WorldWideScience

Sample records for biomass burning organic

  1. Constraining Absorption of Organic Aerosol from Biomass Burning with Observations

    Science.gov (United States)

    Feng, Y.; Liu, X.

    2014-12-01

    Biomass burning emissions contribute to a large fraction of global organic aerosol (OA) emissions. In most models, radiative forcing of black carbon (BC) and OA from biomass burning offsets each other to give a small or close to zero total forcing, i.e., an estimate of 0 (-0.2 to +0.2) W m-2 by IPCC-AR5. Recent observational and modeling studies have shown the absorbing part of OA, referred to as "brown" carbon (BrC), to be a significant source of direct absorption of solar radiation thus positive forcing, in particular over regions dominated by biomass burning and biofuel emissions. Here we implement optical treatment for the BrC absorption in the CESM1/CAM5 model, and compare the calculated aerosol spectral absorption with ground-based AERONET and DOE/ARM observations. In this version of CAM5, biomass burning and biofuel OA are treated separately from fossil fuel OA with different imaginary refractive index. Because the absorption of BrC is highly variable and uncertain depending on source, aging, and mixing state, sensitivity studies of BrC refractive index parameterized by fuel type and ratio of BC to OA mass will be examined and the resulting uncertainty in the estimated forcing will be discussed. Preliminary results suggest the simulated wavelength dependence of aerosol absorption, as measured by the absorption Ångström exponent (AAE), increases from 0.9 for non-absorbing OA to 1.2 (or 1.0) for strongly (or moderately) absorbing BrC. The AAE calculated for the strongly absorbing BrC agrees with AERONET spectral observations at 440-870 nm over most regions but overpredicts for the open biomass burning-dominated South America and southern Africa, in which inclusion of moderately absorbing BrC exhibits better agreement.

  2. Advanced Characterization of Semivolatile Organic Compounds Emitted from Biomass Burning

    Science.gov (United States)

    Hatch, L. E.; Liu, Y.; Rivas-Ubach, A.; Shaw, J. B.; Lipton, M. S.; Barsanti, K. C.

    2017-12-01

    Biomass burning (BB) emits large amounts of non-methane organic gases (NMOGs) and primary (directly emitted) particulate matter (PM). NMOGs also react in plume to form secondary PM (i.e., SOA) and ozone. BB-PM has been difficult to represent accurately in models used for chemistry and climate predictions, including for air quality and fire management purposes. Much recent research supports that many previously unconsidered SOA precursors exist, including oxidation of semivolatile compounds (SVOCs). Although many recent studies have characterized relatively volatile BB-derived NMOGs and relatively non-volatile particle-phase organic species, comparatively few studies have performed detailed characterization of SVOCs emitted from BB. Here we present efforts to expand the volatility and compositional ranges of compounds measured in BB smoke. In this work, samples of SVOCs in gas and particle phases were collected from 18 fires representing a range of fuel types during the 2016 FIREX fire laboratory campaign; samples were analyzed by two-dimensional gas chromatography with time-of-flight mass spectrometry (GCxGC-TOFMS) and Fourier-transform ion cyclotron resonance mass spectrometry (FTICR-MS). Hundreds of compounds were detectable in both gas and particle phases by GCxGC-TOFMS whereas thousands of peaks were present in the FTICR mass spectra. Data from both approaches highlight that chemical fingerprints of smoke are fuel/burn-dependent. These efforts support our continued research in building the understanding and model representation of BB emissions and BB-derived SOA.

  3. Organic aerosols from biomass burning in Amazonian rain forest and their impact onto the environment

    International Nuclear Information System (INIS)

    Cecinato, A.; Mabilia, R.; De Castro Vasconcellos, P.

    2001-01-01

    A field campaign performed in Southern Brazilian Amazonia in 1993 has proved that this region is subjected to fallout of particulated exhausts released by fires of forestal biomass. In fact, organic content of aerosols collected at urban sites located on the border of pluvial forest, about 50 km from fires, was similar to that of biomass burning exhausts. Aerosol composition is indicative of dolous origin of fires. However, organic contents seems to be influenced by two additional sources, i. e. motor vehicle and high vegetation emission. Chemical pattern of organic aerosols released by biomass burning of forest seems to promote occurrence of photochemical smog episodes in that region [it

  4. Hygroscopic properties of levoglucosan and related organic compounds characteristic to biomass burning aerosol particles

    OpenAIRE

    Mochida, Michihiro; Kawamura, Kimitaka

    2004-01-01

    Biomass burning, which is characterized by pyrolysis as well as vaporization and condensation of biomass constituents, is a significant source of atmospheric organic aerosols. In this study, hygroscopic properties of five organic compounds (levoglucosan, D-glucose, and vanillic, syringic, and 4-hydroxybenozoic acids), which are major pyrolysis products of wood, were measured using a tandem differential mobility analyzer. Levoglucosan, which is typically the most abundant species in wood burni...

  5. Biomass burning in India

    International Nuclear Information System (INIS)

    Joshi, V.

    1991-01-01

    This chapter summarizes the direct biomass burning practices in India. The review pertains to fire practices in forest, agricultural fields, grasslands, households, and industry. In forest land, extent of controlled burning for regeneration and fire prevention is estimated based on the forest statistics. The biomass burned annually due to accidental fires and for shifting cultivation is quantified based on a few earlier studies. In the case of household and small-scale industries, the biomass burned is quantified by extrapolating past data on energy consumption. In addition to wood and crop residues, the use of dungcakes and charcoal is also accounted for in calculating the total amount of biofuels burned annually. Wherever possible, regional and seasonal variations in the biomass burning practices are highlighted. This exercise has led to improve the current estimates of biomass burned annually in India. The factors influencing the impact of National Programme on Improved Cookstoves (NPIC) in reducing the greenhouse gas emissions are discussed

  6. Molecular Characterization of Nitrogen Containing Organic Compounds in Biomass Burning Aerosols Using High Resolution Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Laskin, Alexander; Smith, Jeffrey S.; Laskin, Julia

    2009-05-13

    Although nitrogen-containing organic compounds (NOC) are important components of atmospheric aerosols, little is known about their chemical compositions. Here we present detailed characterization of the NOC constituents of biomass burning aerosol (BBA) samples using high resolution electrospray ionization mass spectrometry (ESI/MS). Accurate mass measurements combined with MS/MS fragmentation experiments of selected ions were used to assign molecular structures to individual NOC species. Our results indicate that N-heterocyclic alkaloid compounds - species naturally produced by plants and living organisms - comprise a substantial fraction of NOC in BBA samples collected from test burns of five biomass fuels. High abundance of alkaloids in test burns of ponderosa pine - a widespread tree in the western U.S. areas frequently affected by large scale fires - suggests that N-heterocyclic alkaloids in BBA can play a significant role in dry and wet deposition of fixed nitrogen in this region.

  7. Impact of biomass burning on urban air quality estimated by organic tracers: Guangzhou and Beijing as cases

    International Nuclear Information System (INIS)

    Qiaoqiao Wang; Min Shao; Ying Liu; Kuster, William; Goldan, Paul; Xiaohua Li; Yuan Liu; Sihua Lu

    2007-01-01

    The impacts of biomass burning have not been adequately studied in China. In this work, chemical compositions of volatile organic compounds and particulate organic matters were measured in August 2005 in Beijing and in October 2004 in Guangzhou city. The performance of several possible tracers for biomass burning is compared by using acetonitrile as a reference compound. The correlations between the possible tracers and acetonitrile show that the use of K + as a tracer could result in bias because of the existence of other K+ sources in urban areas, while chloromethane is not reliable due to its wide use as industrial chemical. The impact of biomass burning on air quality is estimated using acetonitrile and levoglucosan as tracers. The results show that the impact of biomass burning is ubiquitous in both suburban and urban Guangzhou, and the frequencies of air pollution episodes significantly influenced by biomass burning were 100% for Xinken and 58% for downtown Guangzhou city. Fortunately, the air quality in only 2 out of 22 days was partly impacted by biomass burning in August in Beijing, the month that 2008 Olympic games will take place. The quantitative contribution of biomass burning to ambient PM 2.5 concentrations in Guangzhou city was also estimated by the ratio of levoglocusan to PM 2.5 in both the ambient air and biomass burning plumes. The results show that biomass burning contributes 3.02013;16.8% and 4.02013;19.0% of PM 2.5 concentrations in Xinken and Guangzhou downtown, respectively. (Author)

  8. The influence of biomass burning on the global distribution of selected non-methane organic compounds

    Directory of Open Access Journals (Sweden)

    A. C. Lewis

    2013-01-01

    Full Text Available Forests fires are a significant source of chemicals to the atmosphere including numerous non-methane organic compounds (NMOCs. We report airborne measurement of hydrocarbons, acetone and methanol from >500 whole air samples collected over Eastern Canada, including interceptions of several different boreal biomass burning plumes. From these and concurrent measurements of carbon monoxide (CO we derive fire emission ratios for 29 different organic species relative to the emission of CO. These range from 8.9 ± 3.2 ppt ppb−1 CO for methanol to 0.007 ± 0.004 ppt ppb−1 CO for cyclopentane. The ratios are in good to excellent agreement with literature values. Using the GEOS-Chem global 3-D chemical transport model (CTM we show the influence of biomass burning on the global distributions of benzene, toluene, ethene and propene (species which are controlled for air quality purposes and sometimes used as indicative tracers of anthropogenic activity. Using our observationally derived emission ratios and the GEOS-Chem CTM, we show that biomass burning can be the largest fractional contributor to observed benzene, toluene, ethene and propene levels in many global locations. The widespread biomass burning contribution to atmospheric benzene, a heavily regulated air pollutant, suggests that pragmatic approaches are needed when setting air quality targets as tailpipe and solvent emissions decline in developed countries. We subsequently determine the extent to which the 28 global-status World Meteorological Organisation – Global Atmosphere Watch stations worldwide are influenced by biomass burning sourced benzene, toluene, ethene and propene as compared to their exposure to anthropogenic emissions.

  9. The influence of biomass burning on the global distribution of selected non-methane organic compounds.

    Science.gov (United States)

    Lewis, Alastair; Evans, Mathew; Hopkins, James; Punjabi, Shalini; Read, Katie; Purvis, Ruth; Andrews, Stephen; Moller, Sarah; Carpenter, Lucy; Lee, James; Rickard, Andrew; Palmer, Paul; Parrington, Mark

    2013-04-01

    Forests fires are a significant source of chemicals to the atmosphere including numerous non-methane organic compounds (NMHCs). We report airborne measurement of NMHCs, acetone and methanol from > 500 whole air samples collected over Eastern Canada, including interceptions of several different boreal biomass burning plumes. From these and concurrent measurements of carbon monoxide (CO) we derive fire emission ratios for 29 different organic species relative to the emission of CO. These range from 8.9 ± 3.2 ppt/ppb CO for methanol to 0.007 ± 0.004 ppt/ppb CO for cyclopentane. The ratios are in good to excellent agreement with literature values. Using the GEOS-Chem global 3-D chemical transport model (CTM) we show the influence of biomass burning on the global distributions of benzene, toluene, ethene and propene (species which are controlled for air quality purposes sometimes used as indicative tracers of anthropogenic activity). Using our observationally derived emission ratios and the GEOS-Chem CTM, we show that biomass burning can be the largest fractional contributor to observed benzene, toluene, ethene and propene levels in many global locations. The widespread biomass burning contribution to atmospheric benzene, a heavily regulated air pollutant, suggests that pragmatic approaches are needed when setting air quality targets as tailpipe and solvent emissions decline in developed countries. We subsequently determine the extent to which the 28 global-status World Meteorological Organisation - Global Atmosphere Watch stations worldwide are influenced by biomass burning sourced benzene, toluene, ethene and propene as compared to their exposure to anthropogenic emissions.

  10. Hygroscopic properties of levoglucosan and related organic compounds characteristic to biomass burning aerosol particles

    Science.gov (United States)

    Mochida, Michihiro; Kawamura, Kimitaka

    2004-11-01

    Biomass burning, which is characterized by pyrolysis as well as vaporization and condensation of biomass constituents, is a significant source of atmospheric organic aerosols. In this study, hygroscopic properties of five organic compounds (levoglucosan, D-glucose, and vanillic, syringic, and 4-hydroxybenozoic acids), which are major pyrolysis products of wood, were measured using a tandem differential mobility analyzer. Levoglucosan, which is typically the most abundant species in wood burning aerosols, showed a significant hygroscopic growth for particles with a diameter of 100 nm. No efflorescence was observed under the measured relative humidity, and a supersaturated condition of levoglucosan-water particles was observed. The growth factors of levoglucosan are 1.08, 1.18, 1.23, and 1.38 at relative humidity (RH) of 60, 80, 85, and 90%, respectively. The measured hygroscopic curves are in general consistent with those estimated from ideal solution theory and Uniquac Functional-Group Activity Coefficient (UNIFAC) and Conductor-Like Screening Model for Real Solvent (COSMO-RS) methods. Significant hygroscopic growth was also observed for D-glucose, whose growth factor is quite similar to that of levoglucosan. However, three model pyrolysis products of lignin (i.e., vanillic-, syringic-, and 4-hydroxybenzoic acids) did not show any hygroscopic growth under the RH conditions up to 95%. On the basis of the organic composition of wood burning aerosols, the water absorption attributed to levoglucosan in wood burning aerosols is calculated to be up to 30% of the organic mass at 90% RH. This study demonstrates that oxygenated organics emitted from biomass burning could significantly enhance the hygroscopic properties of atmospheric aerosols.

  11. Case study of water-soluble metal containing organic constituents of biomass burning aerosol

    Science.gov (United States)

    Alexandra L. Chang-Graham; Luisa T. M. Profeta; Timothy J. Johnson; Robert J. Yokelson; Alexander Laskin; Julia Laskin

    2011-01-01

    Natural and prescribed biomass fires are a major source of aerosols that may persist in the atmosphere for several weeks. Biomass burning aerosols (BBA) can be associated with long-range transport of water-soluble N-, S-, P-, and metal-containing species. In this study, BBA samples were collected using a particle-into-liquid sampler (PILS) from laboratory burns of...

  12. Impact of biomass burning on urban air quality estimated by organic tracers: Guangzhou and Beijing as cases

    Energy Technology Data Exchange (ETDEWEB)

    Qiaoqiao Wang; Min Shao; Ying Liu [State Joint Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences, Peking University, Beijing 100871, (China); Kuster, William; Goldan, Paul [Earth System Research Laboratory, U.S. Department of Commerce, Boulder, CO 80305, (United States); Xiaohua Li; Yuan Liu; Sihua Lu [State Joint Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences, Peking University, Beijing 100871, (China)

    2007-12-15

    The impacts of biomass burning have not been adequately studied in China. In this work, chemical compositions of volatile organic compounds and particulate organic matters were measured in August 2005 in Beijing and in October 2004 in Guangzhou city. The performance of several possible tracers for biomass burning is compared by using acetonitrile as a reference compound. The correlations between the possible tracers and acetonitrile show that the use of K{sup +} as a tracer could result in bias because of the existence of other K+ sources in urban areas, while chloromethane is not reliable due to its wide use as industrial chemical. The impact of biomass burning on air quality is estimated using acetonitrile and levoglucosan as tracers. The results show that the impact of biomass burning is ubiquitous in both suburban and urban Guangzhou, and the frequencies of air pollution episodes significantly influenced by biomass burning were 100% for Xinken and 58% for downtown Guangzhou city. Fortunately, the air quality in only 2 out of 22 days was partly impacted by biomass burning in August in Beijing, the month that 2008 Olympic games will take place. The quantitative contribution of biomass burning to ambient PM{sub 2.5} concentrations in Guangzhou city was also estimated by the ratio of levoglocusan to PM{sub 2.5} in both the ambient air and biomass burning plumes. The results show that biomass burning contributes 3.02013;16.8% and 4.02013;19.0% of PM{sub 2.5} concentrations in Xinken and Guangzhou downtown, respectively. (Author)

  13. Impact of biomass burning on urban air quality estimated by organic tracers: Guangzhou and Beijing as cases

    Energy Technology Data Exchange (ETDEWEB)

    Qiaoqiao Wang; Min Shao; Ying Liu [State Joint Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences, Peking University, Beijing 100871, (China); Kuster, William; Goldan, Paul [Earth System Research Laboratory, U.S. Department of Commerce, Boulder, CO 80305, (United States); Xiaohua Li; Yuan Liu; Sihua Lu [State Joint Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences, Peking University, Beijing 100871, (China)

    2007-12-15

    The impacts of biomass burning have not been adequately studied in China. In this work, chemical compositions of volatile organic compounds and particulate organic matters were measured in August 2005 in Beijing and in October 2004 in Guangzhou city. The performance of several possible tracers for biomass burning is compared by using acetonitrile as a reference compound. The correlations between the possible tracers and acetonitrile show that the use of K{sup +} as a tracer could result in bias because of the existence of other K+ sources in urban areas, while chloromethane is not reliable due to its wide use as industrial chemical. The impact of biomass burning on air quality is estimated using acetonitrile and levoglucosan as tracers. The results show that the impact of biomass burning is ubiquitous in both suburban and urban Guangzhou, and the frequencies of air pollution episodes significantly influenced by biomass burning were 100% for Xinken and 58% for downtown Guangzhou city. Fortunately, the air quality in only 2 out of 22 days was partly impacted by biomass burning in August in Beijing, the month that 2008 Olympic games will take place. The quantitative contribution of biomass burning to ambient PM{sub 2.5} concentrations in Guangzhou city was also estimated by the ratio of levoglocusan to PM{sub 2.5} in both the ambient air and biomass burning plumes. The results show that biomass burning contributes 3.02013;16.8% and 4.02013;19.0% of PM{sub 2.5} concentrations in Xinken and Guangzhou downtown, respectively. (Author).

  14. Analysis of Nitrogen Containing Organic Compounds in Biomass Burning Aerosols Using High Resolution Mass Spectrometry

    Science.gov (United States)

    Laskin, A.; Smith, J. S.; Laskin, J.

    2009-05-01

    Chemical characterization of atmospheric aerosols presents a serious analytical challenge because of the complexity of particulate matter analyte composed of a large number of compounds with a wide range of molecular structures, physico-chemical properties, and reactivity. In this study the chemical composition of the nitrogen containing organic (NOC) constituents of biomass burning aerosol (BBA) samples is characterized by high-resolution electrospray ionization mass spectrometry (ESI/MS). Accurate mass measurements combined with MS/MS fragmentation experiments of selected ions were used to assign molecular structures to individual NOC species. Our results indicate that N-heterocyclic alkaloid compounds - species naturally produced by plants and living organisms - comprise a substantial fraction of NOC in BBA samples collected from test burns of five biomass fuels. High abundance of alkaloids in test burns of ponderosa pine - a widespread tree in the western U.S. areas frequently affected by large scale fires - suggests that N-heterocyclic alkaloids in BBA may play a significant role in dry and wet deposition of fixed nitrogen in this region. Atmospheric processing and chemical transformations of alkaloids in the particulate phase will be discussed.

  15. Seasonal and spatial variation of organic tracers for biomass burning in PM1 aerosols from highly insolated urban areas.

    Science.gov (United States)

    van Drooge, B L; Fontal, M; Bravo, N; Fernández, P; Fernández, M A; Muñoz-Arnanz, J; Jiménez, B; Grimalt, J O

    2014-10-01

    PM1 aerosol characterization on organic tracers for biomass burning (levoglucosan and its isomers and dehydroabietic acid) was conducted within the AERTRANS project. PM1 filters (N = 90) were sampled from 2010 to 2012 in busy streets in the urban centre of Madrid and Barcelona (Spain) at ground-level and at roof sites. In both urban areas, biomass burning was not expected to be an important local emission source, but regional emissions from wildfires, residential heating or biomass removal may influence the air quality in the cities. Although both areas are under influence of high solar radiation, Madrid is situated in the centre of the Iberian Peninsula, while Barcelona is located at the Mediterranean Coast and under influence of marine atmospheres. Two extraction methods were applied, i.e. Soxhlet and ASE, which showed equivalent results after GC-MS analyses. The ambient air concentrations of the organic tracers for biomass burning increased by an order of magnitude at both sites during winter compared to summer. An exception was observed during a PM event in summer 2012, when the atmosphere in Barcelona was directly affected by regional wildfire smoke and levels were four times higher as those observed in winter. Overall, there was little variation between the street and roof sites in both cities, suggesting that regional biomass burning sources influence the urban areas after atmospheric transport. Despite the different atmospheric characteristics in terms of air relative humidity, Madrid and Barcelona exhibit very similar composition and concentrations of biomass burning organic tracers. Nevertheless, levoglucosan and its isomers seem to be more suitable for source apportionment purposes than dehydroabietic acid. In both urban areas, biomass burning contributions to PM were generally low (2 %) in summer, except on the day when wildfire smoke arrive to the urban area. In the colder periods the contribution increase to around 30 %, indicating that regional

  16. Organic aerosol evaporation and formation in biomass-burning plumes: The competition between dilution and chemistry

    Science.gov (United States)

    Pierce, J. R.; Kreidenweis, S. M.; Bian, Q.; Jathar, S.; Kodros, J.; Barsanti, K.; Hatch, L. E.; May, A.

    2017-12-01

    Secondary organic aerosol (SOA) has been shown to form in biomass-burning emissions in laboratory and field studies. However, there is significant variability among studies in mass enhancement, which could be due to differences in fuels, fire conditions, dilution, and/or limitations of laboratory experiments and observations. This study focuses on understanding processes affecting biomass-burning SOA formation in ambient plumes. The plume dilution rate impacts the organic partitioning between the gas and particle phases, which may impact the potential for SOA to form as well as the rate of SOA formation. We use an aerosol microphysics model that includes representations of volatility and oxidation chemistry to estimate SOA formation in the smoke emitted into the atmosphere. We add Gaussian dispersion to our aerosol microphysical model to estimate how SOA formation may vary under different ambient-plume conditions (e.g. fire size, emission mass flux, atmospheric stability). Smoke from small fires, such as typical prescribed burns, dilutes rapidly, which drives evaporation of organic vapor from the particle phase, leading to more effective SOA formation. Emissions from large fires, such as intense wildfires, dilute slowly, suppressing OA evaporation and subsequent SOA formation in the near field. We also demonstrate that different approaches to the calculation of OA enhancement in ambient plumes can lead to different conclusions regarding SOA formation. Normalized OA mass enhancement ratios of around 1 calculated using an inert tracer, such as black carbon or CO, have traditionally been interpreted as exhibiting little or no SOA formation; however, we show that SOA formation may have greatly contributed to the mass in these plumes.

  17. Evaluating Simulated Primary Anthropogenic and Biomass Burning Organic Aerosols during MILAGRO: Implications for Assessing Treatments of Secondary Organic Aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Fast, Jerome D.; Aiken, Allison; Allan, James D.; Alexander, M. L.; Campos, Teresa; Canagaratna, Manjula R.; Chapman, Elaine G.; DeCarlo, Peter; de Foy, B.; Gaffney, Jeffrey; de Gouw, Joost A.; Doran, J. C.; Emmons, L.; Hodzic, Alma; Herndon, Scott C.; Huey, L. G.; Jayne, John T.; Jimenez, Jose L.; Kleinman, Lawrence I.; Kuster, W. C.; Marley, Nancy A.; Russell, Lynn M.; Ochoa, Carlos; Onasch, Timothy B.; Pekour, Mikhail S.; Song, Chen; Ulbrich, Ingrid M.; Warneke, Carsten; Welsh-Bon, Daniel; Wiedinmyer, Christine; Worsnop, Douglas R.; Yu, Xiao-Ying; Zaveri, Rahul A.

    2009-08-31

    Simulated primary organic aerosols (POA), as well as other particulates and trace gases, in the vicinity of Mexico City are evaluated using measurements collected during the 2006 Megacity Initiative: Local and Global Research Observations (MILAGRO) field campaigns. Since the emission inventories and dilution will affect predictions of total organic matter and consequently total particulate matter, our objective is to assess the uncertainties in predicted POA before testing and evaluating the performance of secondary organic aerosol (SOA) treatments. Carbon monoxide (CO) is well simulated on most days both over the city and downwind, indicating that transport and mixing processes were usually consistent with the meteorological conditions observed during MILAGRO. Predicted and observed elemental carbon (EC) in the city was similar, but larger errors occurred at remote locations since the CO/EC emission ratios in the national emission inventory were lower than in the metropolitan emission inventory. Components of organic aerosols derived from Positive Matrix Factorization and data from several Aerodyne Aerosol Mass Spectrometer instruments deployed both at ground sites and on research aircraft are used to evaluate the model. Predicted POA was consistently lower than the measured organic matter at the ground sites, which is consistent with the expectation that SOA should be a large fraction of the total organic matter mass. A much better agreement was found when predicted POA was compared with the sum of "primary anthropogenic" and "primary biomass burning" components on days with relatively low biomass burning, suggesting that the overall magnitude of primary organic particulates released was reasonable. The predicted POA was greater than the total observed organic matter when the aircraft flew directly downwind of large fires, suggesting that biomass burning emission estimates from some large fires may be too high. Predicted total observed organic carbon (TOOC) was

  18. Secondary organic aerosol formation from biomass burning intermediates: phenol and methoxyphenols

    Directory of Open Access Journals (Sweden)

    L. D. Yee

    2013-08-01

    Full Text Available The formation of secondary organic aerosol from oxidation of phenol, guaiacol (2-methoxyphenol, and syringol (2,6-dimethoxyphenol, major components of biomass burning, is described. Photooxidation experiments were conducted in the Caltech laboratory chambers under low-NOx (2O2 as the OH source. Secondary organic aerosol (SOA yields (ratio of mass of SOA formed to mass of primary organic reacted greater than 25% are observed. Aerosol growth is rapid and linear with the primary organic conversion, consistent with the formation of essentially non-volatile products. Gas- and aerosol-phase oxidation products from the guaiacol system provide insight into the chemical mechanisms responsible for SOA formation. Syringol SOA yields are lower than those of phenol and guaiacol, likely due to novel methoxy group chemistry that leads to early fragmentation in the gas-phase photooxidation. Atomic oxygen to carbon (O : C ratios calculated from high-resolution-time-of-flight Aerodyne Aerosol Mass Spectrometer (HR-ToF-AMS measurements of the SOA in all three systems are ~ 0.9, which represent among the highest such ratios achieved in laboratory chamber experiments and are similar to that of aged atmospheric organic aerosol. The global contribution of SOA from intermediate volatility and semivolatile organic compounds has been shown to be substantial (Pye and Seinfeld, 2010. An approach to representing SOA formation from biomass burning emissions in atmospheric models could involve one or more surrogate species for which aerosol formation under well-controlled conditions has been quantified. The present work provides data for such an approach.

  19. Investigating the links between ozone and organic aerosol chemistry in a biomass burning plume from a California chaparral fire

    Science.gov (United States)

    M. J. Alvarado; C. R. Lonsdale; R. J. Yokelson; S. K. Akagi; I. R. Burling; H. Coe; J. S. Craven; E. Fischer; G. R. McMeeking; J. H. Seinfeld; T. Soni; J. W. Taylor; D. R. Weise; C. E. Wold

    2014-01-01

    Within minutes after emission, rapid, complex photochemistry within a biomass burning smoke plume can cause large changes in the concentrations of ozone (O3) and organic aerosol (OA). Being able to understand and simulate this rapid chemical evolution under 5 a wide variety of conditions is a critical part of forecasting the impact of these fires...

  20. Evaluating simulated primary anthropogenic and biomass burning organic aerosols during MILAGRO: implications for assessing treatments of secondary organic aerosols

    Directory of Open Access Journals (Sweden)

    J. Fast

    2009-08-01

    Full Text Available Simulated primary organic aerosols (POA, as well as other particulates and trace gases, in the vicinity of Mexico City are evaluated using measurements collected during the 2006 Megacity Initiative: Local and Global Research Observations (MILAGRO field campaigns. Since the emission inventories, transport, and turbulent mixing will directly affect predictions of total organic matter and consequently total particulate matter, our objective is to assess the uncertainties in predicted POA before testing and evaluating the performance of secondary organic aerosol (SOA treatments. Carbon monoxide (CO is well simulated on most days both over the city and downwind, indicating that transport and mixing processes were usually consistent with the meteorological conditions observed during MILAGRO. Predicted and observed elemental carbon (EC in the city was similar, but larger errors occurred at remote locations since the overall CO/EC emission ratios in the national emission inventory were lower than in the metropolitan emission inventory. Components of organic aerosols derived from Positive Matrix Factorization of data from several Aerodyne Aerosol Mass Spectrometer instruments deployed both at ground sites and on research aircraft are used to evaluate the model. Modeled POA was consistently lower than the measured organic matter at the ground sites, which is consistent with the expectation that SOA should be a large fraction of the total organic matter mass. A much better agreement was found when modeled POA was compared with the sum of "primary anthropogenic" and "biomass burning" components derived from Positive Matrix Factorization (PMF on most days, especially at the surface sites, suggesting that the overall magnitude of primary organic particulates released was reasonable. However, simulated POA from anthropogenic sources was often lower than "primary anthropogenic" components derived from PMF, consistent with two recent reports that these emissions

  1. Impacts of Biomass Burning on Organic Aerosols over the Northwestern Pacific Ocean

    Science.gov (United States)

    Guo, T.; Guo, Z.

    2017-12-01

    During the cruise from East China Sea to Northwestern Pacific in March-April 2014, total suspended particle samples were collected and analyzed for tracers of primary and secondary organic aerosols (SOA) as well as OC and EC. In the study, the sum of all tracers during the sampling period ranged from 3.60 to 181.58 ng/m3, with a mean being 59.87±62.70 ng/m3. Among these tracers, glucose was the dominant compound (average: 17.73±20.60 ng/m3), followed by levoglucosan (12.82±14.37 ng/m3) and fructose (10.47±13.28 ng/m3). LEVO in samples affected by long range transport of biomass burning aerosol (17.38±21.32ng/m3) was about 1 order magnitude higher than the other (1.76±0.92ng/m3, pBTs. Thus organic aerosols over NWPO were deeply influenced by forest fires taking place in Siberia and North China as a result of long-range transport of both directly emitted OA and secondarily formed OA under high-NOx conditions during fire events.

  2. Estimation of the Elemental to Organic Carbon Ratio in Biomass Burning Aerosol Using AERONET Retrievals

    Directory of Open Access Journals (Sweden)

    Igor B. Konovalov

    2017-07-01

    Full Text Available The balance between the cooling and warming effects of aerosol originating from open biomass burning (BB critically depends on the ratio of its major absorbing and scattering components, such as elemental carbon (EC and organic carbon (OC, but available direct measurements of this ratio in remote regions are limited and rather uncertain. Here, we propose a method to estimate the EC/OC mass ratio in BB aerosol using continuous observations of aerosol optical properties by the Aerosol Robotic Network (AERONET and apply it to the data from two AERONET sites situated in Siberia. Our method exploits a robust experimental finding (that was reported recently based on laboratory analysis of aerosol from the combustion of wildland fuels that the single scattering albedo of BB aerosol particles depends linearly on the EC/(EC + OC mass ratio. We estimated that the mean value of the EC/OC ratio in BB aerosol observed in summer 2012 was 0.036 (±0.009, which is less than the corresponding value (0.061 predicted in our simulations with a chemistry transport model using the emission factors from the Global Fire Emissions Database 4 (GFED4 fire emission inventory. Based on results of our analysis, we propose a parameterization that allows constraining the EC/OC ratio in BB aerosol with available satellite observations of the absorption and extinction aerosol optical depths.

  3. Hygroscopicity of organic compounds from biomass burning and their influence on the water uptake of mixed organic ammonium sulfate aerosols

    Science.gov (United States)

    Lei, T.; Zuend, A.; Wang, W. G.; Zhang, Y. H.; Ge, M. F.

    2014-10-01

    Hygroscopic behavior of organic compounds, including levoglucosan, 4-hydroxybenzoic acid, and humic acid, as well as their effects on the hygroscopic properties of ammonium sulfate (AS) in internally mixed particles are studied by a hygroscopicity tandem differential mobility analyzer (HTDMA). The organic compounds used represent pyrolysis products of wood that are emitted from biomass burning sources. It is found that humic acid aerosol particles only slightly take up water, starting at RH (relative humidity) above ~70%. This is contrasted by the continuous water absorption of levoglucosan aerosol particles in the range 5-90% RH. However, no hygroscopic growth is observed for 4-hydroxybenzoic acid aerosol particles. Predicted water uptake using the ideal solution theory, the AIOMFAC model and the E-AIM (with UNIFAC) model are consistent with measured hygroscopic growth factors of levoglucosan. However, the use of these models without consideration of crystalline organic phases is not appropriate to describe the hygroscopicity of organics that do not exhibit continuous water uptake, such as 4-hydroxybenzoic acid and humic acid. Mixed aerosol particles consisting of ammonium sulfate and levoglucosan, 4-hydroxybenzoic acid, or humic acid with different organic mass fractions, take up a reduced amount of water above 80% RH (above AS deliquescence) relative to pure ammonium sulfate aerosol particles of the same mass. Hygroscopic growth of mixtures of ammonium sulfate and levoglucosan with different organic mass fractions agree well with the predictions of the thermodynamic models. Use of the Zdanovskii-Stokes-Robinson (ZSR) relation and AIOMFAC model lead to good agreement with measured growth factors of mixtures of ammonium sulfate with 4-hydroxybenzoic acid assuming an insoluble organic phase. Deviations of model predictions from the HTDMA measurement are mainly due to the occurrence of a microscopical solid phase restructuring at increased humidity (morphology

  4. Chemical characteristics of dicarboxylic acids and related organic compounds in PM2.5 during biomass-burning and non-biomass-burning seasons at a rural site of Northeast China.

    Science.gov (United States)

    Cao, Fang; Zhang, Shi-Chun; Kawamura, Kimitaka; Liu, Xiaoyan; Yang, Chi; Xu, Zufei; Fan, Meiyi; Zhang, Wenqi; Bao, Mengying; Chang, Yunhua; Song, Wenhuai; Liu, Shoudong; Lee, Xuhui; Li, Jun; Zhang, Gan; Zhang, Yan-Lin

    2017-12-01

    Fine particulate matter (PM2.5) samples were collected using a high-volume air sampler and pre-combusted quartz filters during May 2013 to January 2014 at a background rural site (47 ∘ 35 N, 133 ∘ 31 E) in Sanjiang Plain, Northeast China. A homologous series of dicarboxylic acids (C 2 -C 11 ) and related compounds (oxoacids, α-dicarbonyls and fatty acids) were analyzed by using a gas chromatography (GC) and GC-MS method employing a dibutyl ester derivatization technique. Intensively open biomass-burning (BB) episodes during the harvest season in fall were characterized by high mass concentrations of PM2.5, dicarboxylic acids and levoglucosan. During the BB period, mass concentrations of dicarboxylic acids and related compounds were increased by up to >20 times with different factors for different organic compounds (i.e., succinic (C 4 ) acid > oxalic (C 2 ) acid > malonic (C 3 ) acid). High concentrations were also found for their possible precursors such as glyoxylic acid (ωC 2 ), 4-oxobutanoic acid, pyruvic acid, glyoxal, and methylglyoxal as well as fatty acids. Levoglucosan showed strong correlations with carbonaceous aerosols (OC, EC, WSOC) and dicarboxylic acids although such good correlations were not observed during non-biomass-burning seasons. Our results clearly demonstrate biomass burning emissions are very important contributors to dicarboxylic acids and related compounds. The selected ratios (e.g., C 3 /C 4 , maleic acid/fumaric acid, C 2 /ωC 2 , and C 2 /levoglucosan) were used as tracers for secondary formation of organic aerosols and their aging process. Our results indicate that organic aerosols from biomass burning in this study are fresh without substantial aging or secondary production. The present chemical characteristics of organic compounds in biomass-burning emissions are very important for better understanding the impacts of biomass burning on the atmosphere aerosols. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Hygroscopic properties of potassium chloride and its internal mixtures with organic compounds relevant to biomass burning aerosol particles

    OpenAIRE

    Jing, Bo; Peng, Chao; Wang, Yidan; Liu, Qifan; Tong, Shengrui; Zhang, Yunhong; Ge, Maofa

    2017-01-01

    While water uptake of aerosols exerts considerable impacts on climate, the effects of aerosol composition and potential interactions between species on hygroscopicity of atmospheric particles have not been fully characterized. The water uptake behaviors of potassium chloride and its internal mixtures with water soluble organic compounds (WSOCs) related to biomass burning aerosols including oxalic acid, levoglucosan and humic acid at different mass ratios were investigated using a hygroscopici...

  6. Cloud condensation nuclei from biomass burning

    International Nuclear Information System (INIS)

    Rogers, C.F.; Hudson, J.G.; Zielinska, B.; Tanner, R.L.; Hallett, J.; Watson, J.G.

    1991-01-01

    In this work, the authors have analyzed biomass and crude oil smoke samples for ionic and organic species. The cloud condensation nuclei activities of the smoke particles are discussed in terms of the measured chemical compositions of the smoke samples. The implications of biomass burning to global climatic change are discussed

  7. The formation of light absorbing insoluble organic compounds from the reaction of biomass burning precursors and Fe(III)

    Science.gov (United States)

    Lavi, Avi; Lin, Peng; Bhaduri, Bhaskar; Laskin, Alexander; Rudich, Yinon

    2017-04-01

    Dust particles and volatile organic compounds from fuel or biomass burning are two major components that affect air quality in urban polluted areas. We characterized the products from the reaction of soluble Fe(III), a reactive transition metal originating from dust particles dissolution processes, with phenolic compounds , namely, guaiacol, syringol, catechol, o- and p- cresol that are known products of incomplete fuel and biomass combustion but also from other natural sources such as humic compounds degradation. We found that under acidic conditions comparable to those expected on a dust particle surface, phenolic compounds readily react with dissolved Fe(III), leading to the formation of insoluble polymeric compounds. We characterized the insoluble products by x-ray photoelectron microscopy, UV-Vis spectroscopy, mass spectrometry, elemental analysis and thermo-gravimetric analysis. We found that the major chromophores formed are oligomers (from dimers to pentamers) of the reaction precursors that efficiently absorb light between 300nm and 500nm. High variability of the mass absorption coefficient of the reaction products was observed with catechol and guaiacol showing high absorption at the 300-500nm range that is comparable to that of brown carbon (BrC) from biomass burning studies. The studied reaction is a potential source for the in-situ production of secondary BrC material under dark conditions. Our results suggest a reaction path for the formation of bio-available iron in coastal polluted areas where dust particles mix with biomass burning pollution plumes. Such mixing can occur, for instance in the coast of West Africa or North Africa during dust and biomass burning seasons

  8. Observations of nonmethane organic compounds during ARCTAS − Part 1: Biomass burning emissions and plume enhancements

    Directory of Open Access Journals (Sweden)

    A. Wisthaler

    2011-11-01

    Full Text Available Mixing ratios of a large number of nonmethane organic compounds (NMOCs were observed by the Trace Organic Gas Analyzer (TOGA on board the NASA DC-8 as part of the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS field campaign. Many of these NMOCs were observed concurrently by one or both of two other NMOC measurement techniques on board the DC-8: proton-transfer-reaction mass spectrometry (PTR-MS and whole air canister sampling (WAS. A comparison of these measurements to the data from TOGA indicates good agreement for the majority of co-measured NMOCs. The ARCTAS study, which included both spring and summer deployments, provided opportunities to sample a large number of biomass burning (BB plumes with origins in Asia, California and central Canada, ranging from very recent emissions to plumes aged one week or more. For this analysis, BB smoke interceptions were grouped by flight, source region and, in some cases, time of day, generating 40 identified BB plumes for analysis. Normalized excess mixing ratios (NEMRs to CO were determined for each of the 40 plumes for up to 19 different NMOCs or NMOC groups. Although the majority of observed NEMRs for individual NMOCs or NMOC groups were in agreement with previously-reported values, the observed NEMRs to CO for ethanol, a rarely quantified gas-phase trace gas, ranged from values similar to those previously reported, to up to an order of magnitude greater. Notably, though variable between plumes, observed NEMRs of individual light alkanes are highly correlated within BB emissions, independent of estimated plume ages. BB emissions of oxygenated NMOC were also found to be often well-correlated. Using the NCAR Master Mechanism chemical box model initialized with concentrations based on two observed scenarios, fresh Canadian BB and fresh Californian BB, decreases are predicted for the low molecular weight carbonyls (i.e. formaldehyde, acetaldehyde, acetone and

  9. Biomass burning contribution to ambient volatile organic compounds (VOCs) in the Chengdu-Chongqing Region (CCR), China

    Science.gov (United States)

    Li, Lingyu; Chen, Yuan; Zeng, Limin; Shao, Min; Xie, Shaodong; Chen, Wentai; Lu, Sihua; Wu, Yusheng; Cao, Wei

    2014-12-01

    Ambient volatile organic compounds (VOCs) were measured intensively using an online gas chromatography-mass spectrometry/flame ionization detector (GC-MS/FID) at Ziyang in the Chengdu-Chongqing Region (CCR) from 6 December 2012 to 4 January 2013. Alkanes contributed the most (59%) to mixing ratios of measured non-methane hydrocarbons (NMHCs), while aromatics contributed the least (7%). Methanol was the most abundant oxygenated VOC (OVOC), contributing 42% to the total amount of OVOCs. Significantly elevated VOC levels occurred during three pollution events, but the chemical composition of VOCs did not differ between polluted and clean days. The OH loss rates of VOCs were calculated to estimate their chemical reactivity. Alkenes played a predominant role in VOC reactivity, among which ethylene and propene were the largest contributors; the contributions of formaldehyde and acetaldehyde were also considerable. Biomass burning had a significant influence on ambient VOCs during our study. We chose acetonitrile as a tracer and used enhancement ratio to estimate the contribution of biomass burning to ambient VOCs. Biomass burning contributed 9.4%-36.8% to the mixing ratios of selected VOC species, and contributed most (>30% each) to aromatics, formaldehyde, and acetaldehyde.

  10. Laboratory measurements of emissions of nonmethane volatile organic compounds from biomass burning in Chinese crop residues

    Science.gov (United States)

    Inomata, S.; Tanimoto, H.; PAN, X.; Taketani, F.; Komazaki, Y.; Miyakawa, T.; Kanaya, Y.; Wang, Z.

    2014-12-01

    The emission factors (EFs) of volatile organic compounds (VOCs) from the burning of Chinese crop residue were investigated as a function of modified combustion efficiency by the laboratory experiments. The VOCs including acetonitrile, aldehydes/ketones, furan, and aromatic hydrocarbons were monitored by proton-transfer-reaction mass spectrometry. Two samples, wheat straw and rape plant, were burned in dry conditions and for some experiments wheat straw was burned under wet conditions. We compared the present data to the field data reported by Kudo et al. [2014]. The agreement between the field and laboratory data was obtained for aromatics for relatively more smoldering data of dry samples but the field data were slightly underestimated compared with the laboratory data for oxygenated VOCs (OVOCs) and acetonitrile. When the EFs from the burning of wet samples were investigated, the underestimations for OVOCs and acetonitrile were improved compared with the data of dry samples. It may be a property of the burning of crop residue in the region of high temperature and high humidity that some inside parts of piled crop residue and/or the crop residue facing on the ground are still wet. But the ratios for acetic acid/glycolaldehyde was still lower than 1. This may suggest that strong loss processes of acetic acid/glycolaldehyde are present in the fresh plume.Kudo S., H. Tanimoto, S. Inomata, S. Saito, X. L. Pan, Y. Kanaya, F. Taketani, Z. F. Wang, H. Chen, H. Dong, M. Zhang, and K. Yamaji (2014), Emissions of nonmethane volatile organic compounds from open crop residue burning in Yangtze River Delta region, China, J. Geophys. Res. Atmos., 119, 7684-7698, doi: 10.1002/2013JD021044.

  11. Characterization of biomass burning from olive grove areas: A major source of organic aerosol in PM10 of Southwest Europe

    Science.gov (United States)

    Sánchez de la Campa, Ana M.; Salvador, Pedro; Fernández-Camacho, Rocío; Artiñano, Begoña; Coz, Esther; Márquez, Gonzalo; Sánchez-Rodas, Daniel; de la Rosa, Jesús

    2018-01-01

    The inorganic and organic geochemistry of aerosol particulate matter (APM) was studied in a major olive grove area from Southwest Europe (Baena, Spain). The biomass consists of olive tree branches and the solid waste resulting of the olive oil production. Moreover, high PM10 levels were obtained (31.5 μg m- 3), with two days of exceedance of the daily limit of 50 μg m- 3 (2008/50/CE; EU, 2008) during the experimental period. A high mean levoglucosan concentration was obtained representing up 95% of the total mass of the isomers analysed (280 ng m- 3), while galactosan and mannosan mean concentrations were lower (8.64 ng m- 3 and 7.86 ng m- 3, respectively). The contribution of wood smoke in Baena was estimated, representing 19% of OC and 17% of OM total mass. Positive matrix factor (PMF) was applied to the organic and inorganic aerosols data, which has permitted the identification of five source categories: biomass burning, traffic, mineral dust, marine aerosol and SIC (secondary inorganic compounds). The biomass burning category reached the highest mean contribution to the PM10 mass (41%, 17.6 μg m- 3). In light of these results, the use of biomass resulting from the olive oil production for residential heating and industry must be considered the most important aerosol source during the winter months. The results of this paper can be extrapolated to other olive oil producing areas in the Mediterranean basin. Therefore, a fuller understanding of this type of biomass combustion is required in order to be able to establish appropriate polices and reduce the environmental impact on the population.

  12. Water uptake by biomass burning aerosol at sub- and supersaturated conditions: closure studies and implications for the role of organics

    Directory of Open Access Journals (Sweden)

    U. Dusek

    2011-09-01

    Full Text Available We investigate the CCN activity of freshly emitted biomass burning particles and their hygroscopic growth at a relative humidity (RH of 85%. The particles were produced in the Mainz combustion laboratory by controlled burning of various wood types. The water uptake at sub- and supersaturations is parameterized by the hygroscopicity parameter, κ (c.f. Petters and Kreidenweis, 2007. For the wood burns, κ is low, generally around 0.06. The main emphasis of this study is a comparison of κ derived from measurements at sub- and supersaturated conditions (κG and κCCN, in order to see whether the water uptake at 85% RH can predict the CCN properties of the biomass burning particles. Differences in κGand κCCN can arise through solution non-idealities, the presence of slightly soluble or surface active compounds, or non-spherical particle shape. We find that κG and κCCN agree within experimental uncertainties (of around 30% for particle sizes of 100 and 150 nm; only for 50 nm particles is κCCN larger than κG by a factor of 2. The magnitude of this difference and its dependence on particle size is consistent with the presence of surface active organic compounds. These compounds mainly facilitate the CCN activation of small particles, which form the most concentrated solution droplets at the point of activation. The 50 nm particles, however, are only activated at supersaturations higher than 1% and are therefore of minor importance as CCN in ambient clouds. By comparison with the actual chemical composition of the biomass burning particles, we estimate that the hygroscopicity of the water-soluble organic carbon (WSOC fraction can be represented by a κWSOC value of approximately 0.2. The effective hygroscopicity of a typical wood burning particle can therefore be represented by a linear mixture of an inorganic component with κ ≅ 0.6, a WSOC

  13. Biomass Burning Observation Project Science Plan

    Energy Technology Data Exchange (ETDEWEB)

    Kleinman, KI [Brookhaven National Laboratory; Sedlacek, AJ [Brookhaven National Laboratory

    2013-09-01

    Aerosols from biomass burning perturb Earth’s climate through the direct radiative effect (both scattering and absorption) and through influences on cloud formation and precipitation and the semi-direct effect. Despite much effort, quantities important to determining radiative forcing such as the mass absorption coefficients (MAC) of light-absorbing carbon, secondary organic aerosol (SOA) formation rates, and cloud condensation nuclei (CCN) activity remain in doubt. Field campaigns in northern temperate latitudes have been overwhelmingly devoted to other aerosol sources in spite of biomass burning producing about one-third of the fine particles (PM2.5) in the U.S.

  14. Biomass burning contribution to Beijing aerosol

    Directory of Open Access Journals (Sweden)

    Y. Cheng

    2013-08-01

    Full Text Available Biomass burning, the largest global source of elemental carbon (EC and primary organic carbon (OC, is strongly associated with many subjects of great scientific concern, such as secondary organic aerosol and brown carbon which exert important effects on the environment and on climate in particular. This study investigated the relationships between levoglucosan and other biomass burning tracers (i.e., water soluble potassium and mannosan based on both ambient samples collected in Beijing and source samples. Compared with North America and Europe, Beijing was characterized by high ambient levoglucosan concentrations and low winter to summer ratios of levoglucosan, indicating significant impact of biomass burning activities throughout the year in Beijing. Comparison of levoglucosan and water soluble potassium (K+ levels suggested that it was acceptable to use K+ as a biomass burning tracer during summer in Beijing, while the contribution of fireworks to K+ could be significant during winter. Moreover, the levoglucosan to K+ ratio was found to be lower during the typical summer period (0.21 ± 0.16 compared with the typical winter period (0.51 ± 0.15. Levoglucosan correlated strongly with mannosan (R2 = 0.97 throughout the winter and the levoglucosan to mannosan ratio averaged 9.49 ± 1.63, whereas levoglucosan and mannosan exhibited relatively weak correlation (R2 = 0.73 during the typical summer period when the levoglucosan to mannosan ratio averaged 12.65 ± 3.38. Results from positive matrix factorization (PMF model analysis showed that about 50% of the OC and EC in Beijing were associated with biomass burning processes. In addition, a new source identification method was developed based on the comparison of the levoglucosan to K+ ratio and the levoglucosan to mannosan ratio among different types of biomass. Using this method, the major source of biomass burning aerosol in Beijing was suggested to be the combustion of crop residuals, while the

  15. Emission Factors for Selected Semivolatile Organic Chemicals from Burning of Tropical Biomass Fuels and Estimation of Annual Australian Emissions.

    Science.gov (United States)

    Wang, Xianyu; Meyer, Carl P; Reisen, Fabienne; Keywood, Melita; Thai, Phong K; Hawker, Darryl W; Powell, Jennifer; Mueller, Jochen F

    2017-09-05

    This study reveals that open-field biomass burning can be an important source of various semivolatile organic chemicals (SVOCs) to the atmosphere including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and a range of pesticides. Emission factors (EFs) for 39 individual SVOCs are determined from burning of various fuel types that are common in tropical Australia. Emissions of PAHs are found to be sensitive to differences in combustion efficiencies rather than fuel types, reflecting a de novo formation mechanism. In contrast, revolatilization may be important for other SVOCs such as PCBs. On the basis of the EFs determined in this work, estimates of the annual emissions of these SVOCs from Australian bushfires/wildfires are achieved, including, for example, ∑PAHs (160 (min)-1100 (max) Mg), ∑PCBs (14-300 kg), ∑PBDEs (8.8-590 kg), α-endosulfan (6.5-200 kg), and chlorpyrifos (up to 1400 kg), as well as dioxin toxic equivalents (TEQs) of ∑dioxin-like-PCBs (0.018-1.4 g). Emissions of SVOCs that are predominantly revolatilized appear to be related to their use history, with higher emissions estimated for chemicals that had a greater historical usage and were banned only recently or are still in use.

  16. Single-particle characterization of biomass burning organic aerosol (BBOA: evidence for non-uniform mixing of high molecular weight organics and potassium

    Directory of Open Access Journals (Sweden)

    A. K. Y. Lee

    2016-05-01

    Full Text Available Biomass burning organic aerosol (BBOA can be emitted from natural forest fires and human activities such as agricultural burning and domestic energy generation. BBOA is strongly associated with atmospheric brown carbon (BrC that absorbs near-ultraviolet and visible light, resulting in significant impacts on regional visibility degradation and radiative forcing. The mixing state of BBOA can play a critical role in the prediction of aerosol optical properties. In this work, single-particle measurements from a Soot-Particle Aerosol Mass Spectrometer coupled with a light scattering module (LS-SP-AMS were performed to examine the mixing state of BBOA, refractory black carbon (rBC, and potassium (K, a tracer for biomass burning aerosol in an air mass influenced by wildfire emissions transported from northern Québec to Toronto, representing aged biomass burning plumes. Cluster analysis of single-particle measurements identified five BBOA-related particle types. rBC accounted for 3–14 wt % of these particle types on average. Only one particle type exhibited a strong ion signal for K+, with mass spectra characterized by low molecular weight organic species. The remaining four particle types were classified based on the apparent molecular weight of the BBOA constituents. Two particle types were associated with low potassium content and significant amounts of high molecular weight (HMW organic compounds. Our observations indicate non-uniform mixing of particles within a biomass burning plume in terms of molecular weight and illustrate that HMW BBOA can be a key contributor to low-volatility BrC observed in BBOA particles. The average mass absorption efficiency of low-volatility BBOA is about 0.8–1.1 m2 g−1 based on a theoretical closure calculation. Our estimates indicate that low-volatility BBOA contributes ∼ 33–44 % of thermo-processed particle absorption at 405 nm; and almost all of the BBOA absorption was associated with low

  17. Organic molecular tracers in the atmospheric aerosols from Lumbini, Nepal, in the northern Indo-Gangetic Plain: influence of biomass burning

    Directory of Open Access Journals (Sweden)

    X. Wan

    2017-07-01

    Full Text Available To better understand the characteristics of biomass burning in the northern Indo-Gangetic Plain (IGP, total suspended particles were collected in a rural site, Lumbini, Nepal, during April 2013 to March 2014 and analyzed for the biomass burning tracers (i.e., levoglucosan, mannosan, vanillic acid. The annual average concentration of levoglucosan was 734 ± 1043 ng m−3 with the maximum seasonal mean concentration during post-monsoon season (2206 ± 1753 ng m−3, followed by winter (1161 ± 1347 ng m−3, pre-monsoon (771 ± 524 ng m−3 and minimum concentration during monsoon season (212 ± 279 ng m−3. The other biomass burning tracers (mannosan, galactosan, p-hydroxybenzoic acid, vanillic acid, syringic acid and dehydroabietic acid also showed the similar seasonal variations. There were good correlations among levoglucosan, organic carbon (OC and elemental carbon (EC, indicating significant impact of biomass burning activities on carbonaceous aerosol loading throughout the year in Lumbini area. According to the characteristic ratios, levoglucosan ∕ mannosan (lev ∕ man and syringic acid ∕ vanillic acid (syr ∕ van, we deduced that the high abundances of biomass burning products during non-monsoon seasons were mainly caused by the burning of crop residues and hardwood while the softwood had less contribution. Based on the diagnostic tracer ratio (i.e., lev ∕ OC, the OC derived from biomass burning constituted large fraction of total OC, especially during post-monsoon season. By analyzing the MODIS fire spot product and 5-day air-mass back trajectories, we further demonstrated that organic aerosol composition was not only related to the local agricultural activities and residential biomass usage but also impacted by the regional emissions. During the post-monsoon season, the emissions from rice residue burning in western India and eastern Pakistan could impact particulate

  18. Organic molecular tracers in the atmospheric aerosols from Lumbini, Nepal, in the northern Indo-Gangetic Plain: influence of biomass burning

    Science.gov (United States)

    Wan, Xin; Kang, Shichang; Li, Quanlian; Rupakheti, Dipesh; Zhang, Qianggong; Guo, Junming; Chen, Pengfei; Tripathee, Lekhendra; Rupakheti, Maheswar; Panday, Arnico K.; Wang, Wu; Kawamura, Kimitaka; Gao, Shaopeng; Wu, Guangming; Cong, Zhiyuan

    2017-07-01

    To better understand the characteristics of biomass burning in the northern Indo-Gangetic Plain (IGP), total suspended particles were collected in a rural site, Lumbini, Nepal, during April 2013 to March 2014 and analyzed for the biomass burning tracers (i.e., levoglucosan, mannosan, vanillic acid). The annual average concentration of levoglucosan was 734 ± 1043 ng m-3 with the maximum seasonal mean concentration during post-monsoon season (2206 ± 1753 ng m-3), followed by winter (1161 ± 1347 ng m-3), pre-monsoon (771 ± 524 ng m-3) and minimum concentration during monsoon season (212 ± 279 ng m-3). The other biomass burning tracers (mannosan, galactosan, p-hydroxybenzoic acid, vanillic acid, syringic acid and dehydroabietic acid) also showed the similar seasonal variations. There were good correlations among levoglucosan, organic carbon (OC) and elemental carbon (EC), indicating significant impact of biomass burning activities on carbonaceous aerosol loading throughout the year in Lumbini area. According to the characteristic ratios, levoglucosan / mannosan (lev / man) and syringic acid / vanillic acid (syr / van), we deduced that the high abundances of biomass burning products during non-monsoon seasons were mainly caused by the burning of crop residues and hardwood while the softwood had less contribution. Based on the diagnostic tracer ratio (i.e., lev / OC), the OC derived from biomass burning constituted large fraction of total OC, especially during post-monsoon season. By analyzing the MODIS fire spot product and 5-day air-mass back trajectories, we further demonstrated that organic aerosol composition was not only related to the local agricultural activities and residential biomass usage but also impacted by the regional emissions. During the post-monsoon season, the emissions from rice residue burning in western India and eastern Pakistan could impact particulate air pollution in Lumbini and surrounding regions in southern Nepal. Therefore, our finding

  19. Chemical and physical transformations of organic aerosol from the photo-oxidation of open biomass burning emissions in an environmental chamber

    Science.gov (United States)

    C. J. Hennigan; M. A. Miracolo; G. J. Engelhart; A. A. May; A. A. Presto; T. Lee; A. P. Sullivan; G. R. McMeeking; H. Coe; C. E. Wold; W.-M. Hao; J. B. Gilman; W. C. Kuster; J. de Gouw; B. A. Schichtel; J. L. Collett; S. M. Kreidenweis; A. L. Robinson

    2011-01-01

    Smog chamber experiments were conducted to investigate the chemical and physical transformations of organic aerosol (OA) during photo-oxidation of open biomass burning emissions. The experiments were carried out at the US Forest Service Fire Science Laboratory as part of the third Fire Lab at Missoula Experiment (FLAME III). We investigated emissions from 12 different...

  20. Investigating the links between ozone and organic aerosol chemistry in a biomass burning plume from a prescribed fire in California chaparral

    Science.gov (United States)

    M.J. Alvarado; C.R. Lonsdale; R.J. Yokelson; S.K. Akagi; I.R. Burling; H. Coe; J.S. Craven; E. Fischer; G.R. McMeeking; J.H. Seinfeld; T. Soni; J.W. Taylor; D.R. Weise; C.E. Wold

    2015-01-01

    Within minutes after emission, complex photochemistry in biomass burning smoke plumes can cause large changes in the concentrations of ozone (O3) and organic aerosol (OA). Being able to understand and simulate this rapid chemical evolution under a wide variety of conditions is a critical part of forecasting the impact of these fires on air...

  1. Hygroscopic properties of potassium chloride and its internal mixtures with organic compounds relevant to biomass burning aerosol particles

    Science.gov (United States)

    Jing, Bo; Peng, Chao; Wang, Yidan; Liu, Qifan; Tong, Shengrui; Zhang, Yunhong; Ge, Maofa

    2017-02-01

    While water uptake of aerosols exerts considerable impacts on climate, the effects of aerosol composition and potential interactions between species on hygroscopicity of atmospheric particles have not been fully characterized. The water uptake behaviors of potassium chloride and its internal mixtures with water soluble organic compounds (WSOCs) related to biomass burning aerosols including oxalic acid, levoglucosan and humic acid at different mass ratios were investigated using a hygroscopicity tandem differential mobility analyzer (HTDMA). Deliquescence points of KCl/organic mixtures were observed to occur at lower RH values and over a broader RH range eventually disappearing at high organic mass fractions. This leads to substantial under-prediction of water uptake at intermediate RH. Large discrepancies for water content between model predictions and measurements were observed for KCl aerosols with 75 wt% oxalic acid content, which is likely due to the formation of less hygroscopic potassium oxalate from interactions between KCl and oxalic acid without taken into account in the model methods. Our results also indicate strong influence of levoglucosan on hygroscopic behaviors of multicomponent mixed particles. These findings are important in further understanding the role of interactions between WSOCs and inorganic salt on hygroscopic behaviors and environmental effects of atmospheric particles.

  2. Global biomass burning: Atmospheric, climatic, and biospheric implications

    International Nuclear Information System (INIS)

    Levine, J.S.

    1991-01-01

    As a significant source of atmospheric gases, biomass burning must be addressed as a major environmental problem. Biomass burning includes burning forests and savanna grasslands for land clearing and conversion, burning agricultural stubble and waste after harvesting, and burning biomass fuels. The editor discusses the history of biomass burning and provides an overview of the individual chapters

  3. A method for smoke marker measurements and its potential application for determining the contribution of biomass burning from wildfires and prescribed fires to ambient PM2.5 organic carbon

    Science.gov (United States)

    A. P. Sullivan; A. S. Holden; L. A. Patterson; G. R. McMeeking; S. M. Kreidenweis; W. C. Malm; W. M. Hao; C. E. Wold; J. L. Collett

    2008-01-01

    Biomass burning is an important source of particulate organic carbon (OC) in the atmosphere. Quantifying this contribution in time and space requires a means of routinely apportioning contributions of smoke from biomass burning to OC. Smoke marker (for example, levoglucosan) measurements provide the most common approach for making this determination. A lack of source...

  4. Effect of secondary organic aerosol coating thickness on the real-time detection and characterization of biomass-burning soot by two particle mass spectrometers

    Science.gov (United States)

    Ahern, Adam T.; Subramanian, Ramachandran; Saliba, Georges; Lipsky, Eric M.; Donahue, Neil M.; Sullivan, Ryan C.

    2016-12-01

    Biomass burning is a large source of light-absorbing refractory black carbon (rBC) particles with a wide range of morphologies and sizes. The net radiative forcing from these particles is strongly dependent on the amount and composition of non-light-absorbing material internally mixed with the rBC and on the morphology of the mixed particles. Understanding how the mixing state and morphology of biomass-burning aerosol evolves in the atmosphere is critical for constraining the influence of these particles on radiative forcing and climate. We investigated the response of two commercial laser-based particle mass spectrometers, the vacuum ultraviolet (VUV) ablation LAAPTOF and the IR vaporization SP-AMS, to monodisperse biomass-burning particles as we sequentially coated the particles with secondary organic aerosol (SOA) from α-pinene ozonolysis. We studied three mobility-selected soot core sizes, each with a number of successively thicker coatings of SOA applied. Using IR laser vaporization, the SP-AMS had different changes in sensitivity to rBC compared to potassium as a function of applied SOA coatings. We show that this is due to different effective beam widths for the IR laser vaporization region of potassium versus black carbon. The SP-AMS's sensitivity to black carbon (BC) mass was not observed to plateau following successive SOA coatings, despite achieving high OA : BC mass ratios greater than 9. We also measured the ion fragmentation pattern of biomass-burning rBC and found it changed only slightly with increasing SOA mass. The average organic matter ion signal measured by the LAAPTOF demonstrated a positive correlation with the condensed SOA mass on individual particles, despite the inhomogeneity of the particle core compositions. This demonstrates that the LAAPTOF can obtain quantitative mass measurements of aged soot-particle composition from realistic biomass-burning particles with complex morphologies and composition.

  5. Effect of secondary organic aerosol coating thickness on the real-time detection and characterization of biomass-burning soot by two particle mass spectrometers

    Directory of Open Access Journals (Sweden)

    A. T. Ahern

    2016-12-01

    Full Text Available Biomass burning is a large source of light-absorbing refractory black carbon (rBC particles with a wide range of morphologies and sizes. The net radiative forcing from these particles is strongly dependent on the amount and composition of non-light-absorbing material internally mixed with the rBC and on the morphology of the mixed particles. Understanding how the mixing state and morphology of biomass-burning aerosol evolves in the atmosphere is critical for constraining the influence of these particles on radiative forcing and climate. We investigated the response of two commercial laser-based particle mass spectrometers, the vacuum ultraviolet (VUV ablation LAAPTOF and the IR vaporization SP-AMS, to monodisperse biomass-burning particles as we sequentially coated the particles with secondary organic aerosol (SOA from α-pinene ozonolysis. We studied three mobility-selected soot core sizes, each with a number of successively thicker coatings of SOA applied. Using IR laser vaporization, the SP-AMS had different changes in sensitivity to rBC compared to potassium as a function of applied SOA coatings. We show that this is due to different effective beam widths for the IR laser vaporization region of potassium versus black carbon. The SP-AMS's sensitivity to black carbon (BC mass was not observed to plateau following successive SOA coatings, despite achieving high OA : BC mass ratios greater than 9. We also measured the ion fragmentation pattern of biomass-burning rBC and found it changed only slightly with increasing SOA mass. The average organic matter ion signal measured by the LAAPTOF demonstrated a positive correlation with the condensed SOA mass on individual particles, despite the inhomogeneity of the particle core compositions. This demonstrates that the LAAPTOF can obtain quantitative mass measurements of aged soot-particle composition from realistic biomass-burning particles with complex morphologies and composition.

  6. Characteristics of ambient volatile organic compounds and the influence of biomass burning at a rural site in Northern China during summer 2013

    Science.gov (United States)

    Zhu, Yanhong; Yang, Lingxiao; Chen, Jianmin; Wang, Xinfeng; Xue, Likun; Sui, Xiao; Wen, Liang; Xu, Caihong; Yao, Lan; Zhang, Junmei; Shao, Min; Lu, Sihua; Wang, Wenxing

    2016-01-01

    Volatile organic compounds (VOCs) were measured at a rural site in the North China Plain during summer 2013, which focused on VOCs characteristics and impact of biomass burning. Alkanes and halocarbons made the largest contribution to the sum of the mixing ratio of each VOC compound (total VOCs). Most VOC species mixing ratios had similar day-to-day variability, indicating that the air mass at the sampling site had small local perturbation. Accumulation of pollutants due to biomass burning and advection of plumes from urbanized areas upwind had important impact on diurnal variation patterns of the VOC group. Ethylbenzene/m,p-xylene ratio and its relationship with O3 indicated that sampling site received an aged air parcel. The aromatics and alkenes were the dominant contributors to total ozone formation potential (OFP). The top 5 VOC species based on OFP were toluene, isoprene, ethene, propene and n-Hexane. During the biomass burning period, VOCs had higher OFP values, especially the aromatics and alkynes. The backward trajectories indicated that extensive transport of biomass burning from the Shandong and Hebei provinces had an important effect on VOCs pollution levels.

  7. Hygroscopicity of organic compounds from biomass burning and their influence on the water uptake of mixed organic-ammonium sulfate aerosols

    Science.gov (United States)

    Lei, T.; Zuend, A.; Wang, W. G.; Zhang, Y. H.; Ge, M. F.

    2014-05-01

    Hygroscopic behavior of organic compounds, including levoglucosan, 4-hydroxybenzoic acid and humic acid, and their effects on the hygroscopic properties of ammonium sulfate (AS) in internally mixed particles are studied by a hygroscopicity tandem differential mobility analyzer (HTDMA). The organic compounds used represent pyrolysis products of wood that are emitted from biomass burning sources. It is found that humic acid aerosol particles only slightly take up water, starting at RH above ∼70%. This is contrasted by the continuous water absorption of levoglucosan aerosol particles in the range 5-90% RH. However, no hygroscopic growth is observed for 4-hydroxybenzoic acid aerosol particles. Predicted water uptake using the ideal solution theory, the AIOMFAC model and the E-AIM (with UNIFAC) model are consistent with measured hygroscopic growth factors of levoglucosan. However, the use of these models without consideration of crystalline organic phases is not appropriate to describe the hygroscopicity of organics that do not exhibit continuous water uptake, such as 4-hydroxybenzoic acid and humic acid. Mixed aerosol particles consisting of ammonium sulfate and levoglucosan, 4-hydroxybenzoic acid, or humic acid with different organic mass fractions, take up a reduced amount of water above 80% RH (above AS deliquescence) relative to pure ammonium sulfate aerosol particles of the same mass. Hygroscopic growth of mixtures of ammonium sulfate and levoglucosan with different organic mass fractions agree well with the predictions of the thermodynamic models. Use of the Zdanovskii-Stokes-Robinson (ZSR) relation and AIOMFAC model lead to good agreement with measured growth factors of mixtures of ammonium sulfate with 4-hydrobenxybenzoic acid assuming an insoluble organic phase. Deviations of model predictions from the HTDMA measurement are mainly due to the occurrence of a microscopical solid phase restructuring at increased humidity (morphology effects), which are not

  8. Regional biomass burning trends in India: Analysis of satellite fire data

    Indian Academy of Sciences (India)

    agricultural or crop residue in fields (Levine 2000;. Bond et al. 2004; Sahu et al. 2012). Biomass burning ... For some species like carbon monoxide (CO) and volatile organic compounds (VOCs), the biomass burning ..... the harvesting practices as burning of agricultural residue makes major fraction of biomass which is.

  9. Diurnal variations of organic molecular tracers and stable carbon isotopic composition in atmospheric aerosols over Mt. Tai in the North China Plain: an influence of biomass burning

    Directory of Open Access Journals (Sweden)

    P. Q. Fu

    2012-09-01

    Full Text Available Organic tracer compounds, as well as organic carbon (OC, elemental carbon (EC, water-soluble organic carbon (WSOC, and stable carbon isotope ratios (δ13C of total carbon (TC have been investigated in aerosol samples collected during early and late periods of the Mount Tai eXperiment 2006 (MTX2006 field campaign in the North China Plain. Total solvent-extractable fractions were investigated by gas chromatography/mass spectrometry. More than 130 organic compounds were detected in the aerosol samples. They were grouped into twelve organic compound classes, including biomass burning tracers, biogenic primary sugars, biogenic secondary organic aerosol (SOA tracers, and anthropogenic tracers such as phthalates, hopanes and polycyclic aromatic hydrocarbons (PAHs. In early June when the field burning activities of wheat straws in the North China Plain were very active, the total identified organics (2090 ± 1170 ng m−3 were double those in late June (926 ± 574 ng m−3. All the compound classes were more abundant in early June than in late June, except phthalate esters, which were higher in late June. Levoglucosan (88–1210 ng m−3, mean 403 ng m−3 was found as the most abundant single compound in early June, while diisobutyl phthalate was the predominant species in late June. During the biomass-burning period in early June, the diurnal trends of most of the primary and secondary organic aerosol tracers were characterized by the concentration peaks observed at mid-night or in early morning, while in late June most of the organic species peaked in late afternoon. This suggests that smoke plumes from biomass burning can uplift the aerosol particulate matter to a certain altitude, which could be further transported to and encountered the summit of Mt. Tai during nighttime. On the basis of the tracer-based method for the estimation of biomass-burning OC, fungal-spore OC and biogenic secondary

  10. Diurnal variations of organic molecular tracers and stable carbon isotopic composition in atmospheric aerosols over Mt. Tai in the North China Plain: an influence of biomass burning

    Science.gov (United States)

    Fu, P. Q.; Kawamura, K.; Chen, J.; Li, J.; Sun, Y. L.; Liu, Y.; Tachibana, E.; Aggarwal, S. G.; Okuzawa, K.; Tanimoto, H.; Kanaya, Y.; Wang, Z. F.

    2012-09-01

    Organic tracer compounds, as well as organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC), and stable carbon isotope ratios (δ13C) of total carbon (TC) have been investigated in aerosol samples collected during early and late periods of the Mount Tai eXperiment 2006 (MTX2006) field campaign in the North China Plain. Total solvent-extractable fractions were investigated by gas chromatography/mass spectrometry. More than 130 organic compounds were detected in the aerosol samples. They were grouped into twelve organic compound classes, including biomass burning tracers, biogenic primary sugars, biogenic secondary organic aerosol (SOA) tracers, and anthropogenic tracers such as phthalates, hopanes and polycyclic aromatic hydrocarbons (PAHs). In early June when the field burning activities of wheat straws in the North China Plain were very active, the total identified organics (2090 ± 1170 ng m-3) were double those in late June (926 ± 574 ng m-3). All the compound classes were more abundant in early June than in late June, except phthalate esters, which were higher in late June. Levoglucosan (88-1210 ng m-3, mean 403 ng m-3) was found as the most abundant single compound in early June, while diisobutyl phthalate was the predominant species in late June. During the biomass-burning period in early June, the diurnal trends of most of the primary and secondary organic aerosol tracers were characterized by the concentration peaks observed at mid-night or in early morning, while in late June most of the organic species peaked in late afternoon. This suggests that smoke plumes from biomass burning can uplift the aerosol particulate matter to a certain altitude, which could be further transported to and encountered the summit of Mt. Tai during nighttime. On the basis of the tracer-based method for the estimation of biomass-burning OC, fungal-spore OC and biogenic secondary organic carbon (SOC), we estimate that an average of 24% (up to 64%) of the

  11. Diurnal variations of organic molecular tracers and stable carbon isotopic compositions in atmospheric aerosols over Mt. Tai in North China Plain: an influence of biomass burning

    Science.gov (United States)

    Fu, P. Q.; Kawamura, K.; Chen, J.; Li, J.; Sun, Y. L.; Liu, Y.; Tachibana, E.; Aggarwal, S. G.; Okuzawa, K.; Tanimoto, H.; Kanaya, Y.; Wang, Z. F.

    2012-04-01

    Organic tracer compounds of tropospheric aerosols, as well as organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC), and stable carbon isotope ratios (δ13C) of total carbon (TC) have been investigated for aerosol samples collected during early and late periods of Mount Tai eXperiment 2006 (MTX2006) field campaign in North China Plain. Total solvent extracts were investigated by gas chromatography/mass spectrometry. More than 130 organic compounds were detected in the aerosol samples. They were grouped into twelve organic compound classes, including biomass burning tracers, biogenic primary sugars, biogenic secondary organic aerosol (SOA) tracers, and anthropogenic tracers such as phthalates, hopanes and polycyclic aromatic hydrocarbons (PAHs). In early June when the field burning activities of wheat straws in North China Plain were very active, the total identified organics (2090 ± 1170 ng m-3) were double those in late June (926 ± 574 ng m-3). All the compound classes were more abundant in early June than in late June, except phthalate esters, which were higher in late June. Levoglucosan (88-1210 ng m-3, 403 ng m-3) was found as the most abundant single compound in early June, while diisobutyl phthalate was the predominant species in late June. During the biomass-burning period in early June, the diurnal trends of most of the primary and secondary organic aerosol tracers were characterized by the concentration peaks observed at mid-night or in early morning, while in late June most of the organic species peaked in late afternoon. This suggests that smoke plumes from biomass burning can uplift the aerosol particulate matter to a certain altitude and then transported to and encountered the summit of Mt. Tai during nighttime. On the basis of the tracer-based method for the estimation of biomass-burning OC, fungal-spore OC and biogenic secondary organic carbon (SOC), we estimate that an average of 24% (up to 64%) of the OC in the Mt. Tai

  12. Emissions of Black Carbon, Organic, and Inorganic Aerosols From Biomass Burning in North America and Asia in 2008

    Science.gov (United States)

    Kondo, Y.; Matsui, H.; Moteki, N.; Sahu, L.; Takegawa, N.; Kajino, M.; Zhao, Y.; Cubison, M. J.; Jimenez, J. L.; Vay, S.; hide

    2011-01-01

    Reliable assessment of the impact of aerosols emitted from boreal forest fires on the Arctic climate necessitates improved understanding of emissions and the microphysical properties of carbonaceous (black carbon (BC) and organic aerosols (OA)) and inorganic aerosols. The size distributions of BC were measured by an SP2 based on the laser-induced incandescence technique on board the DC-8 aircraft during the NASA ARCTAS campaign. Aircraft sampling was made in fresh plumes strongly impacted by wildfires in North America (Canada and California) in summer 2008 and in those transported from Asia (Siberia in Russia and Kazakhstan) in spring 2008. We extracted biomass burning plumes using particle and tracer (CO, CH3CN, and CH2Cl2) data. OA constituted the dominant fraction of aerosols mass in the submicron range. The large majority of the emitted particles did not contain BC. We related the combustion phase of the fire as represented by the modified combustion efficiency (MCE) to the emission ratios between BC and other species. In particular, we derived the average emission ratios of BC/CO = 2.3 +/- 2.2 and 8.5 +/- 5.4 ng/cu m/ppbv for BB in North America and Asia, respectively. The difference in the BC/CO emission ratios is likely due to the difference in MCE. The count median diameters and geometric standard deviations of the lognormal size distribution of BC in the BB plumes were 136-141 nm and 1.32-1.36, respectively, and depended little on MCE. These BC particles were thickly coated, with shell/core ratios of 1.3-1.6. These parameters can be used directly for improving model estimates of the impact of BB in the Arctic.

  13. Investigation of molar volume and surfactant characteristics of water-soluble organic compounds in biomass burning aerosol

    Directory of Open Access Journals (Sweden)

    A. Asa-Awuku

    2008-02-01

    Full Text Available In this study, we characterize the CCN activity of the water-soluble organics in biomass burning aerosol. The aerosol after collection upon filters is dissolved in water using sonication. Hydrophobic and hydrophilic components are fractionated from a portion of the original sample using solid phase extraction, and subsequently desalted. The surface tension and CCN activity of these different samples are measured with a KSV CAM 200 goniometer and a DMT Streamwise Thermal Gradient CCN Counter, respectively. The measurements show that the strongest surfactants are isolated in the hydrophobic fraction, while the hydrophilics exhibit negligible surface tension depression. The presence of salts (primarily (NH42SO4 in the hydrophobic fraction substantially enhances surface tension depression; their synergistic effects considerably enhance CCN activity, exceeding that of pure (NH42SO4. From our analysis, average thermodynamic properties (i.e, molar volume are determined for samples using our newly developed Köhler Theory Analysis (KTA method. The molar mass of the hydrophilic and hydrophobic aerosol components is estimated to be 87±26 g mol−1 and 780±231 g mol−1, respectively. KTA also suggests that the relative proportion (in moles of hydrophobic to hydrophilic compounds in the original sample to be 1:3. For the first time, KTA is applied to an aerosol with this level of complexity and displays its potential for providing physically-based constraints for GCM parameterizations of the aerosol indirect effect.

  14. Bulk and molecular-level characterization of laboratory-aged biomass burning organic aerosol from oak leaf and heartwood fuels

    Directory of Open Access Journals (Sweden)

    C. F. Fortenberry

    2018-02-01

    Full Text Available The chemical complexity of biomass burning organic aerosol (BBOA greatly increases with photochemical aging in the atmosphere, necessitating controlled laboratory studies to inform field observations. In these experiments, BBOA from American white oak (Quercus alba leaf and heartwood samples was generated in a custom-built emissions and combustion chamber and photochemically aged in a potential aerosol mass (PAM flow reactor. A thermal desorption aerosol gas chromatograph (TAG was used in parallel with a high-resolution time-of-flight aerosol mass spectrometer (AMS to analyze BBOA chemical composition at different levels of photochemical aging. Individual compounds were identified and integrated to obtain relative decay rates for key molecules. A recently developed chromatogram binning positive matrix factorization (PMF technique was used to obtain mass spectral profiles for factors in TAG BBOA chromatograms, improving analysis efficiency and providing a more complete determination of unresolved complex mixture (UCM components. Additionally, the recently characterized TAG decomposition window was used to track molecular fragments created by the decomposition of thermally labile BBOA during sample desorption. We demonstrate that although most primary (freshly emitted BBOA compounds deplete with photochemical aging, certain components eluting within the TAG thermal decomposition window are instead enhanced. Specifically, the increasing trend in the decomposition m∕z 44 signal (CO2+ indicates formation of secondary organic aerosol (SOA in the PAM reactor. Sources of m∕z 60 (C2H4O2+, typically attributed to freshly emitted BBOA in AMS field measurements, were also investigated. From the TAG chemical speciation and decomposition window data, we observed a decrease in m∕z 60 with photochemical aging due to the decay of anhydrosugars (including levoglucosan and other compounds, as well as an increase in m∕z 60 due to the formation of

  15. Bulk and molecular-level characterization of laboratory-aged biomass burning organic aerosol from oak leaf and heartwood fuels

    Science.gov (United States)

    Fortenberry, Claire F.; Walker, Michael J.; Zhang, Yaping; Mitroo, Dhruv; Brune, William H.; Williams, Brent J.

    2018-02-01

    The chemical complexity of biomass burning organic aerosol (BBOA) greatly increases with photochemical aging in the atmosphere, necessitating controlled laboratory studies to inform field observations. In these experiments, BBOA from American white oak (Quercus alba) leaf and heartwood samples was generated in a custom-built emissions and combustion chamber and photochemically aged in a potential aerosol mass (PAM) flow reactor. A thermal desorption aerosol gas chromatograph (TAG) was used in parallel with a high-resolution time-of-flight aerosol mass spectrometer (AMS) to analyze BBOA chemical composition at different levels of photochemical aging. Individual compounds were identified and integrated to obtain relative decay rates for key molecules. A recently developed chromatogram binning positive matrix factorization (PMF) technique was used to obtain mass spectral profiles for factors in TAG BBOA chromatograms, improving analysis efficiency and providing a more complete determination of unresolved complex mixture (UCM) components. Additionally, the recently characterized TAG decomposition window was used to track molecular fragments created by the decomposition of thermally labile BBOA during sample desorption. We demonstrate that although most primary (freshly emitted) BBOA compounds deplete with photochemical aging, certain components eluting within the TAG thermal decomposition window are instead enhanced. Specifically, the increasing trend in the decomposition m/z 44 signal (CO2+) indicates formation of secondary organic aerosol (SOA) in the PAM reactor. Sources of m/z 60 (C2H4O2+), typically attributed to freshly emitted BBOA in AMS field measurements, were also investigated. From the TAG chemical speciation and decomposition window data, we observed a decrease in m/z 60 with photochemical aging due to the decay of anhydrosugars (including levoglucosan) and other compounds, as well as an increase in m/z 60 due to the formation of thermally labile organic

  16. OH reactivity and potential SOA yields from volatile organic compounds and other trace gases measured in controlled laboratory biomass burns

    Science.gov (United States)

    J. B. Gilman; C. Warneke; W. C. Kuster; P. D. Goldan; P. R. Veres; J. M. Roberts; J. A. de Gouw; I. R. Burling; R. J. Yokelson

    2010-01-01

    A comprehensive suite of instruments were used to characterize volatile organic compounds (VOCs) and other trace gases (e.g., CO, CH4, NO2, etc.) emitted from controlled burns of various fuel types common to the Southeastern and Southwestern United States. These laboratory-based measurements were conducted in February 2009 at the U.S. Department of Agriculture’s Fire...

  17. A dual-chamber method for quantifying the effects of atmospheric perturbations on secondary organic aerosol formation from biomass burning emissions

    Science.gov (United States)

    Tkacik, Daniel S.; Robinson, Ellis S.; Ahern, Adam; Saleh, Rawad; Stockwell, Chelsea; Veres, Patrick; Simpson, Isobel J.; Meinardi, Simone; Blake, Donald R.; Yokelson, Robert J.; Presto, Albert A.; Sullivan, Ryan C.; Donahue, Neil M.; Robinson, Allen L.

    2017-06-01

    Biomass burning (BB) is a major source of atmospheric pollutants. Field and laboratory studies indicate that secondary organic aerosol (SOA) formation from BB emissions is highly variable. We investigated sources of this variability using a novel dual-smog-chamber method that directly compares the SOA formation from the same BB emissions under two different atmospheric conditions. During each experiment, we filled two identical Teflon smog chambers simultaneously with BB emissions from the same fire. We then perturbed the smoke with UV lights, UV lights plus nitrous acid (HONO), or dark ozone in one or both chambers. These perturbations caused SOA formation in nearly every experiment with an average organic aerosol (OA) mass enhancement ratio of 1.78 ± 0.91 (mean ± 1σ). However, the effects of the perturbations were highly variable ranging with OA mass enhancement ratios ranging from 0.7 (30% loss of OA mass) to 4.4 across the set of perturbation experiments. There was no apparent relationship between OA enhancement and perturbation type, fuel type, and modified combustion efficiency. To better isolate the effects of different perturbations, we report dual-chamber enhancement (DUCE), which is the quantity of the effects of a perturbation relative to a reference condition. DUCE values were also highly variable, even for the same perturbation and fuel type. Gas measurements indicate substantial burn-to-burn variability in the magnitude and composition of SOA precursor emissions, even in repeated burns of the same fuel under nominally identical conditions. Therefore, the effects of different atmospheric perturbations on SOA formation from BB emissions appear to be less important than burn-to-burn variability.

  18. Emissions from Biomass Burning in the Yucatan

    Science.gov (United States)

    Yokelson, R.; Crounse, J. D.; DeCarlo, P. F.; Karl, T.; Urbanski, S.; Atlas, E.; Campos, T.; Shinozuka, Y.; Kapustin, V.; Clarke, A. D.; hide

    2009-01-01

    In March 2006 two instrumented aircraft made the first detailed field measurements of biomass burning (BB) emissions in the Northern Hemisphere tropics as part of the MILAGRO project. The aircraft were the National Center for Atmospheric Research C-130 and a University of Montana/US Forest Service Twin Otter. The initial emissions of up to 49 trace gas or particle species were measured from 20 deforestation and crop residue fires on the Yucatan peninsula. This included two trace gases useful as indicaters of BB (HCN and acetonitrile) and several rarely, or never before, measured species: OH, peroxyacetic acid, propanoic acid, hydrogen peroxide, methane sulfonic acid, and sulfuric acid. Crop residue fires emitted more organic acids and ammonia than deforestation fires, but the emissions from the main fire types were otherwise fairly similar. The Yucatan fires emitted unusually amounts of SO2 and particle chloride, likely due to a strong marine influence on the peninsula.

  19. Urban, Regional and Global Impacts of Biomass Burning Emissions

    Science.gov (United States)

    Artaxo, P.; Ferreira De Brito, J.; Barbosa, H. M.; Rizzo, L. V.; Setzer, A.; Cirino, G.

    2013-05-01

    Biomass burning is a major regional and global driver for atmospheric composition. Its effects in regional and global climate are very significant, but still difficult to assess. Even in large urban areas in Latin America such as Mexico City, Sao Paulo and Santiago, and in developed areas such as Paris and Californian cities it is possible to observe significant biomass burning effects air quality. The wood burning components as well as inner city and vicinities burning if agricultural residues impact heavily the concentration of organic aerosol, carbon monoxide and ozone in urban areas. Regionally, regions such as Amazonia and Central America show large plumes of smoke that extend their impact over continental areas, with changes in the radiation balance, air quality and climate. The deforestation rate in Amazonia have dropped strongly from 27,000 Km2 in 2004 to 6,200 Km2 in 2011, a very significant reduction, but this reduction was not observed in Africa and Southeast Asia. Health effects of biomass burning emissions are very significant, and observed in several key regions. Remote sensing techniques for fire detection have progressed significantly and long time series (10-15 years) are now feasible. The black carbon associated with biomass burning has important impacts in formation and development of clouds in Amazonia and other regions. The organic component of biomass burning emissions scatter light and increase diffuse radiation that alters carbon uptake in large regions of Amazonia and certainly other forested areas. Increase of up to 30% in carbon uptake associated with biomass burning emissions was observed in Amazonia, as part of the LBA Experiment. New analytical methods that quantify the absorption angstrom exponent of biomass burning and fossil fuel black carbon (BC) can differentiate BC from different burning sources. In addition, the hygroscopic properties of particles with a core shell of BC coated with organic compounds can be measured and shows

  20. Emission factors from residential combustion appliances burning Portuguese biomass fuels.

    Science.gov (United States)

    Fernandes, A P; Alves, C A; Gonçalves, C; Tarelho, L; Pio, C; Schimdl, C; Bauer, H

    2011-11-01

    Smoke from residential wood burning has been identified as a major contributor to air pollution, motivating detailed emission measurements under controlled conditions. A series of experiments were performed to compare the emission levels from two types of wood-stoves to those of fireplaces. Eight types of biomass were burned in the laboratory: wood from seven species of trees grown in the Portuguese forest (Pinus pinaster, Eucalyptus globulus, Quercus suber, Acacia longifolia, Quercus faginea, Olea europaea and Quercus ilex rotundifolia) and briquettes produced from forest biomass waste. Average emission factors were in the ranges 27.5-99.2 g CO kg(-1), 552-1660 g CO(2) kg(-1), 0.66-1.34 g NO kg(-1), and 0.82-4.94 g hydrocarbons kg(-1) of biomass burned (dry basis). Average particle emission factors varied between 1.12 and 20.06 g kg(-1) biomass burned (dry basis), with higher burn rates producing significantly less particle mass per kg wood burned than the low burn rates. Particle mass emission factors from wood-stoves were lower than those from the fireplace. The average emission factors for organic and elemental carbon were in the intervals 0.24-10.1 and 0.18-0.68 g kg(-1) biomass burned (dry basis), respectively. The elemental carbon content of particles emitted from the energy-efficient "chimney type" logwood stove was substantially higher than in the conventional cast iron stove and fireplace, whereas the opposite was observed for the organic carbon fraction. Pinus pinaster, the only softwood species among all, was the biofuel with the lowest emissions of particles, CO, NO and hydrocarbons.

  1. Global Burned Area and Biomass Burning Emissions from Small Fires

    Science.gov (United States)

    Randerson, J. T.; Chen, Y.; vanderWerf, G. R.; Rogers, B. M.; Morton, D. C.

    2012-01-01

    In several biomes, including croplands, wooded savannas, and tropical forests, many small fires occur each year that are well below the detection limit of the current generation of global burned area products derived from moderate resolution surface reflectance imagery. Although these fires often generate thermal anomalies that can be detected by satellites, their contributions to burned area and carbon fluxes have not been systematically quantified across different regions and continents. Here we developed a preliminary method for combining 1-km thermal anomalies (active fires) and 500 m burned area observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) to estimate the influence of these fires. In our approach, we calculated the number of active fires inside and outside of 500 m burn scars derived from reflectance data. We estimated small fire burned area by computing the difference normalized burn ratio (dNBR) for these two sets of active fires and then combining these observations with other information. In a final step, we used the Global Fire Emissions Database version 3 (GFED3) biogeochemical model to estimate the impact of these fires on biomass burning emissions. We found that the spatial distribution of active fires and 500 m burned areas were in close agreement in ecosystems that experience large fires, including savannas across southern Africa and Australia and boreal forests in North America and Eurasia. In other areas, however, we observed many active fires outside of burned area perimeters. Fire radiative power was lower for this class of active fires. Small fires substantially increased burned area in several continental-scale regions, including Equatorial Asia (157%), Central America (143%), and Southeast Asia (90%) during 2001-2010. Globally, accounting for small fires increased total burned area by approximately by 35%, from 345 Mha/yr to 464 Mha/yr. A formal quantification of uncertainties was not possible, but sensitivity

  2. Global biomass burning. Atmospheric, climatic, and biospheric implications

    International Nuclear Information System (INIS)

    Levine, J.S.

    1991-01-01

    Biomass burning is a significant source of atmospheric gases and, as such, may contribute to global climate changes. Biomass burning includes burning forests and savanna grasslands for land clearing, burning agricultural stubble and waste after harvesting, and burning biomass fuels. The chapters in this volume include the following topics: remote sensing of biomass burning from space;geographical distribution of burning; combustion products of burning in tropical, temperate and boreal ecosystems; burning as a global source of atmospheric gases and particulates; impacts of biomass burning gases and particulates on global climate; and the role of biomass burning on biodiversity and past global extinctions. A total of 1428 references are cited for the 63 chapters. Individual chapters are indexed separately for the data bases

  3. Emissions from biomass burning in the Yucatan

    Directory of Open Access Journals (Sweden)

    R. J. Yokelson

    2009-08-01

    Full Text Available In March 2006 two instrumented aircraft made the first detailed field measurements of biomass burning (BB emissions in the Northern Hemisphere tropics as part of the MILAGRO project. The aircraft were the National Center for Atmospheric Research C-130 and a University of Montana/US Forest Service Twin Otter. The initial emissions of up to 49 trace gas or particle species were measured from 20 deforestation and crop residue fires on the Yucatan peninsula. This included two trace gases useful as indicators of BB (HCN and acetonitrile and several rarely, or never before, measured species: OH, peroxyacetic acid, propanoic acid, hydrogen peroxide, methane sulfonic acid, and sulfuric acid. Crop residue fires emitted more organic acids and ammonia than deforestation fires, but the emissions from the main fire types were otherwise fairly similar. The Yucatan fires emitted unusually high amounts of SO2 and particle chloride, likely due to a strong marine influence on this peninsula. As smoke from one fire aged, the ratio ΔO3/ΔCO increased to ~15% in <~1 h similar to the fast net production of O3 in BB plumes observed earlier in Africa. The rapid change in O3 occurs at a finer spatial scale than is employed in global models and is also faster than predicted by micro-scale models. Fast increases in PAN, H2O2, and two organic acids were also observed. The amount of secondary organic acid is larger than the amount of known precursors. Rapid secondary formation of organic and inorganic aerosol was observed with the ratio ΔPM2.5/ΔCO more than doubling in ~1.4±0.7 h. The OH measurements revealed high initial levels (>1×107 molecules/cm3 that were likely caused in part by high initial HONO (~10% of NOy. Thus, more research is needed to understand critical post emission processes for the second-largest trace gas source on Earth. It is estimated that

  4. Emissions from biomass burning in the Yucatan

    Science.gov (United States)

    R. J. Yokelson; J. D. Crounse; P. F. DeCarlo; T. Karl; S. Urbanski; E. Atlas; T. Campos; Y. Shinozuka; V. Kapustin; A. D. Clarke; A. Weinheimer; D. J. Knapp; D. D. Montzka; J. Holloway; P. Weibring; F. Flocke; W. Zheng; D. Toohey; P. O. Wennberg; C. Wiedinmyer; L. Mauldin; A. Fried; D. Richter; J. Walega; J. L. Jimenez; K. Adachi; P. R. Buseck; S. R. Hall; R. Shetter

    2009-01-01

    In March 2006 two instrumented aircraft made the first detailed field measurements of biomass burning (BB) emissions in the Northern Hemisphere tropics as part of the MILAGRO project. The aircraft were the National Center for Atmospheric Research C-130 and a University of Montana/ US Forest Service Twin Otter. The initial emissions of up to 49 trace gas or particle...

  5. OH-initiated Aging of Biomass Burning Aerosol during FIREX

    Science.gov (United States)

    Lim, C. Y.; Hagan, D. H.; Cappa, C. D.; Kroll, J. H.; Coggon, M.; Koss, A.; Sekimoto, K.; De Gouw, J. A.; Warneke, C.

    2017-12-01

    Biomass burning emissions represent a major source of fine particulate matter to the atmosphere, and this source will likely become increasingly important in the future due to changes in the Earth's climate. Understanding the effects that increased fire emissions have on both air quality and climate requires understanding the composition of the particles emitted, since chemical and physical composition directly impact important particle properties such as absorptivity, toxicity, and cloud condensation nuclei activity. However, the composition of biomass burning particles in the atmosphere is dynamic, as the particles are subject to the condensation of low-volatility vapors and reaction with oxidants such as the hydroxyl radical (OH) during transport. Here we present a series of laboratory chamber experiments on the OH-initiated aging of biomass burning aerosol performed at the Fire Sciences Laboratory in Missoula, MT as part of the Fire Influences on Regional and Global Environments Experiment (FIREX) campaign. We describe the evolution of biomass burning aerosol produced from a variety of fuels operating the chamber in both particle-only and gas + particle mode, focusing on changes to the organic composition. In particle-only mode, gas-phase biomass burning emissions are removed before oxidation to focus on heterogeneous oxidation, while gas + particle mode includes both heterogeneous oxidation and condensation of oxidized volatile organic compounds onto the particles (secondary organic aerosol formation). Variability in fuels and burning conditions lead to differences in aerosol loading and secondary aerosol production, but in all cases aging results in a significant and rapid increases in the carbon oxidation state of the particles.

  6. Multiphase chemical kinetics of OH radical uptake by molecular organic markers of biomass burning aerosols: humidity and temperature dependence, surface reaction, and bulk diffusion.

    Science.gov (United States)

    Arangio, Andrea M; Slade, Jonathan H; Berkemeier, Thomas; Pöschl, Ulrich; Knopf, Daniel A; Shiraiwa, Manabu

    2015-05-14

    Multiphase reactions of OH radicals are among the most important pathways of chemical aging of organic aerosols in the atmosphere. Reactive uptake of OH by organic compounds has been observed in a number of studies, but the kinetics of mass transport and chemical reaction are still not fully understood. Here we apply the kinetic multilayer model of gas-particle interactions (KM-GAP) to experimental data from OH exposure studies of levoglucosan and abietic acid, which serve as surrogates and molecular markers of biomass burning aerosol (BBA). The model accounts for gas-phase diffusion within a cylindrical coated-wall flow tube, reversible adsorption of OH, surface-bulk exchange, bulk diffusion, and chemical reactions at the surface and in the bulk of the condensed phase. The nonlinear dependence of OH uptake coefficients on reactant concentrations and time can be reproduced by KM-GAP. We find that the bulk diffusion coefficient of the organic molecules is approximately 10(-16) cm(2) s(-1), reflecting an amorphous semisolid state of the organic substrates. The OH uptake is governed by reaction at or near the surface and can be kinetically limited by surface-bulk exchange or bulk diffusion of the organic reactants. Estimates of the chemical half-life of levoglucosan in 200 nm particles in a biomass burning plume increase from 1 day at high relative humidity to 1 week under dry conditions. In BBA particles transported to the free troposphere, the chemical half-life of levoglucosan can exceed 1 month due to slow bulk diffusion in a glassy matrix at low temperature.

  7. Biomass Burning Emissions from Fire Remote Sensing

    Science.gov (United States)

    Ichoku, Charles

    2010-01-01

    Knowledge of the emission source strengths of different (particulate and gaseous) atmospheric constituents is one of the principal ingredients upon which the modeling and forecasting of their distribution and impacts depend. Biomass burning emissions are complex and difficult to quantify. However, satellite remote sensing is providing us tremendous opportunities to measure the fire radiative energy (FRE) release rate or power (FRP), which has a direct relationship with the rates of biomass consumption and emissions of major smoke constituents. In this presentation, we will show how the satellite measurement of FRP is facilitating the quantitative characterization of biomass burning and smoke emission rates, and the implications of this unique capability for improving our understanding of smoke impacts on air quality, weather, and climate. We will also discuss some of the challenges and uncertainties associated with satellite measurement of FRP and how they are being addressed.

  8. OH Reactivity and Potential SOA Yields from Volatile Organic Compounds and Other Trace Gases Measured in Controlled Laboratory Biomass Burns

    Science.gov (United States)

    Gilman, J. B.; Warneke, C.; Kuster, W. C.; Goldan, P. D.; Veres, P. R.; Roberts, J. M.; de Gouw, J. A.; Burling, I. R.; Yokelson, R. J.

    2010-12-01

    A comprehensive suite of instruments were used to characterize volatile organic compounds (VOCs) and other trace gases (e.g., CO, CH4, NO2, etc.) emitted from controlled burns of various fuel types common to the Southeastern and Southwestern United States. These laboratory-based measurements were conducted in February 2009 at the U.S. Department of Agriculture’s Fire Sciences Laboratory in Missoula, Montana. An on-line GC-MS provided highly speciated VOC measurements of alkenes, alkanes, oxygenates, aromatics, biogenics, and nitrogen-containing compounds during the flaming or smoldering phases of replicate burns. The speciated GC-MS “grab” samples were integrated with fast-response gas-phase measurements (e.g., PTR-MS, PTR-IT-MS, NI-PT-CIMS, and FTIR) in order to determine VOC emission ratios and the fraction of identified vs. unidentifiable mass detected by PTR-MS. Emission ratios were used to calculate OH reactivity, which is a measure of potential ozone formation, as well as potential secondary organic aerosol (SOA) yields from the various fuel types. Small oxygenated VOCs had the highest emission ratios of the compounds observed. Alkenes dominated the VOC OH reactivity, which occasionally exceeded 1000 s-1. Calculated SOA yields from known precursors were dominated by aromatic VOCs, such as toluene, naphthalene (C10H8), and 1,3-benzenediol (C6H6O2, resorcinol). The contribution of several compounds not typically reported in ambient air measurements, such as substituted furans (C4H4O), pyrroles (C4H5N), and unsaturated C9 aromatics (C9H10), on OH reactivity and SOA yields will be discussed.

  9. Biomass burning emissions and potential air quality impacts of volatile organic compounds and other trace gases from fuels common in the US

    Science.gov (United States)

    Gilman, J. B.; Lerner, B. M.; Kuster, W. C.; Goldan, P. D.; Warneke, C.; Veres, P. R.; Roberts, J. M.; de Gouw, J. A.; Burling, I. R.; Yokelson, R. J.

    2015-12-01

    A comprehensive suite of instruments was used to quantify the emissions of over 200 organic gases, including methane and volatile organic compounds (VOCs), and 9 inorganic gases from 56 laboratory burns of 18 different biomass fuel types common in the southeastern, southwestern, or northern US. A gas chromatograph-mass spectrometry (GC-MS) instrument provided extensive chemical detail of discrete air samples collected during a laboratory burn and was complemented by real-time measurements of organic and inorganic species via an open-path Fourier transform infrared spectroscopy (OP-FTIR) instrument and three different chemical ionization-mass spectrometers. These measurements were conducted in February 2009 at the US Department of Agriculture's Fire Sciences Laboratory in Missoula, Montana and were used as the basis for a number of emission factors reported by Yokelson et al. (2013). The relative magnitude and composition of the gases emitted varied by individual fuel type and, more broadly, by the three geographic fuel regions being simulated. Discrete emission ratios relative to carbon monoxide (CO) were used to characterize the composition of gases emitted by mass; reactivity with the hydroxyl radical, OH; and potential secondary organic aerosol (SOA) precursors for the 3 different US fuel regions presented here. VOCs contributed less than 0.78 % ± 0.12 % of emissions by mole and less than 0.95 % × 0.07 % of emissions by mass (on average) due to the predominance of CO2, CO, CH4, and NOx emissions; however, VOCs contributed 70-90 (±16) % to OH reactivity and were the only measured gas-phase source of SOA precursors from combustion of biomass. Over 82 % of the VOC emissions by mole were unsaturated compounds including highly reactive alkenes and aromatics and photolabile oxygenated VOCs (OVOCs) such as formaldehyde. OVOCs contributed 57-68 % of the VOC mass emitted, 41-54 % of VOC-OH reactivity, and aromatic-OVOCs such as benzenediols, phenols, and benzaldehyde

  10. Biomass burning emissions and potential air quality impacts of volatile organic compounds and other trace gases from temperate fuels common in the United States

    Science.gov (United States)

    Gilman, J. B.; Lerner, B. M.; Kuster, W. C.; Goldan, P. D.; Warneke, C.; Veres, P. R.; Roberts, J. M.; de Gouw, J. A.; Burling, I. R.; Yokelson, R. J.

    2015-08-01

    A comprehensive suite of instruments was used to quantify the emissions of over 200 organic gases, including methane and volatile organic compounds (VOCs), and 9 inorganic gases from 56 laboratory burns of 18 different biomass fuel types common in the southeastern, southwestern, or northern United States. A gas chromatograph-mass spectrometer (GC-MS) provided extensive chemical detail of discrete air samples collected during a laboratory burn and was complemented by real-time measurements of organic and inorganic species via an open-path Fourier transform infrared spectrometer (OP-FTIR) and 3 different chemical ionization-mass spectrometers. These measurements were conducted in February 2009 at the U.S. Department of Agriculture's Fire Sciences Laboratory in Missoula, Montana. The relative magnitude and composition of the gases emitted varied by individual fuel type and, more broadly, by the 3 geographic fuel regions being simulated. Emission ratios relative to carbon monoxide (CO) were used to characterize the composition of gases emitted by mass; reactivity with the hydroxyl radical, OH; and potential secondary organic aerosol (SOA) precursors for the 3 different US fuel regions presented here. VOCs contributed less than 0.78 ± 0.12 % of emissions by mole and less than 0.95 ± 0.07 % of emissions by mass (on average) due to the predominance of CO2, CO, CH4, and NOx emissions; however, VOCs contributed 70-90 (±16) % to OH reactivity and were the only measured gas-phase source of SOA precursors from combustion of biomass. Over 82 % of the VOC emissions by mole were unsaturated compounds including highly reactive alkenes and aromatics and photolabile oxygenated VOCs (OVOCs) such as formaldehyde. OVOCs contributed 57-68 % of the VOC mass emitted, 42-57 % of VOC-OH reactivity, and aromatic-OVOCs such as benzenediols, phenols, and benzaldehyde were the dominant potential SOA precursors. In addition, ambient air measurements of emissions from the Fourmile Canyon Fire

  11. Biomass burning fuel consumption rates: a field measurement database

    NARCIS (Netherlands)

    van Leeuwen, T.T.; van der Werf, G.R.; Hoffmann, A.A.; Detmers, R.G.; Ruecker, G.; French, N.H.F.; Archibald, S.; Carvalho Jr., J.A.; Cook, G.D.; de Groot, J.W.; Hely, C.; Kasischke, E.S.; Kloster, S.; McCarty, J.L.; Pettinari, M.L.; Savadogo, P.

    2014-01-01

    Landscape fires show large variability in the amount of biomass or fuel consumed per unit area burned. Fuel consumption (FC) depends on the biomass available to burn and the fraction of the biomass that is actually combusted, and can be combined with estimates of area burned to assess emissions.

  12. Chemical and physical transformations of organic aerosol from the photo-oxidation of open biomass burning emissions in an environmental chamber

    Directory of Open Access Journals (Sweden)

    C. J. Hennigan

    2011-08-01

    Full Text Available Smog chamber experiments were conducted to investigate the chemical and physical transformations of organic aerosol (OA during photo-oxidation of open biomass burning emissions. The experiments were carried out at the US Forest Service Fire Science Laboratory as part of the third Fire Lab at Missoula Experiment (FLAME III. We investigated emissions from 12 different fuels commonly burned in North American wildfires. The experiments feature atmospheric and plume aerosol and oxidant concentrations; aging times ranged from 3 to 4.5 h. OA production, expressed as a mass enhancement ratio (ratio of OA to primary OA (POA mass, was highly variable. OA mass enhancement ratios ranged from 2.9 in experiments where secondary OA (SOA production nearly tripled the POA concentration to 0.7 in experiments where photo-oxidation resulted in a 30 % loss of the OA mass. The campaign-average OA mass enhancement ratio was 1.7 ± 0.7 (mean ± 1σ; therefore, on average, there was substantial SOA production. In every experiment, the OA was chemically transformed. Even in experiments with net loss of OA mass, the OA became increasingly oxygenated and less volatile with aging, indicating that photo-oxidation transformed the POA emissions. Levoglucosan concentrations were also substantially reduced with photo-oxidation. The transformations of POA were extensive; using levoglucosan as a tracer for POA, unreacted POA only contributed 17 % of the campaign-average OA mass after 3.5 h of exposure to typical atmospheric hydroxyl radical (OH levels. Heterogeneous reactions with OH could account for less than half of this transformation, implying that the coupled gas-particle partitioning and reaction of semi-volatile vapors is an important and potentially dominant mechanism for POA processing. Overall, the results illustrate that biomass burning emissions are subject to extensive chemical processing in the atmosphere, and the timescale for these transformations is rapid.

  13. A 13-year study of dissolved organic carbon in rainwater of an agro-industrial region of São Paulo state (Brazil) heavily impacted by biomass burning.

    Science.gov (United States)

    Godoy-Silva, Daniely; Nogueira, Raquel F P; Campos, M Lucia A M

    2017-12-31

    This work presents the first comprehensive study of DOC in rainwater in a tropical agro-industrial region in central São Paulo State. The DOC concentrations ranged from 15 to 4992μmolCL -1 , with an overall volume weighted mean (VWM) of 288±17μmolCL -1 (n=881). The number of fire spots accumulated within each year of this study was positively correlated to the VWM concentration of DOC in rainwater. During the whole study period, higher VWM DOC concentrations were found during the dry months, despite the phasing out of agricultural fires in sugar cane plantations. The evidence suggested that inputs of atmospheric soluble organic carbon from biomass burning exceeded those from vehicular fuel combustion and biogenic sources. In most cases, dilution of DOC according to precipitation volume was minimal, showing that in-cloud processes were dominant for this species. In contrast, most of the volatile dissolved organic carbon (VDOC) appeared to be removed from the atmosphere in the first milliliter or so of rain, showing a dominance of below-cloud scavenging. VDOC contributed a significant fraction of the DOC for 62% of the samples analyzed, ranging from 5.1 to 488μmolCL -1 (n=552). The average wet deposition flux of DOC was 49kgCha -1 yr -1 , with VDOC accounting for 10% of the total. This dissolved carbon flux is higher than the estimated world average (34kgCha -1 yr -1 ). The DOC in the rainwater was mostly labile (75% on average) and rapidly bioavailable (within days to weeks), in contrast to refractory dissolved carbon found in rainwater from regions where fossil fuel combustion is the dominant source. The findings of this work indicate that biomass burning can lead to important atmospheric inputs of readily available organic matter to land and to the open ocean. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Impact of biomass burning on the atmosphere

    International Nuclear Information System (INIS)

    Dignon, J.

    1993-03-01

    Fire has played an important part in biogeochemical cycling throughout most of the history of our planet. Ice core studies have been very beneficial in paleoclimate studies and constraining the budgets of biogeochemical cycles through the past 160,000 years of the Vostok ice core. Although to date there has been no way of determining cause and effect, concentration of greenhouse gases directly correlates with temperature in ice core analyses. Recent ice core studies on Greenland have shown that significant climate change can be very rapid on the order of a decade. This chapter addresses the coupled evolution of our planet's atmospheric composition and biomass burning. Special attention is paid to the chemical and climatic impacts of biomass burning on the atmosphere throughout the last century, specifically looking at the cycles of carbon, nitrogen, and sulfur. Information from ice core measurements may be useful in understanding the history of fire and its historic affect on the composition of the atmosphere and climate

  15. Carbonaceous components, levoglucosan and inorganic ions in tropical aerosols from Tanzania, East Africa: implication for biomass burning contribution to organic aerosols

    Science.gov (United States)

    Mkoma, S. L.; Kawamura, K.; Fu, P.

    2012-11-01

    Atmospheric aerosol samples of PM2.5 and PM10 were collected at a rural site in Tanzania in 2011 during wet and dry seasons and they were analysed for carbonaceous components, levoglucosan and water-soluble inorganic ions. The mean mass concentrations of PM2.5 and PM10 were 28.2±6.4 μg m-3 and 47±8.2 μg m-3 in wet season, and 39.1±9.8 μg m-3 and 61.4±19.2 μg m-3 in dry season, respectively. Total carbon (TC) accounted for 16-19% of the PM2.5 mass and 13-15% of the PM10 mass. On average, 85.9 to 88.7% of TC in PM2.5 and 87.2 to 90.1% in PM10 was organic carbon (OC), of which 67-72% and 63% was found to be water-soluble organic carbon (WSOC) in PM2.5 and PM10, respectively. Water-soluble potassium (K+) and sulphate (SO42-) in PM2.5 and, sodium (Na+) and SO42- in PM10 were the dominant ionic species. We found, that concentrations of biomass burning tracers (levoglucosan and mannosan) well correlated with non-sea-salt-K+, WSOC and OC in the aerosols from Tanzania, East Africa. Mean contributions of levoglucosan to OC ranged between 3.9-4.2% for PM2.5 and 3.5-3.8% for PM10. This study demonstrates that emissions from biomass- and biofuel-burning activities followed by atmospheric photochemical processes mainly control the air quality in Tanzania.

  16. Primary emissions and chemical oxidation of volatile organic compounds emitted from laboratory biomass burning sources during the 2016 FIREX FireLab campaign: measurements from a H3O+ chemical ionization mass spectrometer

    Science.gov (United States)

    Coggon, M. M.; Warneke, C.; Koss, A.; Sekimoto, K.; Yuan, B.; Lim, C. Y.; Hagan, D. H.; Kroll, J. H.; Cappa, C. D.; Gilman, J.; Lerner, B. M.; Jimenez, J. L.; Yokelson, R. J.; Roberts, J. M.; De Gouw, J. A.

    2017-12-01

    Non-methane organic gases (NMOG) emitted by biomass burning constitute a large source of reactive carbon in the atmosphere. Once emitted, these compounds may undergo series of reactions with the OH radical and nitrogen oxides to form secondary organic aerosol (SOA), ozone, or other health-impacting products. The complex emission profile and strong variability of biomass burning NMOG play an important, yet understudied, role in the variability of air quality outcomes such as SOA and ozone. In this study, we summarize measurements of biomass burning volatile organic compounds (VOCs) conducted using a H3O+ chemical ionization mass spectrometer (H3O+-CIMS) during the 2016 FIREX laboratory campaign in Missoula, MT. Specifically, we will present data demonstrating the chemical evolution of biomass burning VOCs artificially aged in a field-deployable photooxidation chamber and an oxidation flow reactor. More than 50 OH-oxidation experiments were conducted with biomass types representing a range of North American fuels. Across many fuel types, VOCs with high SOA and ozone formation potential, such as aromatics and furans, were observed to quickly react with the OH radical while oxidized species were generated. We compare the calculated OH reactivity of the primary emissions to the calculated OH reactivity used in many photochemical models and highlight areas requiring additional research in order to improve model/measurement comparisons.

  17. Particulate emissions from different types of biomass burning

    Science.gov (United States)

    Zhang, Yanyan; Obrist, Daniel; Zielinska, Barbara; Gertler, Alan

    2013-06-01

    Biomass burning is a significant emission source of PM2.5(i.e., particulate matter with an aerodynamic diameter less than 2.5 μm), but few studies addressed the chemical composition of PM2.5 emissions from various types of fires. Here, we present results from a sampling campaign to quantify PM2.5 emissions from various types of prescribed burning activities using analysis of carbon (elemental carbon: EC; organic carbon: OC; and total carbon: TC); polar organic compounds (12 different compounds and four functional classes); water-soluble potassium (K+); and particle-bound mercury (PHg). Emissions were characterized for a series of prescribed burns in the Lake Tahoe basin in the western United States, along with controlled biomass combustion in a wood stove. In the field, emissions were collected from: (i) landscape underburns, consisting of wooden tissues, foliage, branches, and surface duff; (ii) pile burns, consisting mainly of wooden tissues stacked up to piles; (iii) mixed underburn/pile burns which consisted of a mix of the above; in a wood stove, burns included different fuel types collected from the Lake Tahoe basin, specifically (iv) wooden logs mainly of pine; (v) green foliage and branches from two dominant shrubs (manzanita and bitterbrush); and (vi) surface duff, mostly consisting of pine needle litter.Our data showed higher ratios of organic to elemental carbon in green fuels (19.2 ± 4.2) compared to dry, wooden logs (7.3 ± 1.9) both in prescribed burns in the field and in controlled stove combustion, indicating that more moisture in green biomass resulted in more smoldering-phase combustion. Further, OC/EC ratios were lower in wood stove burns compared to prescribed burns in the field, which we attribute to higher combustion temperatures in wood stove burns. The suite of 12 select polar organic compounds showed that the most prevalent compounds emitted across all burns were levoglucosan, mannosan, and resin acids (dehydroabietic, pimaric, and

  18. Methoxyphenols in smoke from biomass burning

    Energy Technology Data Exchange (ETDEWEB)

    Kjaellstrand, J.

    2000-07-01

    Wood and other forest plant materials were burned in laboratory experiments with the ambition to simulate the natural burning course in a fireplace or a forest fire. Smoke samples were taken and analysed with respect to methoxyphenols, using gas chromatography and mass spectrometry. Different kinds of bio pellets, intended for residential heating were studied in the same way. The aim of a first study was to establish analytical data to facilitate further research. Thirty-six specific methoxyphenols were identified, and gas chromatographic retention and mass spectrometric data were determined for these. In a subsequent study, the methoxyphenol emissions from the burning of wood and other forest plant materials were investigated. Proportions and concentrations of specific methoxyphenols were determined. Methoxyphenols and anhydrosugars, formed from the decomposition of lignin and cellulose respectively, were the most prominent semi-volatile compounds in the biomass smoke. The methoxyphenol compositions reflected the lignin structures of different plant materials. Softwood smoke contained almost only 2-methoxyphenols, while hardwood smoke contained both 2-methoxyphenols and 2,6-dimethoxyphenols. The methoxyphenols in smoke from pellets, made of sawdust, bark and lignin, reflected the source of biomass. Although smoke from incompletely burned wood contains mainly methoxyphenols and anhydrosugars, there is also a smaller amount of well-known hazardous compounds present. The methoxyphenols are antioxidants. They appear mainly condensed on particles and are presumed to be inhaled together with other smoke components. As antioxidants, phenols interrupt free radical chain reactions and possibly counteract the effect of hazardous smoke components. Health hazards of small-scale wood burning should be re-evaluated considering antioxidant effects of the methoxyphenols.

  19. Investigating the links between ozone and organic aerosol chemistry in a biomass burning plume from a prescribed fire in California chaparral

    Science.gov (United States)

    Alvarado, M. J.; Lonsdale, C. R.; Yokelson, R. J.; Akagi, S. K.; Coe, H.; Craven, J. S.; Fischer, E. V.; McMeeking, G. R.; Seinfeld, J. H.; Soni, T.; Taylor, J. W.; Weise, D. R.; Wold, C. E.

    2015-06-01

    Within minutes after emission, complex photochemistry in biomass burning smoke plumes can cause large changes in the concentrations of ozone (O3) and organic aerosol (OA). Being able to understand and simulate this rapid chemical evolution under a wide variety of conditions is a critical part of forecasting the impact of these fires on air quality, atmospheric composition, and climate. Here we use version 2.1 of the Aerosol Simulation Program (ASP) to simulate the evolution of O3 and secondary organic aerosol (SOA) within a young biomass burning smoke plume from the Williams prescribed fire in chaparral, which was sampled over California in November 2009. We demonstrate the use of a method for simultaneously accounting for the impact of the unidentified intermediate volatility, semi-volatile, and extremely low volatility organic compounds (here collectively called "SVOCs") on the formation of OA (using the Volatility Basis Set - VBS) and O3 (using the concept of mechanistic reactivity). We show that this method can successfully simulate the observations of O3, OA, NOx, ethylene (C2H4), and OH to within measurement uncertainty using reasonable assumptions about the average chemistry of the unidentified SVOCs. These assumptions were (1) a reaction rate constant with OH of ~ 10-11 cm3 s-1; (2) a significant fraction (up to ~ 50 %) of the RO2 + NO reaction resulted in fragmentation, rather than functionalization, of the parent SVOC; (3) ~ 1.1 molecules of O3 were formed for every molecule of SVOC that reacted; (4) ~ 60 % of the OH that reacted with the unidentified non-methane organic compounds (NMOC) was regenerated as HO2; and (5) that ~ 50 % of the NO that reacted with the SVOC peroxy radicals was lost, presumably to organic nitrate formation. Additional evidence for the fragmentation pathway is provided by the observed rate of formation of acetic acid (CH3COOH), which is consistent with our assumed fragmentation rate. However, the model overestimates peroxyacetyl

  20. Biomass Burning observed during IAGOS - CARIBIC

    Science.gov (United States)

    Neumaier, Marco; Förster, Eric; Bönisch, Harald; Fischbeck, Garlich; Safadi, Layal; Hermann, Markus; Assmann, Denise; Zahn, Andreas

    2017-04-01

    Since May 2005 the CARIBIC passenger aircraft (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container - Lufthansa, Airbus 340-600) measures ˜100 trace gases and aerosol components in the UTLS (9-12 km altitude) on 4-6 consecutive long-distance flights per month. Volatile Organic Compounds (VOCs) are measured with a Proton-Transfer-Reaction Mass Spectrometer (PTR-MS). In 2017 the current instrument will be replaced by an improved version, similar to the one operated by our group onboard the HALO research aircraft. Worldwide ˜1.3 Tg/y of acetonitrile (CH3CN) is emitted into the atmosphere almost exclusively from biomass burning (BB) together with other VOCs (e.g. ketones, aldehydes, aromatics), CO, CO2, NOx and aerosol particles. Therefore, and due to its rather long tropospheric lifetime of ˜6 months, acetonitrile constitutes a reliable BB tracer. Based on the signal of acetonitrile and CO, we analyzed the IAGOS-CARIBIC data set with respect to signatures of BB. The most intense but relatively rare BB signals (up to ˜1200 pptV acetonitrile, i.e. ˜8 times the tropospheric background) were sampled ˜3 km above the thermal tropopause over North America and Greenland in boreal summer. However, the largest contribution of BB signatures (˜40%) was observed over the tropics in autumn and winter. In the tropics ECMWF back trajectory calculations show that the upward transport is driven by convection and we found hints for secondary O3 production in BB affected air masses leading to an enhancement of ˜25 ppb O3 relative to the tropospheric background. Based on our applied detection algorithm, ˜8% of the IAGOS-CARIBIC data were identified to be affected by BB.

  1. Biomass Burning 5x5 degree data in Native Format

    Data.gov (United States)

    National Aeronautics and Space Administration — The BIO_MASS_5X5_HAO_NAT data set contains data representing the geographical and temporal distribution of total amount of biomass burned. The data were collected by...

  2. Contributions of biomass/biofuel burning to organic aerosols and particulate matter in Tanzania, East Africa, based on analyses of ionic species, organic and elemental carbon, levoglucosan and mannosan

    Science.gov (United States)

    Mkoma, S. L.; Kawamura, K.; Fu, P. Q.

    2013-10-01

    Atmospheric aerosol samples of PM2.5 and PM10 were collected at a rural site in Tanzania, East Africa, in 2011 during wet and dry seasons and were analysed for carbonaceous components, levoglucosan, mannosan and water-soluble inorganic ions. The contributions of biomass/biofuel burning to the organic carbon (OC) and particulate matter (PM) mass were estimated to be 46-52% and 87-13%, respectively. The mean mass concentrations of PM2.5 and PM10 were 28 ± 6 μg m-3 and 47 ± 8 μg m-3 in wet season, and 39 ± 10 μg m-3 and 61 ± 19 μg m-3 in dry season, respectively. Total carbon (TC) accounted for 16-19% of the PM2.5 mass and 13-15% of the PM10 mass. On average, 86 to 89% of TC in PM2.5 and 87 to 90% of TC in PM10 was OC, of which 67-72% and 63% was found to be water-soluble organic carbon (WSOC) in PM2.5 and PM10, respectively. We found that concentrations of levoglucosan and mannosan (specific organic tracers of pyrolysis of cellulose) well correlated with non-sea-salt potassium (nss-K+) (r2 = 0.56-0.75), OC (r2 = 0.75-0.96) and WSOC (r2 = 0.52-0.78). The K+ / OC ratios varied from 0.06 to 0.36 in PM2.5 and from 0.03 to 0.36 in PM10 with slightly higher ratios in dry season. Mean percent ratios of levoglucosan and mannosan to OC were found to be 3-4% for PM2.5 and PM10 in both seasons. We found lower levoglucosan / K+ ratios and higher K+ / EC (elemental carbon) ratios in the biomass-burning aerosols from Tanzania than those reported from other regions. This feature is consistent with the high levels of potassium reported in the soils of Morogoro, Tanzania, suggesting an importance of direct emission of potassium by soil resuspension although K+ is present mostly in fine particles. It is also likely that biomass burning of vegetation of Tanzania emits high levels of potassium that may be enriched in plant tissues. The present study demonstrates that emissions from mixed biomass- and biofuel-burning activities largely influence the air quality in Tanzania.

  3. Contributions of biomass/biofuel burning to organic aerosols and particulate matter in Tanzania, East Africa, based on analyses of ionic species, organic and elemental carbon, levoglucosan and mannosan

    Directory of Open Access Journals (Sweden)

    S. L. Mkoma

    2013-10-01

    Full Text Available Atmospheric aerosol samples of PM2.5 and PM10 were collected at a rural site in Tanzania, East Africa, in 2011 during wet and dry seasons and were analysed for carbonaceous components, levoglucosan, mannosan and water-soluble inorganic ions. The contributions of biomass/biofuel burning to the organic carbon (OC and particulate matter (PM mass were estimated to be 46–52% and 87–13%, respectively. The mean mass concentrations of PM2.5 and PM10 were 28 ± 6 μg m−3 and 47 ± 8 μg m−3 in wet season, and 39 ± 10 μg m−3 and 61 ± 19 μg m−3 in dry season, respectively. Total carbon (TC accounted for 16–19% of the PM2.5 mass and 13–15% of the PM10 mass. On average, 86 to 89% of TC in PM2.5 and 87 to 90% of TC in PM10 was OC, of which 67–72% and 63% was found to be water-soluble organic carbon (WSOC in PM2.5 and PM10, respectively. We found that concentrations of levoglucosan and mannosan (specific organic tracers of pyrolysis of cellulose well correlated with non-sea-salt potassium (nss-K+ (r2 = 0.56–0.75, OC (r2 = 0.75–0.96 and WSOC (r2 = 0.52–0.78. The K+ / OC ratios varied from 0.06 to 0.36 in PM2.5 and from 0.03 to 0.36 in PM10 with slightly higher ratios in dry season. Mean percent ratios of levoglucosan and mannosan to OC were found to be 3–4% for PM2.5 and PM10 in both seasons. We found lower levoglucosan / K+ ratios and higher K+ / EC (elemental carbon ratios in the biomass-burning aerosols from Tanzania than those reported from other regions. This feature is consistent with the high levels of potassium reported in the soils of Morogoro, Tanzania, suggesting an importance of direct emission of potassium by soil resuspension although K+ is present mostly in fine particles. It is also likely that biomass burning of vegetation of Tanzania emits high levels of potassium that may be enriched in plant tissues. The present study demonstrates that emissions from mixed biomass- and biofuel-burning activities largely

  4. Thirteen years of observations on biomass burning organic tracers over Chichijima Island in the western North Pacific: An outflow region of Asian aerosols

    Science.gov (United States)

    Verma, Santosh Kumar; Kawamura, Kimitaka; Chen, Jing; Fu, Pingqing; Zhu, Chunmao

    2015-05-01

    East Asia is the world's greatest source region for the emission of anthropogenic aerosols and their precursors due to the rapid industrialization and intensive biomass burning (BB) activities. BB emits specific organic tracers such as levoglucosan, mannosan, and galactosan, which are produced by pyrolysis of cellulose and hemicellulose and then transported downwind to the western North Pacific by westerly winds. Here we present long-term observations of BB tracers over the remote Chichijima Island in the western North Pacific (WNP) from 2001 to 2013. Elevated concentrations of BB tracers by an order of magnitude were found in midautumn to midspring with winter maxima, which are strongly involved with the atmospheric transport by westerly winds from the Asian continent to the WNP, as supported by backward trajectory analyses. Throughout the observations, we found an increase in the averaged concentrations of BB tracers from 2006 to 2013, which is mainly caused by enhanced BB events in Asian urban and rural areas, as supported by enhanced fire/hot spots in East Asia via satellite images. We also found that the period of the high concentrations was prolonged from 2006 to 2013. Comparison between monthly averaged concentrations of BB tracers and backward air mass trajectories clearly demonstrates that the winter/spring maxima over Chichijima are involved with the seasonal shifting of atmospheric circulation followed by downwind transport of BB aerosols to the WNP. High abundances of BB tracers over the WNP indicate that BB-laden air masses can be transported to remote marine environments.

  5. Characterization of biomass burning aerosols from forest fire in Indonesia

    Science.gov (United States)

    Fujii, Y.; Iriana, W.; Okumura, M.; Lestari, P.; Tohno, S.; Akira, M.; Okuda, T.

    2012-12-01

    Biomass burning (forest fire, wild fire) is a major source of pollutants, generating an estimate of 104 Tg per year of aerosol particles worldwide. These particles have adverse human health effects and can affect the radiation budget and climate directly and indirectly. Eighty percent of biomass burning aerosols are generated in the tropics and about thirty percent of them originate in the tropical regions of Asia (Andreae, 1991). Several recent studies have reported on the organic compositions of biomass burning aerosols in the tropical regions of South America and Africa, however, there is little data about forest fire aerosols in the tropical regions of Asia. It is important to characterize biomass burning aerosols in the tropical regions of Asia because the aerosol properties vary between fires depending on type and moisture of wood, combustion phase, wind conditions, and several other variables (Reid et al., 2005). We have characterized PM2.5 fractions of biomass burning aerosols emitted from forest fire in Indonesia. During the dry season in 2012, PM2.5 aerosols from several forest fires occurring in Riau, Sumatra, Indonesia were collected on quartz and teflon filters with two mini-volume samplers. Background aerosols in forest were sampled during transition period of rainy season to dry season (baseline period). Samples were analyzed with several analytical instruments. The carbonaceous content (organic and elemental carbon, OC and EC) of the aerosols was analyzed by a thermal optical reflectance technique using IMPROVE protocol. The metal, inorganic ion and organic components of the aerosols were analyzed by X-ray Fluorescence (XRF), ion chromatography and gas chromatography-mass spectrometry, respectively. There was a great difference of chemical composition between forest fire and non-forest fire samples. Smoke aerosols for forest fires events were composed of ~ 45 % OC and ~ 2.5 % EC. On the other hand, background aerosols for baseline periods were

  6. Molecular Characterization of Brown Carbon in Biomass Burning Aerosol Particles.

    Science.gov (United States)

    Lin, Peng; Aiona, Paige K; Li, Ying; Shiraiwa, Manabu; Laskin, Julia; Nizkorodov, Sergey A; Laskin, Alexander

    2016-11-01

    Emissions from biomass burning are a significant source of brown carbon (BrC) in the atmosphere. In this study, we investigate the molecular composition of freshly emitted biomass burning organic aerosol (BBOA) samples collected during test burns of sawgrass, peat, ponderosa pine, and black spruce. We demonstrate that both the BrC absorption and the chemical composition of light-absorbing compounds depend significantly on the type of biomass fuels. Common BrC chromophores in the selected BBOA samples include nitro-aromatics, polycyclic aromatic hydrocarbon derivatives, and polyphenols spanning a wide range of molecular weights, structures, and light absorption properties. A number of biofuel-specific BrC chromophores are observed, indicating that some of them may be used as source-specific markers of BrC. On average, ∼50% of the light absorption in the solvent-extractable fraction of BBOA can be attributed to a limited number of strong BrC chromophores. The absorption coefficients of BBOA are affected by solar photolysis. Specifically, under typical atmospheric conditions, the 300 nm absorbance decays with a half-life of ∼16 h. A "molecular corridor" analysis of the BBOA volatility distribution suggests that many BrC compounds in the fresh BBOA have low saturation mass concentration (<1 μg m -3 ) and will be retained in the particle phase under atmospherically relevant conditions.

  7. The colors of biomass burning aerosols in the atmosphere

    Science.gov (United States)

    Liu, Chao; Chung, Chul Eddy; Zhang, Feng; Yin, Yan

    2016-06-01

    Biomass burning aerosols mainly consist of black carbon (BC) and organic aerosols (OAs), and some of OAs are brown carbon (BrC). This study simulates the colors of BrC, BC and their mixture with scattering OAs in the ambient atmosphere by using a combination of light scattering simulations, a two-stream radiative transfer model and a RGB (Red, Green, Blue) color model. We find that both BCs and tar balls (a class of BrC) appear brownish at small particle sizes and blackish at large sizes. This is because the aerosol absorption Ångström exponent (AAE) largely controls the color and larger particles give smaller AAE values. At realistic size distributions, BCs look more blackish than tar balls, but still exhibit some brown color. However, when the absorptance of aerosol layer at green wavelength becomes larger than approximately 0.8, all biomass burning aerosols look blackish. The colors for mixture of purely scattering and absorptive carbonaceous aerosol layers in the atmosphere are also investigated. We suggest that the brownishness of biomass burning aerosols indicates the amount of BC/BrC as well as the ratio of BC to BrC.

  8. The Short-Term Cooling but Long-Term Global Warming Due to Biomass Burning.

    Science.gov (United States)

    Jacobson, Mark Z.

    2004-08-01

    Biomass burning releases gases (e.g., CO2, CO, CH4, NOx, SO2, C2H6, C2H4, C3H8, C3H6) and aerosol particle components (e.g., black carbon, organic matter, K+, Na+, Ca2+, Mg2+, NH4+, H+, Cl-, H2SO4, HSO4-, SO42-, NO3-). To date, the global-scale climate response of controlling emission of these constituents together has not been examined. Here 10-yr global simulations of the climate response of biomass-burning aerosols and short-lived gases are coupled with numerical calculations of the long-term effect of controlling biomass-burning CO2 and CH4 to estimate the net effect of controlling burning over 100 yr. Whereas eliminating biomass-burning particles is calculated to warm temperatures in the short term, this warming may be more than offset after several decades by cooling due to eliminating long-lived CO2, particularly from permanent deforestation. It is also shown analytically that biomass burning always results in CO2 accumulation, even when regrowth fluxes equal emission fluxes and in the presence of fertilization. Further, because burning grassland and cropland yearly, as opposed to every several years, increases CO2, biofuel burning, considered a “renewable” energy source, is only partially renewable, and biomass burning elevates CO2 until it is stopped. Because CO2 from biomass burning is considered recyclable and biomass particles are thought to cool climate, the Kyoto Protocol did not consider biomass-burning controls. If the results here, which apply to a range of scenarios but are subject to uncertainty, are correct, such control may slow global warming, contrary to common perception, and improve human health.

  9. Emissions of fine particulate nitrated phenols from the burning of five common types of biomass.

    Science.gov (United States)

    Wang, Xinfeng; Gu, Rongrong; Wang, Liwei; Xu, Wenxue; Zhang, Yating; Chen, Bing; Li, Weijun; Xue, Likun; Chen, Jianmin; Wang, Wenxing

    2017-11-01

    Nitrated phenols are among the major constituents of brown carbon and affect both climates and ecosystems. However, emissions from biomass burning, which comprise one of the most important primary sources of atmospheric nitrated phenols, are not well understood. In this study, the concentrations and proportions of 10 nitrated phenols, including nitrophenols, nitrocatechols, nitrosalicylic acids, and dinitrophenol, in fine particles from biomass smoke were determined under three different burning conditions (flaming, weakly flaming, and smoldering) with five common types of biomass (leaves, branches, corncob, corn stalk, and wheat straw). The total abundances of fine nitrated phenols produced by biomass burning ranged from 2.0 to 99.5 μg m -3 . The compositions of nitrated phenols varied with biomass types and burning conditions. 4-nitrocatechol and methyl nitrocatechols were generally most abundant, accounting for up to 88-95% of total nitrated phenols in flaming burning condition. The emission ratios of nitrated phenols to PM 2.5 increased with the completeness of combustion and ranged from 7 to 45 ppmm and from 239 to 1081 ppmm for smoldering and flaming burning, respectively. The ratios of fine nitrated phenols to organic matter in biomass burning aerosols were comparable to or lower than those in ambient aerosols affected by biomass burning, indicating that secondary formation contributed to ambient levels of fine nitrated phenols. The emission factors of fine nitrated phenols from flaming biomass burning were estimated based on the measured mass fractions and the PM 2.5 emission factors from literature and were approximately 0.75-11.1 mg kg -1 . According to calculations based on corn and wheat production in 31 Chinese provinces in 2013, the total estimated emission of fine nitrated phenols from the burning of corncobs, corn stalks, and wheat straw was 670 t. This work highlights the apparent emission of methyl nitrocatechols from biomass burning and

  10. Working group report: methane emissions from biomass burning

    International Nuclear Information System (INIS)

    Delmas, R.A.; Ahuja, D.

    1993-01-01

    Biomass burning is a significant source of atmospheric methane. Like most other sources of methane, it has both natural and anthropogenic causes, although anthropogenic causes now predominate. Most of the estimates of methane emissions from biomass burning in the past have relied on a uniform emission factor for all types of burning. This results in the share of trace gas emissions for different types of burning being the same as the amounts of biomass burned in those types. The Working Group endorsed the extension of an approach followed for Africa by Delmas et al. (1991) to use different emission factors for different types of biomass burning to estimate national emissions of methane. This is really critical as emission factors present important variations. While the focus of discussions of the Working Group was on methane emissions from biomass burning, the Group endorsed the IPCC-OECD methodology of estimating all greenhouse related trace gases from biomass burning. Neither the IPCC-OECD nor the methodology suggested here applies to estimation of trace gas emissions from the processing of biomass to upgraded fuels. They must be estimated separately. The Group also discussed technical options for controlling methane emissions from biomass. 12 refs

  11. Volatility and mixing states of ultrafine particles from biomass burning

    International Nuclear Information System (INIS)

    Maruf Hossain, A.M.M.; Park, Seungho; Kim, Jae-Seok; Park, Kihong

    2012-01-01

    Highlights: ► Size distribution, volatility, and mixing states of ultrafine particles emitted from rice straw, oak, and pine burning under different burning conditions were investigated. ► Smoldering combustion emitted larger mode particles in higher numbers than smaller mode particles, while the converse was true for flaming combustion. ► While the flaming combustion and open burning results imply there is internal mixing of OC and BC, smoldering combustion in rice straw produced ultrafine particles devoid of BC. ► Mixing state of ultrafine particles from biomass burning can alter the single scattering albedo, and might even change the sign of radiative forcing. - Abstract: Fine and ultrafine carbonaceous aerosols produced from burning biomasses hold enormous importance in terms of assessing radiation balance and public health hazards. As such, volatility and mixing states of size-selected ultrafine particles (UFP) emitted from rice straw, oak, and pine burning were investigated by using volatility tandem differential mobility analyzer (VTDMA) technique in this study. Rice straw combustion produced unimodal size distributions of emitted aerosols, while bimodal size distributions from combustions of oak (hardwood) and pine (softwood) were obtained. A nearness of flue gas temperatures and a lower CO ratio of flaming combustion (FC) to smoldering combustion (SC) were characteristic differences found between softwood and hardwood. SC emitted larger mode particles in higher numbers than smaller mode particles, while the converse was true for FC. Rice straw open burning UFPs exhibited a volatilization behavior similar to that between FC and SC. In addition, internal mixing states were observed for size-selected UFPs in all biomasses for all combustion conditions, while external mixing states were only observed for rice straw combustion. Results for FC and open burning suggested there was an internal mixing of volatile organic carbon (OC) and non-volatile core (e

  12. Sensitivity of molecular marker-based CMB models to biomass burning source profiles

    Science.gov (United States)

    Sheesley, Rebecca J.; Schauer, James J.; Zheng, Mei; Wang, Bo

    To assess the contribution of sources to fine particulate organic carbon (OC) at four sites in North Carolina, USA, a molecular marker chemical mass balance model (MM-CMB) was used to quantify seasonal contributions for 2 years. The biomass burning contribution at these sites was found to be 30-50% of the annual OC concentration. In order to provide a better understanding of the uncertainty in MM-CMB model results, a biomass burning profile sensitivity test was performed on the 18 seasonal composites. The results using reconstructed emission profiles based on published profiles compared well, while model results using a single source test profile resulted in biomass burning contributions that were more variable. The biomass burning contribution calculated using an average regional profile of fireplace emissions from five southeastern tree species also compared well with an average profile of open burning of pine-dominated forest from Georgia. The standard deviation of the results using different source profiles was a little over 30% of the annual average biomass contributions. Because the biomass burning contribution accounted for 30-50% of the OC at these sites, the choice of profile also impacted the motor vehicle source attribution due to the common emission of elemental carbon and polycyclic aromatic hydrocarbons. The total mobile organic carbon contribution was less effected by the biomass burning profile than the relative contributions from gasoline and diesel engines.

  13. Modeling of the solar radiative impact of biomass burning aerosols during the Dust and Biomass-burning Experiment (DABEX)

    Science.gov (United States)

    Myhre, G.; Hoyle, C. R.; Berglen, T. F.; Johnson, B. T.; Haywood, J. M.

    2008-12-01

    The radiative forcing associated with biomass burning aerosols has been calculated over West Africa using a chemical transport model. The model simulations focus on the period of January˜February 2006 during the Dust and Biomass-burning Experiment (DABEX). All of the main aerosol components for this region are modeled including mineral dust, biomass burning (BB) aerosols, secondary organic carbon associated with BB emissions, and carbonaceous particles from the use of fossil fuel and biofuel. The optical properties of the BB aerosol are specified using aircraft data from DABEX. The modeled aerosol optical depth (AOD) is within 15-20% of data from the few available Aerosol Robotic Network (AERONET) measurement stations. However, the model predicts very high AOD over central Africa, which disagrees somewhat with satellite retrieved AOD from Moderate Resolution Imaging Spectroradiometer (MODIS) and Multiangle Imaging Spectroradiometer (MISR). This indicates that BB emissions may be too high in central Africa or that very high AOD may be incorrectly screened out of the satellite data. The aerosol single scattering albedo increases with wavelength in our model and in AERONET retrievals, which contrasts with results from a previous biomass burning aerosol campaign. The model gives a strong negative radiative forcing of the BB aerosols at the top of the atmosphere (TOA) in clear-sky conditions over most of the domain, except over the Saharan desert where surface albedos are high. The all-sky TOA radiative forcing is quite inhomogeneous with values varying from -10 to 10 W m-2. The regional mean TOA radiative forcing is close to zero for the all-sky calculation and around -1.5 W m-2 for the clear-sky calculation. Sensitivity simulations indicate a positive regional mean TOA radiative forcing of up to 3 W m-2.

  14. A review of biomass burning emissions part III: intensive optical properties of biomass burning particles

    Directory of Open Access Journals (Sweden)

    J. S. Reid

    2005-01-01

    Full Text Available Because of its wide coverage over much of the globe, biomass burning has been widely studied in the context of direct radiative forcing. Such study is warranted as smoke particles scatter and at times absorb solar radiation efficiently. Further, as much of what is known about smoke transport and impacts is based on remote sensing measurements, the optical properties of smoke particles have far reaching effects into numerous aspects of biomass burning studies. Global estimates of direct forcing have been widely varying, ranging from near zero to −1 W m-2. A significant part of this difference can be traced to varying assumptions on the optical properties of smoke. This manuscript is the third part of four examining biomass-burning emissions. Here we review and discuss the literature concerning measurement and modeling of optical properties of biomass-burning particles. These include available data from published sensitivity studies, field campaigns, and inversions from the Aerosol Robotic Network (AERONET of Sun photometer sites. As a whole, optical properties reported in the literature are varied, reflecting both the dynamic nature of fires, variations in smoke aging processes and differences in measurement technique. We find that forward modeling or ''internal closure'' studies ultimately are of little help in resolving outstanding measurement issues due to the high degree of degeneracy in solutions when using ''reasonable'' input parameters. This is particularly notable with respect to index of refraction and the treatment of black carbon. Consequently, previous claims of column closure may in fact be more ambiguous. Differences between in situ and retrieved ωo values have implications for estimates of mass scattering and mass absorption efficiencies. In this manuscript we review and discuss this community dataset. Strengths and lapses are pointed out, future research topics are prioritized, and best estimates and uncertainties of key

  15. Million year records of biomass burning from Australia and Africa

    International Nuclear Information System (INIS)

    Bird, M.; Cali, J.

    1997-01-01

    A chemical technique has been developed which can isolate elemental carbon (charcoal, soot, etc) derived from biomass burning in any sediment containing any quantity of elemental carbon. Sediment samples (generally containing 0.01 to 0.001% elemental carbon) are decarbonated using 1 N HCl, and silicate minerals are destroyed by HF/HCl. The demineralized residue, containing organic carbon and elemental carbon is the;n subjected to an acid oxidation using a K 2 Cr 2 O 7 /H 2 SO 4 solution. This procedure destroys 95% of the organic carbon with only minor loss of dense charcoal particles. The small and action of remaining acid-resistant organic carbon is then rapidly destroyed using an additional alkaline oxidation step with a KOH/H 2 O 2 reagent. This leaves a residue composed entirely of elemental carbon. The amount of elemental carbon is determined by combustion of the sample, cryogenic purification of the resultant CO 2 and manometric measurement of CO 2 yield. The carbon-isotope composition of the CO 2 was then determined by mass spectrometry, in order to provide information on the type of vegetation being burnt. The carbon-isotope composition of elemental carbon suggests that the bulk of carbon during the large scale events was derived from a C4 source. The concurrence of large biomass burning events with transition periods in global climate, suggests that the large-scale biomass burning may be one mechanism whereby terrestrial organic carbon accumulated during interglacial periods is transferred to other reservoirs at the onset of the following glacial period

  16. Flight-based chemical characterization of biomass burning aerosols within two prescribed burn smoke plumes

    Directory of Open Access Journals (Sweden)

    K. A. Pratt

    2011-12-01

    Full Text Available Biomass burning represents a major global source of aerosols impacting direct radiative forcing and cloud properties. Thus, the goal of a number of current studies involves developing a better understanding of how the chemical composition and mixing state of biomass burning aerosols evolve during atmospheric aging processes. During the Ice in Clouds Experiment-Layer Clouds (ICE-L in the fall of 2007, smoke plumes from two small Wyoming Bureau of Land Management prescribed burns were measured by on-line aerosol instrumentation aboard a C-130 aircraft, providing a detailed chemical characterization of the particles. After ~2–4 min of aging, submicron smoke particles, produced primarily from sagebrush combustion, consisted predominantly of organics by mass, but were comprised primarily of internal mixtures of organic carbon, elemental carbon, potassium chloride, and potassium sulfate. Significantly, the fresh biomass burning particles contained minor mass fractions of nitrate and sulfate, suggesting that hygroscopic material is incorporated very near or at the point of emission. The mass fractions of ammonium, sulfate, and nitrate increased with aging up to ~81–88 min and resulted in acidic particles. Decreasing black carbon mass concentrations occurred due to dilution of the plume. Increases in the fraction of oxygenated organic carbon and the presence of dicarboxylic acids, in particular, were observed with aging. Cloud condensation nuclei measurements suggested all particles >100 nm were active at 0.5% water supersaturation in the smoke plumes, confirming the relatively high hygroscopicity of the freshly emitted particles. For immersion/condensation freezing, ice nuclei measurements at −32 °C suggested activation of ~0.03–0.07% of the particles with diameters greater than 500 nm.

  17. Non-methane organic gas emissions from biomass burning: identification, quantification, and emission factors from PTR-ToF during the FIREX 2016 laboratory experiment

    Science.gov (United States)

    Koss, Abigail R.; Sekimoto, Kanako; Gilman, Jessica B.; Selimovic, Vanessa; Coggon, Matthew M.; Zarzana, Kyle J.; Yuan, Bin; Lerner, Brian M.; Brown, Steven S.; Jimenez, Jose L.; Krechmer, Jordan; Roberts, James M.; Warneke, Carsten; Yokelson, Robert J.; de Gouw, Joost

    2018-03-01

    Volatile and intermediate-volatility non-methane organic gases (NMOGs) released from biomass burning were measured during laboratory-simulated wildfires by proton-transfer-reaction time-of-flight mass spectrometry (PTR-ToF). We identified NMOG contributors to more than 150 PTR ion masses using gas chromatography (GC) pre-separation with electron ionization, H3O+ chemical ionization, and NO+ chemical ionization, an extensive literature review, and time series correlation, providing higher certainty for ion identifications than has been previously available. Our interpretation of the PTR-ToF mass spectrum accounts for nearly 90 % of NMOG mass detected by PTR-ToF across all fuel types. The relative contributions of different NMOGs to individual exact ion masses are mostly similar across many fires and fuel types. The PTR-ToF measurements are compared to corresponding measurements from open-path Fourier transform infrared spectroscopy (OP-FTIR), broadband cavity-enhanced spectroscopy (ACES), and iodide ion chemical ionization mass spectrometry (I- CIMS) where possible. The majority of comparisons have slopes near 1 and values of the linear correlation coefficient, R2, of > 0.8, including compounds that are not frequently reported by PTR-MS such as ammonia, hydrogen cyanide (HCN), nitrous acid (HONO), and propene. The exceptions include methylglyoxal and compounds that are known to be difficult to measure with one or more of the deployed instruments. The fire-integrated emission ratios to CO and emission factors of NMOGs from 18 fuel types are provided. Finally, we provide an overview of the chemical characteristics of detected species. Non-aromatic oxygenated compounds are the most abundant. Furans and aromatics, while less abundant, comprise a large portion of the OH reactivity. The OH reactivity, its major contributors, and the volatility distribution of emissions can change considerably over the course of a fire.

  18. Non-methane organic gas emissions from biomass burning: identification, quantification, and emission factors from PTR-ToF during the FIREX 2016 laboratory experiment

    Directory of Open Access Journals (Sweden)

    A. R. Koss

    2018-03-01

    Full Text Available Volatile and intermediate-volatility non-methane organic gases (NMOGs released from biomass burning were measured during laboratory-simulated wildfires by proton-transfer-reaction time-of-flight mass spectrometry (PTR-ToF. We identified NMOG contributors to more than 150 PTR ion masses using gas chromatography (GC pre-separation with electron ionization, H3O+ chemical ionization, and NO+ chemical ionization, an extensive literature review, and time series correlation, providing higher certainty for ion identifications than has been previously available. Our interpretation of the PTR-ToF mass spectrum accounts for nearly 90 % of NMOG mass detected by PTR-ToF across all fuel types. The relative contributions of different NMOGs to individual exact ion masses are mostly similar across many fires and fuel types. The PTR-ToF measurements are compared to corresponding measurements from open-path Fourier transform infrared spectroscopy (OP-FTIR, broadband cavity-enhanced spectroscopy (ACES, and iodide ion chemical ionization mass spectrometry (I− CIMS where possible. The majority of comparisons have slopes near 1 and values of the linear correlation coefficient, R2, of  >  0.8, including compounds that are not frequently reported by PTR-MS such as ammonia, hydrogen cyanide (HCN, nitrous acid (HONO, and propene. The exceptions include methylglyoxal and compounds that are known to be difficult to measure with one or more of the deployed instruments. The fire-integrated emission ratios to CO and emission factors of NMOGs from 18 fuel types are provided. Finally, we provide an overview of the chemical characteristics of detected species. Non-aromatic oxygenated compounds are the most abundant. Furans and aromatics, while less abundant, comprise a large portion of the OH reactivity. The OH reactivity, its major contributors, and the volatility distribution of emissions can change considerably over the course of a fire.

  19. Hygroscopicity of organic surrogate compounds from biomass burning and their effect on the efflorescence of ammonium sulfate in mixed aerosol particles

    Science.gov (United States)

    Lei, Ting; Zuend, Andreas; Cheng, Yafang; Su, Hang; Wang, Weigang; Ge, Maofa

    2018-01-01

    Hygroscopic growth factors of organic surrogate compounds representing biomass burning and mixed organic-inorganic aerosol particles exhibit variability during dehydration experiments depending on their chemical composition, which we observed using a hygroscopicity tandem differential mobility analyzer (HTDMA). We observed that levoglucosan and humic acid aerosol particles release water upon dehumidification in the range from 90 to 5 % relative humidity (RH). However, 4-Hydroxybenzoic acid aerosol particles remain in the solid state upon dehumidification and exhibit a small shrinking in size at higher RH compared to the dry size. For example, the measured growth factor of 4-hyroxybenzoic acid aerosol particles is ˜ 0.96 at 90 % RH. The measurements were accompanied by RH-dependent thermodynamic equilibrium calculations using the Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients (AIOMFAC) model and Extended Aerosol Inorganics Model (E-AIM), the Zdanovskii-Stokes-Robinson (ZSR) relation, and a fitted hygroscopicity expression. We observed several effects of organic components on the hygroscopicity behavior of mixtures containing ammonium sulfate (AS) in relation to the different mass fractions of organic compounds: (1) a shift of efflorescence relative humidity (ERH) of ammonium sulfate to higher RH due to the presence of 25 wt % levoglucosan in the mixture. (2) There is a distinct efflorescence transition at 25 % RH for mixtures consisting of 25 wt % of 4-hydroxybenzoic acid compared to the ERH at 35 % for organic-free AS particles. (3) There is indication for a liquid-to-solid phase transition of 4-hydroxybenzoic acid in the mixed particles during dehydration. (4) A humic acid component shows no significant effect on the efflorescence of AS in mixed aerosol particles. In addition, consideration of a composition-dependent degree of dissolution of crystallization AS (solid-liquid equilibrium) in the AIOMFAC and E-AIM models leads to a

  20. SAFARI 2000 Biomass Burning Emissions, Selected Sites, Dry Season 2000

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: Biomass burning is a major source for gaseous and particulate atmospheric pollution over southern Africa and globally. The purpose of this study was to...

  1. SAFARI 2000 Biomass Burning Emissions, Selected Sites, Dry Season 2000

    Data.gov (United States)

    National Aeronautics and Space Administration — Biomass burning is a major source for gaseous and particulate atmospheric pollution over southern Africa and globally. The purpose of this study was to quantify...

  2. Biomass burning: Combustion emissions, satellite imagery, and biogenic emissions

    International Nuclear Information System (INIS)

    Levine, J.S.; Cofer, W.R III; Rhinehart, R.P.; Cahoon, D.R. J.; Winstead, E.L.; Sebacher, S.; Sebacher, D.I.; Stocks, B.J.

    1991-01-01

    This chapter deals with two different, but related, aspects of biomass burning. The first part of the chapter deals with a technique to estimate the instantaneous emissions of trace gases produced by biomass burning using satellite imagery. The second part of the chapter concerns the recent discovery that burning results in significantly enhanced biogenic emissions of N 2 O, NO, and CH 4 . Hence, biomass burning has both an immediate and long-term impact on the production of trace gases to the atmosphere. The objective of this research is to better assess and quantify the role of this research is to better assess and quantify the role and impact of biomass as a driver for global change. It will be demonstrated that satellite imagery of fires may be used to estimate combustion emissions and may in the future be used to estimate the long-term postburn biogenic emissions of trace gases to the atmosphere

  3. Experimental Constraints on Iron Mobilization into Biomass Burning Aerosols

    Science.gov (United States)

    Sherry, A. M.; Romaniello, S. J.; Herckes, P.; Anbar, A. D.

    2017-12-01

    Atmospheric deposition of iron (Fe) can limit marine primary productivity and, therefore, carbon dioxide uptake. Recent modeling studies suggest that biomass burning aerosols may contribute a significant amount of soluble Fe to the surface ocean. To address this hypothesis, we collected foliage samples from species representative of several biomes impacted by severe fire events. Existing studies of burn-induced trace element mobilization have often collected both entrained soil particles along with material from burning biomass, making it difficult to determine the actual source of aerosolized trace metals. In order to better constrain the importance of biomass vs. entrained soil as a source of trace metals in burn aerosols, we conducted burn experiments using soil-free foliage representative of a variety of fire-impacted ecosystems. The resulting burn aerosols were collected in two stages (PM > 2.5 μm and PM < 2.5 μm) on cellulose filters using a high-volume air sampler equipped an all-Teflon impactor. Unburned foliage and burn aerosols were analyzed for Fe and other trace metals using inductively coupled plasma mass spectrometry (ICP-MS). Our results show that 0.06-0.86 % of Fe in plant biomass is likely mobilized as atmospheric aerosols during biomass burning events, depending on the type of foliage. We used these results and estimates of annual global wildfire area to estimate the impact of biomass burning aerosols on total atmospheric Fe flux to the ocean. We estimate that biomass-derived Fe likely contributes 3% of the total soluble Fe flux from aerosols. Prior studies, which implicitly included both biomass and soil-derived Fe, concluded that biomass burning contributed as much as 7% of the total marine soluble Fe flux from aerosols. Together, these studies suggest that biomass and fire-entrained soil probably contribute equally to the total fire-derived Fe aerosol flux. Further study of solubility differences between plant- and soil-derived Fe is needed

  4. Physiochemical characterisation of biomass burning plumes in Brazil during SAMBBA

    Science.gov (United States)

    Morgan, William; Allan, James; Flynn, Michael; Darbyshire, Eoghan; Hodgson, Amy; Johnson, Ben; Haywood, Jim; Longo, Karla; Artaxo, Paulo; Coe, Hugh

    2013-04-01

    markedly, with BC concentrations being an order of magnitude greater in the Tocantins case (up to 50 μg m-3 of BC) compared with the Rondonia case (up to 5 μg m-3 of BC). Organic matter (OM) concentrations were similar in both cases, with maximum concentrations peaking between 4-5 mg m-3. Such concentrations are approximately more than 100 times greater than those sampled in the "background" regional haze. This variation of BC to OM ratio has potentially large implications for the radiative balance in the respective regions, as BC represents the major absorbing component of biomass burning aerosol. Further analysis will compare the aerosol mass concentrations with gas phase species, as well as probing the chemical and physical evolution of the aerosol as it advects downwind and is diluted with regional air. In particular, such analyses will focus upon the aging of the organic aerosol component as well as examining how the mixing state of the BC particles evolves. Such properties have important implications for the life cycle and formation of particulate material, which governs its subsequent impacts.

  5. Hydrocarbon and carbon monoxide emissions from biomass burning in Brazil

    Science.gov (United States)

    Greenberg, J. P.; Zimmerman, P. R.; Heidt, L.; Pollock, W.

    1984-02-01

    Field measurements of hydrocarbon emissions from biomass burning in the cerrado (grasslands) and selva (tropical forest) regions of Brazil in 1979 and 1980 are characterized and quantified here. Regional consequences of burning activities include increased background mixing ratios of carbon monoxide and ozone, as well as reduced visibility, over extensive areas. Global extrapolation of the emission rate of hydrocarbons from these fires indicates that 6×1013 g C of gas phase hydrocarbons and 8×1014 g CO may be released annually from biomass burning. These emissions contribute significantly to the global budgets of hydrocarbons and carbon monoxide.

  6. Biomass burning - Combustion emissions, satellite imagery, and biogenic emissions

    Science.gov (United States)

    Levine, Joel S.; Cofer, Wesley R., III; Winstead, Edward L.; Rhinehart, Robert P.; Cahoon, Donald R., Jr.; Sebacher, Daniel I.; Sebacher, Shirley; Stocks, Brian J.

    1991-01-01

    After detailing a technique for the estimation of the instantaneous emission of trace gases produced by biomass burning, using satellite imagery, attention is given to the recent discovery that burning results in significant enhancement of biogenic emissions of N2O, NO, and CH4. Biomass burning accordingly has an immediate and long-term impact on the production of atmospheric trace gases. It is presently demonstrated that satellite imagery of fires may be used to estimate combustion emissions, and could be used to estimate long-term postburn biogenic emission of trace gases to the atmosphere.

  7. Modeling the impacts of biomass burning on air quality in and around Mexico City

    OpenAIRE

    W. Lei; G. Li; L. T. Molina

    2013-01-01

    The local and regional impacts of open fires and trash burning on ground-level ozone (O[subscript 3]) and fine carbonaceous aerosols in the Mexico City Metropolitan Area (MCMA) and surrounding region during two high fire periods in March 2006 have been evaluated using WRF-CHEM model. The model captured reasonably well the measurement-derived magnitude and temporal variation of the biomass burning organic aerosol (BBOA), and the simulated impacts of open fires on organic aerosol (OA) were cons...

  8. Modeling the impacts of biomass burning on air quality in and around Mexico City

    OpenAIRE

    W. Lei; G. Li; L. Molina

    2012-01-01

    The local and regional impacts of open fires and trash burning on ground-level ozone (O3) and fine carbonaceous aerosols in the Mexico City Metropolitan Area (MCMA) and surrounding region during two high fire periods in March 2006 have been evaluated using WRF-CHEM model. The model captured reasonably well the measurement-derived magnitude and temporal variation of the biomass burning organic aerosol (BBOA), and the simulated impacts of open fires on organic aerosol (OA...

  9. Impact of deforestation on biomass burning in the tropics

    International Nuclear Information System (INIS)

    Hao, W.M.; Liu, M.H.; Ward, D.E.

    1994-01-01

    Fires are widely used for various land use practices in tropical countries. Large amounts of trace gases and aerosol particles are produced during the fires. It is important to assess the potential impact of these gases and particulate matter on the chemistry of the atmosphere and global climate. One of the largest uncertainties in quantifying the effects is the lack of information on the source strengths. The authors quantify the amount of biomass burned due to deforestation in each tropical country on basis of the deforestation rate, the above ground density, and the fraction of above ground biomass burned. Approximately 725 Tg of biomass were burned in 1980 and 984 Tg were burned in 1990. The 36% increase took place mostly in Latin America and tropical Asia. The largest source was Brazil, contributing about 29% of the total biomass burned in the tropics. The second largest source was Indonesia accounting for 10%, followed by Zaire accounting for about 8%. The burning of biomass due to increased deforestation has resulted in an additional 33 Tg CO and 2.5 Tg CH 4 emitted annually to the atmosphere from 1980 to 1990

  10. Atmospheric tar balls: Particles from biomass and biofuel burning

    Science.gov (United States)

    Pósfai, MiháLy; GelencséR, AndráS.; Simonics, RenáTa; Arató, Krisztina; Li, Jia; Hobbs, Peter V.; Buseck, Peter R.

    2004-03-01

    "Tar balls" are amorphous, carbonaceous spherules that occur in the tropospheric aerosol as a result of biomass and biofuel burning. They form a distinct group of particles with diameters typically between 30 and 500 nm and readily identifiable with electron microscopy. Their lack of a turbostratic microstructure distinguishes them from soot, and their morphology and composition (˜90 mol % carbon) renders them distinct from other carbonaceous particles. Tar balls are particularly abundant in slightly aged (minutes to hours old) biomass smoke, indicating that they likely form by gas-to-particle conversion within smoke plumes. The material of tar balls is initially hygroscopic; however, the particles become largely insoluble as a result of free radical polymerization of their organic molecules. Consequently, tar balls are primarily externally mixed with other particle types, and they do not appreciably increase in size during aging. When tar balls coagulate with water-bearing particles, their material may partly dissolve and no longer be recognizable as distinct particles. Tar balls may contain organic compounds that absorb sunlight. They are an important, previously unrecognized type of carbonaceous (organic) atmospheric particle.

  11. Global burned area and biomass burning emissions from small fires

    NARCIS (Netherlands)

    Randerson, J.T; Chen, Y.; van der Werf, G.R.; Rogers, B.M.; Morton, D.C.

    2012-01-01

    In several biomes, including croplands, wooded savannas, and tropical forests, many small fires occur each year that are well below the detection limit of the current generation of global burned area products derived from moderate resolution surface reflectance imagery. Although these fires often

  12. Methyl halide emission estimates from domestic biomass burning in Africa

    Science.gov (United States)

    Mead, M. I.; Khan, M. A. H.; White, I. R.; Nickless, G.; Shallcross, D. E.

    Inventories of methyl halide emissions from domestic burning of biomass in Africa, from 1950 to the present day and projected to 2030, have been constructed. By combining emission factors from Andreae and Merlet [2001. Emission of trace gases and aerosols from biomass burning. Global Biogeochemical Cycles 15, 955-966], the biomass burning estimates from Yevich and Logan [2003. An assessment of biofuel use and burning of agricultural waste in the developing world. Global Biogeochemical Cycles 17(4), 1095, doi:10.1029/2002GB001952] and the population data from the UN population division, the emission of methyl halides from domestic biomass usage in Africa has been estimated. Data from this study suggest that methyl halide emissions from domestic biomass burning have increased by a factor of 4-5 from 1950 to 2005 and based on the expected population growth could double over the next 25 years. This estimated change has a non-negligible impact on the atmospheric budgets of methyl halides.

  13. Biomass burning: A significant source of nutrients for Andean rainforests

    Science.gov (United States)

    Fabian, P. F.; Rollenbeck, R.; University Of Marburg, Germany

    2010-12-01

    Regular rain and fogwater sampling in the Podocarpus National Park,on the humid eastern slopes of the Ecuadorian Andes,has been carried out since 2002.The samples,accumulated over about 1-week intervals,were analysed for pH,conductivity,and major ions (K+, Na+, NH4+, Ca2+, Mg2+, Cl-, SO4 2-, NO3-, PO4 3- ).Annual deposition rates of these ions which, due to poor acidic soils with low mineralization rates,constitute the dominant nutrient supply to the mountaineous rainforests, and major ion sources could be determined using back trajectories,along with satellite data. While most of the Na, Cl, and K as well as Ca and Mg input was found to originate from natural oceanic and desert dust sources,respectively (P.Fabian et al.,Adv.Geosci.22,85-94, 2009), NO3, NH4, and about 90% of SO4 (about 10 % is from active volcanoes) are almost entirely due to anthropogenic sources,most likely biomass burning. Industrial and transportation emissions and other pollutants,however,act in a similar way as the precursors produced by biomass burning.For quantifying the impacts of biomass burning vs. those of anthropogenic sources other than biomass burning we used recently established emission inventories,along with simplified model calculations on back trajectories.First results yielding significant contributions of biomass burning will be discussed.

  14. Short-term cooling but long-term global warming due to biomass burning particles and gases

    Science.gov (United States)

    Jacobson, M. Z.

    2002-12-01

    Biomass burning is the burning of evergreen forests, deciduous forests, woodlands, grassland, and agricultural land, either to clear land for other use, to stimulate grass growth, for forest management, or as a ritual. Biomass burning releases both gases (e.g.,CO2, CO, CH4, NOx, SO2, C2H6, C2H4, C3H8, C3H6) and aerosol particle components (e.g., black carbon, organic matter, K+, Na+, Ca2+, Mg2+, NH4+, H+, Cl-, H2SO4, HSO4-, SO42-, NO3-). The global-scale climate response of controlling emissions of these gas plus particle constituents during biomass burning has not been examined to date. Whereas biomass-burning particles enhance global cooling in the short term, it is found that this cooling is partially suppressed by black carbon and more than offset in the long term by the warming effect of long-lived biomass-burning gases. The emissions of the most important of these gases, CO2, is only partially offset by biomass regrowth each year. As such, a reduction in biomass burning, not considered under the Kyoto Protocol, should slow global warming, contrary to common perception. Control of biomass-burning should also improve human health.

  15. Validation of a MODIS direct broadcast burned area mapping algorithm for estimating biomass burning emissions

    Science.gov (United States)

    Urbanski, Shawn P.; Nordgren, Bryce; Hao, Wei Min

    2008-08-01

    Biomass fires emit large amounts of trace gases and aerosols and these emissions are believed to significantly influence the chemical composition of the atmosphere and the earth's climate system. At the Missoula Fire Sciences Laboratory (FiSL), a MODIS direct broadcast (DB) receiving station is in place to demonstrate the potential for monitoring biomass burning in near-real-time and predicting the impact of fire emissions on air quality. A burn scar algorithm that combines active fire locations and burn scar detections for near 'real-time' measurement of fire burned areas has been developed at the Missoula FiSL. Daily wildfire burned areas in western US provide crucial input for a prototype fire emissions - smoke dispersion forecasting system.

  16. Atmospheric tar balls: aged primary droplets from biomass burning?

    OpenAIRE

    Tóth, A.; Hoffer, A.; Nyirő-Kósa, I.; Pósfai, M.; Gelencsér, A.

    2014-01-01

    Atmospheric tar balls are particles of special morphology and composition that are fairly abundant in the plumes of biomass smoke. These particles form a specific subset of brown carbon (BrC) which has been shown to play a significant role in atmospheric shortwave absorption and, by extension, climate forcing. Here we suggest that tar balls are produced by the direct emission of liquid tar droplets followed by heat transformation upon biomass burning. For the first time in a...

  17. GOES-8 ABBA Biomass Burning Observations and Downwind MOPPIT Carbon Monoxide Measurements

    Science.gov (United States)

    Feltz, J. M.; Warner, J. X.; Prins, E. M.; LaCasse, K. M.

    2002-05-01

    Studies have shown that biomass burning is a major source of aerosols and trace gases such as NO, CO2, CO, O3, NOx, N2O, NH3, SO2, CH3, and other nonmethane hydrocarbons. Preliminary global estimates indicate that biomass burning may be responsible for 38% of ozone in the troposphere, 32% of global carbon monoxide, 39% of the particulate organic carbon, and up to 40% of CO2. Recent advances in satellite technology provide the opportunity to investigate the linkages between fire activity and CO emissions using satellite derived fire products and CO retrievals. The Cooperative Institute for Meteorological Satellite Studies (CIMSS) at the University of Wisconsin - Madison is using the Geostationary Operational Environmental Satellite (GOES) data to detect and monitor smoke and fires in real-time throughout the Western Hemisphere using the Wildfire Automated Biomass Burning Algorithm (WF_ABBA). The Measurements Of Pollution In The Troposphere (MOPITT) science team is retrieving carbon monoxide (CO) distributions from the MOPITT instrument on the Terra platform. Preliminary studies show good agreement between large biomass burning events as detected by GOES and regions of elevated MOPITT derived carbon monoxide values. Examples from several significant biomass burning events will be presented, along with transport analyses and MOPITT carbon monoxide summaries.

  18. Hygroscopic properties of atmospheric particles emitted during wintertime biomass burning episodes in Athens

    Science.gov (United States)

    Psichoudaki, Magda; Nenes, Athanasios; Florou, Kalliopi; Kaltsonoudis, Christos; Pandis, Spyros N.

    2018-04-01

    This study explores the Cloud Condensation Nuclei (CCN) activity of atmospheric particles during intense biomass burning periods in an urban environment. During a one-month campaign in the center of Athens, Greece, a CCN counter coupled with a Scanning Mobility Particle Sizer (SMPS) and a high resolution Aerosol Mass Spectrometer (HR-AMS) were used to measure the size-resolved CCN activity and composition of the atmospheric aerosols. During the day, the organic fraction of the particles was more than 50%, reaching almost 80% at night, when the fireplaces were used. Positive Matrix Factorization (PMF) analysis revealed 4 factors with biomass burning being the dominant source after 18:00 until the early morning. The CCN-based overall hygroscopicity parameter κ ranged from 0.15 to 0.25. During the night, when the biomass burning organic aerosol (bbOA) dominated, the hygroscopicity parameter for the mixed organic/inorganic particles was on average 0.16. The hygroscopicity of the biomass-burning organic particles was 0.09, while the corresponding average value for all organic particulate matter during the campaign was 0.12.

  19. Experimental biomass burning emission assessment by combustion chamber

    Science.gov (United States)

    Lusini, Ilaria; Pallozzi, Emanuele; Corona, Piermaria; Ciccioli, Paolo; Calfapietra, Carlo

    2014-05-01

    Biomass burning is a significant source of several atmospheric gases and particles and it represents an important ecological factor in the Mediterranean ecosystem. In this work we describe the performances of a recently developed combustion chamber to show the potential of this facility in estimating the emission from wildland fire showing a case study with leaves, small branches and litter of two representative species of Mediterranean vegetation, Quercus pubescens and Pinus halepensis. The combustion chamber is equipped with a thermocouple, a high resolution balance, an epiradiometer, two different sampling lines to collect organic volatile compounds (VOCs) and particles, a sampling line connected to a Proton Transfer Reaction Mass-Spectrometer (PTR-MS) and a portable analyzer to measure CO and CO2 emission. VOCs emission were both analyzed with GC-MS and monitored on-line with PTR-MS. The preliminary qualitative analysis of emission showed that CO and CO2 are the main gaseous species emitted during the smoldering and flaming phase, respectively. Many aromatics VOCs as benzene and toluene, and many oxygenated VOC as acetaldehyde and methanol were also released. This combustion chamber represents an important tool to determine the emission factor of each plant species within an ecosystem, but also the contribution to the emissions of the different plant tissues and the kinetics of different compound emissions during the various combustion phases. Another important feature of the chamber is the monitoring of the carbon balance during the biomass combustion.

  20. Can Biomass Burning Explain Isotopically Light Fe in Marine Aerosols?

    Science.gov (United States)

    Sherry, A. M.; Anbar, A. D.; Herckes, P.; Romaniello, S. J.

    2016-02-01

    Iron (Fe) is an important micronutrient that limits primary productivity in large parts of the ocean. In these regions, atmospheric aerosol deposition is an important source of Fe to the surface ocean and thus has a critical impact on ocean biogeochemistry. Fe-bearing aerosols originate from many sources with potentially distinct Fe isotopic compositions. Consequently, Fe isotopes may provide a new tool to trace the sources of aerosol Fe to the oceans. Mead et al. (2013) first discovered that Fe in the fine fraction of Bermuda aerosols is often isotopically lighter than Fe from known anthropogenic and crustal sources. 1 These authors suggested that this light isotopic signature was likely the result of biomass burning, since Fe in plants is the only known source of isotopically light Fe. More recently, Conway et al. found that Fe in the soluble fraction of aerosols collected during 2010-2011 North Atlantic GEOTRACES cruises also showed light isotope values, which they likewise attributed to biomass burning.2 These studies are further supported by new modeling work which suggests that biomass burning aerosols should contribute significant amounts of soluble Fe to tropical and southern oceans.3To test if biomass burning releases aerosols with a light Fe isotope composition, we are conducting lab-scale biomass burning experiments using natural samples of vegetation and leaf litter. Burn aerosols were collected on cellulose filters, then digested and analyzed for trace metal concentrations using inductively-coupled mass spectrometry (ICP-MS). Fe isotopes were determined by using multiple collector ICP-MS following separation and purification of Fe using anion exchange chromatography. We will discuss metal concentration and isotope data from these experiments with implications for the interpretation of Fe isotope signals in aerosol samples. 1Mead, C et al. GRL, 2013, 40, 5722-5727. 2 Conway, T et al. Goldschmidt Abs 2015 593. 3Ito, A. ES&T Lett, 2015, 2, 70-75.

  1. Assessment of biomass burning emissions and their impacts on urban and regional PM2.5: a Georgia case study.

    Science.gov (United States)

    Tian, Di; Hu, Yongtao; Wang, Yuhang; Boylan, James W; Zheng, Mei; Russell, Armistead G

    2009-01-15

    Biomass burning is a major and growing contributor to particulate matter with an aerodynamic diameter less than 2.5 microm (PM2.5). Such impacts (especially individual impacts from each burning source) are quantified using the Community Multiscale Air Quality (CMAQ) Model, a chemical transport model (CTM). Given the sensitivity of CTM results to uncertain emission inputs, simulations were conducted using three biomass burning inventories. Shortcomings in the burning emissions were also evaluated by comparing simulations with observations and results from a receptor model. Model performance improved significantly with the updated emissions and speciation profiles based on recent measurements for biomass burning: mean fractional bias is reduced from 22% to 4% for elemental carbon and from 18% to 12% for organic matter; mean fractional error is reduced from 59% to 50% for elemental carbon and from 55% to 49% for organic matter. Quantified impacts of biomass burning on PM2.5 during January, March, May, and July 2002 are 3.0, 5.1, 0.8, and 0.3 microg m(-3) domainwide on average, with more than 80% of such impacts being from primary emissions. Impacts of prescribed burning dominate biomass burning impacts, contributing about 55% and 80% of PM2.5 in January and March, respectively, followed by land clearing and agriculture field burning. Significant impacts of wildfires in May and residential wood combustion in fireplaces and woodstoves in January are also found.

  2. Regional biomass burning trends in India: Analysis of satellite fire data

    Indian Academy of Sciences (India)

    According an estimate between 1995 and. 2000, the open burning sources contributed about. 25% to black carbon, organic matter, and CO emissions in India (Venkataraman et al. 2006). The updraft of biomass smoke by tropical convec- tion may significantly impact the climate dynamics. The modelling studies of transport ...

  3. Biomass burning and urban air pollution over the central Mexican Plateau [Discussions

    Science.gov (United States)

    J. D. Crounse; P. F. DeCarlo; D. R. Blake; L. K. Emmons; T. L. Campos; E. C. Apel; A. D. Clarke; A. J. Weinheimer; D. C. McCabe; R. J. Yokelson; J. L. Jimenez; P. O. Wennberg

    2009-01-01

    Observations during the 2006 dry season of highly elevated concentrations of cyanides in the atmosphere above Mexico City (MC) and the surrounding plains, demonstrate that biomass burning (BB) significantly impacted air quality in the region. We find that during the period of our measurements, fires contribute more than half of the organic aerosol mass and submicron...

  4. Biomass burning and urban air pollution over the Central Mexican Plateau

    Science.gov (United States)

    J. D. Crounse; P. F. DeCarlo; D. R. Blake; L. K. Emmons; T. L. Campos; E. C. Apel; A. D. Clarke; A. J. Weinheimer; D. C. McCabe; R. J. Yokelson; J. L. Jimenez; P. O. Wennberg

    2009-01-01

    Observations during the 2006 dry season of highly elevated concentrations of cyanides in the atmosphere above Mexico City (MC) and the surrounding plains demonstrate that biomass burning (BB) significantly impacted air quality in the region. We find that during the period of our measurements, fires contribute more than half of the organic aerosol mass and submicron...

  5. Biomass Burning Observation Project (BBOP) Final Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Kleinman, LI [Brookhaven National Lab. (BNL), Upton, NY (United States); Sedlacek, A. J. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-01-01

    The Biomass Burning Observation Project (BBOP) was conducted to obtain a better understanding of how aerosols generated from biomass fires affect the atmosphere and climate. It is estimated that 40% of carbonaceous aerosol produced originates from biomass burning—enough to affect regional and global climate. Several biomass-burning studies have focused on tropical climates; however, few campaigns have been conducted within the United States, where millions of acres are burned each year, trending to higher values and greater climate impacts because of droughts in the West. Using the Atmospheric Radiation Measurement (ARM) Aerial Facility (AAF), the BBOP deployed the Gulfstream-1 (G-1) aircraft over smoke plumes from active wildfire and agricultural burns to help identify the impact of these events and how impacts evolve with time. BBOP was one of very few studies that targeted the near-field time evolution of aerosols and aimed to obtain a process-level understanding of the large changes that occur within a few hours of atmospheric processing.

  6. Emissions from biomass burning in the Yucatan [Discussions

    Science.gov (United States)

    R. Yokelson; J. D. Crounse; P. F. DeCarlo; T. Karl; S. Urbanski; E. Atlas; T. Campos; Y. Shinozuka; V. Kapustin; A. D. Clarke; A. Weinheimer; D. J. Knapp; D. D. Montzka; J. Holloway; P. Weibring; F. Flocke; W. Zheng; D. Toohey; P. O. Wennberg; C. Wiedinmyer; L. Mauldin; A. Fried; D. Richter; J. Walega; J. L. Jimenez; K. Adachi; P. R. Buseck; S. R. Hall; R. Shetter

    2009-01-01

    In March 2006 two instrumented aircraft made the first detailed field measurements of biomass burning (BB) emissions in the Northern Hemisphere tropics as part of the MILAGRO project. The aircraft were the National Center for Atmospheric Research C-130 and a University of Montana/US Forest Service Twin Otter. The initial emissions of up to 49 trace gas or particle...

  7. Speciated Chemical Composition of Biomass Burning Aerosol from Various Fuels during FIREX

    Science.gov (United States)

    Jen, C.; Hatch, L. E.; Kreisberg, N. M.; Selimovic, V.; Yokelson, R. J.; Barsanti, K.; Goldstein, A. H.

    2017-12-01

    Biomass burning is the largest global source of atmospheric primary carbonaceous aerosols and the second largest global source of non-methane organic compounds, including volatile and semi-volatile organic compounds that are now understood to be major contributors to secondary particle formation in the atmosphere. As wildfires in forested regions such as the western United States become larger and more frequent, understanding the chemical composition of biomass burning organic aerosol is needed to better predict their increasing impact on human health, air quality, and climate. This study presents emission profiles of chemically speciated intermediate and semi-volatile organic compounds present in biomass burning aerosol particles ≤1.0 μm. Biomass burning organic aerosol (BBOA) samples from a variety of fuel types and burning conditions were collected during the FIREX campaign at the USDA Fire Lab (Missoula, MT). Fuels were primarily selected from vegetation commonly found in the western United States, such as ponderosa pine, lodgepole pine, ceanothus, and chaparral. Collected BBOA was thermally desorbed from the filters and analyzed using online derivatization and 2-dimensional gas chromatography with an electron impact (70 eV) and vacuum ultra violet light (10.5 eV) high resolution time of flight mass spectrometer for compound identification. Emission profiles for specific compounds (e.g., levoglucosan) and families of compounds (e.g., sugars and methoxyphenols) show distinct variations between different fuel types, with major differences between fresh and partially decomposed fuels. Results also illustrate the variability in chemical species between burns conducted under similar conditions. Furthermore, chemical fingerprints, representing ratios of normalized emissions for key chemical compounds, were measured for specific fuels/conditions and could be used in future field studies to help identify contributions of various vegetation to total BBOA and in

  8. Amazonian biomass burning-derived acid and nutrient deposition in the north Andean montane forest of Ecuador

    Science.gov (United States)

    Boy, Jens; Rollenbeck, Rütger; Valarezo, Carlos; Wilcke, Wolfgang

    2008-12-01

    We explored the influence of biomass burning in Amazonia and northeastern Latin America on N, C, P, S, K, Ca, Mg, Al, Mn, and Zn cycles of an Andean montane forest in south Ecuador exposed to the Amazon basin between May 1998 and April 2003. We assessed the response of the element budget of three microcatchments (8-13 ha) to the variations in atmospheric deposition between the intensive burning season and outside the burning season in Amazonia. There were significantly elevated H, N, and Mn depositions during biomass burning. Elevated H deposition during biomass burning caused elevated base metal loss from the canopy and the organic horizon and deteriorated already low base metal supply of the vegetation. N was only retained during biomass burning but not during nonfire conditions when deposition was much smaller. We conclude that biomass burning-related aerosol emissions in Amazonia are large enough to substantially increase element deposition at the western rim of Amazonia. Particularly the related increase of acid deposition impoverishes already base metal scarce ecosystems. As biomass burning is most intense during El Niño situations, a shortened El Niño-Southern Oscillation cycle because of global warming likely enhances the acid deposition at our study forest.

  9. Thermal behavior of aerosol particles from biomass burning during the BBOP campaign using transmission electron microscopy

    Science.gov (United States)

    Adachi, K.; Ishimoto, H.; Sedlacek, A. J., III; Kleinman, L. I.; Chand, D.; Hubbe, J. M.; Buseck, P. R.

    2017-12-01

    Aerosol samples were collected from wildland and agricultural biomass fires in North America during the 2013 Biomass Burning Observation Project (BBOP). We show in-situ shape and size changes and variations in the compositions of individual particles before and after heating using a transmission electron microscope (TEM). The responses of aerosol particles to heating are important for measurements of their chemical, physical, and optical properties, classification, and determination of origin. However, the thermal behavior of organic aerosol particles is largely unknown. We provide a method to analyze such thermal behavior through heating from room temperature to >600°C by using a heating holder within TEM. The results indicate that individual tar balls (TB; spherical organic material) from biomass burning retained, on average, up to 30% of their volume when heated to 600°C. Chemical analysis reveals that K and Na remained in the residues, whereas S and O were lost. In contrast to bulk sample measurements of carbonaceous particles using thermal/optical carbon analyzers, our single-particle results imply that many individual organic particles consist of multiple types of organic matter having different thermal stabilities. Our results also suggest that because of their thermal stability, some organic particles may not be detectable by using aerosol mass spectrometry or thermal/optical carbon analyzers. This result can lead to an underestimate of the abundance of TBs and other organic particles, and therefore biomass burning may have a greater influence than is currently recognized in regional and global climate models.

  10. Volume changes upon heating of aerosol particles from biomass burning using transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, Kouji [Meteorological Research Inst., Tsukuba (Japan). Atmospheric Environment and Applied Meteorology Research Dept.; Sedlacek, Arthur J. [Brookhaven National Lab. (BNL), Upton, NY (United States). Environmental and Climate Sciences; Kleinman, Lawrence [Brookhaven National Lab. (BNL), Upton, NY (United States). Environmental and Climate Sciences; Chand, Duli [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Atmospheric Sciences and Global Change Division; Hubbe, John M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Atmospheric Sciences and Global Change Division; Buseck, Peter R. [Arizona State Univ., Tempe, AZ (United States). School of Earth and Space Exploration and School of Molecular Sciences

    2017-09-26

    The responses of aerosol particles to heating are important for measurements of their chemical, physical, and optical properties, classification, and determination of origin. However, the thermal behavior of organic aerosol particles is largely unknown. We provide a method to analyze such thermal behavior through heating from room temperature to >600°C by using a heating holder within a transmission electron microscope (TEM). Here we describe in-situ shape and size changes and variations in the compositions of individual particles before and after heating. We use ambient samples from wildland and agricultural biomass fires in North America collected during the 2013 Biomass Burn Observation Project (BBOP). The results indicate that individual tar balls (TB; spherical organic material) from biomass burning retained, on average, up to 30% of their volume when heated to 600°C. Chemical analysis reveals that K and Na remain in the residues, whereas S and O were lost. In contrast to bulk sample measurements of carbonaceous particles using thermal/optical carbon analyzers, our single-particle results imply that many individual organic particles consist of multiple types of organic matter having different thermal stabilities. Beyond TBs, our results suggest that because of their thermal stability some organic particles may not be detectable by using aerosol mass spectrometry or thermal/optical carbon analyzers. This result can lead to an underestimate of the abundance of TBs and other organic particles, and therefore biomass burning may have more influence than currently recognized in regional and global climate models.

  11. Determination of biomass burning emission factors. Methods and results

    International Nuclear Information System (INIS)

    Delmas, R.; Lacaux, J.P.; Brocard, D.

    1995-01-01

    Biomass burning, in a broad sense, encompasses different burning practices, including open and confined burnings, and different types of vegetation. Emission factors of gaseous or particulate trace compounds are directly dependent both on the fuel type and the combustion process. Emission factors are generally calculated by stoichiometric considerations using the carbon mass balance method, applied either to combustion chamber experiments or to field experiments based on ground-level measurements or aircraft sampling in smoke plumes. There have been a number of experimental studies in the last 10 years to investigate wildfires in tropical, temperate, or boreal regions. This article presents an overview of measurement methods and experimental data on emission factors of reactive or radiatively active trace compounds, including trace gases and particles. It focuses on fires in tropical regions, that is, forest and savanna fires, agricultural burns, charcoal production, use of fuel wood and charcoal combustion. 6 figs., 8 tabs., 65 refs

  12. [Emission factors and PM chemical composition study of biomass burning in the Yangtze River Delta region].

    Science.gov (United States)

    Tang, Xi-Bin; Huang, Cheng; Lou, Sheng-Rong; Qiao, Li-Ping; Wang, Hong-Li; Zhou, Min; Chen, Ming-hua; Chen, Chang-Hong; Wang, Qian; Li, Gui-Ling; Li, Li; Huang, Hai-Ying; Zhang, Gang-Feng

    2014-05-01

    The emission characteristics of five typical crops, including wheat straw, rice straw, oil rape straw, soybean straw and fuel wood, were investigated to explore the gas and particulates emission of typical biomass burning in Yangzi-River-Delta area. The straws were tested both by burning in stove and by burning in the farm with a self-developed measurement system as open burning sources. Both gas and fine particle pollutants were measured in this study as well as the chemical composition of fine particles. The results showed that the average emission factors of CO, NO, and PM2,5 in open farm burning were 28.7 g.kg -1, 1.2 g.kg-1 and 2.65 g kg-1 , respectively. Due to insufficient burning in the low oxygen level environment, the emission factors of stove burning were higher than those of open farm burning, which were 81.9 g kg-1, 2. 1 g.kg -1 and 8.5 gkg -1 , respectively. Oil rape straw had the highest emission factors in all tested straws samples. Carbonaceous matter, including organic carbon(OC) and element carbon(EC) , was the foremost component of PM2, 5from biomass burning. The average mass fractions of OC and EC were (38.92 +/- 13.93)% and (5.66 +/-1.54)% by open farm burning and (26.37 +/- 10. 14)% and (18.97 +/- 10.76)% by stove burning. Water soluble ions such as Cl-and K+ had a large contribution. The average mass fractions of CI- and K+ were (13.27 +/-6. 82)% and (12.41 +/- 3.02)% by open farm burning, and were (16.25 +/- 9.34)% and (13.62 +/- 7.91)% by stove burning. The K +/OC values of particles from wheat straw, rice straw, oil rape straw and soybean straw by open farm burning were 0. 30, 0. 52, 0. 49 and 0. 15, respectively, which can be used to evaluate the influence on the regional air quality in YRD area from biomass burning and provide direct evidence for source apportionment.

  13. Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles

    Science.gov (United States)

    Simoneit, B. R. T.; Schauer, J. J.; Nolte, C. G.; Oros, D. R.; Elias, V. O.; Fraser, M. P.; Rogge, W. F.; Cass, G. R.

    The major organic components of smoke particles from biomass burning are monosaccharide derivatives from the breakdown of cellulose, accompanied by generally lesser amounts of straight-chain, aliphatic and oxygenated compounds and terpenoids from vegetation waxes, resins/gums, and other biopolymers. Levoglucosan and the related degradation products from cellulose can be utilized as specific and general indicator compounds for the presence of emissions from biomass burning in samples of atmospheric fine particulate matter. This enables the potential tracking of such emissions on a global basis. There are other compounds (e.g. amyrones, friedelin, dehydroabietic acid, and thermal derivatives from terpenoids and from lignin—syringaldehyde, vanillin, syringic acid, vanillic acid), which are additional key indicators in smoke from burning of biomass specific to the type of biomass fuel. The monosaccharide derivatives (e.g. levoglucosan) are proposed as specific indicators for cellulose in biomass burning emissions. Levoglucosan is emitted at such high concentrations that it can be detected at considerable distances from the original combustion source.

  14. Atmospheric tar balls from biomass burning in Mexico

    Science.gov (United States)

    Adachi, Kouji; Buseck, Peter R.

    2011-03-01

    Atmospheric tar balls (TBs) are spherical, organic aerosol particles that occur in smoke from biomass burning (BB). They absorb sunlight and thereby cause warming of the atmosphere. This study reports a transmission electron microscope (TEM) study of TBs from BB smoke samples collected within minutes to hours from emission in a tropical area of Mexico. Their spherical shapes as seen in both scanning electron microscope images and with electron tomography indicate that they were solid when collected. They consist of C and minor O, S, K, and N. The hygroscopic growth factor for our relatively fresh TBs is 1.09 ± 0.04 at a relative humidity of 100%. In samples 1.6 km from the fire, an average of ˜1 and 14%, respectively, of particles with aerodynamic diameter from 50 to 300 nm consisted of TBs. For the latter, more aged samples, the total volume was roughly double that of soot, and their total calculated light absorption at a wavelength of 550 nm was between 74 and 96% that of soot, with the exact amount depending on the size, shape, and coating of the soot. In general, the TBs that we analyzed were similar to those from North America, southern Africa, and Europe in terms of size, external mixing, relative freedom of inclusions, and composition. This and previous studies show that TBs result from a range of biomass fuels. Their distribution from various regions across the globe, combined with their optical properties, suggests they have important effects on regional and perhaps global climate.

  15. Discrimination of Biomass Burning Smoke and Clouds in MAIAC Algorithm

    Science.gov (United States)

    Lyapustin, A.; Korkin, S.; Wang, Y.; Quayle, B.; Laszlo, I.

    2012-01-01

    The multi-angle implementation of atmospheric correction (MAIAC) algorithm makes aerosol retrievals from MODIS data at 1 km resolution providing information about the fine scale aerosol variability. This information is required in different applications such as urban air quality analysis, aerosol source identification etc. The quality of high resolution aerosol data is directly linked to the quality of cloud mask, in particular detection of small (sub-pixel) and low clouds. This work continues research in this direction, describing a technique to detect small clouds and introducing the smoke test to discriminate the biomass burning smoke from the clouds. The smoke test relies on a relative increase of aerosol absorption at MODIS wavelength 0.412 micrometers as compared to 0.47-0.67 micrometers due to multiple scattering and enhanced absorption by organic carbon released during combustion. This general principle has been successfully used in the OMI detection of absorbing aerosols based on UV measurements. This paper provides the algorithm detail and illustrates its performance on two examples of wildfires in US Pacific North-West and in Georgia/Florida of 2007.

  16. Investigating the Spectral Dependence of Biomass Burning Aerosol Optical Properties

    Science.gov (United States)

    Odwuor, A.; Corr, C.; Pusede, S.

    2016-12-01

    Aerosol optical properties, such as light absorption and scattering, are important for understanding how aerosols affect the global radiation budget and for comparison with data gathered from remote sensing. It has been established that the optical properties of aerosols are wavelength dependent, although some remote sensing measurements do not consider this. Airborne measurements of these optical properties were used to calculate the absorption Angstrom exponent, a parameter that characterizes the wavelength dependence of light absorption by aerosols, and single scattering albedo, which measures the relative magnitude of light scattering to total extinction (scattering and absorption combined). Aerosols produced by biomass burning in Saskatchewan, Canada in July 2008 and a forest fire in Southern California, U.S. in June 2016 were included in this analysis. These wildfires were sampled by the NASA DC-8 aircraft during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) and NASA Student Airborne Research Program (SARP) missions, respectively. Aerosol absorption was measured using a particle soot photometer (PSAP) at 470, 532 and 660 nm. Scattering was measured using a 3-wavelength (450, 550 and 700 nm) nephelometer. Absorption Angstrom exponents were calculated at 470 and 660 nm and single scattering albedos were calculated at 450 and 550 nm. Results of this study indicate that disregarding the wavelength dependence of organic aerosol can understate the positive radiative forcing (warming) associated with aerosol absorption.

  17. Biomass burning emissions in north Australia during the early dry season: an overview of the 2014 SAFIRED campaign

    Directory of Open Access Journals (Sweden)

    M. D. Mallet

    2017-11-01

    Full Text Available The SAFIRED (Savannah Fires in the Early Dry Season campaign took place from 29 May until 30 June 2014 at the Australian Tropical Atmospheric Research Station (ATARS in the Northern Territory, Australia. The purpose of this campaign was to investigate emissions from fires in the early dry season in northern Australia. Measurements were made of biomass burning aerosols, volatile organic compounds, polycyclic aromatic carbons, greenhouse gases, radon, speciated atmospheric mercury and trace metals. Aspects of the biomass burning aerosol emissions investigated included; emission factors of various species, physical and chemical aerosol properties, aerosol aging, micronutrient supply to the ocean, nucleation, and aerosol water uptake. Over the course of the month-long campaign, biomass burning signals were prevalent and emissions from several large single burning events were observed at ATARS.Biomass burning emissions dominated the gas and aerosol concentrations in this region. Dry season fires are extremely frequent and widespread across the northern region of Australia, which suggests that the measured aerosol and gaseous emissions at ATARS are likely representative of signals across the entire region of north Australia. Air mass forward trajectories show that these biomass burning emissions are carried north-west over the Timor Sea and could influence the atmosphere over Indonesia and the tropical atmosphere over the Indian Ocean. Here we present characteristics of the biomass burning observed at the sampling site and provide an overview of the more specific outcomes of the SAFIRED campaign.

  18. Biomass burning emissions in north Australia during the early dry season: an overview of the 2014 SAFIRED campaign

    Science.gov (United States)

    Mallet, Marc D.; Desservettaz, Maximilien J.; Miljevic, Branka; Milic, Andelija; Ristovski, Zoran D.; Alroe, Joel; Cravigan, Luke T.; Rohan Jayaratne, E.; Paton-Walsh, Clare; Griffith, David W. T.; Wilson, Stephen R.; Kettlewell, Graham; van der Schoot, Marcel V.; Selleck, Paul; Reisen, Fabienne; Lawson, Sarah J.; Ward, Jason; Harnwell, James; Cheng, Min; Gillett, Rob W.; Molloy, Suzie B.; Howard, Dean; Nelson, Peter F.; Morrison, Anthony L.; Edwards, Grant C.; Williams, Alastair G.; Chambers, Scott D.; Werczynski, Sylvester; Williams, Leah R.; Winton, V. Holly L.; Atkinson, Brad; Wang, Xianyu; Keywood, Melita D.

    2017-11-01

    The SAFIRED (Savannah Fires in the Early Dry Season) campaign took place from 29 May until 30 June 2014 at the Australian Tropical Atmospheric Research Station (ATARS) in the Northern Territory, Australia. The purpose of this campaign was to investigate emissions from fires in the early dry season in northern Australia. Measurements were made of biomass burning aerosols, volatile organic compounds, polycyclic aromatic carbons, greenhouse gases, radon, speciated atmospheric mercury and trace metals. Aspects of the biomass burning aerosol emissions investigated included; emission factors of various species, physical and chemical aerosol properties, aerosol aging, micronutrient supply to the ocean, nucleation, and aerosol water uptake. Over the course of the month-long campaign, biomass burning signals were prevalent and emissions from several large single burning events were observed at ATARS.Biomass burning emissions dominated the gas and aerosol concentrations in this region. Dry season fires are extremely frequent and widespread across the northern region of Australia, which suggests that the measured aerosol and gaseous emissions at ATARS are likely representative of signals across the entire region of north Australia. Air mass forward trajectories show that these biomass burning emissions are carried north-west over the Timor Sea and could influence the atmosphere over Indonesia and the tropical atmosphere over the Indian Ocean. Here we present characteristics of the biomass burning observed at the sampling site and provide an overview of the more specific outcomes of the SAFIRED campaign.

  19. Air toxic emissions from burning of biomass globally-preliminary results

    International Nuclear Information System (INIS)

    Ward, D.E.; Hao, W.M.

    1992-01-01

    Emissions of trace gases, particles, and air toxic substances in the smoke plumes from biomass fires are of importance to global climate change. The potential impact of the air toxic emissions on the human population of specific regions globally is another major concern. The toxic materials are produced in high concentrations in areas of heavy biomass burning, e.g., Amazon Basin and Central/southern Africa. We provide new estimates of air toxics based on the combustion efficiency (percent of total carbon released as CO 2 ) for fires burning in different ecosystems on a global basis. Estimates of total biomass consumed on a global basis range from 2 to 10 Pg (1 petagram = 10 15 g) per year. We apply emission factors for various air toxics (g of emission released per kg of fuel consumed) to the estimate of global biomass consumption of 6.4 Pg per year. The principal air toxics analyzed in this paper include: Total particulate matter, CO, formaldehyde, acetaldehyde, acrolein, benzene, toluene, o-xylene, m, p-xylene, benzo[a]pyrene, and polycyclic organic material. The total emissions calculated for these materials on a yearly global basis are: 75, 362, 4.9, 1.5, 1.5, 2.1, 2.1, 0.3, 0.6, 0.001, 0.026, Tg (1 teragram = 10 12 g) per year, respectively. Biomass burning in the United States contributes less than 3% to the total global emissions

  20. Does chronic nitrogen deposition during biomass growth affect atmospheric emissions from biomass burning?

    Science.gov (United States)

    Michael R Giordano; Joey Chong; David R Weise; Akua A Asa-Awuku

    2016-01-01

    Chronic nitrogen deposition has measureable impacts on soil and plant health.We investigate burning emissions from biomass grown in areas of high and low NOx deposition. Gas and aerosolphase emissions were measured as a function of photochemical aging in an environmental chamber at UC-Riverside. Though aerosol chemical speciation was not...

  1. The role of semi-volatile organic compounds in the mesoscale evolution of biomass burning aerosol: a modeling case study of the 2010 mega-fire event in Russia

    Directory of Open Access Journals (Sweden)

    I. B. Konovalov

    2015-12-01

    Full Text Available Chemistry transport models (CTMs are an indispensable tool for studying and predicting atmospheric and climate effects associated with carbonaceous aerosol from open biomass burning (BB; this type of aerosol is known to contribute significantly to both global radiative forcing and to episodes of air pollution in regions affected by wildfires. Improving model performance requires systematic comparison of simulation results with measurements of BB aerosol and elucidation of possible reasons for discrepancies between them, which, by default, are frequently attributed in the literature to uncertainties in emission data. Based on published laboratory data on the atmospheric evolution of BB aerosol and using the volatility basis set (VBS framework for organic aerosol modeling, we examined the importance of taking gas-particle partitioning and oxidation of semi-volatile organic compounds (SVOCs into account in simulations of the mesoscale evolution of smoke plumes from intense wildfires that occurred in western Russia in 2010. Biomass burning emissions of primary aerosol components were constrained with PM10 and CO data from the air pollution monitoring network in the Moscow region. The results of the simulations performed with the CHIMERE CTM were evaluated by considering, in particular, the ratio of smoke-related enhancements in PM10 and CO concentrations (ΔPM10 and ΔCO measured in Finland (in the city of Kuopio, nearly 1000 km downstream of the fire emission sources. It is found that while the simulations based on a "conventional" approach to BB aerosol modeling (disregarding oxidation of SVOCs and assuming organic aerosol material to be non-volatile strongly underestimated values of ΔPM10/ΔCO observed in Kuopio (by a factor of 2, employing the "advanced" representation of atmospheric processing of organic aerosol material resulted in bringing the simulations to a much closer agreement with the ground measurements. Furthermore, taking gas

  2. Emissions of carbon, nitrogen, and sulfur from biomass burning in Nigeria

    International Nuclear Information System (INIS)

    Akeredolu, F.; Isichei, A.O.

    1991-01-01

    The atmospheric implications of the effects of burning of vegetation in Nigeria are discussed. The following topics are explored: the extent of biomass burning by geographical area; estimates of emission rates of carbon, nitrogen and sulfur; and the impact on biogeochemical cycling of elements. The results suggest that biomass burning generates a measurable impact on the cycling of carbon and nitrogen

  3. Aerosol Properties Downwind of Biomass Burns Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Buseck, Peter R [Arizona State Univ., Tempe, AZ (United States)

    2016-04-01

    We determined the morphological, chemical, and thermal properties of aerosol particles generated by biomass burning during the Biomass Burning Observation Project (BBOP) campaign during the wildland fire season in the Pacific Northwest from July to mid-September, 2013, and in October, 2013 from prescribed agricultural burns in the lower Mississippi River Valley. BBOP was a field campaign of the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility. The morphological information was both two-dimensional, as is typical of most microscopy images and that have many of the characteristic of shadows in that they lack depth data, and three-dimensional (3D). The electron tomographic measurements will provided 3D data, including the presence and nature of pores and interstices, and whether the individual particles are coated by or embedded within other materials. These microphysical properties were determined for particles as a function of time and distance from the respective sources in order to obtain detailed information regarding the time evolution of changes during aging.

  4. Ground-based aerosol characterization during the South American Biomass Burning Analysis (SAMBBA) field experiment

    Science.gov (United States)

    Brito, J.; Rizzo, L. V.; Morgan, W. T.; Coe, H.; Johnson, B.; Haywood, J.; Longo, K.; Freitas, S.; Andreae, M. O.; Artaxo, P.

    2014-11-01

    This paper investigates the physical and chemical characteristics of aerosols at ground level at a site heavily impacted by biomass burning. The site is located near Porto Velho, Rondônia, in the southwestern part of the Brazilian Amazon rainforest, and was selected for the deployment of a large suite of instruments, among them an Aerosol Chemical Speciation Monitor. Our measurements were made during the South American Biomass Burning Analysis (SAMBBA) field experiment, which consisted of a combination of aircraft and ground-based measurements over Brazil, aimed to investigate the impacts of biomass burning emissions on climate, air quality, and numerical weather prediction over South America. The campaign took place during the dry season and the transition to the wet season in September/October 2012. During most of the campaign, the site was impacted by regional biomass burning pollution (average CO mixing ratio of 0.6 ppm), occasionally superimposed by intense (up to 2 ppm of CO), freshly emitted biomass burning plumes. Aerosol number concentrations ranged from ~1000 cm-3 to peaks of up to 35 000 cm-3 (during biomass burning (BB) events, corresponding to an average submicron mass mean concentrations of 13.7 μg m-3 and peak concentrations close to 100 μg m-3. Organic aerosol strongly dominated the submicron non-refractory composition, with an average concentration of 11.4 μg m-3. The inorganic species, NH4, SO4, NO3, and Cl, were observed, on average, at concentrations of 0.44, 0.34, 0.19, and 0.01 μg m-3, respectively. Equivalent black carbon (BCe) ranged from 0.2 to 5.5 μg m-3, with an average concentration of 1.3 μg m-3. During BB peaks, organics accounted for over 90% of total mass (submicron non-refractory plus BCe), among the highest values described in the literature. We examined the ageing of biomass burning organic aerosol (BBOA) using the changes in the H : C and O : C ratios, and found that throughout most of the aerosol processing (O : C ≅ 0

  5. Modeling the impacts of biomass burning on air quality in and around Mexico City

    Science.gov (United States)

    Lei, W.; Li, G.; Molina, L. T.

    2013-03-01

    The local and regional impacts of open fires and trash burning on ground-level ozone (O3) and fine carbonaceous aerosols in the Mexico City Metropolitan Area (MCMA) and surrounding region during two high fire periods in March 2006 have been evaluated using WRF-CHEM model. The model captured reasonably well the measurement-derived magnitude and temporal variation of the biomass burning organic aerosol (BBOA), and the simulated impacts of open fires on organic aerosol (OA) were consistent with many observation-based estimates. We did not detect significant effects of open fires and trash burning on surface O3 concentrations in the MCMA and surrounding region. In contrast, they had important influences on OA and elemental carbon (EC), increasing primary OA (POA) by ~60%, secondary OA (SOA) by ~22%, total OA (TOA = POA + SOA) by ~33%, and EC by ~22%, on both the local (urban) and regional scales. Although the emissions of trash burning are substantially lower than those from open fires, trash burning made slightly smaller but comparable contributions to OA as open fires did, and exerted an even higher influence on EC. Of the ~22% enhancement in SOA concentrations (equivalent to a ~15% increase in TOA) simulated, about two third was attributed to the open fires and one-third to the trash burning. On the annual basis and taking the biofuel use emissions into consideration, we estimated that open fires, trash burning and biofuel use together contributed about 60% to the loading of POA, 30% to SOA, and 25% to EC in both the MCMA and its surrounding region, of which the open fires and trash burning contributed about 35% to POA, 18% to SOA, and 15% to EC. The estimates of biomass burning impacts in this study may contain considerable uncertainties due to the uncertainties in their emission estimates in magnitude, temporal and spatial distribution, extrapolations and the nature of spot comparison. More observation and modeling studies are needed to accurately assess the

  6. Modeling the impacts of biomass burning on air quality in and around Mexico City

    Directory of Open Access Journals (Sweden)

    W. Lei

    2013-03-01

    Full Text Available The local and regional impacts of open fires and trash burning on ground-level ozone (O3 and fine carbonaceous aerosols in the Mexico City Metropolitan Area (MCMA and surrounding region during two high fire periods in March 2006 have been evaluated using WRF-CHEM model. The model captured reasonably well the measurement-derived magnitude and temporal variation of the biomass burning organic aerosol (BBOA, and the simulated impacts of open fires on organic aerosol (OA were consistent with many observation-based estimates. We did not detect significant effects of open fires and trash burning on surface O3 concentrations in the MCMA and surrounding region. In contrast, they had important influences on OA and elemental carbon (EC, increasing primary OA (POA by ~60%, secondary OA (SOA by ~22%, total OA (TOA = POA + SOA by ~33%, and EC by ~22%, on both the local (urban and regional scales. Although the emissions of trash burning are substantially lower than those from open fires, trash burning made slightly smaller but comparable contributions to OA as open fires did, and exerted an even higher influence on EC. Of the ~22% enhancement in SOA concentrations (equivalent to a ~15% increase in TOA simulated, about two third was attributed to the open fires and one-third to the trash burning. On the annual basis and taking the biofuel use emissions into consideration, we estimated that open fires, trash burning and biofuel use together contributed about 60% to the loading of POA, 30% to SOA, and 25% to EC in both the MCMA and its surrounding region, of which the open fires and trash burning contributed about 35% to POA, 18% to SOA, and 15% to EC. The estimates of biomass burning impacts in this study may contain considerable uncertainties due to the uncertainties in their emission estimates in magnitude, temporal and spatial distribution, extrapolations and the nature of spot comparison. More observation and modeling studies are needed to accurately assess

  7. Ground based aerosol characterization during the South American Biomass Burning Analysis (SAMBBA) field experiment

    Science.gov (United States)

    Brito, J.; Rizzo, L. V.; Morgan, W. T.; Coe, H.; Johnson, B.; Haywood, J.; Longo, K.; Freitas, S.; Andreae, M. O.; Artaxo, P.

    2014-05-01

    This paper investigates the physical and chemical characteristics of aerosols at ground level at a site heavily impacted by biomass burning. The site is located near Porto Velho, Rondônia, in the Southwestern part of the Brazilian Amazon forest, and was selected for the deployment of a large suite of instruments, among them an Aerosol Chemical Speciation Monitor. Our measurements were made during the South American Biomass Burning Analysis (SAMBBA) field experiment, which consisted of a combination of aircraft and ground based measurements over Brazil, aiming to investigate the impacts of biomass burning emissions on climate, air quality, and numerical weather prediction over South America. The campaign took place during the dry season and the transition to the wet season in September/October 2012. During most of the campaign, the site was impacted by regional biomass burning pollution (average CO mixing ratio of 0.6 ppm), occasionally superimposed by intense (up to 2 ppm of CO), freshly emitted biomass burning plumes. Aerosol number concentrations ranged from ∼1000 cm-3 to peaks of up to 35 000 cm-3 during biomass burning (BB) events, corresponding to an average submicron mass mean concentrations of 13.7 μg m-3 and peak concentrations close to 100 μg m-3. Organic aerosol strongly dominated the submicron non-refractory composition, with an average concentration of 11.4 μg m-3. The inorganic species, NH4, SO4, NO3, and Cl, were observed on average at concentrations of 0.44, 0.34, 0.19, and 0.01 μg m-3, respectively. Equivalent Black Carbon (BCe) ranged from 0.2 to 5.5 μg m-3, with an average concentration of 1.3 μg m-3. During BB peaks, organics accounted for over 90% of total mass (submicron non-refractory plus BCe), among the highest values described in the literature. We examined the ageing of Biomass Burning Organic Aerosol (BBOA) using the changes in the H : C and O : C ratios, and found that throughout most of the aerosol processing (O : C ≅ 0.25 to

  8. Impacts of Biomass Burning on African Climate and Inhabitants

    Science.gov (United States)

    Ajoku, O.; Burney, J. A.; Miller, A. J.

    2017-12-01

    It has been well documented that aerosols, particulate matter in the atmosphere, created from biomass burning have an effect on regional weather patterns. These aerosols, known as black carbon (BC), are rather damaging to human health and have been documented as the cause of many fatalities where wood burning is a common practice. Our research focuses on the hemispherical transport of BC during monsoon months and its effect on precipitation in addition to gaining a better understanding of the effects of BC caused by human induced fires on health related casualities. Early analysis shows that BC undergoing hemispherical transport alter monsoon dynamics in the month of July. In addition, the most human induced fires occur during boreal autumn, and thus these months have the most potential for human induced fatalities. For a broader impact, there are more than 200 million inhabitants that lay in the path of BC both at the source region and areas these aerosols are advected to.

  9. Biomass burning aerosol detection over Buenos Aires City, August 2009

    International Nuclear Information System (INIS)

    Otero, L A; Ristori, P R; Pawelko, E E; Pallotta, J V; D'Elia, R L; Quel, E J

    2011-01-01

    At the end of August 2009, a biomass burning aerosol intrusion event was detected at the Laser and Applications Research Center, CEILAP (CITEFA-CONICET) (34.5 deg. S - 58.5 deg. W) at Villa Martelli, in Buenos Aires, Argentina. This center has a sunphotometer from the AERONET-NASA global network, UV solar radiation sensors, a meteorological station and an aerosol lidar system. The aerosol origin was determined by means of back-trajectories and satellite images. This work studies the aerosol air mass optical characterization and their effect in UV solar radiation.

  10. Biomass Burning Research Using DOE ARM Single-Particle Soot Photometer (SP2) Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Onasch, Timothy B [Aerodyne Research, Inc., Billerica, MA (United States); Sedlacek, Arthur J [Brookhaven National Lab. (BNL), Upton, NY (United States); Lewis, Ernie [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-03-01

    The focus of this laboratory study was to investigate the chemical and optical properties, and the detection efficiencies, of tar balls generated in the laboratory using the same instruments deployed on the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility Gulfstream-1 (G-1) aircraft during the 2013 Biomass Burning Observation Project (BBOP) field study, during which tar balls were observed in wildland biomass burning particulate emissions. Key goals of this laboratory study were: (a) measuring the chemical composition of tar balls to provide insights into the atmospheric processes that form (evaporation/oxidation) and modify them in biomass burning plumes, (b) identifying whether tar balls contain refractory black carbon, (c) determining the collection efficiencies of tar balls impacting on the 600oC heated tungsten vaporizer in the Aerodyne Soot Particle Aerosol Mass Spectrometer (SP-AMS) (i.e., given the observed low volatilities, AMS measurements might underestimate organic biomass burning plume loadings), and (d) measuring the wavelength-dependent, mass-specific absorption cross-sections of brown carbon components of tar balls. This project was funded primarily by the DOE Atmospheric System Research (ASR) program, and the ARM Facility made their single-particle soot photometer (SP2) available for September 1-September 31, 2016 in the Aerodyne laboratories. The ARM mentor (Dr. Sedlacek) requested no funds for mentorship or data reduction. All ARM SP2 data collected as part of this project are archived in the ARM Data Archive in accordance with established protocols. The main objectives of the ARM Biomass Burning Observation Period (BBOP, July-October, 2013) field campaign were to (1) assess the impact of wildland fires in the Pacific Northwest on climate, through near-field and regional intensive measurement campaigns, and (2) investigate agricultural burns to determine how those biomass burn plumes differ from

  11. Near-real Time Monitoring of Global Biomass Burning Emissions from Multiple Geostationary Instruments

    Science.gov (United States)

    Zhang, X.; Kondragunta, S.; Ram, J.; Schmidt, C. C.

    2010-12-01

    Biomass burning from wildland fires releases a significant amount of trace gases and aerosols into the atmosphere. These emissions and their long-range transports significantly affect air quality, climate change, and carbon budget. We present the use of fire radiative power (FRP) to derive biomass burning emissions in near-real time. The instantaneous FRP at an interval of 15-30 minutes is retrieved using WF_ABBA_V65 (Wildfire Automated Biomass Burning Algorithm) from a network of geostationary satellites. This network consists of two Geostationary Operation Environmental Satellites (GOES) which are operated by the National Oceanic and Atmospheric Administration(NOAA), the Meteosat Second Generation satellites (MET-09) operated by the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT), and the Multi-functional Transport Satellite (MTSAT-1R) operated by the Japan Meteorological Agency (JMA). The spatial consistence of FRP values retrieved from different geostationary instruments are investigated and compared with MODIS FRP retrievals. Further, the consistency of temporal pattern in instantaneous FRP is simulated because the continuous observations from satellites are impeded by sensor saturation, cloud cover, and background surface effects. The gaps in observations are filled using simulated values which are calculated by combing the observed instantaneous FRP values within a day and a set of representative diurnal patterns of half-hourly FRPs for various ecosystems. Furthermore, the diurnal variation in FRP is applied to quantify emissions of PM2.5 (particulate mass for particles with diameter < 2.5 µm), CH4, CO2, N2O, NH3, NOX, and TNMHC. This algorithm has been applied to produce global biomass emissions with one-day latency since January 2010. Results from the analysis of global patterns in hourly biomass burning emissions for 2009-2010 will be presented.

  12. Aerial sampling of emissions from biomass pile burns in ...

    Science.gov (United States)

    Emissions from burning piles of post-harvest timber slash in Grande Ronde, Oregon were sampled using an instrument platform lofted into the plume using a tether-controlled aerostat or balloon. Emissions of carbon monoxide, carbon dioxide, methane, particulate matter (PM2.5 µm), black carbon, ultraviolet absorbing PM, elemental/organic carbon, semi-volatile organics (polycyclic aromatic hydrocarbons and polychlorinated dibenzodioxins/dibenzofurans), filter-based metals, and volatile organics were sampled for determination of emission factors. The effect on emissions from covering or not covering piles with polyethylene sheets to prevent fuel wetting was determined. Results showed that the uncovered (“wet”) piles burned with lower combustion efficiency and higher emissions of volatile organic compounds. Results for other pollutants will also be discussed. This work determined the emissions from open burning of forest slash wood, with and without plastic sheeting. The foresters advocate the use of plastic to keep the slash wood dry and aid in the controlled combustion of the slash to reduce fuel loading. Concerns about the emissions from the burning plastic prompted this work which conducted an extensive characterization of dry, wet, and dry with plastic slash pile emissions.

  13. Photochemical production of O3 in biomass burning plumes in the boundary layer over northern Australia

    Science.gov (United States)

    Takegawa, N.; Kondo, Y.; Ko, M.; Koike, M.; Kita, K.; Blake, D. R.; Hu, W.; Scott, C.; Kawakami, S.; Miyazaki, Y.; Russell-Smith, J.; Ogawa, T.

    2003-05-01

    In situ aircraft measurements of ozone (O3) and its precursors were made over northern Australia in August-September 1999 during the Biomass Burning and Lightning Experiment Phase B (BIBLE-B). A clear positive correlation of O3 with carbon monoxide (CO) was found in biomass burning plumes in the boundary layer (exported from northern Australia during BIBLE-B is estimated to be 0.3 Gmol O3/day. In the biomass burning region, large enhancements of O3 were coincident with the locations of biomass burning hot spots, suggesting that major O3 production occurred near fires (horizontal scale <50 km).

  14. Wintertime Residential Biomass Burning in Las Vegas, Nevada; Marker Components and Apportionment Methods

    Directory of Open Access Journals (Sweden)

    Steven G. Brown

    2016-04-01

    Full Text Available We characterized residential biomass burning contributions to fine particle concentrations via multiple methods at Fyfe Elementary School in Las Vegas, Nevada, during January 2008: with levoglucosan on quartz fiber filters; with water soluble potassium (K+ measured using a particle-into-liquid system with ion chromatography (PILS-IC; and with the fragment C2H4O2+ from an Aerodyne High Resolution Aerosol Mass Spectrometer (HR-AMS. A Magee Scientific Aethalometer was also used to determine aerosol absorption at the UV (370 nm and black carbon (BC, 880 nm channels, where UV-BC difference is indicative of biomass burning (BB. Levoglucosan and AMS C2H4O2+ measurements were strongly correlated (r2 = 0.92; K+ correlated well with C2H4O2+ (r2 = 0.86 during the evening but not during other times. While K+ may be an indicator of BB, it is not necessarily a unique tracer, as non-BB sources appear to contribute significantly to K+ and can change from day to day. Low correlation was seen between UV-BC difference and other indicators, possibly because of an overwhelming influence of freeway emissions on BC concentrations. Given the sampling location—next to a twelve-lane freeway—urban-scale biomass burning was found to be a surprisingly large source of aerosol: overnight BB organic aerosol contributed between 26% and 33% of the organic aerosol mass.

  15. Decadal changes in aerosol absorption across Brazil resulting from changes in biomass burning practices

    Science.gov (United States)

    Coe, H.; Morgan, W.; Darbyshire, E.; Allan, J. D.; Flynn, M.; Liu, D.; Langridge, J.; Johnson, B. T.; Haywood, J. M.; Longo, K.; Artaxo, P.; Highwood, E.; Mollard, J.

    2015-12-01

    Open biomass burning makes a substantial contribution to the global budget of black carbon, yet models significantly underestimate absorption aerosol optical depth compared to observations by approximately a factor of two over South America. These large differences need to be addressed. Recent work has shown that the number of deforestation fires has decreased across Amazonia over the last decade, giving rise to a decrease in the abundance of biomass burning aerosol across the region. At the same time there has been an increase in the frequency of agricultural burning across regions that have previously been deforested, as well as increased burning in the east of Brazil in the Cerrado regions. We sampled both of these types of open burning extensively during a recent aircraft experiment. Significant concentrations of organic carbon as well as black carbon were observed, with this ratio providing the main control on the single scattering albedo (SSA).Deforestation fires and wild forest fires are prevalent across the south west of the Amazon Basin, where smouldering burning dominates. In the east of Brazil, agricultural burning proceeds via a much more efficient form of combustion and as a result, black carbon is a much larger fraction of the aerosol mass and SSAs are much lower than in the west. We have analysed MISR data across the region to show that whilst aerosol optical depths have decreased during the dry season over the last decade, with greater rates of reduction occurring over the south western margins of Amazonia, absorption aerosol optical depths have significantly increased over the Cerrado and remained constant over south western Amazonia. This has led to a decline in SSA across the whole of the region with greater reductions occurring over the eastern states. This finding is consistent with our aircraft measurements. We will discuss the implications of these changes for air quality and climate across the region.

  16. Enhanced biogenic emissions of nitric oxide and nitrous oxide following surface biomass burning

    Science.gov (United States)

    Anderson, Iris C.; Levine, Joel S.; Poth, Mark A.; Riggan, Philip J.

    1988-01-01

    Recent measurements indicate significantly enhanced biogenic soil emissions of both nitric oxide (NO) and nitrous oxide (N2O) following surface burning. These enhanced fluxes persisted for at least six months following the burn. Simultaneous measurements indicate enhanced levels of exchangeable ammonium in the soil following the burn. Biomass burning is known to be an instantaneous source of NO and N2O resulting from high-temperature combustion. Now it is found that biomass burning also results in significantly enhanced biogenic emissions of these gases, which persist for months following the burn.

  17. Annual and diurnal african biomass burning temporal dynamics

    Directory of Open Access Journals (Sweden)

    G. Roberts

    2009-05-01

    Full Text Available Africa is the single largest continental source of biomass burning emissions. Here we conduct the first analysis of one full year of geostationary active fire detections and fire radiative power data recorded over Africa at 15-min temporal interval and a 3 km sub-satellite spatial resolution by the Spinning Enhanced Visible and Infrared Imager (SEVIRI imaging radiometer onboard the Meteosat-8 satellite. We use these data to provide new insights into the rates and totals of open biomass burning over Africa, particularly into the extremely strong seasonal and diurnal cycles that exist across the continent. We estimate peak daily biomass combustion totals to be 9 and 6 million tonnes of fuel per day in the northern and southern hemispheres respectively, and total fuel consumption between February 2004 and January 2005 is estimated to be at least 855 million tonnes. Analysis is carried out with regard to fire pixel temporal persistence, and we note that the majority of African fires are detected only once in consecutive 15 min imaging slots. An investigation of the variability of the diurnal fire cycle is carried out with respect to 20 different land cover types, and whilst differences are noted between land covers, the fire diurnal cycle characteristics for most land cover type are very similar in both African hemispheres. We compare the Fire Radiative Power (FRP derived biomass combustion estimates to burned-areas, both at the scale of individual fires and over the entire continent at a 1-degree scale. Fuel consumption estimates are found to be less than 2 kg/m2 for all land cover types noted to be subject to significant fire activity, and for savanna grasslands where literature values are commonly reported the FRP-derived median fuel consumption estimate of 300 g/m2 is well within commonly quoted values. Meteosat-derived FRP data of the type presented here is now available freely to interested users continuously and in near

  18. Biomass burning and its effects on fine aerosol acidity, water content and nitrogen partitioning

    Science.gov (United States)

    Bougiatioti, Aikaterini; Nenes, Athanasios; Paraskevopoulou, Despina; Fourtziou, Luciana; Stavroulas, Iasonas; Liakakou, Eleni; Myriokefalitakis, Stelios; Daskalakis, Nikos; Weber, Rodney; Kanakidou, Maria; Gerasopoulos, Evangelos; Mihalopoulos, Nikolaos

    2017-04-01

    Aerosol acidity is an important property that drives the partitioning of semi-volatile species, the formation of secondary particulate matter and metal and nutrient solubility. Aerosol acidity varies considerably between aerosol types, RH, temperature, the degree of atmospheric chemical aging and may also change during transport. Among aerosol different sources, sea salt and dust have been well studied and their impact on aerosol acidity and water uptake is more or less understood. Biomass burning (BB) on the other hand, despite its significance as a source in a regional and global scale, is much less understood. Currently, there is no practical and accurate enough method, to directly measure the pH of in-situ aerosol. The combination of thermodynamic models, with targeted experimental observations can provide reliable predictions of aerosol particle water and pH, using as input the concentration of gas/aerosol species, temperature (T), and relative humidity (RH). As such an example, ISORROPIA-II (Fountoukis and Nenes, 2007) has been used for the thermodynamic analysis of measurements conducted in downtown Athens during winter 2013, in order to evaluate the effect of BB on aerosol water and acidity. Biomass burning, especially during night time, was found to contribute significantly to the increased organics concentrations, but as well to the BC component associated with wood burning, particulate nitrates, chloride, and potassium. These increased concentrations were found to impact on fine aerosol water, with Winorg having an average concentration of 11±14 μg m-3 and Worg 12±19 μg m-3 with the organic component constituting almost 38% of the total calculated submicron water. When investigating the fine aerosol acidity it was derived that aerosol was generally acidic, with average pH during strong BB influence of 2.8±0.5, value similar to the pH observed for regional aerosol influenced by important biomass burning episodes at the remote background site of

  19. Biomass burning aerosol over the Amazon during SAMBBA: impact of chemical composition on radiative properties

    Science.gov (United States)

    Morgan, William; Allan, James; Flynn, Michael; Darbyshire, Eoghan; Hodgson, Amy; Liu, Dantong; O'shea, Sebastian; Bauguitte, Stephane; Szpek, Kate; Langridge, Justin; Johnson, Ben; Haywood, Jim; Longo, Karla; Artaxo, Paulo; Coe, Hugh

    2014-05-01

    in the Cerrado. This led to significant differences in aerosol chemical composition, particularly in terms of the BC content, with BC being enhanced in the Cerrado region compared with the Rainforest environment. This was reflected in the single scattering albedo of the regional smoke haze, with values of 0.9 observed in the Rainforest environments compared with a value of 0.8 in the Cerrado region. This contrast results in a net cooling and warming respectively in terms of the aerosol direct radiative effect. BC-containing particles were found to be rapidly coated in the near-field, while the organic aerosol component was observed to oxidise rapidly upon advection and dilution downwind of major smoke plumes. Significant differences in the coating thickness of the BC-containing particles were observed when comparing the Rainforest and Cerrado environments. Such properties have important implications for the life cycle and formation of particulate material, as well as their optical and radiative properties. The results presented enhance our knowledge of biomass burning aerosol in a sensitive region of the globe, where relatively few measurement campaigns have taken place previously.

  20. Model assessing the impact of biomass burning on air quality and photochemistry in Mexico City

    Science.gov (United States)

    W. Lei; G. Li; C. Wiedinmyer; R. J. Yokelson; L. T. Molina

    2010-01-01

    Biomass burning is a major global emission source for trace gases and particulates. Various multi-platform measurements during the Mexico City Metropolitan Area (MCMA)-2003 and Megacity Initiative: Local and Global Research Observations (MILAGRO)-2006 campaigns suggest significant influences of biomass burning (BB) on air quality in Mexico City during the dry season,...

  1. Estimation of black carbon content for biomass burning aerosols from multi-channel Raman lidar data

    Science.gov (United States)

    Talianu, Camelia; Marmureanu, Luminita; Nicolae, Doina

    2015-04-01

    Biomass burning due to natural processes (forest fires) or anthropical activities (agriculture, thermal power stations, domestic heating) is an important source of aerosols with a high content of carbon components (black carbon and organic carbon). Multi-channel Raman lidars provide information on the spectral dependence of the backscatter and extinction coefficients, embedding information on the black carbon content. Aerosols with a high content of black carbon have large extinction coefficients and small backscatter coefficients (strong absorption), while aerosols with high content of organic carbon have large backscatter coefficients (weak absorption). This paper presents a method based on radiative calculations to estimate the black carbon content of biomass burning aerosols from 3b+2a+1d lidar signals. Data is collected at Magurele, Romania, at the cross-road of air masses coming from Ukraine, Russia and Greece, where burning events are frequent during both cold and hot seasons. Aerosols are transported in the free troposphere, generally in the 2-4 km altitude range, and reaches the lidar location after 2-3 days. Optical data are collected between 2011-2012 by a multi-channel Raman lidar and follows the quality assurance program of EARLINET. Radiative calculations are made with libRadTran, an open source radiative model developed by ESA. Validation of the retrievals is made by comparison to a co-located C-ToF Aerosol Mass Spectrometer. Keywords: Lidar, aerosols, biomass burning, radiative model, black carbon Acknowledgment: This work has been supported by grants of the Romanian National Authority for Scientific Research, Programme for Research- Space Technology and Advanced Research - STAR, project no. 39/2012 - SIAFIM, and by Romanian Partnerships in priority areas PNII implemented with MEN-UEFISCDI support, project no. 309/2014 - MOBBE

  2. Polar organic marker compounds in atmospheric aerosols during the LBA-SMOCC 2002 biomass burning experiment in Rondônia, Brazil: sources and source processes, time series, diel variations and size distributions

    Directory of Open Access Journals (Sweden)

    M. Claeys

    2010-10-01

    Full Text Available Measurements of polar organic marker compounds were performed on aerosols that were collected at a pasture site in the Amazon basin (Rondônia, Brazil using a high-volume dichotomous sampler (HVDS and a Micro-Orifice Uniform Deposit Impactor (MOUDI within the framework of the 2002 LBA-SMOCC (Large-Scale Biosphere Atmosphere Experiment in Amazônia – Smoke Aerosols, Clouds, Rainfall, and Climate: Aerosols From Biomass Burning Perturb Global and Regional Climate campaign. The campaign spanned the late dry season (biomass burning, a transition period, and the onset of the wet season (clean conditions. In the present study a more detailed discussion is presented compared to previous reports on the behavior of selected polar marker compounds, including levoglucosan, malic acid, isoprene secondary organic aerosol (SOA tracers and tracers for fungal spores. The tracer data are discussed taking into account new insights that recently became available into their stability and/or aerosol formation processes. During all three periods, levoglucosan was the most dominant identified organic species in the PM2.5 size fraction of the HVDS samples. In the dry period levoglucosan reached concentrations of up to 7.5 μg m−3 and exhibited diel variations with a nighttime prevalence. It was closely associated with the PM mass in the size-segregated samples and was mainly present in the fine mode, except during the wet period where it peaked in the coarse mode. Isoprene SOA tracers showed an average concentration of 250 ng m−3 during the dry period versus 157 ng m−3 during the transition period and 52 ng m−3 during the wet period. Malic acid and the 2-methyltetrols exhibited a different size distribution pattern, which is consistent with different aerosol formation processes (i.e., gas-to-particle partitioning in the case of malic acid and heterogeneous formation from gas-phase precursors in the case of

  3. The global impact of biomass burning on tropospheric reactive nitrogen

    International Nuclear Information System (INIS)

    Levy, H. II; Moxim, W.J.; Kasibhatla, P.S.; Logan, J.A.

    1991-01-01

    In this chapter the authors first review their current understanding of both the anthropogenic and natural sources of reactive nitrogen compounds in the troposphere. Then the available observations of both surface concentration and wet deposition are summarized for regions with significant sources, for locations downwind of strong sources, and for remote sites. The obvious sparsity of the data leads to the next step: an attempt to develop a more complete global picture of surface concentrations and deposition of NO y with the help of global chemistry transport model (GCTM). The available source data are inserted into the GCTM and the resulting simulations compared with surface observations. The impact of anthropogenic sources, both downwind and at remote locations, is discussed and the particular role of biomass burning is identified

  4. Plant community composition and biomass in Gulf Coast Chenier Plain marshes: Responses to winter burning and structural marsh management

    Science.gov (United States)

    Gabrey, S.W.; Afton, A.D.

    2001-01-01

    Many marshes in the Gulf Coast Chenier Plain, USA, are managed through a combination of fall or winter burning and structural marsh management (i.e., levees and water control structures; hereafter SMM). The goals of winter burning and SMM include improvement of waterfowl and furbearer habitat, maintenance of historic isohaline lines, and creation and maintenance of emergent wetlands. Although management practices are intended to influence the plant community, effects of these practices on primary productivity have not been investigated. Marsh processes, such as vertical accretion and nutrient cycles, which depend on primary productivity may be affected directly or indirectly by winter burning or SMM. We compared Chenier Plain plant community characteristics (species composition and above- and belowground biomass) in experimentally burned and unburned control plots within impounded and unimpounded marshes at 7 months (1996), 19 months (1997), and 31 months (1998) after burning. Burning and SMM did not affect number of plant species or species composition in our experiment. For all three years combined, burned plots had higher live above-ground biomass than did unburned plots. Total above-ground and dead above-ground biomasses were reduced in burned plots for two and three years, respectively, compared to those in unburned control plots. During all three years, belowground biomass was lower in impounded than in unimpounded marshes but did not differ between burn treatments. Our results clearly indicate that current marsh management practices influence marsh primary productivity and may impact other marsh processes, such as vertical accretion, that are dependent on organic matter accumulation and decay.

  5. Biomass burning sources of nitrogen oxides, carbon monoxide, and non-methane hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Atherton, C.S.

    1995-11-01

    Biomass burning is an important source of many key tropospheric species, including aerosols, carbon dioxide (CO{sub 2}), nitrogen oxides (NO{sub {times}}=NO+NO{sub 2}), carbon monoxide (CO), methane (CH{sub 4}), nitrous oxide (N{sub 2}O), methyl bromide (CH{sub 3}Br), ammonia (NH{sub 3}), non-methane hydrocarbons (NMHCs) and other species. These emissions and their subsequent products act as pollutants and affect greenhouse warming of the atmosphere. One important by-product of biomass burning is tropospheric ozone, which is a pollutant that also absorbs infrared radiation. Ozone is formed when CO, CH{sub 4}, and NMHCs react in the presence of NO{sub {times}} and sunlight. Ozone concentrations in tropical regions (where the bulk of biomass burning occurs) may increase due to biomass burning. Additionally, biomass burning can increase the concentration of nitric acid (HNO{sub 3}), a key component of acid rain.

  6. Investigating biomass burning aerosol morphology using a laser imaging nephelometer

    Science.gov (United States)

    Manfred, Katherine M.; Washenfelder, Rebecca A.; Wagner, Nicholas L.; Adler, Gabriela; Erdesz, Frank; Womack, Caroline C.; Lamb, Kara D.; Schwarz, Joshua P.; Franchin, Alessandro; Selimovic, Vanessa; Yokelson, Robert J.; Murphy, Daniel M.

    2018-02-01

    Particle morphology is an important parameter affecting aerosol optical properties that are relevant to climate and air quality, yet it is poorly constrained due to sparse in situ measurements. Biomass burning is a large source of aerosol that generates particles with different morphologies. Quantifying the optical contributions of non-spherical aerosol populations is critical for accurate radiative transfer models, and for correctly interpreting remote sensing data. We deployed a laser imaging nephelometer at the Missoula Fire Sciences Laboratory to sample biomass burning aerosol from controlled fires during the FIREX intensive laboratory study. The laser imaging nephelometer measures the unpolarized scattering phase function of an aerosol ensemble using diode lasers at 375 and 405 nm. Scattered light from the bulk aerosol in the instrument is imaged onto a charge-coupled device (CCD) using a wide-angle field-of-view lens, which allows for measurements at 4-175° scattering angle with ˜ 0.5° angular resolution. Along with a suite of other instruments, the laser imaging nephelometer sampled fresh smoke emissions both directly and after removal of volatile components with a thermodenuder at 250 °C. The total integrated aerosol scattering signal agreed with both a cavity ring-down photoacoustic spectrometer system and a traditional integrating nephelometer within instrumental uncertainties. We compare the measured scattering phase functions at 405 nm to theoretical models for spherical (Mie) and fractal (Rayleigh-Debye-Gans) particle morphologies based on the size distribution reported by an optical particle counter. Results from representative fires demonstrate that particle morphology can vary dramatically for different fuel types. In some cases, the measured phase function cannot be described using Mie theory. This study demonstrates the capabilities of the laser imaging nephelometer instrument to provide realtime, in situ information about dominant particle

  7. What matters for the radiative properties of biomass burning smoke?

    Science.gov (United States)

    Murphy, D. M.

    2017-12-01

    Biomass burning smoke is one of the largest and most diverse sources of aerosol in the atmosphere. I will try to provide an overview of some of the radiative consequences of well-known properties of smoke. Smoke is neither purely scattering nor black, it has multiple light-absorbing species, is often injected above the surface, and every wild fire is different. Each of these properties of smoke can have important implications for the radiative impacts. For example, the altitude of a smoke layer affects the radiative forcing of black aerosol much more than it does a purely scattering aerosol. Therefore, an intermediate aerosol like smoke can have a variety of behaviors depending on its albedo and altitude. The light absorption in smoke comes from a complicated mixture of species. These species are often operationally defined by the measurement methods rather than being fundamental properties of the aerosol. There are already several papers in the literature highlighting the importance of using proper definitions of black or elemental carbon when comparing data with other data or models. New results show that care in definitions is even more important than previously thought. There are several ways that factors of two or more can arise between definitions of light-absorbing aerosol. The same holds true for radiative forcing from light-absorbing aerosols: the distinctions between concepts like instantaneous and adjusted forcings are not just esoteric definitions but may differ by large factors. Future progress will require careful attention to what is being measured and modeled, as well as obtaining data to refine the assumptions in the remote sensing retrievals that define the global scale of biomass burning aerosol.

  8. Investigating biomass burning aerosol morphology using a laser imaging nephelometer

    Directory of Open Access Journals (Sweden)

    K. M. Manfred

    2018-02-01

    Full Text Available Particle morphology is an important parameter affecting aerosol optical properties that are relevant to climate and air quality, yet it is poorly constrained due to sparse in situ measurements. Biomass burning is a large source of aerosol that generates particles with different morphologies. Quantifying the optical contributions of non-spherical aerosol populations is critical for accurate radiative transfer models, and for correctly interpreting remote sensing data. We deployed a laser imaging nephelometer at the Missoula Fire Sciences Laboratory to sample biomass burning aerosol from controlled fires during the FIREX intensive laboratory study. The laser imaging nephelometer measures the unpolarized scattering phase function of an aerosol ensemble using diode lasers at 375 and 405 nm. Scattered light from the bulk aerosol in the instrument is imaged onto a charge-coupled device (CCD using a wide-angle field-of-view lens, which allows for measurements at 4–175° scattering angle with  ∼  0.5° angular resolution. Along with a suite of other instruments, the laser imaging nephelometer sampled fresh smoke emissions both directly and after removal of volatile components with a thermodenuder at 250 °C. The total integrated aerosol scattering signal agreed with both a cavity ring-down photoacoustic spectrometer system and a traditional integrating nephelometer within instrumental uncertainties. We compare the measured scattering phase functions at 405 nm to theoretical models for spherical (Mie and fractal (Rayleigh–Debye–Gans particle morphologies based on the size distribution reported by an optical particle counter. Results from representative fires demonstrate that particle morphology can vary dramatically for different fuel types. In some cases, the measured phase function cannot be described using Mie theory. This study demonstrates the capabilities of the laser imaging nephelometer instrument to provide realtime, in situ

  9. Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands

    Science.gov (United States)

    Merritt R. Turetsky; Evan S. Kane; Jennifer W. Harden; Roger D. Ottmar; Kristen L. Maines; Elizabeth Hoy; Eric S. Kasischke

    2010-01-01

    Climate change has increased the area affected by forest fires each year in boreal North America. Increases in burned area and fire frequency are expected to stimulate boreal carbon losses. However, the impact of wildfires on carbon emissions is also affected by the severity of burning. How climate change influences the severity of biomass burning has proved difficult...

  10. An Overview: Experimental Characterization of Biomass Burning Aerosols during EFEU

    International Nuclear Information System (INIS)

    Massling, A.; Iinuma, Y.; Zeromskiene, K.; Herrmann, H.; Wiedensohler, A.; Schmid, O.; Dusek, U.; Helas, G.; Chand, D.; Parmar, R.S.; Andreae, M.O.

    2005-01-01

    Vegetation fires are a significant source for atmospheric trace gases and aerosol particles on local, regional, and global scales. Vast fires regularly occur in the tropics as well as in the mid latitudes and boreal regions. Fire emissions and their reaction products are transported by convection into the free troposphere and therefore affect the energy budget of the atmosphere by direct and indirect radiation effects. Up to now there is only limited information on the physical and chemical properties of biomass burning aerosols which are partly responsible for the large uncertainties in quantifying the climatic impact of aerosols generally. Especially, the microphysical properties of the emitted aerosol particles have received little attention to date. This work gives detailed information of the methodology applied to experimentally characterize the physical and chemical properties of fresh (age: 2 ratio ((delta)CO/(delta)CO 2 ). This dependence seems to be much stronger as changes due to the type of biofuel used for the different experiments. In particular, for increasing (delta)CO/(delta)CO 2 , i.e. more smoldering burning conditions, the mass specific absorption coefficient (σ abs ) decreased monotonically, while the single scattering albedo (ω 0 ) increased

  11. Chemical composition of wildland and agricultural biomass burning particles measured downwind during the BBOP study

    Science.gov (United States)

    Onasch, T. B.; Shilling, J. E.; Wormhoudt, J.; Sedlacek, A. J., III; Fortner, E.; Pekour, M. S.; Chand, D.; Zhou, S.; Collier, S.; Zhang, Q.; Kleinman, L. I.; Lewis, E. R.; Yokelson, R. J.; Adachi, K.; Buseck, P. R.; Freedman, A.; Williams, L. R.

    2017-12-01

    The Biomass Burning Observation Project (BBOP), a Department of Energy (DOE) sponsored study, measured emissions from wildland fires in the Pacific Northwest and agricultural burns in the Central Southeastern US from the DOE Gulfstream-1 airborne platform over a four month period in 2013. Rapid physical, chemical and optical changes in biomass burning particles were measured downwind (tar balls and SP-AMS OA quantification while operating with both laser and tungsten vaporizers.

  12. Atmospheric tar balls: aged primary droplets from biomass burning?

    Science.gov (United States)

    Tóth, A.; Hoffer, A.; Nyirő-Kósa, I.; Pósfai, M.; Gelencsér, A.

    2014-07-01

    Atmospheric tar balls are particles of special morphology and composition that are fairly abundant in the plumes of biomass smoke. These particles form a specific subset of brown carbon (BrC) which has been shown to play a significant role in atmospheric shortwave absorption and, by extension, climate forcing. Here we suggest that tar balls are produced by the direct emission of liquid tar droplets followed by heat transformation upon biomass burning. For the first time in atmospheric chemistry we generated tar-ball particles from liquid tar obtained previously by dry distillation of wood in an all-glass apparatus in the laboratory with the total exclusion of flame processes. The particles were perfectly spherical with a mean optical diameter of 300 nm, refractory, externally mixed, and homogeneous in the contrast of the transmission electron microscopy (TEM) images. They lacked any graphene-like microstructure and exhibited a mean carbon-to-oxygen ratio of 10. All of the observed characteristics of laboratory-generated particles were very similar to those reported for atmospheric tar-ball particles in the literature, strongly supporting our hypothesis regarding the formation mechanism of atmospheric tar-ball particles.

  13. Size-resolved chemical composition, effective density, and optical properties of biomass burning particles

    Directory of Open Access Journals (Sweden)

    J. Zhai

    2017-06-01

    Full Text Available Biomass burning aerosol has an important impact on the global radiative budget. A better understanding of the correlations between the mixing states of biomass burning particles and their optical properties is the goal of a number of current studies. In this work, the effective density, chemical composition, and optical properties of rice straw burning particles in the size range of 50–400 nm were measured using a suite of online methods. We found that the major components of particles produced by burning rice straw included black carbon (BC, organic carbon (OC, and potassium salts, but the mixing states of particles were strongly size dependent. Particles of 50 nm had the smallest effective density (1.16 g cm−3 due to a relatively large proportion of aggregate BC. The average effective densities of 100–400 nm particles ranged from 1.35 to 1.51 g cm−3 with OC and inorganic salts as dominant components. Both density distribution and single-particle mass spectrometry showed more complex mixing states in larger particles. Upon heating, the separation of the effective density distribution modes confirmed the external mixing state of less-volatile BC or soot and potassium salts. The size-resolved optical properties of biomass burning particles were investigated at two wavelengths (λ =  450 and 530 nm. The single-scattering albedo (SSA showed the lowest value for 50 nm particles (0.741 ± 0.007 and 0.889 ± 0.006 because of the larger proportion of BC content. Brown carbon played an important role for the SSA of 100–400 nm particles. The Ångström absorption exponent (AAE values for all particles were above 1.6, indicating the significant presence of brown carbon in all sizes. Concurrent measurements in our work provide a basis for discussing the physicochemical properties of biomass burning aerosol and its effects on the global climate and atmospheric environment.

  14. Distributions of Trace Gases and Aerosols during the Dry Biomass Burning Season in Southern Africa

    Science.gov (United States)

    Sinha, Parikhit; Hobbs, Peter V.; Yokelson, Robert J.; Blake, Donald R.; Gao, Song; Kirchstetter, Thomas W.

    2003-01-01

    Vertical profiles in the lower troposphere of temperature, relative humidity, sulfur dioxide (SO2), ozone (O3), condensation nuclei (CN), and carbon monoxide (CO), and horizontal distributions of twenty gaseous and particulate species, are presented for five regions of southern Africa during the dry biomass burning season of 2000. The regions are the semiarid savannas of northeast South Africa and northern Botswana, the savanna-forest mosaic of coastal Mozambique, the humid savanna of southern Zambia, and the desert of western Namibia. The highest average concentrations of carbon dioxide (CO2), CO, methane (CH4), O3, black particulate carbon, and total particulate carbon were in the Botswana and Zambia sectors (388 and 392 ppmv, 369 and 453 ppbv, 1753 and 1758 ppbv, 79 and 88 ppbv, 2.6 and 5.5 micrograms /cubic meter and 13.2 and 14.3 micrograms/cubic meter). This was due to intense biomass burning in Zambia and surrounding regions. The South Africa sector had the highest average concentrations of SO2, sulfate particles, and CN (5.1 ppbv, 8.3 micrograms/cubic meter, and per 6400 cubic meter , respectively), which derived from biomass burning and electric generation plants and mining operations within this sector. Air quality in the Mozambique sector was similar to the neighboring South Africa sector. Over the arid Namibia sector there were polluted layers aloft, in which average SO2, O3, and CO mixing ratios (1.2 ppbv, 76 ppbv, and 3 10 ppbv, respectively) were similar to those measured over the other more polluted sectors. This was due to transport of biomass smoke from regions of widespread savanna burning in southern Angola. Average concentrations over all sectors of CO2 (386 +/- 8 ppmv), CO (261 +/- 81 ppbv), SO2 (2.5 +/- 1.6 ppbv), O3 (64 +/- 13 ppbv), black particulate carbon (2.3 +/- 1.9 microgram/cubic meter), organic particulate carbon (6.2 +/- 5.2 microgram/cubic meter), total particle mass (26.0 +/- 4.7 microgram/cubic meter), and potassium particles (0

  15. Influence of biomass burning from South Asia at a high-altitude mountain receptor site in China

    Science.gov (United States)

    Zheng, Jing; Hu, Min; Du, Zhuofei; Shang, Dongjie; Gong, Zhaoheng; Qin, Yanhong; Fang, Jingyao; Gu, Fangting; Li, Mengren; Peng, Jianfei; Li, Jie; Zhang, Yuqia; Huang, Xiaofeng; He, Lingyan; Wu, Yusheng; Guo, Song

    2017-06-01

    Highly time-resolved in situ measurements of airborne particles were conducted at Mt. Yulong (3410 m above sea level) on the southeastern edge of the Tibetan Plateau in China from 22 March to 14 April 2015. The detailed chemical composition was measured by a high-resolution time-of-flight aerosol mass spectrometer together with other online instruments. The average mass concentration of the submicron particles (PM1) was 5.7 ± 5.4 µg m-3 during the field campaign, ranging from 0.1 up to 33.3 µg m-3. Organic aerosol (OA) was the dominant component in PM1, with a fraction of 68 %. Three OA factors, i.e., biomass burning organic aerosol (BBOA), biomass-burning-influenced oxygenated organic aerosol (OOA-BB) and oxygenated organic aerosol (OOA), were resolved using positive matrix factorization analysis. The two oxygenated OA factors accounted for 87 % of the total OA mass. Three biomass burning events were identified by examining the enhancement of black carbon concentrations and the f60 (the ratio of the signal at m/z 60 from the mass spectrum to the total signal of OA). Back trajectories of air masses and satellite fire map data were integrated to identify the biomass burning locations and pollutant transport. The western air masses from South Asia with active biomass burning activities transported large amounts of air pollutants, resulting in elevated organic concentrations up to 4-fold higher than those of the background conditions. This study at Mt. Yulong characterizes the tropospheric background aerosols of the Tibetan Plateau during pre-monsoon season and provides clear evidence that the southeastern edge of the Tibetan Plateau was affected by the transport of anthropogenic aerosols from South Asia.

  16. Influence of biomass burning from South Asia at a high-altitude mountain receptor site in China

    Directory of Open Access Journals (Sweden)

    J. Zheng

    2017-06-01

    Full Text Available Highly time-resolved in situ measurements of airborne particles were conducted at Mt. Yulong (3410 m above sea level on the southeastern edge of the Tibetan Plateau in China from 22 March to 14 April 2015. The detailed chemical composition was measured by a high-resolution time-of-flight aerosol mass spectrometer together with other online instruments. The average mass concentration of the submicron particles (PM1 was 5.7 ± 5.4 µg m−3 during the field campaign, ranging from 0.1 up to 33.3 µg m−3. Organic aerosol (OA was the dominant component in PM1, with a fraction of 68 %. Three OA factors, i.e., biomass burning organic aerosol (BBOA, biomass-burning-influenced oxygenated organic aerosol (OOA-BB and oxygenated organic aerosol (OOA, were resolved using positive matrix factorization analysis. The two oxygenated OA factors accounted for 87 % of the total OA mass. Three biomass burning events were identified by examining the enhancement of black carbon concentrations and the f60 (the ratio of the signal at m∕z 60 from the mass spectrum to the total signal of OA. Back trajectories of air masses and satellite fire map data were integrated to identify the biomass burning locations and pollutant transport. The western air masses from South Asia with active biomass burning activities transported large amounts of air pollutants, resulting in elevated organic concentrations up to 4-fold higher than those of the background conditions. This study at Mt. Yulong characterizes the tropospheric background aerosols of the Tibetan Plateau during pre-monsoon season and provides clear evidence that the southeastern edge of the Tibetan Plateau was affected by the transport of anthropogenic aerosols from South Asia.

  17. Emissions of Black Carbon Particles from Biomass Burning and Their Physical and Chemical Properties

    Science.gov (United States)

    Kondo, Y.; Sahu, L.; Moteki, N.; Takegawa, N.; Zhao, Y.; Vay, S. A.; Diskin, G. S.; Wisthaler, A.; Huey, L. G.; Jimenez, J. L.

    2009-12-01

    Large amounts of aerosol, including black carbon (BC), are emitted from biomass burning. It is therefore important to understand the chemical composition, rate of emissions, and mixing state of aerosols generated by this combustion process to estimate the impacts of aerosols on climate. Thus far, these physical and chemical quantities have been compiled by combining the data from laboratory and field experiments, but the data from the Arctic region are still very limited. These parameters were measured by an SP2 instrument based on the laser-induced incandescence technique on board the NASA DC-8 during the ARCTAS campaign. Aircraft sampling was made in plumes emitted by wildfires in Canada and the USA, and in those transported over long distances from Russia. First, we extract biomass burning plumes using CH3CN and SO2 data. Then, we derived the slopes of the CO-CO2-CH3CN-aerosol correlations for each burning plume. Based on this, we derive the average CO/CO2, CH3CN/CO2, BC/CO2, and BC/CO ratios together with their variability in the plumes strongly influenced by forest fires over Siberia, California, and Canada. A similar analysis is made for light-scattering particles. Using these relationships, the transport efficiencies of BC particles from the boundary layer to the free troposphere are also estimated. It is found that the BC particles were thickly coated upon emission. From comparison with AMS measurements, the coating materials are found to be mainly composed of organic compounds. This indicates the importance of the enhanced light absorption by BC particles emitted by biomass burning.

  18. Light absorption by pollution, dust, and biomass burning aerosols: a global model study and evaluation with AERONET measurements

    Directory of Open Access Journals (Sweden)

    Mian Chin

    2009-09-01

    Full Text Available Atmospheric aerosol distributions from 2000 to 2007 are simulated with the Goddard Chemistry Aerosol Radiation and Transport (GOCART model to attribute light absorption by aerosol to its composition and sources from pollution, dust, and biomass burning. The 8-year, global averaged total aerosol optical depth (τ, absorption optical depth (τa, and single scattering albedo (ω at 550 nm are estimated at 0.14, 0.0086, and 0.95, respectively, with sulfate making the largest fraction of τ (37%, followed by dust (30%, sea salt (16%, organic matter (OM (13%, and black carbon (BC (4%. BC and dust account for 43% and 53% of τa, respectively. From a model experiment with "tagged" sources, natural aerosols are estimated to be 58% of τ and 53% of τa, with pollution and biomass burning aerosols to share the rest. Comparing with data from the surface sunphotometer network AERONET, the model tends to reproduce much better the AERONET direct measured data of τ and the Ångström exponent (α than its retrieved quantities of ω and τa. Relatively small in its systematic bias of τ for pollution and dust regions, the model tends to underestimate τ for biomass burning aerosols by 30–40%. The modeled α is 0.2–0.3 too low (particle too large for pollution and dust aerosols but 0.2–0.3 too high (particle too small for the biomass burning aerosols, indicating errors in particle size distributions in the model. Still, the model estimated ω is lower in dust regions and shows a much stronger wavelength dependence for biomass burning aerosols but a weaker one for pollution aerosols than those quantities from AERONET. These comparisons necessitate model improvements on aerosol size distributions, the refractive indices of dust and black carbon aerosols, and biomass burning emissions in order to better quantify the aerosol absorption in the atmosphere.

  19. On-line CO, CO2 emissions evaluation and (benzene, toluene, xylene) determination from experimental burn of tropical biomass.

    Science.gov (United States)

    Tawfiq, Mohammed F; Aroua, Mohamed Kheireddine; Sulaiman, Nik Meriam Nik

    2015-07-01

    Atmospheric pollution and global warming issues are increasingly becoming major environmental concerns. Fire is one of the significant sources of pollutant gases released into the atmosphere; and tropical biomass fires, which are of particular interest in this study, contribute greatly to the global budget of CO and CO2. This pioneer research simulates the natural biomass burning strategy in Malaysia using an experimental burning facility. The investigation was conducted on the emissions (CO2, CO, and Benzene, Toluene, Ethylbenzene, Xylenes (BTEX)) from ten tropical biomass species. The selected species represent the major tropical forests that are frequently subjected to dry forest fire incidents. An experimental burning facility equipped with an on-line gas analyzer was employed to determine the burning emissions. The major emission factors were found to vary among the species, and the specific results were as follows. The moisture content of a particular biomass greatly influenced its emission pattern. The smoke analysis results revealed the existence of BTEX, which were sampled from a combustion chamber by enrichment traps aided with a universal gas sampler. The BTEX were determined by organic solvent extraction followed by GC/MS quantification, the results of which suggested that the biomass burning emission factor contributed significant amounts of benzene, toluene, and m,p-xylene. The modified combustion efficiency (MCE) changed in response to changes in the sample moisture content. Therefore, this study concluded that the emission of some pollutants mainly depends on the burning phase and sample moisture content of the biomass. Copyright © 2015. Published by Elsevier B.V.

  20. Projections of emissions from burning of biomass foruse in studies of global climate and atmospheric chemistry

    Science.gov (United States)

    Darold E. Ward; Weimin Hao

    1991-01-01

    Emissions of trace gases and particulate matter from burning of biomass are generally factored into global climate models. Models for improving the estimates of the global annual release of emissions from biomass fires are presented. Estimates of total biomass consumed on a global basis range from 2 to 10 Pg (1 petagram = 1015 g) per year. New...

  1. Biomass burning studies and the International Global Atmospheric Chemistry (IGAC) project

    Science.gov (United States)

    Prinn, Ronald G.

    1991-01-01

    IGAC is an ambitious, decade-long and global research initiative concerned with major research challenges in the field of atmospheric chemistry; its chemists and ecosystem biologists are addressing the problems associated with global biomass burning (BMB). Among IGAC's goals is the achievement of a fundamental understanding of the natural and anthropogenic processes determining changes in atmospheric composition and chemistry, in order to allow century-long predictions. IGAC's studies have been organized into 'foci', encompassing the marine, tropical, polar, boreal, and midlatitude areas, as well as their global composite interactions. Attention is to be given to the effects of BMB on biogeochemical cycles.

  2. Biomass burning influences on ozone during the SAMBBA aircraft campaign.

    Science.gov (United States)

    Keslake, Tim; Chiperfield, Martyn; Mann, Graham; Flemming, Johannes; Morgan, Will; Darbyshire, Eoghan; Remy, Sam; Dhomse, Sandip; Pope, Richard; Reddington, Carly

    2017-04-01

    Ozone (O3) is an air pollutant and a greenhouse gas. It is detrimental to human and plant health, damaging plant stomata and therefore limiting photosynthesis. O3 is both formed and lost via the interconversion between nitric oxide (NO) and nitrogen dioxide (NO2); the relative amount of O3 produced depends on the amount of NOx (NO + NO2) and volatile organic compounds (VOCs), which indirectly compete with O3 to oxidise NO back into NO2, leading to more O3. The Amazon region has some of the lowest background O3 levels on the planet (˜20 ppb) and is a NOx-limited environment for ozone production. During the tropical dry season emissions of NOx and VOCs from both tropical and savannah fires lead to a large increase in O3mixing ratios over the Amazon. With a predicted increase in non-agricultural fire activities, due to a changing climate it is important to understand how much O3is being formed in the Amazon and the sensitivity of this to fire and other emissions. The amount of O3 is potentially of additional importance as the Amazon forest is the largest single land carbon sink on the planet, with an estimated net annual sink of 2.4 pG C yr-1, which could be limited by O3 plant damage. Despite this, detailed observation of O3and its precursors in the Amazon have been limited. However, the SAMBBA field campaign (September- October 2012) provides an opportunity to observe in-situ O3formation. The ECMWF C-IFS (Composition Integrated Forecast System) developed under MACC and continued under CAMS, provides global operational forecasts and re-analyses of atmospheric composition at high spatial resolution (T255, ˜80km). In this study, we present results from C-IFS experiments for the SAMBBA period, with and without composition data assimilation, exploring how well the C-IFS represents biomass burning influences on O3in the Amazon. The aim is to test our understanding of O3formation and precursor emissions as well as the capability of the C-IFS for air quality forecasts

  3. Quantitative IR Spectrum and Vibrational Assignments for Glycolaldehyde Vapor: Glycolaldehyde Measurements in Biomass Burning Plumes

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Timothy J.; Sams, Robert L.; Profeta, Luisa T.; Akagi, Sheryl; Burling, Ian R.; Yokelson, Robert J.; Williams, Stephen D.

    2013-04-15

    Glycolaldehyde (GA, 2-hydroxyethanal, C2H4O2) is a semi-volatile molecule of atmospheric importance, recently proposed as a precursor in the formation of aqueous-phase secondary organic aerosol (SOA). There are few methods to measure glycolaldehyde vapor, but infrared spectroscopy has been used successfully. Using vetted protocols we have completed the first assignment of all fundamental vibrational modes and derived quantitative IR absorption band strengths using both neat and pressure-broadened GA vapor. Even though GA is problematic due to its propensity to both dimerize and condense, our intensities agree well with the few previously published values. Using the reference ν10 band Q-branch at 860.51 cm-1, we have also determined GA mixing ratios in biomass burning plumes generated by field and laboratory burns of fuels from the southeastern and southwestern United States, including the first field measurements of glycolaldehyde in smoke. The GA emission factors were anti-correlated with modified combustion efficiency confirming release of GA from smoldering combustion. The GA emission factors (g of GA emitted per kg dry biomass burned on a dry mass basis) had a low dependence on fuel type consistent with the production mechanism being pyrolysis of cellulose. GA was emitted at 0.23 ± 0.13% of CO from field fires and we calculate that it accounts for ~18% of the aqueous-phase SOA precursors that we were able to measure.

  4. A five-century sedimentary geochronology of biomass burning in Nicaragua and Central America

    International Nuclear Information System (INIS)

    Suman, D.O.

    1991-01-01

    In spite of the extensive use of fire as an agricultural agent in Central America today, little is known of its history of biomass burning or agriculture. As an indicator of the burning practices on the adjacent land, a sedimentary record of carbonized particles sheds light on the trends in frequency and areal extent of biomass burning. This research focuses on a sediment core recovered from an anoxic site in the Pacific Ocean adjacent to the Central American Isthmus and reports a five-century record of charcoal deposition. The research illustrates that biomass burning has been an important ecological factor in the Pacific watershed of Central America at least during the past five centuries. Fluxes of charcoal have generally decreased toward the present suggesting a reduction in the charcoal source function. Perhaps, five centuries ago, the frequency of biomass burning was greater than it is today, larger areas were burned, or biomass per unit area of burned grassland was greater. The major type of biomass burned throughout this five-century period has been grass, as opposed to woods, indicating that any major deforestation of the Pacific watershed of Central America occurred prior to the Conquest

  5. Satellite Contributions to the Quantitative Characterization of Biomass Burning for Climate Modeling

    Science.gov (United States)

    Ichoku, Charles; Kahn, Ralph; Chin, Mian

    2012-01-01

    Characterization of biomass burning from space has been the subject of an extensive body of literature published over the last few decades. Given the importance of this topic, we review how satellite observations contribute toward improving the representation of biomass burning quantitatively in climate and air-quality modeling and assessment. Satellite observations related to biomass burning may be classified into five broad categories: (i) active fire location and energy release, (ii) burned areas and burn severity, (iii) smoke plume physical disposition, (iv) aerosol distribution and particle properties, and (v) trace gas concentrations. Each of these categories involves multiple parameters used in characterizing specific aspects of the biomass-burning phenomenon. Some of the parameters are merely qualitative, whereas others are quantitative, although all are essential for improving the scientific understanding of the overall distribution (both spatial and temporal) and impacts of biomass burning. Some of the qualitative satellite datasets, such as fire locations, aerosol index, and gas estimates have fairly long-term records. They date back as far as the 1970s, following the launches of the DMSP, Landsat, NOAA, and Nimbus series of earth observation satellites. Although there were additional satellite launches in the 1980s and 1990s, space-based retrieval of quantitative biomass burning data products began in earnest following the launch of Terra in December 1999. Starting in 2000, fire radiative power, aerosol optical thickness and particle properties over land, smoke plume injection height and profile, and essential trace gas concentrations at improved resolutions became available. The 2000s also saw a large list of other new satellite launches, including Aqua, Aura, Envisat, Parasol, and CALIPSO, carrying a host of sophisticated instruments providing high quality measurements of parameters related to biomass burning and other phenomena. These improved data

  6. Measured and modeled humidification factors of fresh smoke particles from biomass burning: role of inorganic constituents

    Directory of Open Access Journals (Sweden)

    J. L. Hand

    2010-07-01

    Full Text Available During the 2006 FLAME study (Fire Laboratory at Missoula Experiment, laboratory burns of biomass fuels were performed to investigate the physico-chemical, optical, and hygroscopic properties of fresh biomass smoke. As part of the experiment, two nephelometers simultaneously measured dry and humidified light scattering coefficients (bsp(dry and bsp(RH, respectively in order to explore the role of relative humidity (RH on the optical properties of biomass smoke aerosols. Results from burns of several biomass fuels from the west and southeast United States showed large variability in the humidification factor (f(RH=bsp(RH/bsp(dry. Values of f(RH at RH=80–85% ranged from 0.99 to 1.81 depending on fuel type. We incorporated measured chemical composition and size distribution data to model the smoke hygroscopic growth to investigate the role of inorganic compounds on water uptake for these aerosols. By assuming only inorganic constituents were hygroscopic, we were able to model the water uptake within experimental uncertainty, suggesting that inorganic species were responsible for most of the hygroscopic growth. In addition, humidification factors at 80–85% RH increased for smoke with increasing inorganic salt to carbon ratios. Particle morphology as observed from scanning electron microscopy revealed that samples of hygroscopic particles contained soot chains either internally or externally mixed with inorganic potassium salts, while samples of weak to non-hygroscopic particles were dominated by soot and organic constituents. This study provides further understanding of the compounds responsible for water uptake by young biomass smoke, and is important for accurately assessing the role of smoke in climate change studies and visibility regulatory efforts.

  7. Emission characteristics of refractory black carbon aerosols from fresh biomass burning: a perspective from laboratory experiments

    Science.gov (United States)

    Pan, Xiaole; Kanaya, Yugo; Taketani, Fumikazu; Miyakawa, Takuma; Inomata, Satoshi; Komazaki, Yuichi; Tanimoto, Hiroshi; Wang, Zhe; Uno, Itsushi; Wang, Zifa

    2017-11-01

    rapid condensation of semi-volatile organics. This laboratory study found that the mixing state of rBC particles from biomass burning strongly depends on its combustion processes, and overall MCE should be taken carefully into consideration while the climate effect of rBC particles from open biomass burning is simulated.

  8. Geostationary Fire Detection with the Wildfire Automated Biomass Burning Algorithm

    Science.gov (United States)

    Hoffman, J.; Schmidt, C. C.; Brunner, J. C.; Prins, E. M.

    2010-12-01

    The Wild Fire Automated Biomass Burning Algorithm (WF_ABBA), developed at the Cooperative Institute for Meteorological Satellite Studies (CIMSS), has a long legacy of operational wildfire detection and characterization. In recent years, applications of geostationary fire detection and characterization data have been expanding. Fires are detected with a contextual algorithm and when the fires meet certain conditions the instantaneous fire size, temperature, and radiative power are calculated and provided in user products. The WF_ABBA has been applied to data from Geostationary Operational Environmental Satellite (GOES)-8 through 15, Meteosat-8/-9, and Multifunction Transport Satellite (MTSAT)-1R/-2. WF_ABBA is also being developed for the upcoming platforms like GOES-R Advanced Baseline Imager (ABI) and other geostationary satellites. Development of the WF_ABBA for GOES-R ABI has focused on adapting the legacy algorithm to the new satellite system, enhancing its capabilities to take advantage of the improvements available from ABI, and addressing user needs. By its nature as a subpixel feature, observation of fire is extraordinarily sensitive to the characteristics of the sensor and this has been a fundamental part of the GOES-R WF_ABBA development work.

  9. Particulate-phase mercury emissions from biomass burning ...

    Science.gov (United States)

    Mercury (Hg) emissions from biomass burning (BB) are an important source of atmospheric Hg and a major factor driving the interannual variation of Hg concentrations in the troposphere. The greatest fraction of Hg from BB is released in the form of elemental Hg (Hg0(g)). However, little is known about the fraction of Hg bound to particulate matter (HgP) released from BB, and the factors controlling this fraction are also uncertain. In light of the aims of the Minamata Convention to reduce intentional Hg use and emissions from anthropogenic activities, the relative importance of Hg emissions from BB will have an increasing impact on Hg deposition fluxes. Hg speciation is one of the most important factors determining the redistribution of Hg in the atmosphere and the geographical distribution of Hg deposition. Using the latest version of the Global Fire Emissions Database (GFEDv4.1s) and the global Hg chemistry transport model, ECHMERIT, the impact of Hg speciation in BB emissions, and the factors which influence speciation, on Hg deposition have been investigated for the year 2013. The role of other uncertainties related to physical and chemical atmospheric processes involving Hg and the influence of model parametrisations were also investigated, since their interactions with Hg speciation are complex. The comparison with atmospheric HgP concentrations observed at two remote sites, Amsterdam Island (AMD) and Manaus (MAN), in the Amazon showed a significant improve

  10. Field and laboratory measurements of biomass burning and vehicle exhaust using a PTR-MS

    Science.gov (United States)

    VanderSchelden, Graham Samuel

    The Proton Transfer Reaction Mass Spectrometer (PTR-MS) is a powerful tool for analyzing organic compounds in air and has been applied in field and laboratory applications to assess emissions from biomass burning and vehicles. Biomass burning is an important source of air pollution globally in the form of wild fires, burning of crop stubble, and combustion of organic material for home energy. In the United States, residential wood combustion combined with low inversion heights in winter time has caused air quality problems. Through field deployment of the PTR-MS in Xi'an China during August of 2011, it was determined that 27%, 16%, 26%, and 12% of ambient carbon monoxide (CO), acetaldehyde, benzene, and toluene could be attributed to biomass burning. The PTR-MS was also deployed to Yakima, Washington in January of 2013, finding that residential wood combustion was a substantial source of air toxics and PM. Residential wood combustion contributed 100%, 73%, 69%, 55%, 36%, 19%, 19%, and 17% of organic PM1, formaldehyde, acetaldehyde, black carbon, benzene, toluene, C2-alkylbenzenes, and CO respectively. Diesel vehicles are becoming a larger fraction of the vehicle fleet and can be held responsible for a substantial fraction of air pollution emissions from on and off road mobile sources. Diesel engines are a source of low volatility products that are difficult to measure and are thought to be important in the formation of secondary organic aerosol (SOA). This work focuses on measuring important diesel exhaust compounds with the PTR-MS and assessing oxidation processes of these compounds. When the PTR-MS was deployed to the field along with a thermal desorption pre-concentration system, we estimated that diesel vehicles were about 3-15% of the vehicle activity influencing our study site in Yakima, WA using the ratio of m/z 157 to m/z 129. SOA yields of diesel exhaust compounds were assessed and about 48% of the SOA was attributed to compounds measured by the PTR

  11. Impact of Biomass Burning Aerosols on Cloud Formation in Coastal Regions

    Science.gov (United States)

    Nair, U. S.; Wu, Y.; Reid, J. S.

    2017-12-01

    In the tropics, shallow and deep convective cloud structures organize in hierarchy of spatial scales ranging from meso-gamma (2-20 km) to planetary scales (40,000km). At the lower end of the spectrum is shallow convection over the open ocean, whose upscale growth is dependent upon mesoscale convergence triggers. In this context, cloud systems associated with land breezes that propagate long distances into open ocean areas are important. We utilized numerical model simulations to examine the impact of biomass burning on such cloud systems in the maritime continent, specifically along the coastal regions of Sarawak. Numerical model simulations conducted using the Weather Research and Forecasting Chemistry (WRF-Chem) model show spatial patterns of smoke that show good agreement to satellite observations. Analysis of model simulations show that, during daytime the horizontal convective rolls (HCRs) that form over land play an important role in organizing transport of smoke in the coastal regions. Alternating patterns of low and high smoke concentrations that are well correlated to the wavelengths of HCRs are found in both the simulations and satellite observations. During night time, smoke transport is modulated by the land breeze circulation and a band of enhanced smoke concentration is found along the land breeze front. Biomass burning aerosols are ingested by the convective clouds that form along the land breeze and leads to changes in total water path, cloud structure and precipitation formation.

  12. Biomass Burning as a Source of Mineral Dust and Giant Aerosol to the Free Troposphere

    Science.gov (United States)

    Froyd, K. D.; Liao, J.; Murphy, D. M.; Ziemba, L. D.; Anderson, B. E.; Woods, S.; Lawson, P.

    2014-12-01

    Biomass burning is a dominant emission source of fine mode aerosol to the atmosphere. Fires can also emit supermicron particles that are important for cloud formation. Mineral dust aerosol exert a strong influence on formation of cirrus clouds by acting as efficient ice nuclei. Giant aerosol larger than ~10 microns can dominate condensational growth inside warm clouds and affect precipitation rates. Airborne measurements of aerosol concentration and single particle composition were conducted inside smoke plumes from fires originating in North America, Asia, and Central American. Sub- and supermicron mineral dust concentrations were strongly correlated with biomass burning particle concentrations, both within strong fire plumes and in the background troposphere. Dust concentrations varied with fire intensity and vegetation type. In general, western US wildfires emitted more dust than eastern US and Central American fires. Dust concentrations inside plumes were strongly enhanced relative to background air, demonstrating that biomass burning can provide a significant source of potential ice nuclei to the free troposphere. However, dust particles emitted from fires were coated with more organic carbon material than dust from other sources, which may reduce their ability to act as ice nuclei. Giant aerosol particles up to several 100 microns in size were also observed within some fire plumes and could account for 50% of the particle volume. Particle images show irregular shapes and suggest ash and fibrous plant material. Giant aerosol persisted inside plumes in the free troposphere for 100's of km downwind from fire sources, indicating that particles must have low density to remain aloft. This combination of direct injection above the boundary layer and reduced depositional loss provides a regional source of particles that may act as giant cloud condensation nuclei.

  13. SAFARI 2000 1-Degree Estimates of Burned Biomass, Area, and Emissions, 2000

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: A new method is used to generate spatial estimates of monthly averaged biomass burned area and spatial and temporal estimates of trace gas and aerosol...

  14. SAFARI 2000 1-Degree Estimates of Burned Biomass, Area, and Emissions, 2000

    Data.gov (United States)

    National Aeronautics and Space Administration — A new method is used to generate spatial estimates of monthly averaged biomass burned area and spatial and temporal estimates of trace gas and aerosol emissions from...

  15. Regional biomass burning trends in India: Analysis of satellite fire data

    Indian Academy of Sciences (India)

    Track Scanning Radiometer (ATSR) sensors over different regions of India during 1998–2009 have been presented. Generally, the activities of open biomass burning show large spatial and temporal variations in India. The highest and lowest ...

  16. Evaluation of biomass burning aerosols in the HadGEM3 climate model with observations from the SAMBBA field campaign

    Directory of Open Access Journals (Sweden)

    B. T. Johnson

    2016-11-01

    Full Text Available We present observations of biomass burning aerosol from the South American Biomass Burning Analysis (SAMBBA and other measurement campaigns, and use these to evaluate the representation of biomass burning aerosol properties and processes in a state-of-the-art climate model. The evaluation includes detailed comparisons with aircraft and ground data, along with remote sensing observations from MODIS and AERONET. We demonstrate several improvements to aerosol properties following the implementation of the Global Model for Aerosol Processes (GLOMAP-mode modal aerosol scheme in the HadGEM3 climate model. This predicts the particle size distribution, composition, and optical properties, giving increased accuracy in the representation of aerosol properties and physical–chemical processes over the Coupled Large-scale Aerosol Scheme for Simulations in Climate Models (CLASSIC bulk aerosol scheme previously used in HadGEM2. Although both models give similar regional distributions of carbonaceous aerosol mass and aerosol optical depth (AOD, GLOMAP-mode is better able to capture the observed size distribution, single scattering albedo, and Ångström exponent across different tropical biomass burning source regions. Both aerosol schemes overestimate the uptake of water compared to recent observations, CLASSIC more so than GLOMAP-mode, leading to a likely overestimation of aerosol scattering, AOD, and single scattering albedo at high relative humidity. Observed aerosol vertical distributions were well captured when biomass burning aerosol emissions were injected uniformly from the surface to 3 km. Finally, good agreement between observed and modelled AOD was gained only after scaling up GFED3 emissions by a factor of 1.6 for CLASSIC and 2.0 for GLOMAP-mode. We attribute this difference in scaling factor mainly to different assumptions for the water uptake and growth of aerosol mass during ageing via oxidation and condensation of organics. We also note

  17. Ground-based aerosol characterization during the South American Biomass Burning Analysis (SAMBBA field experiment

    Directory of Open Access Journals (Sweden)

    J. Brito

    2014-11-01

    Full Text Available This paper investigates the physical and chemical characteristics of aerosols at ground level at a site heavily impacted by biomass burning. The site is located near Porto Velho, Rondônia, in the southwestern part of the Brazilian Amazon rainforest, and was selected for the deployment of a large suite of instruments, among them an Aerosol Chemical Speciation Monitor. Our measurements were made during the South American Biomass Burning Analysis (SAMBBA field experiment, which consisted of a combination of aircraft and ground-based measurements over Brazil, aimed to investigate the impacts of biomass burning emissions on climate, air quality, and numerical weather prediction over South America. The campaign took place during the dry season and the transition to the wet season in September/October 2012. During most of the campaign, the site was impacted by regional biomass burning pollution (average CO mixing ratio of 0.6 ppm, occasionally superimposed by intense (up to 2 ppm of CO, freshly emitted biomass burning plumes. Aerosol number concentrations ranged from ~1000 cm−3 to peaks of up to 35 000 cm−3 (during biomass burning (BB events, corresponding to an average submicron mass mean concentrations of 13.7 μg m−3 and peak concentrations close to 100 μg m−3. Organic aerosol strongly dominated the submicron non-refractory composition, with an average concentration of 11.4 μg m−3. The inorganic species, NH4, SO4, NO3, and Cl, were observed, on average, at concentrations of 0.44, 0.34, 0.19, and 0.01 μg m−3, respectively. Equivalent black carbon (BCe ranged from 0.2 to 5.5 μg m−3, with an average concentration of 1.3 μg m−3. During BB peaks, organics accounted for over 90% of total mass (submicron non-refractory plus BCe, among the highest values described in the literature. We examined the ageing of biomass burning organic aerosol (BBOA using the changes in the H : C and O : C ratios, and found that throughout most of the

  18. Global combustion: the connection between fossil fuel and biomass burning emissions (1997–2010)

    Science.gov (United States)

    Balch, Jennifer K.; Nagy, R. Chelsea; Archibald, Sally; Moritz, Max A.; Williamson, Grant J.

    2016-01-01

    Humans use combustion for heating and cooking, managing lands, and, more recently, for fuelling the industrial economy. As a shift to fossil-fuel-based energy occurs, we expect that anthropogenic biomass burning in open landscapes will decline as it becomes less fundamental to energy acquisition and livelihoods. Using global data on both fossil fuel and biomass burning emissions, we tested this relationship over a 14 year period (1997–2010). The global average annual carbon emissions from biomass burning during this time were 2.2 Pg C per year (±0.3 s.d.), approximately one-third of fossil fuel emissions over the same period (7.3 Pg C, ±0.8 s.d.). There was a significant inverse relationship between average annual fossil fuel and biomass burning emissions. Fossil fuel emissions explained 8% of the variation in biomass burning emissions at a global scale, but this varied substantially by land cover. For example, fossil fuel burning explained 31% of the variation in biomass burning in woody savannas, but was a non-significant predictor for evergreen needleleaf forests. In the land covers most dominated by human use, croplands and urban areas, fossil fuel emissions were more than 30- and 500-fold greater than biomass burning emissions. This relationship suggests that combustion practices may be shifting from open landscape burning to contained combustion for industrial purposes, and highlights the need to take into account how humans appropriate combustion in global modelling of contemporary fire. Industrialized combustion is not only an important driver of atmospheric change, but also an important driver of landscape change through companion declines in human-started fires. This article is part of the themed issue ‘The interaction of fire and mankind’. PMID:27216509

  19. Global combustion: the connection between fossil fuel and biomass burning emissions (1997-2010).

    Science.gov (United States)

    Balch, Jennifer K; Nagy, R Chelsea; Archibald, Sally; Bowman, David M J S; Moritz, Max A; Roos, Christopher I; Scott, Andrew C; Williamson, Grant J

    2016-06-05

    Humans use combustion for heating and cooking, managing lands, and, more recently, for fuelling the industrial economy. As a shift to fossil-fuel-based energy occurs, we expect that anthropogenic biomass burning in open landscapes will decline as it becomes less fundamental to energy acquisition and livelihoods. Using global data on both fossil fuel and biomass burning emissions, we tested this relationship over a 14 year period (1997-2010). The global average annual carbon emissions from biomass burning during this time were 2.2 Pg C per year (±0.3 s.d.), approximately one-third of fossil fuel emissions over the same period (7.3 Pg C, ±0.8 s.d.). There was a significant inverse relationship between average annual fossil fuel and biomass burning emissions. Fossil fuel emissions explained 8% of the variation in biomass burning emissions at a global scale, but this varied substantially by land cover. For example, fossil fuel burning explained 31% of the variation in biomass burning in woody savannas, but was a non-significant predictor for evergreen needleleaf forests. In the land covers most dominated by human use, croplands and urban areas, fossil fuel emissions were more than 30- and 500-fold greater than biomass burning emissions. This relationship suggests that combustion practices may be shifting from open landscape burning to contained combustion for industrial purposes, and highlights the need to take into account how humans appropriate combustion in global modelling of contemporary fire. Industrialized combustion is not only an important driver of atmospheric change, but also an important driver of landscape change through companion declines in human-started fires.This article is part of the themed issue 'The interaction of fire and mankind'. © 2016 The Author(s).

  20. Recent Biomass Burning in the Tropics and Related Changes in Tropospheric Ozone

    Science.gov (United States)

    Ziemke; Chandra, J. R. S.; Duncan, B. N.; Schoeberl, M. R.; Torres, O.; Damon, M. R.; Bhartia, P. K.

    2009-01-01

    Biomass burning is an important source of chemical precursors of tropospheric ozone. In the tropics, biomass burning produces ozone enhancements over broad regions of Indonesia, Africa, and South America including Brazil. Fires are intentionally set in these regions during the dry season each year to clear cropland and to clear land for human/industrial expansion. In Indonesia enhanced burning occurs during dry El Nino conditions such as in 1997 and 2006. These burning activities cause enhancement in atmospheric particulates and trace gases which are harmful to human health. Measurements from the Aura Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) from October 2004-November 2008 are used to evaluate the effects of biomass burning on tropical tropospheric ozone. These measurements show sizeable decreases approx.15-20% in ozone in Brazil during 2008 compared to 2007 which we attribute to the reduction in biomass burning. Three broad biomass burning regions in the tropics (South America including Brazil, western Africa, and Indonesia) were analyzed in the context of OMI/MLS measurements and the Global Modeling Initiative (GMI) chemical transport model developed at Goddard Space Flight Center. The results indicate that the impact of biomass burning on ozone is significant within and near the burning regions with increases of approx.10-25% in tropospheric column ozone relative to average background concentrations. The model suggests that about half of the increases in ozone from these burning events come from altitudes below 3 km. Globally the model indicates increases of approx.4-5% in ozone, approx.7-9% in NO, (NO+NO2), and approx.30-40% in CO.

  1. Seasonal, interannual, and long-term variabilities in biomass burning activity over South Asia.

    Science.gov (United States)

    Bhardwaj, P; Naja, M; Kumar, R; Chandola, H C

    2016-03-01

    The seasonal, interannual, and long-term variations in biomass burning activity and related emissions are not well studied over South Asia. In this regard, active fire location retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS), the retrievals of aerosol optical depth (AOD) from MODIS Terra, and tropospheric column NO2 from Ozone Monitoring Instrument (OMI) are used to understand the effects of biomass burning on the tropospheric pollution loadings over South Asia during 2003-2013. Biomass burning emission estimates from Global Fire Emission Database (GFED) and Global Fire Assimilation System (GFAS) are also used to quantify uncertainties and regional discrepancies in the emissions of carbon monoxide (CO), nitrogen oxide (NOx), and black carbon (BC) due to biomass burning in South Asia. In the Asian continent, the frequency of fire activity is highest over Southeast Asia, followed by South Asia and East Asia. The biomass burning activity in South Asia shows a distinct seasonal cycle that peaks during February-May with some differences among four (north, central, northeast, and south) regions in India. The annual biomass burning activity in north, central, and south regions shows an increasing tendency, particularly after 2008, while a decrease is seen in northeast region during 2003-2013. The increase in fire counts over the north and central regions contributes 24 % of the net enhancement in fire counts over South Asia. MODIS AOD and OMI tropospheric column NO2 retrievals are classified into high and low fire activity periods and show that biomass burning leads to significant enhancement in tropospheric pollution loading over both the cropland and forest regions. The enhancement is much higher (110-176 %) over the forest region compared to the cropland (34-62 %) region. Further efforts are required to understand the implications of biomass burning on the regional air quality and climate of South Asia.

  2. Biomass Burning Related Pollutions and Their Contributions to the Local Air Quality in Hong Kong

    Science.gov (United States)

    Chan, K. L.; Qin, K.

    2017-09-01

    In this study, we present a quantitative estimation of the impacts of biomass burning emissions from different source regions to the local air quality in Hong Kong in 2014 using global chemistry transport model simulations, sun photometer measurements, satellite observations and local monitoring network data. This study focuses on two major biomass burning pollutants, black carbon aerosols and carbon monoxide (CO). The model simulations of atmospheric black carbon and CO show excellent agreement with sun photometer aerosol optical depth (AOD) measurements, satellite CO columns observations and local monitoring stations data. From the model simulation results, we estimated that biomass burning contributes 12 % of total black carbon and 16 % of atmospheric CO in Hong Kong on annual average. South East Asia shows the largest influence to the black carbon and CO levels in Hong Kong, accounts for 11 % of the total atmospheric black carbon and 8 % of CO. Biomass burning in North East Asia and Africa also show significant impacts to Hong Kong. Elevated levels of atmospheric black carbon aerosols and CO were observed during springtime (March and April) which is mainly due to the enhancement of biomass burning contributions. Black carbon and CO originating from biomass burning sources are estimated to contribute 40 % of atmospheric black carbon and 28 % of CO in Hong Kong during March 2014. An investigation focusing on the biomass burning pollution episode during springtime suggests the intensified biomass burning activities in the Indochinese Peninsula are the major sources of black carbon and CO in Hong Kong during the time.

  3. BIOMASS BURNING RELATED POLLUTIONS AND THEIR CONTRIBUTIONS TO THE LOCAL AIR QUALITY IN HONG KONG

    Directory of Open Access Journals (Sweden)

    K. L. Chan

    2017-09-01

    Full Text Available In this study, we present a quantitative estimation of the impacts of biomass burning emissions from different source regions to the local air quality in Hong Kong in 2014 using global chemistry transport model simulations, sun photometer measurements, satellite observations and local monitoring network data. This study focuses on two major biomass burning pollutants, black carbon aerosols and carbon monoxide (CO. The model simulations of atmospheric black carbon and CO show excellent agreement with sun photometer aerosol optical depth (AOD measurements, satellite CO columns observations and local monitoring stations data. From the model simulation results, we estimated that biomass burning contributes 12 % of total black carbon and 16 % of atmospheric CO in Hong Kong on annual average. South East Asia shows the largest influence to the black carbon and CO levels in Hong Kong, accounts for 11 % of the total atmospheric black carbon and 8 % of CO. Biomass burning in North East Asia and Africa also show significant impacts to Hong Kong. Elevated levels of atmospheric black carbon aerosols and CO were observed during springtime (March and April which is mainly due to the enhancement of biomass burning contributions. Black carbon and CO originating from biomass burning sources are estimated to contribute 40 % of atmospheric black carbon and 28 % of CO in Hong Kong during March 2014. An investigation focusing on the biomass burning pollution episode during springtime suggests the intensified biomass burning activities in the Indochinese Peninsula are the major sources of black carbon and CO in Hong Kong during the time.

  4. CALIOP-based Biomass Burning Smoke Plume Injection Height

    Science.gov (United States)

    Soja, A. J.; Choi, H. D.; Fairlie, T. D.; Pouliot, G.; Baker, K. R.; Winker, D. M.; Trepte, C. R.; Szykman, J.

    2017-12-01

    Carbon and aerosols are cycled between terrestrial and atmosphere environments during fire events, and these emissions have strong feedbacks to near-field weather, air quality, and longer-term climate systems. Fire severity and burned area are under the control of weather and climate, and fire emissions have the potential to alter numerous land and atmospheric processes that, in turn, feedback to and interact with climate systems (e.g., changes in patterns of precipitation, black/brown carbon deposition on ice/snow, alteration in landscape and atmospheric/cloud albedo). If plume injection height is incorrectly estimated, then the transport and deposition of those emissions will also be incorrect. The heights to which smoke is injected governs short- or long-range transport, which influences surface pollution, cloud interaction (altered albedo), and modifies patterns of precipitation (cloud condensation nuclei). We are working with the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) science team and other stakeholder agencies, primarily the Environmental Protection Agency and regional partners, to generate a biomass burning (BB) plume injection height database using multiple platforms, sensors and models (CALIOP, MODIS, NOAA HMS, Langley Trajectory Model). These data have the capacity to provide enhanced smoke plume injection height parameterization in regional, national and international scientific and air quality models. Statistics that link fire behavior and weather to plume rise are crucial for verifying and enhancing plume rise parameterization in local-, regional- and global-scale models used for air quality, chemical transport and climate. Specifically, we will present: (1) a methodology that links BB injection height and CALIOP air parcels to specific fires; (2) the daily evolution of smoke plumes for specific fires; (3) plumes transport and deposited on the Greenland Ice Sheet; and (4) compare CALIOP-derived smoke plume injection

  5. IASI measurements of reactive trace species in biomass burning plumes

    Directory of Open Access Journals (Sweden)

    P.-F. Coheur

    2009-08-01

    Full Text Available This work presents observations of a series of short-lived species in biomass burning plumes from the Infrared Atmospheric Sounding Interferometer (IASI, launched onboard the MetOp-A platform in October 2006. The strong fires that have occurred in the Mediterranean Basin – and particularly Greece – in August 2007, and those in Southern Siberia and Eastern Mongolia in the early spring of 2008 are selected to support the analyses. We show that the IASI infrared spectra in these fire plumes contain distinctive signatures of ammonia (NH3, ethene (C2H4, methanol (CH3OH and formic acid (HCOOH in the atmospheric window between 800 and 1200 cm−1, with some noticeable differences between the plumes. Peroxyacetyl nitrate (CH3COOONO2, abbreviated as PAN was also observed with good confidence in some plumes and a tentative assignment of a broadband absorption spectral feature to acetic acid (CH3COOH is made. For several of these species these are the first reported measurements made from space in nadir geometry. The IASI measurements are analyzed for plume height and concentration distributions of NH3, C2H4 and CH3OH. The Greek fires are studied in greater detail for the days associated with the largest emissions. In addition to providing information on the spatial extent of the plume, the IASI retrievals allow an estimate of the total mass emissions for NH3, C2H4 and CH3OH. Enhancement ratios are calculated for the latter relative to carbon monoxide (CO, giving insight in the chemical processes occurring during the transport, the first day after the emission.

  6. A comprehensive biomass burning emission inventory with high spatial and temporal resolution in China

    Science.gov (United States)

    Zhou, Ying; Xing, Xiaofan; Lang, Jianlei; Chen, Dongsheng; Cheng, Shuiyuan; Wei, Lin; Wei, Xiao; Liu, Chao

    2017-02-01

    Biomass burning injects many different gases and aerosols into the atmosphere that could have a harmful effect on air quality, climate, and human health. In this study, a comprehensive biomass burning emission inventory including domestic and in-field straw burning, firewood burning, livestock excrement burning, and forest and grassland fires is presented, which was developed for mainland China in 2012 based on county-level activity data, satellite data, and updated source-specific emission factors (EFs). The emission inventory within a 1 × 1 km2 grid was generated using geographical information system (GIS) technology according to source-based spatial surrogates. A range of key information related to emission estimation (e.g. province-specific proportion of domestic and in-field straw burning, detailed firewood burning quantities, uneven temporal distribution coefficient) was obtained from field investigation, systematic combing of the latest research, and regression analysis of statistical data. The established emission inventory includes the major precursors of complex pollution, greenhouse gases, and heavy metal released from biomass burning. The results show that the emissions of SO2, NOx, PM10, PM2.5, NMVOC, NH3, CO, EC, OC, CO2, CH4, and Hg in 2012 are 336.8 Gg, 990.7 Gg, 3728.3 Gg, 3526.7 Gg, 3474.2 Gg, 401.2 Gg, 34 380.4 Gg, 369.7 Gg, 1189.5 Gg, 675 299.0 Gg, 2092.4 Gg, and 4.12 Mg, respectively. Domestic straw burning, in-field straw burning, and firewood burning are identified as the dominant biomass burning sources. The largest contributing source is different for various pollutants. Domestic straw burning is the largest source of biomass burning emissions for all the pollutants considered, except for NH3, EC (firewood), and NOx (in-field straw). Corn, rice, and wheat represent the major crop straws. The combined emission of these three straw types accounts for 80 % of the total straw-burned emissions for each specific pollutant mentioned in this study

  7. Novel application of a combustion chamber for experimental assessment of biomass burning emission

    Science.gov (United States)

    Lusini, Ilaria; Pallozzi, E.; Corona, P.; Ciccioli, P.; Calfapietra, C.

    2014-09-01

    Biomass burning is an important ecological factor in the Mediterranean ecosystem and a significant source of several atmospheric gases and particles. This paper demonstrates the performance of a recently developed combustion chamber, showing its capability in estimating the emission from wildland fire through a case study with dried leaf litter of Quercus robur. The combustion chamber was equipped with a thermocouple, a high resolution balance, an epiradiometer, two different sampling lines to collect volatile organic compounds (VOCs) and particles, and a portable analyzer to measure carbon monoxide (CO) and carbon dioxide (CO2) emission. VOCs were determined by gas chromatography-mass spectrometry (GC-MS) after enrichment on adsorption traps, but also monitored on-line with a proton-transfer-reaction mass spectrometer (PTR-MS). Preliminary qualitative analyses of emissions from burning dried leaf litter of Q. robur found CO and CO2 as the main gaseous species emitted during the flaming and smoldering stages. Aromatic VOCs, such as benzene and toluene, were detected together with several oxygenated VOCs, like acetaldehyde and methanol. Moreover, a clear picture of the carbon balance during the biomass combustion was obtained with the chamber used. The combustion chamber will allow to distinguish the contribution of different plant tissues to the emissions occurring during different combustion phases.

  8. Analysis of CCN activity of Arctic aerosol and Canadian biomass burning during summer 2008

    Directory of Open Access Journals (Sweden)

    T. L. Lathem

    2013-03-01

    Full Text Available The NASA DC-8 aircraft characterized the aerosol properties, chemical composition, and cloud condensation nuclei (CCN concentrations of the summertime Arctic during the 2008 NASA Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS campaign. Air masses characteristic of fresh and aged biomass burning, boreal forest, Arctic background, and anthropogenic industrial pollution were sampled. Observations were spatially extensive (50–85° N and 40–130° W and exhibit significant variability in aerosol and CCN concentrations. The chemical composition was dominated by highly oxidized organics (66–94% by volume, with a water-soluble mass fraction of more than 50%. The aerosol hygroscopicity parameter, κ, ranged between κ = 0.08–0.32 for all air mass types. Industrial pollution had the lowest κ of 0.08 ± 0.01, while the Arctic background had the highest and most variable κ of 0.32 ± 0.21, resulting from a lower and more variable organic fraction. Both fresh and aged (long-range transported biomass burning air masses exhibited remarkably similar κ (0.18 ± 0.13, consistent with observed rapid chemical and physical aging of smoke emissions in the atmosphere, even in the vicinity of fresh fires. The organic hygroscopicity (κorg was parameterized by the volume fraction of water-soluble organic matter (εWSOM, with a κ = 0.12, such that κorg = 0.12εWSOM. Assuming bulk (size-independent composition and including the κorg parameterization enabled CCN predictions to within 30% accuracy for nearly all environments sampled. The only exception was for industrial pollution from Canadian oil sands exploration, where an external mixture and size-dependent composition was required. Aerosol mixing state assumptions (internal vs. external in all other environments did not significantly affect CCN predictions; however, the external mixing assumption provided the best results, even though the available observations

  9. Molecular markers of biomass burning, fungal spores and biogenic SOA in the Taklimakan desert aerosols

    Science.gov (United States)

    Fu, Pingqing; Zhuang, Guoshun; Sun, Yele; Wang, Qiongzhen; Chen, Jing; Ren, Lujie; Yang, Fan; Wang, Zifa; Pan, Xiaole; Li, Xiangdong; Kawamura, Kimitaka

    2016-04-01

    Biogenic primary organic aerosols (POA) and secondary organic aerosols (SOA) are important organic constituents of atmospheric particulate matter (PM). In order to better understand the atmospheric abundances, molecular compositions and sources of the desert aerosols, biomass-burning tracers (e.g. levoglucosan), primary saccharides including fungal spore tracers, and SOA tracers from the oxidation of biogenic volatile organic compounds (e.g. isoprene, monoterpenes and sesquiterpene) have been studied in ambient aerosols from the Taklimakan desert, using gas chromatography-mass spectrometry. Results showed that the total concentrations of biomass-burning tracers at Hetian (177-359 ng m-3, mean 233 ng m-3 in PM2.5) in the south rim of the desert were much higher than those at Tazhong (1.9-8.8 ng m-3 in PM2.5 and 5.9-32 ng m-3 in TSP) in the central Taklimakan desert. Molecular markers of fungal spores were also detected in all the desert aerosols, highlighting the importance of primary bioaerosols in the Asian dust particles. A specific pattern of the dominance of 2-methylglyceric acid over 2-methyltetrols and C5-alkene triols was found in the Taklimakan desert aerosols, especially during the dust storm events, which is different from the 2-methyltetrols-dominated pattern in other ambient aerosols. Our results provide direct evidence on the biogenic POA and SOA tracers in the Taklimakan desert region, which help to better understand their impact on the aerosol chemistry in the down-wind regions.

  10. Intensified water storage loss by biomass burning in Kalimantan: Detection by GRACE

    Science.gov (United States)

    Han, Jiancheng; Tangdamrongsub, Natthachet; Hwang, Cheinway; Abidin, Hasanuddin Z.

    2017-03-01

    Biomass burning is the principal tool for land clearing and a primary driver of land use change in Kalimantan (the Indonesian part of Borneo island). Biomass burning here has consumed millions of hectares of peatland and swamp forests. It also degrades air quality in Southeast Asia, perturbs the global carbon cycle, threatens ecosystem health and biodiversity, and potentially affects the global water cycle. Here we present the optimal estimate of water storage changes over Kalimantan from NASA's Gravity Recovery and Climate Experiment (GRACE). Over August 2002 to December 2014, our result shows a north-south dipole pattern in the long-term changes in terrestrial water storage (TWS) and groundwater storage (GWS). Both TWS and GWS increase in the northern part of Kalimantan, while they decrease in the southern part where fire events are the most severe. The loss rates in TWS and GWS in the southern part are 0.56 ± 0.11 cm yr-1 and 0.55 ± 0.10 cm yr-1, respectively. We use GRACE estimates, burned area, carbon emissions, and hydroclimatic data to study the relationship between biomass burning and water storage losses. The analysis shows that extensive biomass burning results in excessive evapotranspiration, which then increases long-term water storage losses in the fire-prone region of Kalimantan. Our results show the potentials of GRACE and its follow-on missions in assisting water storage and fire managements in a region with extensive biomass burning such as Kalimantan.

  11. Photochemistry of the African troposphere: Influence of biomass-burning emissions

    Science.gov (United States)

    Marufu, L.; Dentener, F.; Lelieveld, J.; Andreae, M. O.; Helas, G.

    2000-06-01

    The relative importance of biomass-burning (pyrogenic) emissions from savannas, deforestation, agricultural waste burning, and biofuel consumption to tropospheric ozone abundance over Africa has been estimated for the year 1993, on the basis of global model calculations. We also calculated the importance of this emission source to tropospheric ozone in other regions of the world and compared it to different sources on the African regional and global scales. The estimated annual average total tropospheric ozone abundance over Africa for the reference year is 26 Tg. Pyrogenic, industrial, biogenic, and lightning emissions account for 16, 19, 12, and 27%, respectively, while stratospheric ozone input accounts for 26%. In the planetary boundary layer over Africa, the contribution by biomass burning is ˜24%. A large fraction of the African biomass-burning-related ozone is transported away from the continent. On a global scale, biomass burning contributes ˜9% to tropospheric ozone. Our model calculations suggest that Africa is the single most important region for biomass-burning-related tropospheric ozone, accounting for ˜35% of the global annual pyrogenic ozone enhancement of 29 Tg in 1993.

  12. Seasonal Variability of Aerosol Single Scattering Albedo at Biomass Burning Sites in Southern Africa and Amazonia

    Science.gov (United States)

    Eck, T. F.; Holben, B. N.; Mukelabai, M. M.; Dubovik, O.; Smirnov, A.; Schafer, J. S.; Slutsker, I.

    2002-05-01

    Monitoring of the optical properties of primarily biomass burning aerosols in Mongu, Zambia was initiated in 1995, when an AERONET sun/sky radiometer site was established at the Mongu airport. For the biomass burning season months (July-November), we present monthly means of aerosol single scattering albedo (SSA), aerosol size distributions, and refractive indices from almucantar sky scan retrievals utilizing the algorithm of Dubovik and King (2000). The monthly mean single scattering albedo at 440 nm in Mongu was found to increase significantly from July (0.845) to October (0.93). The slope of the spectral dependence of aerosol single scattering albedo with wavelength decreased as SSA increased from July to October. However, there was no significant change in particle size in either the dominant accumulation or secondary coarse modes during these months. Similarly, seasonal SSA retrievals for Etosha Pan, Namibia also show increasing values through the burning season in 2000. We also analyze the seasonality of SSA for sites in biomass burning regions of Amazonia. We show maps of satellite detected fire counts which indicate that the regions of primary biomass burning shift significantly from July to October. Possible reasons for the seasonal changes in observed SSA include differences in aging to due transport speed and distance from source regions, differences in biomass fuel types in different regions (fraction of woody biomass versus grasses), and differences in fuel moisture content (October is the beginning of the rainy season on both continents).

  13. U.S. Burning Plasma Organization Activities

    International Nuclear Information System (INIS)

    Fonck, Raymond J.

    2009-01-01

    The national U.S. Burning Plasma Organization (USBPO) was formed to provide an umbrella structure in the U.S. fusion science research community. Its main purpose is the coordination of research activities in the U.S. program relevant to burning plasma science and preparations for participation in the international ITER experiment. This grant provided support for the continuing development and operations of the USBPO in its first years of existence. A central feature of the USBPO is the requirement for broad community participation in and governance of this effort. We concentrated on five central areas of activity of the USBPO during this grant period. These included: (1) activities of the Director and support staff in continuing management and development of the USBPO activity; (2) activation of the advisory Council; (3) formation and initial research activities of the research community Topical Groups; (4) formation of Task Groups to perform specific burning plasma related research and development activities; (5) integration of the USBPO community with the ITER Project Office as needed to support ITER development in the U.S.

  14. Fossil fuel and biomass burning effect on climate - Heating or cooling?

    Science.gov (United States)

    Kaufman, Yoram J.; Fraser, Robert S.; Mahoney, Robert L.

    1991-01-01

    The basic theory of the effect of pollution on cloud microphysics and its global implications is applied to compare the relative effect of a small increase in the consumption rate of oil, coal, or biomass burning on cooling and heating of the atmosphere. The characteristics of and evidence for the SO2 induced cooling effect are reviewed. This perturbation analysis approach permits linearization, therefore simplifying the analysis and reducing the number of uncertain parameters. For biomass burning the analysis is restricted to burning associated with deforestation. Predictions of the effect of an increase in oil or coal burning show that within the present conditions the cooling effect from oil and coal burning may range from 0.4 to 8 times the heating effect.

  15. Chemical speciation, transport and contribution of biomass burning smoke to ambient aerosol in Guangzhou, a mega city of China

    Science.gov (United States)

    Zhang, Zhisheng; Engling, Guenter; Lin, Chuan-Yao; Chou, Charles C.-K.; Lung, Shih-Chun C.; Chang, Shih-Yu; Fan, Shaojia; Chan, Chuen-Yu; Zhang, Yuan-Hang

    2010-08-01

    Intensive measurements of aerosol (PM 10) and associated water-soluble ionic and carbonaceous species were conducted in Guangzhou, a mega city of China, during summer 2006. Elevated levels of most chemical species were observed especially at nighttime during two episodes, characterized by dramatic build-up of the biomass burning tracers levoglucosan and non-sea-salt potassium, when the prevailing wind direction had changed due to two approaching tropical cyclones. High-resolution air mass back trajectories based on the MM5 model revealed that air masses with high concentrations of levoglucosan (43-473 ng m -3) and non-sea-salt potassium (0.83-3.2 μg m -3) had passed over rural regions of the Pearl River Delta and Guangdong Province, where agricultural activities and field burning of crop residues are common practices. The relative contributions of biomass burning smoke to organic carbon in PM 10 were estimated from levoglucosan data to be on average 7.0 and 14% at daytime and nighttime, respectively, with maxima of 9.7 and 32% during the episodic transport events, indicating that biomass and biofuel burning activities in the rural parts of the Pearl River Delta and neighboring regions could have a significant impact on ambient urban aerosol levels.

  16. Impact assessment of biomass burning on air quality in Southeast and East Asia during BASE-ASIA

    Science.gov (United States)

    Huang, Kan; Fu, Joshua S.; Hsu, N. Christina; Gao, Yang; Dong, Xinyi; Tsay, Si-Chee; Lam, Yun Fat

    2013-10-01

    A synergy of numerical simulation, ground-based measurement and satellite observation was applied to evaluate the impact of biomass burning originating from Southeast Asia (SE Asia) within the framework of NASA's 2006 Biomass burning Aerosols in Southeast Asia: Smoke Impact Assessment (BASE-ASIA). Biomass burning emissions in the spring of 2006 peaked in March-April when most intense biomass burning occurred in Myanmar, northern Thailand, Laos, and parts of Vietnam and Cambodia. Model performances were reasonably validated by comparing to both satellite and ground-based observations despite overestimation or underestimation occurring in specific regions due to high uncertainties of biomass burning emission. Chemical tracers of particulate K+, OC concentrations, and OC/EC ratios showed distinct regional characteristics, suggesting biomass burning and local emission dominated the aerosol chemistry. CMAQ modeled aerosol chemical components were underestimated at most circumstances and the converted AOD values from CMAQ were biased low at about a factor of 2, probably due to the underestimation of biomass emissions. Scenario simulation indicated that the impact of biomass burning to the downwind regions spread over a large area via the Asian spring monsoon, which included Southern China, South China Sea, and Taiwan Strait. Comparison of AERONET aerosol optical properties with simulation at multi-sites clearly demonstrated the biomass burning impact via long-range transport. In the source region, the contribution from biomass burning to AOD was estimated to be over 56%. While in the downwind regions, the contribution was still significant within the range of 26%-62%.

  17. Impact Assessment of Biomass Burning on Air Quality in Southeast and East Asia During BASE-ASIA

    Science.gov (United States)

    Huang, Kan; Fu, Joshua S.; Hsu, N. Christina; Gao, Yang; Dong, Xinyi; Tsay, Si-Chee; Lam, Yun Fat

    2013-01-01

    A synergy of numerical simulation, ground-based measurement and satellite observation was applied to evaluate the impact of biomass burning originating from Southeast Asia (SE Asia) within the framework of NASA's 2006 Biomass burning Aerosols in Southeast Asia: Smoke Impact Assessment (BASE-ASIA). Biomass burning emissions in the spring of 2006 peaked in MarcheApril when most intense biomass burning occurred in Myanmar, northern Thailand, Laos, and parts of Vietnam and Cambodia. Model performances were reasonably validated by comparing to both satellite and ground-based observations despite overestimation or underestimation occurring in specific regions due to high uncertainties of biomass burning emission. Chemical tracers of particulate K(+), OC concentrations, and OC/EC ratios showed distinct regional characteristics, suggesting biomass burning and local emission dominated the aerosol chemistry. CMAQ modeled aerosol chemical components were underestimated at most circumstances and the converted AOD values from CMAQ were biased low at about a factor of 2, probably due to the underestimation of biomass emissions. Scenario simulation indicated that the impact of biomass burning to the downwind regions spread over a large area via the Asian spring monsoon, which included Southern China, South China Sea, and Taiwan Strait. Comparison of AERONET aerosol optical properties with simulation at multi-sites clearly demonstrated the biomass burning impact via longrange transport. In the source region, the contribution from biomass burning to AOD was estimated to be over 56%. While in the downwind regions, the contribution was still significant within the range of 26%-62%.

  18. Recent Progress and Emerging Issues in Measuring and Modeling Biomass Burning Emissions

    Science.gov (United States)

    Yokelson, R. J.; Stockwell, C.; Veres, P. R.; Hatch, L. E.; Barsanti, K. C.; Simpson, I. J.; Blake, D. R.; Alvarado, M.; Kreidenweis, S. M.; Robinson, A. L.; Akagi, S. K.; McMeeking, G. R.; Stone, E.; Gilman, J.; Warneke, C.; Sedlacek, A. J.; Kleinman, L. I.

    2013-12-01

    Nine recent multi-PI campaigns (6 airborne, 3 laboratory) have quantified biomass burning emissions and the subsequent smoke evolution in unprecedented detail. Among these projects were the Fourth Fire Lab at Missoula Experiment (FLAME-4) and the DOE airborne campaign BBOP (Biomass Burning Observation Project). Between 2009 and 2013 a large selection of fuels and ecosystems were probed including: (1) 21 US prescribed fires in pine forests, chaparral, and shrublands; (2) numerous wildfires in the Pacific Northwest of the US; (3) 77 lab fires burning fuels collected from the sites of the prescribed fires; and (4) 158 lab fires burning authentic fuels in traditional cooking fires and advanced stoves; peat from Indonesia, Canada, and North Carolina; savanna grasses from Africa; temperate grasses from the US; crop waste from the US; rice straw from Taiwan, China, Malaysia, and California; temperate and boreal forest fuels collected in Montana and Alaska; chaparral fuels from California; trash; and tires. Instrumentation for gases included: FTIR, PTR-TOF-MS, 2D-GC and whole air sampling. Particle measurements included filter sampling (with IC, elemental carbon (EC), organic carbon (OC), and GC-MS) and numerous real-time measurements such as: HR-AMS (high-resolution aerosol MS), SP-AMS (soot particle AMS), SP2 (single particle soot photometer), SP-MS (single particle MS), ice nuclei, CCN (cloud condensation nuclei), water soluble OC, size distribution, and optical properties in the UV-VIS. New data include: emission factors for over 400 gases, black carbon (BC), brown carbon (BrC), organic aerosol (OA), ions, metals, EC, and OC; and details of particle morphology, mixing state, optical properties, size distributions, and cloud nucleating activity. Large concentrations (several ppm) of monoterpenes were present in fresh smoke. About 30-70% of the initially emitted gas-phase non-methane organic compounds were semivolatile and could not be identified with current technology

  19. Broadband optical properties of biomass-burning aerosol and identification of brown carbon chromophores: OPTICAL AND CHEMICAL PROPERTIES OF BROWN CARBON AEROSOLS

    Energy Technology Data Exchange (ETDEWEB)

    Bluvshtein, Nir [Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot Israel; Lin, Peng [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland Washington USA; Flores, J. Michel [Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot Israel; Segev, Lior [Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot Israel; Mazar, Yinon [Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot Israel; Tas, Eran [The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot Israel; Snider, Graydon [Department of Physics and Atmospheric Science, Dalhousie University, Halifax Nova Scotia Canada; Weagle, Crystal [Department of Chemistry, Dalhousie University, Halifax Nova Scotia Canada; Brown, Steven S. [Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder Colorado USA; Chemical Sciences Division, Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder Colorado USA; Laskin, Alexander [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland Washington USA; Rudich, Yinon [Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot Israel

    2017-05-23

    The radiative effects of biomass burning aerosols on regional and global scale is substantial. Accurate modeling of the radiative effects of smoke aerosols require wavelength-dependent measurements and parameterizations of their optical properties in the UV and visible spectral ranges along with improved description of their chemical composition. To address this issue, we used a recently developed approach to retrieve the time- and spectral-dependent optical properties of ambient biomass burning aerosols between 300 and 650 nm wavelength during a regional bonfire festival in Israel. During the biomass burning event, the overall absorption at 400 nm increased by about two orders of magnitude, changing the size-weighted single scattering albedo from a background level of 0.95 to 0.7. Based on the new retrieval method, we provide parameterizations of the wavelength-dependent effective complex refractive index from 350 to 650 nm for freshly emitted and aged biomass burning aerosols. In addition, PM2.5 filter samples were collected for detailed off-line chemical analysis of the water soluble organics that contribute to light absorption. Nitrophenols were identified as the main organic species responsible for the increased absorption at 400-500 nm. These include species such as 4- nitrocatechol, 4-nitrophenol, nitro-syringol and nitro-guaiacol; oxidation-nitration products of methoxyphenols, known products of lignin pyrolysis. Our findings emphasize the importance of both primary and secondary organic aerosol from biomass burning in absorption of solar radiation and in effective radiative forcing.

  20. Distributions of trace gases and aerosols during the dry biomass burning season in southern Africa

    Science.gov (United States)

    Sinha, Parikhit; Hobbs, Peter V.; Yokelson, Robert J.; Blake, Donald R.; Gao, Song; Kirchstetter, Thomas W.

    2003-09-01

    Vertical profiles in the lower troposphere of temperature, relative humidity, sulfur dioxide (SO2), ozone (O3), condensation nuclei (CN), and carbon monoxide (CO), and horizontal distributions of twenty gaseous and particulate species, are presented for five regions of southern Africa during the dry biomass burning season of 2000. The regions are the semiarid savannas of northeast South Africa and northern Botswana, the savanna-forest mosaic of coastal Mozambique, the humid savanna of southern Zambia, and the desert of western Namibia. The highest average concentrations of carbon dioxide (CO2), CO, methane (CH4), O3, black particulate carbon, and total particulate carbon were in the Botswana and Zambia sectors (388 and 392 ppmv, 369 and 453 ppbv, 1753 and 1758 ppbv, 79 and 88 ppbv, 2.6 and 5.5 μg m-3, and 13.2 and 14.3 μg m-3). This was due to intense biomass burning in Zambia and surrounding regions. The South Africa sector had the highest average concentrations of SO2, sulfate particles, and CN (5.1 ppbv, 8.3 μg m-3, and 6400 cm-3, respectively), which derived from biomass burning and electric generation plants and mining operations within this sector. Air quality in the Mozambique sector was similar to the neighboring South Africa sector. Over the arid Namibia sector there were polluted layers aloft, in which average SO2, O3, and CO mixing ratios (1.2 ppbv, 76 ppbv, and 310 ppbv, respectively) were similar to those measured over the other more polluted sectors. This was due to transport of biomass smoke from regions of widespread savanna burning in southern Angola. Average concentrations over all sectors of CO2 (386 ± 8 ppmv), CO (261 ± 81 ppbv), SO2 (2.5 ± 1.6 ppbv), O3 (64 ± 13 ppbv), black particulate carbon (2.3 ± 1.9 μg m-3), organic particulate carbon (6.2 ± 5.2 μg m-3), total particle mass (26.0 ± 4.7 μg m-3), and potassium particles (0.4 ± 0.1 μg m-3) were comparable to those in polluted, urban air. Since the majority of the measurements

  1. Characterization of submicron particles during biomass burning and coal combustion periods in Beijing, China.

    Science.gov (United States)

    Zhang, J K; Cheng, M T; Ji, D S; Liu, Z R; Hu, B; Sun, Y; Wang, Y S

    2016-08-15

    An Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) was deployed along with other observation instruments to measure the characteristics of PM1 (particulate matter with a vacuum aerodynamic diameter of ≤1μm) during the biomass burning period (October 1 to 27; BBP) and the coal combustion period (December 10 to 31; CCP) in Beijing in 2014. The average PM1 mass concentrations during the BBP and CCP were 82.3 and 37.5μgm(-3), respectively. Nitrate, ammonium and other pollutants emitted by the burning processes, especially coal combustion, increased significantly in association with increased pollution levels. Positive matrix factorization (PMF) was applied to a unified high-resolution mass spectra database of organic species with NO(+) and NO2(+) ions to discover the relationships between organic and inorganic species. One inorganic factor was identified in both periods, and another five and four distinct organic factors were identified in the BBP and CCP, respectively. Secondary organic aerosols (SOAs) accounted for 55% of the total organic aerosols (OAs) during the BBP, which is higher than the proportion during the CCP (oxygenated OA, 40%). The organic nitrate and inorganic nitrate were first successfully separated through the PMF analysis based on the HR-ToF-AMS observations in Beijing, and organic nitrate components accounted for 21% and 18% of the total nitrate mass during the BBP and CCP, respectively. Although the PM1 mass concentration during the CCP was much lower than in the BBP, the average concentration of polycyclic aromatic hydrocarbons (PAHs) during the CCP (107.3±171.6ngm(-3)) was ~5 times higher than that in the BBP (21.9±21.7ngm(-3)). Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Characterising Brazilian biomass burning emissions using WRF-Chem with MOSAIC sectional aerosol

    Directory of Open Access Journals (Sweden)

    S. Archer-Nicholls

    2015-03-01

    Full Text Available The South American Biomass Burning Analysis (SAMBBA field campaign took detailed in situ flight measurements of aerosol during the 2012 dry season to characterise biomass burning aerosol and improve understanding of its impacts on weather and climate. Developments have been made to the Weather Research and Forecast model with chemistry (WRF-Chem model to improve the representation of biomass burning aerosol in the region, by coupling a sectional aerosol scheme to the plume-rise parameterisation. Brazilian Biomass Burning Emissions Model (3BEM fire emissions are used, prepared using PREP-CHEM-SRC, and mapped to CBM-Z and MOSAIC species. Model results have been evaluated against remote sensing products, AERONET sites, and four case studies of flight measurements from the SAMBBA campaign. WRF-Chem predicted layers of elevated aerosol loadings (5–20 μg sm−3 of particulate organic matter at high altitude (6–8 km over tropical forest regions, while flight measurements showed a sharp decrease above 2–4 km altitude. This difference was attributed to the plume-rise parameterisation overestimating injection height. The 3BEM emissions product was modified using estimates of active fire size and burned area for the 2012 fire season, which reduced the fire size. The enhancement factor for fire emissions was increased from 1.3 to 5 to retain reasonable aerosol optical depths (AODs. The smaller fire size lowered the injection height of the emissions, but WRF-Chem still showed elevated aerosol loadings between 4–5 km altitude. Over eastern cerrado (savannah-like regions, both modelled and measured aerosol loadings decreased above approximately 4 km altitude. Compared with MODIS satellite data and AERONET sites, WRF-Chem represented AOD magnitude well (between 0.3–1.5 over western tropical forest fire regions in the first half of the campaign, but tended to over-predict them in the second half, when precipitation was more significant. Over eastern

  3. Characterising Brazilian biomass burning emissions using WRF-Chem with MOSAIC sectional aerosol

    Science.gov (United States)

    Archer-Nicholls, S.; Lowe, D.; Darbyshire, E.; Morgan, W. T.; Bela, M. M.; Pereira, G.; Trembath, J.; Kaiser, J. W.; Longo, K. M.; Freitas, S. R.; Coe, H.; McFiggans, G.

    2015-03-01

    The South American Biomass Burning Analysis (SAMBBA) field campaign took detailed in situ flight measurements of aerosol during the 2012 dry season to characterise biomass burning aerosol and improve understanding of its impacts on weather and climate. Developments have been made to the Weather Research and Forecast model with chemistry (WRF-Chem) model to improve the representation of biomass burning aerosol in the region, by coupling a sectional aerosol scheme to the plume-rise parameterisation. Brazilian Biomass Burning Emissions Model (3BEM) fire emissions are used, prepared using PREP-CHEM-SRC, and mapped to CBM-Z and MOSAIC species. Model results have been evaluated against remote sensing products, AERONET sites, and four case studies of flight measurements from the SAMBBA campaign. WRF-Chem predicted layers of elevated aerosol loadings (5-20 μg sm-3) of particulate organic matter at high altitude (6-8 km) over tropical forest regions, while flight measurements showed a sharp decrease above 2-4 km altitude. This difference was attributed to the plume-rise parameterisation overestimating injection height. The 3BEM emissions product was modified using estimates of active fire size and burned area for the 2012 fire season, which reduced the fire size. The enhancement factor for fire emissions was increased from 1.3 to 5 to retain reasonable aerosol optical depths (AODs). The smaller fire size lowered the injection height of the emissions, but WRF-Chem still showed elevated aerosol loadings between 4-5 km altitude. Over eastern cerrado (savannah-like) regions, both modelled and measured aerosol loadings decreased above approximately 4 km altitude. Compared with MODIS satellite data and AERONET sites, WRF-Chem represented AOD magnitude well (between 0.3-1.5) over western tropical forest fire regions in the first half of the campaign, but tended to over-predict them in the second half, when precipitation was more significant. Over eastern cerrado regions, WRF

  4. Long-term measurements of carbonaceous aerosols in the Eastern Mediterranean: evidence of long-range transport of biomass burning

    Directory of Open Access Journals (Sweden)

    J. Sciare

    2008-09-01

    Full Text Available Long-term (5-year measurements of Elemental Carbon (EC and Organic Carbon (OC in bulk aerosols are presented here for the first time in the Mediterranean Basin (Crete Island. A multi-analytical approach (including thermal, optical, and thermo-optical techniques was applied for these EC and OC measurements. Light absorbing dust aerosols were shown to poorly contribute (+12% on a yearly average to light absorption coefficient (babs measurements performed by an optical method (aethalometer. Long-range transport of agricultural waste burning from European countries surrounding the Black Sea was shown for each year during two periods (March–April and July–September. The contribution of biomass burning to the concentrations of EC and OC was shown to be rather small (20 and 14%, respectively, on a yearly basis, although this contribution could be much higher on a monthly basis and showed important seasonal and interannual variability. By removing the biomass burning influence, our data revealed an important seasonal variation of OC, with an increase by almost a factor of two for the spring months of May and June, whereas BC was found to be quite stable throughout the year. Preliminary measurements of Water Soluble Organic Carbon (WSOC have shown that the monthly mean WSOC/OC ratio remains stable throughout the year (0.45±0.12, suggesting that the partitioning between water soluble and water insoluble organic matter is not significantly affected by biomass burning and secondary organic aerosol (SOA formation. A chemical mass closure performed in the fine mode (Aerodynamic Diameter, A.D.<1.5μm showed that the mass contribution of organic matter (POM was found to be essentially invariable during the year (monthly average of 26±5%.

  5. Seasonal Trend of Aerosol Single Scattering Albedo at Biomass Burning Sites in Southern Africa

    Science.gov (United States)

    Eck, T. F.; Holben, B. N.; Reid, J. S.; Ward, D.; Mukelabai, M. M.; Piketh, S.; Hyer, E. J.; Dubovik, O.; Sinyuk, A.; Schafer, J. S.; Giles, D. M.; Smirnov, A.; Slutsker, I.

    2011-12-01

    A database of the optical properties of primarily biomass burning aerosols in Mongu, Zambia from multi-year monitoring at an AERONET sun-sky radiometer site was examined. For the biomass burning season months (July-November), we investigate the aerosol single scattering albedo (SSA), aerosol size distributions, and refractive indices from almucantar sky scan retrievals utilizing the algorithm of Dubovik and King (2000). The monthly mean single scattering albedo at 440 nm in Mongu was found to increase significantly from ~0.84 in July to ~0.93 in November (from 0.78 to 0.90 at 675 nm in these same months). There was no significant change in particle size, in either the dominant accumulation or secondary coarse modes during these months, nor any significant trend in the Angstrom Exponent (440-870 nm; r2=0.02). A significant downward seasonal trend in imaginary refractive index (r2=0.43) suggests a trend of decreasing black carbon content in the aerosol composition as the burning season progresses. Similarly, seasonal SSA retrievals for both the Etosha Pan, Namibia and Skukuza, South Africa AERONET sites also show increasing single scattering albedo values through the burning season. We show maps of satellite detected fire counts, which indicate that the regions of primary biomass burning in southern Africa shift significantly from July to October. Possible reasons for the seasonal changes in observed SSA include differences in biomass fuel types in different regions and seasons (fraction of woody biomass versus grasses), agricultural practices (Chitemene: in which woody fuels are burned at the end of the dry season), differences in fuel moisture content (as mid-October is the typical beginning of the rainy season) and differences in aging due to transport speed and distance from varying source regions. We also analyze the seasonality of SSA for sites in biomass burning regions of southern Amazonia, where no significant seasonal trend in SSA was detected.

  6. Controls upon biomass losses and char production from prescribed burning on UK moorland.

    Science.gov (United States)

    Worrall, Fred; Clay, Gareth D; May, Richard

    2013-05-15

    Prescribed burning is a common management technique used across many areas of the UK uplands. However, there are few data sets that assess the loss of biomass during burning and even fewer data on the effect of burning on above-ground carbon stocks and production of char. During fire the production of char occurs which represents a transfer of carbon from the short term bio-atmospheric cycle to the longer term geological cycle. However, biomass is consumed leading to the reduction in litter formation which is the principal mechanism for peat formation. This study aims to solve the problem of whether loss of biomass during a fire is ever outweighed by the production of refractory forms of carbon during the fire. This study combines both a laboratory study of char production with an assessment of biomass loss from a series of field burns from moorland in the Peak District, UK. The laboratory results show that there are significant effects due to ambient temperature but the most important control on dry mass loss is the maximum burn temperature. Burn temperature was also found to be linearly related to the production of char in the burn products. Optimisation of dry mass loss, char production and carbon content shows that the production of char from certain fires could store more carbon in the ecosystem than if there had been no fire. Field results show that approximately 75% of the biomass and carbon were lost through combustion, a figure comparable to other studies of prescribed fire in other settings. Char-C production was approximately 2.6% of the carbon consumed during the fire. This study has shown that there are conditions (fast burns at high temperatures) under which prescribed fire may increase C sequestration through char production and that these conditions are within existing management options available to practitioners. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Tracking nitrogen oxides, nitrous acid, and nitric acid from biomass burning

    Science.gov (United States)

    Chai, J.; Miller, D. J.; Scheuer, E. M.; Dibb, J. E.; Hastings, M. G.

    2017-12-01

    Biomass burning emissions are an important source of atmospheric nitrogen oxides (NOx = NO + NO2) and nitrous acid (HONO), which play important roles in atmosphere oxidation capacity (hydroxyl radical and ozone formation) and have severe impacts on air quality and climate in the presence of sunlight and volatile organic compounds. However, tracking NOx and HONO and their chemistry in the atmosphere based on concentration alone is challenging. Isotopic analysis provides a potential tracking tool. In this study, we measured the nitrogen isotopic composition (δ15N) of NOx (NO + NO2) and HONO, and soluble HONO and HNO3 during the Fire Influence on Regional and Global Environments Experiment (FIREX) laboratory experiments at the Missoula Fire Laboratory. Our newly developed and validated annular denuder system (ADS) enabled us to effectively trap HONO prior to a NOx collection system in series for isotopic analysis. In total we investigated 25 "stack" fires of various biomass materials where the emissions were measured within a few seconds of production by the fire. HONO concentration was measured in parallel using mist chamber/ion chromatography (MC/IC). The recovered mean HONO concentrations from ADS during the burn of each fire agree well with that measured via MC/IC. δ15N-NOx ranged from -4.3 ‰ to + 7.0 ‰ with a median of 0.7 ‰. Combined with a similar, recent study by our group [Fibiger et al., ES&T, 2017] the δ15N-NOx follows a linear relationship with δ15N-biomass (δ15N-NOx =0.94 x δ15N-biomass +1.98; R2=0.72). δ15N-HONO ranged from -5.3 to +8.3 ‰ with a median of 1.4 ‰. While both HONO and NOx are sourced from N in the biomass fuel, the secondary formation of HONO likely induces fractionation of the N that leads to the difference between δ15N-NOx and δ15N-HONO. We found a correlation of δ15N-HONO= 0.86 x δ15N-NOx + 0.52 (R2=0.55), which can potentially be used to track the chemistry of HONO formation following fire emissions. The methods

  8. Health and cost impact of air pollution from biomass burning over the United States

    Science.gov (United States)

    Eslami, E.; Sadeghi, B.; Choi, Y.

    2017-12-01

    Effective assessment of health and cost effects of air pollution associated with wildfire events is critical for supporting sustainable management and policy analysis to reduce environmental damages. Since biomass burning events result in higher ozone, PM2.5, and NOx concentration values in urban regions due to long-range transport, preliminary results indicated that wildfire events cause a considerable increase in incident estimates and costs. This study aims to evaluate the health and cost impact of biomass burning events over the continental United States using combined air quality and health impact modeling. To meet this goal, a comprehensive air quality modeling scenarios containing biomass burning emissions were conducted using the Community Multiscale Air Quality (CMAQ) modeling system from 2011 to 2014 with a spatial resolution of 12 km. The modeling period includes fire seasons between April and October over the course of four years. By using modeled pollutants concentrations, the USEPA's GIS-based computer program Environmental Benefits Mapping and Analysis Program-Community Edition (BenMAP-CE) provides an inclusive figure of health and cost impact caused by changing gaseous and particulate air pollution due to fire events. The basis of BenMAP-CE is the use of a damage-function approach to estimate the health impact of an applied change in air quality by comparing a biomass burning scenario (the one that includes wildfire events) with a baseline scenario (without biomass emissions). This approach considers several factors containing population, exposure to the pollutants, adverse health effects of a particular pollutant, and economic costs. Hence, this study made it capable of showing how biomass burning across U.S. influences people's health in different months, seasons, and regions. Besides, the cost impact of the wildfire events during study periods has also been estimated at both national and regional levels. The results of this study demonstrate the

  9. The characteristics of Beijing aerosol during two distinct episodes: Impacts of biomass burning and fireworks

    International Nuclear Information System (INIS)

    Cheng, Yuan; Engling, Guenter; He, Ke-bin; Duan, Feng-kui; Du, Zhen-yu; Ma, Yong-liang; Liang, Lin-lin; Lu, Zi-feng; Liu, Jiu-meng; Zheng, Mei; Weber, Rodney J.

    2014-01-01

    The chemical composition of Beijing aerosol was measured during summer and winter. Two distinct episodes were identified. Water-soluble potassium (K + ) increased significantly during the firework episode in winter with an episode to non-episode ratio of 4.97, whereas the biomass burning (BB) episode in summer was characterized by high episode to non-episode ratios of levoglucosan (6.38) and K + (6.90). The BB and firework episodes had only a minor influence on the water-soluble OC (organic carbon) to OC ratio. Based on separate investigations of episode and non-episode periods, it was found that: (i) sulfate correlated strongly with both relative humidity and nitrate during the typical winter period presumably indicating the importance of the aqueous-phase oxidation of sulfur dioxide by nitrogen dioxide, (ii) oxalate and WSOC during both winter and summer in Beijing were mainly due to secondary formation, and (iii) high humidity can significantly enhance the formation potential of WSOC in winter. -- Highlights: • Two episodes were identified based on the chemical composition of Beijing aerosol. • Levoglucosan and K + increased significantly during the biomass burning episode. • The firework episode was characterized by high concentrations of K + . • WSOC and oxalate exhibited secondary nature during both summer and winter. • High humidity can significantly enhance the formation of WSOC in winter. -- This study suggests the benefits of investigating aerosol composition separately during episode and non-episode periods, and introducing organic tracers to the speciation measurements of PM 2.5

  10. Model study of the cross-tropopause transport of biomass burning pollution

    Directory of Open Access Journals (Sweden)

    B. N. Duncan

    2007-07-01

    Full Text Available We present a modeling study of the troposphere-to-stratosphere transport (TST of pollution from major biomass burning regions to the tropical upper troposphere and lower stratosphere (UT/LS. TST occurs predominately through 1 slow ascent in the tropical tropopause layer (TTL to the LS and 2 quasi-horizontal exchange to the lowermost stratosphere (LMS. We show that biomass burning pollution regularly and significantly impacts the composition of the TTL, LS, and LMS. Carbon monoxide (CO in the LS in our simulation and data from the Aura Microwave Limb Sounder (MLS shows an annual oscillation in its composition that results from the interaction of an annual oscillation in slow ascent from the TTL to the LS and seasonal variations in sources, including a semi-annual oscillation in CO from biomass burning. The impacts of CO sources that peak when ascent is seasonally low are damped (e.g. Southern Hemisphere biomass burning and vice-versa for sources that peak when ascent is seasonally high (e.g. extra-tropical fossil fuels. Interannual variation of CO in the UT/LS is caused primarily by year-to-year variations in biomass burning and the locations of deep convection. During our study period, 1994–1998, we find that the highest concentrations of CO in the UT/LS occurred during the strong 1997–1998 El Niño event for two reasons: i. tropical deep convection shifted to the eastern Pacific Ocean, closer to South American and African CO sources, and ii. emissions from Indonesian biomass burning were higher. This extreme event can be seen as an upper bound on the impact of biomass burning pollution on the UT/LS. We estimate that the 1997 Indonesian wildfires increased CO in the entire TTL and tropical LS (>60 mb by more than 40% and 10%, respectively, for several months. Zonal mean ozone increased and the hydroxyl radical decreased by as much as 20%, increasing the lifetimes and, subsequently TST, of trace gases. Our results indicate that the impact of

  11. Light absorption by pollution, dust, and biomass burning aerosols: a global model study and evaluation with AERONET measurements

    Directory of Open Access Journals (Sweden)

    Mian Chin

    2009-09-01

    Full Text Available Atmospheric aerosol distributions from 2000 to 2007 are simulated with the Goddard Chemistry Aerosol Radiation and Transport (GOCART model to attribute light absorption by aerosol to its composition and sources from pollution, dust, and biomass burning. The 8-year, global averaged total aerosol optical depth (τ, absorption optical depth (τa, and single scattering albedo (ω at 550 nm are estimated at 0.14, 0.0086, and 0.95, respectively, with sulfate making the largest fraction of τ (37%, followed by dust (30%, sea salt (16%, organic matter (OM (13%, and black carbon (BC (4%. BC and dust account for 43% and 53% of τa, respectively. From a model experiment with "tagged" sources, natural aerosols are estimated to be 58% of τ and 53% of τa, with pollution and biomass burning aerosols to share the rest. Comparing with data from the surface sunphotometer network AERONET, the model tends to reproduce much better the AERONET direct measured data of τ and the Ångström exponent (α than its retrieved quantities of ω and τa. Relatively small in its systematic bias of τ for pollution and dust regions, the model tends to underestimate τ for biomass burning aerosols by 30–40%. The modeled α is 0.2–0.3 too low (particle too large for pollution and dust aerosols but 0.2–0.3 too high (particle too small for the biomass burning aerosols, indicating errors in particle size distributions in the model. Still, the model estimated ω is lower in dust regions and shows a much stronger wavelength dependence for biomass burning aerosols but a weaker one for pollution aerosols than those quantities from AERONET. These comparisons necessitate model improvements on aerosol size distributions, the refractive indices of dust and black carbon aerosols, and biomass burning emissions in order to better quantify the aerosol absorption in the atmosphere.

  12. Biomass Burning Airborne and Spaceborne Experiment in the Amazonas (BASE-A)

    Science.gov (United States)

    Kaufman, Y. J.; Setzer, A.; Ward, D.; Tanre, D.; Holben, B. N.; Menzel, P.; Pereira, M. C.; Rasmussen, R.

    1992-01-01

    Results are presented on measurements of the trace gas and particulate matter emissions due to biomass burning during deforestation and grassland fires in South America, conducted as part of the Biomass Burning Airborne and Spaceborne Experiment in the Amazonas in September 1989. Field observations by an instrumented aircraft were used to estimate concentrations of O3, CO2, CO, CH4, and particulate matter. Fires were observed from satellite imagery, and the smoke optical thickness, particle size, and profiles of the extinction coefficient were measured from the aircraft and from the ground. Four smoke plumes were sampled, three vertical profiles were measured, and extensive ground measurements of smoke optical characteristics were carried out for different smoke types. The simultaneous measurements of the trace gases, smoke particles, and the distribution of fires were used to correlate biomass burning with the elevated levels of ozone.

  13. Emission characteristics of refractory black carbon aerosols from fresh biomass burning: a perspective from laboratory experiments

    Directory of Open Access Journals (Sweden)

    X. Pan

    2017-11-01

    -dominant combustion to 0.86 (flaming-dominant combustion, implying the great importance of the rapid condensation of semi-volatile organics. This laboratory study found that the mixing state of rBC particles from biomass burning strongly depends on its combustion processes, and overall MCE should be taken carefully into consideration while the climate effect of rBC particles from open biomass burning is simulated.

  14. Impact of biomass burning on nutrient deposition to the global ocean

    Science.gov (United States)

    Kanakidou, Maria; Myriokefalitakis, Stelios; Daskalakis, Nikos; Mihalopoulos, Nikolaos; Nenes, Athanasios

    2017-04-01

    Atmospheric deposition of trace constituents, both of natural and anthropogenic origin, can act as a nutrient source into the open ocean and affect marine ecosystem functioning and subsequently the exchange of CO2 between the atmosphere and the global ocean. Dust is known as a major source of nutrients (Fe and P) into the atmosphere, but only a fraction of these nutrients is released in soluble form that can be assimilated by the ecosystems. Dust is also known to enhance N deposition by interacting with anthropogenic pollutants and neutralisation of part of the acidity of the atmosphere by crustal alkaline species. These nutrients have also primary anthropogenic sources including combustion emissions. The global atmospheric N [1], Fe [2] and P [3] cycles have been parameterized in the global 3-D chemical transport model TM4-ECPL, accounting for inorganic and organic forms of these nutrients, for all natural and anthropogenic sources of these nutrients including biomass burning, as well as for the link between the soluble forms of Fe and P atmospheric deposition and atmospheric acidity. The impact of atmospheric acidity on nutrient solubility has been parameterised based on experimental findings and the model results have been evaluated by extensive comparison with available observations. In the present study we isolate the significant impact of biomass burning emissions on these nutrients deposition by comparing global simulations that consider or neglect biomass burning emissions. The investigated impact integrates changes in the emissions of the nutrients as well as in atmospheric oxidants and acidity and thus in atmospheric processing and secondary sources of these nutrients. The results are presented and thoroughly discussed. References [1] Kanakidou M, S. Myriokefalitakis, N. Daskalakis, G. Fanourgakis, A. Nenes, A. Baker, K. Tsigaridis, N. Mihalopoulos, Past, Present and Future Atmospheric Nitrogen Deposition, Journal of the Atmospheric Sciences (JAS-D-15

  15. Biomass burning aerosols and the low-visibility events in Southeast Asia

    Science.gov (United States)

    Lee, Hsiang-He; Bar-Or, Rotem Z.; Wang, Chien

    2017-01-01

    Fires including peatland burning in Southeast Asia have become a major concern to the general public as well as governments in the region. This is because aerosols emitted from such fires can cause persistent haze events under certain weather conditions in downwind locations, degrading visibility and causing human health issues. In order to improve our understanding of the spatiotemporal coverage and influence of biomass burning aerosols in Southeast Asia, we have used surface visibility and particulate matter concentration observations, supplemented by decade-long (2003 to 2014) simulations using the Weather Research and Forecasting (WRF) model with a fire aerosol module, driven by high-resolution biomass burning emission inventories. We find that in the past decade, fire aerosols are responsible for nearly all events with very low visibility (Kuala Lumpur, and 34 % in Singapore. Biomass burning in mainland Southeast Asia accounts for the largest contribution to total fire-produced PM2.5 in Bangkok (99 %), while biomass burning in Sumatra is a major contributor to fire-produced PM2.5 in Kuala Lumpur (50 %) and Singapore (41 %). To examine the general situation across the region, we have further defined and derived a new integrated metric for 50 cities of the Association of Southeast Asian Nations (ASEAN): the haze exposure day (HED), which measures the annual exposure days of these cities to low visibility (populations. Fire events alone are found to be responsible for up to about half of the total HEDs. Our results suggest that in order to improve the overall air quality in Southeast Asia, mitigation policies targeting both biomass burning and fossil fuel burning sources need to be implemented.

  16. Effect of biomass burning on marine stratocumulus clouds off the California coast

    Directory of Open Access Journals (Sweden)

    E.-Y. Hsie

    2009-11-01

    Full Text Available Aerosol-cloud interactions are considered to be one of the most important and least known forcings in the climate system. Biomass burning aerosols are of special interest due to their radiative impact (direct and indirect effect and their potential to increase in the future due to climate change. Combining data from Geostationary Operational Environmental Satellite (GOES and MODerate-resolution Imaging Spectroradiometer (MODIS with passive tracers from the FLEXPART Lagrangian Particle Dispersion Model, the impact of biomass burning aerosols on marine stratocumulus clouds has been examined in June and July of 2006–2008 off the California coast. Using a continental tracer, the indirect effect of biomass burning aerosols has been isolated by comparing the average cloud fraction and cloud albedo for different meteorological situations, and for clean versus polluted (in terms of biomass burning continental air masses at 14:00 local time. Within a 500 km-wide band along the coast of California, biomass burning aerosols, which tend to reside above the marine boundary layer, increased the cloud fraction by 0.143, and the cloud albedo by 0.038. Absorbing aerosols located above the marine boundary layer lead to an increase of the lower tropospheric stability and a reduction in the vertical entrainment of dry air from above, leading to increased cloud formation. The combined effect was an indirect radiative forcing of −7.5% ±1.7% (cooling effect of the outgoing radiative flux at the top of the atmosphere on average, with a bias due to meteorology of +0.9%. Further away from the coast, the biomass burning aerosols, which were located within the boundary layer, reduced the cloud fraction by 0.023 and the cloud albedo by 0.006, resulting in an indirect radiative forcing of +1.3% ±0.3% (warming effect with a bias of +0.5%. These results underscore the dual role that absorbing aerosols play in cloud radiative forcing.

  17. Emissions of carbon species, organic polar compounds, potassium, and mercury from prescribed burning activities

    Science.gov (United States)

    Zhang, Y.; Obrist, D.; Zielinska, B.; Gerler, A.

    2012-04-01

    Biomass burning is an important emission source of pollutants to the atmosphere, but few studies have focused on the chemical composition of emissions from prescribed burning activities. Here we present results from a sampling campaign to quantify particulate-phase emissions from various types of prescribed fires including carbon species (Elemental Carbon: EC; Organic Carbon: OC; and Total Carbon: TC); polar organic compounds (12 different compounds and four functional classes); water-soluble potassium (K+); and mercury (Hg). We measured emissions from the following types of prescribed biomass burning in the Lake Tahoe basin located on the California/Nevada border: (i) log piles stacked and dried in the field; (ii) log piles along with green understory vegetation; and (iii) understory green vegetation and surface litter; further emissions were collected from burns conducted in a wood stove: (iv) dried wooden logs; (v) green foliage of understory vegetation collected from the field; and (vi) surface organic litter collected from the field; finally, samples were also taken from (vii) ambient air in residential areas during peak domestic wood combustion season. Results show that OC/EC ratios of prescribed burns in the field ranged from 4 to 10, but lower values (around 1) were observed in controlled stove fires. These results are consistent with an excess of OC emissions over EC found in wildfires. OC/EC ratios, however, showed clear separations between controlled wood stove combustion (higher EC) and prescribed burns in the field (lower EC). We attribute this difference to a higher combustion temperatures and dominance of flaming combustion in wood stove fires. OC positively and linearly correlated to the sum of polar organic compounds across all burn types (r2 of 0.82). The most prevalent group of polar compounds emitted during prescribed fires was resin acids (dehydroabietic, pimaric, and abietic acids), followed by levoglucosan plus mannositol. Negligible

  18. Atmospheric aerosols in Amazonia and land use change: from natural biogenic to biomass burning conditions.

    Science.gov (United States)

    Artaxo, Paulo; Rizzo, Luciana V; Brito, Joel F; Barbosa, Henrique M J; Arana, Andrea; Sena, Elisa T; Cirino, Glauber G; Bastos, Wanderlei; Martin, Scot T; Andreae, Meinrat O

    2013-01-01

    In the wet season, a large portion of the Amazon region constitutes one of the most pristine continental areas, with very low concentrations of atmospheric trace gases and aerosol particles. However, land use change modifies the biosphere-atmosphere interactions in such a way that key processes that maintain the functioning of Amazonia are substantially altered. This study presents a comparison between aerosol properties observed at a preserved forest site in Central Amazonia (TT34 North of Manaus) and at a heavily biomass burning impacted site in south-western Amazonia (PVH, close to Porto Velho). Amazonian aerosols were characterized in detail, including aerosol size distributions, aerosol light absorption and scattering, optical depth and aerosol inorganic and organic composition, among other properties. The central Amazonia site (TT34) showed low aerosol concentrations (PM2.5 of 1.3 +/- 0.7 microg m(-3) and 3.4 +/- 2.0 microg m(-3) in the wet and dry seasons, respectively), with a median particle number concentration of 220 cm(-3) in the wet season and 2200 cm(-3) in the dry season. At the impacted site (PVH), aerosol loadings were one order of magnitude higher (PM2.5 of 10.2 +/- 9.0 microg m(-3) and 33.0 +/- 36.0 microg m(-3) in the wet and dry seasons, respectively). The aerosol number concentration at the impacted site ranged from 680 cm(-3) in the wet season up to 20 000 cm(-3) in the dry season. An aerosol chemical speciation monitor (ACSM) was deployed in 2013 at both sites, and it shows that organic aerosol account to 81% to the non-refractory PM1 aerosol loading at TT34, while biomass burning aerosols at PVH shows a 93% content of organic particles. Three years of filter-based elemental composition measurements shows that sulphate at the impacted site decreases, on average, from 12% of PM2.5 mass during the wet season to 5% in the dry season. This result corroborates the ACSM finding that the biomass burning contributed overwhelmingly to the organic

  19. Assessment of atmospheric impacts of biomass open burning in Kalimantan, Borneo during 2004

    Science.gov (United States)

    Mahmud, Mastura

    2013-10-01

    Biomass burning from the combustion of agricultural wastes and forest materials is one of the major sources of air pollution. The objective of the study is to investigate the major contribution of the biomass open burning events in the island of Borneo, Indonesia to the degradation of air quality in equatorial Southeast Asia. A total of 10173 active fire counts were detected by the MODIS Aqua satellite during August 2004, and consequently, elevated the PM10 concentration levels at six air quality stations in the state of Sarawak, in east Malaysia, which is located in northwestern Borneo. The PM10 concentrations measured on a daily basis were above the 50 μg m-3 criteria as stipulated by the World Health Organization Air Quality Guidelines for most of the month, and exceeded the 24-h Recommended Malaysian Air Quality Guidelines of 150 μg m-3 on three separate periods from the 13th to the 30th August 2004. The average correlation between the ground level PM10 concentrations and the satellite derived aerosol optical depth (AOD) of 0.3 at several ground level air quality stations, implied the moderate relationship between the aerosols over the depth of the entire column of atmosphere and the ground level suspended particulate matter. Multiple regression for meteorological parameters such as rainfall, windspeed, visibility, mean temperature, relative humidity at two stations in Sarawak and active fire counts that were located near the centre of fire activities were only able to explain for 61% of the total variation in the AOD. The trajectory analysis of the low level mesoscale meteorological conditions simulated by the TAPM model illustrated the influence of the sea and land breezes within the lowest part of the planetary boundary layer, embedded within the prevailing monsoonal southwesterlies, in circulating the aged and new air particles within Sarawak.

  20. Impacts of brown carbon from biomass burning on surface UV and ozone photochemistry in the Amazon Basin

    KAUST Repository

    Mok, Jungbin

    2016-11-11

    The spectral dependence of light absorption by atmospheric particulate matter has major implications for air quality and climate forcing, but remains uncertain especially in tropical areas with extensive biomass burning. In the September-October 2007 biomass-burning season in Santa Cruz, Bolivia, we studied light absorbing (chromophoric) organic or “brown” carbon (BrC) with surface and space-based remote sensing. We found that BrC has negligible absorption at visible wavelengths, but significant absorption and strong spectral dependence at UV wavelengths. Using the ground-based inversion of column effective imaginary refractive index in the range 305–368 nm, we quantified a strong spectral dependence of absorption by BrC in the UV and diminished ultraviolet B (UV-B) radiation reaching the surface. Reduced UV-B means less erythema, plant damage, and slower photolysis rates. We use a photochemical box model to show that relative to black carbon (BC) alone, the combined optical properties of BrC and BC slow the net rate of production of ozone by up to 18% and lead to reduced concentrations of radicals OH, HO2, and RO2 by up to 17%, 15%, and 14%, respectively. The optical properties of BrC aerosol change in subtle ways the generally adverse effects of smoke from biomass burning.

  1. Impacts of Brown Carbon from Biomass Burning on Surface UV and Ozone Photochemistry in the Amazon Basin

    Science.gov (United States)

    Mok, Jungbin; Krotkov, Nickolay A.; Arola, Antti; Torres, Omar; Jethva, Hiren; Andrade, Marcos; Labow, Gordon; Eck, Thomas F.; Li, Zhangqing; Dickerson, Russell R.; hide

    2016-01-01

    The spectral dependence of light absorption by atmospheric particulate matter has major implications for air quality and climate forcing, but remains uncertain especially in tropical areas with extensive biomass burning. In the September-October 2007 biomass-burning season in Santa Cruz, Bolivia, we studied light absorbing (chromophoric) organic or brown carbon (BrC) with surface and space-based remote sensing. We found that BrC has negligible absorption at visible wavelengths, but significant absorption and strong spectral dependence at UV wavelengths. Using the ground-based inversion of column effective imaginary refractive index in the range 305368nm, we quantified a strong spectral dependence of absorption by BrC in the UV and diminished ultraviolet B (UV-B) radiation reaching the surface. Reduced UV-B means less erythema, plant damage, and slower photolysis rates. We use a photochemical box model to show that relative to black carbon (BC) alone, the combined optical properties of BrC and BC slow the net rate of production of ozone by up to 18 and lead to reduced concentrations of radicals OH, HO2, and RO2 by up to 17, 15, and 14, respectively. The optical properties of BrC aerosol change in subtle ways the generally adverse effects of smoke from biomass burning.

  2. Aerial Sampling of Emissions from Biomass Pile Burns in Oregon

    Science.gov (United States)

    Emissions from burning piles of post-harvest timber slash in Grande Ronde, Oregon were sampled using an instrument platform lofted into the plume using a tether-controlled aerostat or balloon. Emissions of carbon monoxide, carbon dioxide, methane, particulate matter (PM2.5 µm), ...

  3. High-resolution mapping of biomass burning emissions in tropical regions across three continents

    Science.gov (United States)

    Shi, Yusheng; Matsunaga, Tsuneo; Saito, Makoto

    2015-04-01

    Biomass burning emissions from open vegetation fires (forest fires, savanna fires, agricultural waste burning), human waste and biofuel combustion contain large amounts of trace gases (e.g., CO2, CH4, and N2O) and aerosols (BC and OC), which significantly impact ecosystem productivity, global atmospheric chemistry, and climate . With the help of recently released satellite products, biomass density based on satellite and ground-based observation data, and spatial variable combustion factors, this study developed a new high-resolution emissions inventory for biomass burning in tropical regions across three continents in 2010. Emissions of trace gases and aerosols from open vegetation burning are estimated from burned areas, fuel loads, combustion factors, and emission factors. Burned areas were derived from MODIS MCD64A1 burned area product, fuel loads were mapped from biomass density data sets for herbaceous and tree-covered land based on satellite and ground-based observation data. To account for spatial heterogeneity in combustion factors, global fractional tree cover (MOD44B) and vegetation cover maps (MCD12Q1) were introduced to estimate the combustion factors in different regions by using their relationship with tree cover under less than 40%, between 40-60% and above 60% conditions. For emission factors, the average values for each fuel type from field measurements are used. In addition to biomass burning from open vegetation fires, the emissions from human waste (residential and dump) burning and biofuel burning in 2010 were also estimated for 76 countries in tropical regions across the three continents and then allocated into each pixel with 1 km grid based on the population density (Gridded Population of the World v3). Our total estimates for the tropical regions across the three continents in 2010 were 17744.5 Tg CO2, 730.3 Tg CO, 32.0 Tg CH4, 31.6 Tg NOx, 119.2 Tg NMOC, 6.3 Tg SO2, 9.8 NH3 Tg, 81.8 Tg PM2.5, 48.0 Tg OC, and 5.7 Tg BC, respectively. Open

  4. Impacts of Particulate Pollution from Fossil Fuel and Biomass Burnings on the Air Quality and Human Health in Southeast Asia

    Science.gov (United States)

    Lee, H. H.; Iraqui, O.; Gu, Y.; Yim, S. H. L.; Wang, C.

    2017-12-01

    Severe haze events in Southeast Asia have attracted the attention of governments and the general public in recent years, due to their impact on local economies, air quality and public health. Widespread biomass burning activities are a major source of severe haze events in Southeast Asia. On the other hand, particulate pollutants from human activities other than biomass burning also play an important role in degrading air quality in Southeast Asia. These pollutants can be locally produced or brought in from neighboring regions by long-range transport. A better understanding of the respective contributions of fossil fuel and biomass burning aerosols to air quality degradation becomes an urgent task in forming effective air pollution mitigation policies in Southeast Asia. In this study, to examine and quantify the contributions of fossil fuel and biomass burning aerosols to air quality and visibility degradation over Southeast Asia, we conducted three numerical simulations using the Weather Research and Forecasting (WRF) model coupled with a chemistry component (WRF-Chem). These simulations were driven by different aerosol emissions from: (a) fossil fuel burning only, (b) biomass burning only, and (c) both fossil fuel and biomass burning. By comparing the simulation results, we examined the corresponding impacts of fossil fuel and biomass burning emissions, separately and combined, on the air quality and visibility of the region. The results also showed that the major contributors to low visibility days (LVDs) among 50 ASEAN cities are fossil fuel burning aerosols (59%), while biomass burning aerosols provided an additional 13% of LVDs in Southeast Asia. In addition, the number of premature mortalities among ASEAN cities has increased from 4110 in 2002 to 6540 in 2008, caused primarily by fossil fuel burning aerosols. This study suggests that reductions in both fossil fuel and biomass burning emissions are necessary to improve the air quality in Southeast Asia.

  5. Biomass Burning Airborne and Spaceborne Experiment in the Amazonas (BASE-A)

    Science.gov (United States)

    Kaufman, Y. J.; Setzer, A.; Ward, D.; Tanre, D.; Holben, B. N.; Menzel, P.; Pereira, M. C.; Rasmussen, R.

    1992-09-01

    In the Biomass Burning Airborne and Spaceborne Experiment in the Amazonas (BASE-A), conducted in September 1989, trace gas and particulate matter emissions were measured from biomass burning due to deforestation and grassland fires in South America. This information is required for a better understanding of the environmental impacts of biomass burning in the tropics and to improve algorithms for remote sensing of biomass burning from satellite platforms. The field experiment utilized the twin-engine Embraer Bandeirante EMB-1Ol instrumented aircraft of the Brazilian Institute for Space Research (INPE). Concentrations of ozone, CO2, CO, CH4, and particulate matter were measured from the aircraft. Fires were observed from satellite imagery, and the smoke optical thickness, particle size, and profiles of the extinction coefficient were measured using sunphotometers in the aircraft and from the ground. Four smoke plumes were sampled, three vertical profiles were measured, and extensive ground measurements were conducted of smoke optical characteristics for different smoke types. The collected data were analyzed for determining the emission ratios and combustion efficiency (the efficiency of a fire to convert the total burned carbon to carbon dioxide) and were compared with the results from fires in North America. Combustion efficiency was found to be higher in the tropics (97% for the cerrado and 90% for the deforestation fires) with emission factors similar to those of North American fires, for a given combustion efficiency. A strong relation was found between the spatial distribution of fires (up to 9000 per day in one state) and ozone concentration (up to 80 ppbv) and between biomass burning and concentrations of trace gases, particulate matter, and ozone. These relations strongly suggest a correlation between biomass burning in the tropics and ozone formation. An optical model of the smoke aerosol was derived and applied to radiance measurements. The smoke single

  6. Laboratory Studies of Water Uptake by Biomass Burning Smoke: Role of Fuel Inorganic Content, Combustion Phase and Aging

    Science.gov (United States)

    Dubey, M. K.; Bixler, S. L.; Romonosky, D.; Lam, J.; Carrico, C.; Aiken, A. C.

    2017-12-01

    Biomass burning aerosol emissions have substantially increased with observed warming and drying in the southwestern US. While wildfires are projected to intensify missing knowledge on the aerosols hampers assessments. Observations demonstrate that enhanced light absorption by coated black carbon and brown carbon can offset the cooling effects of organic aerosols in wildfires. However, if mixing processes that enhance this absorption reduce the aerosol lifetime it would lower their atmospheric burden. In order to elucidate mechanisms regulating this tradeoff we performed laboratory studies of smoke from biomass burning. We focus on aerosol optical properties and their hygroscopic response. Fresh emissions from burning 30 fuels under flaming and smoldering conditions were investigated. We measured aerosol absorption, scattering and extinction at multiple wavelengths, water uptake at 85% relative humidity (fRH85%) with a humidity controlled dual nephelometer, and black carbon mass with a SP2. Trace gases and the ionic content of the fuel and smoke were also measured We find that whereas the optical properties of smoke were strongly dictated by the flaming versus smoldering nature of the burn, the observed hygroscopicity was intimately linked to the chemical composition of the fuel. The mean hygroscopicity ranged from nearly hydrophobic (fRH85% = 1) to very hydrophilic (fRH85% = 2.1) values typical of pure deliquescent salts. The k values varied from 0.004 to 0.18 and correlated well with inorganic content. Inorganic fuel content was the key driver of hygroscopicity with combustion phase playing a secondary but important role ( 20%). Flaming combustion promoted hygroscopicity by generating refractory black carbon and ions. Smoldering combustion suppressed hygroscopicity by producing hydrogenated organic species. Wildfire smoke was hydrophobic since the evergreen species with low inorganic content dominated in these fires. We also quantify the mass absorption cross

  7. Fossil fuel and biomass burning effect on climate - heating or cooling?

    International Nuclear Information System (INIS)

    Kaufman, Y.J.; Fraser, R.S.; Mahoney, R.L.

    1991-01-01

    Emission from burning of fossil fuels and biomass (associated with deforestation) generates a radiative forcing on the atmosphere and a possible climate change. Emitted trace gases heat the atmosphere through their greenhouse effect, while particulates formed from emitted SO 2 cause cooling by increasing cloud albedos through alteration of droplet size distributions. This paper reviews the characteristics of the cooling effect and applies Twomey's theory to check whether the radiative balance favours heating or cooling for the cases of fossil fuel and biomass burning. It is also shown that although coal and oil emit 120 times as many CO 2 molecules as SO 2 molecules, each SO 2 molecule is 50-1100 times more effective in cooling the atmosphere (through the effect of aerosol particles on cloud albedo) than a CO 2 molecule is in heating it. Note that this ratio accounts for the large difference in the aerosol (3-10 days) and CO 2 (7-100 years) lifetimes. It is concluded, that the cooling effect from coal and oil burning may presently range from 0.4 to 8 times the heating effect. Within this large uncertainty, it is presently more likely that fossil fuel burning causes cooling of the atmosphere rather than heating. Biomass burning associated with deforestation, on the other hand, is more likely to cause heating of the atmosphere than cooling since its aerosol cooling effect is only half that from fossil fuel burning and its heating effect is twice as large. Future increases in coal and oil burning, and the resultant increase in concentration of cloud condensation nuclei, may saturate the cooling effect, allowing the heating effect to dominate. For a doubling in the CO 2 concentration due to fossil fuel burning, the cooling effect is expected to be 0.1 to 0.3 of the heating effect. 75 refs., 8 tabs

  8. Effect of biomass burning over the western North Pacific Rim: wintertime maxima of anhydrosugars in ambient aerosols from Okinawa

    Science.gov (United States)

    Zhu, C.; Kawamura, K.; Kunwar, B.

    2015-02-01

    Biomass burning (BB) largely modifies the chemical composition of atmospheric aerosols on the globe. We collected aerosol samples (TSP) at Cape Hedo, on subtropical Okinawa Island, from October 2009 to February 2012 to study anhydrosugars as BB tracers. Levoglucosan was detected as the dominant anhydrosugar followed by its isomers, mannosan and galactosan. We found a clear seasonal trend of levoglucosan and mannosan with winter maxima and summer minima. Positive correlation was found between levoglucosan and nss-K+ (r = 0.38, p fire spots demonstrated that the seasonal variations of anhydrosugars are caused by long-range transport of BB emissions from the Asian continent. We found winter maxima of anhydrosugars, which may be associated with open burning and domestic heating and cooking in northern and northeastern China, Mongolia and Russia and with the enhanced westerly winds. The monthly averaged levoglucosan / mannosan ratios were lower (2.1-4.8) in May-June and higher (13.3-13.9) in November-December. The lower values may be associated with softwood burning in northern China, Korea and southwestern Japan whereas the higher values are probably caused by agricultural waste burning of maize straw in the North China Plain. Anhydrosugars comprised 0.22% of water-soluble organic carbon (WSOC) and 0.13% of organic carbon (OC). The highest values to WSOC (0.37%) and OC (0.25%) were found in winter, again indicating an important BB contribution to Okinawa aerosols in winter. This study provides useful information to better understand the effect of East Asian biomass burning on the air quality in the western North Pacific Rim.

  9. Top-down estimates of biomass burning emissions of black carbon in the western United States

    Science.gov (United States)

    Y. H. Mao; Q. B. Li; D. Chen; L. Zhang; W. -M. Hao; K.-N. Liou

    2014-01-01

    We estimate biomass burning and anthropogenic emissions of black carbon (BC) in the western US for May-October 2006 by inverting surface BC concentrations from the Interagency Monitoring of PROtected Visual Environment (IMPROVE) network using a global chemical transport model. We first use active fire counts from the Moderate Resolution Imaging Spectroradiometer (MODIS...

  10. Biomass burning contributions to urban aerosols in a coastal Mediterranean City

    NARCIS (Netherlands)

    Reche, C.; Viana, M.; Amato, F.; Alastuey, A.; Moreno, T.; Hillamo, R.; Teinilä, K.; Saarnio, K.; Seco, R.; Peñuelas, J.; Mohr, C.; Prévôt, A.S.H.; Querol, X.

    2012-01-01

    Mean annual biomass burning contributions to the bulk particulate matter (PM X) load were quantified in a southern-European urban environment (Barcelona, Spain) with special attention to typical Mediterranean winter and summer conditions. In spite of the complexity of the local air pollution

  11. Particulate-phase mercury emissions from biomass burning and impact on resulting deposition: a modelling assessment

    Science.gov (United States)

    Mercury (Hg) emissions from biomass burning (BB) are an important source of atmospheric Hg and a major factor driving the interannual variation of Hg concentrations in the troposphere. The greatest fraction of Hg from BB is released in the form of elemental Hg (Hg0(g)). However, ...

  12. Size and chemical characterization of individual particles resulting from biomass burning of local southern California species

    Science.gov (United States)

    Philip J. Silva; Don-Yuan Liu; Christopher A. Noble; Kimberly A. Prather

    1999-01-01

    The chemical composition and size of individual particles derived from combustion products of several species found in Southern California were obtained using aerosol time-of-flight mass spectrometry. The major inorganic species observed in >90% of all biomass burning particles is potassium, indicated by the atomic ion, as well as clusters containing chloride,...

  13. Biomass burning: Its history, use, and distribution and its impact on environmental quality and global climate

    International Nuclear Information System (INIS)

    Andreae, M.O.

    1991-01-01

    In this chapter, the following topics are discussed: global estimates of amounts of biomass burning; kinds and amounts of emissions to the atmosphere; environmental transport and atmospheric chemistry of these emissions; and environmental impacts. These impacts include acid deposition, climate changes, disruption of nutrient cycles, soil degradation, perturbation of stratospheric chemistry and the ozone layer

  14. Biomass burning in the tropics: Impact on atmospheric chemistry and biogeochemical cycles

    International Nuclear Information System (INIS)

    Crutzen, P.J.; Andreae, M.O.

    1990-01-01

    Biomass burning is widespread, especially in the tropics. It serves to clear land for shifting cultivation, to convert forests to agricultural and pastoral lands, and to remove dry vegetation in order to promote agricultural productivity and the growth of higher yield grasses. Furthermore, much agricultural waste and fuel wood is being combusted, particularly in developing countries. Biomass containing 2 to 5 petagrams of carbon is burned annually (1 petagram = 10 15 grams), producing large amounts of trace gases and aerosol particles that play important roles in atmospheric chemistry and climate. Emissions of carbon monoxide and methane by biomass burning affect the oxidation efficiency of the atmosphere by reacting with hydroxyl radicals, and emissions of nitric oxide and hydrocarbons lead to high ozone concentrations in the tropics during the dry season. Large quantities of smoke particles are produced as well, and these can serve as cloud condensation nuclei. These particles may thus substantially influence cloud microphysical and optical properties, an effect that could have repercussions for the radiation budget and the hydrological cycle in the tropics. Widespread burning may also disturb biogeochemical cycles, especially that of nitrogen. About 50% of the nitrogen in the biomass fuel can be released as molecular nitrogen. This pyrodenitrification process causes a sizable loss of fixed nitrogen in tropical ecosystems, in the range of 10 to 20 teragrams per year (1 teragram = 10 12 grams)

  15. Moisture effects on carbon and nitrogen emission from burning of wildland biomass

    Directory of Open Access Journals (Sweden)

    L.-W. A. Chen

    2010-07-01

    Full Text Available Carbon (C and nitrogen (N released from biomass burning have multiple effects on the Earth's biogeochemical cycle, climate change, and ecosystem. These effects depend on the relative abundances of C and N species emitted, which vary with fuel type and combustion conditions. This study systematically investigates the emission characteristics of biomass burning under different fuel moisture contents, through controlled burning experiments with biomass and soil samples collected from a typical alpine forest in North America. Fuel moisture in general lowers combustion efficiency, shortens flaming phase, and introduces prolonged smoldering before ignition. It increases emission factors of incompletely oxidized C and N species, such as carbon monoxide (CO and ammonia (NH3. Substantial particulate carbon and nitrogen (up to 4 times C in CO and 75% of N in NH3 were also generated from high-moisture fuels, maily associated with the pre-flame smoldering. This smoldering process emits particles that are larger and contain lower elemental carbon fractions than soot agglomerates commonly observed in flaming smoke. Hydrogen (H/C ratio and optical properties of particulate matter from the high-moisture fuels show their resemblance to plant cellulous and brown carbon, respectively. These findings have implications for modeling biomass burning emissions and impacts.

  16. Biomass burning in eastern Europe during spring 2006 caused high deposition of ammonium in northern Fennoscandia

    DEFF Research Database (Denmark)

    Karlsson, Per Erik; Ferm, Martin; Pihl Karlsson, Gunilla

    2013-01-01

    High air concentrations of ammonium were detected at low and high altitude sites in Sweden, Finland and Norway during the spring 2006, coinciding with polluted air from biomass burning in eastern Europe passing over central and northern Fennoscandia. Unusually high values for throughfall deposition...

  17. The importance of plume rise on the concentrations and atmospheric impacts of biomass burning aerosol

    Science.gov (United States)

    Walter, Carolin; Freitas, Saulo R.; Kottmeier, Christoph; Kraut, Isabel; Rieger, Daniel; Vogel, Heike; Vogel, Bernhard

    2016-07-01

    We quantified the effects of the plume rise of biomass burning aerosol and gases for the forest fires that occurred in Saskatchewan, Canada, in July 2010. For this purpose, simulations with different assumptions regarding the plume rise and the vertical distribution of the emissions were conducted. Based on comparisons with observations, applying a one-dimensional plume rise model to predict the injection layer in combination with a parametrization of the vertical distribution of the emissions outperforms approaches in which the plume heights are initially predefined. Approximately 30 % of the fires exceed the height of 2 km with a maximum height of 8.6 km. Using this plume rise model, comparisons with satellite images in the visible spectral range show a very good agreement between the simulated and observed spatial distributions of the biomass burning plume. The simulated aerosol optical depth (AOD) with data of an AERONET station is in good agreement with respect to the absolute values and the timing of the maximum. Comparison of the vertical distribution of the biomass burning aerosol with CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) retrievals also showed the best agreement when the plume rise model was applied. We found that downwelling surface short-wave radiation below the forest fire plume is reduced by up to 50 % and that the 2 m temperature is decreased by up to 6 K. In addition, we simulated a strong change in atmospheric stability within the biomass burning plume.

  18. Light-absorbing carbon from prescribed and laboratory biomass burning and gasoline vehicle emissions

    Science.gov (United States)

    Carbonaceous aerosols are ubiquitous in the atmosphere and can directly affect Earth’s climate by absorbing and scattering incoming solar radiation. Both field and laboratory measurements have confirmed that biomass burning (BB) is an important primary source of light absor...

  19. Emission ratio and isotopic signatures of molecular hydrogen emissions from tropical biomass burning

    NARCIS (Netherlands)

    Haumann, F.A.; Batenburg, A.M.; Pieterse, G.; Gerbig, C.; Krol, M.C.; Rockmann, T.

    2013-01-01

    In this study, we identify a biomass-burning signal in molecular hydrogen (H-2) over the Amazonian tropical rainforest. To quantify this signal, we measure the mixing ratios of H-2 and several other species as well as the H-2 isotopic composition in air samples that were collected in the BARCA

  20. Emission ratio and isotopic signatures of molecular hydrogen emissions from tropical biomass burning

    NARCIS (Netherlands)

    Haumann, F.A.; Batenburg, A.M.; Pieterse, G.; Gerbig, C; Krol, M.C.; Röckmann, T.

    2013-01-01

    In this study, we identify a biomass-burning signal in molecular hydrogen (H2) over the Amazonian tropical rainforest. To quantify this signal, we measure the mixing ratios of H2 and several other species as well as the H2 isotopic composition in air samples that were collected in the BARCA (Balanço

  1. Thermal remote sensing of active vegetation fires and biomass burning events [Chapter 18

    Science.gov (United States)

    Martin J. Wooster; Gareth Roberts; Alistair M.S. Smith; Joshua Johnston; Patrick Freeborn; Stefania Amici; Andrew T. Hudak

    2013-01-01

    Thermal remote sensing is widely used in the detection, study, and management of biomass burning occurring in open vegetation fires. Such fires may be planned for land management purposes, may occur as a result of a malicious or accidental ignition by humans, or may result from lightning or other natural phenomena. Under suitable conditions, fires may spread rapidly...

  2. Understanding the Environmental and Climate Impacts of Biomass Burning in Northern Sub-Saharan Africa

    Science.gov (United States)

    Ichoku, Charles; Gatebe, Charles; Bolten, John; Policelli, Fritz; Habib, Shahid; Lee, Jejung; Wang, Jun; Wilcox, Eric; Adegoke, Jimmy

    2011-01-01

    The northern sub-Saharan African (NSSA) region, bounded on the north and south by the Sahara and the Equator, respectively, and stretching from the West to the East African coastlines, has one of the highest biomass-burning rates per unit land area among all regions of the world. Because of the high concentration and frequency of fires in this region, with the associated abundance of heat release and gaseous and particulate smoke emissions, biomass-burning activity is believed to be one of the drivers of the regional carbon and energy cycles, with serious implications for the water cycle. A new interdisciplinary research effort sponsored by NASA is presently being focused on the NSSA region, to better understand the possible connection between the intense biomass burning observed from satellite year after year across the region and the rapid depletion of the regional water resources, as exemplified by the dramatic drying of Lake Chad. A combination of remote sensing and modeling approaches is being utilized in investigating multiple regional surface, atmospheric, and water-cycle processes, and inferring possible links between them. In this presentation, we will discuss preliminary results as well as the path toward improved understanding'of the interrelationships and feedbacks between the biomass burning and the environmental change dynamics in the NSSA region.

  3. Dynamic biomass burning emission factors and their impact on atmospheric CO mixing ratios.

    NARCIS (Netherlands)

    Leeuwen, van T.T.; Peters, W.; Krol, M.C.; Werf, van der G.R.

    2013-01-01

    [1] Biomass burning is a major source of trace gases and aerosols, influencing atmospheric chemistry and climate. To quantitatively assess its impact, an accurate representation of fire emissions is crucial for the atmospheric modeling community. So far, most studies rely on static emission factors

  4. Near-real-time global biomass burning emissions product from geostationary satellite constellation

    Science.gov (United States)

    Zhang, Xiaoyang; Kondragunta, Shobha; Ram, Jessica; Schmidt, Christopher; Huang, Ho-Chun

    2012-07-01

    Near-real-time estimates of biomass burning emissions are crucial for air quality monitoring and forecasting. We present here the first near-real-time global biomass burning emission product from geostationary satellites (GBBEP-Geo) produced from satellite-derived fire radiative power (FRP) for individual fire pixels. Specifically, the FRP is retrieved using WF_ABBA V65 (wildfire automated biomass burning algorithm) from a network of multiple geostationary satellites. The network consists of two Geostationary Operational Environmental Satellites (GOES) which are operated by the National Oceanic and Atmospheric Administration, the Meteosat second-generation satellites (Meteosat-09) operated by the European Organisation for the Exploitation of Meteorological Satellites, and the Multifunctional Transport Satellite (MTSAT) operated by the Japan Meteorological Agency. These satellites observe wildfires at an interval of 15-30 min. Because of the impacts from sensor saturation, cloud cover, and background surface, the FRP values are generally not continuously observed. The missing observations are simulated by combining the available instantaneous FRP observations within a day and a set of representative climatological diurnal patterns of FRP for various ecosystems. Finally, the simulated diurnal variation in FRP is applied to quantify biomass combustion and emissions in individual fire pixels with a latency of 1 day. By analyzing global patterns in hourly biomass burning emissions in 2010, we find that peak fire season varied greatly and that annual wildfires burned 1.33 × 1012 kg dry mass, released 1.27 × 1010 kg of PM2.5 (particulate mass for particles with diameter <2.5 μm) and 1.18 × 1011kg of CO globally (excluding most parts of boreal Asia, the Middle East, and India because of no coverage from geostationary satellites). The biomass burning emissions were mostly released from forest and savanna fires in Africa, South America, and North America. Evaluation of

  5. Biomass-burning impact on CCN number, hygroscopicity and cloud formation during summertime in the eastern Mediterranean

    Directory of Open Access Journals (Sweden)

    A. Bougiatioti

    2016-06-01

    Full Text Available This study investigates the concentration, cloud condensation nuclei (CCN activity and hygroscopic properties of particles influenced by biomass burning in the eastern Mediterranean and their impacts on cloud droplet formation. Air masses sampled were subject to a range of atmospheric processing (several hours up to 3 days. Values of the hygroscopicity parameter, κ, were derived from CCN measurements and a Hygroscopic Tandem Differential Mobility Analyzer (HTDMA. An Aerosol Chemical Speciation Monitor (ACSM was also used to determine the chemical composition and mass concentration of non-refractory components of the submicron aerosol fraction. During fire events, the increased organic content (and lower inorganic fraction of the aerosol decreases the values of κ, for all particle sizes. Particle sizes smaller than 80 nm exhibited considerable chemical dispersion (where hygroscopicity varied up to 100 % for particles of same size; larger particles, however, exhibited considerably less dispersion owing to the effects of condensational growth and cloud processing. ACSM measurements indicate that the bulk composition reflects the hygroscopicity and chemical nature of the largest particles (having a diameter of  ∼  100 nm at dry conditions sampled. Based on positive matrix factorization (PMF analysis of the organic ACSM spectra, CCN concentrations follow a similar trend as the biomass-burning organic aerosol (BBOA component, with the former being enhanced between 65 and 150 % (for supersaturations ranging between 0.2 and 0.7 % with the arrival of the smoke plumes. Using multilinear regression of the PMF factors (BBOA, OOA-BB and OOA and the observed hygroscopicity parameter, the inferred hygroscopicity of the oxygenated organic aerosol components is determined. We find that the transformation of freshly emitted biomass burning (BBOA to more oxidized organic aerosol (OOA-BB can result in a 2-fold increase of the inferred organic

  6. Characteristics of atmospheric ice nucleating particles associated with biomass burning in the US: Prescribed burns and wildfires

    Science.gov (United States)

    McCluskey, Christina S.

    Insufficient knowledge regarding the sources and number concentrations of atmospheric ice nucleating particles (INP) leads to large uncertainties in understanding the interaction of aerosols with cloud processes, such as cloud life time and precipitation rates. This study utilizes measurements of INP from a diverse set of biomass burning events to better understand INP associated with biomass burning in the U.S. Prescribed burns in Georgia and Colorado, two Colorado wildfires and two laboratory burns were monitored for INP number concentrations. The relationship between nINP and total particle number concentrations, evident within prescribed burning plumes, was degraded within aged smoke plumes from the wildfires, limiting the utility of this relationship for comparing laboratory and field data. Larger particles, represented by n500nm, are less vulnerable to plume processing and have previously been evaluated for their relation to nINP. Our measurements indicated that for a given n500nm, nINP associated with the wildfires were nearly an order of magnitude higher than nINP found in prescribed fire emissions. Reasons for the differences between INP characteristics in these emissions were explored, including variations in combustion efficiency, fuel type, transport time and environmental conditions. Combustion efficiency and fuel type were eliminated as controlling factors by comparing samples with contrasting combustion efficiencies and fuel types. Transport time was eliminated because the expected impact would be to reduce n500nm, thus resulting in the opposite effect from the observed change. Bulk aerosol chemical composition analyses support the potential role of elevated soil dust particle concentrations during the fires, contributing to the population of INP, but the bulk analyses do not target INP composition directly. It is hypothesized that both hardwood burning and soil lofting are responsible for the elevated production of INP in the Colorado wildfires in

  7. What could have caused pre-industrial biomass burning emissions to exceed current rates?

    Directory of Open Access Journals (Sweden)

    G. R. van der Werf

    2013-01-01

    Full Text Available Recent studies based on trace gas mixing ratios in ice cores and charcoal data indicate that biomass burning emissions over the past millennium exceeded contemporary emissions by up to a factor of 4 for certain time periods. This is surprising because various sources of biomass burning are linked with population density, which has increased over the past centuries. We have analysed how emissions from several landscape biomass burning sources could have fluctuated to yield emissions that are in correspondence with recent results based on ice core mixing ratios of carbon monoxide (CO and its isotopic signature measured at South Pole station (SPO. Based on estimates of contemporary landscape fire emissions and the TM5 chemical transport model driven by present-day atmospheric transport and OH concentrations, we found that CO mixing ratios at SPO are more sensitive to emissions from South America and Australia than from Africa, and are relatively insensitive to emissions from the Northern Hemisphere. We then explored how various landscape biomass burning sources may have varied over the past centuries and what the resulting emissions and corresponding CO mixing ratio at SPO would be, using population density variations to reconstruct sources driven by humans (e.g., fuelwood burning and a new model to relate savanna emissions to changes in fire return times. We found that to match the observed ice core CO data, all savannas in the Southern Hemisphere had to burn annually, or bi-annually in combination with deforestation and slash and burn agriculture exceeding current levels, despite much lower population densities and lack of machinery to aid the deforestation process. While possible, these scenarios are unlikely and in conflict with current literature. However, we do show the large potential for increased emissions from savannas in a pre-industrial world. This is mainly because in the past, fuel beds were probably less fragmented compared to the

  8. Emission ratio and isotopic signatures of molecular hydrogen emissions from tropical biomass burning

    Directory of Open Access Journals (Sweden)

    F. A. Haumann

    2013-09-01

    Full Text Available In this study, we identify a biomass-burning signal in molecular hydrogen (H2 over the Amazonian tropical rainforest. To quantify this signal, we measure the mixing ratios of H2 and several other species as well as the H2 isotopic composition in air samples that were collected in the BARCA (Balanço Atmosférico Regional de Carbono na Amazônia aircraft campaign during the dry season. We derive a relative H2 emission ratio with respect to carbon monoxide (CO of 0.31 ± 0.04 ppb ppb−1 and an isotopic source signature of −280 ± 41‰ in the air masses influenced by tropical biomass burning. In order to retrieve a clear source signal that is not influenced by the soil uptake of H2, we exclude samples from the atmospheric boundary layer. This procedure is supported by data from a global chemistry transport model. The ΔH2 / ΔCO emission ratio is significantly lower than some earlier estimates for the tropical rainforest. In addition, our results confirm the lower values of the previously conflicting estimates of the H2 isotopic source signature from biomass burning. These values for the emission ratio and isotopic source signatures of H2 from tropical biomass burning can be used in future bottom-up and top-down approaches aiming to constrain the strength of the biomass-burning source for H2. Hitherto, these two quantities relied only on combustion experiments or on statistical relations, since no direct signal had been obtained from in-situ observations.

  9. Emission ratio and isotopic signatures of molecular hydrogen emissions from tropical biomass burning

    Science.gov (United States)

    Haumann, F. A.; Batenburg, A. M.; Pieterse, G.; Gerbig, C.; Krol, M. C.; Röckmann, T.

    2013-09-01

    In this study, we identify a biomass-burning signal in molecular hydrogen (H2) over the Amazonian tropical rainforest. To quantify this signal, we measure the mixing ratios of H2 and several other species as well as the H2 isotopic composition in air samples that were collected in the BARCA (Balanço Atmosférico Regional de Carbono na Amazônia) aircraft campaign during the dry season. We derive a relative H2 emission ratio with respect to carbon monoxide (CO) of 0.31 ± 0.04 ppb ppb-1 and an isotopic source signature of -280 ± 41‰ in the air masses influenced by tropical biomass burning. In order to retrieve a clear source signal that is not influenced by the soil uptake of H2, we exclude samples from the atmospheric boundary layer. This procedure is supported by data from a global chemistry transport model. The ΔH2 / ΔCO emission ratio is significantly lower than some earlier estimates for the tropical rainforest. In addition, our results confirm the lower values of the previously conflicting estimates of the H2 isotopic source signature from biomass burning. These values for the emission ratio and isotopic source signatures of H2 from tropical biomass burning can be used in future bottom-up and top-down approaches aiming to constrain the strength of the biomass-burning source for H2. Hitherto, these two quantities relied only on combustion experiments or on statistical relations, since no direct signal had been obtained from in-situ observations.

  10. Biomass Burning, Land-Cover Change, and the Hydrological Cycle in Northern Sub-Saharan Africa

    Science.gov (United States)

    Ichoku, Charles; Ellison, Luke T.; Willmot, K. Elena; Matsui, Toshihisa; Dezfuli, Amin K.; Gatebe, Charles K.; Wang, Jun; Wilcox, Eric M.; Lee, Jejung; Adegoke, Jimmy; hide

    2016-01-01

    The Northern Sub-Saharan African (NSSA) region, which accounts for 20%-25%of the global carbon emissions from biomass burning, also suffers from frequent drought episodes and other disruptions to the hydrological cycle whose adverse societal impacts have been widely reported during the last several decades. This paper presents a conceptual framework of the NSSA regional climate system components that may be linked to biomass burning, as well as detailed analyses of a variety of satellite data for 2001-2014 in conjunction with relevant model-assimilated variables. Satellite fire detections in NSSA show that the vast majority (greater than 75%) occurs in the savanna and woody savanna land-cover types. Starting in the 2006-2007 burning season through the end of the analyzed data in 2014, peak burning activity showed a net decrease of 2-7% /yr in different parts of NSSA, especially in the savanna regions. However, fire distribution shows appreciable coincidence with land-cover change. Although there is variable mutual exchange of different land cover types, during 2003-2013, cropland increased at an estimated rate of 0.28% /yr of the total NSSA land area, with most of it (0.18% /yr) coming from savanna.During the last decade, conversion to croplands increased in some areas classified as forests and wetlands, posing a threat to these vital and vulnerable ecosystems. Seasonal peak burning is anti-correlated with annual water-cycle indicators such as precipitation, soil moisture, vegetation greenness, and evapotranspiration, except in humid West Africa (5 deg-10 deg latitude),where this anti-correlation occurs exclusively in the dry season and burning virtually stops when monthly mean precipitation reaches 4 mm/d. These results provide observational evidence of changes in land-cover and hydrological variables that are consistent with feedbacks from biomass burning in NSSA, and encourage more synergistic modeling and observational studies that can elaborate this feedback

  11. Dependence of Heterogeneous OH Kinetics with Biomass Burning Aerosol Proxies on Oxidant Concentration and Relative Humidity

    Science.gov (United States)

    Slade, J. H.; Knopf, D. A.

    2013-12-01

    Chemical transformations of aerosol particles by heterogeneous reactions with trace gases such as OH radicals can influence particle physicochemical properties and lifetime, affect cloud formation, light scattering, and human health. Furthermore, OH oxidation can result in degradation of particle mass by volatilization reactions, altering the budget of volatile organic compounds (VOCs). However, the reactive uptake coefficient (γ) and particle oxidation degree can vary depending on several factors including oxidant concentration and relative humidity (RH). While RH can influence the extent of dissociation/ionization, it can also affect particle phase and thus oxidant diffusivity. Only one study so far has investigated the effect of RH on the rate of OH uptake to organic surfaces; however, the underlying processes affecting OH reactivity with organic aerosol under humidified conditions still remains elusive. Here, we determine the effect of RH on OH reactivity with laboratory-generated biomass burning aerosol (BBA) surrogate particles: levoglucosan and 4-methyl-5-nitrocatechol. The effect of OH concentration on γ for three common BBA molecular markers (levoglucosan, abietic acid, and nitroguaiacol) under dry conditions was investigated from [OH]≈107-1011 molecule cm-3, covering both [OH] in biomass burning plumes and [OH] commonly used in particle aging studies. Furthermore, key VOC reaction products and their production pathways resulting from BBA volatilization by OH were identified. OH radicals are produced using a microwave induced plasma (MIP) of H2 in He or Ar followed by reaction with O2, or by photolysis of O3 in the presence of H2O. A cylindrical rotating wall flow-tube reactor and fast-flow aerosol flow reactor are used for conducting kinetic studies. OH is detected using a Chemical Ionization Mass Spectrometer (CIMS) and a Proton Transfer Reaction Time-of-Flight Mass Spectrometer (PTR-ToF-MS) is employed for VOC analysis. γ decreases from 0.2-0.5 at

  12. Mass spectra features of biomass burning boiler and coal burning boiler emitted particles by single particle aerosol mass spectrometer.

    Science.gov (United States)

    Xu, Jiao; Li, Mei; Shi, Guoliang; Wang, Haiting; Ma, Xian; Wu, Jianhui; Shi, Xurong; Feng, Yinchang

    2017-11-15

    In this study, single particle mass spectra signatures of both coal burning boiler and biomass burning boiler emitted particles were studied. Particle samples were suspended in clean Resuspension Chamber, and analyzed by ELPI and SPAMS simultaneously. The size distribution of BBB (biomass burning boiler sample) and CBB (coal burning boiler sample) are different, as BBB peaks at smaller size, and CBB peaks at larger size. Mass spectra signatures of two samples were studied by analyzing the average mass spectrum of each particle cluster extracted by ART-2a in different size ranges. In conclusion, BBB sample mostly consists of OC and EC containing particles, and a small fraction of K-rich particles in the size range of 0.2-0.5μm. In 0.5-1.0μm, BBB sample consists of EC, OC, K-rich and Al_Silicate containing particles; CBB sample consists of EC, ECOC containing particles, while Al_Silicate (including Al_Ca_Ti_Silicate, Al_Ti_Silicate, Al_Silicate) containing particles got higher fractions as size increase. The similarity of single particle mass spectrum signatures between two samples were studied by analyzing the dot product, results indicated that part of the single particle mass spectra of two samples in the same size range are similar, which bring challenge to the future source apportionment activity by using single particle aerosol mass spectrometer. Results of this study will provide physicochemical information of important sources which contribute to particle pollution, and will support source apportionment activities. Copyright © 2017. Published by Elsevier B.V.

  13. Evaluation of the FEERv1.0 Global Top-Down Biomass Burning Emissions Inventory over Africa

    Science.gov (United States)

    Ellison, L.; Ichoku, C. M.

    2014-12-01

    With the advent of the Fire Energetics and Emissions Research (FEER) global top-down biomass burning emissions product from NASA Goddard Space Flight Center, a subsequent effort is going on to analyze and evaluate some of the main (particulate and gaseous) constituents of this emissions inventory against other inventories of biomass burning emissions over the African continent. There is consistent and continual burning during the dry season in NSSA of many small slash-and-burn fires that, though may be relatively small fires individually, collectively contribute 20-25% of the global total carbon emissions from biomass burning. As a top-down method of estimating biomass-burning emissions, FEERv1.0 is able to yield higher and more realistic emissions than previously obtainable using bottom-up methods. Results of such comparisons performed in detail over Africa will be discussed in this presentation. This effort is carried out in conjunction with a NASA-funded interdisciplinary research project investigating the effects of biomass burning on the regional climate system in Northern Sub-Saharan Africa (NSSA). Essentially, that project aims to determine how fires may have affected the severe droughts that plagued the NSSA region in recent history. Therefore, it is imperative that the biomass burning emissions input data over Africa be as accurate as possible in order to obtain a confident understanding of their interactions and feedbacks with the hydrological cycle in NSSA.

  14. Terrestrial cycling of 13CO2 by photosynthesis, respiration, and biomass burning in SiBCASA

    Science.gov (United States)

    van der Velde, I. R.; Miller, J. B.; Schaefer, K.; van der Werf, G. R.; Krol, M. C.; Peters, W.

    2014-12-01

    We present an enhanced version of the SiBCASA terrestrial biosphere model that is extended with (a) biomass burning emissions from the SiBCASA carbon pools using remotely sensed burned area from the Global Fire Emissions Database (GFED), (b) an isotopic discrimination scheme that calculates 13C signatures of photosynthesis and autotrophic respiration, and (c) a separate set of 13C pools to carry isotope ratios into heterotrophic respiration. We quantify in this study the terrestrial exchange of CO2 and 13CO2 as a function of environmental changes in humidity and biomass burning. The implementation of biomass burning yields similar fluxes as CASA-GFED both in magnitude and spatial patterns. The implementation of isotope exchange gives a global mean discrimination value of 15.2‰, ranges between 4 and 20‰ depending on the photosynthetic pathway in the plant, and compares favorably (annually and seasonally) with other published values. Similarly, the isotopic disequilibrium is similar to other studies that include a small effect of biomass burning as it shortens the turnover of carbon. In comparison to measurements, a newly modified starch/sugar storage pool propagates the isotopic discrimination anomalies to respiration much better. In addition, the amplitude of the drought response by SiBCASA is lower than suggested by the measured isotope ratios. We show that a slight increase in the stomatal closure for large vapor pressure deficit would amplify the respired isotope ratio variability. Our study highlights the importance of isotope ratio observations of 13C to assess and improve biochemical models like SiBCASA, especially with regard to the allocation and turnover of carbon and the responses to drought.

  15. How is Biomass Burning Affected by Grazing and Drought in Central and Western Asia?

    Science.gov (United States)

    Hao, W. M.; Nordgren, B.; Petkov, A.; Corley, R.; Urbanski, S. P.; Balkanski, Y.; Ciais, P.; Mouillot, F.

    2016-12-01

    Biomass burning is a recurring natural process in many ecosystems and most of the fires are caused by human activity. The trace gases, aerosol particles, and black carbon emitted from biomass fires can affect air quality, climate, and public health. In addition, black carbon emitted from wildfires in high latitudes transports and is deposited in the Arctic, accelerating the ice and snow melt. As the climate becomes warmer and drier, more wildfires will occur in high-latitude ecosystems, a region highly sensitive to global warming. We mapped the area burned daily in Northern Eurasia at a 500m x 500m resolution from 2002 to 2015 in different ecosystems over different geographic regions. The mapping was based on the MODIS (MODerate Resolution Imaging Spectroradiometer) products from NASA Terra and Aqua satellites. From the Northern Eurasia dataset, we report the driving forces for the inter-annual variability of fire activity in Central and Western Asia during a period of 14 years from 2002 to 2015. Grassland dominated the region (>95%). Our results showed the area burned in this region has decreased about 65% from 1.4 x 105 km2 in 2002 to 0.5 x 105 km2 in 2015 during this period. The decrease is correlated with (1) the decrease of MODIS Drought Severity Index (DSI), and (2) the increase of the number of goats, sheep and cattle. The DSI decreased substantially from +1.0 in 2002 to -0.4 in 2011. The numbers of grazers in this region have decreased drastically in the mid-1990s because of economic collapse of the Soviet Union. However, the number of grazers have recovered and have increased steadily since 2000. Grazing by domestic animals on grassland reduces fuel loadings and thus emissions from biomass burning. The interactions of drought-economy-grazing-extent of biomass burning-emissions of black carbon and atmospheric pollutants in Central and Western Asia in the past 14 years will be summarized.

  16. Vegetation fires, absorbing aerosols and smoke plume characteristics in diverse biomass burning regions of Asia

    International Nuclear Information System (INIS)

    Vadrevu, Krishna Prasad; Lasko, Kristofer; Giglio, Louis; Justice, Chris

    2015-01-01

    In this study, we explored the relationships between the satellite-retrieved fire counts (FC), fire radiative power (FRP) and aerosol indices using multi-satellite datasets at a daily time-step covering ten different biomass burning regions in Asia. We first assessed the variations in MODIS-retrieved aerosol optical depths (AOD’s) in agriculture, forests, plantation and peat land burning regions and then used MODIS FC and FRP (hereafter FC/FRP) to explain the variations in AOD characteristics. Results suggest that tropical broadleaf forests in Laos burn more intensively than the other vegetation fires. FC/FRP-AOD correlations in different agricultural residue burning regions did not exceed 20% whereas in forest regions they reached 40%. To specifically account for absorbing aerosols, we used Ozone Monitoring Instrument-derived aerosol absorption optical depth (AAOD) and UV aerosol index (UVAI). Results suggest relatively high AAOD and UVAI values in forest fires compared with peat and agriculture fires. Further, FC/FRP could explain a maximum of 29% and 53% of AAOD variations, whereas FC/FRP could explain at most 33% and 51% of the variation in agricultural and forest biomass burning regions, respectively. Relatively, UVAI was found to be a better indicator than AOD and AAOD in both agriculture and forest biomass burning plumes. Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations data showed vertically elevated aerosol profiles greater than 3.2–5.3 km altitude in the forest fire plumes compared to 2.2–3.9 km and less than 1 km in agriculture and peat-land fires, respectively. We infer the need to assimilate smoke plume height information for effective characterization of pollutants from different sources. (letter)

  17. Improving the simulation of organic aerosols from anthropogenic and burning sources: a simplified SOA formation mechanism and the impact of trash burning

    Science.gov (United States)

    Hodzic, A.; Wiedinmyer, C.; Jimenez, J. L.

    2011-12-01

    Organic aerosols (OA) are an major component of fine aerosols, but their sources are poorly understood. We present results of two methods to improve OA predictions in anthropogenic pollution and biomass-burning impacted regions. (1) An empirical parameterization for secondary organic aerosol (SOA) formation in polluted air and biomass burning smoke is implemented into community chemistry-transport models (WRF/Chem and CHIMERE) and tested in this work, towards the goal of a computationally inexpensive method to calculate pollution and biomass burning SOA. This approach is based on the observed proportionality of SOA concentrations to excess CO and photochemical age of the airmass, as described in Hodzic and Jimenez (GMDD, 2011). The oxygen to carbon ratio in organic aerosols is also parameterizated vs. photochemical aged based on the ambient observations, and is used to estimate the aerosol hygroscopicity and CCN activity. The predicted SOA is assessed against observations from the Mexico City metropolitan area during the MILAGRO 2006 field experiment, and compared to previous model results using the more complex volatility basis approach (VBS) of Robinson et al.. The results suggest that the simplified approach reproduces the observed average SOA mass within 30% in the urban area and downwind, and gives better results than the original VBS. In addition to being much less computationally expensive than VBS-type methods, the empirical approach can also be used in regions where the emissions of SOA precursors are not yet available. (2) The contribution of trash burning emissions to primary and secondary organic aerosols in Mexico City are estimated, using a recently-developed emission inventory. Submicron antimony (Sb) is used as a garbage-burning tracer following the results of Christian et al. (ACP 2010), which allows evaluation of the emissions inventory. Results suggests that trash burning may be an appreciable source of organic aerosols in the Mexico City

  18. Radiocarbon Analysis to Calculate New End-Member Values for Biomass Burning Source Samples Specific to the Bay Area

    Science.gov (United States)

    Yoon, S.; Kirchstetter, T.; Fairley, D.; Sheesley, R. J.; Tang, X.

    2017-12-01

    Elemental carbon (EC), also known as black carbon or soot, is an important particulate air pollutant that contributes to climate forcing through absorption of solar radiation and to adverse human health impacts through inhalation. Both fossil fuel combustion and biomass burning, via residential firewood burning, agricultural burning, wild fires, and controlled burns, are significant sources of EC. Our ability to successfully control ambient EC concentrations requires understanding the contribution of these different emission sources. Radiocarbon (14C) analysis has been increasingly used as an apportionment tool to distinguish between EC from fossil fuel and biomass combustion sources. However, there are uncertainties associated with this method including: 1) uncertainty associated with the isolation of EC to be used for radiocarbon analysis (e.g., inclusion of organic carbon, blank contamination, recovery of EC, etc.) 2) uncertainty associated with the radiocarbon signature of the end member. The objective of this research project is to utilize laboratory experiments to evaluate some of these uncertainties, particularly for EC sources that significantly impact the San Francisco Bay Area. Source samples of EC only and a mix of EC and organic carbon (OC) were produced for this study to represent known emission sources and to approximate the mixing of EC and OC that would be present in the atmosphere. These samples include a combination of methane flame soot, various wood smoke samples (i.e. cedar, oak, sugar pine, pine at various ages, etc.), meat cooking, and smoldering cellulose smoke. EC fractions were isolated using a Sunset Laboratory's thermal optical transmittance carbon analyzer. For 14C analysis, samples were sent to Woods Hole Oceanographic Institution for isotope analysis using an accelerated mass spectrometry. End member values and uncertainties for the EC isolation utilizing this method will be reported.

  19. Long-term results of organ procurement from burn victims.

    Science.gov (United States)

    Schmauss, Daniel; Bigdeli, Amir K; Hellmich, Susanne; Barreiros, Ana P; Kremer, Thomas; Germann, Günter; Kneser, Ulrich; Megerle, Kai O

    2017-09-01

    With the increasing success of organ transplantation, many traditional contraindications to organ procurement are being reconsidered. Burn disease has constituted a traditional contraindication to solid organ procurement because of concerns that such organs may have been compromised by ischemia secondary to burn shock and contaminated by bacteremia. With the current shortage of solid organs, the transplant community continues to look for ways to increase the number of organ donors, including the use of marginal donors. Between 1999 and 2009 we have successfully procured 14 organs from four burn patients, who had suffered concurrent anoxic brain injury. There were one male and three female patients with an average age of 43.3 years and a total burned body surface area of 32.5%. Organ transplantation was performed at an average of 4.75days after the injury. Eight kidneys, three livers, two hearts and one pancreas were procured and transplanted into 13 patients. We were able to follow-up on the organ recipients for an average of 80.5 months. The 5-year survival of the donated organs following transplant was 78.6% and the 5-year organ recipient survival was 92.3%. Organ procurement after burns is not contraindicated and transplantation can be performed with good long-term results. Copyright © 2017 Elsevier Ltd and ISBI. All rights reserved.

  20. Domestic biomass burning in rural and urban Zimbabwe: Pt. A

    International Nuclear Information System (INIS)

    Marufu, Lackson; Ludwig, Joerg; Andreae, M.O.; Meixner, F.X.; Helas, Guenter

    1997-01-01

    A questionnaire survey, to estimate biofuel consumption rates in rural and urban households in Zimbabwe, was conducted during the months of March and April 1995. The survey formed part of an integrated campaign aimed at establishing the extent to which domestic biofuel burning in Africa contributes to the atmospheric trace gas budget. Five study areas, four rural and one urban, were covered by the survey. The forms of biofuel used in rural areas were found to be wood, agricultural residues and cow dung, with wood being predominant. When available, agricultural residues were the second most popular form of fuel. Cow dung was only used in situations of severe fuel shortages. On average, rural consumption rates of wood, agricultural residues and cow dung for this time of the year were found to be 3.2, 1.5 and 0.2 kg/capita/day respectively. Wood and agricultural residues were the only biofuels used by urban households and were consumed at rates of 1.6 and > 0.1 kg/capitaday respectively. Across the study areas, consumption rates were a function of fuel availability. (author)

  1. Inferring brown carbon content from UV aerosol absorption measurements during biomass burning season

    Science.gov (United States)

    Mok, J.; Krotkov, N. A.; Arola, A. T.; Torres, O.; Jethva, H. T.; Andrade, M.; Labow, G. J.; Eck, T. F.; Li, Z.; Dickerson, R. R.; Stenchikov, G. L.; Osipov, S.

    2015-12-01

    Measuring spectral dependence of light absorption by colored organic or "brown" carbon (BrC) is important, because of its effects on photolysis rates of ozone and surface ultraviolet (UV) radiation. Enhanced UV spectral absorption by BrC can in turn be exploited for simultaneous retrievals of BrC and black carbon (BC) column amounts in field campaigns. We present an innovative ground-based retrieval of BC and BrC volume fractions and their mass absorption efficiencies during the biomass burning season in Santa Cruz, Bolivia in September-October 2007. Our method combines retrieval of BC volume fraction using AERONET inversion in visible wavelengths with the inversion of total BC+BrC absorption (i.e., column effective imaginary refractive index, kmeas) using Diffuse/Direct irradiance measurements in UV wavelengths. First, we retrieve BrC volume fraction by fitting kmeas at 368nm using Maxwell-Garnett (MG) mixing rules assuming: (1) flat spectral dependence of kBC, (2) known value of kBrC at 368nm from laboratory absorption measurements or smoke chamber experiments, and (3) known BC volume fraction from AERONET inversion. Next, we derive kBrC in short UVB wavelengths by fitting kmeas at 305nm, 311nm, 317nm, 325nm, and 332nm using MG mixing rules and fixed volume fractions of BC and BrC. Our retrievals show larger than expected spectral dependence of kBrC in UVB wavelengths, implying reduced surface UVB irradiance and inhibited photolysis rates of surface ozone destruction. We use a one-dimensional chemical box model to show that the observed strong wavelength dependence of BrC absorption leads to inhibited photolysis of ozone to O(1D), a loss mechanism, while having little impact or even accelerating photolysis of NO2, an ozone production mechanism. Although BC only absorption in biomass burning aerosols is important for climate radiative forcing in the visible wavelengths, additional absorption by BrC is important because of its impact on surface UVB radiation

  2. Biomass burning drives atmospheric nutrient redistribution within forested peatlands in Borneo

    Science.gov (United States)

    Ponette-González, Alexandra G.; Curran, Lisa M.; Pittman, Alice M.; Carlson, Kimberly M.; Steele, Bethel G.; Ratnasari, Dessy; Mujiman; Weathers, Kathleen C.

    2016-08-01

    Biomass burning plays a critical role not only in atmospheric emissions, but also in the deposition and redistribution of biologically important nutrients within tropical landscapes. We quantified the influence of fire on biogeochemical fluxes of nitrogen (N), phosphorus (P), and sulfur (S) in a 12 ha forested peatland in West Kalimantan, Indonesia. Total (inorganic + organic) N, {{{{NO}}}3}- -N, {{{{NH}}}4}+ -N, total P, {{{{PO}}}4}3- -P, and {{{{SO}}}4}2- -S fluxes were measured in throughfall and bulk rainfall weekly from July 2013 to September 2014. To identify fire events, we used concentrations of particulate matter (PM10) and MODIS Active Fire Product counts within 20 and 100 km radius buffers surrounding the site. Dominant sources of throughfall nutrient deposition were explored using cluster and back-trajectory analysis. Our findings show that this Bornean peatland receives some of the highest P (7.9 kg {{{{PO}}}4}3- -P ha-1yr-1) and S (42 kg {{{{SO}}}4}2- -S ha-1yr-1) deposition reported globally, and that N deposition (8.7 kg inorganic N ha-1yr-1) exceeds critical load limits suggested for tropical forests. Six major dry periods and associated fire events occurred during the study. Seventy-eight percent of fires within 20 km and 40% within 100 km of the site were detected within oil palm plantation leases (industrial agriculture) on peatlands. These fires had a disproportionate impact on below-canopy nutrient fluxes. Post-fire throughfall events contributed >30% of the total inorganic N ({{{{NO}}}3}- -N + {{{{NH}}}4}+ -N) and {{{{PO}}}4}3- -P flux to peatland soils during the study period. Our results indicate that biomass burning associated with agricultural peat fires is a major source of N, P, and S in throughfall and could rival industrial pollution as an input to these systems during major fire years. Given the sheer magnitude of fluxes reported here, fire-related redistribution of nutrients may have significant fertilizing or acidifying effects on

  3. Production of Peroxy Nitrates in Boreal Biomass Burning Plumes over Canada During the BORTAS Campaign

    Science.gov (United States)

    Busilacchio, Marcella; Di Carlo, Piero; Aruffo, Eleonora; Biancofiore, Fabio; Salisburgo, Cesare Dari; Giammaria, Franco; Bauguitte, Stephane; Lee, James; Moller, Sarah; Hopkins, James; hide

    2016-01-01

    The observations collected during the BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites (BORTAS) campaign in summer 2011 over Canada are analysed to study the impact of forest fire emissions on the formation of ozone (O3 and total peroxy nitrates (sigma)PNs, (sigma)ROONO2. The suite of measurements on board the BAe-146 aircraft, deployed in this campaign, allows us to calculate the production of O3 and of (sigma)PNs, a long-lived NOx reservoir whose concentration is supposed to be impacted by biomass burning emissions.In fire plumes, profiles of carbon monoxide (CO), which is a well-established tracer of pyrogenic emission, show concentration enhancements that are in strong correspondence with a significant increase of concentrations of (sigma)PNs, where as minimal increase of the concentrations of O3 and NO2 is observed. The (sigma)PN and O3 productions have been calculated using the rate constants of the first- and second-order react Pions of volatile organic compound (VOC) oxidation. The (sigma)PN and O3 productions have also been quantified by 0-D model simulation based on the Master Chemical Mechanism. Both methods show that in fire plumes the average production of (sigma)PNs and O3 are greater than in the background plumes, but the increase of (sigma)PN production is more pronounced than the O3 production. The average (sigma)PN production in fire plumes is from 7 to 12 times greater than in the background, whereas the average O3 production in fire plumes is from 2 to 5 times greater than in the background. These results suggest that, at least for boreal forest fires and for the measurements recorded during the BORTAS campaign,fire emissions impact both the oxidized NOy and O3;but (1)(sigma)PN production is amplified significantly more thanO3 production and (2) in the forest fire plumes the ratio between the O3 production and the (sigma)PN production is lower than the ratio evaluated in the background air masses, thus

  4. Biomass burning impact on PM 2.5 over the southeastern US during 2007: integrating chemically speciated FRM filter measurements, MODIS fire counts and PMF analysis

    Directory of Open Access Journals (Sweden)

    R. J. Weber

    2010-07-01

    Full Text Available Archived Federal Reference Method (FRM Teflon filters used by state regulatory agencies for measuring PM2.5 mass were acquired from 15 sites throughout the southeastern US and analyzed for water-soluble organic carbon (WSOC, water-soluble ions and carbohydrates to investigate biomass burning contributions to fine aerosol mass. Based on over 900 filters that spanned all of 2007, levoglucosan and K+ were studied in conjunction with MODIS Aqua fire count data to compare their performances as biomass burning tracers. Levoglucosan concentrations exhibited a distinct seasonal variation with large enhancement in winter and spring and a minimum in summer, and were well correlated with fire counts, except in winter when residential wood burning contributions were significant. In contrast, K+ concentrations had no apparent seasonal trend and poor correlation with fire counts. Levoglucosan and K+ only correlated well in winter (r2=0.59 when biomass burning emissions were highest, whereas in other seasons they were not correlated due to the presence of other K+ sources. Levoglucosan also exhibited larger spatial variability than K+. Both species were higher in urban than rural sites (mean 44% higher for levoglucosan and 86% for K+. Positive Matrix Factorization (PMF was applied to analyze PM2.5 sources and four factors were resolved: biomass burning, refractory material, secondary light absorbing WSOC and secondary sulfate/WSOC. The biomass burning source contributed 13% to PM2.5 mass annually, 27% in winter, and less than 2% in summer, consistent with other souce apportionment studies based on levoglucosan, but lower in summer compared to studies based on K+.

  5. A Pervasive Role for Biomass Burning in Tropical High Ozonelow Water Structures

    Science.gov (United States)

    Anderson, Daniel C.; Nicely, Julie M.; Salawitch, Ross J.; Canty, Timothy P.; Dickerson, Russell R.; Hanisco, Thomas F.; Wolfe, Glenn M.; Apel, Eric C.; Atlas, Elliot; Bannon, Thomas; hide

    2016-01-01

    Air parcels with mixing ratios of high O3 and low H2O (HOLW) are common features in the tropical western Pacific (TWP) mid-troposphere (300-700 hPa). Here, using data collected during aircraft sampling of the TWP in winter 2014, we find strong, positive correlations of O3 with multiple biomass burning tracers in these HOLW structures. Ozone levels in these structures are about a factor of three larger than background. Models, satellite data and aircraft observations are used to show fires in tropical Africa and Southeast Asia are the dominant source of high O3 and that low H2O results from large-scale descent within the tropical troposphere. Previous explanations that attribute HOLW structures to transport from the stratosphere or mid-latitude troposphere are inconsistent with our observations. This study suggest a larger role for biomass burning in the radiative forcing of climate in the remote TWP than is commonly appreciated.

  6. Assessment of fire emission inventories during the South American Biomass Burning Analysis (SAMBBA experiment

    Directory of Open Access Journals (Sweden)

    G. Pereira

    2016-06-01

    Full Text Available Fires associated with land use and land cover changes release large amounts of aerosols and trace gases into the atmosphere. Although several inventories of biomass burning emissions cover Brazil, there are still considerable uncertainties and differences among them. While most fire emission inventories utilize the parameters of burned area, vegetation fuel load, emission factors, and other parameters to estimate the biomass burned and its associated emissions, several more recent inventories apply an alternative method based on fire radiative power (FRP observations to estimate the amount of biomass burned and the corresponding emissions of trace gases and aerosols. The Brazilian Biomass Burning Emission Model (3BEM and the Fire Inventory from NCAR (FINN are examples of the first, while the Brazilian Biomass Burning Emission Model with FRP assimilation (3BEM_FRP and the Global Fire Assimilation System (GFAS are examples of the latter. These four biomass burning emission inventories were used during the South American Biomass Burning Analysis (SAMBBA field campaign. This paper analyzes and inter-compared them, focusing on eight regions in Brazil and the time period of 1 September–31 October 2012. Aerosol optical thickness (AOT550 nm derived from measurements made by the Moderate Resolution Imaging Spectroradiometer (MODIS operating on board the Terra and Aqua satellites is also applied to assess the inventories' consistency. The daily area-averaged pyrogenic carbon monoxide (CO emission estimates exhibit significant linear correlations (r, p  >  0.05 level, Student t test between 3BEM and FINN and between 3BEM_ FRP and GFAS, with values of 0.86 and 0.85, respectively. These results indicate that emission estimates in this region derived via similar methods tend to agree with one other. However, they differ more from the estimates derived via the alternative approach. The evaluation of MODIS AOT550 nm indicates that model

  7. High-Resolution Spatially Gridded Biomass Burning Emissions Inventory In Asia

    Science.gov (United States)

    Vadrevu, K. P.; Lau, W. K.; da Silva, A.; Justice, C. O.

    2012-12-01

    Biomass burning is long recognized an important source of greenhouse gas (GHG) emissions (CO2, CO, CH4, H2, CH3Cl, NO, HCN, CH3CN, COS, etc) and aerosols. In the Asian region, the current estimates of greenhouse gas emissions and aerosols from biomass burning are severely constrained by the lack of reliable statistics on fire distribution and frequency, and the lack of accurate estimates of area burned, fuel load, etc. As a part of NASA funded interdisciplinary research project entitled "Effects of biomass burning on water cycle and climate in the monsoon Asia", we initially developed a high resolution spatially gridded emissions inventory from the biomass burning for Indo-Ganges region and then extended the inventory to the entire Asia. Active fires from MODIS as well as high resolution LANDSAT data have been used to fine-tune the MODIS burnt area products for estimating the emissions. Locally based emission factors were used to refine the gaseous emissions. The resulting emissions data has been gridded at 5-minute intervals. We also compared our emission estimates with the other emission products such as Global Fire Assimilation System (GFAS), Quick fire emissions database (QFED) and Global Fire Emissions Database (GFED). Our results revealed significant vegetation fires from Myanmar, India, Indonesia, China, Laos, Thailand, Cambodia and Vietnam. These seven countries accounted for 92.4% of all vegetation fires in the Asian region. Satellite-based vegetation fire analysis showed the highest fire occurrence in the closed to open shrub land category, (19%) followed by closed to open, broadleaved evergreen-semi deciduous forest (16%), rain fed croplands (17%), post flooded or irrigated croplands (12%), mosaic cropland vegetation (11%), mosaic vegetation/cropland (10%). Emission contribution from agricultural fires was significant, however, showed discrepancies due to low confidence in burnt areas and lack of crop specific emission factors. Further, our results

  8. Carbon dioxide emissions and energy balance closure before, during, and after biomass burning in mid-South rice fields

    Science.gov (United States)

    Fong, B.; Adviento-Borbe, A.; Reba, M. L.; Runkle, B.; Suvocarev, K.

    2017-12-01

    Biomass burning or field burning is a crop management practice that removes rice straw, reduces tillage, controls pests and releases nutrients for the next cropping season. Current field burning emissions are not included in agricultural field annual emissions largely because of the lack of studies, especially on the field scale. Field burning measurements are important for greenhouse gas emission inventories and quantifying the annual carbon footprint of rice. Paired eddy covariance systems were used to measure energy balance, CO2 fluxes, and H2O fluxes in mid-South US rice fields (total area of 25 ha) before, during and after biomass burning for 20 days after harvest. During the biomass burning, air temperatures increased 29°C, while ambient CO2 concentration increased from 402 to 16,567 ppm and H2O concentrations increased from 18.73 to 25.62 ppt. For the burning period, 67-86 kg CO2 ha-1 period-1 was emitted calculated by integrating fluxes over the biomass burning event. However, the estimated emission using aboveground biomass and combustion factors was calculated as 11,733 kg CO2 ha-1 period-1. Part of the difference could be attributed to sensor sensitivity decreasing 80% during burning for two minutes due to smoke. Net ecosystem exchange (NEE) increased by a factor of two, 1.14 before burning to 2.44 μmol m-2 s-1 possibly due to greater reduction of plant material and photosynthesis following burning. This study highlights the contribution of rice straw burning to total CO2 emissions from rice production.

  9. Black Carbon from Biomass Burning Emissions: New Mexico Wildfires and Controlled Laboratory Burns of Fuels Found in the Southwestern US

    Science.gov (United States)

    Aiken, A. C.; Dubey, M.; Liu, S.; McMeeking, G. R.; Gorkowski, K.; Arata, C.; Mazzoleni, C.; China, S.; Kreidenweis, S. M.; DeMott, P. J.; Yokelson, R. J.; Robinson, A. L.

    2013-12-01

    Black carbon (BC) is currently considered the second most important global warming factor behind CO2 and is thought to be underestimated by a factor of two in most global models (Bond et al., 2013). Approximately half of BC comes from biomass burning (BB) sources, which are estimated to contribute up to ~0.6 W/m2 warming of the atmosphere. Organic carbon (OC) from fires condenses on and/or mixes with the BC, lowering the overall forcing from BB to 0.03 × 0.12 Wm-2. This reduction depends strongly on the composition and mixing state of OC and BC, which is dependent on fire conditions, e.g. modified combustion efficiency. Models and laboratory measurements indicate that a BC core coated with a non-absorbing layer can enhance absorption by 2, although it has yet to be observed in ambient data to this degree (Cappa et al., 2012). Direct on-line measurements of BC are made with the single particle soot photometer (SP2) from "fresh" and "aged" BB. We investigate BC in concentrated BB plumes from the two largest wildfires in New Mexico's history with different ages and compare them to BC from indoor generation from single-source fuels, e.g. ponderosa pine, juniper, sawgrass, sampled during Fire Lab At Missoula Experiments IV (FLAME-IV). FLAME-IV includes direct emissions, well-mixed samples, and aging studies. Aerosol optical properties were measured using photoacoustic spectrometry for absorption and nephelometry for scattering with the 3-wavelength and single-wavelength Photoacoustic Soot Spectrometers (PASS-3: 405 nm, 532 nm, 781 nm; PASS: 375 nm) and for the first time are compared with the new Photoacoustic Extinctiometer (PAX; 870 nm) during FLAME-IV. Las Conchas Fire (July-August, 2011) BC was sampled after only a few hours of aging and exhibits mostly core-shell structure. Whitewater Baldy Fire (May-June, 2012) BC was sampled after an aging period of 10-20 hours and includes partially coated BC in addition to thickly coated core-shell BC. Partially coated BC is

  10. FIREX-Related Biomass Burning Research Using ARM Single-Particle Soot Photometer Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Onasch, Timothy B [Aerodyne Research, Inc.; Sedlacek, Arthur J [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-03-15

    The scientific focus of this study was to investigate and quantify the mass loadings, chemical compositions, and optical properties of biomass burning particulate emissions generated in the laboratory from Western U.S. fuels using a similar instrument suite to the one deployed on the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility Gulfstream-1 (G-1) aircraft during the 2013 Biomass Burning Observation Project (BBOP) field study (Kleinman and Sedlacek, 2013). We deployed the single-particle soot photometer (SP2) to make measurements of biomass burning refractory black carbon (rBC) mass loadings and size distributions to correlate with non-refractory particulate matter (NR-PM; i.e., HR-AMS) and rBC (SP-AMS) measurements as a function of photo-oxidation processes in an environmental chamber. With these measurements, we will address the following scientific questions: 1. What are the emission indices (g/kg fuel) of rBC from various wildland fuels from the Pacific Northwest (i.e., relevant to BBOP analysis) as a function of combustion conditions and simulated atmospheric processing in an environmental chamber? 2. What are the optical properties (e.g., mass-specific absorption cross-section [MAC], single-scattering albedo [SSA], and absorption Angstrom exponent [AAE)] of rBC emitted from various wildland fuels and how are they impacted by atmospheric processing? 3. How does the mixing state of rBC in biomass-burning plumes relate to the optical properties? 4. How does the emitted rBC affect radiative forcing?

  11. The importance of plume rise on the concentrations and atmospheric impacts of biomass burning aerosol

    Directory of Open Access Journals (Sweden)

    C. Walter

    2016-07-01

    Full Text Available We quantified the effects of the plume rise of biomass burning aerosol and gases for the forest fires that occurred in Saskatchewan, Canada, in July 2010. For this purpose, simulations with different assumptions regarding the plume rise and the vertical distribution of the emissions were conducted. Based on comparisons with observations, applying a one-dimensional plume rise model to predict the injection layer in combination with a parametrization of the vertical distribution of the emissions outperforms approaches in which the plume heights are initially predefined. Approximately 30 % of the fires exceed the height of 2 km with a maximum height of 8.6 km. Using this plume rise model, comparisons with satellite images in the visible spectral range show a very good agreement between the simulated and observed spatial distributions of the biomass burning plume. The simulated aerosol optical depth (AOD with data of an AERONET station is in good agreement with respect to the absolute values and the timing of the maximum. Comparison of the vertical distribution of the biomass burning aerosol with CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation retrievals also showed the best agreement when the plume rise model was applied. We found that downwelling surface short-wave radiation below the forest fire plume is reduced by up to 50 % and that the 2 m temperature is decreased by up to 6 K. In addition, we simulated a strong change in atmospheric stability within the biomass burning plume.

  12. Oxygenated interface on biomass burn tar balls determined by single particle scanning transmission X-ray microscopy.

    Science.gov (United States)

    Tivanski, Alexei V; Hopkins, Rebecca J; Tyliszczak, Tolek; Gilles, Mary K

    2007-06-28

    Carbonaceous particles originating from biomass burning can account for a large fraction of organic aerosols in a local environment. Presently, their composition, physical and chemical properties, as well as their environmental effects are largely unknown. Tar balls, a distinct type of highly spherical carbonaceous biomass burn particles, have been observed in a number of field campaigns. The Yosemite Aerosol Characterization Study that took place in summer 2002 occurred during an active fire season in the western United States; tar balls collected during this field campaign are described in this article. Scanning transmission X-ray microscopy and near-edge X-ray absorption fine structure spectroscopy are used to determine the shape, structure, and size-dependent chemical composition of approximately 150 individual spherical particles ranging in size from 0.15 to 1.2 mum. The elemental composition of tar balls is approximately 55% atomic carbon and approximately 45% atomic oxygen. Oxygen is present primarily as carboxylic carbonyls and oxygen-substituted alkyl (O-alkyl-C) functional groups, followed by moderate amounts of ketonic carbonyls. The observed chemical composition, density, and carbon functional groups are distinctly different from soot or black carbon and more closely resemble high molecular weight polymeric humic-like substances, which could account for their reported optical properties. A detailed examination of the carboxylic carbonyl and O-alkyl-C functional groups as a function of particle size reveals a thin oxygenated interface layer. The high oxygen content, as well as the presence of water-soluble carboxylic carbonyl groups, could account for the reported hygroscopic properties of tar balls. The presence of the oxygenated layer is attributed to atmospheric processing of biomass burn particles.

  13. Improving the seasonal cycle and interannual variations of biomass burning aerosol sources

    Directory of Open Access Journals (Sweden)

    S. Generoso

    2003-01-01

    Full Text Available This paper suggests a method for improving current inventories of aerosol emissions from biomass burning. The method is based on the hypothesis that, although the total estimates within large regions are correct, the exact spatial and temporal description can be improved. It makes use of open fire detection from the ATSR instrument that is available since 1996. The emissions inventories are re-distributed in space and time according to the occurrence of open fires. Although the method is based on the night-time hot-spot product of the ATSR, other satellite biomass burning proxies (AVHRR, TRMM, GLOBSCAR and GBA2000 show similar distributions. The impact of the method on the emission inventories is assessed using an aerosol transport model, the results of which are compared to sunphotometer and satellite data. The seasonal cycle of aerosol load in the atmosphere is significantly improved in several regions, in particular South America and Australia. Besides, the use of ATSR fire detection may be used to account for interannual events, as is demonstrated on the large Indonesian fires of 1997, a consequence of the 1997-1998 El Niño. Despite these improvements, there are still some large discrepancies between the simulated and observed aerosol optical thicknesses resulting from biomass burning emissions.

  14. Biomass-burning emissions and associated haze layers over Amazonia

    Science.gov (United States)

    Andreae, M. O.; Browell, E. V.; Gregory, G. L.; Harriss, R. C.; Hill, G. F.; Sachse, G. W.; Talbot, R. W.; Garstang, M.; Jacob, D. J.; Torres, A. L.

    1988-01-01

    The characteristics of haze layers, which were visually observed over the central Amazon Basin during many of the Amazon Boundary Layer Experiment 2A flights in July/August 1985, were investigated by remote and in situ measurements, using the broad range of instrumentation and sampling equipment on board the Electra aircraft. It was found that these layers strongly influenced the chemical and optical characteristics of the atmosphere over the eastern Amazon Basin. Relative to the regional background, the concentrations of CO, CO2, O3, and NO were significantly elevated in the plumes and haze layers, with the NO/CO ratio in fresh plumes much higher than in the aged haze layers. The haze aerosol was composed predominantly of organic material, NH4, K(+), NO3(-), SO4(2-), and organic anions (formate, acetate, and oxalate).

  15. Estimates of global biomass burning emissions for reactive greenhouse gases (CO, NMHCs, and NOx) and CO2

    Science.gov (United States)

    Jain, Atul K.; Tao, Zhining; Yang, Xiaojuan; Gillespie, Conor

    2006-03-01

    Open fire biomass burning and domestic biofuel burning (e.g., cooking, heating, and charcoal making) algorithms have been incorporated into a terrestrial ecosystem model to estimate CO2 and key reactive GHGs (CO, NOx, and NMHCs) emissions for the year 2000. The emissions are calculated over the globe at a 0.5° × 0.5° spatial resolution using tree density imagery, and two separate sets of data each for global area burned and land clearing for croplands, along with biofuel consumption rate data. The estimated global and annual total dry matter (DM) burned due to open fire biomass burning ranges between 5221 and 7346 Tg DM/yr, whereas the resultant emissions ranges are 6564-9093 Tg CO2/yr, 438-568 Tg CO/yr, 11-16 Tg NOx/yr (as NO), and 29-40 Tg NMHCs/yr. The results indicate that land use changes for cropland is one of the major sources of biomass burning, which amounts to 25-27% (CO2), 25 -28% (CO), 20-23% (NO), and 28-30% (NMHCs) of the total open fire biomass burning emissions of these gases. Estimated DM burned associated with domestic biofuel burning is 3,114 Tg DM/yr, and resultant emissions are 4825 Tg CO2/yr, 243 Tg CO/yr, 3 Tg NOx/yr, and 23 Tg NMHCs/yr. Total emissions from biomass burning are highest in tropical regions (Asia, America, and Africa), where we identify important contributions from primary forest cutting for croplands and domestic biofuel burning.

  16. Modeling the radiative effects of biomass burning aerosols on carbon fluxes in the Amazon region

    Science.gov (United States)

    Moreira, Demerval S.; Longo, Karla M.; Freitas, Saulo R.; Yamasoe, Marcia A.; Mercado, Lina M.; Rosário, Nilton E.; Gloor, Emauel; Viana, Rosane S. M.; Miller, John B.; Gatti, Luciana V.; Wiedemann, Kenia T.; Domingues, Lucas K. G.; Correia, Caio C. S.

    2017-12-01

    Every year, a dense smoke haze covers a large portion of South America originating from fires in the Amazon Basin and central parts of Brazil during the dry biomass burning season between August and October. Over a large portion of South America, the average aerosol optical depth at 550 nm exceeds 1.0 during the fire season, while the background value during the rainy season is below 0.2. Biomass burning aerosol particles increase scattering and absorption of the incident solar radiation. The regional-scale aerosol layer reduces the amount of solar energy reaching the surface, cools the near-surface air, and increases the diffuse radiation fraction over a large disturbed area of the Amazon rainforest. These factors affect the energy and CO2 fluxes at the surface. In this work, we applied a fully integrated atmospheric model to assess the impact of biomass burning aerosols in CO2 fluxes in the Amazon region during 2010. We address the effects of the attenuation of global solar radiation and the enhancement of the diffuse solar radiation flux inside the vegetation canopy. Our results indicate that biomass burning aerosols led to increases of about 27 % in the gross primary productivity of Amazonia and 10 % in plant respiration as well as a decline in soil respiration of 3 %. Consequently, in our model Amazonia became a net carbon sink; net ecosystem exchange during September 2010 dropped from +101 to -104 TgC when the aerosol effects are considered, mainly due to the aerosol diffuse radiation effect. For the forest biome, our results point to a dominance of the diffuse radiation effect on CO2 fluxes, reaching a balance of 50-50 % between the diffuse and direct aerosol effects for high aerosol loads. For C3 grasses and savanna (cerrado), as expected, the contribution of the diffuse radiation effect is much lower, tending to zero with the increase in aerosol load. Taking all biomes together, our model shows the Amazon during the dry season, in the presence of high

  17. Modeling the radiative effects of biomass burning aerosols on carbon fluxes in the Amazon region

    Directory of Open Access Journals (Sweden)

    D. S. Moreira

    2017-12-01

    Full Text Available Every year, a dense smoke haze covers a large portion of South America originating from fires in the Amazon Basin and central parts of Brazil during the dry biomass burning season between August and October. Over a large portion of South America, the average aerosol optical depth at 550 nm exceeds 1.0 during the fire season, while the background value during the rainy season is below 0.2. Biomass burning aerosol particles increase scattering and absorption of the incident solar radiation. The regional-scale aerosol layer reduces the amount of solar energy reaching the surface, cools the near-surface air, and increases the diffuse radiation fraction over a large disturbed area of the Amazon rainforest. These factors affect the energy and CO2 fluxes at the surface. In this work, we applied a fully integrated atmospheric model to assess the impact of biomass burning aerosols in CO2 fluxes in the Amazon region during 2010. We address the effects of the attenuation of global solar radiation and the enhancement of the diffuse solar radiation flux inside the vegetation canopy. Our results indicate that biomass burning aerosols led to increases of about 27 % in the gross primary productivity of Amazonia and 10 % in plant respiration as well as a decline in soil respiration of 3 %. Consequently, in our model Amazonia became a net carbon sink; net ecosystem exchange during September 2010 dropped from +101 to −104 TgC when the aerosol effects are considered, mainly due to the aerosol diffuse radiation effect. For the forest biome, our results point to a dominance of the diffuse radiation effect on CO2 fluxes, reaching a balance of 50–50 % between the diffuse and direct aerosol effects for high aerosol loads. For C3 grasses and savanna (cerrado, as expected, the contribution of the diffuse radiation effect is much lower, tending to zero with the increase in aerosol load. Taking all biomes together, our model shows the Amazon during the dry

  18. Light absorption of biomass burning and vehicle emission-sourced carbonaceous aerosols of the Tibetan Plateau.

    Science.gov (United States)

    Hu, Zhaofu; Kang, Shichang; Li, Chaoliu; Yan, Fangping; Chen, Pengfei; Gao, Shaopeng; Wang, Zhiyong; Zhang, Yulan; Sillanpää, Mika

    2017-06-01

    Carbonaceous aerosols over the Tibetan Plateau originate primarily from biomass burning and vehicle emissions (BB and VEs, respectively). The light absorption characteristics of these carbonaceous aerosols are closely correlated with the burning conditions and represent key factors that influence climate forcing. In this study, the light absorption characteristics of elemental carbon (EC) and water-soluble organic carbon (WSOC) in PM 2.5 (fine particulate matter smaller than 2.5 μm) generated from BB and VEs were investigated over the Tibetan Plateau (TP). The results showed that the organic carbon (OC)/EC ratios from BB- and VE-sourced PM 2.5 were 17.62 ± 10.19 and 1.19 ± 0.36, respectively. These values were higher than the ratios in other regions, which was primarily because of the diminished amount of oxygen over the TP. The mass absorption cross section of EC (MAC EC ) at 632 nm for the BB-sourced PM 2.5 (6.10 ± 1.21 m 2 .g -1 ) was lower than that of the VE-sourced PM 2.5 (8.10 ± 0.98 m 2 .g -1 ), indicating that the EC content of the BB-sourced PM 2.5 was overestimated because of the high OC/EC ratio. The respective absorption per mass (α/ρ) values at 365 nm for the VE- and BB-sourced PM 2.5 were 0.71 ± 0.17 m 2 .g -1 and 0.91 ± 0.18 m 2 .g -1 . The α/ρ value of the VEs was loaded between that of gasoline and diesel emissions, indicating that the VE-sourced PM 2.5 originated from both types of emissions. Because OC and WSOC accounts for most of the carbonaceous aerosols at remote area of the TP, the radiative forcing contributed by the WSOC should be high, and requires further investigation.

  19. Production of N2O5and ClNO2through Nocturnal Processing of Biomass-Burning Aerosol.

    Science.gov (United States)

    Ahern, Adam T; Goldberger, Lexie; Jahl, Lydia; Thornton, Joel; Sullivan, Ryan C

    2018-01-16

    Biomass burning is a source of both particulate chloride and nitrogen oxides, two important precursors for the formation of nitryl chloride (ClNO 2 ), a source of atmospheric oxidants that is poorly prescribed in atmospheric models. We investigated the ability of biomass burning to produce N 2 O 5 (g) and ClNO 2 (g) through nocturnal chemistry using authentic biomass-burning emissions in a smog chamber. There was a positive relationship between the amount of ClNO 2 formed and the total amount of particulate chloride emitted and with the chloride fraction of nonrefractory particle mass. In every fuel tested, dinitrogen pentoxide (N 2 O 5 ) formed quickly, following the addition of ozone to the smoke aerosol, and ClNO 2 (g) production promptly followed. At atmospherically relevant relative humidities, the particulate chloride in the biomass-burning aerosol was rapidly but incompletely displaced, likely by the nitric acid produced largely by the heterogeneous uptake of N 2 O 5 (g). Despite this chloride acid displacement, the biomass-burning aerosol still converted on the order of 10% of reacted N 2 O 5 (g) into ClNO 2 (g). These experiments directly confirm that biomass burning is a potentially significant source of atmospheric N 2 O 5 and ClNO 2 to the atmosphere.

  20. First results from a large, multi-platform study of trace gas and particle emissions from biomass burning

    Science.gov (United States)

    I. R. Burling; R. J. Yokelson; S. K. Akagi; T. J. Johnson; D. W. Griffith; Shawn Urbanski; J. W. Taylor; J. S. Craven; G. R. McMeeking; J. M. Roberts; C. Warneke; P. R. Veres; J. A. de Gouw; J. B. Gilman; W. C. Kuster; WeiMin Hao; D. Weise; H. Coe; J. Seinfeld

    2010-01-01

    We report preliminary results from a large, multi-component study focused on North American biomass burning that measured both initial emissions and post-emission processing. Vegetation types burned were from the relatively less-studied temperate region of the US and included chaparral, oak savanna, and mixed conifer forest from the southwestern US, and pine understory...

  1. Biomass Burning Emissions in the Cerrado of Brazil Computed with Remote Sensing Data and GIS

    Science.gov (United States)

    Guild, Liane S.; Brass, James A.; Chatfield, Robert B.; Hlavka, Christine A.; Riggan, Philip J.; Setzer, Alberto; Pereira, Joao A. Raposo; Peterson, David L. (Technical Monitor)

    1994-01-01

    Biomass burnin is a common force in much of the developing tropical world where it has wide-ranging environmental impacts. Fire is a component of tropical deforestation and is 0 p often used to clear broad expanses of land for shifting agriculture and cattle ranching. Frequent burning in the tropical savannas is a distinct problem from that of primary forest. In Brazil, most of the burning occurs in the cerrado which occupies approximately 1,800,000 km2, primarily on the great plateau in central Brazil. Wildland and agricultural fires are dramatic sources of regional air pollution in central Brazil. Biomass burning is an important source of a large number of trace gases including greenhouse gases and other chemically active species. Knowledge of trace gas emissions from biomass burning in Brazil is limited by a number of factors, most notably relative emission factors for gases from specific fire types/fuels and accurate estimates of temporal and spatial distribution and extent of fire activity. Estimates of trace gas emissions during September 1992 will be presented that incorporates a digital map of vegetation classes, pyrogenic emission factors calculated from ground and aircraft missions, and Instituto Nacional de Pesquisas Espaciais (INPE) fire products derived from Advanced Very High Resolution Radiometer (AVHRR) data. The regional emissions calculated from National Oceanographic and Atmospheric Administration (NOAA) AVHRR estimates of fire activity will provide an independent estimate for comparison with results obtained by the National Aeronautics and Space Administration (NASA) Transport and Atmospheric Chemistry Near the Equator - Atlantic (TRACE-A) experiments.

  2. The composition of ambient and fresh biomass burning aerosols at a savannah site, South Africa

    Directory of Open Access Journals (Sweden)

    Minna Aurela

    2016-05-01

    Full Text Available Atmospheric aerosols play a key role in climate change, and have adverse effects on human health. Given South Africa�s status as a rapidly-developing country with increasing urbanisation and industrial growth, information on the quality of ambient air is important. In this study, the chemical composition of ambient particles and the particles in fresh biomass burning plumes were studied at a savannah environment in Botsalano, South Africa. The results showed that Botsalano was regularly affected by air masses that had passed over several large point sources. Air masses that had passed over the coal-fired Matimba power station in the Waterberg, or over the platinum group metal smelters in the western Bushveld Igneous Complex, contained high sulfate concentrations in the submicron ranges. These concentrations were 14 to 37 times higher compared with air masses that had passed only over rural areas. Because of the limited nature of this type of data in literature for the interior regions of southern Africa, our report serves as a valuable reference for future studies. In addition, our biomass burning study showed that potassium in the fresh smoke of burning savannah grass was likely to take the form of KCl. Clear differences were found in the ratios for potassium and levoglucosan in the smouldering and flaming phases. Our findings highlight the need for more comprehensive chamber experiments on various fuel types used in southern Africa, to confirm the ratio of important biomass burning tracer species that can be used in source apportionment studies in the future.

  3. Molecular distributions of dicarboxylic acids, ketocarboxylic acids and α-dicarbonyls in biomass burning aerosols: implications for photochemical production and degradation in smoke layers

    Directory of Open Access Journals (Sweden)

    A. Hoffer

    2010-03-01

    Full Text Available Aerosols in the size class <2.5 μm (6 daytime and 9 nighttime samples were collected at a pasture site in Rondônia, Brazil, during the intensive biomass burning period of 16–26 September 2002 as part of the Large-Scale Biosphere-Atmosphere Experiment in Amazonia – Smoke, Aerosols, Clouds, Rainfall and Climate (LBA-SMOCC. Homologous series of dicarboxylic acids (C2–C11 and related compounds (ketocarboxylic acids and α-dicarbonyls were identified using gas chromatography (GC and GC/mass spectrometry (GC/MS. Among the species detected, oxalic acid was found to be the most abundant, followed by succinic, malonic and glyoxylic acids. Average concentrations of total dicarboxylic acids, ketocarboxylic acids and α-dicarbonyls in the aerosol samples were 2180, 167 and 56 ng m−3, respectively. These are 2–8, 3–11 and 2–16 times higher, respectively, than those reported in urban aerosols, such as in 14 Chinese megacities. Higher ratios of dicarboxylic acids and related compounds to biomass burning tracers (levoglucosan and K+ were found in the daytime than in the nighttime, suggesting the importance of photochemical production. On the other hand, higher ratios of oxalic acid to other dicarboxylic acids and related compounds normalized to biomass burning tracers (levoglucosan and K+ in the daytime provide evidence for the possible degradation of dicarboxylic acids (≥C3 in this smoke-polluted environment. Assuming that these and related compounds are photo-chemically oxidized to oxalic acid in the daytime, and given their linear relationship, they could account for, on average, 77% of the formation of oxalic acid. The remaining portion of oxalic acid may have been directly emitted from biomass burning as suggested by a good correlation with the biomass burning tracers (K+, CO and ECa and organic carbon (OC. However, photochemical production from other precursors could not be excluded.

  4. Modelling of long-range transport of Southeast Asia biomass-burning aerosols to Taiwan and their radiative forcings over East Asia

    Directory of Open Access Journals (Sweden)

    Chuan-Yao Lin

    2014-10-01

    Full Text Available Biomass burning produces aerosols and air pollutants during springtime in Southeast Asia. At the Lulin Atmospheric Background Station (LABS (elevation 2862 m in central Taiwan, the concentrations of carbon monoxide (CO, ozone (O3 and particulate matter with a diameter less than 10 µm (PM10 were found to be 135–200 ppb, 40–56 ppb and 13–26 µg/m3, respectively, in the springtime (February–April between 2006 and 2009, which are 2–3 times higher than those in other seasons. Simulation results indicate that higher concentrations during springtime are related to biomass-burning plumes transported from the Indochinese peninsula of Southeast Asia. The spatial distribution of high aerosol optical depth (AOD was identified by satellite measurement and Aerosol Robotic Network (AERONET ground observation, and could be reasonably captured by the WRF-Chem model during the study period of 15–18 March 2008. Simulated AOD reached as high as 0.8–1.2 in Indochina situated between 10–22°N and 95–107°E. According to the simulation results, 34% of the AOD was attributed to organic carbon over Indochina, while the contribution of black carbon to AOD was about 4%. During the study period, biomass-burning aerosols over Indochina have a net negative effect (−26.85 W·m−2 at ground surface, a positive effect (22.11 W·m−2 in the atmosphere and a negative forcing (−4.74 W·m−2 at the top of atmosphere. Under the influence of biomass-burning aerosol plume transported by strong wind, there is a NE−SW zone stretching from southern China to Taiwan with reduction in shortwave radiation of about 20 W·m−2 at ground surface. Such significant reduction in radiation attributed to biomass-burning aerosols and their impact on the regional climate in East Asia merit attention.

  5. Measurements of Short Lived Gas Phase Pollutants during AN Anthropogenic Biomass Burning Event during Winter in Manchester, UK Using a Tof-Cims

    Science.gov (United States)

    Priestley, M.; Bannan, T.; le Breton, M.; Leather, K.; Bacak, A.; Villegas, E.; Khan, A.; Allan, J. D.; Shallcross, D. E.; Coe, H.; Percival, C.

    2017-12-01

    Anthropogenic biomass burning represents a significant source of short lived harmful gases that reduces air quality and is one of the least well constrained processes in air quality and climate modelling (Andreae & Merlet 2001). Guy Fawkes Night (bonfire night) is a regular event in the UK where open fires are lit. Previous gas phase studies of bonfire night have typically used offline techniques focusing on persistent organic pollutants. Here, the first simultaneous online gas phase measurements of short lived pollutants from mixed biomass and anthropogenic fuel types were made using a chemical ionisation mass spectrometer (TOF-CIMS) with the iodide reagent ion in November 2014 in Manchester, UK. We detected a suite of compounds including isocyanates, nitrates and amides. Ambient concentrations of hydrogen cyanide (HCN), isocyanic acid and methyl isocyanate increased from maximums of 132 ppt, 144 ppt and 327 ppt to peak plume concentrations of 1.2 ppb, 1.6 ppb and 4.3 ppb respectively. We used the 6 sigma approach to define the biomass plume using HCN as a tracer and find the [HNCO]/[CO] ratio definition of burning phase is applicable (Roberts et al. 2010). Flaming emission increased the normalised excess mixing ratio (NEMR) by a factor of 2-4 relative to smouldering emission and treating burning phases separately improved the average accuracy of the NEMR by 29%. References Andreae, M.O. & Merlet, P., 2001. Emission of trace gases and aerosols from biomass burning. Global Biogeochemical Cycles, 15(4), pp.955-966. Available at: http://dx.doi.org/10.1029/2000GB001382. Roberts, J.M. et al., 2010. Measurement of HONO, HNCO, and other inorganic acids by negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS): Application to biomass burning emissions. Atmospheric Measurement Techniques, 3, pp.981-990.

  6. New particle formation in the presence of a strong biomass burning episode at a downwind rural site in PRD, China

    Directory of Open Access Journals (Sweden)

    Z. B. Wang

    2013-02-01

    Full Text Available In order to characterise the features of particle pollution in the Pearl River Delta (PRD region, a 1-month intensive campaign was conducted at the rural supersite (Kaiping in the autumn of 2008. In total, 12 new particle formation (NPF events are identified out of 30 campaign days. The results show that in the case of higher source and sink values, the result of the competition between source and sink is more likely the key limiting factor to determine the observation of NPF events at Kaiping. One episode with consecutive NPF events in the presence of strong biomass burning plume was observed between 10 and 15 November. The elevation of particle volume concentration (6.1 µm3/cm3/day is due to the coaction by the local biomass burning and secondary transformation. Organics and sulphates are the major components in PM1, accounting for 42 and 35% of the mass concentration, respectively. In this study, a rough estimation is applied to quantify the contributions of diverse sources to the particle number concentration. On average, the primary emission and secondary formation provide 28 and 72% of particle number concentration and 21 and 79% of mass concentration, respectively.

  7. Size distribution characteristics of carbonaceous aerosol in Xishuangbanna, southwest China: a sign for biomass burning in Asia.

    Science.gov (United States)

    Guo, Yuhong

    2016-03-01

    In 2012, size-segregated aerosol samples were collected in Xishuangbanna, a forest station in southwest China. The concentrations of organic and elemental carbon (OC and EC for short) were quantified with thermal/optical carbon analyzer in the filter samples. OC and EC exhibited similar seasonal patterns, with the highest concentrations in spring, possibly due to the influence of biomass burning in south and southeast Asia. The mass size distributions of OC and EC were bimodal in all the sampling seasons, each with a dominant peak in the fine mode of 0.4-0.7 μm and a coarse peak in the size range of 2.1-4.7 μm. In fine mode, OC and EC showed smaller geometric mean diameters (GMDs) during winter. OC and EC were prone to be more concentrated in fine particles in spring and winter than in summer and autumn. Furthermore, EC was more abundant in fine particles than OC. Good correlations (R(2) = 0.75-0.82) between OC and EC indicated that they had common dominant sources of combustion such as biomass burning and fossil fuel combustion emissions. The daily average OC/EC ratios ranged from 2.1 to 9.1, more elevated OC/EC ratios being found in the winter.

  8. Impact of smoke from biomass burning on air quality in rural communities in southern Australia

    Science.gov (United States)

    Reisen, Fabienne; Meyer, C. P. (Mick); McCaw, Lachie; Powell, Jennifer C.; Tolhurst, Kevin; Keywood, Melita D.; Gras, John L.

    2011-08-01

    In rural towns of southern Australia, smoke from biomass burning such as prescribed burning of forests, wildfires and stubble burning is often claimed to be the major source of air pollution. To investigate the validity of this claim, ambient measurements of PM 2.5 and ozone were made in two rural locations in southern Australia between 2006 and 2008. In order to distinguish PM 2.5 associated with smoke from other sources of particulate pollution, PM 2.5 samples were analysed for specific smoke tracers, levoglucosan, non sea-salt potassium (nssK +) and oxalate. Monitoring was also undertaken in four homes to determine the extent to which ambient pollutants from prescribed burning penetrate indoors into houses. Monitoring clearly showed that, on occasions, air quality in rural areas is significantly affected by smoke from biomass combustion with PM 2.5 showing the greatest impact. Concentrations of PM 2.5 increased significantly above background levels at both sites during periods of wildfire and prescribed fire leading to exceedences of the 24-h PM 2.5 Air National Environment Protection Measure (NEPM) Advisory standard. The 1-h and 4-h ozone NEPM standards were exceeded only during protracted forest wildfires. The impact of prescribed burning on the indoor air quality of residences depended on the duration of the smoke event and the ventilation rate of the houses. During short-duration events indoor air quality was determined by household activities. During events that persisted for several days, indoor air quality was determined by external conditions coupled with management of household ventilation rate.

  9. Estimates of biomass burning emissions in tropical Asia based on satellite-derived data

    Directory of Open Access Journals (Sweden)

    D. Chang

    2010-03-01

    Full Text Available Biomass burning in tropical Asia emits large amounts of trace gases and particulate matter into the atmosphere, which has significant implications for atmospheric chemistry and climatic change. In this study, emissions from open biomass burning over tropical Asia were evaluated during seven fire years from 2000 to 2006 (1 March 2000–31 February 2007. The size of the burned areas was estimated from newly published 1-km L3JRC and 500-m MODIS burned area products (MCD45A1. Available fuel loads and emission factors were assigned to each vegetation type in a GlobCover characterisation map, and fuel moisture content was taken into account when calculating combustion factors. Over the whole period, both burned areas and fire emissions showed clear spatial and seasonal variations. The size of the L3JRC burned areas ranged from 36 031 km2 in fire year 2005 to 52 303 km2 in 2001, and the MCD45A1 burned areas ranged from 54 790 km2 in fire year 2001 to 148 967 km2 in 2004. Comparisons of L3JRC and MCD45A1 burned areas using ground-based measurements and other satellite data were made in several major burning regions, and the results suggest that MCD45A1 generally performed better than L3JRC, although with a certain degree of underestimation in forest areas. The average annual L3JRC-based emissions were 123 (102–152, 12 (9–15, 1.0 (0.7–1.3, 1.9 (1.4–2.6, 0.11 (0.09–0.12, 0.89 (0.63–1.21, 0.043 (0.036–0.053, 0.021 (0.021–0.023, 0.41 (0.34–0.52, 3.4 (2.6–4.3, and 3.6 (2.8–4.7 Tg yr−1 for CO2, CO, CH4, NMHCs, NOx, NH3, SO2, BC, OC, PM2.5, and PM10, respectively, whereas MCD45A1-based emissions were 122 (108–144, 9.3 (7.7–11.7, 0.63 (0.46–0.86, 1.1 (0.8–1.6, 0.11 (0.10–0.13, 0.54 (0.38–0.76, 0.043 (0.038–0.051, 0.033 (0.032–0.037, 0.39 (0.34–0.47, 3.0 (2.6–3.7, and 3.3 (2.8

  10. Are forestation, bio-char and landfilled biomass adequate offsets for the climate effects of burning fossil fuels?

    NARCIS (Netherlands)

    Reijnders, L.

    2009-01-01

    Forestation and landfilling purpose-grown biomass are not adequate offsets for the CO2 emission from burning fossil fuels. Their permanence is insufficiently guaranteed and landfilling purpose-grown biomass may even be counterproductive. As to permanence, bio-char may do better than forests or

  11. Modeling the Impact of Amazonian Biomass Burning Aerosol on Clouds and Climate

    Science.gov (United States)

    Ryder, C. L.; Highwood, E.; Shaffrey, L.

    2014-12-01

    Biomass burning aerosol (BBA) can alter clouds by microphysical processes (the indirect effect), and by absorbing shortwave radiation which subsequently alters temperature and stability profiles (the semi-direct effect), and thus cloud development. The magnitude and direction of the semi-direct effect from BBA is sensitive to many factors, including relative altitudes of cloud and BBA and the optical properties of BBA. During September 2012 the SAMBBA (South American Biomass Burning Analysis) field campaign took place, during which the UK BAe146 aircraft performed measurements of BBA and cloud properties over the Amazon. Properties of BBA were found to vary over different burning regimes (forest vs cerrado/tropical savannah), with single scattering albedo at 550nm being notably lower in the east over cerrado (fires (>0.9). We present results from the HadGEM3 climate model, where we vary the presence and optical properties of BBA emitted over the South American region to determine how sensitive regional climate and the atmospheric circulation are to BBA properties.

  12. Are forestation, bio-char and landfilled biomass adequate offsets for the climate effects of burning fossil fuels?

    International Nuclear Information System (INIS)

    Reijnders, L.

    2009-01-01

    Forestation and landfilling purpose-grown biomass are not adequate offsets for the CO 2 emission from burning fossil fuels. Their permanence is insufficiently guaranteed and landfilling purpose-grown biomass may even be counterproductive. As to permanence, bio-char may do better than forests or landfilled biomass, but there are major uncertainties about net greenhouse gas emissions linked to the bio-char life cycle, which necessitate suspension of judgement about the adequacy of bio-char addition to soils as an offset for CO 2 emissions from burning fossil fuels.

  13. Effect of the Agricultural Biomass Burning on the Ambient Air Quality of Lumbini

    Science.gov (United States)

    Mehra, M.; Panday, A. K.; Praveen, P. S.; Bhujel, A.; Pokhrel, S.; Ram, K.

    2017-12-01

    The emissions from increasing anthropogenic activities has led to degradation in ambient air quality of Lumbini (UNESCO world heritage site) and its surrounding environments. The presence of high concentrations of air pollutants is of concern because of its implications for public health, atmospheric visibility, chemistry, crop yield, weather and climate on a local to regional scale. The study region experiences wide-spread on-field agricultural residue burning, particularly in the months of November (paddy residue burning) and April (wheat residue burning). In an attempt to study the impact of emissions from post-harvest burning of paddy and wheat residue in Nepal, the International Centre for Integrated Mountain Development, in collaboration with the Government of Nepal's Department of Environment and the Lumbini International Research Institute, established the Lumbini Air Quality Observatory (LAQO) in May 2016 for continuous measurement of Black carbon (BC), particulate matter (PM10, PM2.5 & PM1), as well as concentration of gaseous pollutant and meteorological parameters. Here we present results of the surface observations from LAQO for the months with intensified paddy and wheat open biomass burning during November 2016 and April 2017, respectively. The average concentrations of BC, PM2.5 and PM10 were 11.3±6.2 µg m-3, 96.7±48.9 µg m-3 and 132.3±59.1 µg m-3 respectively during the month of November 2016. On the other hand, the surface concentrations of BC, PM2.5 and PM10 were found to be 11.0±8.3 µg m-3, 45.0±35.0 µg m-3 and 114.0±96.1 µg m-3 during April 2017. A significant increase in the primary pollutant concentration was observed during both types of open agricultural burning periods. However, BC/PM2.5 ratio was almost higher by factor of two during paddy burning as compared to wheat residue burning. Source characteristics and the relative contribution of agricultural burning to PM concentrations at Lumbini are being computed based on

  14. Biomass fuel burning and its implications: Deforestation and greenhouse gases emissions in Pakistan

    International Nuclear Information System (INIS)

    Tahir, S.N.A.; Rafique, M.; Alaamer, A.S.

    2010-01-01

    Pakistan is facing problem of deforestation. Pakistan lost 14.7% of its forest habitat between 1990 and 2005 interval. This paper assesses the present forest wood consumption rate by 6000 brick kilns established in the country and its implications in terms of deforestation and emission of greenhouse gases. Information regarding consumption of forest wood by the brick kilns was collected during a manual survey of 180 brick kiln units conducted in eighteen provincial divisions of country. Considering annual emission contributions of three primary GHGs i.e., CO 2 , CH 4 and N 2 O, due to burning of forest wood in brick kiln units in Pakistan and using IPCC recommended GWP indices, the combined CO 2 -equivalent has been estimated to be 533019 t y -1 . - Consumption of forest wood in the brick industry poses the problem of deforestation in Pakistan in addition to release of GHGs in the environment owing to biomass burning.

  15. Air quality impact and physicochemical aging of biomass burning aerosols during the 2007 San Diego wildfires.

    Science.gov (United States)

    Zauscher, Melanie D; Wang, Ying; Moore, Meagan J K; Gaston, Cassandra J; Prather, Kimberly A

    2013-07-16

    Intense wildfires burning >360000 acres in San Diego during October, 2007 provided a unique opportunity to study the impact of wildfires on local air quality and biomass burning aerosol (BBA) aging. The size-resolved mixing state of individual particles was measured in real-time with an aerosol time-of-flight mass spectrometer (ATOFMS) for 10 days after the fires commenced. Particle concentrations were high county-wide due to the wildfires; 84% of 120-400 nm particles by number were identified as BBA, with particles wildfires, ammonium nitrate and amines after an increase of relative humidity, and sulfate dominated when the air mass back trajectories passed through the Los Angeles port region. Understanding BBA aging processes and quantifying the size-resolved mass and number concentrations are important in determining the overall impact of wildfires on air quality, health, and climate.

  16. Progress Towards Improved MOPITT-based Biomass Burning Emission Inventories for the Amazon Basin

    Science.gov (United States)

    Deeter, M. N.; Emmons, L. K.; Martinez-Alonso, S.; Wiedinmyer, C.; Arellano, A. F.; Fischer, E. V.; González-Alonso, L.; Val Martin, M.; Gatti, L. V.; Miller, J. B.; Gloor, M.; Domingues, L. G.; Correia, C. S. D. C.

    2016-12-01

    The 17-year long record of carbon monoxide (CO) concentrations from the MOPITT satellite instrument is uniquely suited for studying the interannual variability of biomass burning emissions. Data assimilation methods based on Ensemble Kalman Filtering are currently being developed to infer CO emissions within the Amazon Basin from MOPITT measurements along with additional datasets. The validity of these inversions will depend on the characteristics of the MOPITT CO retrievals (e.g., retrieval biases and vertical resolution) as well as the representation of chemistry and dynamics in the chemical transport model (CAM-Chem) used in the data assimilation runs. For example, the assumed vertical distribution ("injection height") of the biomass burning emissions plays a particularly important role. We will review recent progress made on a project to improve biomass burning emission inventories for the Amazon Basin. MOPITT CO retrievals over the Amazon Basin are first characterized, focusing on the MOPITT Version 6 "multispectral" retrieval product (exploiting both thermal-infrared and near-infrared channels). Validation results based on in-situ vertical profiles measured between 2010 and 2013 are presented for four sites in the Amazon Basin. Results indicate a significant negative bias in MOPITT retrieved lower-tropospheric CO concentrations. The seasonal and geographical variability of smoke injection height over the Amazon Basin is then analyzed using a MISR plume height climatology. This work has led to the development of a new fire emission injection height parameterization that was implemented in CAM-Chem and GEOS-Chem.. Finally, we present initial data assimilation results for the Amazon Basin and evaluate the results using available field campaign measurements.

  17. Reactive nitrogen over the tropical western Pacific: Influence from lightning and biomass burning during BIBLE A

    Science.gov (United States)

    Koike, M.; Kondo, Y.; Kita, K.; Nishi, N.; Liu, S. C.; Blake, D.; Ko, M.; Akutagawa, D.; Kawakami, S.; Takegawa, N.; Zhao, Y.; Ogawa, T.

    2003-02-01

    The Biomass Burning and Lightning Experiment phase A (BIBLE A) aircraft campaign was carried out over the tropical western Pacific in September and October 1998. During this period, biomass burning activity in Indonesia was quite weak. Mixing ratios of NOx and NOy in air masses that had crossed over the Indonesian islands within 3 days prior to the measurement (Indonesian air masses) were systematically higher than those in air masses originating from the central Pacific (tropical air masses). Sixty percent of the Indonesian air masses at 9-13 km (upper troposphere, UT) originated from the central Pacific. The differences in NOy mixing ratio between these two types of air masses were likely due to processes that occurred while air masses were over the Islands. Evidence presented in this paper suggests convection carries material from the surface, and NO is produced from lightning. At altitudes below 3 km (lower troposphere, LT), typical gradient of NOx and NOy to CO (dNOy/dCO and dNOx/dCO) was smaller than that in the biomass burning plumes and in urban areas, suggesting that neither source has a dominant influence. When the CO-NOx and CO-NOy relationships in the UT are compared to the reference relationships chosen for the LT, the NOx and NOy values are higher by 40-60 pptv (80% of NOx) and 70-100 pptv (50% of NOy). This difference is attributed to in situ production of NO by lightning. Analyses using air mass trajectories and geostationary meteorological satellite (GMS) derived cloud height data show that convection over land, which could be accompanied by lightning activity, increases the NOx values, while convection over the ocean generally lowers the NOx level. These processes are found to have a significant impact on the O3 production rate over the tropical western Pacific.

  18. Radiative effects of biomass burning aerosols and cloudiness on seasonal carbon cycle in the Amazon region

    Science.gov (United States)

    Moreira, D. S.; Longo, K.; Freitas, S.; Mercado, L. M.; Miller, J. B.; Rosario, N. M. E. D.; Gatti, L.; Yamasoe, M. A.

    2017-12-01

    The Amazon region is characterized by high cloudiness, mainly due to convective clouds during most of the year due to the high humidity, and heat availability. However, during the Austral winter, the northward movement of the inter-tropical convergence zone (ITCZ) from its climatological position, significantly reducing cloudiness and precipitation, facilitating vegetation fires. Consequently, during these dry months, biomass burning aerosols contribute to relatively high values of aerosol optical depth (AOD) in Amazonia, typically exceeding 1.0 in the 550 nm wavelength. Both clouds and aerosols scatter solar radiation, reducing the direct irradiance and increasing the diffuse fraction that reaches the surface, decreasing near surface temperature and increasing photosynthetically active radiation (PAR) availability. This, in turn, affects energy and CO2 fluxes within the vegetation canopy. We applied an atmospheric model fully coupled to terrestrial carbon cycle model to assess the relative impact of biomass burning aerosols and clouds on CO2 fluxes in the Amazon region. Our results indicate that during most of the year, gross primary productivity (GPP) is high mainly due to high soil moisture and high values of the diffuse fraction of solar irradiation due to cloudiness. Therefore, heterotrophic and autotrophic respiration are both high, increasing the NEE values (i.e. reducing the net land sink). On the other hand, during the dry season, with a significant reduction of cloudiness, the biomass burning aerosol is mainly responsible for the increase in the diffuse fraction of solar irradiation and the GPP of the forest. However, the low soil moisture during the dry season, especially in the eastern Amazon, reduces heterotrophic and autotrophic respiration and thus compensates for reduced GPP compared to the wet season. Different reasons, an anthropogenic one (human induced fires during the dry season) and a natural one (cloudiness), lead to a somewhat stable value

  19. Modification of Local Urban Aerosol Properties by Long-Range Transport of Biomass Burning Aerosol

    Directory of Open Access Journals (Sweden)

    Iwona S. Stachlewska

    2018-03-01

    Full Text Available During August 2016, a quasi-stationary high-pressure system spreading over Central and North-Eastern Europe, caused weather conditions that allowed for 24/7 observations of aerosol optical properties by using a complex multi-wavelength PollyXT lidar system with Raman, polarization and water vapour capabilities, based at the European Aerosol Research Lidar Network (EARLINET network urban site in Warsaw, Poland. During 24–30 August 2016, the lidar-derived products (boundary layer height, aerosol optical depth, Ångström exponent, lidar ratio, depolarization ratio were analysed in terms of air mass transport (HYSPLIT model, aerosol load (CAMS data and type (NAAPS model and confronted with active and passive remote sensing at the ground level (PolandAOD, AERONET, WIOS-AQ networks and aboard satellites (SEVIRI, MODIS, CATS sensors. Optical properties for less than a day-old fresh biomass burning aerosol, advected into Warsaw’s boundary layer from over Ukraine, were compared with the properties of long-range transported 3–5 day-old aged biomass burning aerosol detected in the free troposphere over Warsaw. Analyses of temporal changes of aerosol properties within the boundary layer, revealed an increase of aerosol optical depth and Ångström exponent accompanied by an increase of surface PM10 and PM2.5. Intrusions of advected biomass burning particles into the urban boundary layer seem to affect not only the optical properties observed but also the top height of the boundary layer, by moderating its increase.

  20. Effects of aerosol–radiation interaction on precipitation during biomass-burning season in East China

    Directory of Open Access Journals (Sweden)

    X. Huang

    2016-08-01

    Full Text Available Biomass burning is a main source for primary carbonaceous particles in the atmosphere and acts as a crucial factor that alters Earth's energy budget and balance. It is also an important factor influencing air quality, regional climate and sustainability in the domain of Pan-Eurasian Experiment (PEEX. During the exceptionally intense agricultural fire season in mid-June 2012, accompanied by rapidly deteriorating air quality, a series of meteorological anomalies was observed, including a large decline in near-surface air temperature, spatial shifts and changes in precipitation in Jiangsu province of East China. To explore the underlying processes that link air pollution to weather modification, we conducted a numerical study with parallel simulations using the fully coupled meteorology–chemistry model WRF-Chem with a high-resolution emission inventory for agricultural fires. Evaluation of the modeling results with available ground-based measurements and satellite retrievals showed that this model was able to reproduce the magnitude and spatial variations of fire-induced air pollution. During the biomass-burning event in mid-June 2012, intensive emission of absorbing aerosols trapped a considerable part of solar radiation in the atmosphere and reduced incident radiation reaching the surface on a regional scale, followed by lowered surface sensible and latent heat fluxes. The perturbed energy balance and re-allocation gave rise to substantial adjustments in vertical temperature stratification, namely surface cooling and upper-air heating. Furthermore, an intimate link between temperature profile and small-scale processes like turbulent mixing and entrainment led to distinct changes in precipitation. On the one hand, by stabilizing the atmosphere below and reducing the surface flux, black carbon-laden plumes tended to dissipate daytime cloud and suppress the convective precipitation over Nanjing. On the other hand, heating aloft increased upper

  1. Parameterization of single-scattering albedo (SSA) and absorption Ångström exponent (AAE) with EC / OC for aerosol emissions from biomass burning

    Science.gov (United States)

    Pokhrel, Rudra P.; Wagner, Nick L.; Langridge, Justin M.; Lack, Daniel A.; Jayarathne, Thilina; Stone, Elizabeth A.; Stockwell, Chelsea E.; Yokelson, Robert J.; Murphy, Shane M.

    2016-08-01

    Single-scattering albedo (SSA) and absorption Ångström exponent (AAE) are two critical parameters in determining the impact of absorbing aerosol on the Earth's radiative balance. Aerosol emitted by biomass burning represent a significant fraction of absorbing aerosol globally, but it remains difficult to accurately predict SSA and AAE for biomass burning aerosol. Black carbon (BC), brown carbon (BrC), and non-absorbing coatings all make substantial contributions to the absorption coefficient of biomass burning aerosol. SSA and AAE cannot be directly predicted based on fuel type because they depend strongly on burn conditions. It has been suggested that SSA can be effectively parameterized via the modified combustion efficiency (MCE) of a biomass burning event and that this would be useful because emission factors for CO and CO2, from which MCE can be calculated, are available for a large number of fuels. Here we demonstrate, with data from the FLAME-4 experiment, that for a wide variety of globally relevant biomass fuels, over a range of combustion conditions, parameterizations of SSA and AAE based on the elemental carbon (EC) to organic carbon (OC) mass ratio are quantitatively superior to parameterizations based on MCE. We show that the EC / OC ratio and the ratio of EC / (EC + OC) both have significantly better correlations with SSA than MCE. Furthermore, the relationship of EC / (EC + OC) with SSA is linear. These improved parameterizations are significant because, similar to MCE, emission factors for EC (or black carbon) and OC are available for a wide range of biomass fuels. Fitting SSA with MCE yields correlation coefficients (Pearson's r) of ˜ 0.65 at the visible wavelengths of 405, 532, and 660 nm while fitting SSA with EC / OC or EC / (EC + OC) yields a Pearson's r of 0.94-0.97 at these same wavelengths. The strong correlation coefficient at 405 nm (r = 0.97) suggests that parameterizations based on EC / OC or EC / (EC + OC) have good predictive

  2. Socioeconomic factors of smallholder farmers’ behavior in biomass burning around palm oil plantation in Indonesia

    Science.gov (United States)

    Maswadi; Arifudin; Septiana, Nurmelati; Maulidi

    2018-03-01

    Indonesian peatland fires has been revealed as the cause of haze disaster in Indonesia, while oil palm plantation’s concesion owned both by companies and smallholder farmers are accused as the main cause of this problem, especially in practice of land clearing. It is very important to conduct research on socioeconomic factors of farmers’ behavior in burning the peatland, while peatland one of the megabiomass storage in nature. The research was conducted in Kalimantan barat, where in province has been choosen two villages as the sample. Observation, interview with quiestionare, and focus group discussion were used in collecting data. In term of analysing the data, regression analysis (ordinary least square) was performed using SPSS Program. The result show that: (1). The socio economics factor that are affecting the burning behavior, were extension’s activities, degree of knowledge, consideration to burn, degree of participation on organisation and degree of cosmopolite. On the other hand, degree of burning frequent, was affected by land productivity, extension activities, and degree of participation in organisation, and finally the size of land’ burning is affected by, the kind of burning’s activities, the mutual aid (social capital), consideration of land burning, degree of awarness, and degree participation on organization.

  3. Impact of biomass burning plume on radiation budget and atmospheric dynamics over the arctic

    Science.gov (United States)

    Lisok, Justyna; Pedersen, Jesper; Ritter, Christoph; Markowicz, Krzysztof M.; Malinowski, Szymon; Mazzola, Mauro; Udisti, Roberto; Stachlewska, Iwona S.

    2018-04-01

    The aim of the research was to determine the impact of July 2015 biomass burning event on radiative budget, atmospheric stratification and turbulence over the Arctic using information about the vertical structure of the aerosol load from the ground-based data. MODTRAN simulations indicated very high surface radiative cooling (forcing of -150 Wm-2) and a heating rate of up to 1.8 Kday-1 at 3 km. Regarding LES results, a turbulent layer at around 3 km was clearly seen after 48 h of simulation.

  4. Biomass burning in the Amazon-fertilizer for the mountaineous rain forest in Ecuador.

    Science.gov (United States)

    Fabian, Peter; Kohlpaintner, Michael; Rollenbeck, Ruetger

    2005-09-01

    Biomass burning is a source of carbon, sulfur and nitrogen compounds which, along with their photochemically generated reaction products, can be transported over very long distances, even traversing oceans. Chemical analyses of rain and fogwater samples collected in the mountaineous rain forest of south Ecuador show frequent episodes of high sulfate and nitrate concentration, from which annual deposition rates are derived comparable to those found in polluted central Europe. As significant anthropogenic sources are lacking at the research site it is suspected that biomass burning upwind in the Amazon basin is the major source of the enhanced sulfate and nitrate imput. Regular rain and fogwater sampling along an altitude profile between 1800 and 3185 m has been carried out in the Podocarpus National Park close to the Rio SanFrancisco (3 degrees 58'S, 79 degrees 5'W) in southern Ecuador. pH values, electrical conductivity and chemical ion composition were measured at the TUM-WZW using standard methods. Results reported cover over one year from March 2002 until May 2003. Annual deposition rates of sulfate were calculated ranging between 4 and 13 kg S/ha year, almost as high as in polluted central Europe. Nitrogen deposition via ammonia (1.5-4.4 kg N/ha year) and nitrate (0.5-0.8 kg N/ha year) was found to be lower but still much higher than to be expected in such pristine natural forest environment. By means of back trajectory analyses it can be shown that most of the enhanced sulfur and nitrogen deposition is most likely due to forest fires far upwind of the ecuadorian sampling site, showing a seasonal variation, with sources predominantly found in the East/North East during January-March (Colombia, Venezuala, Northern Brazil) and East/SouthEast during July-September (Peru, Brazil). Our results show that biomass burning in the Amazon basin is the predominant source of sulfur and nitrogen compounds that fertilize the mountaineous rain forest in south Ecuador. The

  5. Biomass Burning:Significant Source of Nitrate and Sulfate for the Andean Rain Forest in Ecuador

    Science.gov (United States)

    Fabian, P.; Rollenbeck, R.; Spichtinger, N.

    2009-04-01

    Forest fires are significant sources of carbon, sulfur and nitrogen compounds which, along with their photochemically generated reaction products, can be transported over very long distances, even traversing oceans. Chemical analyses of rain and fogwater samples collected on the wet eastern slopes of the Ecuadorian Andes show frequent episodes of high sulfate and nitrate concentration, from which annual deposition rates of about14 kg/ha and 7 kg/ha ,respectively, are derived. These are comparable to those observed in polluted central Europe. Regular rain and fogwater sampling along an altitude profile between 1800 and 3185 m, has been carried out since 2002.The research area located at 30 58'S ,790 5' W is dominated by trade winds from easterly directions. The samples, generally accumulated over 1-week intervals, were analysed for pH, conductivity and major ions(K+,Na+,NH4+,Ca2+,Mg 2+,SO42-,NO3-,PO43-).For all components a strong seasonal variation is observed, while the altitudinal gradient is less pronounced. About 65 % of the weekly samples were significantly loaded with cations and anions, with pH often as low 3.5 to 4.0 and conductivity up to 50 uS/cm. Back trajectories (FLEXTRA) showed that respective air masses had passed over areas of intense biomass burning, sometimes influenced by volcanoes, ocean spray, or even episodic Sahara and/or Namib desert dust interference not discussed here. Enhanced SO4 2-and NO3- were identified, by combining satellite-based fire pixels with back trajectories, as predominantly resulting from biomass burning. For most cases, by using emission inventories, anthropogenic precursor sources other than forest fires play a minor role, thus leaving biomass burning as the main source of nitrate and sulphate in rain and fogwater. Some SO4 2- , about 10 % of the total input, could be identified to originate from active volcanoes, whose plumes were sometimes encountered by the respective back trajectories. While volcanic, oceanic and

  6. Comparison of chemical characteristics of 495 biomass burning plumes intercepted by the NASA DC-8 aircraft during the ARCTAS/CARB-2008 field campaign

    Directory of Open Access Journals (Sweden)

    A. Hecobian

    2011-12-01

    Full Text Available This paper compares measurements of gaseous and particulate emissions from a wide range of biomass-burning plumes intercepted by the NASA DC-8 research aircraft during the three phases of the ARCTAS-2008 experiment: ARCTAS-A, based out of Fairbanks, Alaska, USA (3 April to 19 April 2008; ARCTAS-B based out of Cold Lake, Alberta, Canada (29 June to 13 July 2008; and ARCTAS-CARB, based out of Palmdale, California, USA (18 June to 24 June 2008. Approximately 500 smoke plumes from biomass burning emissions that varied in age from minutes to days were segregated by fire source region and urban emission influences. The normalized excess mixing ratios (NEMR of gaseous (carbon dioxide, acetonitrile, hydrogen cyanide, toluene, benzene, methane, oxides of nitrogen and ozone and fine aerosol particulate components (nitrate, sulfate, ammonium, chloride, organic aerosols and water soluble organic carbon of these plumes were compared. A detailed statistical analysis of the different plume categories for different gaseous and aerosol species is presented in this paper.

    The comparison of NEMR values showed that CH4 concentrations were higher in air-masses that were influenced by urban emissions. Fresh biomass burning plumes mixed with urban emissions showed a higher degree of oxidative processing in comparison with fresh biomass burning only plumes. This was evident in higher concentrations of inorganic aerosol components such as sulfate, nitrate and ammonium, but not reflected in the organic components. Lower NOx NEMRs combined with high sulfate, nitrate and ammonium NEMRs in aerosols of plumes subject to long-range transport, when comparing all plume categories, provided evidence of advanced processing of these plumes.

  7. Comparison of chemical characteristics of 495 biomass burning plumes intercepted by the NASA DC-8 aircraft during the ARCTAS/CARB-2008 field campaign

    Science.gov (United States)

    Hecobian, A.; Liu, Z.; Hennigan, C. J.; Huey, L. G.; Jimenez, J. L.; Cubison, M. J.; Vay, S.; Diskin, G. S.; Sachse, G. W.; Wisthaler, A.; Mikoviny, T.; Weinheimer, A. J.; Liao, J.; Knapp, D. J.; Wennberg, P. O.; Kürten, A.; Crounse, J. D.; St. Clair, J.; Wang, Y.; Weber, R. J.

    2011-12-01

    This paper compares measurements of gaseous and particulate emissions from a wide range of biomass-burning plumes intercepted by the NASA DC-8 research aircraft during the three phases of the ARCTAS-2008 experiment: ARCTAS-A, based out of Fairbanks, Alaska, USA (3 April to 19 April 2008); ARCTAS-B based out of Cold Lake, Alberta, Canada (29 June to 13 July 2008); and ARCTAS-CARB, based out of Palmdale, California, USA (18 June to 24 June 2008). Approximately 500 smoke plumes from biomass burning emissions that varied in age from minutes to days were segregated by fire source region and urban emission influences. The normalized excess mixing ratios (NEMR) of gaseous (carbon dioxide, acetonitrile, hydrogen cyanide, toluene, benzene, methane, oxides of nitrogen and ozone) and fine aerosol particulate components (nitrate, sulfate, ammonium, chloride, organic aerosols and water soluble organic carbon) of these plumes were compared. A detailed statistical analysis of the different plume categories for different gaseous and aerosol species is presented in this paper. The comparison of NEMR values showed that CH4 concentrations were higher in air-masses that were influenced by urban emissions. Fresh biomass burning plumes mixed with urban emissions showed a higher degree of oxidative processing in comparison with fresh biomass burning only plumes. This was evident in higher concentrations of inorganic aerosol components such as sulfate, nitrate and ammonium, but not reflected in the organic components. Lower NOx NEMRs combined with high sulfate, nitrate and ammonium NEMRs in aerosols of plumes subject to long-range transport, when comparing all plume categories, provided evidence of advanced processing of these plumes.

  8. An emissions audit of a biomass combustor burning treated wood waste

    International Nuclear Information System (INIS)

    Jackson, P.M.; Jones, H.H.; King, P.G.

    1993-01-01

    This report describes the Emissions Audit carried out on a Biomass Combustor burning treated wood waste at the premises of a furniture manufacturer. The Biomass Combustor was tested in two firing modes; continuous fire and modulating fire. Combustion chamber temperatures and gas residence times were not measured. Boiler efficiencies were very good at greater than 75% in both tests. However, analysis of the flue gases indicated that improved efficiencies are possible. The average concentrations of CO (512mgm -3 ) and THC (34mgm -3 ) for Test 1 were high, indicating that combustion was poor. The combustor clearly does not meet the requirements of the Guidance Note for the Combustion of Wood Waste. CO 2 and O 2 concentrations were quite variable showing that combustion conditions were fairly unstable. Improved control of combustion should lead to acceptable emission concentrations. (Author)

  9. Emission factors from biomass burning in three types of appliances: fireplace, woodstove and pellet stove

    Science.gov (United States)

    Duarte, Márcio; Vicente, Estela; Calvo, Ana; Nunes, Teresa; Tarelho, Luis; Alves, Célia

    2014-05-01

    In the last years, the importance of biomass fuels has increased mainly for two reasons. One of them is the effort to control the emissions of greenhouse gases, and on the other hand, the increasing costs associated with fossil fuels. Besides that, biomass burning is now recognised as one of the major sources contributing to high concentrations of particulate matter, especially during winter time. Southern European countries have a lack of information regarding emission profiles from biomass burning. Because of that, in most source apportionment studies, the information used comes from northern and alpine countries, whose combustion appliances, fuels and habits are different from those in Mediterranean countries. Due to this lack of information, series of tests using different types of equipment, as well as fuels, were carried out in order to obtain emission profiles and emission factors that correspond to the reality in southern European countries. Tests involved three types of biomass appliances used in Portugal, a fireplace, a woodstove and a modern pellet stove. Emission factors (mg.kg-1 fuel, dry basis) for CO, THC and PM10 were obtained. CO emission factors ranged from 38, for pine on the woodstove, to 84 for eucalyptus in the fireplace. THC emissions were between 4 and 24, for pine in the woodstove and eucalyptus in the fireplace, respectively. PM10 emission factors were in the range from 3.99, for pine in the woodstove, to 17.3 for eucalyptus in the fireplace. On average, the emission factors obtained for the fireplace are 1.5 (CO) to 4 (THC) times higher than those of the woodstove. The fireplace has emission factors for CO, THC and PM10 10, 35 and 32 times, respectively, higher than the pellet stove.

  10. Measurements of CO in an aircraft experiment and their correlation with biomass burning and air mass origin in South America

    Science.gov (United States)

    Boian, C.; Kirchhoff, V. W. J. H.

    Carbon monoxide (CO) measurements are obtained in an aircraft experiment during 1-7 September 2000, conducted over Central Brazil in a special region of anticyclonic circulation. This is a typical transport regime during the dry season (July-September), when intense biomass burning occurs, and which gives origin to the transport of burning poluents from the source to distant regions. This aircraft experiment included in situ measurements of CO concentrations in three different scenarios: (1) areas of fresh biomass burning air masses, or source areas; (2) areas of aged biomass burning air masses; and (3) areas of clean air or pristine air masses. The largest CO concentrations were of the order of 450 ppbv in the source region near Conceicao do Araguaia (PA), and the smallest value near 100 ppbv, was found in pristine air masses, for example, near the northeast coastline (clean air, or background region). The observed concentrations were compared to the number of fire pixels seen by the AVHRR satellite instrument. Backward isentropic trajectories were used to determine the origin of the air masses at each sampling point. From the association of the observed CO mixing ratios, fire pixels and air mass trajectories, the previous scenarios may be subdivided as follows: (1a) source regions of biomass burning with large CO concentrations; (1b) regions with few local fire pixels and absence of contributions by transport. Areas with these characteristics include the northeast region of Brazil; (1c) regions close to the source region and strongly affected by transport (region of Para and Amazonas); (2) regions that have a consistent convergence of air masses, that have traveled over biomass burning areas during a few days (western part of the Cerrado region); (3a) Pristine air masses with origin from the ocean; (3b) regions with convergent transport that has passed over areas of no biomass burning, such as frontal weather systems in the southern regions.

  11. Heterogeneous kinetics of N2O5 reactive uptake and chlorine activation in authentic biomass burning aerosol

    Science.gov (United States)

    Sullivan, R. C.; Jahl, L.; Goldberger, L.; Ahern, A.; Thornton, J. A.

    2017-12-01

    Nitryl chloride (ClNO2) is a nighttime reservoir of NOx that is formed from the uptake of dinitrogen pentoxide (N2O5) into particles containing chloride. The formation of ClNO2 from heterogeneous reactions of N2O5(g) with authentic biomass burning aerosol has not previously been studied. We observed the rapid production of N2O5 and then ClNO2 during dark chemical transformations of biomass burning aerosol produced from a variety of fuels using both a smog chamber and an aerosol flow tube reactor. Iodide adduct chemical ionization mass spectrometry was used to measure gas phase ClNO2 and N2O5, and acetate chemical ionization mass spectrometry to measure gaseous HCl and other compounds, while a soot particle aerosol mass spectrometer measured changes in aerosol composition as chloride was displaced by nitrate. Upon the addition of ozone to the biomass burning smoke, N2O5 was always rapidly formed and ClNO2 was subsequently detected in the gas phase. During experiments at high relative humidity, we observed decreases in particulate chloride and increases in particulate nitrate which we believe are due to acid displacement of HCl(g) by HNO3 since no additional ClNO2 was produced in the gas phase. The reactive uptake probability of N2O5 on authentic biomass burning aerosol and the yield of ClNO2 were determined for the first time using chamber and flow tube experiments on smoke from biomass fuels including sawgrass, giant cutgrass, palmetto leaves, and ponderosa pine. These experiments confirm the formation of N2O5 and ClNO2 in biomass burning emissions and suggest that biomass burning is a likely source of continental ClNO2 and HCl.

  12. Seasonal impact of regional outdoor biomass burning on air pollution in three Indian cities: Delhi, Bengaluru, and Pune

    Science.gov (United States)

    Liu, Tianjia; Marlier, Miriam E.; DeFries, Ruth S.; Westervelt, Daniel M.; Xia, Karen R.; Fiore, Arlene M.; Mickley, Loretta J.; Cusworth, Daniel H.; Milly, George

    2018-01-01

    Air pollution in many of India's cities exceeds national and international standards, and effective pollution control strategies require knowledge of the sources that contribute to air pollution and their spatiotemporal variability. In this study, we examine the influence of a single pollution source, outdoor biomass burning, on particulate matter (PM) concentrations, surface visibility, and aerosol optical depth (AOD) from 2007 to 2013 in three of the most populous Indian cities. We define the upwind regions, or ;airsheds,; for the cities by using atmospheric back trajectories from the HYSPLIT model. Using satellite fire radiative power (FRP) observations as a measure of fire activity, we target pre-monsoon and post-monsoon fires upwind of the Delhi National Capital Region and pre-monsoon fires surrounding Bengaluru and Pune. We find varying contributions of outdoor fires to different air quality metrics. For the post-monsoon burning season, we find that a subset of local meteorological variables (air temperature, humidity, sea level pressure, wind speed and direction) and FRP as the only pollution source explained 39% of variance in Delhi station PM10 anomalies, 77% in visibility, and 30% in satellite AOD; additionally, per unit increase in FRP within the daily airshed (1000 MW), PM10 increases by 16.34 μg m-3, visibility decreases by 0.155 km, and satellite AOD increases by 0.07. In contrast, for the pre-monsoon burning season, we find less significant contributions from FRP to air quality in all three cities. Further, we attribute 99% of FRP from post-monsoon outdoor fires within Delhi's average airshed to agricultural burning. Our work suggests that although outdoor fires are not the dominant air pollution source in India throughout the year, post-monsoon fires contribute substantially to regional air pollution and high levels of population exposure around Delhi. During 3-day blocks of extreme PM2.5 in the 2013 post-monsoon burning season, which coincided

  13. Evolution of biomass burning aerosol over the Amazon: airborne measurements of aerosol chemical composition, microphysical properties, mixing state and optical properties during SAMBBA

    Science.gov (United States)

    Morgan, W.; Allan, J. D.; Flynn, M.; Darbyshire, E.; Hodgson, A.; Liu, D.; O'Shea, S.; Bauguitte, S.; Szpek, K.; Johnson, B.; Haywood, J.; Longo, K.; Artaxo, P.; Coe, H.

    2013-12-01

    region compared with the Rainforest environment. This was reflected in the single scattering albedo of the regional smoke haze, with values of 0.9 observed in the Rainforest environments compared with a value of 0.8 in the Cerrado region. This contrast results in a net cooling and warming respectively in terms of the aerosol direct radiative effect. BC-containing particles were found to be rapidly coated in the near-field, with little evidence for additional coating upon advection and dilution. This is consistent with organic aerosol mass being approximately constant when accounting for dilution both close to source and on the regional scale. However, the bulk organic aerosol composition became increasingly oxidised with distance from source. Such properties have important implications for the life cycle and formation of particulate material, which governs its subsequent impacts. Biomass burning layers were observed aloft in the free troposphere, which has potential implications for atmospheric stability profiles and cloud formation. The results presented enhance our knowledge of biomass burning aerosol in a sensitive region of the globe, where relatively few measurement campaigns have taken place previously.

  14. Long-range transport biomass burning emissions to the Himalayas: insights from high-resolution aerosol mass spectrometer

    Science.gov (United States)

    Xu, J.; Zhang, X.; Liu, Y.; Shichang, K.; Ma, Y.

    2017-12-01

    An intensive measurement was conducted at a remote, background, and high-altitude site (Qomolangma station, QOMS, 4276 m a.s.l.) in the northern Himalayas, using an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) along with other collocated instruments. The field measurement was performed from April 12 to May 12, 2016 to chemically characterize high time-resolved submicron particulate matter (PM1) and obtain the influence of biomass burning emissions to the Himalayas, frequently transported from south Asia during pre-monsoon season. Two high aerosol loading periods were observed during the study. Overall, the average (± 1σ) PM1 mass concentration was 4.44 (± 4.54) µg m-3 for the entire study, comparable with those observed at other remote sites worldwide. Organic aerosols (OA) was the dominant PM1 species (accounting for 54.3% of total PM1 mass on average) and its contribution increased with the increase of total PM1 mass loading. The average size distributions of PM1 species all peaked at an overlapping accumulation mode ( 500 nm), suggesting that aerosol particles were internally well-mixed and aged during long-range transportations. Positive matrix factorization (PMF) analysis on the high-resolution organic mass spectra identified three distinct OA factors, including a biomass burning related OA (BBOA, 43.7%) and two oxygenated OA (Local-OOA and LRT-OOA; 13.9% and 42.4%) represented sources from local emissions and long-range transportations, respectively. Two polluted air mass origins (generally from the west and southwest of QOMS) and two polluted episodes with enhanced PM1 mass loadings and elevated BBOA contributions were observed, respectively, suggesting the important sources of wildfires from south Asia. One of polluted aerosol plumes was investigated in detail to illustrate the evolution of aerosol characteristics at QOMS driving by different impacts of wildfires, air mass origins, meteorological conditions and

  15. Emission, evolution, and radiative properties of particles from biomass burning in Brazil

    Science.gov (United States)

    Reid, Jeffrey Spencer

    1998-12-01

    In this dissertation measurements of the physical, chemical, and radiative properties of biomass-burning particles, obtained by the Cloud and Aerosol Research Group (CARG), Department of Atmospheric Science, are described and discussed. Data on aging smoke particles were collected by the CARG from the University of Washington C-131A aircraft as part of the Smoke, Clouds, and Radiation (SCAR) studies on the US West Coast (SCAR- C, September, 1994), and in Brazil (SCAR-B, August and September, 1995). The physical and optical characteristics of smoke particles were measured from three prescribed forest fires on the U.S. West Coast, and from nineteen forest, cerrado, and grass fires in Brazil. The sizes of the particles from tropical forest fires were related to fuel type, fire intensity, and combustion efficiency. An analysis of smoke particles in regional hazes in Brazil suggests that as smoke aerosols age, their particle sizes increase by ~30-50% by coagulation and gas-to- particle conversion. Furthermore, condensation and gas- to-particle conversion of organic vapors increase the aerosol mass by ~20-40%. One-third to one-half of this mass growth likely occurs in the first few hours of aging due to the condensation of large primary organic molecules. The remaining mass growth probably is probably produced by photochemical and cloud processing over time periods of several days. Changes in particle sizes and compositions during the aging of smoke in Brazil have a large impact on the optical properties of the aerosol. Over a two to four day period, the fine particle mass scattering efficiency increased by more than 30%, and the single-scattering albedo increased by ~0.04-0.1. Conversely, the Angstrom coefficient, backscatter ratio, and mass absorption efficiency decreased significantly with age, due no doubt to particle growth. Smoke particles are also shown to affect some cloud properties, Although in the presence of heavy smoke (CN concentrations >2,500 cm-3

  16. Inclusion of biomass burning in WRF-Chem: impact of wildfires on weather forecasts

    Directory of Open Access Journals (Sweden)

    G. Grell

    2011-06-01

    Full Text Available A plume rise algorithm for wildfires was included in WRF-Chem, and applied to look at the impact of intense wildfires during the 2004 Alaska wildfire season on weather simulations using model resolutions of 10 km and 2 km. Biomass burning emissions were estimated using a biomass burning emissions model. In addition, a 1-D, time-dependent cloud model was used online in WRF-Chem to estimate injection heights as well as the vertical distribution of the emission rates. It was shown that with the inclusion of the intense wildfires of the 2004 fire season in the model simulations, the interaction of the aerosols with the atmospheric radiation led to significant modifications of vertical profiles of temperature and moisture in cloud-free areas. On the other hand, when clouds were present, the high concentrations of fine aerosol (PM2.5 and the resulting large numbers of Cloud Condensation Nuclei (CCN had a strong impact on clouds and cloud microphysics, with decreased precipitation coverage and precipitation amounts during the first 12 h of the integration. During the afternoon, storms were of convective nature and appeared significantly stronger, probably as a result of both the interaction of aerosols with radiation (through an increase in CAPE as well as the interaction with cloud microphysics.

  17. Impact of anthropogenic emissions and open biomass burning on regional carbonaceous aerosols in South China

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Gan, E-mail: zhanggan@gig.ac.c [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Li Jun [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Li Xiangdong [Department of Civil and Structural Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Xu Yue; Guo Lingli [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Tang Jianhui [Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003 (China); Lee, Celine S.L. [Department of Civil and Structural Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Liu Xiang [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Chen Yingjun [Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003 (China)

    2010-11-15

    Carbonaceous aerosols were studied at three background sites in south and southwest China. Hok Tsui in Hong Kong had the highest concentrations of carbonaceous aerosols (OC = 8.7 {+-} 4.5 {mu}g/m{sup 3}, EC = 2.5 {+-} 1.9 {mu}g/m{sup 3}) among the three sites, and Jianfeng Mountains in Hainan Island (OC = 5.8 {+-} 2.6 {mu}g/m{sup 3}, EC = 0.8 {+-} 0.4 {mu}g/m{sup 3}) and Tengchong mountain over the east edge of the Tibetan Plateau (OC = 4.8 {+-} 4.0 {mu}g/m{sup 3}, EC = 0.5 {+-} 0.4 {mu}g/m{sup 3}) showed similar concentration levels. Distinct seasonal patterns with higher concentrations during the winter, and lower concentrations during the summertime were observed, which may be caused by the changes of the regional emissions, and monsoon effects. The industrial and vehicular emissions in East, Southeast and South China, and the regional open biomass burning in the Indo-Myanmar region of Asia were probably the two major potential sources for carbonaceous matters in this region. - Anthropogenic emissions in China and open biomass burning in the Indo-Myanmar region were the two major potential sources for carbonaceous matters in South China region.

  18. The effects of biomass burning aerosols and clouds on the CO2 flux in Amazonia

    International Nuclear Information System (INIS)

    Oliveira, Paulo H.F.; Artaxo, Paulo; Pires, Carlos; Lucca, Silvia De; Procopio, Aline; Holben, Brent; Schafer, Joel; Cardoso, Luiz F.; Wofsy, Steven C.; Rocha, Humberto R.

    2007-01-01

    Aerosol particles associated with biomass burning emissions affect the surface radiative budget and net ecosystem exchange (NEE) over large areas in Amazonia during the dry season. We analysed CO 2 fluxes as a function of aerosol loading for two forest sites in Amazonia as part of the LBA experiment. Aerosol optical thickness (AOT) measurements were made with AERONET sun photometers, and CO 2 flux measurements were determined by eddy-correlation. The enhancement of the NEE varied with different aerosol loading, as well as cloud cover, solar elevation angles and other parameters. The AOT value with the strongest effect on the NEE in the FLONA-TapajOs site was 1.7, with an enhancement of the NEE of 11% compared with clear-sky conditions. In the RBJ site, the strongest effect was for AOT of 1.6 with an enhancement of 18% in the NEE. For values of AOT lager than 2.7, strong reduction on the NEE was observed due to the reduction in the total solar radiation. The enhancement in the NEE is attributed to the increase of diffuse versus direct solar radiation. Due to the fact that aerosols from biomass burning are present in most tropical areas, its effects on the global carbon budget could also be significant

  19. Biomass Burning Aerosol Absorption Measurements with MODIS Using the Critical Reflectance Method

    Science.gov (United States)

    Zhu, Li; Martins, Vanderlei J.; Remer, Lorraine A.

    2010-01-01

    This research uses the critical reflectance technique, a space-based remote sensing method, to measure the spatial distribution of aerosol absorption properties over land. Choosing two regions dominated by biomass burning aerosols, a series of sensitivity studies were undertaken to analyze the potential limitations of this method for the type of aerosol to be encountered in the selected study areas, and to show that the retrieved results are relatively insensitive to uncertainties in the assumptions used in the retrieval of smoke aerosol. The critical reflectance technique is then applied to Moderate Resolution Imaging Spectrometer (MODIS) data to retrieve the spectral aerosol single scattering albedo (SSA) in South African and South American 35 biomass burning events. The retrieved results were validated with collocated Aerosol Robotic Network (AERONET) retrievals. One standard deviation of mean MODIS retrievals match AERONET products to within 0.03, the magnitude of the AERONET uncertainty. The overlap of the two retrievals increases to 88%, allowing for measurement variance in the MODIS retrievals as well. The ensemble average of MODIS-derived SSA for the Amazon forest station is 0.92 at 670 nm, and 0.84-0.89 for the southern African savanna stations. The critical reflectance technique allows evaluation of the spatial variability of SSA, and shows that SSA in South America exhibits higher spatial variation than in South Africa. The accuracy of the retrieved aerosol SSA from MODIS data indicates that this product can help to better understand 44 how aerosols affect the regional and global climate.

  20. Measurement of mixed biomass burning and mineral dust aerosol in the thermal infrared

    Science.gov (United States)

    Koehler, C. H.; Trautmann, T.; Lindermeir, E.

    2009-03-01

    From January 19th to February 7th, 2008, we installed a Fourier transform infrared spectrometer (FTIR) at Praia Airport on the island of Santiago, Cape Verde. Our goal was to measure the combined radiative effect of biomass burning aerosol and mineral dust usually observed there during that time of the year, when mineral dust emerging from the Sahara mixes with biomass burning aerosol transported north-westwards from the Sahelian region. Our measurements were part of the Saharan Mineral Dwst Experiment 2 (SAMUM 2) funded by the German Research Foundation (DFG) as continuation of the SAMUM field experiment in Morocco in 2006. SAMUM 2 is a joint venture of several German research institutes and universities and included both ground based as well as airborne measurements with the DLR Falcon research aircraft. The ground based instrumentation included spectrometers for visible and thermal infrared downwelling radiation, sun photometers, LIDAR and particle impactors while the Falcon was equipped with LIDAR and several instruments for aerosol analysis and sample return. A comparison of the FTIR measurements with radiative transfer simulations yields the expected aerosol forcing in the atmospheric window region after application of a suitable calibration method.

  1. A case study on biomass burning aerosols: effects on aerosol optical properties and surface radiation levels

    Directory of Open Access Journals (Sweden)

    A. Arola

    2007-08-01

    Full Text Available In spring 2006, biomass burning aerosols from eastern Europe were transported extensively to Finland, and to other parts of northern Europe. They were observed as far as in the European Arctic. In the first part of this paper, temporal and spatial evolution and transport of these biomass burning aerosols are monitored with MODIS retrieved aerosol optical depth (AOD imagery at visible wavelengths (0.55 μm. Comparison of MODIS and AERONET AOD is conducted at Tõravere, Estonia. Then trajectory analyses, as well as MODIS Fire Mapper products are used to better understand the type and origin of the air masses. During the studied four-week period AOD values ranged from near zero up to 1.2 at 0.55 μm and the linear correlation between MODIS and AERONET was very high (~0.97. Temporal variability observed within this four-week period was also rather well explained by the trajectory analysis in conjunction with the fire detections produced by the MODIS Rapid Response System. In the second part of our study, the surface measurements of global and UV radiation at Jokioinen, Finland are used to study the effect of this haze episode on the levels of surface radiation. We found reductions up to 35% in noon-time surface UV irradiance (at 340 nm as compared to typical aerosol conditions. For global (total solar radiation, the reduction was always smaller, in line with the expected wavelength dependence of the aerosol effect.

  2. Geostationary satellite estimation of biomass burning in Amazonia during BASE-A

    International Nuclear Information System (INIS)

    Menzel, W.P.; Cutrim, E.C.; Prins, E.M.

    1991-01-01

    This chapter presents the results of using Geostationary Operational Environmental Satellite (GOES) Visible Infrared Spin Scan Radiometer Atmospheric Sounder (VAS) infrared window (3.9 and 11.2 microns) data to monitor biomass burning several times per day in Amazonia. The technique of Matson and Dozier using two window channels was adapted to GOES VAS infrared data to estimate the size and temperature of fires associated with deforestation in the vicinity of Alta Floresta, Brazil, during the Biomass Burning Airborne and Spaceborne Experiment - Amazonia (BASE-A). Although VAS data do not offer the spatial resolution available with AVHRR data 97 km versus 1 km, respectively, this decreased resolution does not seem to hinder the ability of the VAS instrument to detect fires; in some cases it proves to be advantageous in that saturation does not occur as often. VAS visible data are additionally helpful in verifying that the hot spots sensed in the infrared are actually related to fires. Furthermore, the fire plumes can be tracked in time to determine their motion and extent. In this way, the GOES satellite offers a unique ability to monitor diurnal variations in fire activity and transport of related aerosols

  3. Reduced biomass burning emissions reconcile conflicting estimates of the post-2006 atmospheric methane budget.

    Science.gov (United States)

    Worden, John R; Bloom, A Anthony; Pandey, Sudhanshu; Jiang, Zhe; Worden, Helen M; Walker, Thomas W; Houweling, Sander; Röckmann, Thomas

    2017-12-20

    Several viable but conflicting explanations have been proposed to explain the recent ~8 p.p.b. per year increase in atmospheric methane after 2006, equivalent to net emissions increase of ~25 Tg CH 4 per year. A concurrent increase in atmospheric ethane implicates a fossil source; a concurrent decrease in the heavy isotope content of methane points toward a biogenic source, while other studies propose a decrease in the chemical sink (OH). Here we show that biomass burning emissions of methane decreased by 3.7 (±1.4) Tg CH 4 per year from the 2001-2007 to the 2008-2014 time periods using satellite measurements of CO and CH 4 , nearly twice the decrease expected from prior estimates. After updating both the total and isotopic budgets for atmospheric methane with these revised biomass burning emissions (and assuming no change to the chemical sink), we find that fossil fuels contribute between 12-19 Tg CH 4 per year to the recent atmospheric methane increase, thus reconciling the isotopic- and ethane-based results.

  4. Aqueous-phase photochemical oxidation and direct photolysis of vanillin - a model compound of methoxy phenols from biomass burning

    Science.gov (United States)

    Li, Y. J.; Huang, D. D.; Cheung, H. Y.; Lee, A. K. Y.; Chan, C. K.

    2014-03-01

    We present here experimental results on aqueous-phase (A) photochemical oxidation (with UV and OH radicals generated from H2O2 photolysis) and (B) direct photolysis (with only UV irradiation) of a methoxy phenol, vanillin (VL), as a model compound from biomass burning. Both on-line aerosol mass spectrometric (AMS) characterization and off-line chemical analyses were performed. AMS analyses of dried atomized droplets of the bulk reacting mixtures showed that VL almost entirely evaporates during the drying process. Large amounts of organic mass remained in the particle phase after reactions under both conditions. Under condition (A), AMS measured organic mass first increased rapidly and then decreased, attributable to the formation of non-volatile products and subsequent formation of smaller and volatile products, respectively. The oxygen-to-carbon (O : C) ratio of the products reached 1.5 after about 80 min, but dropped substantially thereafter. In contrast, organic mass increased slowly under condition (B). The O : C ratio reached 1.0 after 180 min. In off-line analyses, small oxygenates were detected under condition (A), while hydroxylated products and dimers of VL were detected under condition (B). Particle hygroscopic growth factor (GF) and cloud condensation nuclei (CCN) activity of the reacting mixtures were found to depend on both organic volume fraction and the degree of oxygenation of organics. Results show that (1) aqueous-phase processes can lead to the retention of a large portion of the organic mass in the particle phase; (2) once retained, this portion of organic mass significantly changes the hygroscopicity and CCN activity of the aerosol particles; (3) intensive photochemical oxidation gave rise to an O : C ratio as high as 1.5 but the ratio decreased as further oxidation led to smaller and more volatile products; and (4) polymerization occurred with direct photolysis, resulting in high-molecular-weight products of a yellowish color. This study

  5. Aqueous-phase photochemical oxidation and direct photolysis of vanillin - a model compound of methoxy-phenols from biomass burning

    Science.gov (United States)

    Li, Y. J.; Huang, D. D.; Cheung, H. Y.; Lee, A. K. Y.; Chan, C. K.

    2013-10-01

    We present here experimental results on aqueous-phase (A) photochemical oxidation (with UV and OH radicals generated from H2O2 photolysis) and (B) direct photolysis (with only UV irradiation) of a methoxy-phenol, vanillin (VL), as a model compound from biomass burning. Both on-line aerosol mass spectrometric (AMS) characterization and off-line chemical analyses were performed. AMS analyses of dried atomized droplets of the bulk reacting mixtures showed that VL almost entirely evaporates during the drying process. Large amounts of organic mass remained in the particle phase after reactions under both conditions. Under condition (A), AMS measured organic mass first increased rapidly and then decreased, attributable to the formation of non-volatile products and subsequent formation of smaller and volatile products, respectively. The oxygen-to-carbon (O:C) ratio of the products reached 1.5 after about 80 min, but dropped substantially thereafter. In contrast, organic mass increased slowly under condition (B). The O:C ratio reached 1.0 after 180 min. In off-line analyses, small oxygenates were detected under condition (A), while hydroxylated products and dimers of VL were detected under condition (B). Particle hygroscopic growth factor (GF) and cloud condensation nuclei (CCN) activity of the reacting mixtures were found to be dependent on both organic volume fraction and the degree of oxygenation of organics. Results show that (1) aqueous-phase processes can lead to the retention of a large portion of the organic mass in the particle phase; (2) once retained, this portion of organic mass significantly changes the hygroscopicity and CCN activity of the aerosol particles; (3) intensive photochemical oxidation gave rise to an O:C ratio as high as 1.5 but the ratio decreased as further oxidation led to smaller and more volatile products; and (4) polymerization occurred with direct photolysis, resulting in high-molecular-weight products of a yellowish color. This study

  6. Measurements of reactive trace gases and variable O3 formation rates in some South Carolina biomass burning plumes

    Science.gov (United States)

    Akagi, S. K.; Yokelson, R. J.; Burling, I. R.; Meinardi, S.; Simpson, I.; Blake, D. R.; McMeeking, G. R.; Sullivan, A.; Lee, T.; Kreidenweis, S.; Urbanski, S.; Reardon, J.; Griffith, D. W. T.; Johnson, T. J.; Weise, D. R.

    2013-02-01

    In October-November 2011 we measured trace gas emission factors from seven prescribed fires in South Carolina (SC), US, using two Fourier transform infrared spectrometer (FTIR) systems and whole air sampling (WAS) into canisters followed by gas-chromatographic analysis. A total of 97 trace gas species were quantified from both airborne and ground-based sampling platforms, making this one of the most detailed field studies of fire emissions to date. The measurements include the first emission factors for a suite of monoterpenes produced by heating vegetative fuels during field fires. The first quantitative FTIR observations of limonene in smoke are reported along with an expanded suite of monoterpenes measured by WAS including α-pinene, β-pinene, limonene, camphene, 4-carene, and myrcene. The known chemistry of the monoterpenes and their measured abundance of 0.4-27.9% of non-methane organic compounds (NMOCs) and ~ 21% of organic aerosol (mass basis) suggests that they impacted secondary formation of ozone (O3), aerosols, and small organic trace gases such as methanol and formaldehyde in the sampled plumes in the first few hours after emission. The variability in the initial terpene emissions in the SC fire plumes was high and, in general, the speciation of the initially emitted gas-phase NMOCs was 13-195% different from that observed in a similar study in nominally similar pine forests in North Carolina ~ 20 months earlier. It is likely that differences in stand structure and environmental conditions contributed to the high variability observed within and between these studies. Similar factors may explain much of the variability in initial emissions in the literature. The ΔHCN/ΔCO emission ratio, however, was found to be fairly consistent with previous airborne fire measurements in other coniferous-dominated ecosystems, with the mean for these studies being 0.90 ± 0.06%, further confirming the value of HCN as a biomass burning tracer. The SC results also

  7. Optical Properties of Biomass Burning Aerosols: Comparison of Experimental Measurements and T-Matrix Calculations

    Directory of Open Access Journals (Sweden)

    Samin Poudel

    2017-11-01

    Full Text Available The refractive index (RI is an important parameter in describing the radiative impacts of aerosols. It is important to constrain the RI of aerosol components, since there is still significant uncertainty regarding the RI of biomass burning aerosols. Experimentally measured extinction cross-sections, scattering cross-sections, and single scattering albedos for white pine biomass burning (BB aerosols under two different burning and sampling conditions were modeled using T-matrix theory. The refractive indices were extracted from these calculations. Experimental measurements were conducted using a cavity ring-down spectrometer to measure the extinction, and a nephelometer to measure the scattering of size-selected aerosols. BB aerosols were obtained by burning white pine using (1 an open fire in a burn drum, where the aerosols were collected in distilled water using an impinger, and then re-aerosolized after several days, and (2 a tube furnace to directly introduce the BB aerosols into an indoor smog chamber, where BB aerosols were then sampled directly. In both cases, filter samples were also collected, and electron microscopy images were used to obtain the morphology and size information used in the T-matrix calculations. The effective radius of the particles collected on filter media from the open fire was approximately 245 nm, whereas it was approximately 76 nm for particles from the tube furnace burns. For samples collected in distilled water, the real part of the RI increased with increasing particle size, and the imaginary part decreased. The imaginary part of the RI was also significantly larger than the reported values for fresh BB aerosol samples. For the particles generated in the tube furnace, the real part of the RI decreased with particle size, and the imaginary part was much smaller and nearly constant. The RI is sensitive to particle size and sampling method, but there was no wavelength dependence over the range considered (500

  8. Rainforest burning and the global carbon budget: Biomass, combustion efficiency, and charcoal formation in the Brazilian Amazon

    Science.gov (United States)

    Fearnside, Philip M.; Leal, Niwton; Fernandes, Fernando Moreira

    1993-01-01

    Biomass present before and after burning was measured in forest cleared for pasture in a cattle ranch (Fazenda Dimona) near Manaus, Amazonas, Brazil. Aboveground dry weight biomass loading averaged 265 t ha-1 (standard deviation (SD) = 110, n = 6 quadrats) at Fazenda Dimona, which corresponds to approximately 311 t ha-1 total dry weight biomass. A five-category visual classification at 200 points showed highly variable burn quality. Postburn aboveground biomass loading was evaluated by cutting and weighing of 100 m2 quadrats and by line intersect sampling. Quadrats had a mean dry weight of 187 t ha-1 (SD = 69, n = 10), a 29.3% reduction from the preburn mean in the same clearing. Line intersect estimates in 1.65 km of transects indicated that 265 m3 ha-1 (approximately 164 t ha-1 of aboveground dry matter) survived burning. Using carbon contents measured for different biomass components (all ˜50% carbon) and assuming a carbon content of 74.8% for charcoal (from other studies near Manaus), the destructive measurements imply a 27.6% reduction of aboveground carbon pools. Charcoal composed 2.5% of the dry weight of the remains in the postburn destructive quadrats and 2.8% of the volume in the line intersect transects. Thus approximately 2.7% of the preburn aboveground carbon stock was converted to charcoal, substantially less than is generally assumed in global carbon models. The findings confirm high values for biomass in central Amazonia. High variability indicates the need for further studies in many localities and for making maximum use of less laborious indirect methods of biomass estimation. While indirect methods are essential for regional estimates of average biomass, only direct weighing such as that reported here can yield information on combustion efficiency and charcoal formation. Both high biomass and low percentage of charcoal formation suggest the significant potential contribution of forest burning to global climate changes from CO2 and trace gases.

  9. A high-resolution open biomass burning emission inventory based on statistical data and MODIS observations in mainland China

    Science.gov (United States)

    Xu, Y.; Fan, M.; Huang, Z.; Zheng, J.; Chen, L.

    2017-12-01

    Open biomass burning which has adverse effects on air quality and human health is an important source of gas and particulate matter (PM) in China. Current emission estimations of open biomass burning are generally based on single source (alternative to statistical data and satellite-derived data) and thus contain large uncertainty due to the limitation of data. In this study, to quantify the 2015-based amount of open biomass burning, we established a new estimation method for open biomass burning activity levels by combining the bottom-up statistical data and top-down MODIS observations. And three sub-category sources which used different activity data were considered. For open crop residue burning, the "best estimate" of activity data was obtained by averaging the statistical data from China statistical yearbooks and satellite observations from MODIS burned area product MCD64A1 weighted by their uncertainties. For the forest and grassland fires, their activity levels were represented by the combination of statistical data and MODIS active fire product MCD14ML. Using the fire radiative power (FRP) which is considered as a better indicator of active fire level as the spatial allocation surrogate, coarse gridded emissions were reallocated into 3km ×3km grids to get a high-resolution emission inventory. Our results showed that emissions of CO, NOx, SO2, NH3, VOCs, PM2.5, PM10, BC and OC in mainland China were 6607, 427, 84, 79, 1262, 1198, 1222, 159 and 686 Gg/yr, respectively. Among all provinces of China, Henan, Shandong and Heilongjiang were the top three contributors to the total emissions. In this study, the developed open biomass burning emission inventory with a high-resolution could support air quality modeling and policy-making for pollution control.

  10. Burning of olive tree branches: a major organic aerosol source in the Mediterranean

    Science.gov (United States)

    Kostenidou, E.; Kaltsonoudis, C.; Tsiflikiotou, M.; Louvaris, E.; Russell, L. M.; Pandis, S. N.

    2013-09-01

    Aerosol produced during the burning of olive tree branches was characterized with both direct source sampling (using a mobile smog chamber) and with ambient measurements during the burning season. The fresh particles were composed of 80% organic matter, 8-10% black carbon (BC), 5% potassium, 3-4% sulfate, 2-3% nitrate and 0.8% chloride. Almost half of the fresh olive tree branches burning organic aerosol (otBB-OA) consisted of alkane groups. Their mode diameter was close to 70 nm. The oxygen to carbon (O : C) ratio of the fresh otBB-OA was 0.29 ± 0.04. The mass fraction of levoglucosan in PM1 was 0.034-0.043, relatively low in comparison with most fuel types. This may lead to an underestimation of the otBB-OA contribution if levoglucosan is being used as a wood burning tracer. Chemical aging was observed during smog chamber experiments, as f44 and O : C ratio increased, due to reactions with OH radicals and O3. The otBB-OA AMS mass spectrum differs from the other published biomass burning spectra, with a main difference at m/z 60, used as levoglucosan tracer. In addition to particles, volatile organic compounds (VOCs) such as methanol, acetonitrile, acrolein, benzene, toluene and xylenes are also emitted. Positive matrix factorization (PMF) was applied to the ambient organic aerosol data and 3 factors could be identified: OOA (oxygenated organic aerosol, 55%), HOA (hydrocarbon-like organic aerosol, 11.3%) and otBB-OA 33.7%. The fresh chamber otBB-OA AMS spectrum is close to the PMF otBB-OA spectrum and resembles the ambient mass spectrum during olive tree branches burning periods. We estimated an otBB-OA emission factor of 3.5 ± 0.9 g kg-1. Assuming that half of the olive tree branches pruned is burned in Greece, 2300 ± 600 tons of otBB-OA are emitted every year. This activity is one of the most important fine aerosol sources during the winter months in Mediterranean countries.

  11. Burning of olive tree branches: a major organic aerosol source in the Mediterranean

    Directory of Open Access Journals (Sweden)

    E. Kostenidou

    2013-09-01

    Full Text Available Aerosol produced during the burning of olive tree branches was characterized with both direct source sampling (using a mobile smog chamber and with ambient measurements during the burning season. The fresh particles were composed of 80% organic matter, 8–10% black carbon (BC, 5% potassium, 3–4% sulfate, 2–3% nitrate and 0.8% chloride. Almost half of the fresh olive tree branches burning organic aerosol (otBB-OA consisted of alkane groups. Their mode diameter was close to 70 nm. The oxygen to carbon (O : C ratio of the fresh otBB-OA was 0.29 ± 0.04. The mass fraction of levoglucosan in PM1 was 0.034–0.043, relatively low in comparison with most fuel types. This may lead to an underestimation of the otBB-OA contribution if levoglucosan is being used as a wood burning tracer. Chemical aging was observed during smog chamber experiments, as f44 and O : C ratio increased, due to reactions with OH radicals and O3. The otBB-OA AMS mass spectrum differs from the other published biomass burning spectra, with a main difference at m/z 60, used as levoglucosan tracer. In addition to particles, volatile organic compounds (VOCs such as methanol, acetonitrile, acrolein, benzene, toluene and xylenes are also emitted. Positive matrix factorization (PMF was applied to the ambient organic aerosol data and 3 factors could be identified: OOA (oxygenated organic aerosol, 55%, HOA (hydrocarbon-like organic aerosol, 11.3% and otBB-OA 33.7%. The fresh chamber otBB-OA AMS spectrum is close to the PMF otBB-OA spectrum and resembles the ambient mass spectrum during olive tree branches burning periods. We estimated an otBB-OA emission factor of 3.5 ± 0.9 g kg−1. Assuming that half of the olive tree branches pruned is burned in Greece, 2300 ± 600 tons of otBB-OA are emitted every year. This activity is one of the most important fine aerosol sources during the winter months in Mediterranean countries.

  12. A model for global biomass burning in preindustrial time: LPJ-LMfire (v1.0

    Directory of Open Access Journals (Sweden)

    M. Pfeiffer

    2013-05-01

    Full Text Available Fire is the primary disturbance factor in many terrestrial ecosystems. Wildfire alters vegetation structure and composition, affects carbon storage and biogeochemical cycling, and results in the release of climatically relevant trace gases including CO2, CO, CH4, NOx, and aerosols. One way of assessing the impacts of global wildfire on centennial to multi-millennial timescales is to use process-based fire models linked to dynamic global vegetation models (DGVMs. Here we present an update to the LPJ-DGVM and a new fire module based on SPITFIRE that includes several improvements to the way in which fire occurrence, behaviour, and the effects of fire on vegetation are simulated. The new LPJ-LMfire model includes explicit calculation of natural ignitions, the representation of multi-day burning and coalescence of fires, and the calculation of rates of spread in different vegetation types. We describe a new representation of anthropogenic biomass burning under preindustrial conditions that distinguishes the different relationships between humans and fire among hunter-gatherers, pastoralists, and farmers. We evaluate our model simulations against remote-sensing-based estimates of burned area at regional and global scale. While wildfire in much of the modern world is largely influenced by anthropogenic suppression and ignitions, in those parts of the world where natural fire is still the dominant process (e.g. in remote areas of the boreal forest and subarctic, our results demonstrate a significant improvement in simulated burned area over the original SPITFIRE. The new fire model we present here is particularly suited for the investigation of climate–human–fire relationships on multi-millennial timescales prior to the Industrial Revolution.

  13. Biomass burning at Cape Grim: exploring photochemistry using multi-scale modelling

    Science.gov (United States)

    Lawson, Sarah J.; Cope, Martin; Lee, Sunhee; Galbally, Ian E.; Ristovski, Zoran; Keywood, Melita D.

    2017-10-01

    We have tested the ability of a high-resolution chemical transport model (CTM) to reproduce biomass burning (BB) plume strikes and ozone (O3) enhancements observed at Cape Grim in Tasmania, Australia, from the Robbins Island fire. The CTM has also been used to explore the contribution of near-field BB emissions and background sources to O3 observations under conditions of complex meteorology. Using atmospheric observations, we have tested model sensitivity to meteorology, BB emission factors (EFs) corresponding to low, medium, and high modified combustion efficiency (MCE), and spatial variability. The use of two different meteorological models (TAPM-CTM and CCAM-CTM) varied the first (BB1) plume strike time by up to 15 h and the duration of impact between 12 and 36 h, and it varied the second (BB2) plume duration between 50 and 57 h. Meteorology also had a large impact on simulated O3, with one model (TAPM-CTM) simulating four periods of O3 enhancement, while the other model (CCAM) simulating only one period. Varying the BB EFs, which in turn varied the non-methane organic compound (NMOC) / oxides of nitrogen (NOx) ratio, had a strongly non-linear impact on simulated O3 concentration, with either destruction or production of O3 predicted in different simulations. As shown in previous work (Lawson et al., 2015), minor rainfall events have the potential to significantly alter EF due to changes in combustion processes. Models that assume fixed EF for O3 precursor species in an environment with temporally or spatially variable EF may be unable to simulate the behaviour of important species such as O3. TAPM-CTM is used to further explore the contribution of the Robbins Island fire to the observed O3 enhancements during BB1 and BB2. Overall, TAPM-CTM suggests that the dominant source of O3 observed at Cape Grim was aged urban air (age = 2 days), with a contribution of O3 formed from local BB emissions. This work shows the importance of assessing model sensitivity to

  14. Evidence for Biomass Burning from 14C and 13C/12C Measurements at T-0 and T-1 during MILAGRO.

    Science.gov (United States)

    Gaffney, J. S.; Marley, N. A.; Tackett, M. J.; Sturchio, N. C.; Heraty, L. J.; Martinez, N.; Hardy, K.; Guilderson, T.

    2007-12-01

    Both stable carbon isotopic and radiocarbon characterizations of aerosols can yield important information regarding the sources of carbonaceous aerosols in urban and regional environments. Biomass derived materials are labeled due to their recent photochemical activity in radiocarbon and vary depending upon the photochemical pathway (either C-4 or C-3) in stable carbon-13 content. C-4 being enriched over C-3. During the MILAGRO campaign, quartz filter samples were taken at 12 hour intervals from 5 am to 5 pm (day) and from 5 pm to 5 am (night) during the month of March 2006. These samples were taken at the two super-sites, T-0 (Instituto Mexicano de Petroleo in Mexico City) and T-1 (Universidad Technologica de Tecamac, State of Mexico). The total carbon content was analyzed for stable carbon isotopic composition as well as for radiocarbon. Stable isotope mass spectroscopy was used to determine the carbon-13 to carbon-12 isotopic ratios on carbon dioxide. The carbon dioxide was then converted to graphite for analysis by accelerator mass spectrometry at the Center for Accelerator Mass Spectrometry at Lawrence Livermore National Laboratory. Results are presented for the carbon-13 content relative to the PDB standard and radiocarbon is given relative to recent carbon. The results for total radiocarbon content show that the carbonaceous aerosol content in Mexico City has more than half of the carbon coming from biomass derived sources. These can include inflow of biomass burning aerosols into the T-0 site as well as the input from local burning of biofuels and trash containing biomass derived materials (paper, boxes, etc.). Data also indicate that at the T-1 site biomass burning of C-4 grasses appears to be significant in that the carbon-13 values observed are enriched. Also at T-1 the radiocarbon levels are also found to be slightly higher indicating regional biomass burning as a significant contributor to aerosol carbon in the 0.1 to 1.0 micron size fraction. Some day

  15. Biomass Burning Emissions - The Importance of Reducing Uncertainties for Improved Regulatory Decisions; an EPA Perspective (Invited)

    Science.gov (United States)

    Szykman, J. J.; Kordzi, J.; Pouliot, G.; Pierce, T. E.; Pace, T.; Rao, T.

    2009-12-01

    Biomass burning emissions from wildland and prescribed fires can have far reaching impacts in several of EPA’s regulatory programs under the Clean Air Act, ultimately affecting decisions on actions taken under State Implementation Plans (SIPs), and programs such as Visibility and Regional Haze, Interstate Transport and Conformity. In most instances the EPA’s National Emissions Inventory (NEI), which is developed in conjunction with other federal, state, local, and tribal agencies is a cornerstone used to support air quality decision making. Over the past several years estimated wildland and prescribed fire emissions in the NEI have evolved from a crude, state-based, climatology to fire-specific, daily-resolved estimates primarily through the use of satellite measurements. In addition to research within EPA, external research partners are providing improved knowledge in areas such as chemical composition of smoke, plume rise measurements via satellites, and the development of improved emission algorithms. Accurate inputs to characterize and model the daily and hourly biomass burning emissions across the US are necessary to reduce the uncertainty in characterizing the emissions, transport, and transformation of gases and particles from their source, with the end goal of categorizing biomass burning emissions within the EPA’s regulatory structure. Reducing the uncertainty will lead to improved decision making as this information is used to support the development and implementation of EPA’s air regulatory programs. This is especially true under the National Ambient Air Quality Standards (NAAQS) where averaging times for particulate matter (PM), ozone, and the new proposed NO2 standard are at 24 hours or less, where accurate resolution of fire emissions is critical in understanding receptor impacts. This talk will highlight the impacts of wildland and prescribed fires within EPA’s regulatory program and importance of continued research to reduce the

  16. Size distribution and hygroscopic properties of aerosol particles from dry-season biomass burning in Amazonia

    Directory of Open Access Journals (Sweden)

    J. Rissler

    2006-01-01

    Full Text Available Aerosol particle number size distributions and hygroscopic properties were measured at a pasture site in the southwestern Amazon region (Rondonia. The measurements were performed 11 September-14 November 2002 as part of LBA-SMOCC (Large scale Biosphere atmosphere experiment in Amazonia - SMOke aerosols, Clouds, rainfall and Climate, and cover the later part of the dry season (with heavy biomass burning, a transition period, and the onset of the wet period. Particle number size distributions were measured with a DMPS (Differential Mobility Particle Sizer, 3-850nm and an APS (Aerodynamic Particle Sizer, extending the distributions up to 3.3 µm in diameter. An H-TDMA (Hygroscopic Tandem Differential Mobility Analyzer measured the hygroscopic diameter growth factors (Gf at 90% relative humidity (RH, for particles with dry diameters (dp between 20-440 nm, and at several occasions RH scans (30-90% RH were performed for 165nm particles. These data provide the most extensive characterization of Amazonian biomass burning aerosol, with respect to particle number size distributions and hygroscopic properties, presented until now. The evolution of the convective boundary layer over the course of the day causes a distinct diel variation in the aerosol physical properties, which was used to get information about the properties of the aerosol at higher altitudes. The number size distributions averaged over the three defined time periods showed three modes; a nucleation mode with geometrical median diameters (GMD of ~12 nm, an Aitken mode (GMD=61-92 nm and an accumulation mode (GMD=128-190 nm. The two larger modes were shifted towards larger GMD with increasing influence from biomass burning. The hygroscopic growth at 90% RH revealed a somewhat external mixture with two groups of particles; here denoted nearly hydrophobic (Gf~1.09 for 100 nm particles and moderately hygroscopic (Gf~1.26. While the hygroscopic growth factors were surprisingly similar over the

  17. Direct and semidirect aerosol effects of Southern African biomass burning aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Sakaeda, Naoko; Wood, Robert; Rasch, Philip J.

    2011-06-21

    The direct and semi-direct radiative effects of biomass burning aerosols from Southern African fires during July-October are investigated using 20 year runs of the Community Atmospheric Model (CAM) coupled to a slab ocean model. The aerosol optical depth is constrained using observations in clear skies from MODIS and for aerosol layers above clouds from CALIPSO. Over the ocean, where the absorbing biomass burning aerosol layers are primarily located above cloud, negative top of atmosphere (TOA) semi-direct radiative effects associated with increased low cloud cover dominate over a weaker positive all-sky direct radiative effect (DRE). In contrast, over the land where the aerosols are often below or within cloud layers, reductions in cloud liquid water path (LWP) lead to a positive semi-direct radiative effect that dominates over a near-zero DRE. Over the ocean, the cloud response can be understood as a response to increased lower tropospheric stability (LTS) which is caused both by aerosol absorptive warming in overlying layers and surface cooling in response to direct aerosol forcing. The ocean cloud changes are robust to changes in the cloud parameterization (removal of the hard-wired dependence of clouds on LTS), suggesting that they are physically realistic. Over land where cloud cover changes are minimal, decreased LWP is consistent with weaker convection driven by increased static stability. Over the entire region the overall TOA radiative effect from the biomass burning aerosols is almost zero due to opposing effects over the land and ocean. However, the surface forcing is strongly negative requiring a reduction in precipitation. This is primarily realized through reductions in convective precipitation on both the southern and northern flanks of the convective precipitation region spanning the equatorial rainforest and the ITCZ in the southern Sahel. The changes are consistent with the low-level aerosol forced cooling pattern. The results highlight the

  18. Effects of biomass burning on summertime nonmethane hydrocarbon concentrations in the Canadian wetlands

    Science.gov (United States)

    Blake, D. R.; Smith, T. W., Jr.; Chen, T.-Y.; Whipple, W. J.; Rowland, F. S.

    1994-01-01

    Approximately 900 whole air samples were collected and assayed for selected C2-C10 hydrocarbons and seven halocarbons during the 5-week Arctic Boundary Layer Expedition (ABLE) 3B conducted in eastern Canadian wetland areas. In more than half of the 46 vertical profiles flown, enhanced nonmethane hydrocarbon (NMHC) concentrations attributable to plumes from Canadian forest fires were observed. Urban plumes, also enhanced in many NMHCs, were separately identified by their high correlation with elevated levels of perchloroethene. Emission factors relative to ethane were determined for 21 hydrocarbons released from Canadian biomass burning. Using these data for ethane, ethyne, propane, n-butane, and carbon monoxide enhancements from the literature, global emissions of these four NMHCs were estimated. Because of its very short atmospheric lifetime and its below detection limit background mixing ratio, 1,3-butadiene is an excellent indicator of recent combustion. No statistically significant emissions of nitrous oxide, isoprene, or CFC 12 were observed in the biomass-burning plumes encountered during ABLE 3B. The presence of the short-lived biogenically emitted isoprene at altitudes as high as 3000 m implies that mixing within the planetary boundary layer (PBL) was rapid. Although background levels of the longer-lived NMHCs in this Canadian region increase during the fire season, isoprene still dominated local hydroxyl radical photochemistry within the PBL except in the immediate vicinity of active fires. The average biomass-burning emission ratios for hydrocarbons from an active fire sampled within minutes of combustion were, relative to ethane, ethene, 2.45; ethyne 0.57; propane, 0.25; propene, 0.73; propyne, 0.06; n-butane, 0.09; i-butane, 0.01; 1-butene, 0.14; cis-2-butene, 0.02; trans-2-butene, 0.03; i-butylene, 0.07; 1,3-butadiene, 0.12; n-pentane, 0.05; i-pentane, 0.03; 1-pentene, 0.06; n-hexane, 0.05; 1-hexene, 0.07; benzene, 0.37; toluene, 0.16.

  19. Burns

    Science.gov (United States)

    A burn is damage to your body's tissues caused by heat, chemicals, electricity, sunlight, or radiation. Scalds from hot ... and gases are the most common causes of burns. Another kind is an inhalation injury, caused by ...

  20. Effect of 2,4-dichlorophenoxyacetic acid (2,4-D) on PCDD/F emissions from open burning of biomass.

    Science.gov (United States)

    Muñoz, Maria; Gullett, Brian K; Touati, Abderrahmane; Font, Rafael

    2012-09-04

    To understand the effect of leaf-surface pesticides on emissions of PCDD/F during biomass burns, nine combustion experiments simulating the open burning of biomass were conducted. Needles and branches of Pinus taeda (Loblolly pine) were sprayed with the pesticide 2,4-dichlorophenoxyacetic acid (2,4-D) at 1 and 10 times the manufacturer's recommended application concentration. The biomass was then dried overnight, burned in an open burn test facility, and emission samples were collected, analyzed, and compared against emission samples from burning untreated biomass. Blank tests and analysis of PCDD/F in the raw biomass were also performed. Emission results from burning a water-sprayed control show a ~20-fold increase in PCDD/F levels above that of the raw biomass alone, implicating combustive formation versus simple volatilization. Results from burns of pine branches sprayed with pesticide showed a statistically significant increase in the PCDD/F TEQ emissions when burning biomass at ten times the recommended pesticide concentration (from 0.22 to 1.14 ng TEQ/kg carbon burned (C(b)), both ND = 0). Similarly, a 150-fold increase in the total PCDD/F congener mass (tetra- to octa-chlorinated D/F) above that of the control was observed (from 52 to 7800 ng/kg C(b)), confirming combustive formation of PCDD/F from 2,4-D. More replicate testing is needed to evaluate effects at lower pesticide concentrations.

  1. Interannual variation of springtime biomass burning in Indochina: Regional differences, associated atmospheric dynamical changes, and downwind impacts

    Science.gov (United States)

    Huang, Wan-Ru; Wang, Sheng-Hsiang; Yen, Ming-Cheng; Lin, Neng-Huei; Promchote, Parichart

    2016-09-01

    During March and April, widespread burning occurs across farmlands in Indochina in preparation for planting at the monsoon onset. The resultant aerosols impact the air quality downwind. In this study, we investigate the climatic aspect of the interannual variation of springtime biomass burning in Indochina and its correlation with air quality at Mt. Lulin in Taiwan using long-term (2005-2015) satellite and global reanalysis data. Based on empirical orthogonal function (EOF) analysis, we find that the biomass burning activities vary with two geographical regions: northern Indochina (the primary EOF mode) and southern Indochina (the secondary EOF mode). We determine that the variation of biomass burning over northern Indochina is significantly related with the change in aerosol concentrations at Mt. Lulin. This occurs following the change in the so-called India-Burma Trough in the lower and middle troposphere. When the India-Burma Trough is intensified, a stronger northwesterly wind (to the west of the trough) transports the dryer air from higher latitude into northern Indochina, and this promotes local biomass burning activities. The increase in upward motion to the east of the intensified India-Burma Trough lifts the aerosols, which are transported toward Taiwan by the increased low-level westerly jet. Further diagnoses revealed the connection between the India-Burma Trough and the South Asian jet's wave train pattern as well as the previous winter's El Niño-Southern Oscillation phase. This information highlights the role of the India-Burma Trough in modulating northern Indochina biomass burning and possibly predicting aerosol transport to East Asia on the interannual time scale.

  2. Biomass burning losses of carbon estimated from ecosystem modeling and satellite data analysis for the Brazilian Amazon region

    Science.gov (United States)

    Potter, Christopher; Brooks Genovese, Vanessa; Klooster, Steven; Bobo, Matthew; Torregrosa, Alicia

    To produce a new daily record of gross carbon emissions from biomass burning events and post-burning decomposition fluxes in the states of the Brazilian Legal Amazon (Instituto Brasileiro de Geografia e Estatistica (IBGE), 1991. Anuario Estatistico do Brasil, Vol. 51. Rio de Janeiro, Brazil pp. 1-1024). We have used vegetation greenness estimates from satellite images as inputs to a terrestrial ecosystem production model. This carbon allocation model generates new estimates of regional aboveground vegetation biomass at 8-km resolution. The modeled biomass product is then combined for the first time with fire pixel counts from the advanced very high-resolution radiometer (AVHRR) to overlay regional burning activities in the Amazon. Results from our analysis indicate that carbon emission estimates from annual region-wide sources of deforestation and biomass burning in the early 1990s are apparently three to five times higher than reported in previous studies for the Brazilian Legal Amazon (Houghton et al., 2000. Nature 403, 301-304; Fearnside, 1997. Climatic Change 35, 321-360), i.e., studies which implied that the Legal Amazon region tends toward a net-zero annual source of terrestrial carbon. In contrast, our analysis implies that the total source fluxes over the entire Legal Amazon region range from 0.2 to 1.2 Pg C yr -1, depending strongly on annual rainfall patterns. The reasons for our higher burning emission estimates are (1) use of combustion fractions typically measured during Amazon forest burning events for computing carbon losses, (2) more detailed geographic distribution of vegetation biomass and daily fire activity for the region, and (3) inclusion of fire effects in extensive areas of the Legal Amazon covered by open woodland, secondary forests, savanna, and pasture vegetation. The total area of rainforest estimated annually to be deforested did not differ substantially among the previous analyses cited and our own.

  3. Modelling and prediction of air pollutant transport during the 2014 biomass burning and forest fires in peninsular Southeast Asia.

    Science.gov (United States)

    Duc, Hiep Nguyen; Bang, Ho Quoc; Quang, Ngo Xuan

    2016-02-01

    During the dry season, from November to April, agricultural biomass burning and forest fires especially from March to late April in mainland Southeast Asian countries of Myanmar, Thailand, Laos and Vietnam frequently cause severe particulate pollution not only in the local areas but also across the whole region and beyond due to the prevailing meteorological conditions. Recently, the BASE-ASIA (Biomass-burning Aerosols in South East Asia: Smoke Impact Assessment) and 7-SEAS (7-South-East Asian Studies) studies have provided detailed analysis and important understandings of the transport of pollutants, in particular, the aerosols and their characteristics across the region due to biomass burning in Southeast Asia (SEA). Following these studies, in this paper, we study the transport of particulate air pollution across the peninsular region of SEA and beyond during the March 2014 burning period using meteorological modelling approach and available ground-based and satellite measurements to ascertain the extent of the aerosol pollution and transport in the region of this particular event. The results show that the air pollutants from SEA biomass burning in March 2014 were transported at high altitude to southern China, Hong Kong, Taiwan and beyond as has been highlighted in the BASE-ASIA and 7-SEAS studies. There are strong evidences that the biomass burning in SEA especially in mid-March 2014 has not only caused widespread high particle pollution in Thailand (especially the northern region where most of the fires occurred) but also impacted on the air quality in Hong Kong as measured at the ground-based stations and in LulinC (Taiwan) where a remote background monitoring station is located.

  4. PCDD/F measurement at a high-altitude station in Central Taiwan: evaluation of long-range transport of PCDD/Fs during the Southeast Asia biomass burning event.

    Science.gov (United States)

    Chi, Kai Hsien; Lin, Chuan-Yao; Yang, Chang-Feng Ou; Wang, Jia-Lin; Lin, Neng-Heui; Sheu, Guey-Rong; Lee, Chung-Te

    2010-04-15

    Recent biomass burning in Southeast Asia has raised global concerns over its adverse effects on visibility, human health, and global climate. The concentrations of total suspended particles (TSPs) and other vapor-phase pollutants (CO and ozone) were monitored at Lulin, an atmospheric background station in central Taiwan in 2008. To evaluate the long-range transport of persistent organic pollutants (POPs) during the Southeast Asia biomass burning event, the atmospheric polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) were also measured at Lulin station. The atmospheric PCDD/F and TSP concentrations measured at Lulin station ranged from 0.71-3.41 fg I-TEQ/m(3) and 5.32-55.6 microg/m(3), respectively, during the regular sampling periods. However, significantly higher concentrations of PCDD/Fs, TSPs, CO, and ozone were measured during the spring season. These high concentrations could be the result of long-range transport of the products of Southeast Asia biomass burning. During the Southeast Asia biomass burning event (March 18-24, 2008), an intensive observation program was also carried out at the same station. The results of this observation program indicated that the atmospheric PCDD/F concentration increased dramatically from 2.33 to 390 fg I-TEQ/m(3) (March 19, 2008). The trace gas (CO) of biomass burning also significantly increased to 232 ppb during the same period, while the particle-bound PCDD/Fs in the TSP increased from 28.7 to 109 pg I-TEQ/g-TSP at Lulin station during the burning event. We conclude that there was a significant increase in the PCDD/F concentration in ambient air at a high-altitude background station in central Taiwan during the Southeast Asia biomass burning event.

  5. Convection links biomass burning to increased tropical ozone - However, models will tend to overpredict O3

    Science.gov (United States)

    Chatfield, Robert B.; Delany, Anthony C.

    1990-01-01

    Biomass burning throughout the inhabited portions of the tropics generates precursors which lead to significant local atmospheric ozone pollution. Several simulations show how this smog could be only an easily observed, local manifestation of a much broader increase in tropospheric ozone. The basic processes are illustrated with a one-dimensional time-dependent model that is closer to true meteorological motions than commonly used eddy diffusion models. Its application to a representative region of South America gives reasonable simulations of the local pollutants measured there. Three illustrative simulations indicate the importance of dilution, principally due to vertical transport, in increasing the efficiency of ozone production, possibly enough for high ozone to be apparent on a very large, intercontinental scale.

  6. The GOES-R ABI Wild Fire Automated Biomass Burning Algorithm

    Science.gov (United States)

    Hoffman, J.; Schmidt, C. C.; Prins, E. M.; Brunner, J. C.

    2011-12-01

    The global Wild Fire Automated Biomass Burning Algorithm (WF_ABBA) at the Cooperative Institute for Meteorological Satellite Studies (CIMSS) provides fire detection and characterization using data from a global constellation of geostationary satellites, currently including GOES, MTSAT, and Meteosat. CIMSS continues to enhance the legacy of the WF_ABBA by adapting the algorithm to utilize the advanced spatial, spectral, and temporal capabilities of GOES-R ABI. A wide range of simulated ABI data cases have been generated and processed with the GOES-R fire detection and characterization algorithm. Simulated cases included MODIS derived projections as well as model derived simulations that span a variety of satellite zenith angles and ecosystems. The GOES-R ABI fire product development focuses on active fire detection and sub-pixel characterization, including fire radiative power (FRP) and instantaneous fire size and temperature. With the algorithm delivered to the system contractor, the focus has moved to developing innovative new validation techniques.

  7. A climatology of fine absorbing biomass burning, urban and industrial aerosols detected from satellites

    Science.gov (United States)

    Kalaitzi, Nikoleta; Hatzianastassiou, Nikos; Gkikas, Antonis; Papadimas, Christos D.; Torres, Omar; Mihalopoulos, Nikos

    2017-04-01

    Natural biomass burning (BB) along with anthropogenic urban and industrial aerosol particles, altogether labeled here as BU aerosols, contain black and brown carbon which both absorb strongly the solar radiation. Thus, BU aerosols warm significantly the atmosphere also causing adjustments to cloud properties, which traditionally are known as cloud indirect and semi-direct effects. Given the role of the effects of BU aerosols for contemporary and future climate change, and the uncertainty associated with BU, both ascertained by the latest IPCC reports, there is an urgent need for improving our knowledge on the spatial and temporal variability of BU aerosols all over the globe. Over the last few decades, thanks to the rapid development of satellite observational techniques and retrieval algorithms it is now possible to detect BU aerosols based on satellite measurements. However, care must be taken in order to ensure the ability to distinguish BU from other aerosol types usually co-existing in the Earth's atmosphere. In the present study, an algorithm is presented, based on a synergy of different satellite measurements, aiming to identify and quantify BU aerosols over the entire globe and during multiple years. The objective is to build a satellite-based climatology of BU aerosols intended for use for various purposes. The produced regime, namely the spatial and temporal variability of BU aerosols, emphasizes the BU frequency of occurrence and their intensity, in terms of aerosol optical depth (AOD). The algorithm is using the following aerosol optical properties describing the size and atmospheric loading of BU aerosols: (i) spectral AOD, (ii) Ångström Exponent (AE), (iii) Fine Fraction (FF) and (iv) Aerosol Index (AI). The relevant data are taken from Collection 006 MODIS-Aqua, except for AI which is taken from OMI-Aura. The identification of BU aerosols by the algorithm is based on a specific thresholding technique, with AI≥1.5, AE≥1.2 and FF≥0.6 threshold

  8. When smoke comes to town - effects of biomass burning smoke on air quality down under

    Science.gov (United States)

    Keywood, Melita; Cope, Martin; (C. P) Meyer, Mick; Iinuma, Yoshi; Emmerson, Kathryn

    2014-05-01

    Annually, biomass burning results in the emission of quantities of trace gases and aerosol to the atmosphere. Biomass burning emissions have a significant effect on atmospheric chemistry due to the presence of reactive species. Biomass burning aerosols influence the radiative balance of the earth-atmosphere system directly through the scattering and absorption of radiation, and indirectly through their influence on cloud microphysical processes, and therefore constitute an important forcing in climate models. They also reduce visibility, influence atmospheric photochemistry and can be inhaled into the deepest parts of the lungs, so that they can have a significant effect on human health. Australia experiences bushfires on an annual basis. In most years fires are restricted to the tropical savannah forests of Northern Australia. However in the summer of 2006/2007 (December 2006 - February 2007), South Eastern Australia was affected by the longest recorded fires in its history. During this time the State of Victoria was ravaged by 690 separate bushfires, including the major Great Divide Fire, which devastated 1,048,238 hectares over 69 days. On several occasions, thick smoke haze was transported to the Melbourne central business district and PM10 concentrations at several air quality monitoring stations peaked at over 200 µg m-3 (four times the National Environment Protection Measure PM10 24 hour standard). During this period, a comprehensive suite of air quality measurements was carried out at a location 25 km south of the Melbourne CBD, including detailed aerosol microphysical and chemical composition measurements. Here we examine the chemical and physical properties of the smoke plume as it impacted Melbourne's air shed and discuss its impact on air quality over the city. We estimate the aerosol emission rates of the source fires, the age of the plumes and investigate the transformation of the smoke as it progressed from its source to the Melbourne airshed. We

  9. Anomalous transboundary transport of the products of biomass burning from North American wildfires to Northern Eurasia

    Science.gov (United States)

    Sitnov, S. A.; Mokhov, I. I.

    2017-07-01

    An analysis of smoke in the atmosphere over the Russian Far East and Eastern Siberia in August 2004 was carried out. The results of the analysis indicate that the cause of the smoke in the atmosphere over these regions (with the values of aerosol optical depth exceeding 4 over the north of Kamchatka Krai) was the long-range transboundary transport of combustion products from North American wildfires. The anomalous (westward) long-range transport of the products of biomass burning was caused by atmospheric circulation characteristic for the atmospheric blocking of the dipole-type with a high-pressure region over the Chukchi Sea and a low pressure region over the south of the Bering Sea.

  10. Desert dust,Ocean spray,Volcanoes,Biomass burning: Pathways of nutrients into Andean rainforests

    Science.gov (United States)

    Fabian, P.; Rollenbeck, R.; Spichtinger, N.; Dominguez, G.; Brothers, L.; Thiemens, M.

    2009-04-01

    Regular rain and fogwater sampling in the Podocarpus National Park, along an altitude profile between 1800 and 3185 m, has been carried out since 2002.The research area located in southern Ecuador on the wet eastern slopes of the Andes is dominated by trade winds from easterly directions. The samples, generally accumulated over 1-week intervals, have been analysed for pH,conductivity and major ions(K+,Na+,NH4+,Ca2+,Mg 2+,SO42-,NO3-,PO43). For all components a strong seasonal variation is observed,while the altitudinal gradient is less pronounced. About 35 % of the weekly samples had very low ion contents,at or below the detection limit, with pH generally above 5 and conductivity below 10 uS/cm.10 days back trajectories (FLEXTRA) showed that respective air masses originated in pristine continental areas,with little or no obvious pollution sources. About 65 %,however,were significantly loaded with cations and anions,with pH often as low as 3.5 to 4.0 and conductivity up to 50 uS/cm.Back trajectories showed that respective air masses had passed over areas of intense biomass burning,volcanoes,and the ocean,with even episodic Sahara and/or Namib desert dust interference. Enhanced SO4 2-and NO3- were identified,by combining satellite-based fire pixels with back trajectories,as predominantly resulting from biomass burning. Analyses of oxygen isotopes 16O ,17O ,and 18O of nitrate show that nitrate in fog samples is a product of atmospheric conversion of precursors.For most cases,by using emission inventories, anthropogenic precursor sources other than forest fires could be ruled out,thus leaving biomass burning as the main source of nitrate and sulphate in rain and fogwater. Some SO4 2- ,about 10 % of the total input,could be identified to originate from active volcanoes, whose plumes were sometimes encountered by the respective back trajectories. Enhanced Na +, K + ,and Cl - was found to originate from ocean spray sources.They were associated with strong winds providing

  11. Biomass burning studies and the International Global Atmospheric Chemistry (IGAC) Project

    International Nuclear Information System (INIS)

    Prinn, R.G.

    1991-01-01

    The perturbations to local and regional atmospheric chemistry caused by biomass burning also have global significance. The International Global Atmospheric Chemistry (IGAC) Project was created by scientists from over twenty countries in response to the growing interest concern about atmospheric chemical changes and their potential impact on mankind. The goal of the IGAC is to develop a fundamental understanding of the natural and anthropogenic processes that determine the chemical composition of the atmosphere and the interactions between atmospheric composition and biospheric and climatic processes. A specific objective is to accurately predict changes over the next century in the composition and chemistry of the global atmosphere. Current activities, leaders and scientists involved are presented in this chapter

  12. Biomass Burning and the 2012 Greenland Ice Sheet (GrIS) melt

    Science.gov (United States)

    Choi, H. D.; Soja, A. J.; Polashenski, C.; Fairlie, T. D.; Winker, D. M.; Trepte, C. R.

    2017-12-01

    This study is the part of the Sunlight Absorption on the Greenland ice sheet Experiment (SAGE) project investigating the impact of light absorbing impurities (e.g., aerosols) on the Greenland Ice Sheet (GrIS). Satellite observations, [e.g. Oceansat-2 (OS2) and the Moderate-resolution Imaging Spectroradionmeter (MODIS)] discovered an unusually large melt event in July 2012. NASA sensors showed that nearly 98.6% of the GrIS experienced melting at or near surface [Nghiem et al., 2012]. In this study, we question the extent to which biomass burning derived aerosols enhanced melting across the GrIS. Random points [59 total, 13 coincident with snow pit sites and 46 gridded] are selected across the entire extent of the GrIS from April 1st to August 31st 2012, and then the NASA Langley Trajectory Model (LaTM) is used to simulate the transport of potentially smoke-filled air parcels backwards for 5 days form these points, evaluation the back trajectory for coincidence with active fire detections. The trajectory model is initialized for 24-hour sustained injection from each site, and air parcels are released from the surface to 2 km at 200m intervals. With the trajectory model outputs, we are able to identify trajectories that have coincidences with fires. We focus on events in April through July when the GrIS albedo was dramatically decreased. We also utilize Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data to verify smoke-aerosol signatures in boreal regions based on the NASA LaTM results. The results of this study will help us better understand the transport of biomass burning plumes and black carbon deposition that could lead to enhanced GrIS melting.

  13. Determination of biomass burning tracers in air samples by GC/MS

    Directory of Open Access Journals (Sweden)

    Janoszka Katarzyna

    2018-01-01

    Full Text Available Levoglucosan (LG as a main cellulose burning product at 300°C is a biomass burning tracer. LG characterize by relatively high molar mass and it is sorbed by particulate matter. In the study of air pollution monitoring LG is mainly analyzed in particulate matter, PM1 and PM2,5. The tracer create relatively high O-H…O bond and weaker C-H…O bond. Due to the hydrogen bond, LG dissolves very well in water. Analytical procedure of LG determination include: extraction, derivatization and analysis by gas chromatography coupled with mass spectrometry detector. In water samples levoglucosan is determined by liquid chromatography. The paper presents a methodology for particulate matter samples determination their analysis by gas chromatography coupled with a mass spectrometry detector. Determination of LG content in particulate matter was performed according to an analytical method based on simultaneous pyridine extraction and derivatization using N,O-bis (trimethylsilyl trifluoroacetamide and trimethylchlorosilane mixture (BSTFA: TMCS, 99: 1.

  14. Determination of biomass burning tracers in air samples by GC/MS

    Science.gov (United States)

    Janoszka, Katarzyna

    2018-01-01

    Levoglucosan (LG) as a main cellulose burning product at 300°C is a biomass burning tracer. LG characterize by relatively high molar mass and it is sorbed by particulate matter. In the study of air pollution monitoring LG is mainly analyzed in particulate matter, PM1 and PM2,5. The tracer create relatively high O-H…O bond and weaker C-H…O bond. Due to the hydrogen bond, LG dissolves very well in water. Analytical procedure of LG determination include: extraction, derivatization and analysis by gas chromatography coupled with mass spectrometry detector. In water samples levoglucosan is determined by liquid chromatography. The paper presents a methodology for particulate matter samples determination their analysis by gas chromatography coupled with a mass spectrometry detector. Determination of LG content in particulate matter was performed according to an analytical method based on simultaneous pyridine extraction and derivatization using N,O-bis (trimethylsilyl) trifluoroacetamide and trimethylchlorosilane mixture (BSTFA: TMCS, 99: 1).

  15. Thermal distillation system utilizing biomass energy burned in stove by means of heat pipe

    Directory of Open Access Journals (Sweden)

    Hiroshi Tanaka

    2016-09-01

    Full Text Available A thermal distillation system utilizing a part of the thermal energy of biomass burned in a stove during cooking is proposed. The thermal energy is transported from the stove to the distiller by means of a heat pipe. The distiller is a vertical multiple-effect diffusion distiller, in which a number of parallel partitions in contact with saline-soaked wicks are set vertically with narrow gaps of air. A pilot experimental apparatus was constructed and tested with a single-effect and multiple-effect distillers to investigate primarily whether a heat pipe can transport thermal energy adequately from the stove to the distiller. It was found that the temperatures of the heated plate and the first partition of the distiller reached to about 100 °C and 90 °C, respectively, at steady state, showing that the heat pipe works sufficiently. The distilled water obtained was about 0.75 and 1.35 kg during the first 2 h of burning from a single-effect and multiple-effect distillers, respectively.

  16. Airborne hydrogen cyanide measurements using a chemical ionisation mass spectrometer for the plume identification of biomass burning forest fires

    Directory of Open Access Journals (Sweden)

    M. Le Breton

    2013-09-01

    Full Text Available A chemical ionisation mass spectrometer (CIMS was developed for measuring hydrogen cyanide (HCN from biomass burning events in Canada using I− reagent ions on board the FAAM BAe-146 research aircraft during the BORTAS campaign in 2011. The ionisation scheme enabled highly sensitive measurements at 1 Hz frequency through biomass burning plumes in the troposphere. A strong correlation between the HCN, carbon monoxide (CO and acetonitrile (CH3CN was observed, indicating the potential of HCN as a biomass burning (BB marker. A plume was defined as being 6 standard deviations above background for the flights. This method was compared with a number of alternative plume-defining techniques employing CO and CH3CN measurements. The 6-sigma technique produced the highest R2 values for correlations with CO. A normalised excess mixing ratio (NEMR of 3.68 ± 0.149 pptv ppbv−1 was calculated, which is within the range quoted in previous research (Hornbrook et al., 2011. The global tropospheric model STOCHEM-CRI incorporated both the observed ratio and extreme ratios derived from other studies to generate global emission totals of HCN via biomass burning. Using the ratio derived from this work, the emission total for HCN from BB was 0.92 Tg (N yr−1.

  17. Importance of transboundary transport of biomass burning emissions to regional air quality in Southeast Asia during a high fire event

    NARCIS (Netherlands)

    Aouizerats, B.; van der Werf, G.R.; Balasubramanian, R.; Betha, R.

    2015-01-01

    Smoke from biomass and peat burning has a notable impact on ambient air quality and climate in the Southeast Asia (SEA) region. We modeled a large fire-induced haze episode in 2006 stemming mostly from Indonesia using the Weather Research and Forecasting model coupled with chemistry (WRF-Chem). We

  18. Interactions and Feedbacks Between Biomass Burning and Water Cycle Dynamics Across the Northern Sub-Saharan African Region

    Science.gov (United States)

    Ichoku, Charles

    2012-01-01

    The northern sub-Saharan African (NSSA) region, bounded on the north and south by the Sahara and the Equator, respectively, and stretching from the West to the East African coastlines, has one of the highest biomass-burning rates per unit land area among all regions of the world. Because of the high concentration and frequency of fires in this region, with the associated abundance of heat release and gaseous and particulate smoke emissions, biomass-burning activity is believed to be one of the drivers of the regional carbon and energy cycles, with serious implications for the water cycle. A new interdisciplinary research effort sponsored by NASA is presently being focused on the NSSA region, to better understand the possible connection between the intense biomass burning observed from satellite year after year across the region and the rapid depletion of the regional water resources, as exemplified by the dramatic drying of Lake Chad. A combination of remote sensing and modeling approaches is being utilized in investigating multiple regional surface, atmospheric, and water-cycle processes, and inferring possible links between them. In this presentation, we will discuss preliminary results as well as the path toward improved understanding of the interrelationships and feedbacks between the biomass burning and the environmental change dynamics in the NSSA region.

  19. Comparison of global inventories of CO emissions from biomass burning derived from remotely sensed data

    Directory of Open Access Journals (Sweden)

    D. Stroppiana

    2010-12-01

    Full Text Available We compare five global inventories of monthly CO emissions named VGT, ATSR, MODIS, GFED3 and MOPITT based on remotely sensed active fires and/or burned area products for the year 2003. The objective is to highlight similarities and differences by focusing on the geographical and temporal distribution and on the emissions for three broad land cover classes (forest, savanna/grassland and agriculture. Globally, CO emissions for the year 2003 range between 365 Tg CO (GFED3 and 1422 Tg CO (VGT. Despite the large uncertainty in the total amounts, some common spatial patterns typical of biomass burning can be identified in the boreal forests of Siberia, in agricultural areas of Eastern Europe and Russia and in savanna ecosystems of South America, Africa and Australia. Regionally, the largest difference in terms of total amounts (CV > 100% and seasonality is observed at the northernmost latitudes, especially in North America and Siberia where VGT appears to overestimate the area affected by fires. On the contrary, Africa shows the best agreement both in terms of total annual amounts (CV = 31% and of seasonality despite some overestimation of emissions from forest and agriculture observed in the MODIS inventory. In Africa VGT provides the most reliable seasonality. Looking at the broad land cover types, the range of contribution to the global emissions of CO is 64–74%, 23–32% and 3–4% for forest, savanna/grassland and agriculture, respectively. These results suggest that there is still large uncertainty in global estimates of emissions and it increases if the comparison is carried by out taking into account the temporal (month and spatial (0.5° × 0.5° cell dimensions. Besides the area affected by fires, also vegetation characteristics and conditions at the time of burning should also be accurately parameterized since they can greatly influence the global estimates of CO emissions.

  20. A regional chemical transport modeling to identify the influences of biomass burning during 2006 BASE-ASIA

    Science.gov (United States)

    Fu, J. S.; Hsu, N. C.; Gao, Y.; Huang, K.; Li, C.; Lin, N.-H.; Tsay, S.-C.

    2011-01-01

    To evaluate the impact of biomass burning from Southeast Asia to East Asia, this study conducted numerical simulations during NASA's 2006 Biomass-burning Aerosols in South-East Asia: Smoke Impact Assessment (BASE-ASIA). Two typical episode periods (27-28 March and 13-14 April) were examined. Two emission inventories, FLAMBE and GFED, were used in the simulations. The influences during two episodes in the source region (Southeast Asia) contributed to CO, O3 and PM2.5 concentrations as high as 400 ppbv, 20 ppbv and 80 μg/m3, respectively. The perturbations with and without biomass burning of the above three species were in the range of 10 to 60%, 10 to 20% and 30 to 70%, respectively. The impact due to long-range transport could spread over the southeastern parts of East Asia and could reach about 160 to 360 ppbv, 8 to 18 ppbv and 8 to 64 μg/m3 on CO, O3 and PM2.5, respectively; the percentage impact could reach 20 to 50% on CO, 10 to 30% on O3, and as high as 70% on PM2.5. An impact pattern can be found in April, while the impact becomes slightly broader and goes up to Yangtze River Delta. Two cross-sections at 15° N and 20° N were used to compare the vertical flux of biomass burning. In the source region (Southeast Asia), CO, O3 and PM2.5 concentrations had a strong upward tendency from surface to high altitudes. The eastward transport becomes strong from 2 to 8 km in the free troposphere. The subsidence contributed 60 to 70%, 20 to 50%, and 80% on CO, O3 and PM2.5, respectively to surface in the downwind area. The study reveals the significant impact of Southeastern Asia biomass burning on the air quality in both local and downwind areas, particularly during biomass burning episodes. This modeling study might provide constraints of lower limit. An additional study is underway for an active biomass burning year to obtain an upper limit and climate effects.

  1. Biosorption of Congo Red from aqueous solution onto burned root of Eichhornia crassipes biomass

    Science.gov (United States)

    Roy, Tapas Kumar; Mondal, Naba Kumar

    2017-07-01

    Biosorption is becoming a promising alternative to replace or supplement the present dye removal processes from dye containing waste water. In this work, adsorption of Congo Red (CR) from aqueous solution on burned root of Eichhornia crassipes ( BREC) biomass was investigated. A series of batch experiments were performed utilizing BREC biomass to remove CR dye from aqueous systems. Under optimized batch conditions, the BREC could remove up to 94.35 % of CR from waste water. The effects of operating parameters such as initial concentration, pH, adsorbent dose and contact time on the adsorption of CR were analyzed using response surface methodology. The proposed quadratic model for central composite design fitted very well to the experimental data. Response surface plots were used to determine the interaction effects of main factors and optimum conditions of the process. The optimum adsorption conditions were found to be initial CR concentration = 5 mg/L-1, pH = 7, adsorbent dose = 0.125 g and contact time = 45 min. The experimental isotherms data were analyzed using Langmuir, Freundlich, Temkin and Dubinin-Radushkevich (D-R) isotherm equations and the results indicated that the Freundlich isotherm showed a better fit for CR adsorption. Thermodynamic parameters were calculated from Van't Hoff plot, confirming that the adsorption process was spontaneous and exothermic. The high CR adsorptive removal ability and regeneration efficiency of this adsorbent suggest its applicability in industrial/household systems and data generated would help in further upscaling of the adsorption process.

  2. Assessment of aerosol-cloud interactions during southern African biomass burning activity, employing cloud parameterizations

    Science.gov (United States)

    Wiston, Modise; McFiggans, Gordon; Schultz, David

    2015-04-01

    In this study, we perform a simulation of the spatial distributions of particle and gas concentrations from a significantly large source of pollution event during a dry season in southern Africa and their interactions with cloud processes. Specific focus is on the extent to which cloud-aerosol interactions are affected by various inputs (i.e. emissions) and parameterizations and feedback mechanisms in a coupled mesoscale chemistry-meteorology model -herein Weather Research and Forecasting model with chemistry (WRF-Chem). The southern African dry season (May-Sep) is characterised by biomass burning (BB) type of pollution. During this period, BB particles are frequently observed over the subcontinent, at the same time a persistent deck of stratocumulus covers the south West African coast, favouring long-range transport over the Atlantic Ocean of aerosols above clouds. While anthropogenic pollutants tend to spread more over the entire domain, biomass pollutants are concentrated around the burning areas, especially the savannah and tropical rainforest of the Congo Basin. BB is linked to agricultural practice at latitudes south of 10° N. During an intense burning event, there is a clear signal of strong interactions of aerosols and cloud microphysics. These species interfere with the radiative budget, and directly affect the amount of solar radiation reflected and scattered back to space and partly absorbed by the atmosphere. Aerosols also affect cloud microphysics by acting as cloud condensation nuclei (CCN), modifying precipitation pattern and the cloud albedo. Key area is to understand the role of pollution on convective cloud processes and its impacts on cloud dynamics. The hypothesis is that an environment of potentially high pollution enables the probability of interactions between co-located aerosols and cloud layers. To investigate this hypothesis, we outline an approach to integrate three elements: i) focusing on regime(s) where there are strong indications of

  3. Improving biomass burning pollution predictions in Singapore using AERONET and Lidar observations.

    Science.gov (United States)

    Hardacre, Catherine; Chew, Boon Ning; Gan, Christopher; Burgin, Laura; Hort, Matthew; Lee, Shao Yi; Shaw, Felicia; Witham, Claire

    2016-04-01

    Every year millions of people are affected by poor air quality from trans-boundary smoke haze emitted from large scale biomass burning in Asia. These fires are a particular problem in the Indonesian regions of Sumatra and Kalimantan where peat fires, lit to clear land for oil palm plantations and agriculture, typically result in high levels of particulate matter (PM) emissions. In June 2013 and from August-October 2015 the combination of widespread burning, meteorological and climatological conditions resulted in severe air pollution throughout Southeast Asia. The Met Office of the United Kingdom (UKMO) and the Hazard and Risk Impact Assessment Unit of the Meteorological Service of Singapore (MSS) have developed a quantitative haze forecast to provide a reliable, routine warning of haze events in the Singapore region. The forecast system uses the UKMO's Lagrangian particle dispersion model NAME (Numerical Atmosphere-dispersion Modelling Environment) in combination with high resolution, satellite based emission data from the Global Fire Emissions System (GFAS). The buoyancy of biomass burning smoke and it's rise through the atmosphere has a large impact on the amount of air pollution at the Earth's surface. This is important in Singapore, which is affected by pollution that has travelled long distances and that will have a vertical distribution influenced by meteorology. The vertical distribution of atmospheric aerosol can be observed by Lidar which provides information about haze plume structure. NAME output from two severe haze periods that occurred in June 2013 and from August-October 2015 was compared with observations of total column aerosol optical depth (AOD) from AERONET stations in Singapore and the surrounding region, as well as vertically resolved Lidar data from a station maintained by MSS and from MPLNET. Comparing total column and vertically resolved AOD observations with NAME output indicates that the model underestimates PM concentrations throughout

  4. Aircraft-Measured Indirect Cloud Effects from Biomass Burning Smoke in the Arctic and Subarctic

    Science.gov (United States)

    Zamora, L. M.; Kahn, R. A.; Cubison, M. J.; Diskin, G. S.; Jimenez, J. L.; Kondo, Y.; McFarquhar, G. M.; Nenes, A.; Thornhill, K. L.; Wisthaler, A.; hide

    2016-01-01

    The incidence of wildfires in the Arctic and subarctic is increasing; in boreal North America, for example, the burned area is expected to increase by 200-300% over the next 50-100 years, which previous studies suggest could have a large effect on cloud microphysics, lifetime, albedo, and precipitation. However, the interactions between smoke particles and clouds remain poorly quantified due to confounding meteorological influences and remote sensing limitations. Here, we use data from several aircraft campaigns in the Arctic and subarctic to explore cloud microphysics in liquid-phase clouds influenced by biomass burning. Median cloud droplet radii in smoky clouds were approx. 40- 60% smaller than in background clouds. Based on the relationship between cloud droplet number (N(liq)/ and various biomass burning tracers (BBt/ across the multi-campaign data set, we calculated the magnitude of subarctic and Arctic smoke aerosol-cloud interactions (ACIs, where ACI = (1/3) x dln(N(liq))/dln(BBt)) to be approx. 0.16 out of a maximum possible value of 0.33 that would be obtained if all aerosols were to nucleate cloud droplets. Interestingly, in a separate subarctic case study with low liquid water content (0.02 gm/cu m and very high aerosol concentrations (2000- 3000/ cu cm in the most polluted clouds, the estimated ACI value was only 0.05. In this case, competition for water vapor by the high concentration of cloud condensation nuclei (CCN) strongly limited the formation of droplets and reduced the cloud albedo effect, which highlights the importance of cloud feedbacks across scales. Using our calculated ACI values, we estimate that the smoke-driven cloud albedo effect may decrease local summertime short-wave radiative flux by between 2 and 4 W/sq m or more under some low and homogeneous cloud cover conditions in the subarctic, although the changes should be smaller in high surface albedo regions of the Arctic.We lastly explore evidence suggesting that numerous northern

  5. Aircraft-measured indirect cloud effects from biomass burning smoke in the Arctic and subarctic

    Directory of Open Access Journals (Sweden)

    L. M. Zamora

    2016-01-01

    Full Text Available The incidence of wildfires in the Arctic and subarctic is increasing; in boreal North America, for example, the burned area is expected to increase by 200–300 % over the next 50–100 years, which previous studies suggest could have a large effect on cloud microphysics, lifetime, albedo, and precipitation. However, the interactions between smoke particles and clouds remain poorly quantified due to confounding meteorological influences and remote sensing limitations. Here, we use data from several aircraft campaigns in the Arctic and subarctic to explore cloud microphysics in liquid-phase clouds influenced by biomass burning. Median cloud droplet radii in smoky clouds were  ∼  40–60 % smaller than in background clouds. Based on the relationship between cloud droplet number (Nliq and various biomass burning tracers (BBt across the multi-campaign data set, we calculated the magnitude of subarctic and Arctic smoke aerosol–cloud interactions (ACIs, where ACI  =  (1∕3 × dln(Nliq∕dln(BBt to be  ∼  0.16 out of a maximum possible value of 0.33 that would be obtained if all aerosols were to nucleate cloud droplets. Interestingly, in a separate subarctic case study with low liquid water content ( ∼  0.02 g m−3 and very high aerosol concentrations (2000–3000 cm−3 in the most polluted clouds, the estimated ACI value was only 0.05. In this case, competition for water vapor by the high concentration of cloud condensation nuclei (CCN strongly limited the formation of droplets and reduced the cloud albedo effect, which highlights the importance of cloud feedbacks across scales. Using our calculated ACI values, we estimate that the smoke-driven cloud albedo effect may decrease local summertime short-wave radiative flux by between 2 and 4 W m−2 or more under some low and homogeneous cloud cover conditions in the subarctic, although the changes should be smaller in high surface albedo regions of the

  6. Biomass Burning: Energy and Emissions Performance of Traditional and Improved Cookstoves Under Controlled Laboratory Conditions

    Science.gov (United States)

    Arora, Pooja

    Indoor air pollution (IAP) from solid biomass fuel burning in traditional cookstoves is a leading problem all the world which is responsible for health and climate related impacts. The immediate solution in order to combat this threat has been introduction of improved cookstoves among rural populations who doesn't have access clean energy. The extent of improvement in new cookstove designs, in terms of higher energy efficiency and lower emissions is in turn dependent on the customary behaviour of the users on field. The field based cookstove testing conducted in various studies show a disagreement between performance measures in the lab and real world conditions. Some of the important variables which reflect the actual user behaviour on field depending on geographical location include fuel characteristics and cooking cycle. In this thesis, the research approach focused on user-centred testing methodology for cookstoves. The variation in cookstove performance in terms of energy and emission parameters was assessed by isolating the impact of individual variables i.e. types of fuel and cooking cycles. The energy parameters which served as indicators of cookstove performance included SEC and power input, and EFs for CO and PM were used as emission parameters. PM emissions were further analysed with the help of physical and chemical characterization studies. The physical characterization focused on size distribution of the particulate using optical and electron microscopy techniques. While chemical characterization was conducted using quantification methods for organic and elemental carbon content of PM using TOR and CBMS techniques. The test variables were identified through field survey and literature review and were replicated under controlled laboratory conditions where emissions were sampled using hood method. The research resulted in six research papers addressing specific hypothesis related the problem identified through literature survey. The results showed that

  7. Biogenic emissions and biomass burning influences on the chemistry of the fogwater and stratiform precipitations in the African equatorial forest

    Science.gov (United States)

    Lacaux, J. P.; Loemba-Ndembi, J.; Lefeivre, B.; Cros, B.; Delmas, R.

    An automatic wet-only precipitation collector and a fogwater collector were operated in the coastal forest of equatorial Congo (Dimonika), for a complete seasonal cycle (November 1986-September 1987). Inorganic (Na +, K +, NH 4+, Ca 2+, NO 3-, Cl -, SO 42-) and organic (HCOO -, CH 3COO -) ions were determined in 33 stratiform rain events and nine fog events. With the raindrop size distributions, measured over a 1 year period (June 1988-June 1989) at the site of Enyelé in the Equatorial forest of Congo, were established the relationship between the liquid water content ( LWC in gm -3) and the rate of rainfall ( R in mm h -1) for the stratiform rains: LWC = 0.055 × R0.871 with a correlation coefficient of 0.98. Taking into account the dilution effect due to LWC, ionic concentrations of fogwater and stratiform precipitation are enriched during the dry season. In particular, K +, NO 3-, SO 42- and Ca 2+ are considerably enriched indicating the seasonal influence of the biomass burning due to savanna fires and terrigenous source from deserts of the Southern Hemisphere. Comparison of the chemical contents of fogwater—which mainly represents the local emission of the forest—and stratiform precipitation—which represent the air chemical content of the planetary boundary layer—during the dry season enabled us to show the following. Fog and rain with comparable chemical contents in mineral elements indicate a generalized contamination of the boundary layer by marine (Na +, Cl -), terrigenous (Ca 2+) and above all by biomass burning (K +, NO 3-, SO 42-) sources. The organic content (HCOO -, CH 3COO -) higher for the fogs than for rains, unexplainable by the dilution effect, has its source at a local level in the forest ecosystem. The estimation, from the organic content of fog and rain, of the gaseous concentrations of formic and acetic acids confirm the production of carboxylic acids measured in Amazonia during ABLE (for HCOOH : 510 ppt at canopy level and 170 ppt

  8. Chemical characterisation of iron in dust and biomass burning aerosols during AMMA-SOP0/DABEX: implication for iron solubility

    Directory of Open Access Journals (Sweden)

    R. Paris

    2010-05-01

    Full Text Available The chemical composition and the soluble fraction were determined in aerosol samples collected during flights of AMMA-SOP0/DABEX campaign, which were conducted in the West African Sahel during dry season (2006. Two aerosol types are encountered in this period: dust particles (DUST and biomass burning aerosol (BB. Chemical analysis and microscope observations showed that the iron (Fe found in BB samples mainly originates from dust particles mostly internally mixed in the biomass burning layer. Chemical analyses of samples showed that the Fe solubility is lower in African dust samples than in biomass burning aerosols. Our data provide a first idea of the variability of iron dust solubility in the source region (0.1% and 3.4%. We found a relationship between iron solubility/clay content/source which partly confirms that the variability of iron solubility in this source region is related to the character and origin of the aerosols themselves. In the biomass burning samples, no relationship were found between Fe solubility and either the concentrations of acidic species (SO42−, NO3 or oxalate or the content of carbon (TC, OC, BC. Therefore, we were unable to determine what processes are involved in this increase of iron solubility. In terms of supply of soluble Fe to oceanic ecosystems on a global scale, the higher solubility observed for Fe in biomass burning could imply an indirect source of Fe to marine ecosystems. But these aerosols are probably not significant because the Sahara is easily the dominant source of Fe to the Atlantic Ocean.

  9. Source apportionment of PM2.5 at a regional background site in North China using PMF linked with radiocarbon analysis: insight into the contribution of biomass burning

    Science.gov (United States)

    Zong, Zheng; Wang, Xiaoping; Tian, Chongguo; Chen, Yingjun; Qu, Lin; Ji, Ling; Zhi, Guorui; Li, Jun; Zhang, Gan

    2016-09-01

    Source apportionment of fine particles (PM2.5) at a background site in North China in the winter of 2014 was done using statistical analysis, radiocarbon (14C) measurement and positive matrix factorization (PMF) modeling. Results showed that the concentration of PM2.5 was 77.6 ± 59.3 µg m-3, of which sulfate (SO42-) concentration was the highest, followed by nitrate (NO3-), organic carbon (OC), elemental carbon (EC) and ammonium (NH4+). As demonstrated by backward trajectory, more than half of the air masses during the sampling period were from the Beijing-Tianjin-Hebei (BTH) region, followed by Mongolia and the Shandong Peninsula. Cluster analysis of chemical species suggested an obvious signal of biomass burning in the PM2.5 from the Shandong Peninsula, while the PM2.5 from the BTH region showed a vehicle emission pattern. This finding was further confirmed by the 14C measurement of OC and EC in two merged samples. The 14C result indicated that biogenic and biomass burning emission contributed 59 ± 4 and 52 ± 2 % to OC and EC concentrations, respectively, when air masses originated from the Shandong Peninsula, while the contributions fell to 46 ± 4 and 38 ± 1 %, respectively, when the prevailing wind changed and came from the BTH region. The minimum deviation between source apportionment results from PMF and 14C measurement was adopted as the optimal choice of the model exercises. Here, two minor overestimates with the same range (3 %) implied that the PMF result provided a reasonable source apportionment of the regional PM2.5 in this study. Based on the PMF modeling, eight sources were identified; of these, coal combustion, biomass burning and vehicle emission were the main contributors of PM2.5, accounting for 29.6, 19.3 and 15.9 %, respectively. Compared with overall source apportionment, the contributions of vehicle emission, mineral dust, coal combustion and biomass burning increased when air masses came from the BTH region, Mongolia and the Shandong

  10. Source apportionment of PM2.5 at a regional background site in North China using PMF linked with radiocarbon analysis: insight into the contribution of biomass burning

    Directory of Open Access Journals (Sweden)

    Z. Zong

    2016-09-01

    Full Text Available Source apportionment of fine particles (PM2.5 at a background site in North China in the winter of 2014 was done using statistical analysis, radiocarbon (14C measurement and positive matrix factorization (PMF modeling. Results showed that the concentration of PM2.5 was 77.6 ± 59.3 µg m−3, of which sulfate (SO42− concentration was the highest, followed by nitrate (NO3−, organic carbon (OC, elemental carbon (EC and ammonium (NH4+. As demonstrated by backward trajectory, more than half of the air masses during the sampling period were from the Beijing–Tianjin–Hebei (BTH region, followed by Mongolia and the Shandong Peninsula. Cluster analysis of chemical species suggested an obvious signal of biomass burning in the PM2.5 from the Shandong Peninsula, while the PM2.5 from the BTH region showed a vehicle emission pattern. This finding was further confirmed by the 14C measurement of OC and EC in two merged samples. The 14C result indicated that biogenic and biomass burning emission contributed 59 ± 4 and 52 ± 2 % to OC and EC concentrations, respectively, when air masses originated from the Shandong Peninsula, while the contributions fell to 46 ± 4 and 38 ± 1 %, respectively, when the prevailing wind changed and came from the BTH region. The minimum deviation between source apportionment results from PMF and 14C measurement was adopted as the optimal choice of the model exercises. Here, two minor overestimates with the same range (3 % implied that the PMF result provided a reasonable source apportionment of the regional PM2.5 in this study. Based on the PMF modeling, eight sources were identified; of these, coal combustion, biomass burning and vehicle emission were the main contributors of PM2.5, accounting for 29.6, 19.3 and 15.9 %, respectively. Compared with overall source apportionment, the contributions of vehicle emission, mineral dust, coal combustion and biomass burning increased when air masses

  11. Characterization of biomass burning: Fourier transform infrared analysis of wood and vegetation combustion products

    Science.gov (United States)

    Padilla, Diomaris

    The Fourier transform infrared examination of the combustion products of a selection of forest materials has been undertaken in order to guide future detection of biomass burning using satellite remote sensing. Combustion of conifer Pinus strobus (white pine) and deciduous Prunus serotina (cherry), Acer rubrum (red maple), Friglans nigra (walnut), Fraxinus americana (ash), Betula papyrifera (birch), Querus alba (white oak) and Querus rubra (red oak) lumber, in a Meeker burner flame at temperatures of 400 to 900 degrees Fahrenheit produces a broad and relatively flat signal with a few distinct peaks throughout the wavelength spectra (400 to 4000 cm-1). The distinct bands located near wavelengths of 400-700, 1500-1700, 2200-2400 and 3300-3600 cm-1 vary in intensity with an average difference between the highest and lowest absorbing species of 47 percent. Spectral band differences of 10 percent are within the range of modern satellite spectrometers, and support the argument that band differences can be used to discriminate between various types of vegetation. A similar examination of soot and smoke derived from the leaves and branches of the conifer Pinus strobus and deciduous Querus alba (white oak), Querus rubra (red oak), Liquidambar styraciflua (sweetgum), Acer rubrum (maple) and Tilea americana (American basswood) at combustion temperatures of 400 to 900 degrees Fahrenheit produce a similar broad spectrum with a shift in peak location occurring in peaks below the 1700 cm-1 wavelength. The new peaks occur near wavelengths of 1438-1444, 875 and 713 cm-1. This noted shift in wavelength location may be indicative of a fingerprint region for green woods distinguishable from lumber through characteristic biomass suites. Temperature variations during burning show that the spectra of low temperature smoldered aerosols, occurring near 400 to 450 degrees Fahrenheit, may be distinguished from higher temperature soot aerosols that occur above 600 degrees Fahrenheit. A

  12. Unravelling the Chemical Complexity of Biomass Burning VOC Emissions via H3O+ ToF-CIMS: Separation of High- and Low-temperature Pyrolysis Products

    Science.gov (United States)

    Sekimoto, K.; Koss, A.; Gilman, J.; Selimovic, V.; Coggon, M.; Zarzana, K. J.; Yuan, B.; Lerner, B. M.; Brown, S. S.; Warneke, C.; Yokelson, R. J.; De Gouw, J. A.

    2017-12-01

    Biomass burning is a large source of volatile organic compounds (VOCs) and many other trace species to the atmosphere. These VOCs can act as precursors to formation of secondary pollutants such as ozone and fine particles, and some VOCs can also have direct effects on human and ecosystem health. Multiple different and complex processes take place in biomass burning, e.g., distillation, flaming, and smoldering combustion processes. In a given fire, most of these processes occur simultaneously, but the relative importance of each can change over the course of a fire. This gives rise to some of the variability in VOC emissions between different fires. To study gas-phase emissions from biomass burning, an H3O+ ToF-CIMS was deployed during the FIREX 2016 laboratory intensive at the US Forest Service Fire Sciences Laboratory in Missoula, Montana. This instrument has a fast time response and the measurements in stack burns show the varying gas-phase emissions as the mix of distillation, flaming, and smoldering varies. We used positive matrix factorization (PMF) to reduce and explain the observed chemical complexity in the gas phase. Despite the complexity and variability of emissions, we found that a solution including just two emission profiles explained on average 85% of the VOC emissions across 15 different fuel types including pines, firs, spruce, grass, shrubs, chaparrals, and wood wool. We identified the two profiles as resulting from high-temperature and low-temperature pyrolysis processes, and found that the profiles were remarkably similar (correlation coefficient r > 0.9) across nearly all the fuel types described above. Some of the remaining differences in VOC emission profiles between fuel types, and exceptions to the two-profile solution, can be explained by differences in the chemical composition of the fuels.

  13. SAGE: Attribution of Biomass Burning Tracers sampled on the Greenland Ice Sheet in 2013

    Science.gov (United States)

    Soja, A. J.; Choi, H. D.; Polashenski, C.; Thomas, J. L.; Dibb, J. E.; Fairlie, T. D.; Winker, D. M.; Flanner, M.; Bergin, M.; Casey, K.; Ward, J. L.; Chen, J.; Courville, Z.; Trepte, C. R.; Lai, A.; Schauer, J. J.; Shafer, M. M.

    2016-12-01

    The SAGE team traversed and sampled the snow stratigraphy representing 2012-2014 snow accumulation in the northwest sector of the Greenland Ice Sheet (GrIS) and found evidence of aerosol deposition that originated from biomass burning (BB). Black carbon (BC) concentrations (range 2.8-43 ng/g) were closely correlated with ammonium (NH4), both of which are tracers that are indicative of BB events. Data indicated the strongest deposition events occurred in July and August of 2013. Using a combination of these in-situ samples, modeling and satellite data, the transport and attribution of deposited smoke is back-traced from the GrIS to particular fires. The Langley Research Center Trajectory Model (LaTM) is used to track deposition events from pit locations on the GrIS to particular source fires from June through August 2013, which includes 2 months when smoke is known to have strongly impacted the GrIS (July August 2013) and 1 month (June 2013) of relatively low smoke impact. Simulated smoke is injected every 100 vertical meters to 2km ( boundary layer) in the LaTM and run backwards in time and space from sample sites until coincident with fire (MODIS data). Ground-based and satellite data are used to verify transport. As an example, we focus on one case study that traces smoke from fires that started burning on July 22nd and continued to burn through July 26-29. A river of smoke crosses Canada and is transported to the GrIS, arriving August 1st-2nd. Overall, we find the largest BB events do not equate to the largest deposition events, rather this process requires a combination of: intense fires; conducive transport paths; and deposition and preservation opportunities (snowfall). Intensely burning fires produce thick smoke, which is less likely to be dispersed or diluted in transport, and the smoke is injected to higher altitudes, which ensure a faster transport. Because fire severity, extreme fire seasons, general circulation patterns and precipitating snowfall are

  14. Construction and Characterization of an Indoor Smog Chamber for Measuring Chemical and Optical Properties of Biomass Burning Aerosols as a Function of Age

    Science.gov (United States)

    Smith, D. M.; Fiddler, M. N.; Sexton, K.; Bililign, S.; Dowdell, T. M.

    2016-12-01

    Biomass burning is recognized as one of the largest sources of absorbing aerosols in the atmosphere and significantly influences the radiative properties of the atmosphere. In the atmosphere, aerosols dynamically change in complex ways. The chemical composition and physical properties of particles evolve during their atmospheric lifetime due to condensation, oxidation reactions, etc. Changes in chemical composition due to aging is likely to change the optical properties of these particles as well. We have built a 9.01m3 indoor smog chamber made of FEP Teflon. Wood and other organic samples are burned in a tube furnace with the exhaust going directly into the chamber. The construction, characterization, and calibration of the smog chamber will be presented, along with preliminary measurements of extinction and scattering of biomass burning aerosols measured using a Cavity Ring-down and Integrating Nephelometry system. This system allows us to measure any changes in the optical properties of the soot as it ages. Injections to the chamber can be controlled to simulate various atmospheric conditions. These include clean (dry) air, laboratory (room) air, water vapor, NOX, and various biogenic and anthropogenic VOCs such as aromatic hydrocarbons. These components and some of their oxidation products can also be monitored and characterized during aging. The authors acknowledge the support from the National Science Foundation through Grant Number NSF-AGS-1555479

  15. Assessment of biomass open burning emissions in Indonesia and potential climate forcing impact

    Science.gov (United States)

    Permadi, Didin Agustian; Kim Oanh, Nguyen Thi

    2013-10-01

    This paper presents an emission inventory (EI) for biomass open burning (OB) sources including forest, agro-residue and municipal solid waste (MSW) in Indonesia for year 2007. The EI covered toxic air pollutants and greenhouse gases (GHGs) and was presented as annual and monthly average for every district, and further on a grid of 0.25° × 0.25°. A rigorous analysis of activity data and emission factor ranges was done to produce the low, best and high emission estimates for each species. Development of EI methodology for MSW OB which, to our best knowledge, has not been presented in detail in the literature was a focus of this paper. The best estimates of biomass OB emission of toxic air pollutants for the country, in Gg, were: 9.6 SO2; 98 NOx; 7411 CO; 335 NMVOC; 162 NH3; 439 PM10; 357 PM2.5; 24 BC; and 147 OC. The best emission estimates of GHGs, in Gg, were: 401 CH4, 57,247 CO2; and 3.6 N2O. The low and high values of the emission estimates for different species were found to range from -86% to +260% of the corresponding best estimates. Crop residue OB contributed more than 80% of the total biomass OB emissions, followed by forest fire of 2-12% (not including peat soil fire emission) and MSW (1-8%). An inter-annual active fires count for Indonesia showed relatively low values in 2007 which may be attributed to the high rainfall intensity under the influence of La Niña climate pattern in the year. Total estimated net climate forcing from OB in Indonesia was 110 (20 year horizon) and 73 (100 year horizon) Tg CO2 equivalents which is around 0.9-1.1% of that reported for the global biomass OB for both time horizons. The spatial distribution showed higher emissions in large urban areas in Java and Sumatra Island, while the monthly emissions indicated higher values during the dry months of August-October.

  16. Inverse modeling of biomass burning emissions using Total Ozone Mapping Spectrometer aerosol index for 1997

    Science.gov (United States)

    Zhang, Sophia; Penner, Joyce E.; Torres, Omar

    2005-11-01

    We present results from an inverse model study to determine biomass smoke emissions for the year 1997 by comparison of modeled aerosol index (AI) with that measured by the EP TOMS instrument. The IMPACT model with Data Assimilation Office (DAO) meteorology data in 1997 is utilized to obtain aerosol spatial and temporal distributions. Then a radiative transfer model is applied to generate the modeled AI. A Bayesian inverse technique is applied to optimize the difference between the modeled AI and the EP TOMS AI in the same period by regulating monthly a priori biomass smoke emissions in seven predefined regions. The modeled AI with a posteriori emissions is generally in better agreement with the EP TOMS AI. The a posteriori emissions from Indonesia increase by a factor of 8-10 over the a priori emissions due to the Indonesian fires in 1997. The annual total a posteriori source increases by about 13% for the year 1997 (6.31 Tg/yr black carbon and 67.27 Tg/yr smoke) in the base scenario, with a larger adjustment of monthly emissions. The sensitivity of this result to the a priori uncertainties, the height of the smoke layer, the cloud screening criteria, the inclusion of an adjustment of emissions outside the main biomass burning regions, and the inclusion of the covariances between observations in different locations is discussed in a set of sensitivity scenarios. The sensitivity scenarios suggest that the inverse model results are most sensitive to the assumed uncertainty for a priori emissions and the altitude of aerosol layer in the model and are less sensitive to other factors. In the scenario where the uncertainty of a priori emissions is increased to 100% (300% in Indonesia), the total annual black carbon emission is increased to 6.87 Tg/yr, and the smoke emission increases to 73.39 Tg/yr. The a posteriori emissions in Indonesia in the scenario with increased uncertainty are in better agreement with both the TOMS AI and with previous estimates for the

  17. Chemical Composition of African Biomass Burning Aerosols Over the Southeast Atlantic: Aerosol Mass Spectrometer Results from the 2016 and 2017 ORACLES Field Campaigns.

    Science.gov (United States)

    Dobracki, A. N.; Howell, S. G.; Freitag, S.; Smirnow, N.; Podolske, J. R.

    2017-12-01

    Biomass burning (BB) is one of the largest contributors of anthropogenic aerosols in the atmosphere. During BB events, organic and inorganic gases and particles are emitted into the atmosphere. Because of their abundance, particle size, and radiative properties, BB aerosols play an important role in global climate. Southern Africa produces 30% of the Earth's BB aerosol particles. Organics, Nitrates, sulfates, and refractory black carbon, along with other chemical species are lofted into the free troposphere and transported over the Southeast Atlantic Ocean. However, considerate uncertainty remains in the chemical composition of these plumes with its large variety of organic and inorganic species. As part of the NASA ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) 2016 and 2017 airborne field campaigns, an Aerosol Mass Spectrometer (AMS) was used to sample the chemical composition and chemical structure of the aerosol in this region. Results show constant vertical stratification within the plume over the course of the campaign (August 2017 / September 2016). Using nitrate (NO3) and organic carbon (OC) as two tracers, the structure of the September 2016 plume had a ratio of 1:8 (NO3:OC) in the upper plume (3km-5km), while the lower plume (1km-2.5km) had a ratio of 1:12 (NO3:OC). AMS measurements were supported by carbon monoxide (CO) and carbon dioxide (CO2) measurements. This data revealed a modified combustion efficiency (MCE= ΔCO2/ΔCO2 + ΔCO) of 0.97 in the lower plume. An MCE above 0.9 represents efficient burning processes. Additionally, concentrations of C2(H2O)2 (m/z60), a common chemical fragment from breaking up carbohydrates (primarily levoglucosan) emitted by burning biomass only represented <1% of total organics throughout the campaign. These low concentrations are due to efficient combustion rather than oxidation during transport. These results are consistent with earlier studies of efficient fires.

  18. The influence of meteorological factors and biomass burning on surface ozone concentrations at Tanah Rata, Malaysia

    Science.gov (United States)

    Toh, Ying Ying; Lim, Sze Fook; von Glasow, Roland

    2013-05-01

    The surface ozone concentrations at the Tanah Rata regional Global Atmosphere Watch (GAW) station, Malaysia (4°28‧N, 101°23‧E, 1545 m above Mean Sea Level (MSL)) from June 2006 to August 2008 were analyzed in this study. Overall the ozone mixing ratios are very low; the seasonal variations show the highest mixing ratios during the Southwest monsoon (average 19.1 ppb) and lowest mixing ratios during the spring intermonsoon (average 14.2 ppb). The diurnal variation of ozone is characterised by an afternoon maximum and night time minimum. The meteorological conditions that favour the formation of high ozone levels at this site are low relative humidity, high temperature and minimum rainfall. The average ozone concentration is lower during precipitation days compared to non-precipitation days. The hourly averaged ozone concentrations show significant correlations with temperature and relative humidity during the Northeast monsoon and spring intermonsoon. The highest concentrations are observed when the wind is blowing from the west. We found an anticorrelation between the atmospheric pressure tide and ozone concentrations. The ozone mixing ratios do not exceed the recommended Malaysia Air Quality Guidelines for 1-h and 8-h averages. Five day backward trajectories on two high ozone episodes in 07 August 2006 (40.0 ppb) and 24 February 2008 (45.7 ppb) are computed using the HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model to investigate the origin of the pollutants and influence of regional transport. The high ozone episode during 07 August 2006 (burning season during southwest monsoon) is mainly attributed to regional transport from biomass burning in Sumatra, whereas favourable meteorological conditions (i.e. low relative humidity, high temperature and solar radiation, zero rainfall) and long range transport from Indo-China have elevated the ozone concentrations during 24 February 2008.

  19. Merging aerosol optical depth data from multiple satellite missions to view agricultural biomass burning in Central and East China

    Science.gov (United States)

    Xue, Y.; Xu, H.; Mei, L.; Guang, J.; Guo, J.; Li, Y.; Hou, T.; Li, C.; Yang, L.; He, X.

    2012-04-01

    Agricultural biomass burning (ABB) in Central and East China occurs every year from May to October and peaks in June. The biomass burning event in June 2007 was very strong. During the period from 26 May to 16 June 2007, ABB occurred mainly in Anhui, Henan, Jiangsu and Shandong provinces. A comprehensive set of aerosol optical depth (AOD) data, produced by a merger of AOD product data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Multiangle Imaging Spectroradiometer (MIRS), is used to study the spatial and temporal distribution of agricultural biomass aerosols in Central and East China combining with ground observations from both AErosol RObotic NETwork (AERONET) and China Aerosol Remote Sensing NETwork (CARSNET) measurements. We compared merged AOD data with single-sensor single-algorithm AOD data (MODIS Dark Target AOD data, MODIS Deep Blue AOD data, SRAP-MODIS AOD data and MISR AOD data). In this comparison, we found merged AOD products can improve the quality of AOD products from single-sensor single-algorithm data sets by expanding the spatial coverage of the study area and keeping the statistical confidence in AOD parameters. There existed high correlation (0.8479) between the merged AOD data and AERONET measurements. Our merged AOD data make use of synergetic information conveyed in all of the available satellite data. The merged AOD data were used for the analysis of the biomass burning event from 26 May to 16 June 2007 together with meteorological data. The merged AOD products and the ground observations from China suggest that biomass burning in Central and East China has had great impact on AOD over China. Influenced by this ABB, the highest AOD value in Beijing on 12 June 2007 reached 5.71.

  20. Ambient measurements and source apportionment of fossil fuel and biomass burning black carbon in Ontario

    Science.gov (United States)

    Healy, R. M.; Sofowote, U.; Su, Y.; Debosz, J.; Noble, M.; Jeong, C.-H.; Wang, J. M.; Hilker, N.; Evans, G. J.; Doerksen, G.; Jones, K.; Munoz, A.

    2017-07-01

    Black carbon (BC) is of significant interest from a human exposure perspective but also due to its impacts as a short-lived climate pollutant. In this study, sources of BC influencing air quality in Ontario, Canada were investigated using nine concurrent Aethalometer datasets collected between June 2015 and May 2016. The sampling sites represent a mix of background and near-road locations. An optical model was used to estimate the relative contributions of fossil fuel combustion and biomass burning to ambient concentrations of BC at every site. The highest annual mean BC concentration was observed at a Toronto highway site, where vehicular traffic was found to be the dominant source. Fossil fuel combustion was the dominant contributor to ambient BC at all sites in every season, while the highest seasonal biomass burning mass contribution (35%) was observed in the winter at a background site with minimal traffic contributions. The mass absorption cross-section of BC was also investigated at two sites, where concurrent thermal/optical elemental carbon data were available, and was found to be similar at both locations. These results are expected to be useful for comparing the optical properties of BC at other near-road environments globally. A strong seasonal dependence was observed for fossil fuel BC at every Ontario site, with mean summer mass concentrations higher than their respective mean winter mass concentrations by up to a factor of two. An increased influence from transboundary fossil fuel BC emissions originating in Michigan, Ohio, Pennsylvania and New York was identified for the summer months. The findings reported here indicate that BC should not be considered as an exclusively local pollutant in future air quality policy decisions. The highest seasonal difference was observed at the highway site, however, suggesting that changes in fuel composition may also play an important role in the seasonality of BC mass concentrations in the near-road environment

  1. Sahara dust, ocean spray, volcanoes, biomass burning: pathways of nutrients into Andean rainforests

    Science.gov (United States)

    Fabian, P.; Rollenbeck, R.; Spichtinger, N.; Brothers, L.; Dominguez, G.; Thiemens, M.

    2009-10-01

    Regular rain and fogwater sampling in the Podocarpus National Park, on the humid eastern slopes of the Ecuadorian Andes, along an altitude profile between 1960 and 3180 m, has been carried out since 2002. The samples, accumulated over about 1-week intervals, were analysed for pH, conductivity and major ions (K+, Na+, NH4+, Ca2+, Mg2+, Cl-, SO42-, NO3-, PO43-). About 35% of the weekly samples had very low ion contents, with pH mostly above 5 and conductivity below 10 μS/cm. 10-days back trajectories (FLEXTRA) showed that respective air masses originated in pristine continental areas, with little or no obvious pollution sources. About 65%, however, were significantly loaded with cations and anions, with pH as low as 3.5 to 4.0 and conductivity up to 50 μS/cm. The corresponding back trajectories clearly showed that air masses had passed over areas of intense biomass burning, active volcanoes, and the ocean, with episodic Sahara and/or Namib desert dust interference. Enhanced SO42- and NO3+ were identified, by combining satellite-based fire pixel observations with back trajectories, as predominantly resulting from biomass burning. Analyses of oxygen isotopes 16O, 17O, and 18O in nitrate show that nitrate in the samples is indeed a product of atmospheric conversion of precursors. Some SO42-, about 10% of the total input, could be identified to originate from active volcanoes, whose plumes were encountered by about 10% of all trajectories. Enhanced Na+, K+, and Cl- were found to originate from ocean spray sources. They were associated with winds providing Atlantic air masses to the receptor site within less than 5 days. Episodes of enhanced Ca2+ and Mg2+ were found to be associated with air masses from African deserts. Satellite aerosol data confirm desert sources both on the Northern (Sahara) as on the Southern Hemisphere (Namib), depending on the season. A few significant PO43- peaks are related with air masses originating from North African phosphate mining fields.

  2. Impact of the intercontinental transport of biomass burning pollutants on the Mediterranean Basin during the CHARMEX-GLAM airborne campaign

    Science.gov (United States)

    Brocchi, Vanessa; Krysztofiak, Gisèle; Catoire, Valéry; Zbinden, Régina; Guth, Jonathan; El Amraoui, Laaziz; Piguet, Bruno; Dulac, François; Hamonou, Eric; Ricaud, Philippe

    2017-04-01

    The Mediterranean Basin (MB) is at the crossroad of pollutant emissions from Western and Central Europe and of major dust sources from Sahara and Arabian deserts and thus sensitive to climate change and air quality. Several studies (Formenti et al.,J. Geophys. Res., 2002; Ancellet et al., Atmos. Chem. Phys., 2016) also show the impact on the MB of long-range transport of polluted air masses. However, most of the studies have been dedicated to biomass burning aerosols. The aim of the present study is to show trace gases impact on the MB coming from long-range transport of biomass burning. The Gradient in Longitude of Atmospheric constituents above the Mediterranean basin (GLAM) campaign in August 2014, as part of the Chemistry-Aerosol Mediterranean Experiment (ChArMEx) project, aimed at studying the tropospheric chemical variability of gaseous pollutants and aerosols along a West-East transect above the MB. During the GLAM campaign, several instruments onboard the Falcon-20 aircraft (SAFIRE, INSU / Météo-France) were deployed including an infrared laser spectrometer (SPIRIT, LPC2E) able to detect weak variations in the concentration of pollutants. During two flights on 6 and 10 August, increases in CO, O3 and aerosols were measured over Sardinia at 5000 and 9000 m asl, respectively. To assess the origin of the air masses, 20-day backward trajectories with a nested-grid regional scale Lagrangian particle dispersion model (FLEXPART, Stohl et al., Atmos. Chem. Phys., 2005) were calculated. Combined with emissions coming from the Global Fire Assimilation System (GFAS) inventory (Kaiser et al., Biogeosciences, 2012), this leads to CO biomass burning contribution to aircraft measured values. Biomass burning emissions located in Siberia in the first case and in northern America in the second case were identified as the cause of this burden of pollutants in the mid and upper troposphere over the MB. By adjusting the injection height of the model and amplifying emissions

  3. Water uptake by fresh Indonesian peat burning particles is limited by water-soluble organic matter

    Science.gov (United States)

    Chen, Jing; Hapsari Budisulistiorini, Sri; Itoh, Masayuki; Lee, Wen-Chien; Miyakawa, Takuma; Komazaki, Yuichi; Qing Yang, Liu Dong; Kuwata, Mikinori

    2017-09-01

    The relationship between hygroscopic properties and chemical characteristics of Indonesian biomass burning (BB) particles, which are dominantly generated from peatland fires, was investigated using a humidified tandem differential mobility analyzer. In addition to peat, acacia (a popular species at plantation) and fern (a pioneering species after disturbance by fire) were used for experiments. Fresh Indonesian peat burning particles are almost non-hygroscopic (mean hygroscopicity parameter, κ stresses the importance of both the WSOC fraction and κ of the water-soluble fraction in determining the hygroscopicity of organic aerosol particles. Values of κ correlate positively (R = 0.89) with the fraction of m/z 44 ion signal quantified using a mass spectrometric technique, demonstrating the importance of highly oxygenated organic compounds to the water uptake by Indonesian BB particles. These results provide an experimentally validated reference for hygroscopicity of organics-dominated particles, thus contributing to more accurate estimation of environmental and climatic impacts driven by Indonesian BB particles on both regional and global scales.

  4. First Characterization of Biomass Burning Smoke from Cooking Fires, Peat, Crop Residue and Other Fuels By High Resolution PTR-TOF Mass Spectrometry and FTIR

    Science.gov (United States)

    Stockwell, C.; Veres, P. R.; Williams, J.; Yokelson, R. J.

    2014-12-01

    Biomass burning (BB) is a major influence on Earth's atmosphere, but for many fire-types the emissions have only been measured for a few species. For all types of BB, progress has been limited by a lack of information on the emissions of semi-volatile organic gases that are precursors for secondary aerosol and ozone. During the Fourth Fire Lab at Missoula Experiment (FLAME-4), the BB emissions from 158 laboratory fires were quantified by ~40 scientists for an assortment of globally relevant fuels including rarely sampled sources such as US and Asian crop residue; Indonesian and extratropical peat; and cooking fires in traditional and advanced stoves. In this work, we present the primary emissions of gas-phase non-methane organic compounds (NMOCs) measured using an advanced Proton-Transfer-Reaction time-of-flight mass spectrometer (PTR-TOF-MS) in tandem with measurements of other major emissions by Fourier transform infrared (FTIR) spectroscopy. We developed a composition and mass dependent sensitivity and best assignments for many observed peaks. The known and tentatively assigned peaks together account for ~80-96% of total observed NMOC mass. Much of the NMOC mass is rarely measured or previously unmeasured high molecular mass compounds including ringed aromatic hydrocarbons, phenolic compounds, and furans, which are all secondary organic aerosol precursors. Large air quality benefits are demonstrated for more advanced cooking technologies. This work produced globally relevant emission ratios and emission factors to better represent biomass burning in current atmospheric models.

  5. Impact of biomass burning emissions on the composition of the South Atlantic troposphere: Reactive nitrogen and ozone

    Science.gov (United States)

    Singh, H. B.; Herlth, D.; Kolyer, R.; Chatfield, R.; Viezee, W.; Salas, L. J.; Chen, Y.; Bradshaw, J. D.; Sandholm, S. T.; Talbot, R.; Gregory, G. L.; Anderson, B.; Sachse, G. W.; Browell, E.; Bachmeier, A. S.; Blake, D. R.; Heikes, B.; Jacob, D.; Fuelberg, H. E.

    1996-10-01

    In September/October 1992 an instrumented DC-8 aircraft was employed to study the composition and chemistry of the atmosphere over the southern tropical Atlantic Ocean. Analysis of measurements, which included tracers of biomass combustion and industrial emissions, showed that this atmosphere was highly influenced by biomass burning emissions from the South American and African continents. Marine boundary layer was generally capped off by a subsidence inversion and its composition to a large degree was determined by slow entrainment from aloft. Insoluble species (such as PAN, NO, hydrocarbons, CO) were enhanced throughout the troposphere. Soluble species (such as HNO3, HCOOH, H2O2) were minimally elevated in the upper troposphere in part due to scavenging during cloud (wet) convection. Ozone mixing ratios throughout the South Atlantic basin were enhanced by ≈20 ppb. These enhancements were larger in the eastern South Atlantic (African emissions) compared to the western South Atlantic (South American emissions). In much of the troposphere, total reactive nitrogen (NOy) correlated well with tracers of biomass combustion (e.g., CH3Cl, CO). Although NOx (NO + NO2) correlated reasonably with these tracers in the lower (0-3 km) and middle troposphere (3-7 km), these relationships deteriorated in the upper troposphere (7-12 km). Stratospheric intrusions were found to be a minor source of upper tropospheric NOx or HNO3. Sizable nonsurface sources of NOx (e.g., lightning) as well as secondary formation from the NOy reservoir species (such as HNO3, PAN, and organic nitrates) must be invoked to explain the NOx abundance present in the upper troposphere. It is found that HNO3, PAN, and NOx were able to account for most of the NOy, in the middle troposphere (3-7 km); but a significant shortfall was present in the upper troposphere (7-12). This shortfall was also most pronounced in air masses with low HNO3. The reasons for the upper tropospheric reactive nitrogen shortfall is

  6. Organic compounds in the particulate matter from burning organic soils

    Science.gov (United States)

    Charles K. McMahon; Jerry D. White; Skevos N. Tsoukalas

    1985-01-01

    This paper is directed to people interested in the environmental impact of natural emissions. Natural emissions are common and contribute significantly to tropospheric background levels. Several million hectares of the United States are covered by organic soils. During droughts, these soils can ignite and support slow combustion which often persists for weeks causing...

  7. Probing into the aging dynamics of biomass burning aerosol by using satellite measurements of aerosol optical depth and carbon monoxide

    Science.gov (United States)

    Konovalov, Igor B.; Beekmann, Matthias; Berezin, Evgeny V.; Formenti, Paola; Andreae, Meinrat O.

    2017-04-01

    (after a few first hours of the evolution that are not resolved in our analysis). The robustness of this finding is corroborated by sensitivity tests and Monte Carlo experiments. Furthermore, a simulation using the volatility basis set framework suggests that a large part of the increase in the ER can be explained by atmospheric processing of semi-volatile organic compounds. Our results are consistent with findings of a number of earlier studies reporting considerable underestimation of AOD by CTMs in which BB aerosol aging processes have either been disregarded or simulated in a highly simplified way. In general, this study demonstrates the feasibility of using satellite measurements of AOD in biomass burning plumes in combination with aerosol tracer simulations for the investigation of BB aerosol evolution and validation of BB aerosol aging schemes in atmospheric models.

  8. Determination of enhancement ratios of HCOOH relative to CO in biomass burning plumes by the Infrared Atmospheric Sounding Interferometer (IASI

    Directory of Open Access Journals (Sweden)

    M. Pommier

    2017-09-01

    Full Text Available Formic acid (HCOOH concentrations are often underestimated by models, and its chemistry is highly uncertain. HCOOH is, however, among the most abundant atmospheric volatile organic compounds, and it is potentially responsible for rain acidity in remote areas. HCOOH data from the Infrared Atmospheric Sounding Interferometer (IASI are analyzed from 2008 to 2014 to estimate enhancement ratios from biomass burning emissions over seven regions. Fire-affected HCOOH and CO total columns are defined by combining total columns from IASI, geographic location of the fires from Moderate Resolution Imaging Spectroradiometer (MODIS, and the surface wind speed field from the European Centre for Medium-Range Weather Forecasts (ECMWF. Robust correlations are found between these fire-affected HCOOH and CO total columns over the selected biomass burning regions, allowing the calculation of enhancement ratios equal to 7.30  ×  10−3 ± 0.08  ×  10−3 mol mol−1 over Amazonia (AMA, 11.10  ×  10−3 ± 1.37  ×  10−3 mol mol−1 over Australia (AUS, 6.80  ×  10−3 ± 0.44  ×  10−3 mol mol−1 over India (IND, 5.80  ×  10−3 ± 0.15  ×  10−3 mol mol−1 over Southeast Asia (SEA, 4.00  ×  10−3 ± 0.19  ×  10−3 mol mol−1 over northern Africa (NAF, 5.00  ×  10−3 ± 0.13  ×  10−3 mol mol−1 over southern Africa (SAF, and 4.40  ×  10−3 ± 0.09  ×  10−3 mol mol−1 over Siberia (SIB, in a fair agreement with previous studies. In comparison with referenced emission ratios, it is also shown that the selected agricultural burning plumes captured by IASI over India and Southeast Asia correspond to recent plumes where the chemistry or the sink does not occur. An additional classification of the enhancement ratios by type of fuel burned is also provided, showing a diverse

  9. Modelling the optical properties of fresh biomass burning aerosol produced in a smoke chamber: results from the EFEU campaign

    Directory of Open Access Journals (Sweden)

    K. Hungershoefer

    2008-07-01

    Full Text Available A better characterisation of the optical properties of biomass burning aerosol as a function of the burning conditions is required in order to quantify their effects on climate and atmospheric chemistry. Controlled laboratory combustion experiments with different fuel types were carried out at the combustion facility of the Max Planck Institute for Chemistry (Mainz, Germany as part of the "Impact of Vegetation Fires on the Composition and Circulation of the Atmosphere" (EFEU project. The combustion conditions were monitored with concomitant CO2 and CO measurements. The mass scattering efficiencies of 8.9±0.2 m2 g−1 and 9.3±0.3 m2 g−1 obtained for aerosol particles from the combustion of savanna grass and an African hardwood (musasa, respectively, are larger than typically reported mainly due to differences in particle size distribution. The photoacoustically measured mass absorption efficiencies of 0.51±0.02 m2 g−1 and 0.50±0.02 m2 g−1 were at the lower end of the literature values. Using the measured size distributions as well as the mass scattering and absorption efficiencies, Mie calculations provided effective refractive indices of 1.60−0.010i (savanna grass and 1.56−0.010i (musasa (λ=0.55 μm. The apparent discrepancy between the low imaginary part of the refractive index and the high apparent elemental carbon (ECa fractions (8 to 15% obtained from the thermographic analysis of impactor samples can be explained by a positive bias in the elemental carbon data due to the presence of high molecular weight organic s