculate uncertainties in regional carbon densities and stocks that considered standard error in map area, mean biomass and mean %C. Louisiana palustrine emergent marshes had the highest C density (2.67 ± 0.004 Mg/ha) of all regions, while San Francisco Bay brackish/saline marshes had

  17. A large-scale field assessment of carbon stocks in human-modified tropical forests.

    Science.gov (United States)

    Berenguer, Erika; Ferreira, Joice; Gardner, Toby Alan; Aragão, Luiz Eduardo Oliveira Cruz; De Camargo, Plínio Barbosa; Cerri, Carlos Eduardo; Durigan, Mariana; Cosme De Oliveira Junior, Raimundo; Vieira, Ima Célia Guimarães; Barlow, Jos

    2014-12-01

    Tropical rainforests store enormous amounts of carbon, the protection of which represents a vital component of efforts to mitigate global climate change. Currently, tropical forest conservation, science, policies, and climate mitigation actions focus predominantly on reducing carbon emissions from deforestation alone. However, every year vast areas of the humid tropics are disturbed by selective logging, understory fires, and habitat fragmentation. There is an urgent need to understand the effect of such disturbances on carbon stocks, and how stocks in disturbed forests compare to those found in undisturbed primary forests as well as in regenerating secondary forests. Here, we present the results of the largest field study to date on the impacts of human disturbances on above and belowground carbon stocks in tropical forests. Live vegetation, the largest carbon pool, was extremely sensitive to disturbance: forests that experienced both selective logging and understory fires stored, on average, 40% less aboveground carbon than undisturbed forests and were structurally similar to secondary forests. Edge effects also played an important role in explaining variability in aboveground carbon stocks of disturbed forests. Results indicate a potential rapid recovery of the dead wood and litter carbon pools, while soil stocks (0-30 cm) appeared to be resistant to the effects of logging and fire. Carbon loss and subsequent emissions due to human disturbances remain largely unaccounted for in greenhouse gas inventories, but by comparing our estimates of depleted carbon stocks in disturbed forests with Brazilian government assessments of the total forest area annually disturbed in the Amazon, we show that these emissions could represent up to 40% of the carbon loss from deforestation in the region. We conclude that conservation programs aiming to ensure the long-term permanence of forest carbon stocks, such as REDD+, will remain limited in their success unless they effectively

  18. Effects of harvesting on spatial and temporal diversity of carbon stocks in a boreal forest landscape.

    Science.gov (United States)

    Ter-Mikaelian, Michael T; Colombo, Stephen J; Chen, Jiaxin

    2013-10-01

    Carbon stocks in managed forests of Ontario, Canada, and in harvested wood products originated from these forests were estimated for 2010-2100. Simulations included four future forest harvesting scenarios based on historical harvesting levels (low, average, high, and maximum available) and a no-harvest scenario. In four harvesting scenarios, forest carbon stocks in Ontario's managed forest were estimated to range from 6202 to 6227 Mt C (millions of tons of carbon) in 2010, and from 6121 to 6428 Mt C by 2100. Inclusion of carbon stored in harvested wood products in use and in landfills changed the projected range in 2100 to 6710-6742 Mt C. For the no-harvest scenario, forest carbon stocks were projected to change from 6246 Mt C in 2010 to 6680 Mt C in 2100. Spatial variation in projected forest carbon stocks was strongly related to changes in forest age (r = 0.603), but had weak correlation with harvesting rates. For all managed forests in Ontario combined, projected carbon stocks in combined forest and harvested wood products converged to within 2% difference by 2100. The results suggest that harvesting in the boreal forest, if applied within limits of sustainable forest management, will eventually have a relatively small effect on long-term combined forest and wood products carbon stocks. However, there was a large time lag to approach carbon equality, with more than 90 years with a net reduction in stored carbon in harvested forests plus wood products compared to nonharvested boreal forest which also has low rates of natural disturbance. The eventual near equivalency of carbon stocks in nonharvested forest and forest that is harvested and protected from natural disturbance reflects both the accumulation of carbon in harvested wood products and the relatively young age at which boreal forest stands undergo natural succession in the absence of disturbance.

  19. Rapid tree carbon stock recovery in managed Amazonian forests.

    Science.gov (United States)

    Rutishauser, Ervan; Hérault, Bruno; Baraloto, Christopher; Blanc, Lilian; Descroix, Laurent; Sotta, Eleneide Doff; Ferreira, Joice; Kanashiro, Milton; Mazzei, Lucas; d'Oliveira, Marcus V N; de Oliveira, Luis C; Peña-Claros, Marielos; Putz, Francis E; Ruschel, Ademir R; Rodney, Ken; Roopsind, Anand; Shenkin, Alexander; da Silva, Katia E; de Souza, Cintia R; Toledo, Marisol; Vidal, Edson; West, Thales A P; Wortel, Verginia; Sist, Plinio

    2015-09-21

    While around 20% of the Amazonian forest has been cleared for pastures and agriculture, one fourth of the remaining forest is dedicated to wood production. Most of these production forests have been or will be selectively harvested for commercial timber, but recent studies show that even soon after logging, harvested stands retain much of their tree-biomass carbon and biodiversity. Comparing species richness of various animal taxa among logged and unlogged forests across the tropics, Burivalova et al. found that despite some variability among taxa, biodiversity loss was generally explained by logging intensity (the number of trees extracted). Here, we use a network of 79 permanent sample plots (376 ha total) located at 10 sites across the Amazon Basin to assess the main drivers of time-to-recovery of post-logging tree carbon (Table S1). Recovery time is of direct relevance to policies governing management practices (i.e., allowable volumes cut and cutting cycle lengths), and indirectly to forest-based climate change mitigation interventions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Changes in organic carbon stocks upon land use conversion in the Brazilian Cerrado: A review. Agriculture

    NARCIS (Netherlands)

    Batlle-Bayer, L.; Batjes, N.H.; Bindraban, P.S.

    2010-01-01

    This paper reviews current knowledge on changes in carbon stocks upon land use conversion in the Brazilian Cerrado. First, we briefly characterize the savanna ecosystem and summarize the main published data on C stocks under natural conditions. The effects of increased land use pressure in the

  1. Spatial optimization of carbon-stocking projects across Africa integrating stocking potential with co-benefits and feasibility

    DEFF Research Database (Denmark)

    Greve, Michelle; Reyers, Belinda; Lykke, Anne Mette

    2013-01-01

    Carbon (C) offset projects through forestation are employed within the emissions trading framework to store C. Yet, information about the potential of landscapes to stock C, essential to the design of offset projects, is often lacking. Based on data on vegetation C, climate and soil we quantified...... the potential for C storage in woody vegetation across tropical Africa. The ability for offset projects to produce co-benefits for ecosystems and local communities was also investigated. When co-benefits such as biodiversity conservation were considered, the top-ranked sites were often different to sites...... selected purely for their C stocking potential, but they still possessed 68% of the latter’s C stocking potential. This work provides the first continental-scale assessment of which areas may provide the greatest direct and indirect benefits from C storage reforestation projects at the smallest costs...

  2. Modeling soil organic carbon with Quantile Regression: Dissecting predictors' effects on carbon stocks

    KAUST Repository

    Lombardo, Luigi

    2017-08-13

    Soil Organic Carbon (SOC) estimation is crucial to manage both natural and anthropic ecosystems and has recently been put under the magnifying glass after the Paris agreement 2016 due to its relationship with greenhouse gas. Statistical applications have dominated the SOC stock mapping at regional scale so far. However, the community has hardly ever attempted to implement Quantile Regression (QR) to spatially predict the SOC distribution. In this contribution, we test QR to estimate SOC stock (0-30 $cm$ depth) in the agricultural areas of a highly variable semi-arid region (Sicily, Italy, around 25,000 $km2$) by using topographic and remotely sensed predictors. We also compare the results with those from available SOC stock measurement. The QR models produced robust performances and allowed to recognize dominant effects among the predictors with respect to the considered quantile. This information, currently lacking, suggests that QR can discern predictor influences on SOC stock at specific sub-domains of each predictors. In this work, the predictive map generated at the median shows lower errors than those of the Joint Research Centre and International Soil Reference, and Information Centre benchmarks. The results suggest the use of QR as a comprehensive and effective method to map SOC using legacy data in agro-ecosystems. The R code scripted in this study for QR is included.

  3. Assessing soil carbon stocks under pastures through orbital remote sensing

    Directory of Open Access Journals (Sweden)

    Gabor Gyula Julius Szakács

    2011-10-01

    Full Text Available The growing demand of world food and energy supply increases the threat of global warming due to higher greenhouse gas emissions by agricultural activity. Therefore, it is widely admitted that agriculture must establish a new paradigm in terms of environmental sustainability that incorporate techniques for mitigation of greenhouse gas emissions. This article addresses to the scientific demand to estimate in a fast and inexpensive manner current and potential soil organic carbon (SOC stocks in degraded pastures, using remote sensing techniques. Four pastures on sandy soils under Brazilian Cerrado vegetation in São Paulo state were chosen due to their SOC sequestration potential, which was characterized for the soil depth 0-50 cm. Subsequently, a linear regression analysis was performed between SOC and Leaf Area Index (LAI measured in the field (LAIfield and derived by satellite (LAIsatellite as well as SOC and pasture reflectance in six spectra from 450 nm - 2350 nm, using the Enhanced Thematic Mapper (ETM+ sensor of satellite Landsat 7. A high correlation between SOC and LAIfield (R² = 0.9804 and LAIsatellite (R² = 0.9812 was verified. The suitability of satellite derived LAI for SOC determination leads to the assumption, that orbital remote sensing is a very promising SOC estimation technique from regional to global scale.

  4. Ecosystem Carbon Stock Loss after Land Use Change in Subtropical Forests in China

    Directory of Open Access Journals (Sweden)

    Shaohui Fan

    2016-07-01

    Full Text Available Converting secondary natural forests (SFs to Chinese fir plantations (CFPs represents one of the most important (8.9 million ha land use changes in subtropical China. This study estimated both biomass and soil C stocks in a SF and a CFP that was converted from a SF, to quantify the effects of land use change on ecosystem C stock. After the forest conversion, biomass C in the CFP (73 Mg·ha−1 was significantly lower than that of the SF (114 Mg·ha−1. Soil organic C content and stock decreased with increasing soil depth, and the soil C stock in the 0–10 cm layer accounted for more than one third of the total soil C stock over 0–50 cm, emphasizing the importance of management of the top soil to reduce the soil C loss. Total ecosystem C stock of the SF and the CFP was 318 and 200 Mg·ha−1, respectively, 64% of which was soil C for both stands (205 Mg·ha−1 for the SF and 127 Mg·ha−1 for the CFP. This indicates that land use change from the SF to the CFP significantly decreased ecosystem C stock and highlights the importance of managing soil C.

  5. Evaluation of forest structure, biomass and carbon sequestration in subtropical pristine forests of SW China.

    Science.gov (United States)

    Nizami, Syed Moazzam; Yiping, Zhang; Zheng, Zheng; Zhiyun, Lu; Guoping, Yang; Liqing, Sha

    2017-03-01

    Very old natural forests comprising the species of Fagaceae (Lithocarpus xylocarpus, Castanopsis wattii, Lithocarpus hancei) have been prevailing since years in the Ailaoshan Mountain Nature Reserve (AMNR) SW China. Within these forest trees, density is quite variable. We studied the forest structure, stand dynamics and carbon density at two different sites to know the main factors which drives carbon sequestration process in old forests by considering the following questions: How much is the carbon density in these forest trees of different DBH (diameter at breast height)? How much carbon potential possessed by dominant species of these forests? How vegetation carbon is distributed in these forests? Which species shows high carbon sequestration? What are the physiochemical properties of soil in these forests? Five-year (2005-2010) tree growth data from permanently established plots in the AMNR was analysed for species composition, density, stem diameter (DBH), height and carbon (C) density both in aboveground and belowground vegetation biomass. Our study indicated that among two comparative sites, overall 54 species of 16 different families were present. The stem density, height, C density and soil properties varied significantly with time among the sites showing uneven distribution across the forests. Among the dominant species, L. xylocarpus represents 30% of the total carbon on site 1 while C. wattii represents 50% of the total carbon on site 2. The average C density ranged from 176.35 to 243.97 t C ha -1 . The study emphasized that there is generous degree to expand the carbon stocking in this AMNR through scientific management gearing towards conservation of old trees and planting of potentially high carbon sequestering species on good site quality areas.

  6. A national-scale remote sensing-based methodology for quantifying tidal marsh biomass to support "Blue Carbon" accounting

    Science.gov (United States)

    Byrd, K. B.; Ballanti, L.; Nguyen, D.; Simard, M.; Thomas, N.; Windham-Myers, L.; Castaneda, E.; Kroeger, K. D.; Gonneea, M. E.; O'Keefe Suttles, J.; Megonigal, P.; Troxler, T.; Schile, L. M.; Davis, M.; Woo, I.

    2016-12-01

    According to 2013 IPCC Wetlands Supplement guidelines, tidal marsh Tier 2 or Tier 3 accounting must include aboveground biomass carbon stock changes. To support this need, we are using free satellite and aerial imagery to develop a national scale, consistent remote sensing-based methodology for quantifying tidal marsh aboveground biomass. We are determining the extent to which additional satellite data will increase the accuracy of this "blue carbon" accounting. Working in 6 U.S. estuaries (Cape Cod, MA, Chesapeake Bay, MD, Everglades, FL, Mississippi Delta, LA, San Francisco Bay, CA, and Puget Sound, WA), we built a tidal marsh biomass dataset (n=2404). Landsat reflectance data were matched spatially and temporally with field plots using Google Earth Engine. We quantified percent cover of green vegetation, non-vegetation, and open water in Landsat pixels using segmentation of 1m National Agriculture Imagery Program aerial imagery. Sentinel-1A C-band backscatter data were used in Chesapeake, Mississippi Delta and Puget Sound. We tested multiple Landsat vegetation indices and Sentinel backscatter metrics in 30m scale biomass linear regression models by region. Scaling biomass by fraction green vegetation significantly improved biomass estimation (e.g. Cape Cod: R2 = 0.06 vs. R2 = 0.60, n=28). The best vegetation indices differed by region, though indices based on the shortwave infrared-1 and red bands were most predictive in the Everglades and the Mississippi Delta, while the soil adjusted vegetation index was most predictive in Puget Sound and Chesapeake. Backscatter metrics significantly improved model predictions over vegetation indices alone; consistently across regions, the most significant metric was the range in backscatter values within the green vegetation segment of the Landsat pixel (e.g. Mississippi Delta: R2 = 0.47 vs. R2 = 0.59, n=15). Results support using remote sensing of biomass stock change to estimate greenhouse gas emission factors in tidal

  7. LBA-ECO ND-04 Secondary Forest Carbon and Nutrient Stocks, Central Amazonia, Brazil

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set reports the carbon and nutrient stocks of above-ground vegetation and soil pools at three locations where post-pasture secondary forest...

  8. LBA-ECO ND-04 Secondary Forest Carbon and Nutrient Stocks, Central Amazonia, Brazil

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set reports the carbon and nutrient stocks of above-ground vegetation and soil pools at three locations where post-pasture secondary forest recovery ranged...

  9. Carbon stocks in a 50-year-old Eucalyptus camaldulensis stand in ...

    African Journals Online (AJOL)

    Carbon stocks in a 50-year-old Eucalyptus camaldulensis stand in Sicily, Italy. Riccardo Scalenghe, Luisella Celi, Giovanna Costa, V Armando Laudicina, Stefania Santoni, Dario Vespertino, Tommaso La Mantia ...

  10. Carbon Stock and Carbon Accumulation Rates in the Delaware Bay Salt Marshes

    Science.gov (United States)

    O'Hara, B.; Nikitina, D.; Jennings, D.; Geyer, A.

    2017-12-01

    Salt marshes provide numerous benefits and services that are essential for mitigation and adaptation to climate change and resilience along the coast. They are also large carbon (C)-storing ecosystems, sequestering significant amounts of C from the atmosphere and oceans and storing it in the below ground sediments (Murray et al., 2011). When these systems are degraded, either through natural or anthropogenic impacts, they become a potential source of C emissions. The Delaware Bay salt marshes, which been developing for 2000 years, are being lost at a rate of an acre/day (PDE, 2012). However, no studies have accurately estimated the amount of C stored in its salt marshes. Assessments of salt-marsh C pools and carbon accumulation rates (CAR) typically focus on the top meter of sediment. Sediments accumulated at depths CAR to be 191.8 gC/m2/yr, and 82.18 gC/m2/yr, respectively. This study documents variation in sediment and CAR through time due to changes in depositional environments, quantifies degradation in the depositional environments, and calculates C content through the entire sediment sequence. Estimates of C stock ranged from 0.0369 MgC/m2 (1 m depth) to 0.1147 MgC/m2 (3 m depth). The results show that the Delaware Bay salt marshes sequester significant amounts of C, suggesting that C stock assessments focused on the top 1 m of sediment underestimate the total C stock by more than three-fold.

  11. Forest wildfire, fuel reduction treatments, and landscape carbon stocks: a sensitivity analysis

    Science.gov (United States)

    John L. Campbell; Alan A. Ager

    2013-01-01

    Fuel reduction treatments prescribed in fire-suppressed forests of western North America pose an apparent paradox with respect to terrestrial carbon management. Such treatments have the immediate effect of reducing forest carbon stocks but likely reduce future carbon losses through the combustion and mortality caused by high-severity wildfires. Assessing the long-term...

  12. Tree age, disturbance history, and carbon stocks and fluxes in subalpine Rocky Mountain forests

    Science.gov (United States)

    J.B. Bradford; R.A. Birdsey; L.A. Joyce; M.G. Ryan

    2008-01-01

    Forest carbon stocks and fluxes vary with forest age, and relationships with forest age are often used to estimate fluxes for regional or national carbon inventories. Two methods are commonly used to estimate forest age: observed tree age or time since a known disturbance. To clarify the relationships between tree age, time since disturbance and forest carbon storage...

  13. Modeling carbon stocks in a secondary tropical dry forest in the Yucatan Peninsula, Mexico

    Science.gov (United States)

    Zhaohua Dai; Richard A. Birdsey; Kristofer D. Johnson; Juan Manuel Dupuy; Jose Luis Hernandez-Stefanoni; Karen. Richardson

    2014-01-01

    The carbon balance of secondary dry tropical forests of Mexico’s Yucatan Peninsula is sensitive to human and natural disturbances and climate change. The spatially explicit process model Forest-DeNitrification-DeComposition (DNDC) was used to estimate forest carbon dynamics in this region, including the effects of disturbance on carbon stocks. Model evaluation using...

  14. Fire suppression and fuels treatment effects on mixed-conifer carbon stocks and emissions

    Science.gov (United States)

    M. North; M Hurteau; J Innes

    2009-01-01

    Depending on management, forests can be an important sink or source of carbon that if released as CO2 could contribute to global warming. Many forests in the western United States are being treated to reduce fuels, yet the effects of these treatments on forest carbon are not well understood. We compared the immediate effects of fuels treatments on carbon stocks and...

  15. Vulnerability of wetland soil carbon stocks to climate warming in the perhumid coastal temperate rainforest

    Science.gov (United States)

    Jason B. Fellman; David V. D’Amore; Eran Hood; Pat Cunningham

    2017-01-01

    The perhumid coastal temperate rainforest (PCTR) of southeast Alaska has some of the densest soil organic carbon (SOC) stocks in the world (>300 Mg C ha-1) but the fate of this SOC with continued warming remains largely unknown. We quantified dissolved organic carbon (DOC) and carbon dioxide (CO2) yields from four...

  16. Carbon Stocks in the Small Estuarine Mangroves of Geza and Mtimbwani, Tanga, Tanzania

    Directory of Open Access Journals (Sweden)

    Edmond Alavaisha

    2016-01-01

    Full Text Available Mangrove forests offer important ecosystem services, including their high capacity for carbon sequestration and stocking. However, they face rapid degradation and loss of ecological resilience particularly at local scales due to human pressure. We conducted inventory of mangrove forests to characterise forest stand structure and estimate carbon stocks in the small estuarine mangroves of Geza and Mtimbwani in Tanga, Tanzania. Forest structure, above-ground carbon (AGC, and below-ground carbon (BGC were characterised. Soil carbon was estimated to 1 m depth using loss on ignition procedure. Six common mangrove species were identified dominated by Avicennia marina (Forsk. Vierh. and Rhizophora mucronata Lamarck. Forest stand density and basal area were 1740 stems ha−1 and 17.2 m2 ha−1 for Geza and 2334 stems ha−1 and 30.3 m2 ha−1 for Mtimbwani. Total ecosystem carbon stocks were 414.6 Mg C ha−1 for Geza and 684.9 Mg C ha−1 for Mtimbwani. Soil carbon contributed over 65% of these stocks, decreasing with depth. Mid zones of the mangrove stands had highest carbon stocks. These data demonstrate that studied mangroves are potential for carbon projects and provide the baseline for monitoring, reporting, and verification (MRV to support the projects.

  17. Vegetation carbon stocks driven by canopy density and forest age in subtropical forest ecosystems.

    Science.gov (United States)

    Xu, Lin; Shi, Yongjun; Fang, Huiyun; Zhou, Guomo; Xu, Xiaojun; Zhou, Yufeng; Tao, Jixing; Ji, Biyong; Xu, Jun; Li, Chong; Chen, Liang

    2018-03-10

    Subtropical forests play an important role in global carbon cycle and in mitigating climate change. Knowledge on the abiotic and biotic driving factors that affect vegetation carbon stocks in subtropical forest ecosystems is needed to take full advantage of the carbon sequestration potential. We used a large-scale database from national forest continuous inventory in Zhejiang Province, and combined the Random Forest analysis (RF) and structural equation modeling (SEM) to quantify the contribution of biotic and abiotic driving factors on vegetation carbon stocks, and to evaluate the direct and indirect effects of the main driving factors. The RF model explained 50% of the variation in vegetation carbon stocks; canopy density accounted for 17.9%, and forest age accounted for 7.0%. Moreover, the SEM explained 52% of the variation in vegetation carbon stocks; the value of standardized total effects of canopy density and forest age were 0.469 and 0.327, respectively, suggesting that they were the most crucial driving factors of vegetation carbon stocks. Since the forests in our study were relatively young, the forests had a large potential for carbon sequestration. Overall, our study provided new insights into the sensitivity and potential response of subtropical forest ecosystems carbon cycle to climate change. Copyright © 2018. Published by Elsevier B.V.

  18. The Changes of Carbon Stocks on Rejuvenation of Smallholder Rubber Plantation

    OpenAIRE

    Supriadi, Handi; Ferry, Yulius

    2014-01-01

    Rejuvenation of rubber tree (Hevea Brasiliensis) can lead to a reduction of carbon stocks. Therefore, appropriate methods are needed to minimize such losses. The objective of this study was to analyze the changes on carbon stocks in the rejuvenation of rubber with logging system of 30%, 50%, 70%, and 100% and intercrops between the young rubber plantation (maize and peanuts). The research was conducted from January to December 2013 at smallholder rubber plantation in Way Tuba District, Way Ka...

  19. Impacts of vinasse and methods of sugarcane harvesting on the availability of K and carbon stock of an Argisol

    Directory of Open Access Journals (Sweden)

    Claudinei Alberto Cardin

    2016-02-01

    Full Text Available ABSTRACT Soils of tropical regions are more weathered and in need of conservation managements to maintain and improve the quality of its components. The objective of this study was to evaluate the availability of K, the organic matter content and the stock of total carbon of an Argisol after vinasse application and manual and mechanized harvesting of burnt and raw sugarcane, in western São Paulo.The data collection was done in the 2012/2013 harvest, in a bioenergy company in Presidente Prudente/SP. The research was arranged out following a split-plot scheme in a 5x5 factorial design, characterized by four management systems: without vinasse application and harvest without burning; with vinasse application and harvest without burning; with vinasse application and harvest after burning; without vinasse application and harvest after burning; plus native forest, and five soil sampling depths (0-10 10-20, 20-30, 30-40, 40-50 cm, with four replications. In each treatment, the K content in the soil and accumulated in the remaining dry biomass in the area, the levels of organic matter, organic carbon and soil carbon stock were determined. The mean values were compared by Tukey test. The vinasse application associated with the harvest without burning increased the K content in soil layers up to 40 cm deep. The managements without vinasse application and manual harvest after burning, and without vinasse application with mechanical harvesting without burning did not increase the levels of organic matter, organic carbon and stock of total soil organic carbon, while the vinasse application and harvest after burning and without burning increased the levels of these attributes in the depth of 0-10 cm.

  20. Sustainable biomass-derived hydrothermal carbons for energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Falco, Camillo

    2012-01-15

    The need to reduce humankind reliance on fossil fuels by exploiting sustainably the planet renewable resources is a major driving force determining the focus of modern material research. For this reason great interest is nowadays focused on finding alternatives to fossil fuels derived products/materials. For the short term the most promising substitute is undoubtedly biomass, since it is the only renewable and sustainable alternative to fossil fuels as carbon source. As a consequence efforts, aimed at finding new synthetic approaches to convert biomass and its derivatives into carbon-based materials, are constantly increasing. In this regard, hydrothermal carbonisation (HTC) has shown to be an effective means of conversion of biomass-derived precursors into functional carbon materials. However the attempts to convert raw biomass, in particular lignocellulosic one, directly into such products have certainly been rarer. Unlocking the direct use of these raw materials as carbon precursors would definitely be beneficial in terms of HTC sustainability. For this reason, in this thesis the HTC of carbohydrate and protein-rich biomass was systematically investigated, in order to obtain more insights on the potentials of this thermochemical processing technique in relation to the production of functional carbon materials from crude biomass. First a detailed investigation on the HTC conversion mechanism of lignocellulosic biomass and its single components (i.e. cellulose, lignin) was developed based on a comparison with glucose HTC, which was adopted as a reference model. In the glucose case it was demonstrated that varying the HTC temperature allowed tuning the chemical structure of the synthesised carbon materials from a highly cross-linked furan-based structure (T = 180 C) to a carbon framework composed of polyaromatic arene-like domains. When cellulose or lignocellulosic biomass was used as carbon precursor, the furan rich structure could not be isolated at any of the

  1. Estimating litter carbon stocks on forest land in the United States

    Science.gov (United States)

    Grant M. Domke; Charles H. (Hobie) Perry; Brian F. Walters; Christopher W. Woodall; Matthew B. Russell; James E. Smith

    2016-01-01

    Forest ecosystems are the largest terrestrial carbon sink on earth, withmore than half of their net primary productionmoving to the soil via the decomposition of litter biomass. Therefore, changes in the litter carbon (C) pool have important implications for global carbon budgets and carbon emissions reduction targets and negotiations. Litter accounts for an estimated...

  2. Litter carbon stocks in forests of the US are markedly smaller than previously reported

    Science.gov (United States)

    Grant Domke; Charles Perry; Brian Walters; Christopher Woodall; Matthew Russell; James. Smith

    2015-01-01

    Forest ecosystems are the largest terrestrial carbon sink on earth with more than half of their net primary production moving to the soil via the decomposition of litter biomass. Therefore, changes in the litter carbon pool have important implications for global carbon budgets and carbon emissions reduction targets and negotiations. Litter accounts for an estimated 5...

  3. Soil Carbon and Nitrogen Stocks of Different Hawaiian Sugarcane Cultivars

    Directory of Open Access Journals (Sweden)

    Rebecca Tirado-Corbalá

    2015-06-01

    Full Text Available Sugarcane has been widely used as a biofuel crop due to its high biological productivity, ease of conversion to ethanol, and its relatively high potential for greenhouse gas reduction and lower environmental impacts relative to other derived biofuels from traditional agronomic crops. In this investigation, we studied four sugarcane cultivars (H-65-7052, H-78-3567, H-86-3792 and H-87-4319 grown on a Hawaiian commercial sugarcane plantation to determine their ability to store and accumulate soil carbon (C and nitrogen (N across a 24-month growth cycle on contrasting soil types. The main study objective establish baseline parameters for biofuel production life cycle analyses; sub-objectives included (1 determining which of four main sugarcane cultivars sequestered the most soil C and (2 assessing how soil C sequestration varies among two common Hawaiian soil series (Pulehu-sandy clay loam and Molokai-clay. Soil samples were collected at 20 cm increments to depths of up to 120 cm using hand augers at the three main growth stages (tillering, grand growth, and maturity from two experimental plots at to observe total carbon (TC, total nitrogen (TN, dissolved organic carbon (DOC and nitrates (NO−3 using laboratory flash combustion for TC and TN and solution filtering and analysis for DOC and NO−3. Aboveground plant biomass was collected and subsampled to determine lignin and C and N content. This study determined that there was an increase of TC with the advancement of growing stages in the studied four sugarcane cultivars at both soil types (increase in TC of 15–35 kg·m2. Nitrogen accumulation was more variable, and NO−3 (<5 ppm were insignificant. The C and N accumulation varies in the whole profile based on the ability of the sugarcane cultivar’s roots to explore and grow in the different soil types. For the purpose of storing C in the soil, cultivar H-65-7052 (TC accumulation of ~30 kg·m−2 and H-86-3792 (25 kg·m−2 rather H-78

  4. Soil carbon stocks decrease following conversion of secondary forests to rubber (Hevea brasiliensis) plantations.

    Science.gov (United States)

    de Blécourt, Marleen; Brumme, Rainer; Xu, Jianchu; Corre, Marife D; Veldkamp, Edzo

    2013-01-01

    Forest-to-rubber plantation conversion is an important land-use change in the tropical region, for which the impacts on soil carbon stocks have hardly been studied. In montane mainland southeast Asia, monoculture rubber plantations cover 1.5 million ha and the conversion from secondary forests to rubber plantations is predicted to cause a fourfold expansion by 2050. Our study, conducted in southern Yunnan province, China, aimed to quantify the changes in soil carbon stocks following the conversion from secondary forests to rubber plantations. We sampled 11 rubber plantations ranging in age from 5 to 46 years and seven secondary forest plots using a space-for-time substitution approach. We found that forest-to-rubber plantation conversion resulted in losses of soil carbon stocks by an average of 37.4±4.7 (SE) Mg C ha(-1) in the entire 1.2-m depth over a time period of 46 years, which was equal to 19.3±2.7% of the initial soil carbon stocks in the secondary forests. This decline in soil carbon stocks was much larger than differences between published aboveground carbon stocks of rubber plantations and secondary forests, which range from a loss of 18 Mg C ha(-1) to an increase of 8 Mg C ha(-1). In the topsoil, carbon stocks declined exponentially with years since deforestation and reached a steady state at around 20 years. Although the IPCC tier 1 method assumes that soil carbon changes from forest-to-rubber plantation conversions are zero, our findings show that they need to be included to avoid errors in estimating overall ecosystem carbon fluxes.

  5. Carbon stocks in Norwegian forested systems. Preliminary data

    Directory of Open Access Journals (Sweden)

    Oyen BH.

    2000-01-01

    Full Text Available Between 1990 and 2010 the projected emissions of greenhouse gases in Norway is assumed to increase 24%. As a signatory to the Kyoto Protocol, Norway is supposed to limit the greenhouse gas emissions in the period 2008–2012 to 1% above the 1990 level. Potentially, forestry activities may contribute as a means to achieve the set target of emission reductions. The initial Norwegian views and proposals for definitions and accounting framework for activities under Articles 3.3 and 3.4 of the Kyoto Protocol was reported to the UNFCCC August 1 2000 by the Norwegian Ministry of Environment. There was also an annex to the submission with preliminary data and information on Articles 3.3 and 3.4 of the Kyoto Protocol. This paper is based on this annex, and focuses mainly on data for forests and other woodlands. Preliminary data indicate that approximately 85% of the carbon (C pool of forested systems is found in the soil. The major part of the annual C sequestration takes place in living biomass and soil, while sequestration in wood products and landfills etc. has been found to be of minor importance. It must be noted that the reported data are preliminary and contain large uncertainties.

  6. Integrated biomass energy systems and emissions of carbon dioxide

    International Nuclear Information System (INIS)

    Boman, U.R.; Turnbull, J.H.

    1997-01-01

    Electric Power Research Institute (EPRI) and the US Department of Energy (DOE) have been funding a number of case studies under the initiative entitled ''Economic Development through Biomass Systems Integration'', with the objective of investigating the feasibility of integrated biomass energy systems utilizing a dedicated feedstock supply system (DFSS) for energy production. This paper deals with the full fuel cycle for four of these case studies, which have been examined with regard to the emissions of carbon dioxide., CO 2 . Although the conversion of biomass to electricity in itself does not emit more CO 2 than is captured by the biomass through photosynthesis, there will be some CO 2 emissions from the DFSS. External energy is required for the production and transportation of the biomass feedstock, and this energy is mainly based on fossil fuels. By using this input energy, CO 2 and other greenhouse gases are emitted. However, by utilizing biomass with fossil fuels as external input fuels, we would get about 10-15 times more electric energy per unit fossil fuel, compared with a 100% coal power system. By introducing a DFSS on former farmland the amount of energy spent for production of crops can be reduced, the amount of fertilizers can be decreased, the soil can be improved and a significant amount of energy will be produced compared with an ordinary farm crop. Compared with traditional coal-based electricity production, the CO 2 emissions are in the most cases reduced significantly by as much as 95%. The important conclusion is the great potential for reducing greenhouse gas emissions through the offset of coal by biomass. (author)

  7. Effects of land use on soil inorganic carbon stocks in the Russian Chernozem.

    Science.gov (United States)

    Mikhailova, Elena A; Post, Christopher J

    2006-01-01

    Little is known about changes in soil inorganic carbon (SIC) stocks with depth and with land use in grassland ecosystems. This study was conducted to determine SIC stocks under different management regimes in the Mollisol, one of the typical soils in grasslands. Four sites were sampled: a native grassland field (not cultivated for at least 300 yr), an adjacent 50-yr continuous fallow field, a yearly cut hay field in the V.V. Alekhin Central-Chernozem Biosphere State Reserve in the Kursk region of Russia, and a continuously cropped field in the Experimental Station of the Kursk Institute of Agronomy and Soil Erosion Control. All sampled soils were classified as fine-silty, mixed, frigid Pachic Hapludolls. Significant differences occurred in SIC stocks between cultivated and grassland soil. The inorganic carbon stocks in the top 2 m were 107 Mg ha(-1) for the native grassland, 91 Mg ha(-1) for the yearly cut hay field, 242 Mg ha(-1) for the continuously cropped field, and 196 Mg ha(-1) for the 50-yr continuous fallow. The SIC was in the form of calcium carbonate and was mostly stored below the 1-m depth. The largest difference between inorganic carbon stocks was observed between the continuously cropped field and native grassland. The increase in inorganic carbon in the continuously cropped field and continuous fallow was attributed to initial cultivation and fertilization. Soil inorganic carbon in Mollisols is not accounted for in the current global carbon estimates.

  8. Quantifying the uncertainty of regional and national estimates of soil carbon stocks

    Science.gov (United States)

    Papritz, Andreas

    2013-04-01

    At regional and national scales, carbon (C) stocks are frequently estimated by means of regression models. Such statistical models link measurements of carbons stocks, recorded for a set of soil profiles or soil cores, to covariates that characterize soil formation conditions and land management. A prerequisite is that these covariates are available for any location within a region of interest G because they are used along with the fitted regression coefficients to predict the carbon stocks at the nodes of a fine-meshed grid that is laid over G. The mean C stock in G is then estimated by the arithmetic mean of the stock predictions for the grid nodes. Apart from the mean stock, the precision of the estimate is often also of interest, for example to judge whether the mean C stock has changed significantly between two inventories. The standard error of the estimated mean stock in G can be computed from the regression results as well. Two issues are thereby important: (i) How large is the area of G relative to the support of the measurements? (ii) Are the residuals of the regression model spatially auto-correlated or is the assumption of statistical independence tenable? Both issues are correctly handled if one adopts a geostatistical block kriging approach for estimating the mean C stock within a region and its standard error. In the presentation I shall summarize the main ideas of external drift block kriging. To compute the standard error of the mean stock, one has in principle to sum the elements a potentially very large covariance matrix of point prediction errors, but I shall show that the required term can be approximated very well by Monte Carlo techniques. I shall further illustrated with a few examples how the standard error of the mean stock estimate changes with the size of G and with the strenght of the auto-correlation of the regression residuals. As an application a robust variant of block kriging is used to quantify the mean carbon stock stored in the

  9. Impact of tree species on soil carbon stocks and soil acidity in southern Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Oostra, Swantje [Swedish Univ. of Agricultural Sciences, Alnarp (Sweden). Dept. of Landscape Planning; Majdi, Hooshang [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Ecology and Environmental Sciences; Olsson, Mats [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Forest Soils

    2006-10-15

    The impact of tree species on soil carbon stocks and acidity in southern Sweden was studied in a non-replicated plantation with monocultures of 67-year-old ash (Fraxinus excelsior L.), beech (Fagus silvatica L.), elm (Ulmus glabra Huds.), hornbeam (Carpinusbetulus L.), Norway spruce (Picea abies L.) and oak (Quercus robur L.). The site was characterized by a cambisol on glacial till. Volume-determined soil samples were taken from the O-horizon and mineral soil layers to 20 cm. Soil organic carbon (SOC), total nitrogen (TN), pH (H2O), cation-exchange capacity and base saturation at pH 7 and exchangeable calcium, magnesium, potassium and sodium ions were analysed in the soil fraction < 2 mm. Root biomass <5 mm in diameter) and its proportion in the forest floor and mineral soil varied between tree species. There was a vertical gradient under all species, with the highest concentrations of SOC, TN and base cations in the O-horizon and the lowest in the 10-20 cm layer. The tree species differed with respect to SOC, TN and soil acidity in the O-horizon and mineral soil. For SOC and TN, the range in the O-horizon was spruce> hornbeam > oak > beech > ash > elm. The pH in the O-horizon ranged in the order elm > ash > hornbeam > beech > oak > spruce. In the mineral soil, SOC and TN ranged in the order elm > oak > ash = hornbeam > spruce > beech, i.e. partly reversed, and pH ranged in the same order as for the O-horizon. It is suggested that spruce is the best option for fertile sites in southern Sweden if the aim is a high carbon sequestration rate, whereas elm, ash and hornbeam are the best solutions if the aim is a low soil acidification rate.

  10. An assessment of high carbon stock and high conservation value approaches to sustainable oil palm cultivation in Gabon

    Science.gov (United States)

    Austin, Kemen G.; Lee, Michelle E.; Clark, Connie; Forester, Brenna R.; Urban, Dean L.; White, Lee; Kasibhatla, Prasad S.; Poulsen, John R.

    2017-01-01

    Industrial-scale oil palm cultivation is rapidly expanding in Gabon, where it has the potential to drive economic growth, but also threatens forest, biodiversity and carbon resources. The Gabonese government is promoting an ambitious agricultural expansion strategy, while simultaneously committing to minimize negative environmental impacts of oil palm agriculture. This study estimates the extent and location of suitable land for oil palm cultivation in Gabon, based on an analysis of recent trends in plantation permitting. We use the resulting suitability map to evaluate two proposed approaches to minimizing negative environmental impacts: a High Carbon Stock (HCS) approach, which emphasizes forest protection and climate change mitigation, and a High Conservation Value (HCV) approach, which focuses on safeguarding biodiversity and ecosystems. We quantify the forest area, carbon stock, and biodiversity resources protected under each approach, using newly developed maps of priority species distributions and forest biomass for Gabon. We find 2.7-3.9 Mha of suitable or moderately suitable land that avoid HCS areas, 4.4 million hectares (Mha) that avoid HCV areas, and 1.2-1.7 Mha that avoid both. This suggests that Gabon’s oil palm production target could likely be met without compromising important ecosystem services, if appropriate safeguards are put in place. Our analysis improves understanding of suitability for oil palm in Gabon, determines how conservation strategies align with national targets for oil palm production, and informs national land use planning.

  11. Evaluating Public Plantation and Community Planted Forests under the CDM and REDD+ Mechanism for Carbon Stock in Nepal

    Directory of Open Access Journals (Sweden)

    Ram Asheshwar MANDAL

    2013-09-01

    Full Text Available Public plantations (PPs and Community planted forests (CPFs are inimitable types of participatory forest management practices in Nepal, but their eligibility issues under the framework of clean development mechanism (CDM and reducing emission from the deforestation and forest degradation mechanism (REDD+ are not evaluated. So, to explore the management system of PP and CPF, we compared forest carbon stocks in plantations and evaluated these plantations under these mechanisms as objectives of this research. The relevant documents were revised and altogether 55 samples were collected from Shreepur, Banauta and Bisbity PPs and Sita, Ramnagar and Jogikuti CPFs, in Mahottary district, Nepal. The equation of Chave et al was used to calculate the biomass, which was further converted into carbon. Meanwhile, management practices were evaluated under the framework of CDM and REDD+. The PPs are public land managed, especially by disadvantaged communities, while CPFs are the patches of national forest managed by users. The variation in carbon stock was found to be highest (148.89 ton ha-1 in Sita CPF and lowest (30.34 ton ha-1 in Bisbitty PP. In fact, it is difficult to certify plantations under CDM, due to its complexity, but they can easily be candidate to the REDD+ mechanism, if they are bundled with large forest blocks.

  12. Soil carbon and nitrogen stocks in traditional agricultural and agroforestry systems in the semiarid region of Brazil

    Directory of Open Access Journals (Sweden)

    José Augusto Amorim Silva do Sacramento

    2013-06-01

    Full Text Available In the semiarid region of Brazil, inadequate management of cropping systems and low plant biomass production can contribute to reduce soil carbon (C and nitrogen (N stocks; therefore, management systems that preserve C and N must be adopted. This study aimed to evaluate the changes in soil C and N stocks that were promoted by agroforestry (agrosilvopastoral and silvopastoral and traditional agricultural systems (slash-and-burn clearing and cultivation for two and three years and to compare these systems with the natural Caatinga vegetation after 13 years of cultivation. The experiment was carried out on a typical Ortic Chromic Luvisol in the municipality of Sobral, Ceará, Brazil. Soil samples were collected (layers 0-6, 6-12, 12-20, 20-40 and 40-60 cm with four replications. The plain, convex and concave landforms in each study situation were analyzed, and the total organic C, total N and densities of the soil samples were assessed. The silvopastoral system promoted the greatest long-term reductions in C and N stocks, while the agrosilvopastoral system promoted the smallest losses and therefore represents a sustainable alternative for soil C and N sequestration in these semiarid conditions. The traditional agricultural system produced reductions of 58.87 and 9.57 Mg ha-1 in the organic C and total N stocks, respectively, which suggests that this system is inadequate for these semiarid conditions. The organic C stocks were largest in the concave landform in the agrosilvopastoral system and in the plain landform in the silvopastoral system, while the total N values were highest in the concave landform in the native, agrosilvopastoral and silvopastoral systems.

  13. Mapping afforestation and its carbon stock using time-series Landsat stacks

    Science.gov (United States)

    Liu, L.; Wu, Y.

    2015-12-01

    The Three Norths Shelter Forest Programme (TNSFP) is the largest afforestation reconstruction project in the world. Remote sensing is a crucial tool to map land cover and cover changes, but it is still challenging to accurately quantify the plantation and its carbon stock from time-series satellite images. In this paper, the Yulin district, Shaanxi province, representing a typical afforestation area in the TNSFP region, was selected as the study area, and there were twenty-nine Landsat MSS/TM/ETM+ epochs were collected from 1974 to 2012 to reconstruct the forest changes and carbon stock in last 40 years. Firstly, the Landsat ground surface reflectance (GSR) images from 1974 to 2013 were collected and processed based on 6S atmospheric transfer code and a relative reflectance normalization algorithm. Subsequently, we developed a vegetation change tracking method to reconstruct the forest change history (afforestation and deforestation) from the dense time-series Landsat GSR images based on the integrated forest z-score (IFZ) model, and the afforestation age was successfully retrieved from the Landsat time-series stacks in the last forty years and shown to be consistent with the surveyed tree ages, with a RMSE value of 4.32 years and a determination coefficient (R²) of 0.824. Then, the AGB regression models were successfully developed by integrating vegetation indices and tree age. The simple ratio vegetation index (SR) is the best candidate of the commonly used vegetation indices for estimating forest AGB, and the forest AGB model was significantly improved using the combination of SR and tree age, with R² values from 0.50 to 0.727. Finally, the forest AGB images were mapped at eight epochs from 1985 to 2013 using SR and afforestation age. The total forest AGB in six counties of Yulin District increased by 20.8 G kg, from 5.8 G kg in 1986 to 26.6 G kg in 2013, a total increase of 360%. For the forest area since 1974, the forest AGB density increased from 15.72 t

  14. Imputing forest carbon stock estimates from inventory plots to a nationally continuous coverage

    Directory of Open Access Journals (Sweden)

    Wilson Barry Tyler

    2013-01-01

    Full Text Available Abstract The U.S. has been providing national-scale estimates of forest carbon (C stocks and stock change to meet United Nations Framework Convention on Climate Change (UNFCCC reporting requirements for years. Although these currently are provided as national estimates by pool and year to meet greenhouse gas monitoring requirements, there is growing need to disaggregate these estimates to finer scales to enable strategic forest management and monitoring activities focused on various ecosystem services such as C storage enhancement. Through application of a nearest-neighbor imputation approach, spatially extant estimates of forest C density were developed for the conterminous U.S. using the U.S.’s annual forest inventory. Results suggest that an existing forest inventory plot imputation approach can be readily modified to provide raster maps of C density across a range of pools (e.g., live tree to soil organic carbon and spatial scales (e.g., sub-county to biome. Comparisons among imputed maps indicate strong regional differences across C pools. The C density of pools closely related to detrital input (e.g., dead wood is often highest in forests suffering from recent mortality events such as those in the northern Rocky Mountains (e.g., beetle infestations. In contrast, live tree carbon density is often highest on the highest quality forest sites such as those found in the Pacific Northwest. Validation results suggest strong agreement between the estimates produced from the forest inventory plots and those from the imputed maps, particularly when the C pool is closely associated with the imputation model (e.g., aboveground live biomass and live tree basal area, with weaker agreement for detrital pools (e.g., standing dead trees. Forest inventory imputed plot maps provide an efficient and flexible approach to monitoring diverse C pools at national (e.g., UNFCCC and regional scales (e.g., Reducing Emissions from Deforestation and Forest

  15. Multiscale analysis of tree cover and aboveground carbon stocks in pinyon-juniper woodlands.

    Science.gov (United States)

    Huang, Cho-Ying; Asner, Gregory P; Martin, Roberta E; Barger, Nichole N; Neff, Jason C

    2009-04-01

    Regional, high-resolution mapping of vegetation cover and biomass is central to understanding changes to the terrestrial carbon (C) cycle, especially in the context of C management. The third most extensive vegetation type in the United States is pinyon-juniper (P-J) woodland, yet the spatial patterns of tree cover and aboveground biomass (AGB) of P-J systems are poorly quantified. We developed a synoptic remote-sensing approach to scale up pinyon and juniper projected cover (hereafter "cover") and AGB field observations from plot to regional levels using fractional photosynthetic vegetation (PV) cover derived from airborne imaging spectroscopy and Landsat satellite data. Our results demonstrated strong correlations (P satellite PV estimates (r2 = 0.61). Field data also indicated that P-J AGB can be estimated from canopy cover using a unified allometric equation (r2 = 0.69; P < 0.001). Using these multiscale cover-AGB relationships, we developed high-resolution, regional maps of P-J cover and AGB for the western Colorado Plateau. The P-J cover was 27.4% +/- 9.9% (mean +/- SD), and the mean aboveground woody C converted from AGB was 5.2 +/- 2.0 Mg C/ha. Combining our data with the southwest Regional Gap Analysis Program vegetation map, we estimated that total contemporary woody C storage for P-J systems throughout the Colorado Plateau (113 600 km2) is 59.0 +/- 22.7 Tg C. Our results show how multiple remote-sensing observations can be used to map cover and C stocks at high resolution in drylands, and they highlight the role of P-J ecosystems in the North American C budget.

  16. Biomass expansion factors of Olea ferruginea (Royle) in sub tropical ...

    African Journals Online (AJOL)

    user

    2011-02-28

    Feb 28, 2011 ... carbon stocks and yield of the forest. Key words: Biomass, biomass expansion factor, tree volume, Olea ferruginea. INTRODUCTION. Since ancient times, man has relied on biomass of trees as an important non-renewable energy source. Biomass, which is currently the fourth largest energy source in the.

  17. Effects of Deforestation and Forest Degradation on Forest Carbon Stocks in Collaborative Forests, Nepal

    Directory of Open Access Journals (Sweden)

    Ram Asheshwar MANDAL

    2012-12-01

    Full Text Available There are some key drivers that favor deforestation and forest degradation. Consequently, levels of carbon stock are affected in different parts of same forest types. But the problem lies in exploring the extent of the effects on level of carbon stocking. This paper highlights the variations in levels of carbon stocks in three different collaborative forests of same forest type i.e. tropical sal (Shorea robusta forest in Mahottari district of the central Terai in Nepal. Three collaborative forests namely Gadhanta-Bardibas Collaborative Forest (CFM, Tuteshwarnath CFM and Banke- Maraha CFM were selected for research site. Interview and workshops were organized with the key informants that include staffs, members and representatives of CFMs to collect the socio-economic data and stratified random sampling was applied to collect the bio-physical data to calculate the carbon stocks. Analysis was carried out using statistical tools. It was found five major drivers namely grazing, fire, logging, growth of invasive species and encroachment. It was found highest carbon 269.36 ton per ha in Gadhanta- Bardibash CFM. The findings showed that the levels of carbon stocks in the three studied CFMs are different depending on how the drivers of deforestation and forest degradation influence over them.

  18. Effectiveness of management interventions on forest carbon stock in planted forests in Nepal.

    Science.gov (United States)

    Dangal, Shambhu Prasad; Das, Abhoy Kumar; Paudel, Shyam Krishna

    2017-07-01

    Nepal has successfully established more than 370,000 ha of plantations, mostly with Pinus patula, in the last three and a half decades. However, intensive management of these planted forests is very limited. Despite the fact that the Kyoto Convention in 1997 recognized the role of plantations for forest-carbon sequestration, there is still limited knowledge on the effects of management practices and stand density on carbon-sequestration of popular plantation species (i.e. Pinus patula) in Nepal. We carried out case studies in four community forests planted between 1976 and 1990 to assess the impacts of management on forest carbon stocks. The study found that the average carbon stock in the pine plantations was 217 Mg C ha -1 , and was lower in forests with intensively managed plantations (214.3 Mg C ha -1 ) than in traditionally managed plantations (219 Mg C ha -1 ). However, it was the reverse in case of soil carbon, which was higher (78.65 Mg C ha -1 ) in the forests with intensive management. Though stand density was positively correlated with carbon stock, the proportionate increment in carbon stock was lower with increasing stand density, as carbon stock increased by less than 25% with a doubling of stand density (300-600). The total carbon stock was higher in plantations aged between 25 and 30 years compared to those aged between 30 and 35 years. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Mapping growing stock volume and forest live biomass: a case study of the Polissya region of Ukraine

    Science.gov (United States)

    Bilous, Andrii; Myroniuk, Viktor; Holiaka, Dmytrii; Bilous, Svitlana; See, Linda; Schepaschenko, Dmitry

    2017-10-01

    Forest inventory and biomass mapping are important tasks that require inputs from multiple data sources. In this paper we implement two methods for the Ukrainian region of Polissya: random forest (RF) for tree species prediction and k-nearest neighbors (k-NN) for growing stock volume and biomass mapping. We examined the suitability of the five-band RapidEye satellite image to predict the distribution of six tree species. The accuracy of RF is quite high: ~99% for forest/non-forest mask and 89% for tree species prediction. Our results demonstrate that inclusion of elevation as a predictor variable in the RF model improved the performance of tree species classification. We evaluated different distance metrics for the k-NN method, including Euclidean or Mahalanobis distance, most similar neighbor (MSN), gradient nearest neighbor, and independent component analysis. The MSN with the four nearest neighbors (k = 4) is the most precise (according to the root-mean-square deviation) for predicting forest attributes across the study area. The k-NN method allowed us to estimate growing stock volume with an accuracy of 3 m3 ha-1 and for live biomass of about 2 t ha-1 over the study area.

  20. Determining forest carbon stock losses due to wildfire disturbance in the Western United States

    Science.gov (United States)

    John M. Zobel; John W. Coulston

    2015-01-01

    Quantifying carbon stock losses after wildfire events is challenging due to the lack of detailed information before and after the disturbance. We propose to use the extensive Western FIA database (including periodic and annual inventories) to recreate pre- and post-fire conditions to better estimate actual carbon losses. Methods include using remeasurement date where...

  1. Improving national-scale carbon stock inventories using knowledge on land use history

    NARCIS (Netherlands)

    Schulp, C.J.E.; Verburg, P.H.; Kuikman, P.J.; Nabuurs, G.J; Olivier, J.G.J.; de Vries, W.; Veldkamp, A.

    2013-01-01

    National-scale inventories of soil organic carbon (SOC) and forest floor carbon (FFC) stocks have a high uncertainty. Inventories are often based on the interpolation of sampled information, often using a number of covariables to help such interpolation. The rationale for the choice of these

  2. Landscape-scale analysis of aboveground tree carbon stocks affected by mountain pine beetles in Idaho

    Science.gov (United States)

    Benjamin Bright; J. A. Hicke; A. T. Hudak

    2012-01-01

    Bark beetle outbreaks kill billions of trees in western North America, and the resulting tree mortality can significantly impact local and regional carbon cycling. However, substantial variability in mortality occurs within outbreak areas. Our objective was to quantify landscape-scale effects of beetle infestations on aboveground carbon (AGC) stocks using field...

  3. Forest Carbon Stocks in Woody Plants of Arba Minch Ground Water ...

    African Journals Online (AJOL)

    The role of forests in mitigating the effect of climate change depends on the carbon sequestration potential and management. This study was conducted to estimate the carbon stock and its variation along environmental gradients in Arba Minch Ground Water Forest. The data was collected from the field by measuring plants ...

  4. Structural Break, Stock Prices of Clean Energy Firms and Carbon Market

    Science.gov (United States)

    Wang, Yubao; Cai, Junyu

    2018-03-01

    This paper uses EU ETS carbon future price and Germany/UK clean energy firms stock indices to study the relationship between carbon market and clean energy market. By structural break test, it is found that the ‘non-stationary’ variables judged by classical unit root test do own unit roots and need taking first difference. After analysis of VAR and Granger causality test, no causal relationships are found between the two markets. However, when Hsiao’s version of causality test is employed, carbon market is found to have power in explaining the movement of stock prices of clean energy firms, and stock prices of clean energy firms also affect the carbon market.

  5. Past and prospective carbon stocks in forests of northern Wisconsin: a report from the Chequamegon-Nicolet National Forest Climate Change Response Framework

    Science.gov (United States)

    Richard Birdsey; Yude Pan; Maria Janowiak; Susan Stewart; Sarah Hines; Linda Parker; Stith Gower; Jeremy Lichstein; Kevin McCullough; Fangmin Zhang; Jing Chen; David Mladenoff; Craig Wayson; Chris. Swanston

    2014-01-01

    This report assesses past and prospective carbon stocks for 4.5 million ha of forest land in northern Wisconsin, including a baseline assessment and analysis of the impacts of disturbance and management on carbon stocks. Carbon density (amount of carbon stock per unit area) averages 237 megagrams (Mg) per ha, with the National Forest lands having slightly higher carbon...

  6. Carbon stocks estimates for French forests. COST E21 Workshop. Contribution of forests and forestry to mitigate greenhouse effects. Joensuu (Finland. 28-30 Sep 2000

    Directory of Open Access Journals (Sweden)

    Dupouey J.L.

    2000-01-01

    Full Text Available This paper gives a short description of the data and methods used for inventorying the carbon stocks in the biomass and soil pools in metropolitan French forests. The data concerning the biomass pools are measured by the French National Forest Inventory (NFI while data necessary to estimate the soil carbon pools are obtained from the 16 x 16 km soil inventory of the International Cooperative Programme on Assessment and Monitoring of Air Pollution Effects on Forests in the UN/ECE. Some of the problems raised by the implementation of the Kyoto protocol articles 3.3 and 3.4 in France are discussed and a preliminary estimate of the changes in relevant carbon storage is given.

  7. Spatial variability of soil carbon stock in the Urucu river basin, Central Amazon-Brazil

    International Nuclear Information System (INIS)

    Ceddia, Marcos Bacis; Villela, André Luis Oliveira; Pinheiro, Érika Flávia Machado; Wendroth, Ole

    2015-01-01

    The Amazon Forest plays a major role in C sequestration and release. However, few regional estimates of soil organic carbon (SOC) stock in this ecoregion exist. One of the barriers to improve SOC estimates is the lack of recent soil data at high spatial resolution, which hampers the application of new methods for mapping SOC stock. The aims of this work were: (i) to quantify SOC stock under undisturbed vegetation for the 0–30 and the 0–100 cm under Amazon Forest; (ii) to correlate the SOC stock with soil mapping units and relief attributes and (iii) to evaluate three geostatistical techniques to generate maps of SOC stock (ordinary, isotopic and heterotopic cokriging). The study site is located in the Central region of Amazon State, Brazil. The soil survey covered the study site that has an area of 80 km 2 and resulted in a 1:10,000 soil map. It consisted of 315 field observations (96 complete soil profiles and 219 boreholes). SOC stock was calculated by summing C stocks by horizon, determined as a product of BD, SOC and the horizon thickness. For each one of the 315 soil observations, relief attributes were derived from a topographic map to understand SOC dynamics. The SOC stocks across 30 and 100 cm soil depth were 3.28 and 7.32 kg C m −2 , respectively, which is, 34 and 16%, lower than other studies. The SOC stock is higher in soils developed in relief forms exhibiting well-drained soils, which are covered by Upland Dense Tropical Rainforest. Only SOC stock in the upper 100 cm exhibited spatial dependence allowing the generation of spatial variability maps based on spatial (co)-regionalization. The CTI was inversely correlated with SOC stock and was the only auxiliary variable feasible to be used in cokriging interpolation. The heterotopic cokriging presented the best performance for mapping SOC stock. - Highlights: • The SOC stocks across 30 and 100 cm depth were 3.28 and 7.32 kg C m −2 , respectively. • SOC stocks were 34 and 16%, respectively

  8. Spatial variability of soil carbon stock in the Urucu river basin, Central Amazon-Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Ceddia, Marcos Bacis, E-mail: marcosceddia@gmail.com [Department of Soil, Institute of Agronomy, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica, RJ 23890-000 (Brazil); Villela, André Luis Oliveira [Colégio Técnico da UFRRJ, RJ, Seropédica 23890-000 (Brazil); Pinheiro, Érika Flávia Machado [Department of Soil, Institute of Agronomy, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica, RJ 23890-000 (Brazil); Wendroth, Ole [Department of Plant & Soil Sciences, University of Kentucky, College of Agriculture, Lexington, KY (United States)

    2015-09-01

    The Amazon Forest plays a major role in C sequestration and release. However, few regional estimates of soil organic carbon (SOC) stock in this ecoregion exist. One of the barriers to improve SOC estimates is the lack of recent soil data at high spatial resolution, which hampers the application of new methods for mapping SOC stock. The aims of this work were: (i) to quantify SOC stock under undisturbed vegetation for the 0–30 and the 0–100 cm under Amazon Forest; (ii) to correlate the SOC stock with soil mapping units and relief attributes and (iii) to evaluate three geostatistical techniques to generate maps of SOC stock (ordinary, isotopic and heterotopic cokriging). The study site is located in the Central region of Amazon State, Brazil. The soil survey covered the study site that has an area of 80 km{sup 2} and resulted in a 1:10,000 soil map. It consisted of 315 field observations (96 complete soil profiles and 219 boreholes). SOC stock was calculated by summing C stocks by horizon, determined as a product of BD, SOC and the horizon thickness. For each one of the 315 soil observations, relief attributes were derived from a topographic map to understand SOC dynamics. The SOC stocks across 30 and 100 cm soil depth were 3.28 and 7.32 kg C m{sup −2}, respectively, which is, 34 and 16%, lower than other studies. The SOC stock is higher in soils developed in relief forms exhibiting well-drained soils, which are covered by Upland Dense Tropical Rainforest. Only SOC stock in the upper 100 cm exhibited spatial dependence allowing the generation of spatial variability maps based on spatial (co)-regionalization. The CTI was inversely correlated with SOC stock and was the only auxiliary variable feasible to be used in cokriging interpolation. The heterotopic cokriging presented the best performance for mapping SOC stock. - Highlights: • The SOC stocks across 30 and 100 cm depth were 3.28 and 7.32 kg C m{sup −2}, respectively. • SOC stocks were 34 and 16

  9. Sampling for Soil Carbon Stock Assessment in Rocky Agricultural Soils

    Science.gov (United States)

    Beem-Miller, Jeffrey P.; Kong, Angela Y. Y.; Ogle, Stephen; Wolfe, David

    2016-01-01

    Coring methods commonly employed in soil organic C (SOC) stock assessment may not accurately capture soil rock fragment (RF) content or soil bulk density (rho (sub b)) in rocky agricultural soils, potentially biasing SOC stock estimates. Quantitative pits are considered less biased than coring methods but are invasive and often cost-prohibitive. We compared fixed-depth and mass-based estimates of SOC stocks (0.3-meters depth) for hammer, hydraulic push, and rotary coring methods relative to quantitative pits at four agricultural sites ranging in RF content from less than 0.01 to 0.24 cubic meters per cubic meter. Sampling costs were also compared. Coring methods significantly underestimated RF content at all rocky sites, but significant differences (p is less than 0.05) in SOC stocks between pits and corers were only found with the hammer method using the fixed-depth approach at the less than 0.01 cubic meters per cubic meter RF site (pit, 5.80 kilograms C per square meter; hammer, 4.74 kilograms C per square meter) and at the 0.14 cubic meters per cubic meter RF site (pit, 8.81 kilograms C per square meter; hammer, 6.71 kilograms C per square meter). The hammer corer also underestimated rho (sub b) at all sites as did the hydraulic push corer at the 0.21 cubic meters per cubic meter RF site. No significant differences in mass-based SOC stock estimates were observed between pits and corers. Our results indicate that (i) calculating SOC stocks on a mass basis can overcome biases in RF and rho (sub b) estimates introduced by sampling equipment and (ii) a quantitative pit is the optimal sampling method for establishing reference soil masses, followed by rotary and then hydraulic push corers.

  10. Dynamics of sediment carbon stocks across intertidal wetland habitats of Moreton Bay, Australia.

    Science.gov (United States)

    Hayes, Matthew A; Jesse, Amber; Hawke, Bruce; Baldock, Jeff; Tabet, Basam; Lockington, David; Lovelock, Catherine E

    2017-10-01

    Coastal wetlands are known for high carbon storage within their sediments, but our understanding of the variation in carbon storage among intertidal habitats, particularly over geomorphological settings and along elevation gradients, is limited. Here, we collected 352 cores from 18 sites across Moreton Bay, Australia. We assessed variation in sediment organic carbon (OC) stocks among different geomorphological settings (wetlands within riverine settings along with those with reduced riverine influence located on tide-dominated sand islands), across elevation gradients, with distance from shore and among habitat and vegetation types. We used mid-infrared (MIR) spectroscopy combined with analytical data and partial least squares regression to quantify the carbon content of ~2500 sediment samples and provide fine-scale spatial coverage of sediment OC stocks to 150 cm depth. We found sites in river deltas had larger OC stocks (175-504 Mg/ha) than those in nonriverine settings (44-271 Mg/ha). Variation in OC stocks among nonriverine sites was high in comparison with riverine and mixed geomorphic settings, with sites closer to riverine outflow from the east and south of Moreton Bay having higher stocks than those located on the sand islands in the northwest of the bay. Sediment OC stocks increased with elevation within nonriverine settings, but not in riverine geomorphic settings. Sediment OC stocks did not differ between mangrove and saltmarsh habitats. OC stocks did, however, differ between dominant species across the research area and within geomorphic settings. At the landscape scale, the coastal wetlands of the South East Queensland catchments (17,792 ha) are comprised of approximately 4,100,000-5,200,000 Mg of sediment OC. Comparatively high variation in OC storage between riverine and nonriverine geomorphic settings indicates that the availability of mineral sediments and terrestrial derived OC may exert a strong influence over OC storage potential across

  11. Density variations and their influence on carbon stocks: case-study on two Biosphere Reserves in the Democratic Republic of Congo

    Science.gov (United States)

    De Ridder, Maaike; De Haulleville, Thalès; Kearsley, Elizabeth; Van den Bulcke, Jan; Van Acker, Joris; Beeckman, Hans

    2014-05-01

    It is commonly acknowledged that allometric equations for aboveground biomass and carbon stock estimates are improved significantly if density is included as a variable. However, not much attention is given to this variable in terms of exact, measured values and density profiles from pith to bark. Most published case-studies obtain density values from literature sources or databases, this way using large ranges of density values and possible causing significant errors in carbon stock estimates. The use of one single fixed value for density is also not recommended if carbon stock increments are estimated. Therefore, our objective is to measure and analyze a large number of tree species occurring in two Biosphere Reserves (Luki and Yangambi). Nevertheless, the diversity of tree species in these tropical forests is too high to perform this kind of detailed analysis on all tree species (> 200/ha). Therefore, we focus on the most frequently encountered tree species with high abundance (trees/ha) and dominance (basal area/ha) for this study. Increment cores were scanned with a helical X-ray protocol to obtain density profiles from pith to bark. This way, we aim at dividing the tree species with a distinct type of density profile into separate groups. If, e.g., slopes in density values from pith to bark remain stable over larger samples of one tree species, this slope could also be used to correct for errors in carbon (increment) estimates, caused by density values from simplified density measurements or density values from literature. In summary, this is most likely the first study in the Congo Basin that focuses on density patterns in order to check their influence on carbon stocks and differences in carbon stocking based on species composition (density profiles ~ temperament of tree species).

  12. Changes in Soil Carbon Stocks and Fluxes in Response to Altered Above- and Belowground Vegetation Inputs

    Science.gov (United States)

    Marañón-Jiménez, S.; Schuetze, C.; Cuntz, M.; García-Quirós, I.; Dienstbach, L.; Schrumpf, M.; Rebmann, C.

    2016-12-01

    The stimulation of vegetation productivity in response to rising atmospheric CO2 concentrations can potentially compensate climate change feedbacks. However, this will depend on the allocation of C resources of vegetation into biomass production versus root exudates and on the feedbacks with soil microorganisms. These dynamic adjustments of vegetation will result on changes in above- and belowground productivity and on the amount of C exported to root exudates. Consequent alteration of litter and rhizosphere detritus inputs to the soil and their interaction on controlling soil C sequestration capacity has been, however, rarely assessed. We hypothesize that above- and belowground vegetation exert a synergistic control of soil CO2 emissions, and that the activation of soil organic matter mineralization by the addition of labile organic substrates (i.e.: the priming effect) is altered by changes in the amount and in the quality of the carbon inputs. In order to elucidate these questions, different levels of litter addition were implemented on trenched (root exclusion) and non-trenched plots (with roots) in a temperate deciduous forest. Changes in the sensitivity of soil respiration to temperature and moisture were detected by measuring CO2 fluxes continuously at high temporal resolution with automatic chambers, whereas the spatial and seasonal variability was determined using portable chambers. Annual changes in soil carbon and nitrogen stocks provide additional information on the soil carbon sequestration in response to above- and belowground inputs. Both roots and litter inputs significantly enhanced soil CO2 effluxes soon after the implementation of the experiment. We detected synergistic effects between roots and litter inputs on soil CO2 emissions: When roots were present, carbon mineralized in response to litter addition was much higher than the total amount of carbon added in litter (ca. 170 g C m-2 y-1). Preliminary results of this study suggest that labile

  13. quantifying the stock of soil organic carbon using multiple regression

    African Journals Online (AJOL)

    Osondu

    2012-03-15

    Mar 15, 2012 ... Depending on the changes in the level of soil organic matter, soils can act as sinks of carbon concentration in the atmosphere, thereby increasing the concentration of carbon in the soil. (Dey, 2005). Therefore, soils according to Lal,. (2005) are the largest carbon reservoir of the terrestrial carbon cycle, this is ...

  14. Initializing carbon cycle predictions from the Community Land Model by assimilating global biomass observations

    Science.gov (United States)

    Fox, A. M.; Hoar, T. J.; Smith, W. K.; Moore, D. J.

    2017-12-01

    The locations and longevity of terrestrial carbon sinks remain uncertain, however it is clear that in order to predict long-term climate changes the role of the biosphere in surface energy and carbon balance must be understood and incorporated into earth system models (ESMs). Aboveground biomass, the amount of carbon stored in vegetation, is a key component of the terrestrial carbon cycle, representing the balance of uptake through gross primary productivity (GPP), losses from respiration, senescence and mortality over hundreds of years. The best predictions of current and future land-atmosphere fluxes are likely from the integration of process-based knowledge contained in models and information from observations of changes in carbon stocks using data assimilation (DA). By exploiting long times series, it is possible to accurately detect variability and change in carbon cycle dynamics through monitoring ecosystem states, for example biomass derived from vegetation optical depth (VOD), and use this information to initialize models before making predictions. To make maximum use of information about the current state of global ecosystems when using models we have developed a system that combines the Community Land Model (CLM) with the Data Assimilation Research Testbed (DART), a community tool for ensemble DA. This DA system is highly innovative in its complexity, completeness and capabilities. Here we described a series of activities, using both Observation System Simulation Experiments (OSSEs) and real observations, that have allowed us to quantify the potential impact of assimilating VOD data into CLM-DART on future land-atmosphere fluxes. VOD data are particularly suitable to use in this activity due to their long temporal coverage and appropriate scale when combined with CLM, but their absolute values rely on many assumptions. Therefore, we have had to assess the implications of the VOD retrieval algorithms, with an emphasis on detecting uncertainty due to

  15. Assessment of soil organic carbon stocks under future climate and land cover changes in Europe.

    Science.gov (United States)

    Yigini, Yusuf; Panagos, Panos

    2016-07-01

    Soil organic carbon plays an important role in the carbon cycling of terrestrial ecosystems, variations in soil organic carbon stocks are very important for the ecosystem. In this study, a geostatistical model was used for predicting current and future soil organic carbon (SOC) stocks in Europe. The first phase of the study predicts current soil organic carbon content by using stepwise multiple linear regression and ordinary kriging and the second phase of the study projects the soil organic carbon to the near future (2050) by using a set of environmental predictors. We demonstrate here an approach to predict present and future soil organic carbon stocks by using climate, land cover, terrain and soil data and their projections. The covariates were selected for their role in the carbon cycle and their availability for the future model. The regression-kriging as a base model is predicting current SOC stocks in Europe by using a set of covariates and dense SOC measurements coming from LUCAS Soil Database. The base model delivers coefficients for each of the covariates to the future model. The overall model produced soil organic carbon maps which reflect the present and the future predictions (2050) based on climate and land cover projections. The data of the present climate conditions (long-term average (1950-2000)) and the future projections for 2050 were obtained from WorldClim data portal. The future climate projections are the recent climate projections mentioned in the Fifth Assessment IPCC report. These projections were extracted from the global climate models (GCMs) for four representative concentration pathways (RCPs). The results suggest an overall increase in SOC stocks by 2050 in Europe (EU26) under all climate and land cover scenarios, but the extent of the increase varies between the climate model and emissions scenarios. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Influence of stocking, site quality, stand age, low-severity canopy disturbance, and forest composition on sub-boreal aspen mixedwood carbon stocks

    Science.gov (United States)

    Reinikainen, Michael; D’Amato, Anthony W.; Bradford, John B.; Fraver, Shawn

    2014-01-01

    Low-severity canopy disturbance presumably influences forest carbon dynamics during the course of stand development, yet the topic has received relatively little attention. This is surprising because of the frequent occurrence of such events and the potential for both the severity and frequency of disturbances to increase as a result of climate change. We investigated the impacts of low-severity canopy disturbance and average insect defoliation on forest carbon stocks and rates of carbon sequestration in mature aspen mixedwood forests of varying stand age (ranging from 61 to 85 years), overstory composition, stocking level, and site quality. Stocking level and site quality positively affected the average annual aboveground tree carbon increment (CAAI), while stocking level, site quality, and stand age positively affected tree carbon stocks (CTREE) and total ecosystem carbon stocks (CTOTAL). Cumulative canopy disturbance (DIST) was reconstructed using dendroecological methods over a 29-year period. DIST was negatively and significantly related to soil carbon (CSOIL), and it was negatively, albeit marginally, related to CTOTAL. Minima in the annual aboveground carbon increment of trees (CAI) occurred at sites during defoliation of aspen (Populus tremuloides Michx.) by forest tent caterpillar (Malacosoma disstria Hubner), and minima were more extreme at sites dominated by trembling aspen than sites mixed with conifers. At sites defoliated by forest tent caterpillar in the early 2000s, increased sequestration by the softwood component (Abies balsamea (L.) Mill. and Picea glauca (Moench) Voss) compensated for overall decreases in CAI by 17% on average. These results underscore the importance of accounting for low-severity canopy disturbance events when developing regional forest carbon models and argue for the restoration and maintenance of historically important conifer species within aspen mixedwoods to enhance stand-level resilience to disturbance agents and maintain

  17. Climate Warming Can Increase Soil Carbon Fluxes Without Decreasing Soil Carbon Stocks in Boreal Forests

    Science.gov (United States)

    Ziegler, S. E.; Benner, R. H.; Billings, S. A.; Edwards, K. A.; Philben, M. J.; Zhu, X.; Laganiere, J.

    2016-12-01

    Ecosystem C fluxes respond positively to climate warming, however, the net impact of changing C fluxes on soil organic carbon (SOC) stocks over decadal scales remains unclear. Manipulative studies and global-scale observations have informed much of the existing knowledge of SOC responses to climate, providing insights on relatively short (e.g. days to years) and long (centuries to millennia) time scales, respectively. Natural climate gradient studies capture integrated ecosystem responses to climate on decadal time scales. Here we report the soil C reservoirs, fluxes into and out of those reservoirs, and the chemical composition of inputs and soil organic matter pools along a mesic boreal forest climate transect. The sites studied consist of similar forest composition, successional stage, and soil moisture but differ by 5.2°C mean annual temperature. Carbon fluxes through these boreal forest soils were greatest in the lowest latitude regions and indicate that enhanced C inputs can offset soil C losses with warming in these forests. Respiration rates increased by 55% and the flux of dissolved organic carbon from the organic to mineral soil horizons tripled across this climate gradient. The 2-fold increase in litterfall inputs to these soils coincided with a significant increase in the organic horizon C stock with warming, however, no significant difference in the surface mineral soil C stocks was observed. The younger mean age of the mineral soil C ( 70 versus 330 YBP) provided further evidence for the greater turnover of SOC in the warmer climate soils. In spite of these differences in mean radiocarbon age, mineral SOC exhibited chemical characteristics of highly decomposed material across all regions. In contrast with depth trends in soil OM diagenetic indices, diagenetic shifts with latitude were limited to increases in C:N and alkyl to O-alkyl ratios in the overlying organic horizons in the warmer relative to the colder regions. These data indicate that the

  18. Experimental investigations of biomass gasification with carbon-dioxide

    Science.gov (United States)

    Sircar, Indraneel

    A sustainable energy cycle may include enhanced utilization of solar energy and atmospheric CO2 to produce biomass and enhanced utilization of exhaust CO2 from power plants for synthetic gas production. The reaction of carbon with CO2 is potentially one of the important processes in a future sustainable carbon cycle. Reactions involving carbon and CO2 are also relevant to the chemical process and metal industries. Biomass char has been recognized as a present and future alternative to fossil-fuels for energy production and fuel synthesis. Therefore, biomass char gasification with CO2 recycling is proposed as a sustainable and carbon-neutral energy technology. Biomass char is a complex porous solid and its gasification involves heat and mass transfer processes within pores of multiple sizes from nanometer to millimeter scales. These processes are coupled with heterogeneous chemistry at the internal and external surfaces. Rates for the heterogeneous carbon gasification reactions are affected by inorganic content of the char. Furthermore, pore structure of the char develops with conversion and influences apparent gasification rates. Effective modeling of the gasification reactions has relied on the best available understanding of diffusion processes and kinetic rate property constants from state of the art experiments. Improvement of the influences of inorganic composition, and process parameters, such as pressure and temperature on the gasification reaction rates has been a continuous process. Economic viability of gasification relies on use of optimum catalysts. These aspects of the current status of gasification technologies have motivated the work reported in this dissertation. The reactions between biomass chars and CO2 are investigated to determine the effects of temperature and pressure on the reaction rates for large char particles of relevance to practical gasification technologies. An experimental apparatus consisting of a high-pressure fixed-bed reactor

  19. Correlation of Carbon Stock and Biodiversity Index at the Small Scale Agroforestry Landscape in Ciliwung Watershed

    Science.gov (United States)

    Choliq, M. B. S.; Kaswanto, R. L.

    2017-10-01

    Pekarangan is part of a complex of small-scale agroforestry landscape. Pekarangan have 3 functions i.e. ecological, economic, and social. ecological function, for providing landscape services such as carbon stock and biodiversity; economic function, can supplies foods and nutrition; and social function, for building low carbon communities and increasing the environmental awareness. Therefore, this research aims to correlate carbon stocks and biodiversity index of Pekarangan in Ciliwung Watershed. This study has measured 48 samples which were divided in three stream, namely upstream, midstream, and downstream. The samples were divided into four groups, G1 (pekarangan size less than 120 m2 and doesn’t have other agricultural land (no other agricultural land - OAL), G2 (<120 m2 with OAL < 1000 m2), G3 (120-400 m2 with no OAL) and G4 (120-400 m2 with OAL < 1000 m2). The results show that correlation between carbon stock and biodiversity index value is R2 = 0.05. The results showed no correlation between carbon stocks and biodiversity index could be due to the amount of Pekarangan owners who prefer potted plants than plant a tree, so that the carbon sequestered in the Pekarangan only slightly.

  20. Molecular Characterization of Brown Carbon in Biomass Burning Aerosol Particles.

    Science.gov (United States)

    Lin, Peng; Aiona, Paige K; Li, Ying; Shiraiwa, Manabu; Laskin, Julia; Nizkorodov, Sergey A; Laskin, Alexander

    2016-11-01

    Emissions from biomass burning are a significant source of brown carbon (BrC) in the atmosphere. In this study, we investigate the molecular composition of freshly emitted biomass burning organic aerosol (BBOA) samples collected during test burns of sawgrass, peat, ponderosa pine, and black spruce. We demonstrate that both the BrC absorption and the chemical composition of light-absorbing compounds depend significantly on the type of biomass fuels. Common BrC chromophores in the selected BBOA samples include nitro-aromatics, polycyclic aromatic hydrocarbon derivatives, and polyphenols spanning a wide range of molecular weights, structures, and light absorption properties. A number of biofuel-specific BrC chromophores are observed, indicating that some of them may be used as source-specific markers of BrC. On average, ∼50% of the light absorption in the solvent-extractable fraction of BBOA can be attributed to a limited number of strong BrC chromophores. The absorption coefficients of BBOA are affected by solar photolysis. Specifically, under typical atmospheric conditions, the 300 nm absorbance decays with a half-life of ∼16 h. A "molecular corridor" analysis of the BBOA volatility distribution suggests that many BrC compounds in the fresh BBOA have low saturation mass concentration (<1 μg m -3 ) and will be retained in the particle phase under atmospherically relevant conditions.

  1. The U.S. forest carbon accounting framework: stocks and stock change, 1990-2016

    Science.gov (United States)

    Christopher W. Woodall; John W. Coulston; Grant M. Domke; Brian F. Walters; David N. Wear; James E. Smith; Hans-Erik Andersen; Brian J. Clough; Warren B. Cohen; Douglas M. Griffith; Stephen C. Hagen; Ian S. Hanou; Michael C. Nichols; Charles H. (Hobie) Perry; Matthew B. Russell; Jim Westfall; Barry T. (Ty) Wilson

    2015-01-01

    As a signatory to the United Nations Framework Convention on Climate Change, the United States annually prepares an inventory of carbon that has been emitted and sequestered among sectors (e.g., energy, agriculture, and forests). For many years, the United States developed an inventory of forest carbon by comparing contemporary forest inventories to inventories that...

  2. Sampling protocol recommendations for measuring soil organic carbon stocks in the tropics

    Science.gov (United States)

    van Straaten, Oliver; Veldkamp, Edzo; Corre, Marife D.

    2013-04-01

    In the tropics, there is an urgent need for cost effective sampling approaches to quantify soil organic carbon (SOC) changes associated with land-use change given the lack of reliable data. The tropics are especially important considering the high deforestation rates, the huge belowground carbon pool and the fast soil carbon turnover rates. In the framework of a pan-tropic (Peru, Cameroon and Indonesia) land-use change study, some highly relevant recommendations on the SOC stocks sampling approaches have emerged. In this study, where we focused on deeply weathered mineral soils, we quantified changes in SOC stock following land-use change (deforestation and subsequent establishment of other land-uses). We used a space-for-time substitution sampling approach, measured SOC stocks in the top three meters of soil and compared recently converted land-uses with adjacent reference forest plots. In each respective region we investigated the most predominant land-use trajectories. In total 157 plots were established across the three countries, where soil samples were taken to a depth of three meters from a central soil pit and from the topsoil (to 0.5m) from 12 pooled composite samples. Finding 1 - soil depth: despite the fact that the majority of SOC stock from the three meter profile is found below one meter depth (50 to 60 percent of total SOC stock), the significant changes in SOC were only measured in the top meter of soil, while the subsoil carbon stock remained relatively unchanged by the land-use conversion. The only exception was for older (>50 yrs) cacao plantations in Cameroon where significant decreases were found below one meter. Finding 2 - pooled composite samples taken across the plot provided more spatially representative estimates of SOC stocks than samples taken from the central soil pit.

  3. Eelgrass Blue Carbon-Quantification of Carbon Stocks and Sequestration Rates in Zostera Marina Beds in the Salish Sea

    Science.gov (United States)

    Lutz, M. D.; Rybczyk, J.; Poppe, K.; Johnson, C.; Kaminsky, M.; Lanphear, M.

    2017-12-01

    Seagrass meadows provide more than habitat, biodiversity support, wave abatement, and water quality improvement; they help mitigate climate change by taking up and storing (sequestering) carbon (C), reportedly at rates only surpassed worldwide by salt marsh and mangrove ecosystems. Now that their climate mitigation capacity has earned seagrass ecosystems a place in the Verified Carbon Standard voluntary greenhouse gas program, accurate ecosystem carbon accounting is essential. Though seagrasses vary in carbon storage and accumulation greatly across species and geography, the bulk of data included in calculating global averages involves tropical and subtropical seagrasses. We know little regarding carbon stocks nor sequestration rates for eelgrass (Zostera marina) meadows in the Pacific Northwest. The intent of our study was to quantify carbon stocks and sequestration rates in the central Salish Sea of Washington State. We gathered sediment cores over three bays, as close to 1 m in depth as possible, both on foot and while scuba diving. We measured bulk density, carbon concentration, carbon stock, grain size, and carbon accumulation rate with depth. Results from our study show lower estimated Corg concentration (mean = 0.39% C, SE=0.01, range=0.11-1.75, SE=0.01), Corg stock (mean=24.46 Mg ha-1, SE=0.00, range=16.31-49.99.70), and C sequestration rates (mean=33.96 g m-2yr-1, range=11.4-49.5) than those reported in published studies from most other locations. Zostera marina is highly productive, yet does not seem to have the capacity to store C in its sediments like seagrasses in warmer climes. These data have implications in carbon market trading, when determining appropriate seagrass restoration site dimensions to offset emissions from transportation, industry, and seagrass habitat disturbance. Awareness of lower rates could prevent underestimating the area appropriate for mitigation or restoration.

  4. Leaf Area Index, Biomass Carbon and Growth Rate of Radiata Pine Genetic Types and Relationships with LiDAR

    Directory of Open Access Journals (Sweden)

    Robert J. McGaughey

    2011-08-01

    Full Text Available Relationships between discrete-return light detection and ranging (LiDAR data and radiata pine leaf area index (LAI, stem volume, above ground carbon, and carbon sequestration were developed using 10 plots with directly measured biomass and leaf area data, and 36 plots with modelled carbon data. The plots included a range of genetic types established on north- and south-facing aspects. Modelled carbon was highly correlated with directly measured crown, stem, and above ground biomass data, with r = 0.92, 0.97 and 0.98, respectively. LiDAR canopy percentile height (P30 and cover, based on all returns above 0.5 m, explained 81, 88, and 93% of the variation in directly measured crown, stem, and above ground live carbon and 75, 89 and 88% of the modelled carbon, respectively. LAI (all surfaces ranged between 8.8–19.1 in the 10 plots measured at age 9 years. The difference in canopy percentile heights (P95–P30 and cover based on first returns explained 80% of the variation in total LAI. Periodic mean annual increments in stem volume, above ground live carbon, and total carbon between ages 9 and 13 years were significantly related to (P95–P30, with regression models explaining 56, 58, and 55%, respectively, of the variation in growth rate per plot. When plot aspect and genetic type were included with (P95–P30, the R2 of the regression models for stem volume, above ground live carbon, and total carbon increment increased to 90, 88, and 88%, respectively, which indicates that LiDAR regression equations for estimating stock changes can be substantially improved by incorporating supplementary site and crop data.

  5. Variation in carbon stocks on different slope aspects in seven major ...

    Indian Academy of Sciences (India)

    We assessed soil organic carbon (SOC) density, tree density, biomass and soil organic carbon (SOC) on four aspects, viz. north-east (NE), north-west (NW), south-east (SE) and south-west (SW), in forest stands dominated by Abies pindrow, Cedrus deodara, Pinus roxburghii, Cupressus torulosa, Quercus floribunda, ...

  6. Climatic regions as an indicator of forest coarse and fine woody debris carbon stocks in the United States

    Directory of Open Access Journals (Sweden)

    Liknes Greg C

    2008-06-01

    Full Text Available Abstract Background Coarse and fine woody debris are substantial forest ecosystem carbon stocks; however, there is a lack of understanding how these detrital carbon stocks vary across forested landscapes. Because forest woody detritus production and decay rates may partially depend on climatic conditions, the accumulation of coarse and fine woody debris carbon stocks in forests may be correlated with climate. This study used a nationwide inventory of coarse and fine woody debris in the United States to examine how these carbon stocks vary by climatic regions and variables. Results Mean coarse and fine woody debris forest carbon stocks vary by Köppen's climatic regions across the United States. The highest carbon stocks were found in regions with cool summers while the lowest carbon stocks were found in arid desert/steppes or temperate humid regions. Coarse and fine woody debris carbon stocks were found to be positively correlated with available moisture and negatively correlated with maximum temperature. Conclusion It was concluded with only medium confidence that coarse and fine woody debris carbon stocks may be at risk of becoming net emitter of carbon under a global climate warming scenario as increases in coarse or fine woody debris production (sinks may be more than offset by increases in forest woody detritus decay rates (emission. Given the preliminary results of this study and the rather tenuous status of coarse and fine woody debris carbon stocks as either a source or sink of CO2, further research is suggested in the areas of forest detritus decay and production.

  7. Developing Cost-Effective Field Assessments of Carbon Stocks in Human-Modified Tropical Forests

    Science.gov (United States)

    Berenguer, Erika; Gardner, Toby A.; Ferreira, Joice; Aragão, Luiz E. O. C.; Camargo, Plínio B.; Cerri, Carlos E.; Durigan, Mariana; Oliveira Junior, Raimundo C.; Vieira, Ima C. G.; Barlow, Jos

    2015-01-01

    Across the tropics, there is a growing financial investment in activities that aim to reduce emissions from deforestation and forest degradation, such as REDD+. However, most tropical countries lack on-the-ground capacity to conduct reliable and replicable assessments of forest carbon stocks, undermining their ability to secure long-term carbon finance for forest conservation programs. Clear guidance on how to reduce the monetary and time costs of field assessments of forest carbon can help tropical countries to overcome this capacity gap. Here we provide such guidance for cost-effective one-off field assessments of forest carbon stocks. We sampled a total of eight components from four different carbon pools (i.e. aboveground, dead wood, litter and soil) in 224 study plots distributed across two regions of eastern Amazon. For each component we estimated survey costs, contribution to total forest carbon stocks and sensitivity to disturbance. Sampling costs varied thirty-one-fold between the most expensive component, soil, and the least, leaf litter. Large live stems (≥10 cm DBH), which represented only 15% of the overall sampling costs, was by far the most important component to be assessed, as it stores the largest amount of carbon and is highly sensitive to disturbance. If large stems are not taxonomically identified, costs can be reduced by a further 51%, while incurring an error in aboveground carbon estimates of only 5% in primary forests, but 31% in secondary forests. For rapid assessments, necessary to help prioritize locations for carbon- conservation activities, sampling of stems ≥20cm DBH without taxonomic identification can predict with confidence (R2 = 0.85) whether an area is relatively carbon-rich or carbon-poor—an approach that is 74% cheaper than sampling and identifying all the stems ≥10cm DBH. We use these results to evaluate the reliability of forest carbon stock estimates provided by the IPCC and FAO when applied to human-modified forests

  8. Developing Cost-Effective Field Assessments of Carbon Stocks in Human-Modified Tropical Forests.

    Science.gov (United States)

    Berenguer, Erika; Gardner, Toby A; Ferreira, Joice; Aragão, Luiz E O C; Camargo, Plínio B; Cerri, Carlos E; Durigan, Mariana; Oliveira Junior, Raimundo C; Vieira, Ima C G; Barlow, Jos

    2015-01-01

    Across the tropics, there is a growing financial investment in activities that aim to reduce emissions from deforestation and forest degradation, such as REDD+. However, most tropical countries lack on-the-ground capacity to conduct reliable and replicable assessments of forest carbon stocks, undermining their ability to secure long-term carbon finance for forest conservation programs. Clear guidance on how to reduce the monetary and time costs of field assessments of forest carbon can help tropical countries to overcome this capacity gap. Here we provide such guidance for cost-effective one-off field assessments of forest carbon stocks. We sampled a total of eight components from four different carbon pools (i.e. aboveground, dead wood, litter and soil) in 224 study plots distributed across two regions of eastern Amazon. For each component we estimated survey costs, contribution to total forest carbon stocks and sensitivity to disturbance. Sampling costs varied thirty-one-fold between the most expensive component, soil, and the least, leaf litter. Large live stems (≥10 cm DBH), which represented only 15% of the overall sampling costs, was by far the most important component to be assessed, as it stores the largest amount of carbon and is highly sensitive to disturbance. If large stems are not taxonomically identified, costs can be reduced by a further 51%, while incurring an error in aboveground carbon estimates of only 5% in primary forests, but 31% in secondary forests. For rapid assessments, necessary to help prioritize locations for carbon- conservation activities, sampling of stems ≥20cm DBH without taxonomic identification can predict with confidence (R2 = 0.85) whether an area is relatively carbon-rich or carbon-poor-an approach that is 74% cheaper than sampling and identifying all the stems ≥10cm DBH. We use these results to evaluate the reliability of forest carbon stock estimates provided by the IPCC and FAO when applied to human-modified forests

  9. Developing Cost-Effective Field Assessments of Carbon Stocks in Human-Modified Tropical Forests.

    Directory of Open Access Journals (Sweden)

    Erika Berenguer

    Full Text Available Across the tropics, there is a growing financial investment in activities that aim to reduce emissions from deforestation and forest degradation, such as REDD+. However, most tropical countries lack on-the-ground capacity to conduct reliable and replicable assessments of forest carbon stocks, undermining their ability to secure long-term carbon finance for forest conservation programs. Clear guidance on how to reduce the monetary and time costs of field assessments of forest carbon can help tropical countries to overcome this capacity gap. Here we provide such guidance for cost-effective one-off field assessments of forest carbon stocks. We sampled a total of eight components from four different carbon pools (i.e. aboveground, dead wood, litter and soil in 224 study plots distributed across two regions of eastern Amazon. For each component we estimated survey costs, contribution to total forest carbon stocks and sensitivity to disturbance. Sampling costs varied thirty-one-fold between the most expensive component, soil, and the least, leaf litter. Large live stems (≥10 cm DBH, which represented only 15% of the overall sampling costs, was by far the most important component to be assessed, as it stores the largest amount of carbon and is highly sensitive to disturbance. If large stems are not taxonomically identified, costs can be reduced by a further 51%, while incurring an error in aboveground carbon estimates of only 5% in primary forests, but 31% in secondary forests. For rapid assessments, necessary to help prioritize locations for carbon- conservation activities, sampling of stems ≥20cm DBH without taxonomic identification can predict with confidence (R2 = 0.85 whether an area is relatively carbon-rich or carbon-poor-an approach that is 74% cheaper than sampling and identifying all the stems ≥10cm DBH. We use these results to evaluate the reliability of forest carbon stock estimates provided by the IPCC and FAO when applied to human

  10. A Compilation of Global Soil Microbial Biomass Carbon, Nitrogen, and Phosphorus Data

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides the concentrations of soil microbial biomass carbon (C), nitrogen (N) and phosphorus (P), soil organic carbon, total nitrogen, and total...

  11. Digital mapping of soil organic carbon contents and stocks in Denmark.

    Science.gov (United States)

    Adhikari, Kabindra; Hartemink, Alfred E; Minasny, Budiman; Bou Kheir, Rania; Greve, Mette B; Greve, Mogens H

    2014-01-01

    Estimation of carbon contents and stocks are important for carbon sequestration, greenhouse gas emissions and national carbon balance inventories. For Denmark, we modeled the vertical distribution of soil organic carbon (SOC) and bulk density, and mapped its spatial distribution at five standard soil depth intervals (0-5, 5-15, 15-30, 30-60 and 60-100 cm) using 18 environmental variables as predictors. SOC distribution was influenced by precipitation, land use, soil type, wetland, elevation, wetness index, and multi-resolution index of valley bottom flatness. The highest average SOC content of 20 g kg(-1) was reported for 0-5 cm soil, whereas there was on average 2.2 g SOC kg(-1) at 60-100 cm depth. For SOC and bulk density prediction precision decreased with soil depth, and a standard error of 2.8 g kg(-1) was found at 60-100 cm soil depth. Average SOC stock for 0-30 cm was 72 t ha(-1) and in the top 1 m there was 120 t SOC ha(-1). In total, the soils stored approximately 570 Tg C within the top 1 m. The soils under agriculture had the highest amount of carbon (444 Tg) followed by forest and semi-natural vegetation that contributed 11% of the total SOC stock. More than 60% of the total SOC stock was present in Podzols and Luvisols. Compared to previous estimates, our approach is more reliable as we adopted a robust quantification technique and mapped the spatial distribution of SOC stock and prediction uncertainty. The estimation was validated using common statistical indices and the data and high-resolution maps could be used for future soil carbon assessment and inventories.

  12. Critical carbon input to maintain current soil organic carbon stocks in global wheat systems.

    Science.gov (United States)

    Wang, Guocheng; Luo, Zhongkui; Han, Pengfei; Chen, Huansheng; Xu, Jingjing

    2016-01-13

    Soil organic carbon (SOC) dynamics in croplands is a crucial component of global carbon (C) cycle. Depending on local environmental conditions and management practices, typical C input is generally required to reduce or reverse C loss in agricultural soils. No studies have quantified the critical C input for maintaining SOC at global scale with high resolution. Such information will provide a baseline map for assessing soil C dynamics under potential changes in management practices and climate, and thus enable development of management strategies to reduce C footprint from farm to regional scales. We used the soil C model RothC to simulate the critical C input rates needed to maintain existing soil C level at 0.1° × 0.1° resolution in global wheat systems. On average, the critical C input was estimated to be 2.0 Mg C ha(-1) yr(-1), with large spatial variability depending on local soil and climatic conditions. Higher C inputs are required in wheat system of central United States and western Europe, mainly due to the higher current soil C stocks present in these regions. The critical C input could be effectively estimated using a summary model driven by current SOC level, mean annual temperature, precipitation, and soil clay content.

  13. Digital Mapping of Soil Organic Carbon Contents and Stocks in Denmark

    DEFF Research Database (Denmark)

    Adhikari, Kabindra; Hartemink, Alfred E.; Minasny, Budiman

    2014-01-01

    Estimation of carbon contents and stocks are important for carbon sequestration, greenhouse gas emissions and national carbon balance inventories. For Denmark, we modeled the vertical distribution of soil organic carbon (SOC) and bulk density, and mapped its spatial distribution at five standard...... soil depth intervals (025, 5215, 15230, 30260 and 602 100 cm) using 18 environmental variables as predictors. SOC distribution was influenced by precipitation, land use, soil type, wetland, elevation, wetness index, and multi-resolution index of valley bottom flatness. The highest average SOC content...

  14. Patterning between urban soil color and carbon stocks

    Science.gov (United States)

    Schifman, L. A.; Herrmann, D.; Shuster, W.

    2017-12-01

    Urban soils are extensively modified compared to their non-urban counterparts. These modifications are expected to affect the vertical distribution of total soil carbon as well as its constituent pools - soil organic carbon, black carbon, and inorganic carbon. Assigning color to soil horizons using the Munsell color system is a standard field method employed by soil scientists that can also reveal generalizable information about various environmental metrics. A new dataset on urban soils and their reference counterparts that cover 11 regions in the United States and advances in quantitative pedology allowed us to construct a log-linear model that relates Value, the lightness of a color hue, to the concentration of total carbon throughout a soil column of up to 450 cm depth. Overall, the relationship between 671 points resulted in an r2 of 0.23 with a p<0.001. As expected, organic carbon, shifted values to the lower end of the scale (darker), whereas inorganic carbon increased soil color values (lighter). These findings allow for a simplified understanding of shifts in carbon pools throughout a soil profile.

  15. Effects of vegetation's degradation on carbon stock, morphological ...

    African Journals Online (AJOL)

    ndema

    properties are highly disturbed due to vegetation degradation. Deforestation release not only carbon in atmosphere but has also negative effects on biodiversity, soils protection and local climate regulation. More also, use land for urbanization and agriculture activities contribute gradually to release soils and plants carbon.

  16. Total and pyrogenic carbon stocks in black spruce forest floors from eastern Canada

    Science.gov (United States)

    Soucemarianadin, Laure; Quideau, Sylvie; MacKenzie, M. Derek; Munson, Alison; Boiffin, Juliette; Bernard, Guy; Wasylishen, Roderick

    2016-04-01

    In boreal forests, pyrogenic carbon (PyC), a by-product of recurrent wildfires, is an important component of the global soil C pool, although precise assessment of boreal PyC stock is scarce. In this study including 14 fire sites spreading over 600 km in the Quebec province, our aim was to better estimate total C stock and PyC stock in forest floors of Eastern Canada boreal forests. We also investigated the environmental conditions controlling the stocks and characterized the composition of the various forest floor layers. We analyzed the forest floor samples that were collected from mesic black spruce sites recently affected by fire (3-5 years) using elemental analysis and solid state 13C nuclear magnetic resonance (NMR) spectroscopy. PyC content was further estimated using a molecular mixing model on the 13C NMR data. Total C stock in forest floors averaged 5.7 ± 2.9 kg C/m2 and PyC stock 0.6 ± 0.3 kg C/m2. Total C stock was under control of the position in the landscape, with a greater accumulation of organic material on northern aspects and lower slope positions. In addition, total stock was significantly higher in spruce-dominated forest floors than in stands where jack pine was dominant. The PyC stock was significantly related to the atomic H/C ratio (R2 = 0.84) of the different organic layers. 13C NMR spectroscopy revealed a large increase in aromatic carbon in the deepest forest floor layer (humified H horizon) at the organic-mineral soil interface. The majority of the PyC stock was located in this horizon and had been formed during past high severity fires rather than during the most recent fire event. Conversely, the superficial "fresh" PyC layer, produced by early-season wildfires in 2005-2007, had NMR spectra fairly similar to unburned forest floors and comparatively low PyC stocks.

  17. Aboveground carbon stocks in oil palm plantations and the threshold for carbon-neutral vegetation conversion on mineral soils

    NARCIS (Netherlands)

    Khasanah, N.; Noordwijk, van M.; Ningsih, H.

    2015-01-01

    The carbon (C) footprint of palm oil production is needed to judge emissions from potential biofuel use. Relevance includes wider sustainable palm oil debates. Within life cycle analysis, aboveground C debt is incurred if the vegetation replaced had a higher C stock than oil palm plantations. Our

  18. Increasing carbon sinks in European forests: effect of afforestation and changes in mean growing stock volume

    NARCIS (Netherlands)

    Vilén, T.; Cienciala, E.; Schelhaas, M.; Verkerk, P.J.; Lindner, M.; Peltola, H.

    2016-01-01

    In Europe, both forest area and growing stock have increased since the 1950s, and European forests have acted as a carbon sink during the last six decades. However, the contribution of different factors affecting the sink is not yet clear. In this study, historical inventory data were combined with

  19. Trends in management of the world's forests and impacts on carbon stocks

    Science.gov (United States)

    Richard Birdsey; Yude. Pan

    2015-01-01

    Global forests are increasingly affected by land-use change, fragmentation, changing management objectives, and degradation. In this paper we broadly characterize trends in global forest area by intensity of management, and provide an overview of changes in global carbon stocks associated with managed forests. We discuss different interpretations of "management...

  20. Enhancing Carbon Stocks and Reducing CO2 Emissions in Agriculture and Natural Resource Management Projects : Toolkit

    OpenAIRE

    World Bank

    2012-01-01

    There is global interest in promoting mitigation and adaptation in agriculture, forest, and other land-use (AFOLU) sectors to address the twin goals of climate change and sustainable development. This guideline deals with how to enhance carbon stocks in general in all land-based projects and its specific relationship with agriculture productivity. It outlines specific steps and procedures ...

  1. Carbon and nitrogen stocks in the soils of Central and Eastern Europe

    NARCIS (Netherlands)

    Batjes, N.H.

    2002-01-01

    Soil organic carbon and total nitrogen stocks are presented for Central and Eastern Europe. The study uses the soil geographic and attribute data held in a 1:2 500 000 scale Soil and Terrain (SOTER) database, covering Belarus, Bulgaria, Czech Republic, Estonia, Hungary, Latvia, Lithuania, Moldova,

  2. Linking carbon stock change from land-use change to consumption of agricultural products: Alternative perspectives

    NARCIS (Netherlands)

    Goh, Chun Sheng; Wicke, Birka; Faaij, André; Bird, David Neil; Schwaiger, Hannes; Junginger, Martin

    2016-01-01

    Abstract Agricultural expansion driven by growing demand has been a key driver for carbon stock change as a consequence of land-use change (CSC-LUC). However, its relative role compared to non-agricultural and non-productive drivers, as well as propagating effects were not clearly addressed. This

  3. An empirical assessment of forest floor carbon stock components across the United States

    Science.gov (United States)

    Christopher W. Woodall; Charles H. Perry; James A. Westfall

    2012-01-01

    Despite its prevalent reporting in regional/national greenhouse gas inventories (NGHGI), forest floor (FF) carbon (C) stocks (including litter, humus, and fine woody debris [FWD]) have not been empirically measured using a consistent approach across forests of the US. The goal of this study was to use the first national field inventory of litter and humic layer depths...

  4. High-severity wildfire effects on carbon stocks and emissions in fuels treated and untreated forest

    Science.gov (United States)

    Malcolm P. North; Matthew D. Hurteau

    2011-01-01

    Forests contain the world's largest terrestrial carbonstocks, but in seasonally dry environments stock stability can be compromised if burned by wildfire, emitting carbon back to the atmosphere. Treatments to reduce wildfireseverity can reduce emissions, but with an immediate cost of reducing carbonstocks. In this study we examine the tradeoffs in...

  5. Soil carbon stocks and carbon sequestration rates in seminatural grassland in Aso region, Kumamoto, Southern Japan.

    Science.gov (United States)

    Toma, Yo; Clifton-Brown, John; Sugiyama, Shinji; Nakaboh, Makoto; Hatano, Ryusuke; Fernández, Fabián G; Ryan Stewart, J; Nishiwaki, Aya; Yamada, Toshihiko

    2013-06-01

    Global soil carbon (C) stocks account for approximately three times that found in the atmosphere. In the Aso mountain region of Southern Japan, seminatural grasslands have been maintained by annual harvests and/or burning for more than 1000 years. Quantification of soil C stocks and C sequestration rates in Aso mountain ecosystem is needed to make well-informed, land-use decisions to maximize C sinks while minimizing C emissions. Soil cores were collected from six sites within 200 km(2) (767-937 m asl.) from the surface down to the k-Ah layer established 7300 years ago by a volcanic eruption. The biological sources of the C stored in the Aso mountain ecosystem were investigated by combining C content at a number of sampling depths with age (using (14) C dating) and δ(13) C isotopic fractionation. Quantification of plant phytoliths at several depths was used to make basic reconstructions of past vegetation and was linked with C-sequestration rates. The mean total C stock of all six sites was 232 Mg C ha(-1) (28-417 Mg C ha(-1) ), which equates to a soil C sequestration rate of 32 kg C ha(-1)  yr(-1) over 7300 years. Mean soil C sequestration rates over 34, 50 and 100 years were estimated by an equation regressing soil C sequestration rate against soil C accumulation interval, which was modeled to be 618, 483 and 332 kg C ha(-1)  yr(-1) , respectively. Such data allows for a deeper understanding in how much C could be sequestered in Miscanthus grasslands at different time scales. In Aso, tribe Andropogoneae (especially Miscanthus and Schizoachyrium genera) and tribe Paniceae contributed between 64% and 100% of soil C based on δ(13) C abundance. We conclude that the seminatural, C4 -dominated grassland system serves as an important C sink, and worthy of future conservation. © 2013 Blackwell Publishing Ltd.

  6. Biophysical Controls over Carbon and Nitrogen Stocks in Desert Playa Wetlands

    Science.gov (United States)

    McKenna, O. P.; Sala, O. E.

    2014-12-01

    Playas are ephemeral desert wetlands situated at the bottom of closed catchments. Desert playas in the Southwestern US have not been intensively studied despite their potential importance for the functioning of desert ecosystems. We want to know which geomorphic and ecological variables control of the stock size of soil organic carbon, and soil total nitrogen in playas. We hypothesize that the magnitude of carbon and nitrogen stocks depends on: (a) catchment size, (b) catchment slope, (d) catchment vegetation cover, (e) bare-ground patch size, and (f) catchment soil texture. We chose thirty playas from across the Jornada Basin (Las Cruces, NM) ranging from 0.5-60ha in area and with varying catchment characteristics. We used the available 5m digital elevation map (DEM) to calculate the catchment size and catchment slope for these thirty playas. We measured percent cover, and patch size using the point-intercept method with three 10m transects in each catchment. We used the Bouyoucos-hydrometer soil particle analysis to determine catchment soil texture. Stocks of organic carbon and nitrogen were measured from soil samples at four depths (0-10 cm, 10-30 cm, 30-60 cm, 60-100 cm) using C/N combustion analysis. In terms of nitrogen and organic carbon storage, we found soil nitrogen values in the top 10cm ranging from 41.963-214.365 gN/m2, and soil organic carbon values in the top 10cm ranging from 594.339-2375.326 gC/m2. The results of a multiple regression analysis show a positive relationship between catchment slope and both organic carbon and nitrogen stock size (nitrogen: y= 56.801 +47.053, R2=0.621; organic carbon: y= 683.200 + 499.290x, R2= 0.536). These data support our hypothesis that catchment slope is one of factors controlling carbon and nitrogen stock in desert playas. We also applied our model to the 69 other playas of the Jornada Basin and estimated stock sizes (0-10cm) between 415.07-447.97 Mg for total soil nitrogen and 4627.99-5043.51 Mg for soil organic

  7. Assessment of Soil Organic Carbon Stock of Temperate Coniferous Forests in Northern Kashmir

    Directory of Open Access Journals (Sweden)

    Davood A. Dar

    2015-02-01

    Full Text Available  Soil organic carbon (SOC estimation in temperate forests of the Himalaya is important to estimate their contribution to regional, national and global carbon stocks. Physico chemical properties of soil were quantified to assess soil organic carbon density (SOC and SOC CO2 mitigation density at two soil depths (0-10 and 10-20 cms under temperate forest in the Northern region of Kashmir Himalayas India. The results indicate that conductance, moisture content, organic carbon and organic matter were significantly higher while as pH and bulk density were lower at Gulmarg forest site. SOC % was ranging from 2.31± 0.96 at Gulmarg meadow site to 2.31 ± 0.26 in Gulmarg forest site. SOC stocks in these temperate forests were from 36.39 ±15.40 to 50.09 ± 15.51 Mg C ha-1. The present study reveals that natural vegetation is the main contributor of soil quality as it maintained the soil organic carbon stock. In addition, organic matter is an important indicator of soil quality and environmental parameters such as soil moisture and soil biological activity change soil carbon sequestration potential in temperate forest ecosystems.DOI: http://dx.doi.org/10.3126/ije.v4i1.12186International Journal of Environment Volume-4, Issue-1, Dec-Feb 2014/15; page: 161-178

  8. Effect of cellulose carbonization in biomass carbon and mineral (calcite, montmorillonite, quartz) composites

    Science.gov (United States)

    Yang, X.

    2017-12-01

    In this article, the biomass carbon and mineral (calcite, montmorillonite, quartz) composites are synthesized by carbon-bed pyrolysis method, the effects of cellulose carbonization on mineral components are characterized by TG-DTA, XRD, SEM and FT-IR analysis. The experimental results indicate that the decomposition and transition process of mineral compositions are promoted notably. As the carbonization of cellulose is actually a process of exothermic reaction, the multilayered structure and low activation energy of montmorillonite is conducive to energy transfer and phase transition, the decomposition of montmorillonite has been promoted more apparently. In general, the carbonization of cellulose has significantly influenced the micro-structure of mineral composites, which contributes to further researches on carbonaceous composite and utilization of mineral resources.

  9. Black carbon emissions from biomass and coal in rural China

    Science.gov (United States)

    Zhang, Weishi; Lu, Zifeng; Xu, Yuan; Wang, Can; Gu, Yefu; Xu, Hui; Streets, David G.

    2018-03-01

    Residential solid fuel combustion makes a major contribution to black carbon (BC) emissions in China. A new estimation of BC emissions from rural solid biomass and coal consumption has been derived from field survey data. The following new contributions are made: (1) emission factors are collected and reviewed; (2) household energy data are collected from field survey data and from the literature; (3) a new extrapolation method is developed to extend the field survey data to other locations; (4) the ownership and usage of two stove types are estimated and considered in the emission calculations; and (5) uncertainties associated with the estimation results are quantified. It is shown that rural households with higher income will consume less biomass but more coal. Agricultural acreage and temperature also significantly influence the amount of solid fuel consumed in rural areas. It is estimated that 640 ± 245 Gg BC/y were emitted to the atmosphere due to residential solid fuel consumption in rural China in 2014. Emissions of BC from straw, wood, and coal contributed 42 ± 13%, 36 ± 15%, and 22 ± 10% of the total, respectively. We show that effective BC mitigation (a reduction of 47%) could be obtained through widespread introduction of improved stoves in rural households.

  10. Black carbon emissions from biomass and coal in rural China

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Weishi; Lu, Zifeng; Xu, Yuan; Wang, Can; Gu, Yefu; Xu, Hui; Streets, David G.

    2018-03-01

    Residential solid fuel combustion makes a major contribution to black carbon (BC) emissions in China. A new estimation of BC emissions from rural solid biomass and coal consumption has been derived from field survey data. The following new contributions are made: (1) emission factors are collected and reviewed; (2) household energy data are collected from field survey data and from the literature; (3) a new extrapolation method is developed to extend the field survey data to other locations; (4) the ownership and usage of two stove types are estimated and considered in the emission calculations; and (5) uncertainties associated with the estimation results are quantified. It is shown that rural households with higher income will consume less biomass but more coal. Agricultural acreage and temperature also significantly influence the amount of solid fuel consumed in rural areas. It is estimated that 640±245 Gg BC/y were emitted to the atmosphere due to residential solid fuel consumption in rural China in 2014. Emissions of BC from straw, wood, and coal contributed 42±13%, 36±15%, and 22±10% of the total, respectively. We show that effective BC mitigation (a reduction of 47%) could be obtained through widespread introduction of improved stoves in rural households

  11. Emissions of carbon, nitrogen, and sulfur from biomass burning in Nigeria

    International Nuclear Information System (INIS)

    Akeredolu, F.; Isichei, A.O.

    1991-01-01

    The atmospheric implications of the effects of burning of vegetation in Nigeria are discussed. The following topics are explored: the extent of biomass burning by geographical area; estimates of emission rates of carbon, nitrogen and sulfur; and the impact on biogeochemical cycling of elements. The results suggest that biomass burning generates a measurable impact on the cycling of carbon and nitrogen

  12. Comparative life cycle assessment of biomass co-firing plants with carbon capture and storage

    NARCIS (Netherlands)

    Schakel, Wouter|info:eu-repo/dai/nl/369280784; Meerman, Hans; Talaei, Alireza; Ramírez, Andrea|info:eu-repo/dai/nl/284852414; Faaij, André

    2014-01-01

    Combining co-firing biomass and carbon capture and storage (CCS) in power plants offers attractive potential for net removal of carbon dioxide (CO2) from the atmosphere. In this study, the impact of co-firing biomass (wood pellets and straw pellets) on the emission profile of power plants with

  13. The Effectiveness of Ameliorant to Increase Carbon Stock of Oilpalm and Rubber Plantation on Peatland

    Directory of Open Access Journals (Sweden)

    Ai Dariah

    2015-05-01

    Full Text Available Application of peatland amelioration can improve soil quality, reduce GHG emissions, and increase carbon sequestration. The research aimed to study the effect of peatland amelioration on oil palm and rubber carbon stock improvement. Research was conducted from August 2013 until June 2014. The researches on oil palm were done in Arang-arang Village, Kumpeh Subdistrict, Muaro Jambi District, and in Lubuk Ogong Village, Bandar Seikijang Sub-district, Pelalawan District. Both sites are in Jambi and Riau Province. The research on rubber was done in Jabiren Village, Jabiren Raya Subdistrict, Pulang Pisau District, Central Kalimantan Province. The study used a Randomized Completely Block Design (RCBD, in four treatments and four replications. The treatments were pugam (peat fertilizer enriched by polyvalent cation, manure; empty fruit bunch compost, and control (no application. The measurement of C stock was performed 10 months after application using nondestructive methods. The results showed that peatland amelioration treatments had no significant effect to improve C stock on oil palm in 6 years old and 7 years old of rubber. After 10 months of amelioration application, the treatments increased C - stock of oil palm and rubber were 2.1-2.4 Mg ha-1 and 5-11 Mg ha-1, respectively. Longer time observation may be needed to study the effect of ameliorant on C-stock of annual crops.

  14. Ameliorant Application on Variation of Carbon Stock and Ash Content on Peatland South Kalimantan

    Directory of Open Access Journals (Sweden)

    Siti Nurzakiah

    2013-03-01

    Full Text Available Carbon stock on peatlands are large and will be easily emitted if the land is opened or drained, therefore the measurements of carbon stocks and ash content are important to know the amount of emissions and agricultural sustainability in peatlands. This study aimed to determine carbon stock and ash content on peatlands in the Indonesia Climate Change Trust Fund (ICCTF located in South Kalimantan on the geographic position S. 03°25’52" and E. 114°47’6.5". The experiment consisted of six treatments of ameliorant materials namely; mineral soil, peat fertilizer A, peat fertilizer T, manure, ash, and control. The results showed that the variation of peat soil properties was very high at this location. Peat thickness ranged from 36-338 cm, and this led to high variations in carbon stocks ranged between 161.8 – 1142.2 Mg ha-1. Besides ash contents of the soil were also highly varied ranged from 3.4 – 28.5%. This natural variation greatly affected the ICCTF study design. Mineral soil treatment had a mean carbon stock (961.3 ± 61.5 Mg ha-1 which was higher and different from other treatments. High ash content was obtained in the ash treatment (18.6 ± 2.5% and manure (15.7 ± 3.6%. It is recommended that the analysis of plant responses and greenhouse gas emissions using a single regression analysis and multiple regression with ash content as one of the independent variables are needed.

  15. High-resolution forest carbon stocks and emissions in the Amazon.

    Science.gov (United States)

    Asner, Gregory P; Powell, George V N; Mascaro, Joseph; Knapp, David E; Clark, John K; Jacobson, James; Kennedy-Bowdoin, Ty; Balaji, Aravindh; Paez-Acosta, Guayana; Victoria, Eloy; Secada, Laura; Valqui, Michael; Hughes, R Flint

    2010-09-21

    Efforts to mitigate climate change through the Reduced Emissions from Deforestation and Degradation (REDD) depend on mapping and monitoring of tropical forest carbon stocks and emissions over large geographic areas. With a new integrated use of satellite imaging, airborne light detection and ranging, and field plots, we mapped aboveground carbon stocks and emissions at 0.1-ha resolution over 4.3 million ha of the Peruvian Amazon, an area twice that of all forests in Costa Rica, to reveal the determinants of forest carbon density and to demonstrate the feasibility of mapping carbon emissions for REDD. We discovered previously unknown variation in carbon storage at multiple scales based on geologic substrate and forest type. From 1999 to 2009, emissions from land use totaled 1.1% of the standing carbon throughout the region. Forest degradation, such as from selective logging, increased regional carbon emissions by 47% over deforestation alone, and secondary regrowth provided an 18% offset against total gross emissions. Very high-resolution monitoring reduces uncertainty in carbon emissions for REDD programs while uncovering fundamental environmental controls on forest carbon storage and their interactions with land-use change.

  16. Cropping systems affect paddy soil organic carbon and total nitrogen stocks (in rice-garlic and rice-fava systems) in temperate region of southern China.

    Science.gov (United States)

    Zhang, Tao; Chen, Anqiang; Liu, Jian; Liu, Hongbin; Lei, Baokun; Zhai, Limei; Zhang, Dan; Wang, Hongyuan

    2017-12-31

    The accumulation of soil organic carbon (SOC) in agricultural soils is critical to food security and climate change. However, there is still limited information on the dynamic trend of SOC sequestration following changes in cropping systems. Paddy soils, typical of temperate region of southern China, have a large potential for carbon (C) sequestration and nitrogen (N) fixation. It is of great importance to study the impacts of changes in cropping systems on stocks of SOC and total nitrogen (TN) in paddy soils. A six-year field experiment was conducted to clarify the dynamics of SOC and TN stocks in the paddy topsoil (0-20cm) when crop rotation of rice (Oryza sativa L.) -garlic (Allium sativum) (RG) was changed to rice-fava (Vicia faba L.) (RF), and to examine how the dynamics were affected by two N management strategies. The results showed that SOC stocks increased by 24.9% in the no N (control) treatment and by 18.9% in the treatment applied with conventional rate of N (CON), when RG was changed to RF. Correspondingly, TN stocks increased by 8.5% in the control but decreased by 2.6% in the CON. Compared with RG, RF was more conducive to increase the contents of soil microbial biomass C and N. Moreover, changing the cropping system from RG to RF increased the year-round N use efficiency from 21.6% to 34.4% and reduced soil N surplus in the CON treatment from 547kg/ha to 93kg/ha. In conclusion, changes in the cropping system from RG to RF could markedly increase SOC stocks, improve N utilization, reduce soil N surplus, and thus reduce the risk of N loss in the paddy soil. Overall, this study showed the potential of paddy agro-ecological systems to store C and maintain N stocks in the temperate regions. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Organic Carbon Stocks, Dynamics and Restoration in Relation to Soils of Agroecosystems in Ethiopia: A Review

    Directory of Open Access Journals (Sweden)

    Getaneh Gebeyehu

    2017-02-01

    Full Text Available Soils represent the largest carbon pool and play important roles for carbon storage for prolonged periods in agroecosystems. A number of studies were conducted to quantify soil organic carbon (SOC worldwide. The objective of this review was to evaluate organic carbon stocks, dynamics and restoration in soils of agroecosystems in Ethiopia. Soil data from 32 different observations, representing four different agroecosystems, were analysed. The mean SOC stocks in the four agroecosystems varied and ranged from 25.66 (sub-humid agroecosystem to 113.17 (humid mid-highland agroecosystems Mg C ha-1 up to one meter depth. The trend of mean SOC followed (in descending order: humid mid-highland (113.17 Mg C ha-1 > per-humid highland (57.14 Mg C ha-1 > semi-arid (25.77 Mg C ha-1 > sub-humid (25.66 Mg C ha-1. Compared with soils of tropical countries, those in Ethiopian agroecosystems contained low SOC storage potential. This might be associated with differences in measurement and analysis methods as 53.1% of the studies employed the Walkley-Black Method, which is known to underestimate carbon stocks in addition to ecological and management effects. However, shifts of land management from rain-fed to irrigation farming systems exhibited progress in the improvement of mean SOC storage potential. The analyses showed that farming systems involving irrigation sequestered more carbon than rain-fed farm systems. The mean SOC in the various agricultural land uses followed the following trend (in descending order: agroforestry (153.57 Mg C ha-1 > grazing land (34.61 Mg C ha-1 > cereal cultivation (24.18 Mg C ha-1. Therefore, the possible solutions for improvement of organic carbon stocks would be implementation of appropriate restoration strategies based on agroecosystems.INTERNATIONAL JOURNAL OF ENVIRONMENT Volume-6, Issue-1, Dec-Feb 2016/17, page: 1-22 

  18. A cost-efficient method to assess carbon stocks in tropical peat soil

    Science.gov (United States)

    Warren, M. W.; Kauffman, J. B.; Murdiyarso, D.; Anshari, G.; Hergoualc'h, K.; Kurnianto, S.; Purbopuspito, J.; Gusmayanti, E.; Afifudin, M.; Rahajoe, J.; Alhamd, L.; Limin, S.; Iswandi, A.

    2012-11-01

    Estimation of belowground carbon stocks in tropical wetland forests requires funding for laboratory analyses and suitable facilities, which are often lacking in developing nations where most tropical wetlands are found. It is therefore beneficial to develop simple analytical tools to assist belowground carbon estimation where financial and technical limitations are common. Here we use published and original data to describe soil carbon density (kgC m-3; Cd) as a function of bulk density (gC cm-3; Bd), which can be used to rapidly estimate belowground carbon storage using Bd measurements only. Predicted carbon densities and stocks are compared with those obtained from direct carbon analysis for ten peat swamp forest stands in three national parks of Indonesia. Analysis of soil carbon density and bulk density from the literature indicated a strong linear relationship (Cd = Bd × 495.14 + 5.41, R2 = 0.93, n = 151) for soils with organic C content > 40%. As organic C content decreases, the relationship between Cd and Bd becomes less predictable as soil texture becomes an important determinant of Cd. The equation predicted belowground C stocks to within 0.92% to 9.57% of observed values. Average bulk density of collected peat samples was 0.127 g cm-3, which is in the upper range of previous reports for Southeast Asian peatlands. When original data were included, the revised equation Cd = Bd × 468.76 + 5.82, with R2 = 0.95 and n = 712, was slightly below the lower 95% confidence interval of the original equation, and tended to decrease Cd estimates. We recommend this last equation for a rapid estimation of soil C stocks for well-developed peat soils where C content > 40%.

  19. Soil carbon stock change following afforestation in Northern Europe

    DEFF Research Database (Denmark)

    Bárcena, Teresa G; Kiær, Lars Pødenphant; Vesterdal, Lars

    2014-01-01

    of afforestation. Therefore, we conducted a meta-analysis of SOC stock change following afforestation in Northern Europe. Response ratios were calculated for forest floors and mineral soils (0–10 cm and 0–20/30 cm layers) based on paired control (former land use) and afforested plots. We analyzed the influence...... was a major factor contributing to changes in SOC after afforestation. In former croplands, SOC change differed between soil layers and was significantly positive (20%) in the 0–10 cm layer. Afforestation of former grasslands had a small negative (nonsignificant) effect indicating limited SOC change following...... indicated that meta-estimates in former land-use, forest type, and soil textural class alone were either offset or enhanced when confounding effects among variable classes were considered. Furthermore, effect sizes were slightly overestimated if sample dependence was not accounted for and if no mass...

  20. Nontraditional Use of Biomass at Certified Forest Management Units: Forest Biomass for Energy Production and Carbon Emissions Reduction in Indonesia

    Directory of Open Access Journals (Sweden)

    Asep S. Suntana

    2012-01-01

    Full Text Available Biomass conversion technologies that produce energy and reduce carbon emissions have become more feasible to develop. This paper analyzes the potential of converting biomass into biomethanol at forest management units experiencing three forest management practices (community-based forest management (CBFM, plantation forest (PF, and natural production forest (NPF. Dry aboveground biomass collected varied considerably: 0.26–2.16 Mg/ha/year (CBFM, 8.08–8.35 Mg/ha/year (NPF, and 36.48–63.55 Mg/ha/year (PF. If 5% of the biomass was shifted to produce biomethanol for electricity production, the NPF and PF could provide continuous power to 138 and 2,762 households, respectively. Dedicating 5% of the biomass was not a viable option from one CBFM unit. However, if all biomasses were converted, the CBFM could provide electricity to 19–27 households. If 100% biomass from two selected PF was dedicated to biomethanol production: (1 52,200–72,600 households could be provided electricity for one year; (2 142–285% of the electricity demand in Jambi province could be satisfied; (3 all gasoline consumed in Jambi, in 2009, would be replaced. The net carbon emissions avoided could vary from 323 to 8,503 Mg when biomethanol was substituted for the natural gas methanol in fuel cells and from 294 to 7,730 Mg when it was used as a gasoline substitute.

  1. High-resolution mapping of forest carbon stocks in the Colombian Amazon

    Directory of Open Access Journals (Sweden)

    G. P. Asner

    2012-07-01

    Full Text Available High-resolution mapping of tropical forest carbon stocks can assist forest management and improve implementation of large-scale carbon retention and enhancement programs. Previous high-resolution approaches have relied on field plot and/or light detection and ranging (LiDAR samples of aboveground carbon density, which are typically upscaled to larger geographic areas using stratification maps. Such efforts often rely on detailed vegetation maps to stratify the region for sampling, but existing tropical forest maps are often too coarse and field plots too sparse for high-resolution carbon assessments. We developed a top-down approach for high-resolution carbon mapping in a 16.5 million ha region (> 40% of the Colombian Amazon – a remote landscape seldom documented. We report on three advances for large-scale carbon mapping: (i employing a universal approach to airborne LiDAR-calibration with limited field data; (ii quantifying environmental controls over carbon densities; and (iii developing stratification- and regression-based approaches for scaling up to regions outside of LiDAR coverage. We found that carbon stocks are predicted by a combination of satellite-derived elevation, fractional canopy cover and terrain ruggedness, allowing upscaling of the LiDAR samples to the full 16.5 million ha region. LiDAR-derived carbon maps have 14% uncertainty at 1 ha resolution, and the regional map based on stratification has 28% uncertainty in any given hectare. High-resolution approaches with quantifiable pixel-scale uncertainties will provide the most confidence for monitoring changes in tropical forest carbon stocks. Improved confidence will allow resource managers and decision makers to more rapidly and effectively implement actions that better conserve and utilize forests in tropical regions.

  2. Forest biomass carbon sinks in East Asia, with special reference to the relative contributions of forest expansion and forest growth.

    Science.gov (United States)

    Fang, Jingyun; Guo, Zhaodi; Hu, Huifeng; Kato, Tomomichi; Muraoka, Hiroyuki; Son, Yowhan

    2014-06-01

    Forests play an important role in regional and global carbon (C) cycles. With extensive afforestation and reforestation efforts over the last several decades, forests in East Asia have largely expanded, but the dynamics of their C stocks have not been fully assessed. We estimated biomass C stocks of the forests in all five East Asian countries (China, Japan, North Korea, South Korea, and Mongolia) between the 1970s and the 2000s, using the biomass expansion factor method and forest inventory data. Forest area and biomass C density in the whole region increased from 179.78 × 10(6) ha and 38.6 Mg C ha(-1) in the 1970s to 196.65 × 10(6) ha and 45.5 Mg C ha(-1) in the 2000s, respectively. The C stock increased from 6.9 Pg C to 8.9 Pg C, with an averaged sequestration rate of 66.9 Tg C yr(-1). Among the five countries, China and Japan were two major contributors to the total region's forest C sink, with respective contributions of 71.1% and 32.9%. In China, the areal expansion of forest land was a larger contributor to C sinks than increased biomass density for all forests (60.0% vs. 40.0%) and for planted forests (58.1% vs. 41.9%), while the latter contributed more than the former for natural forests (87.0% vs. 13.0%). In Japan, increased biomass density dominated the C sink for all (101.5%), planted (91.1%), and natural (123.8%) forests. Forests in South Korea also acted as a C sink, contributing 9.4% of the total region's sink because of increased forest growth (98.6%). Compared to these countries, the reduction in forest land in both North Korea and Mongolia caused a C loss at an average rate of 9.0 Tg C yr(-1), equal to 13.4% of the total region's C sink. Over the last four decades, the biomass C sequestration by East Asia's forests offset 5.8% of its contemporary fossil-fuel CO2 emissions. © 2014 John Wiley & Sons Ltd.

  3. Mapping Carbon Storage in Urban Trees with Multi-source Remote Sensing Data: Relationships between Biomass, Land Use, and Demographics in Boston Neighborhoods

    Science.gov (United States)

    Raciti, S. M.; Hutyra, L.

    2014-12-01

    High resolution maps of urban vegetation and biomass are powerful tools for policy-makers and community groups seeking to reduce rates of urban runoff, moderate urban heat island effects, and mitigate the effects of greenhouse gas emissions. We develop a very high resolution map of urban tree biomass, assess the scale sensitivities in biomass estimation, compare our results with lower resolution estimates, and explore the demographic relationships in biomass distribution across the City of Boston. We integrated remote sensing data (including LiDAR-based tree height estimates) and field-based observations to map canopy cover and aboveground tree carbon storage at ~1 m spatial scale. Mean tree canopy cover was estimated to be 25.5±1.5% and carbon storage was 355 Gg (28.8 Mg C ha-1) for the City of Boston. Tree biomass was highest in forest patches (110.7 Mg C ha-1), but residential (32.8 Mg C ha-1) and developed open (23.5 Mg C ha-1) land uses also contained relatively high carbon stocks. In contrast with previous studies, we did not find significant correlations between tree biomass and the demographic characteristics of Boston neighborhoods, including income, education, race, or population density. The proportion of households that rent was negatively correlated with urban tree biomass (R2=0.26, p=0.04) and correlated with Priority Planting Index values (R2=0.55, p=0.001), potentially reflecting differences in land management among rented and owner-occupied residential properties. We compared our very high resolution biomass map to lower resolution biomass products from other sources and found that those products consistently underestimated biomass within urban areas. This underestimation became more severe as spatial resolution decreased. This research demonstrates that 1) urban areas contain considerable tree carbon stocks; 2) canopy cover and biomass may not be related to the demographic characteristics of Boston neighborhoods; and 3) that recent advances in

  4. Mapping carbon storage in urban trees with multi-source remote sensing data: relationships between biomass, land use, and demographics in Boston neighborhoods.

    Science.gov (United States)

    Raciti, Steve M; Hutyra, Lucy R; Newell, Jared D

    2014-12-01

    High resolution maps of urban vegetation and biomass are powerful tools for policy-makers and community groups seeking to reduce rates of urban runoff, moderate urban heat island effects, and mitigate the effects of greenhouse gas emissions. We developed a very high resolution map of urban tree biomass, assessed the scale sensitivities in biomass estimation, compared our results with lower resolution estimates, and explored the demographic relationships in biomass distribution across the City of Boston. We integrated remote sensing data (including LiDAR-based tree height estimates) and field-based observations to map canopy cover and aboveground tree carbon storage at ~1m spatial scale. Mean tree canopy cover was estimated to be 25.5±1.5% and carbon storage was 355Gg (28.8MgCha(-1)) for the City of Boston. Tree biomass was highest in forest patches (110.7MgCha(-1)), but residential (32.8MgCha(-1)) and developed open (23.5MgCha(-1)) land uses also contained relatively high carbon stocks. In contrast with previous studies, we did not find significant correlations between tree biomass and the demographic characteristics of Boston neighborhoods, including income, education, race, or population density. The proportion of households that rent was negatively correlated with urban tree biomass (R(2)=0.26, p=0.04) and correlated with Priority Planting Index values (R(2)=0.55, p=0.001), potentially reflecting differences in land management among rented and owner-occupied residential properties. We compared our very high resolution biomass map to lower resolution biomass products from other sources and found that those products consistently underestimated biomass within urban areas. This underestimation became more severe as spatial resolution decreased. This research demonstrates that 1) urban areas contain considerable tree carbon stocks; 2) canopy cover and biomass may not be related to the demographic characteristics of Boston neighborhoods; and 3) that recent advances

  5. Iron oxide nanoparticles embedded in activated carbons prepared from hydrothermally treated waste biomass.

    Science.gov (United States)

    Hao, Wenming; Björkman, Eva; Yun, Yifeng; Lilliestråle, Malte; Hedin, Niklas

    2014-03-01

    Particles of iron oxide (Fe3O4 ; 20–40 nm) were embedded within activated carbons during the activation of hydrothermally carbonized (HTC) biomasses in a flow of CO2. Four different HTC biomass samples (horse manure, grass cuttings, beer production waste, and biosludge) were used as precursors for the activated carbons. Nanoparticles of iron oxide formed from iron catalyst included in the HTC biomasses. After systematic optimization, the activated carbons had specific surface areas of about 800 m2g1. The pore size distributions of the activated carbons depended strongly on the degree of carbonization of the precursors. Activated carbons prepared from highly carbonized precursors had mainly micropores, whereas those prepared from less carbonized precursors contained mainly mesopores. Given the strong magnetism of the activated carbon–nano-Fe3O4 composites, they could be particularly useful for water purification.

  6. Evaluation of carbon storage in soil and plant biomass of primary ...

    African Journals Online (AJOL)

    USER

    Organic carbon in biomass was estimated by using allometry equation and soil carbon concentration was analyzed by. Walkley-Black method. The results revealed that PMDF ... planting in future restoration processes in order to accelerate natural succession and storage carbon. ..... Temporal evolution of carbon budgets.

  7. Growth, mortality and spawning stock biomass of the striped red mullet Mullus surmuletus, in the Egyptian Mediterranean waters

    Directory of Open Access Journals (Sweden)

    S.F. MEHANNA

    2009-12-01

    Full Text Available Population parameters such as age, growth, mortality and maturity-at-age are crucial parameters for accurate stock assessment and management plans to ensure the sustainable development of fisheries. Also, they are essential for the calculation of spawning stock biomass (SSB and equilibrium yield as well as biological reference points including Fmax, F0.1 and F30%SSB. Age and growth parameters were estimated for the striped red mullet, Mullus surmuletus, sampled from commercial landings of the trawl fishery in the Egyptian Mediterranean waters, using the otolith reading technique. M. surmuletus has a longevity of 5 years, but over 70% of fish were less than 2 years old. The growth parameter estimates were K= 0.47 yrs-1, L∞= 31.74 cm, and to= -0.3 yrs. Natural mortality (M was 0.43 yrs-1, fishing mortality (F was 0.73 yrs-1, survival rate (S was 0.31 and exploitation ratio was 0.63 yr-1. Length-at-50% maturity was estimated at 15.1 cm TL, while the length at first capture was estimated at 11.6 cm TL. SSB analysis showed that effort reduction is strongly recommended such that F be reduced by 40% to rebuild spawner biomass to acceptable levels. Per-recruit analysis revealed that F should be reduced by about 27% to achieve the maximum Y/R. All approaches point to the need for drastic reduction in fishing pressure by about 30-40% in the Egyptian Mediterranean fisheries.

  8. Impact of deforestation on soil carbon stock and its spatial distribution in the Western Black Sea Region of Turkey.

    Science.gov (United States)

    Kucuker, Mehmet Ali; Guney, Mert; Oral, H Volkan; Copty, Nadim K; Onay, Turgut T

    2015-01-01

    Land use management is one of the most critical factors influencing soil carbon storage and the global carbon cycle. This study evaluates the impact of land use change on the soil carbon stock in the Karasu region of Turkey which in the last two decades has undergone substantial deforestation to expand hazelnut plantations. Analysis of seasonal soil data indicated that the carbon content decreased rapidly with depth for both land uses. Statistical analyses indicated that the difference between the surface carbon stock (defined over 0-5 cm depth) in agricultural and forested areas is statistically significant (Agricultural = 1.74 kg/m(2), Forested = 2.09 kg/m(2), p = 0.014). On the other hand, the average carbon stocks estimated over the 0-1 m depth were 12.36 and 12.12 kg/m(2) in forested and agricultural soils, respectively. The carbon stock (defined over 1 m depth) in the two land uses were not significantly different which is attributed in part to the negative correlation between carbon stock and bulk density (-0.353, p < 0.01). The soil carbon stock over the entire study area was mapped using a conditional kriging approach which jointly uses the collected soil carbon data and satellite-based land use images. Based on the kriging map, the spatially soil carbon stock (0-1 m dept) ranged about 2 kg/m(2) in highly developed areas to more than 23 kg/m(2) in intensively cultivated areas as well as the averaged soil carbon stock (0-1 m depth) was estimated as 10.4 kg/m(2). Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Shade tree diversity and aboveground carbon stocks inTheobroma cacaoagroforestry systems: implications for REDD+ implementation in a West African cacao landscape.

    Science.gov (United States)

    Dawoe, Evans; Asante, Winston; Acheampong, Emmanuel; Bosu, Paul

    2016-12-01

    The promotion of cacao agroforestry is one of the ways of diversifying farmer income and creating incentives through their inclusion in REDD+ interventions. We estimated the aboveground carbon stocks in cacao and shade trees, determined the floristic diversity of shade trees and explored the possibility of implementing REDD+ interventions in cacao landscapes. Using replicated multi-site transect approach, data were collected from nine 1-ha plots established on 5 km long transects in ten cacao growing districts in Ghana West Africa. Biomass of cacao and shade trees was determined using allometric equations. One thousand four hundred and one (1401) shade trees comprising 109 species from 33 families were recorded. Total number of species ranged from 34 to 49. Newbouldia laevis (Bignoniacea) was the most frequently occurring specie and constituted 43.2 % of all shade trees. The most predominant families were Sterculiaceae and Moraceae (10 species each), followed by Meliaceae and Mimosaceae (8 species each) and Caesalpiniacaea (6 species). Shannon diversity indices (H', H max and J') and species richness were low compared to other similar studies. Shade tree densities ranged from 16.2 ± 3.0 to 22.8 ± 1.7 stems ha -1 and differed significantly between sites. Carbon stocks of shade trees differed between sites but were similar in cacao trees. The average C stock in cacao trees was 7.45 ± 0.41 Mg C ha -1 compared with 8.32 ± 1.15 Mg C ha -1 in the shade trees. Cacao landscapes in Ghana have the potential of contributing to forest carbon stocks enhancement by increasing the stocking density of shade trees to recommended levels.

  10. Carbon stock quantification of Morella pubescens (H. & B. ex Willd. Wilbur in two agroecosystems (Nariño, Colombia

    Directory of Open Access Journals (Sweden)

    Iván Andrés Delgado Vargas

    2016-07-01

    Full Text Available The carbon stored in radical biomass of Morella pubescens (Humb. & Bonpl. ex Willd. Wilbur, was quantified, in San Pablo, Nariño, Colombia, with height of 2010 m, average annual rainfall of 1300 mm and average temperature of 17ºC. Three experimental unites: silvopastoral system pasture alley cropping (Ac in two planting distances 4x3m and 4x4m, and natural regeneration system (Rn, 7 individual ware taken by experimental unite with (diameters 5 – 7 cm, by experimental unit, the sample was taken to 70 cm and 140 cm from the tree and three depths (0-15, 15-30, and 30-45 cm. In total 24 simples/trees were taken in 21 selected individuals. The mayor quantity of radical biomass and C stock was presented in the Ac arrangement 4x3 m of 27.6 t.ha-1 (14.1 t.C.ha-1; 24 4 t.ha-1 (12.1 t.C.ha-1 distance 4x4 m and 7.5 t.ha-1 and 2.9 t.ha-1In natural regeneration. In system Ac distance 4x4 m there were not differences in C stored by tree Rn, there was a decrease by 4x3 m, thus, the differences of accumulation between the systems, can obey to the density of the sowing.

  11. Aboveground biomass, wood volume, nutrient stocks and leaf litter in novel forests compared to native forests and tree plantations in Puerto Rico

    Science.gov (United States)

    A.E. Lugo; O. Abelleira Martínez; J. Fonseca da Silva

    2012-01-01

    The article presents comparative data for aboveground biomass, wood volume, nutirent stocks (N, P, K) and leaf litter in different types of forests in Puerto Rico. The aim of the study is to assess how novel forests of Castilla elastica, Panama Rubber Tree, and Spathodea campanulata, African Tulip Tree, compare with tree plantations and native historical forests (both...

  12. Spatial Variability of Soil Carbon Stocks in a Subtropical Mangrove in Hong Kong

    Science.gov (United States)

    Lai, D. Y. F.; Neogi, S.; Law, M. S. M.; Xu, J.; Glatzel, S.; Buczko, U.; Karstens, S.

    2015-12-01

    "Blue carbon", a term used for carbon (C) sequestered in vegetated coastal wetlands, has received increasing attention recently as a potential option for mitigating future climate change. While coastal mangrove is considered as one of the most carbon-rich ecosystems of the world, there is a need to better characterize and compare the magnitude of carbon storage among mangroves in different geographical regions. In this study, we quantified the spatial variability of soil carbon stocks in a subtropical mangrove wetland in Hong Kong, and examined the effects of land cover change on soil carbon storage. Bare mudflats contained significantly lower amount of carbon than mangroves in the top 1 m soils (94.7 vs. 130.7-163.8 Mg C ha-1), indicating the importance of vegetation in enhancing C sequestration. Moreover, we observed higher soil C storage in sites dominated by Avicennia marina than those dominated by Kandelia obovata. Conversion of natural mangroves into freshwater marshes and brackish ponds with shallow islands significantly reduced the amount of C stored in the top 30 cm soils by 24-58%, when compared to sites dominated by mangrove trees. Our findings suggest that consideration should be given to plant species and land cover type in determining the overall magnitude of carbon stocks in subtropical mangrove soils.

  13. Temporal biomass dynamics of an Arctic plankton bloom in response to increasing levels of atmospheric carbon dioxide

    Directory of Open Access Journals (Sweden)

    K. G. Schulz

    2013-01-01

    Full Text Available Ocean acidification and carbonation, driven by anthropogenic emissions of carbon dioxide (CO2, have been shown to affect a variety of marine organisms and are likely to change ecosystem functioning. High latitudes, especially the Arctic, will be the first to encounter profound changes in carbonate chemistry speciation at a large scale, namely the under-saturation of surface waters with respect to aragonite, a calcium carbonate polymorph produced by several organisms in this region. During a CO2 perturbation study in Kongsfjorden on the west coast of Spitsbergen (Norway, in the framework of the EU-funded project EPOCA, the temporal dynamics of a plankton bloom was followed in nine mesocosms, manipulated for CO2 levels ranging initially from about 185 to 1420 μatm. Dissolved inorganic nutrients were added halfway through the experiment. Autotrophic biomass, as identified by chlorophyll a standing stocks (Chl a, peaked three times in all mesocosms. However, while absolute Chl a concentrations were similar in all mesocosms during the first phase of the experiment, higher autotrophic biomass was measured as high in comparison to low CO2 during the second phase, right after dissolved inorganic nutrient addition. This trend then reversed in the third phase. There were several statistically significant CO2 effects on a variety of parameters measured in certain phases, such as nutrient utilization, standing stocks of particulate organic matter, and phytoplankton species composition. Interestingly, CO2 effects developed slowly but steadily, becoming more and more statistically significant with time. The observed CO2-related shifts in nutrient flow into different phytoplankton groups (mainly dinoflagellates, prasinophytes and haptophytes could have consequences for future organic matter flow to higher trophic levels and export production, with consequences

  14. Effects of changing nutrient inputs on the ratio of small pelagic fish stock and phytoplankton biomass in the Black Sea

    Science.gov (United States)

    Yunev, Oleg A.; Velikova, Violeta; Carstensen, Jacob

    2017-10-01

    Significant increases in nitrogen and phosphorus inputs to the Black Sea in the second half of the 20th century caused eutrophication and drastically decreasing Si:N and Si:P ratios. Combined with climate change, overfishing of top predators and a huge outbreak of the non-indigenous ctenophore Mnemiopsis, the pelagic food web was strongly modified and its efficiency for channeling primary production to higher trophic levels substantially reduced. We used the ratio between small pelagic fish stock and phytoplankton biomass on the Danube shelf and in the open Black Sea to investigate long-term changes in food web functioning. The ratio had 1) highest values for the pre-eutrophication period when diatoms and copepods dominated the pelagic food web ('muscle food chain'), 2) decreased during the eutrophication period with stronger prevalence of autotrophic pico- and nanophytoplankton, bacteria, heterotrophic nanoflagellates, microzooplankton, Noctiluca and jellyfish ('jelly food chain' with increased importance of the microbial loop), 3) lowest values during the ecological crisis (1989-1992), when small pelagic fish stocks collapsed, and 4) increased after 1993, indicating that the ecosystem went out of the crisis and exhibited a trend of recovery. However, in the last period (1993-2008) the ratio remained close to values observed in the middle eutrophication phase, suggesting that the ecosystem was far from fully recovered. Since early 2000s, fluctuating pelagic fish stocks, with a tendency to decreasing fish landing again, have been observed in the Black Sea. Additionally, the quality of food for the small pelagic fish has deteriorated due to warming trends and the legacy of eutrophication, giving support for the 'jelly food chain', exhibiting low energy transfer and prevalence of organisms with high respiration rate and low nutritional value.

  15. Altitudinal variation of soil organic carbon stocks in temperate forests of Kashmir Himalayas, India.

    Science.gov (United States)

    Ahmad Dar, Javid; Somaiah, Sundarapandian

    2015-02-01

    Soil organic carbon stocks were measured at three depths (0-10, 10-20, and 20-30 cm) in seven altitudes dominated by different forest types viz. Populus deltoides, 1550-1800 m; Juglans regia, 1800-2000 m; Cedrus deodara, 2050-2300 m; Pinus wallichiana, 2000-2300 m; mixed type, 2200-2400 m; Abies pindrow, 2300-2800 m; and Betula utilis, 2800-3200 m in temperate mountains of Kashmir Himalayas. The mean range of soil organic carbon (SOC) stocks varied from 39.07 to 91.39 Mg C ha(-1) in J. regia and B. utilis forests at 0-30 cm depth, respectively. Among the forest types, the lowest mean range of SOC at three depths (0-10, 10-20, and 20-30 cm) was observed in J. regia (18.55, 11.31, and 8.91 Mg C ha(-1), respectively) forest type, and the highest was observed in B. utilis (54.10, 21.68, and 15.60 Mg C ha(-1), respectively) forest type. SOC stocks showed significantly (R (2) = 0.67, P = 0.001) an increasing trend with increase in altitude. On average, the percentages of SOC at 0-10-, 10-20-, and 20-30-cm depths were 53.2, 26.5, and 20.3 %, respectively. Bulk density increased significantly with increase in soil depth and decreased with increase in altitude. Our results suggest that SOC stocks in temperate forests of Kashmir Himalaya vary greatly with forest type and altitude. The present study reveals that SOC stocks increased with increase in altitude at high mountainous regions. Climate change in these high mountainous regions will alter the carbon sequestration potential, which would affect the global carbon cycle.

  16. Modelling soil carbon flows and stocks following a carbon balance approach at regional scale for the EU-27

    Science.gov (United States)

    Lesschen, Jan Peter; Sikirica, Natasa; Bonten, Luc; Dibari, Camilla; Sanchez, Berta; Kuikman, Peter

    2014-05-01

    Soil Organic Carbon (SOC) is a key parameter to many soil functions and services. SOC is essential to support water retention and nutrient buffering and mineralization in the soil as well as to enhance soil biodiversity. Consequently, loss of SOC or low SOC levels might threaten soil productivity or even lead to a collapse of a farming system. Identification of areas in Europe with critically low SOC levels or with a negative carbon balance is a challenge in order to apply the appropriate strategies to restore these areas or prevent further SOC losses. The objective of this study is to assess current soil carbon flows and stocks at a regional scale; we follow a carbon balance approach which we developed within the MITERRA-Europe model. MITERRA-Europe is an environmental impact assessment model and calculates nitrogen and greenhouse emission on a deterministic and annual basis using emission and leaching factors at regional level (NUTS2, comparable to province level) in the EU27. The model already contained a soil carbon module based on the IPCC stock change approach. Within the EU FP7 SmartSoil project we developed a SOC balance approach, for which we quantified the input of carbon (manure, crop residues, other organic inputs) and the losses of carbon (decomposition, leaching and erosion). The calculations rules from the Roth-C model were used to estimate SOC decomposition. For the actual soil carbon stocks we used the data from the LUCAS soil sample survey. LUCAS collected soil samples in 2009 at about 22000 locations across the EU, which were analysed for a range of soil properties. Land management practices are accounted for, based on data from the EU wide Survey on Agricultural Production Methods in the 2010 Farm Structure Survey. The survey comprises data on the application of soil tillage, soil cover, crop rotation and irrigation. Based on the simulated soil carbon balance and the actual carbon stocks from LUCAS we now can identify regions within the EU that

  17. Direct membrane-carbonation photobioreactor producing photoautotrophic biomass via carbon dioxide transfer and nutrient removal.

    Science.gov (United States)

    Kim, Hyun-Woo; Cheng, Jing; Rittmann, Bruce E

    2016-03-01

    An advanced-material photobioreactor, the direct membrane-carbonation photobioreactor (DMCPBR), was tested to investigate the impact of directly submerging a membrane carbonation (MC) module of hollow-fiber membranes inside the photobioreactor. Results demonstrate that the DMCPBR utilized over 90% of the supplied CO2 by matching the CO2 flux to the C demand of photoautotrophic biomass growth. The surface area of the submerged MC module was the key to control CO2 delivery and biomass productivity. Tracking the fate of supplied CO2 explained how the DMCPBR reduced loss of gaseous CO2 while matching the inorganic carbon (IC) demand to its supply. Accurate fate analysis required that the biomass-associated C include soluble microbial products as a sink for captured CO2. With the CO2 supply matched to the photosynthetic demand, light attenuation limited the rate microalgal photosynthesis. The DMCPBR presents an opportunity to improve CO2-deliver efficiency and make microalgae a more effective strategy for C-neutral resource recovery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Quantifying the Stock of Soil Organic Carbon using Multiple ...

    African Journals Online (AJOL)

    The stepwise multiple regression model was employed to identify ecological variables that explained significant variation of carbon in fallow soils. Using fallow genealogical cycles of 1st, 2nd, 3rd, 4th and 5th generations, soil and vegetation variables from 30 sampling plots were collected and subjected to linear regression ...

  19. A marine heatwave drives massive losses from the world’s largest seagrass carbon stocks

    KAUST Repository

    Arias-Ortiz, A.

    2018-03-29

    Seagrass ecosystems contain globally significant organic carbon (C) stocks. However, climate change and increasing frequency of extreme events threaten their preservation. Shark Bay, Western Australia, has the largest C stock reported for a seagrass ecosystem, containing up to 1.3% of the total C stored within the top metre of seagrass sediments worldwide. On the basis of field studies and satellite imagery, we estimate that 36% of Shark Bay’s seagrass meadows were damaged following a marine heatwave in 2010/2011. Assuming that 10 to 50% of the seagrass sediment C stock was exposed to oxic conditions after disturbance, between 2 and 9 Tg CO could have been released to the atmosphere during the following three years, increasing emissions from land-use change in Australia by 4–21% per annum. With heatwaves predicted to increase with further climate warming, conservation of seagrass ecosystems is essential to avoid adverse feedbacks on the climate system.

  20. Alaskan soil carbon stocks: spatial variability and dependence on environmental factors

    Directory of Open Access Journals (Sweden)

    U. Mishra

    2012-09-01

    Full Text Available The direction and magnitude of soil organic carbon (SOC changes in response to climate change depend on the spatial and vertical distributions of SOC. We estimated spatially resolved SOC stocks from surface to C horizon, distinguishing active-layer and permafrost-layer stocks, based on geospatial analysis of 472 soil profiles and spatially referenced environmental variables for Alaska. Total Alaska state-wide SOC stock was estimated to be 77 Pg, with 61% in the active-layer, 27% in permafrost, and 12% in non-permafrost soils. Prediction accuracy was highest for the active-layer as demonstrated by highest ratio of performance to deviation (1.5. Large spatial variability was predicted, with whole-profile, active-layer, and permafrost-layer stocks ranging from 1–296 kg C m−2, 2–166 kg m−2, and 0–232 kg m−2, respectively. Temperature and soil wetness were found to be primary controllers of whole-profile, active-layer, and permafrost-layer SOC stocks. Secondary controllers, in order of importance, were found to be land cover type, topographic attributes, and bedrock geology. The observed importance of soil wetness rather than precipitation on SOC stocks implies that the poor representation of high-latitude soil wetness in Earth system models may lead to large uncertainty in predicted SOC stocks under future climate change scenarios. Under strict caveats described in the text and assuming temperature changes from the A1B Intergovernmental Panel on Climate Change emissions scenario, our geospatial model indicates that the equilibrium average 2100 Alaska active-layer depth could deepen by 11 cm, resulting in a thawing of 13 Pg C currently in permafrost. The equilibrium SOC loss associated with this warming would be highest under continuous permafrost (31%, followed by discontinuous (28%, isolated (24.3%, and sporadic (23.6% permafrost areas. Our high-resolution mapping of soil carbon stock reveals the

  1. Carbon stocks quantification in agricultural systems employing succession and rotation of crops in Rio Grande do Sul State, Brazil.

    Science.gov (United States)

    Walter, Michele K. C.; Marinho, Mara de A.; Denardin, José E.; Zullo, Jurandir, Jr.; Paz-González, Antonio

    2013-04-01

    Soil and vegetation constitute respectively the third and the fourth terrestrial reservoirs of Carbon (C) on Earth. C sequestration in these reservoirs includes the capture of the CO2 from the atmosphere by photosynthesis and its storage as organic C. Consequently, changes in land use and agricultural practices affect directly the emissions of the greenhouse gases and the C sequestration. Several studies have already demonstrated that conservation agriculture, and particularly zero tillage (ZT), has a positive effect on soil C sequestration. The Brazilian federal program ABC (Agriculture of Low Carbon Emission) was conceived to promote agricultural production with environmental protection and represents an instrument to achieve voluntary targets to mitigate emissions or NAMAS (National Appropriated Mitigation Actions). With financial resources of about US 1.0 billion until 2020 the ABC Program has a target of expand ZT in 8 million hectares of land, with reduction of 16 to 20 million of CO2eq. Our objective was to quantify the C stocks in soil, plants and litter of representative grain crops systems under ZT in Rio Grande do Sul State, Brazil. Two treatments of a long term experimental essay (> 20 years) were evaluated: 1) Crop succession with wheat (Triticum aestivum L.)/soybean (Glycine max (L.) Merril); 2) Crop rotation with wheat/soybean (1st year), vetch (Vicia sativa L.)/soybean (2nd year), and white oat (Avena sativa L.)/sorghum (Sorghum bicolor L.) (3rd year). C quantification in plants and in litter was performed using the direct method of biomass quantification. The soil type evaluated was a Humic Rhodic Hapludox, and C quantification was executed employing the method referred by "C mass by unit area". Results showed that soybean plants under crop succession presented greater C stock (4.31MgC ha-1) comparing with soybean plants cultivated under crop rotation (3.59 MgC ha-1). For wheat, however, greater C stock was quantified in plants under rotation

  2. Relationships between plant community functioning and soil carbon stocks in permanent mowed grasslands

    Science.gov (United States)

    Masson, Solène; Tasseta, Elise; Morvan-Bertrand, Annette; Amiaud, Bernard; Cliquet, Jean-Bernard; Klumpp, Katja; Louault, Frédérique; Lemauviel-Lavenant, Servane

    2017-04-01

    Grasslands represent the most widespread ecosystems on the surface of the earth and provide many ecosystem services. They are managed by farmers in order to produce provisioning services through forage production. They also offer regulation services for the humankind such as carbon (C) storage. According to their management, grasslands may constitute a C source or a sink. Plants control both C input through photosynthesis and C output release directly via their own respiration and indirectly via soil microflora respiration through organic matter mineralization. Plants can thus be considered as a gas stream center. To better understand the role of vegetation on soil C stocks, the P2C "Plant Pilot Carbon" project aims at evaluate C stocks in mowed permanent grasslands characterized by various edaphic and climatic conditions and identify the drivers (vegetation composition, plant community functioning, management, history) of soil C stocks. We focused on 32 grasslands selected over two French Regional Natural Parks (Normandy-Maine / Lorraine) and an experimental farm (ACBB SOERE, Theix, Auvergne). We measured then their floristic composition as well as their functional composition through a trait based approach. Leaf traits (SLA, LDMC, LNC, LC/N) were measured at the plant community level (community weighed mean traits) and soil C stocks were analyzed in the top soil (0-10 cm) and in a deeper layer (10-30 cm). The grassland sampling has allowed to obtain a great variability of both soil C stocks and plant community functioning which give the opportunity to assess the relationships between C stocks and vegetation considering climatic, edaphic and management parameters

  3. Soil organic carbon pools and stocks in permafrost-affected soils on the tibetan plateau.

    Science.gov (United States)

    Dörfer, Corina; Kühn, Peter; Baumann, Frank; He, Jin-Sheng; Scholten, Thomas

    2013-01-01

    The Tibetan Plateau reacts particularly sensitively to possible effects of climate change. Approximately two thirds of the total area is affected by permafrost. To get a better understanding of the role of permafrost on soil organic carbon pools and stocks, investigations were carried out including both discontinuous (site Huashixia, HUA) and continuous permafrost (site Wudaoliang, WUD). Three organic carbon fractions were isolated using density separation combined with ultrasonic dispersion: the light fractions (1.6 g cm(-3)) of mineral associated organic matter (MOM). The fractions were analyzed for C, N, and their portion of organic C. FPOM contained an average SOC content of 252 g kg(-1). Higher SOC contents (320 g kg(-1)) were found in OPOM while MOM had the lowest SOC contents (29 g kg(-1)). Due to their lower density the easily decomposable fractions FPOM and OPOM contribute 27% (HUA) and 22% (WUD) to the total SOC stocks. In HUA mean SOC stocks (0-30 cm depth) account for 10.4 kg m(-2), compared to 3.4 kg m(-2) in WUD. 53% of the SOC is stored in the upper 10 cm in WUD, in HUA only 39%. Highest POM values of 36% occurred in profiles with high soil moisture content. SOC stocks, soil moisture and active layer thickness correlated strongly in discontinuous permafrost while no correlation between SOC stocks and active layer thickness and only a weak relation between soil moisture and SOC stocks could be found in continuous permafrost. Consequently, permafrost-affected soils in discontinuous permafrost environments are susceptible to soil moisture changes due to alterations in quantity and seasonal distribution of precipitation, increasing temperature and therefore evaporation.

  4. Soil organic carbon pools and stocks in permafrost-affected soils on the tibetan plateau.

    Directory of Open Access Journals (Sweden)

    Corina Dörfer

    Full Text Available The Tibetan Plateau reacts particularly sensitively to possible effects of climate change. Approximately two thirds of the total area is affected by permafrost. To get a better understanding of the role of permafrost on soil organic carbon pools and stocks, investigations were carried out including both discontinuous (site Huashixia, HUA and continuous permafrost (site Wudaoliang, WUD. Three organic carbon fractions were isolated using density separation combined with ultrasonic dispersion: the light fractions (1.6 g cm(-3 of mineral associated organic matter (MOM. The fractions were analyzed for C, N, and their portion of organic C. FPOM contained an average SOC content of 252 g kg(-1. Higher SOC contents (320 g kg(-1 were found in OPOM while MOM had the lowest SOC contents (29 g kg(-1. Due to their lower density the easily decomposable fractions FPOM and OPOM contribute 27% (HUA and 22% (WUD to the total SOC stocks. In HUA mean SOC stocks (0-30 cm depth account for 10.4 kg m(-2, compared to 3.4 kg m(-2 in WUD. 53% of the SOC is stored in the upper 10 cm in WUD, in HUA only 39%. Highest POM values of 36% occurred in profiles with high soil moisture content. SOC stocks, soil moisture and active layer thickness correlated strongly in discontinuous permafrost while no correlation between SOC stocks and active layer thickness and only a weak relation between soil moisture and SOC stocks could be found in continuous permafrost. Consequently, permafrost-affected soils in discontinuous permafrost environments are susceptible to soil moisture changes due to alterations in quantity and seasonal distribution of precipitation, increasing temperature and therefore evaporation.

  5. Effects of Successive Rotation Regimes on Carbon Stocks in Eucalyptus Plantations in Subtropical China Measured over a Full Rotation.

    Directory of Open Access Journals (Sweden)

    Xiaoqiong Li

    Full Text Available Plantations play an important role in carbon sequestration and the global carbon cycle. However, there is a dilemma in that most plantations are managed on short rotations, and the carbon sequestration capacities of these short-rotation plantations remain understudied. Eucalyptus has been widely planted in the tropics and subtropics due to its rapid growth, high adaptability, and large economic return. Eucalyptus plantations are primarily planted in successive rotations with a short rotation length of 6~8 years. In order to estimate the carbon-stock potential of eucalyptus plantations over successive rotations, we chose a first rotation (FR and a second rotation (SR stand and monitored the carbon stock dynamics over a full rotation from 1998 to 2005. Our results showed that carbon stock in eucalyptus trees (TC did not significantly differ between rotations, while understory vegetation (UC and soil organic matter (SOC stored less carbon in the SR (1.01 vs. 2.76 Mg.ha(-1 and 70.68 vs. 81.08 Mg. ha(-1, respectively and forest floor carbon (FFC conversely stored more (2.80 vs. 2.34 Mg. ha(-1. The lower UC and SOC stocks in the SR stand resulted in 1.13 times lower overall ecosystem carbon stock. Mineral soils and overstory trees were the two dominant carbon pools in eucalyptus plantations, accounting for 73.77%~75.06% and 20.50%~22.39%, respectively, of the ecosystem carbon pool. However, the relative contribution (to the ecosystem pool of FFC stocks increased 1.38 times and that of UC decreased 2.30 times in the SR versus FR stand. These carbon pool changes over successive rotations were attributed to intensive successive rotation regimes of eucalyptus plantations. Our eight year study suggests that for the sustainable development of short-rotation plantations, a sound silvicultural strategy is required to achieve the best combination of high wood yield and carbon stock potential.

  6. Simulation of the Effect of Artificial Water Transfer on Carbon Stock ofPhragmites australisin the Baiyangdian Wetland, China.

    Science.gov (United States)

    Chen, Xinyong; Wang, Fengyi; Lu, Jianjian; Li, Hongbo; Zhu, Jing; Lv, Xiaotong

    2017-01-01

    How to explain the effect of seasonal water transfer on the carbon stocks of Baiyangdian wetland is studied. The ecological model of the relationship between the carbon stocks and water depth fluctuation of the reed was established by using STELLA software. For the first time the Michaelis-Menten equation (1) introduced the relation function between the water depth and reed environmental carrying capacity, (2) introduced the concept of suitable growth water depth, and (3) simulated the variation rules of water and reed carbon stocks of artificial adjustment. The model could be used to carry out the research on the optimization design of the ecological service function of the damaged wetland.

  7. Pyrogenic Carbon Erosion: Implications for Stock and Persistence of Pyrogenic Carbon in Soil

    Directory of Open Access Journals (Sweden)

    Rebecca B. Abney

    2018-03-01

    Full Text Available Pyrogenic carbon (PyC constitutes an important pool of soil organic matter (SOM, particularly for its reactivity and because of its assumed long residence times in soil. In the past, research on the dynamics of PyC in the soil system has focused on quantifying stock and mean residence time (MRT of PyC in soil, as well as determining both PyC stabilization mechanisms and loss pathways. Much of this research has focused on decomposition as the most important loss pathway for PyC from soil. However, the low density of PyC and its high concentration on the soil surface after fire indicates that a significant proportion of PyC formed or deposited on the soil surface is likely laterally transported away from the site of production by wind and water erosion. Here, we present a synthesis of available data and literature to compare the magnitude of the water-driven erosional PyC flux with other important loss pathways, including leaching and decomposition, of PyC from soil. Furthermore, we use a simple first-order kinetic model of soil PyC dynamics to assess the effect of erosion and deposition on residence time of PyC in eroding landscapes. Current reports of PyC MRT range from 250 to 660 years. Using a specific example-based model system, we find that ignoring the role of erosion may lead to the under- or over-estimation of PyC MRT on the centennial time scale. Furthermore, we find that, depending on the specific landform positions, timescales considered, and initial concentrations of PyC in soil, ignoring the role of erosion in distributing PyC across a landscape can lead to discrepancies in PyC concentrations on the order of several 100 g PyC m−2. Erosion is an important PyC flux that can act as a significant control on the stock and residence time of PyC in the soil system.

  8. Pyrogenic carbon erosion: implications for stock and persistence of pyrogenic carbon in soil

    Science.gov (United States)

    Abney, Rebecca B.; Berhe, Asmeret Asefaw

    2018-03-01

    Pyrogenic carbon (PyC) constitutes an important pool of soil organic matter, particularly for its reactivity and because of its assumed long residence times in soil. In the past, research on the dynamics of PyC in the soil system has focused on quantifying stock and mean residence time of PyC in soil, as well as determining both PyC stabilization mechanisms and loss pathways. Much of this research has focused on decomposition as the most important loss pathway for PyC from soil. However, the low density of PyC and its high concentration on the soil surface after fire indicates that a significant proportion of PyC formed or deposited on the soil surface is likely laterally transported away from the site of production by wind and water erosion. Here, we present a synthesis of available data and literature to compare the magnitude of the water-driven erosional PyC flux with other important loss pathways, including leaching and decomposition, of PyC from soil. Furthermore, we use a simple first-order kinetic model of soil PyC dynamics to assess the effect of erosion and deposition on residence time of PyC in eroding landscapes. Current reports of PyC mean residence time (MRT) range from 250 to 660 years. Using a specific example-based model system, we find that ignoring the role of erosion may lead to the under- or over-estimation of PyC MRT on the centennial time scale. Furthermore, we find that, depending on the specific landform positions, timescales considered, and initial concentrations of PyC in soil, ignoring the role of erosion in distributing PyC across a landscape can lead to discrepancies in PyC concentrations on the order of several hundred g PyC m-2. Erosion is an important PyC flux that can act as a significant control on the stock and residence time of PyC in the soil system.

  9. The soil classification and the subsurface carbon stock estimation with a ground-penetrating radar

    International Nuclear Information System (INIS)

    Onishi, K.; Rokugawa, S.; Kato, Y.

    2002-01-01

    One of the serious problems of the Kyoto Protocol is that we have no effective method to estimate the carbon stock of the subsurface. To solve this problem, we propose the application of ground-penetrating radar (GPR) to the subsurface soil survey. As a result, it is shown that GPR can detect the soil horizons, stones and roots. The fluctuations of the soil horizons in the forest are cleanly indicated as the reflection pattern of the microwaves. Considering the fact that the physical, chemical, and biological characteristics of each soil layer is almost unique, GPR results can be used to estimate the carbon stock in soil by combining with the vertical soil sample survey at one site. Then as a trial, we demonstrate to estimate the carbon content fixed in soil layers based on the soil samples and GPR survey data. we also compare this result with the carbon stock for the flat horizon case. The advantages of GPR usage for this object are not only the reduction of uncertainty and the cost, but also the environmental friendliness of survey manner. Finally, we summarize the adaptabilities of various antennas having different predominant frequencies for the shallow subsurface zone. (author)

  10. Do the long-term changes in zooplankton biomass indicate changes in fish stock?

    Czech Academy of Sciences Publication Activity Database

    Hrbáček, Jaroslav; Brandl, Zdeněk; Straškraba, M.

    2003-01-01

    Roč. 504, - (2003), s. 203-213 ISSN 0018-8158. [Reservoir Limnology and Water Quality /4./. České Budějovice, 12.08.2002-16.08.2002] R&D Projects: GA ČR GA206/01/1113 Institutional research plan: CEZ:AV0Z6017912 Keywords : zooplankton biomass * long term changes * seasonal cycles Subject RIV: EG - Zoology Impact factor: 0.720, year: 2003

  11. The rapid measurement of soil carbon stock using near-infrared technology

    Science.gov (United States)

    Kusumo, B. H.; Sukartono; Bustan

    2018-03-01

    As a soil pool stores carbon (C) three times higher than an atmospheric pool, the depletion of C stock in the soil will significantly increase the concentration of CO2 in the atmosphere, causing global warming. However, the monitoring or measurement of soil C stock using conventional procedures is time-consuming and expensive. So it requires a rapid and non-destructive technique that is simple and does not need chemical substances. This research is aimed at testing whether near-infrared (NIR) technology is able to rapidly measure C stock in the soil. Soil samples were collected from an agricultural land at the sub-district of Kayangan, North Lombok, Indonesia. The coordinates of the samples were recorded. Parts of the samples were analyzed using conventional procedure (Walkley and Black) and some other parts were scanned using near-infrared spectroscopy (NIRS) for soil spectral collection. Partial Least Square Regression (PLSR) was used to develop models from soil C data measured by conventional analysis and from spectral data scanned by NIRS. The best model was moderately successful to measure soil C stock in the study area in North Lombok. This indicates that the NIR technology can be further used to monitor the change of soil C stock in the soil.

  12. CONTRIBUTION OF AGROFORESTRY SYSTEM IN MAINTAINING CARBON STOCKS AND REDUCING EMISSION RATE AT JANGKOK WATERSHED, LOMBOK ISLAND

    Directory of Open Access Journals (Sweden)

    Markum

    2014-02-01

    Full Text Available Agroforestry systems under rules of community-based forest management support local livelihoods in the Jangkok watershed, Lombok Island. One of the conditions from the forest authoritiesfor allowing agroforestry system is that it should maintain forest conditions. Since 1995 the Jangkok watershed has undergone rapid land use change, especially in the forest area. These changes led to a reduction of carbon stocks and thus to emission of CO2. This research aimed to: (1 Measure the carbon stocks in several land use system within the Jangkok watershed, (2 Assess the contribution of agroforestry systems in maintaining carbon stocks and reducing emissions. The assesment was performed based on the RaCSA (Rapid Carbon Stock Appraisal method using three phases: (1 Classify land use change applying TM5 Landsat Satellite images for the period 1995-2009, (2 Measure carbon stock in the main land uses identified, (3 Quantify the contribution of agroforestry practices. Results showed that (1 The total amount of carbon stock at Jangkok watershed (19,088ha was 3.69 Mt (193 Mg ha-1; about 23% of this stock found in the agroforestry systems (32% of the area,(2 Gross CO2 emission from the Jangkok watershed was 8.41 Mg ha-1 yr-1, but due to the net gain in agroforestry of 2.55 Mg ha-1 yr-1 the net emission became 5.86 Mg ha-1 yr-1

  13. Impacts of Airborne Lidar Pulse Density on Estimating Biomass Stocks and Changes in a Selectively Logged Tropical Forest

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Silva

    2017-10-01

    Full Text Available Airborne lidar is a technology well-suited for mapping many forest attributes, including aboveground biomass (AGB stocks and changes in selective logging in tropical forests. However, trade-offs still exist between lidar pulse density and accuracy of AGB estimates. We assessed the impacts of lidar pulse density on the estimation of AGB stocks and changes using airborne lidar and field plot data in a selectively logged tropical forest located near Paragominas, Pará, Brazil. Field-derived AGB was computed at 85 square 50 × 50 m plots in 2014. Lidar data were acquired in 2012 and 2014, and for each dataset the pulse density was subsampled from its original density of 13.8 and 37.5 pulses·m−2 to lower densities of 12, 10, 8, 6, 4, 2, 0.8, 0.6, 0.4 and 0.2 pulses·m−2. For each pulse density dataset, a power-law model was developed to estimate AGB stocks from lidar-derived mean height and corresponding changes between the years 2012 and 2014. We found that AGB change estimates at the plot level were only slightly affected by pulse density. However, at the landscape level we observed differences in estimated AGB change of >20 Mg·ha−1 when pulse density decreased from 12 to 0.2 pulses·m−2. The effects of pulse density were more pronounced in areas of steep slope, especially when the digital terrain models (DTMs used in the lidar derived forest height were created from reduced pulse density data. In particular, when the DTM from high pulse density in 2014 was used to derive the forest height from both years, the effects on forest height and the estimated AGB stock and changes did not exceed 20 Mg·ha−1. The results suggest that AGB change can be monitored in selective logging in tropical forests with reasonable accuracy and low cost with low pulse density lidar surveys if a baseline high-quality DTM is available from at least one lidar survey. We recommend the results of this study to be considered in developing projects and national

  14. Pedogenic knowledge-aided modelling of soil inorganic carbon stocks in an alpine environment.

    Science.gov (United States)

    Yang, Ren-Min; Yang, Fan; Yang, Fei; Huang, Lai-Ming; Liu, Feng; Yang, Jin-Ling; Zhao, Yu-Guo; Li, De-Cheng; Zhang, Gan-Lin

    2017-12-01

    Accurate estimation of soil carbon is essential for accounting carbon cycling on the background of global environment change. However, previous studies made little contribution to the patterns and stocks of soil inorganic carbon (SIC) in large scales. In this study, we defined the structure of the soil depth function to fit vertical distribution of SIC based on pedogenic knowledge across various landscapes. Soil depth functions were constructed from a dataset of 99 soil profiles in the alpine area of the northeastern Tibetan Plateau. The parameters of depth functions were mapped from environmental covariates using random forest. Finally, SIC stocks at three depth intervals in the upper 1m depth were mapped across the entire study area by applying predicted soil depth functions at each location. The results showed that the soil depth functions were able to improve accuracy for fitting the vertical distribution of the SIC content, with a mean determination coefficient of R 2 =0.93. Overall accuracy for predicted SIC stocks was assessed on training samples. High Lin's concordance correlation coefficient values (0.84-0.86) indicate that predicted and observed values were in good agreement (RMSE: 1.52-1.67kgm -2 and ME: -0.33 to -0.29kgm -2 ). Variable importance showed that geographic position predictors (longitude, latitude) were key factors predicting the distribution of SIC. Terrain covariates were important variables influencing the three-dimensional distribution of SIC in mountain areas. By applying the proposed approach, the total SIC stock in this area is estimated at 75.41Tg in the upper 30cm, 113.15Tg in the upper 50cm and 190.30Tg in the upper 1m. We concluded that the methodology would be applicable for further prediction of SIC stocks in the Tibetan Plateau or other similar areas. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Changes in carbon stocks of Danish agricultural mineral soils between 1986 and 2009

    DEFF Research Database (Denmark)

    Taghizadeh-Toosi, Arezoo; Olesen, Jørgen E; Kristensen, Kristian

    2014-01-01

    To establish a national inventory of soil organic carbon (SOC) stocks and their change over time, soil was sampled in 1986, 1997 and 2009 in a Danish nation-wide 7-km grid and analysed for SOC content. The average SOC stock in 0–100-cm depth soil was 142 t C ha−1, with 63, 41 and 38 t C ha−1 in t......, confirming that inventories based only on top-soils are incomplete. We found no significant effects in 50–100 cm. Our study indicates a small annual loss of 0.2 t C ha−1 from the 0–100 cm soil layer between 1986 and 2009.......To establish a national inventory of soil organic carbon (SOC) stocks and their change over time, soil was sampled in 1986, 1997 and 2009 in a Danish nation-wide 7-km grid and analysed for SOC content. The average SOC stock in 0–100-cm depth soil was 142 t C ha−1, with 63, 41 and 38 t C ha−1...... in the 0–25, 25–50 and 50–100 cm depths, respectively. Changes at 0–25 cm were small. During 1986–97, SOC in the 25–50-cm layer increased in sandy soils while SOC decreased in loam soils. In the subsequent period (1997–2009), most soils showed significant losses of SOC. From 1986 to 2009, SOC at 0–100 cm...

  16. Influence of the Tussock Growth Form on Arctic Ecosystem Carbon Stocks

    Science.gov (United States)

    Curasi, S.; Rocha, A. V.; Sonnentag, O.; Wullschleger, S. D.; Myers-Smith, I. H.; Fetcher, N.; Mack, M. C.; Natali, S.; Loranty, M. M.; Parker, T.

    2015-12-01

    The influence of plant growth forms on ecosystem carbon (C) cycling has been under appreciated. In arctic tundra, environmental factors and plant traits of the sedge Eriophorum vaginatum cause the formation of mounds that are dense amalgamations of belowground C called tussocks. Tussocks have important implications for arctic ecosystem biogeochemistry and C stocks, but the environmental and biological factors controlling their size and distribution across the landscape are poorly understood. In order to better understand how landscape variation in tussock size and density impact ecosystem C stocks, we formed the Carbon in Arctic Tussock Tundra (CATT) network and recruited an international team to sample locations across the arctic. The CATT network provided a latitudinal and longitudinal gradient along which to improve our understanding of tussocks' influence on ecosystem structure and function. CATT data revealed important insights into tussock formation across the arctic. Tussock density generally declined with latitude, and tussock size exhibited substantial variation across sites. The relationship between height and diameter was similar across CATT sites indicating that both biological and environmental factors control tussock formation. At some sites, C in tussocks comprised a substantial percentage of ecosystem C stocks that may be vulnerable to climate change. It is concluded that the loss of this growth form would offset C gains from projected plant functional shifts from graminoid to shrub tundra. This work highlights the role of plant growth forms on the magnitude and retention of ecosystem C stocks.

  17. Soil carbon stocks along an altitudinal gradient in different land-use categories in Lesser Himalayan foothills of Kashmir

    Science.gov (United States)

    Shaheen, H.; Saeed, Y.; Abbasi, M. K.; Khaliq, A.

    2017-04-01

    The carbon sequestration potential of soils plays an important role in mitigating the effect of climate change, because soils serve as sinks for atmospheric carbon. The present study was conducted to estimate the carbon stocks and their variation with altitudinal gradient in the Lesser Himalayan foothills of Kashmir. The carbon stocks were estimated in different land use categories, namely: closed canopy forests, open forests, disturbed forests, and agricultural lands within the altitudinal range from 900 to 2500 m. The soil carbon content was determined by the Walkley-Black titration method. The average soil carbon stock was found to be 2.59 kg m-2. The average soil carbon stocks in closed canopy forests, open forests, and disturbed forests were 3.39, 2.06, and 2.86 kg m-2, respectively. The average soil carbon stock in the agricultural soils was 2.03 kg m-2. The carbon stocks showed a significant decreasing trend with the altitudinal gradient with maximum values of 4.13 kg m-2 at 900-1200 m a.s.l. and minimum value of 1.55 kg m-2 at 2100-2400 m a.s.l. The agricultural soil showed the least carbon content values indicating negative impacts of soil plowing, overgrazing, and soil degradation. Lower carbon values at higher altitudes attest to the immature character of forest stands, as well as to degradation due to immense fuel wood extraction, timber extraction, and harsh climatic conditions. The study indicates that immediate attention is required for the conservation of rapidly declining carbon stocks in agricultural soils, as well as in the soils of higher altitudes.

  18. From Models to Measurements: Comparing Downed Dead Wood Carbon Stock Estimates in the U.S. Forest Inventory

    Science.gov (United States)

    Grant M. Domke; Christopher W. Woodall; Brian F. Walters; James E. Smith

    2013-01-01

    The inventory and monitoring of coarse woody debris (CWD) carbon (C) stocks is an essential component of any comprehensive National Greenhouse Gas Inventory (NGHGI). Due to the expense and difficulty associated with conducting field inventories of CWD pools, CWD C stocks are often modeled as a function of more commonly measured stand attributes such as live tree C...

  19. An Innovative Concept for Spacebased Lidar Measurement of Ocean Carbon Biomass

    Science.gov (United States)

    Hu, Yongxiang; Behrenfeld, Michael; Hostetler, Chris; Pelon, Jacques; Trepte, Charles; Hair, John; Slade, Wayne; Cetinic, Ivona; Vaughan, Mark; Lu, Xiaomei; hide

    2015-01-01

    Beam attenuation coefficient, c, provides an important optical index of plankton standing stocks, such as phytoplankton biomass and total particulate carbon concentration. Unfortunately, c has proven difficult to quantify through remote sensing. Here, we introduce an innovative approach for estimating c using lidar depolarization measurements and diffuse attenuation coefficients from ocean color products or lidar measurements of Brillouin scattering. The new approach is based on a theoretical formula established from Monte Carlo simulations that links the depolarization ratio of sea water to the ratio of diffuse attenuation Kd and beam attenuation C (i.e., a multiple scattering factor). On July 17, 2014, the CALIPSO satellite was tilted 30Âdeg off-nadir for one nighttime orbit in order to minimize ocean surface backscatter and demonstrate the lidar ocean subsurface measurement concept from space. Depolarization ratios of ocean subsurface backscatter are measured accurately. Beam attenuation coefficients computed from the depolarization ratio measurements compare well with empirical estimates from ocean color measurements. We further verify the beam attenuation coefficient retrievals using aircraft-based high spectral resolution lidar (HSRL) data that are collocated with in-water optical measurements.

  20. Characterized hydrochar of algal biomass for producing solid fuel through hydrothermal carbonization.

    Science.gov (United States)

    Park, Ki Young; Lee, Kwanyong; Kim, Daegi

    2018-06-01

    The aim of this work was to study the characterized hydrochar of algal biomass to produce solid fuel though hydrothermal carbonization. Hydrothermal carbonization conducted at temperatures ranging from 180 to 270 °C with a 60 min reaction improved the upgrading of the fuel properties and the dewatering of wet-basis biomasses such as algae. The carbon content, carbon recovery, energy recovery, and atomic C/O and C/H ratios in all the hydrochars in this study were improved. These characteristic changes in hydrochar from algal biomass are similar to the coalification reactions due to dehydration and decarboxylation with an increase in the hydrothermal reaction temperature. The results of this study indicate that hydrothermal carbonization can be used as an effective means of generating highly energy-efficient renewable fuel resources using algal biomass. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. A comparison of soil organic carbon stock in ancient and modern land use systems in Denmark

    DEFF Research Database (Denmark)

    Breuning-Madsen, Henrik; Elberling, Bo; Balstrøm, Thomas

    2009-01-01

    . A comparison of the organic matter content in these mound cores and the plough layer in modern farmland offers an opportunity to compare the soil organic carbon (SOC) stocks in ancient and modern land use systems and to evaluate the long-term trends in carbon (C) sequestration in relation to modern farmland...... with varying inputs of manure and inorganic fertilizers. In the present paper we compare SOC stocks based on integrated horizon-specific densities and SOC contents in three 3300-year-old buried farmland soils, representing the land use system at that time, with results from soil surveys representing modern...... land use systems with low and high inputs of manure. Results show that, within the upper 0.28 m, which is the average depth of present day plough layers in Denmark, soils receiving manure from intensive pig or cattle production hold c. 60% more SOC than the ancient soils from the South Scandinavian...

  2. Influence of land use changes on soil carbon stock and soil carbon erosion in a Mediterranean catchment

    International Nuclear Information System (INIS)

    Boix-Fayos, C.; Martinez-Mena, M.; Vente, J. de; Albaladejo, J.

    2009-01-01

    The effect of changing land uses on the organic soil carbon (C) stock and the soil C transported by water erosion and buried in depositions wedges behring check-dams was estimated in a Mediterranean catchment in SE Spin. the 57% decrease in agricultural areas and 1.5-fold increase of the total forest cover between 1956 and 1997 induced an accumulation rate of total organic carbon (TOC) in the soil of 10.73 g m - 2 yr - 1. The mineral-associated organic carbon (MOC) represented the 70% of the soil carbon pool, the particulate organic carbon (POC) represented a 30% of the soil carbon pool. The average sediments/soil enrichment ratio at the sub catchment scale (8-125 ha) was 0.59±0.43 g kg - 1. Eroded soil C accounted for between 2% to 78% of the soil c stock in the first 5 cm of the soil in the subcatchments. the C erosion rate varied between 0.008 and 0.2 t ha - 1 yr - 1. (Author) 20 refs.

  3. Long term net gains in coastal blue carbon stocks: A search for terrestrial drivers?

    Science.gov (United States)

    Clarke, Jessica; Austin, William; Smeaton, Craig; Winterton, Cathy; Bresnan, Eileen; Davidson, Keith; Lo Giudice Cappelli Lo Giudice Cappelli, Elena; Green, Jade

    2017-04-01

    Peat and Organic soils covers nearly 66% of Scotland, representing over 50% of the UK's soil carbon stocks. Natural processes such as peatland erosion are accelerated by human activities, such as land management and potentially by the impacts of climate change. We present evidence from the isle of Shetland's west coast voes (sea lochs or fjords) to suggest this process may have accelerated since medieval times. This work is supported by the analyses of short sediment Craib cores (triplicate coring) recovered from 17 sites. We present preliminary chronologies supported by radiocarbon dating and sediment characteristics that highlight both changes in the rate of accumulation and source of sedimentary organic carbon to the west coast Shetland voes during the late Holocene. Scottish coastal sediments contain a significant blue carbon stock, a significant proportion of which derives directly from terrestrial sources. The loss of peatland carbon represents a potentially important contribution (i.e. net gain) in refractory carbon within the marine environment and we present preliminary estimates to assess the significance of these large scale transfers and the subsidy of carbon to the coastal ocean.

  4. Urban soils as hotspots of anthropogenic carbon accumulation: Review of stocks, mechanisms and factors

    Science.gov (United States)

    Vasenev, Viacheslav; Kuzyakov, Yakov

    2017-04-01

    Urban soils and cultural layers accumulate carbon (C) over centuries and consequently large C stocks are sequestered below the cities. These C stocks as well as the full range of processes and mechanisms leading to high C accumulation in urban soils remain unknown. We collected data on organic (SOC), inorganic (SOC) and black (pyrogenic) (BC) C content in urban and natural soils from 100 papers based on Scopus and Web-of-Knowledge databases. The yielded database includes 770 values on SOC, SIC and BC stocks from 118 cities worldwide. The collected data were analyzed considering the effects of climatic conditions and urban-specific factors: city size, age and functional zoning. For the whole range of climatic conditions, the C contents in urban soils were 1.5-3 times higher than in respective natural soils. This higher C content and much deeper C accumulation in urban soils resulted in 3 to 5 times higher C stocks compared to natural soils. Urban SOC stocks were positively correlated with latitude, whereas SIC stocks were less affected by climate. The city size and age were the main factors controlling intra-city variability of C stocks with higher stocks in small cities compared to megapolises and in medieval compared to new cities. The inter-city variability of C stocks was dominated by functional zoning: large SOC and N stocks in residential areas and large SIC and BC stocks in industrial zones and roadsides were similar for all climates and for cities of different size and age. Substantial stocks of SOC, SIC and N were sequestered for long-term in the subsoils and cultural layers of the sealed soils, which underline the importance of these 'hidden' stocks for C assessments. Typical and specific for urban soils is that the anthropogenic factor overshadows the other five factors of soil formation. Substantial C stocks in urban soils and cultural layers result from specific mechanisms of C accumulation in cities: i) large and long-term C inputs from outside the

  5. Scotland's forgotten carbon: a national assessment of mid-latitude fjord sedimentary carbon stocks

    Science.gov (United States)

    Smeaton, Craig; Austin, William E. N.; Davies, Althea L.; Baltzer, Agnes; Howe, John A.; Baxter, John M.

    2017-12-01

    Fjords are recognised as hotspots for the burial and long-term storage of carbon (C) and potentially provide a significant climate regulation service over multiple timescales. Understanding the magnitude of marine sedimentary C stores and the processes which govern their development is fundamental to understanding the role of the coastal ocean in the global C cycle. In this study, we use the mid-latitude fjords of Scotland as a natural laboratory to further develop methods to quantify these marine sedimentary C stores on both the individual fjord and national scale. Targeted geophysical and geochemical analysis has allowed the quantification of sedimentary C stocks for a number of mid-latitude fjords and, coupled with upscaling techniques based on fjord classification, has generated the first full national sedimentary C inventory for a fjordic system. The sediments within these mid-latitude fjords hold 640.7 ± 46 Mt of C split between 295.6 ± 52 and 345.1 ± 39 Mt of organic and inorganic C, respectively. When compared, these marine mid-latitude sedimentary C stores are of similar magnitude to their terrestrial equivalents, with the exception of the Scottish peatlands, which hold significantly more C. However, when area-normalised comparisons are made, these mid-latitude fjords are significantly more effective as C stores than their terrestrial counterparts, including Scottish peatlands. The C held within Scotland's coastal marine sediments has been largely overlooked as a significant component of the nation's natural capital; such coastal C stores are likely to be key to understanding and constraining improved global C budgets.

  6. Scotland's forgotten carbon: a national assessment of mid-latitude fjord sedimentary carbon stocks

    Directory of Open Access Journals (Sweden)

    C. Smeaton

    2017-12-01

    Full Text Available Fjords are recognised as hotspots for the burial and long-term storage of carbon (C and potentially provide a significant climate regulation service over multiple timescales. Understanding the magnitude of marine sedimentary C stores and the processes which govern their development is fundamental to understanding the role of the coastal ocean in the global C cycle. In this study, we use the mid-latitude fjords of Scotland as a natural laboratory to further develop methods to quantify these marine sedimentary C stores on both the individual fjord and national scale. Targeted geophysical and geochemical analysis has allowed the quantification of sedimentary C stocks for a number of mid-latitude fjords and, coupled with upscaling techniques based on fjord classification, has generated the first full national sedimentary C inventory for a fjordic system. The sediments within these mid-latitude fjords hold 640.7 ± 46 Mt of C split between 295.6 ± 52 and 345.1 ± 39 Mt of organic and inorganic C, respectively. When compared, these marine mid-latitude sedimentary C stores are of similar magnitude to their terrestrial equivalents, with the exception of the Scottish peatlands, which hold significantly more C. However, when area-normalised comparisons are made, these mid-latitude fjords are significantly more effective as C stores than their terrestrial counterparts, including Scottish peatlands. The C held within Scotland's coastal marine sediments has been largely overlooked as a significant component of the nation's natural capital; such coastal C stores are likely to be key to understanding and constraining improved global C budgets.

  7. Quantifying soil carbon stocks and greenhouse gas fluxes in the sugarcane agrosystem: point of view

    OpenAIRE

    Cerri, Carlos Eduardo Pellegrino; Galdos, Marcelo Valadares; Carvalho, João Luís Nunes; Feigl, Brigitte Josefine; Cerri, Carlos Clemente

    2013-01-01

    Strategies to mitigate climate change through the use of biofuels (such as ethanol) are associated not only to the increase in the amount of C stored in soils but also to the reduction of GHG emissions to the atmosphere.This report mainly aimed to propose appropriate methodologies for the determinations of soil organic carbon stocks and greenhouse gas fluxes in agricultural phase of the sugarcane production. Therefore, the text is a piece of contribution that may help to obtain data not only ...

  8. Greenness and Carbon Stocks of Mangroves: A climate-driven Effect

    Science.gov (United States)

    Lule, A. V.; Colditz, R. R.; Herrera-Silveira, J.; Guevara, M.; Rodriguez-Zuniga, M. T.; Cruz, I.; Ressl, R.; Vargas, R.

    2017-12-01

    Mangroves cover less than 1% of the earth's surface and are one o­­­f the most productive ecosystems of the world. They are highly vulnerable to climate variability due to their sensitivity to environmental changes; therefore, there are scientific and societal needs to designed frameworks to assess mangrove's vulnerability. We study the relationship between climate drivers, canopy greenness and carbon stocks to quantify a potential climate-driven effect on mangrove carbon dynamics. We identify greenness trends and their relationships with climate drivers and carbon stocks throughout 15 years (2001-2015) across mangrove forests of Mexico. We defined several categories for mangroves: a) Arid mangroves with superficial water input (ARsw); b) Humid mangroves with interior or underground water input (HUiw); and c) Humid mangroves with superficial water input (HUsw). We found a positive significant trend of greenness for ARsw and HUsw categories (p 0.69). Precipitation and temperature drive canopy greenness only across HUsw. Regarding carbon stocks, the HUiw shows the lower amount of aboveground carbon (AGC; 12.7 Mg C ha-1) and the higher belowground carbon (BGC; 219 Mg C ha-1). The HUsw shows the higher amount of AGC (169.5 Mg C ha-1) and the ARsw the lower of BGC (92.4 Mg C ha-1). Climate drivers are better related with canopy greenness and AGC for both humid mangrove categories (r2 > 0.48), while the relationship of BGC and canopy greenness is lower for all categories (r2 < 0.21). Our results have implications for better understanding mangrove's ecosystem function and environmental services, as well as their potential vulnerability to climate variability.

  9. Influence of prescribed fire on ecosystem biomass, carbon, and nitrogen in a pinyon juniper woodland

    Science.gov (United States)

    Benjamin M. Rau; Robin Tausch; Alicia Reiner; Dale W. Johnson; Jeanne C. Chambers; Robert R. Blank; Annmarrie Lucchesi

    2010-01-01

    Increases in pinyon and juniper woodland cover associated with land-use history are suggested to provide offsets for carbon emissions in arid regions. However, the largest pools of carbon in arid landscapes are typically found in soils, and aboveground biomass cannot be considered long-term storage in fire-prone ecosystems. Also, the objectives of carbon storage may...

  10. Estimating Terrestrial Wood Biomass from Observed Concentrations of Atmospheric Carbon Dioxide

    NARCIS (Netherlands)

    Schaefer, K. M.; Peters, W.; Carvalhais, N.; van der Werf, G.; Miller, J.

    2008-01-01

    We estimate terrestrial disequilibrium state and wood biomass from observed concentrations of atmospheric CO2 using the CarbonTracker system coupled to the SiBCASA biophysical model. Starting with a priori estimates of carbon flux from the land, ocean, and fossil fuels, CarbonTracker estimates net

  11. Carbon stock and humification index of organic matter affected by sugarcane straw and soil management

    Directory of Open Access Journals (Sweden)

    Aline Segnini

    2013-10-01

    Full Text Available The maintenance of sugarcane (Saccharum spp. straw on a soil surface increases the soil carbon (C stocks, but at lower rates than expected. This fact is probably associated with the soil management adopted during sugarcane replanting. This study aimed to assess the impact on soil C stocks and the humification index of soil organic matter (SOM of adopting no-tillage (NT and conventional tillage (CT for sugarcane replanting. A greater C content and stock was observed in the NT area, but only in the 0-5 cm soil layer (p < 0.05. Greater soil C stock (0-60 cm was found in soil under NT, when compared to CT and the baseline. While C stock of 116 Mg ha-1 was found in the baseline area, in areas under CT and NT systems the values ranged from 120 to 127 Mg ha-1. Carbon retention rates of 0.67 and 1.63 Mg C ha-1 year-1 were obtained in areas under CT and NT, respectively. Laser-Induced Fluorescence Spectroscopy showed that CT makes the soil surface (0-20 cm more homogeneous than the NT system due to the effect of soil disturbance, and that the SOM humification index (H LIF is larger in CT compared to NT conditions. In contrast, NT had a gradient of increasing H LIF, showing that the entry of labile organic material such as straw is also responsible for the accumulation of C in this system. The maintenance of straw on the soil surface and the adoption of NT during sugarcane planting are strategies that can increase soil C sequestration in the Brazilian sugarcane sector.

  12. Modeling changes in organic carbon stocks for distinct soils in southeastern brazil after four eucalyptus rotations using the century model

    OpenAIRE

    Augusto Miguel Nascimento Lima; Ivo Ribeiro da Silva; Jose Luis Stape; Eduardo Sá Mendonça; Roberto Ferreira Novais; Nairam Félix de Barros; Júlio César Lima Neves; Keryn Paul; Fernanda Schulthais; Phill Polglase; John Raison; Emanuelle Mercês Barros Soares

    2011-01-01

    Soil organic matter (SOM) plays an important role in carbon (C) cycle and soil quality. Considering the complexity of factors that control SOM cycling and the long time it usually takes to observe changes in SOM stocks, modeling constitutes a very important tool to understand SOM cycling in forest soils. The following hypotheses were tested: (i) soil organic carbon (SOC) stocks would be higher after several rotations of eucalyptus than in low-productivity pastures; (ii) SOC values simulated b...

  13. Simulation of the Effect of Artificial Water Transfer on Carbon Stock of Phragmites australis in the Baiyangdian Wetland, China

    OpenAIRE

    Chen, Xinyong; Wang, Fengyi; Lu, Jianjian; Li, Hongbo; Zhu, Jing; Lv, Xiaotong

    2017-01-01

    How to explain the effect of seasonal water transfer on the carbon stocks of Baiyangdian wetland is studied. The ecological model of the relationship between the carbon stocks and water depth fluctuation of the reed was established by using STELLA software. For the first time the Michaelis-Menten equation (1) introduced the relation function between the water depth and reed environmental carrying capacity, (2) introduced the concept of suitable growth water depth, and (3) simulated the variat...

  14. A preliminary assessment of the impact of landslide, earthflow, and gully erosion on soil carbon stocks in New Zealand

    Science.gov (United States)

    Basher, Les; Betts, Harley; Lynn, Ian; Marden, Mike; McNeill, Stephen; Page, Mike; Rosser, Brenda

    2018-04-01

    In geomorphically active landscapes such as New Zealand, quantitative data on the relationship between erosion and soil carbon (C) are needed to establish the effect of erosion on past soil C stocks and future stock changes. The soil C model currently used in New Zealand for soil C stock reporting does not account for erosion. This study developed an approach to characterise the effect of erosion suitable for soil C stock reporting and provides an initial assessment of the magnitude of the effect of erosion. A series of case studies were used to establish the local effect of landslide, earthflow, and gully erosion on soil C stocks and to compare field measurements of soil C stocks with model estimates. Multitemporal erosion mapping from orthophotographs was used to characterise erosion history, identify soil sampling plot locations, and allow soil C stocks to be calculated accounting for erosion. All eroded plots had lower soil C stocks than uneroded (by mass movement and gully erosion) plots sampled at the same sites. Landsliding reduces soil C stocks at plot and landscape scale, largely as a result of individual large storms. After about 70 years, soil C stocks were still well below the value measured for uneroded plots (by 40% for scars and 20-30% for debris tails) indicating that the effect of erosion is very persistent. Earthflows have a small effect on estimates of baseline (1990) soil C stocks and reduce soil C stocks at landscape scale. Gullies have local influence on soil C stocks but because they cover a small proportion of the landscape have little influence at landscape scale. At many of the sites, the soil C model overestimates landscape-scale soil C stocks.

  15. Preparation of carbonized biomass water mixture and upgraded coal water mixture

    Energy Technology Data Exchange (ETDEWEB)

    Umar, D.F.; Usui, H.; Komoda, Y.; Daulay, B. [Research & Development Centre for Mineral & Coal Technology, Bandung (Indonesia)

    2006-11-15

    Biomass is the third largest primary energy resource in the world after coal and oil. Due to its huge potential, the renewable and the corresponding positive role for CO{sub 2} reduction, the use of carbonized biomass for energy purpose is expected to increase. The carbonized biomass comes from agricultural waste and forest by-product. Carbonized plant and carbonized coconut cell biomass were mixed with water to study the possibilities of slurry preparation as a carbonized biomass water mixture (CBWM). Beside that, the upgraded coal by an upgraded brown coal (UBC) process was also studied to produce a UBC water mixture (UBCWM) with high coal concentration. The rheological characteristics of CBWM and UBCWM have been conducted by using a stress controlled rheometer. The results indicate that the maximum concentrations of the carbonized plant, carbonized coconut cell biomass, and UBC were 35.9, 51.2, and 61.5 wt%, when respectively using 0.3 wt% of naphthalene sulfonic acid (NSF), polymethacrylate (PMA), and NSF as dispersing additives, and 0.1 wt% of carboxyl methyl cellulose (CMC) as a stabilizing additive.

  16. NACP Aboveground Biomass and Carbon Baseline Data, V.2 (NBCD 2000), U.S.A., 2000

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: The NBCD 2000 (National Biomass and Carbon Dataset for the Year 2000) data set provides a high-resolution (30 m) map of year-2000 baseline estimates of...

  17. NACP Aboveground Biomass and Carbon Baseline Data (NBCD 2000), U.S.A., 2000

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: The NBCD 2000 (National Biomass and Carbon data set for the Year 2000) data set provides a high-resolution (30 m) map of year-2000 baseline estimates of...

  18. NACP Aboveground Biomass and Carbon Baseline Data, V.2 (NBCD 2000), U.S.A., 2000

    Data.gov (United States)

    National Aeronautics and Space Administration — The NBCD 2000 (National Biomass and Carbon Dataset for the Year 2000) data set provides a high-resolution (30 m) map of year-2000 baseline estimates of basal...

  19. Soil Carbon Stocks in Two Hybrid Poplar-Hay Crop Systems in Southern Quebec, Canada

    Directory of Open Access Journals (Sweden)

    Kiara Winans

    2014-08-01

    Full Text Available Tree-based intercropping (TBI systems, consisting of a medium to fast-growing woody species planted in widely-spaced rows with crops cultivated between tree rows, are a potential sink for atmospheric carbon dioxide (CO2. TBI systems contribute to farm income in the long-term by improving soil quality, as indicated by soil carbon (C storage, generating profits from crop plus tree production and potentially through C credit trading. The objectives of the current study were: (1 to evaluate soil C and nitrogen (N stocks in soil depth increments in the 0–30 cm layer between tree rows of nine-year old hybrid poplar-hay intercropping systems, to compare these to C and N stocks in adjacent agricultural systems; and (2 to determine how hay yield, litterfall and percent total light transmittance (PTLT were related to soil C and N stocks between tree rows and in adjacent agricultural systems. The two TBI study sites (St. Edouard and St. Paulin had a hay intercrop with alternating rows of hybrid poplar clones and hardwoods and included an adjacent agricultural system with no trees (i.e., the control plots. Soil C and N stocks were greater in the 0–5 cm depth increment of the TBI system within 1 m of the hardwood row, to the west of the poplar row, compared to the sampling point 1 m east of poplar at St. Edouard (p = 0.02. However, the agricultural system stored more soil C than the nine-year old TBI system in the 20–30 cm and 0–30 cm depth increments. Accumulation of soil C in the 20–30 cm depth increment could be due to tillage-induced burial of non-harvested crop residues at the bottom of the plow-pan. Soil C and N stocks were similar at all depth increments in TBI and agricultural systems at St. Paulin. Soil C and N stocks were not related to hay yield, litterfall and PTLT at St. Paulin, but hay yield and PTLT were significantly correlated (R = 0.87, p < 0.05, n = 21, with lower hay yield in proximity to trees in the TBI system and similar hay

  20. A cost-efficient method to assess carbon stocks in tropical peat soil

    Directory of Open Access Journals (Sweden)

    M. W. Warren

    2012-11-01

    Full Text Available Estimation of belowground carbon stocks in tropical wetland forests requires funding for laboratory analyses and suitable facilities, which are often lacking in developing nations where most tropical wetlands are found. It is therefore beneficial to develop simple analytical tools to assist belowground carbon estimation where financial and technical limitations are common. Here we use published and original data to describe soil carbon density (kgC m−3; Cd as a function of bulk density (gC cm−3; Bd, which can be used to rapidly estimate belowground carbon storage using Bd measurements only. Predicted carbon densities and stocks are compared with those obtained from direct carbon analysis for ten peat swamp forest stands in three national parks of Indonesia. Analysis of soil carbon density and bulk density from the literature indicated a strong linear relationship (Cd = Bd × 495.14 + 5.41, R2 = 0.93, n = 151 for soils with organic C content > 40%. As organic C content decreases, the relationship between Cd and Bd becomes less predictable as soil texture becomes an important determinant of Cd. The equation predicted belowground C stocks to within 0.92% to 9.57% of observed values. Average bulk density of collected peat samples was 0.127 g cm−3, which is in the upper range of previous reports for Southeast Asian peatlands. When original data were included, the revised equation Cd = Bd × 468.76 + 5.82, with R2 = 0.95 and n = 712, was slightly below the lower 95% confidence interval of the original equation, and tended to decrease Cd estimates. We recommend this last equation for a rapid estimation of soil C stocks for well-developed peat soils where C content > 40%.

  1. Overmature periurban Quercus-Carpinus coppice forests in Austria and Japan: a comparison in view of carbon stocks, stand characteristics and conversion to high forest

    Science.gov (United States)

    Bruckman, Viktor; Terada, Toru; Fukuda, Kenji; Yamamoto, Hirokazu; Hochbichler, Eduard

    2016-04-01

    Periurban coppice forests have a long history and tradition in Austria, as well as in Japan. Although developed in a slightly different context, such forests faced nearly the same fate during the last century. While these once served biomass almost exclusively as a feedstock for thermal energy, their significance decreased with the increasing use of fossil fuels and coppice management was consequently abandoned and the area developed, or these forests were converted into high forests with different management aims. This study tries to assess the status of periurban forests that were previously managed as coppice in a comparative approach between Austria and Japan. The focus is stand structure, biomass and C stocks, as well as a comparison with high forest. In Japan, we further directly assessed the consequences of coppice to high forest conversion on soil chemistry. We found remarkable similarities in species distribution and total C stocks. While lower diameter classes are dominated by Carpinus, Quercus is only found in larger diameter classes, indicating the overmature character of both stands due to the lapse from a recognized system of coppice management with occasional fuelwood harvesting in the past decades. Total C stocks are comparable, but SOC is significantly higher in Japanese Andosols. The conversion of coppice to high forest in the 1960's in Japan had a notable impact on soil chemistry. This concerns especially the N cycle and we also observed fewer phenolic compounds in mineral soil after conversion. The authors find that there may be multiple benefits for restoring coppice management to these periurban forests. This includes increased biomass production capabilities and carbon sequestration as well as a better habitat provision and a higher biodiversity.

  2. 110 Years of change in urban tree stocks and associated carbon storage.

    Science.gov (United States)

    Díaz-Porras, Daniel F; Gaston, Kevin J; Evans, Karl L

    2014-04-01

    Understanding the long-term dynamics of urban vegetation is essential in determining trends in the provision of key resources for biodiversity and ecosystem services and improving their management. Such studies are, however, extremely scarce due to the lack of suitable historical data. We use repeat historical photographs from the 1900s, 1950s, and 2010 to assess general trends in the quantity and size distributions of the tree stock in urban Sheffield and resultant aboveground carbon storage. Total tree numbers declined by a third from the 1900s to the 1950s, but increased by approximately 50% from the 1900s-2010, and by 100% from the 1950s-2010. Aboveground carbon storage in urban tree stocks had doubled by 2010 from the levels present in the 1900s and 1950s. The initial decrease occurred at a time when national and regional tree stocks were static and are likely to be driven by rebuilding following bombing of the urban area during the Second World War and by urban expansion. In 2010, trees greater than 10 m in height comprised just 8% of those present. The increases in total tree numbers are thus largely driven by smaller trees and are likely to be associated with urban tree planting programmes. Changes in tree stocks were not constant across the urban area but varied with the current intensity of urbanization. Increases from 1900 to 2010 in total tree stocks, and smaller sized trees, tended to be greatest in the most intensely urbanized areas. In contrast, the increases in the largest trees were more marked in areas with the most green space. These findings emphasize the importance of preserving larger fragments of urban green space to protect the oldest and largest trees that contribute disproportionately to carbon storage and other ecosystem services. Maintaining positive trends in urban tree stocks and associated ecosystem service provision will require continued investment in urban tree planting programmes in combination with additional measures, such as

  3. Can portable pyrolysis units make biomass utilization affordable while using bio-char to enhance soil productivity and sequester carbon?

    Science.gov (United States)

    Mark Coleman; Deborah Page-Dumroese; Jim Archuleta; Phil Badger; Woodum Chung; Tyron Venn; Dan Loeffler; Greg Jones; Kristin McElligott

    2010-01-01

    We describe a portable pyrolysis system for bioenergy production from forest biomass that minimizes long-distance transport costs and provides for nutrient return and long-term soil carbon storage. The cost for transporting biomass to conversion facilities is a major impediment to utilizing forest biomass. If forest biomass could be converted into bio-oil in the field...

  4. Ethanol from Biomass: The Five-Carbon Solution

    Energy Technology Data Exchange (ETDEWEB)

    1995-02-01

    This document explains how NREL's fermentation research has produced a major breakthrough in the production of ethanol from biomass. Use of a metabolically engineered bacterium, which will allow cofermentation of both major components (xylose and glucose) of biomass, promises to greatly simplify the production process and reduce costs.

  5. Low/Medium Density Biomass, Coastal and Ocean Carbon: A Carbon Cycle Mission

    Science.gov (United States)

    Esper, Jaime; Gervin, Jan; Kirchman, Frank; Middleton, Elizabeth; Knox, Robert; Gregg, Watson; Mannino, Antonio; McClain, Charles; Herman, Jay; Hall, Forrest

    2003-01-01

    As part of the Global Carbon Cycle research effort, an agency-wide planning initiative was organized between October 2000 and June 2001 by the NASA Goddard Space Flight Center (GSFC) at the behest of the Associate Administrator for Earth Science. The goal was to define future research and technology development activities needed for implementing a cohesive scientific observation plan. A timeline for development of missions necessary to acquire the selected new measurements was laid out, and included missions for low - medium density terrestrial biomass / coastal ocean / and ocean carbon. This paper will begin with the scientific justification and measurement requirements for these specific activities, explore the options for having separate or combined missions, and follow-up with an implementation study centered on a hyperspectral imager at geosynchronous altitudes.

  6. Climatic and topographical factors affecting the vegetative carbon stock of rangelands in arid and semiarid regions of China

    Science.gov (United States)

    Zhengchao, Ren; Huazhong, Zhu; Shi, Hua; Xiaoni, Liu

    2016-01-01

    Rangeland systems play an important role in ecological stabilization and the terrestrial carbon cycle in arid and semiarid regions. However, little is known about the vegetative carbon dynamics and climatic and topographical factors that affect vegetative carbon stock in these rangelands. Our goal was to assess vegetative carbon stock by examining meteorological data in conjunction with NDVI (normalized difference vegetation index) time series datasets from 2001–2012. An improved CASA (Carnegie Ames Stanford Approach) model was then applied to simulate the spatiotemporal dynamic variation of vegetative carbon stock, and analyze its response to climatic and topographical factors. We estimated the vegetative carbon stock of rangeland in Gansu province, China to be 4.4× 1014 gC, increasing linearly at an annual rate of 9.8×1011 gC. The mean vegetative carbon density of the whole rangeland was 136.5 gC m-2. Vegetative carbon density and total carbon varied temporally and spatially and were highly associated with temperature, precipitation and solar radiation. Vegetative carbon density reached the maximal value on elevation at 2500–3500 m, a slope of >30°and easterly aspect. The effect of precipitation, temperature and solar radiation on the vegetative carbon den