WorldWideScience

Sample records for biomass burning aerosols

  1. Rapid changes in biomass burning aerosols by atmospheric oxidation

    OpenAIRE

    Vakkari, Ville; Beukes, Johan Paul; Tiitta, Petri; van Zyl, Pieter G.; Josipovic, Miroslav; Venter, Andrew D.; Jaars, Kerneels

    2014-01-01

    Primary and secondary aerosol particles originating from biomass burning contribute significantly to the atmospheric aerosol budget and thereby to both direct and indirect radiative forcing. Based on detailed measurements of a large number of biomass burning plumes of variable age in southern Africa, we show that the size distribution, chemical composition, single-scattering albedo, and hygroscopicity of biomass burning particles change considerably during the first 2–4 h of their...

  2. The colors of biomass burning aerosols in the atmosphere

    Science.gov (United States)

    Liu, Chao; Chung, Chul Eddy; Zhang, Feng; Yin, Yan

    2016-06-01

    Biomass burning aerosols mainly consist of black carbon (BC) and organic aerosols (OAs), and some of OAs are brown carbon (BrC). This study simulates the colors of BrC, BC and their mixture with scattering OAs in the ambient atmosphere by using a combination of light scattering simulations, a two-stream radiative transfer model and a RGB (Red, Green, Blue) color model. We find that both BCs and tar balls (a class of BrC) appear brownish at small particle sizes and blackish at large sizes. This is because the aerosol absorption Ångström exponent (AAE) largely controls the color and larger particles give smaller AAE values. At realistic size distributions, BCs look more blackish than tar balls, but still exhibit some brown color. However, when the absorptance of aerosol layer at green wavelength becomes larger than approximately 0.8, all biomass burning aerosols look blackish. The colors for mixture of purely scattering and absorptive carbonaceous aerosol layers in the atmosphere are also investigated. We suggest that the brownishness of biomass burning aerosols indicates the amount of BC/BrC as well as the ratio of BC to BrC.

  3. Carbonaceous aerosols from different tropical biomass burning sources

    Science.gov (United States)

    Cachier, Hélène; Brémond, Marie-Pierre; Buat-Ménard, Patrick

    1989-08-01

    FOLLOWING a repetitive pattern, biomass burning affects the intertropical belt on a continental scale during the dry season1. The importance of these anthropogenic activities with regard to carbonaceous-component emissions into the global atmosphere is now well recognized2-4. It has been suggested that large injections of black carbon aerosols from the Tropics are of potential importance for the radiative and chemical balance of the troposphere5-10. Studies on carbonaceous aerosols have indicated that, on an annual basis, the intensity of the emissions from tropical biomass burning could compare with that of emissions from fossil-fuel burning in industrial countries7,8. Also, results from combustion chamber experiments have determined the important range of the emission factor for both the organic and the black carbon components of the aerosol1-16. Following on from our earlier studies on total atmospheric particulate carbon (Ct) and isotopic composition (δ13C) (ref. 2), we now present new data on the black carbon content (Cb) of atmospheric particles sampled during the biomass-burning season in the wooden savannah of the Ivory Coast. The Cb/Ct ratio is generally lower than expected and highly variable. This variability indicates that there are drastic changes in source apportionment, which from our isotope studies may be ascribed to the variety of vegetation fuel and also to the mode of combustion. Therefore the Cb/Ct ratio can potentially discriminate biomass-burning emissions from different tropical ecosystems.

  4. Variability of Biomass Burning Aerosols Layers and Near Ground

    Science.gov (United States)

    Vasilescu, Jeni; Belegante, Livio; Marmureanu, Luminita; Toanca, Flori

    2016-06-01

    The aim of this study is to characterize aerosols from both chemical and optical point of view and to explore the conditions to sense the same particles in elevated layers and at the ground. Three days of continuous measurements using a multi-wavelength depolarization lidar(RALI) and a C-ToF-AMS aerosol mass spectrometer are analyzed. The presence of smoke particles was assessed in low level layers from RALI measurements. Chemical composition of submicronic volatile/semi-volatile aerosols at ground level was monitored by the CTOF AMS Several episodes of biomass burning aerosols have been identified by both techniques due to the presence of specific markers (f60, linear particle depolarization ratio, Ängström exponent).

  5. Ice Nucleation Properties of Amospherically Aged Biomass Burning Aerosol

    Science.gov (United States)

    Polen, M.; Lawlis, E.; Sullivan, R. C.

    2015-12-01

    Biomass burning can sometimes emit surprisingly active ice nucleating particles, though these emissions are not at all consistent between biomass fuel sources and burns. Soot from biomass combustion has been attributed to some but not all of the ice nucleating potential of biomass burning aerosol (BBA), while fossil fuel combustion soot emits very weak ice nucleants. The causes of the sometimes significant but variable ice nucleating ability of BBA are still largely unknown. BBA experiences significant atmospheric aging as the plume evolves and mixes with background air, yet almost no reports exploring the effects of atmospheric aging on the freezing properties of BBA have been made. We have performed some of the first experiments to determine the effects of simulated atmospheric aging on these ice nucleation properties, using a chamber reactor. The fresh and aged BBA was collected for subsequent droplet freezing array analysis using an impinger sampler to collect aerosol in water, and by deposition onto substrates in a MOUDI sampler. Droplets containing the chamber particles were then suspended in oil on a cold plate for freezing temperature spectrum measurement. Aging of Sawgrass flaming-phase combustion BBA by exposure to hydroxyl radicals (from H2O2 photolysis) enhanced the ice nucleation ability, observed by a shift to warmer droplet freezing temperatures by ~2-3°C. The changes in the aerosol's chemical composition during aging were observed using a laser ablation single-particle mass spectrometer and a soot-particle aerosol mass spectrometer. We will report our observations of the effects of other types of simulated aging (including photochemistry under high and low NOx conditions, dark ozonolysis, and nitric acid exposure) on Sawgrass and BBA from other grass and palm fuels.

  6. Determination of the broadband optical properties of biomass burning aerosol

    Science.gov (United States)

    Bluvshtein, Nir; Flores, J. Michel; Segev, Lior; Lin, Peng; Laskin, Alexander; Rudich, Yinon

    2016-04-01

    The direct and semi-direct effects of atmospheric aerosol on the Earth's energy balance are still the two of the largest uncertainties in our understanding of anthropogenic radiative forcing. In this study we developed a new approach for determining high sensitivity broadband UV-Vis spectrum (300-650 nm) of extinction, scattering and absorption coefficients, single scattering albedo and the complex refractive index for continuous, spectral and time dependent, monitoring of polydisperse aerosols population. This new approach was applied in a study of biomass burning aerosol. Extinction, scattering and absorption coefficients (αext, αsca, αabs, respectively) were continually monitored using photoacoustic spectrometer coupled to a cavity ring down spectrometer (PA-CRD-AS) at 404 nm, a dual-channel Broadband cavity-enhanced spectrometer (BBCES) at 315-345 nm and 390-420 nm and a three channel integrating nephelometer (IN) centered at 457, 525 and 637 nm. During the biomass burning event, the measured aerosol number concentration increased by more than an order of magnitude relative to other week nights and the mode of the aerosols size distribution increased from 40-50 nm to 110nm diameter. αext and αsca increased by a factor of about 5.5 and 4.5, respectively. The αabs increased by a factor over 20, indicating a significant change in the aerosol overall chemical composition. The imaginary part of the complex RI at 404nm increased from its background level at about 0.02 to a peak of about 0.08 and the SSA decreased from 0.9 to about 0.6. Significant change of the absorption spectral dependence indicates formation of visible-light absorbing compounds. The mass absorption cross section of the water soluble organic aerosol (MACWSOA) reached up to about 12% of the corresponding value for black carbon (BC) at 450 nm and up to 30% at 300 nm. These results demonstrate the importance of biomass burning in understanding global and regional radiative forcing.

  7. Aged boreal biomass burning aerosol size distributions from BORTAS 2011

    Science.gov (United States)

    Sakamoto, K. M.; Allan, J. D.; Coe, H.; Taylor, J. W.; Duck, T. J.; Pierce, J. R.

    2014-09-01

    Biomass-burning aerosols contribute to aerosol radiative forcing on the climate system. The magnitude of this effect is partially determined by aerosol size distributions, which are functions of source fire characteristics (e.g. fuel type, MCE) and in-plume microphysical processing. The uncertainties in biomass-burning emission number size-distributions in climate model inventories lead to uncertainties in the CCN concentrations and forcing estimates derived from these models. The BORTAS-B measurement campaign was designed to sample boreal biomass-burning outflow over Eastern Canada in the summer of 2011. Using these BORTAS-B data, we implement plume criteria to isolate the characteristic size-distribution of aged biomass-burning emissions (aged ∼1-2 days) from boreal wildfires in Northwestern Ontario. The composite median size-distribution yields a single dominant accumulation mode with Dpm = 230 nm (number-median diameter), σ = 1.7, which are comparable to literature values of other aged plumes of a similar type. The organic aerosol enhancement ratios (ΔOA / ΔCO) along the path of Flight b622 show values of 0.05-0.18 μg m-3 ppbv-1 with no significant trend with distance from the source. This lack of enhancement ratio increase/decrease with distance suggests no detectable net OA production/evaporation within the aged plume over the sampling period. A Lagrangian microphysical model was used to determine an estimate of the freshly emitted size distribution corresponding to the BORTAS-B aged size-distributions. The model was restricted to coagulation and dilution processes based on the insignificant net OA production/evaporation derived from the ΔOA / ΔCO enhancement ratios. We estimate that the fresh-plume median diameter was in the range of 59-94 nm with modal widths in the range of 1.7-2.8 (the ranges are due to uncertainty in the entrainment rate). Thus, the size of the freshly emitted particles is relatively unconstrained due to the uncertainties in the

  8. Aerosol Properties Downwind of Biomass Burns Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Buseck, Peter R [Arizona State Univ., Tempe, AZ (United States)

    2016-04-01

    We determined the morphological, chemical, and thermal properties of aerosol particles generated by biomass burning during the Biomass Burning Observation Project (BBOP) campaign during the wildland fire season in the Pacific Northwest from July to mid-September, 2013, and in October, 2013 from prescribed agricultural burns in the lower Mississippi River Valley. BBOP was a field campaign of the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility. The morphological information was both two-dimensional, as is typical of most microscopy images and that have many of the characteristic of shadows in that they lack depth data, and three-dimensional (3D). The electron tomographic measurements will provided 3D data, including the presence and nature of pores and interstices, and whether the individual particles are coated by or embedded within other materials. These microphysical properties were determined for particles as a function of time and distance from the respective sources in order to obtain detailed information regarding the time evolution of changes during aging.

  9. Impact of Biomass Burning Aerosols on the Biosphere over Amazonia

    Science.gov (United States)

    Malavelle, F.; Haywood, J.; Mercado, L.; Folberth, G.; Bellouin, N.

    2014-12-01

    Biomass burning (BB) smoke from deforestation and the burning of agricultural waste emit a complex cocktail of aerosol particles and gases. BB emissions show a regional hotspot over South America on the edges of Amazonia. These major perturbations and impacts on surface temperature, surface fluxes, chemistry, radiation, rainfall, may have significant consequent impacts on the Amazon rainforest, the largest and most productive carbon store on the planet. There is therefore potential for very significant interaction and interplay between aerosols, clouds, radiation and the biosphere in the region. Terrestrial carbon production (i.e. photosynthesis) is intimately tied to the supply of photosynthetically active radiation (PAR - i.e. wavelengths between 300-690 nm). PAR in sufficient intensity and duration is critical for plant growth. However, if a decrease in total radiation is accompanied by an increase in the component of diffuse radiation, plant productivity may increase due to higher light use efficiency per unit of PAR and less photosynthetic saturation. This effect, sometimes referred as diffuse light fertilization effect, could have increased the global land carbon sink by approximately one quarter during the global dimming period and is expected to be a least as important locally. By directly interacting with radiation, BB aerosols significantly reduce the total amount of PAR available to plant canopies. In addition, BB aerosols also play a centre role in cloud formation because they provide the necessary cloud condensation nuclei, hence indirectly altering the water cycle and the components and quantity of PAR. In this presentation, we use the recent observations from the South American Biomass Burning Analysis (SAMBBA) to explore the impact of radiation changes on the carbon cycle in the Amazon region caused by BB emissions. A parameterisation of the impact of diffuse and direct radiation upon photosynthesis rates and net primary productivity in the

  10. Inorganic markers, carbonaceous components and stable carbon isotope from biomass burning aerosols in northeast China

    Science.gov (United States)

    Cao, F.; Zhang, Y.; Kawamura, K.

    2015-12-01

    To better characterize the sources of fine particulate matter (i.e. PM2.5) in Sanjiang Plain, Northeast China, aerosol chemical composition such total carbon (TC), organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC), and inorganic ions were studied as well as stable carbon isotopic composition (δ13C) of TC. Intensively open biomass burning episodes were identified from late September to early October by satellite fire and aerosol optical depth maps. During the biomass burning episodes, concentrations of PM2.5, OC, EC, and WSOC increased by a factor of 4-12 compared to non-biomass-burning periods. Non-sea-salt potassium is strongly correlated with PM2.5, OC, EC and WSOC, suggesting an important contribution of biomass burning emission. The enrichment in both the non-sea-salt potassium and chlorine is significantly larger than other inorganic species, indicating that biomass burning aerosols in Sanjiang Plain is mostly fresh and less aged. In addition, WSOC to OC ratio is relatively lower compared to that reported in biomass burning aerosols in tropical regions, supporting that biomass burning aerosols in Sanjiang Plain is mostly primary and secondary organic aerosols is not significant. A lower average δ13C value (-26.2‰) is found for the biomass-burning aerosols, suggesting a dominant contribution from combustion of C3 plants in the studied region.

  11. Flight-based chemical characterization of biomass burning aerosols within two prescribed burn smoke plumes

    Directory of Open Access Journals (Sweden)

    K. A. Pratt

    2011-12-01

    Full Text Available Biomass burning represents a major global source of aerosols impacting direct radiative forcing and cloud properties. Thus, the goal of a number of current studies involves developing a better understanding of how the chemical composition and mixing state of biomass burning aerosols evolve during atmospheric aging processes. During the Ice in Clouds Experiment-Layer Clouds (ICE-L in the fall of 2007, smoke plumes from two small Wyoming Bureau of Land Management prescribed burns were measured by on-line aerosol instrumentation aboard a C-130 aircraft, providing a detailed chemical characterization of the particles. After ~2–4 min of aging, submicron smoke particles, produced primarily from sagebrush combustion, consisted predominantly of organics by mass, but were comprised primarily of internal mixtures of organic carbon, elemental carbon, potassium chloride, and potassium sulfate. Significantly, the fresh biomass burning particles contained minor mass fractions of nitrate and sulfate, suggesting that hygroscopic material is incorporated very near or at the point of emission. The mass fractions of ammonium, sulfate, and nitrate increased with aging up to ~81–88 min and resulted in acidic particles. Decreasing black carbon mass concentrations occurred due to dilution of the plume. Increases in the fraction of oxygenated organic carbon and the presence of dicarboxylic acids, in particular, were observed with aging. Cloud condensation nuclei measurements suggested all particles >100 nm were active at 0.5% water supersaturation in the smoke plumes, confirming the relatively high hygroscopicity of the freshly emitted particles. For immersion/condensation freezing, ice nuclei measurements at −32 °C suggested activation of ~0.03–0.07% of the particles with diameters greater than 500 nm.

  12. Flight-based chemical characterization of biomass burning aerosols within two prescribed burn smoke plumes

    Science.gov (United States)

    Pratt, K. A.; Murphy, S. M.; Subramanian, R.; Demott, P. J.; Kok, G. L.; Campos, T.; Rogers, D. C.; Prenni, A. J.; Heymsfield, A. J.; Seinfeld, J. H.; Prather, K. A.

    2011-12-01

    Biomass burning represents a major global source of aerosols impacting direct radiative forcing and cloud properties. Thus, the goal of a number of current studies involves developing a better understanding of how the chemical composition and mixing state of biomass burning aerosols evolve during atmospheric aging processes. During the Ice in Clouds Experiment-Layer Clouds (ICE-L) in the fall of 2007, smoke plumes from two small Wyoming Bureau of Land Management prescribed burns were measured by on-line aerosol instrumentation aboard a C-130 aircraft, providing a detailed chemical characterization of the particles. After ~2-4 min of aging, submicron smoke particles, produced primarily from sagebrush combustion, consisted predominantly of organics by mass, but were comprised primarily of internal mixtures of organic carbon, elemental carbon, potassium chloride, and potassium sulfate. Significantly, the fresh biomass burning particles contained minor mass fractions of nitrate and sulfate, suggesting that hygroscopic material is incorporated very near or at the point of emission. The mass fractions of ammonium, sulfate, and nitrate increased with aging up to ~81-88 min and resulted in acidic particles. Decreasing black carbon mass concentrations occurred due to dilution of the plume. Increases in the fraction of oxygenated organic carbon and the presence of dicarboxylic acids, in particular, were observed with aging. Cloud condensation nuclei measurements suggested all particles >100 nm were active at 0.5% water supersaturation in the smoke plumes, confirming the relatively high hygroscopicity of the freshly emitted particles. For immersion/condensation freezing, ice nuclei measurements at -32 °C suggested activation of ~0.03-0.07% of the particles with diameters greater than 500 nm.

  13. Flight-based chemical characterization of biomass burning aerosols within two prescribed burn smoke plumes

    Directory of Open Access Journals (Sweden)

    K. A. Pratt

    2011-06-01

    Full Text Available Biomass burning represents a major global source of aerosols impacting direct radiative forcing and cloud properties. Thus, the goal of a number of current studies involves developing a better understanding of how the chemical composition and mixing state of biomass burning aerosols evolve during atmospheric aging processes. During the Ice in Cloud Experiment – Layer Clouds (ICE-L in fall of 2007, smoke plumes from two small Wyoming Bureau of Land Management prescribed burns were measured by on-line aerosol instrumentation aboard a C-130 aircraft, providing a detailed chemical characterization of the particles. After ~2–4 min of aging, submicron smoke particles, produced primarily from sagebrush combustion, consisted predominantly of organics by mass, but were comprised primarily of internal mixtures of organic carbon, elemental carbon, potassium chloride, and potassium sulfate. Significantly, 100 % of the fresh biomass burning particles contained minor mass fractions of nitrate and sulfate, suggesting that hygroscopic material is incorporated very near or at the point of emission. The mass fractions of ammonium, sulfate, and nitrate increased with aging up to ~81–88 min and resulted in acidic particles, with both nitric acid and sulfuric acid present. Decreasing black carbon mass concentrations occurred due to dilution of the plume. Increases in the fraction of oxygenated organic carbon and the presence of dicarboxylic acids, in particular, were observed with aging. Cloud condensation nuclei measurements suggested all particles >100 nm were active at 0.5 % water supersaturation in the smoke plumes, confirming the relatively high hygroscopicity of the freshly emitted particles. For immersion/condensation freezing, ice nuclei measurements at −32 °C suggested activation of ~0.03–0.07 % of the particles with diameters greater than 500 nm.

  14. A case study on biomass burning aerosols: effects on aerosol optical properties and surface radiation levels

    Directory of Open Access Journals (Sweden)

    A. Arola

    2007-08-01

    Full Text Available In spring 2006, biomass burning aerosols from eastern Europe were transported extensively to Finland, and to other parts of northern Europe. They were observed as far as in the European Arctic. In the first part of this paper, temporal and spatial evolution and transport of these biomass burning aerosols are monitored with MODIS retrieved aerosol optical depth (AOD imagery at visible wavelengths (0.55 μm. Comparison of MODIS and AERONET AOD is conducted at Tõravere, Estonia. Then trajectory analyses, as well as MODIS Fire Mapper products are used to better understand the type and origin of the air masses. During the studied four-week period AOD values ranged from near zero up to 1.2 at 0.55 μm and the linear correlation between MODIS and AERONET was very high (~0.97. Temporal variability observed within this four-week period was also rather well explained by the trajectory analysis in conjunction with the fire detections produced by the MODIS Rapid Response System. In the second part of our study, the surface measurements of global and UV radiation at Jokioinen, Finland are used to study the effect of this haze episode on the levels of surface radiation. We found reductions up to 35% in noon-time surface UV irradiance (at 340 nm as compared to typical aerosol conditions. For global (total solar radiation, the reduction was always smaller, in line with the expected wavelength dependence of the aerosol effect.

  15. Direct and semidirect aerosol effects of Southern African biomass burning aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Sakaeda, Naoko; Wood, Robert; Rasch, Philip J.

    2011-06-21

    The direct and semi-direct radiative effects of biomass burning aerosols from Southern African fires during July-October are investigated using 20 year runs of the Community Atmospheric Model (CAM) coupled to a slab ocean model. The aerosol optical depth is constrained using observations in clear skies from MODIS and for aerosol layers above clouds from CALIPSO. Over the ocean, where the absorbing biomass burning aerosol layers are primarily located above cloud, negative top of atmosphere (TOA) semi-direct radiative effects associated with increased low cloud cover dominate over a weaker positive all-sky direct radiative effect (DRE). In contrast, over the land where the aerosols are often below or within cloud layers, reductions in cloud liquid water path (LWP) lead to a positive semi-direct radiative effect that dominates over a near-zero DRE. Over the ocean, the cloud response can be understood as a response to increased lower tropospheric stability (LTS) which is caused both by aerosol absorptive warming in overlying layers and surface cooling in response to direct aerosol forcing. The ocean cloud changes are robust to changes in the cloud parameterization (removal of the hard-wired dependence of clouds on LTS), suggesting that they are physically realistic. Over land where cloud cover changes are minimal, decreased LWP is consistent with weaker convection driven by increased static stability. Over the entire region the overall TOA radiative effect from the biomass burning aerosols is almost zero due to opposing effects over the land and ocean. However, the surface forcing is strongly negative requiring a reduction in precipitation. This is primarily realized through reductions in convective precipitation on both the southern and northern flanks of the convective precipitation region spanning the equatorial rainforest and the ITCZ in the southern Sahel. The changes are consistent with the low-level aerosol forced cooling pattern. The results highlight the

  16. Organic aerosols from biomass burning in Amazonian rain forest and their impact onto the environment

    International Nuclear Information System (INIS)

    A field campaign performed in Southern Brazilian Amazonia in 1993 has proved that this region is subjected to fallout of particulated exhausts released by fires of forestal biomass. In fact, organic content of aerosols collected at urban sites located on the border of pluvial forest, about 50 km from fires, was similar to that of biomass burning exhausts. Aerosol composition is indicative of dolous origin of fires. However, organic contents seems to be influenced by two additional sources, i. e. motor vehicle and high vegetation emission. Chemical pattern of organic aerosols released by biomass burning of forest seems to promote occurrence of photochemical smog episodes in that region

  17. Levoglucosan indicates high levels of biomass burning aerosols over oceans from the Arctic to Antarctic

    Science.gov (United States)

    Hu, Q.; Xie, Z.; Wang, X.; Kang, H.; Zhang, P.

    2015-12-01

    Biomass burning discharges numerous kinds of gases and aerosols, such as carbon dioxide (CO2), carbon monoxide (CO), methane (CH4), black carbon (BC), alcohols, organic acids and persistent organic pollutants (POPs), and is known to affect air quality, global carbon cycle, and climate. However, the extent to which biomass burning gases/aerosols are present on a global scale, especially in the marine atmosphere, is poorly understood. Here we measure levoglucosan, a superior molecular tracer of biomass burning aerosols because of its single source, in marine air from the Arctic Ocean through the North and South Pacific Ocean to coastal Antarctica during burning season. Levoglucosan was found to be present in all regions at ng/m3 levels. As a whole, levoglucosan concentrations in the Southern Hemisphere were comparable to those in the Northern Hemisphere. Marine air in the mid-latitudes (30°-60° N and S) has the highest levoglucosan loading due to the emission from adjacent lands. Air over the Arctic Ocean which affected by biomass burning in the east Siberia has intermediate loading. Equatorial latitudes is the main source of biomass burning emissions, however, levoglucosan is in relatively low level. Large amount of precipitation and high hydroxyl radical concentration in this region cause more deposition and degradation of levoglucosan during transport. Previous studies were debatable on the influence of biomass burning on the Antarctic because of uncertain source of BC. Here via levoglucosan, it is proved that although far away from emission sources, the Antarctic is still affected by biomass burning aerosols which may be derived from South America. Biomass burning has a significant impact on mercury (Hg) and water-soluble organic carbon (WSOC) in marine aerosols from pole to pole, with more contribution to WSOC in the Northern Hemisphere than in the Southern Hemisphere.

  18. Evaluation of biomass burning aerosols in the HadGEM3 climate model with observations from the SAMBBA field campaign

    OpenAIRE

    Johnson, B. T.; Haywood, J. M.; Langridge, J. M.; E. Darbyshire; Morgan, W. T.; Szpek, K.; Brooke, J.(University of Bristol, Bristol, United Kingdom); Marenco, F.; Coe, H.; Artaxo, P; K. M. Longo; Mulcahy, J; Mann, G.; Dalvi, M; Bellouin, N.

    2016-01-01

    We present observations of biomass burning aerosol from the South American Biomass Burning Analysis (SAMBBA) and other measurement campaigns, and use these to evaluate the representation of biomass burning aerosol properties and processes in a state-of-the-art climate model. The evaluation includes detailed comparisons with aircraft and ground data, along with remote sensing observations from MODIS and AERONET. We demonstrate several improvements to aerosol properties following the implementa...

  19. Biomass Burning Aerosols and the Low Visibility Events in Southeast Asia

    OpenAIRE

    Lee, Hsiang-He; Bar-Or, Rotem Z.; Wang, Chien

    2016-01-01

    Fires including peatland burning in Southeast Asia have become a major concern of general public as well as governments in the region. This is because that aerosols emitted from such fires can cause persistent haze events under favorite weather conditions in downwind locations, degrading visibility and causing human health issues. In order to improve our understanding of the spatial-temporal coverage and influence of biomass burning aerosols in Southeast Asia, we have used surface visibilit...

  20. Experimentally measured morphology of biomass burning aerosol and its impacts on CCN ability

    Directory of Open Access Journals (Sweden)

    M. Giordano

    2014-05-01

    Full Text Available This study examines the morphological properties of freshly emitted and atmospherically aged aerosols from biomass burning. The impacts of particle morphology assumptions on hygroscopic predictions are examined. Chamber experiments were conducted at the UC-Riverside Center for Environmental Research and Technology (CE-CERT Atmospheric Processes Lab using two biomass fuel sources, manzanita and chamise. Morphological data was obtained through the use of an aerosol particle mass analyzer (APM, scanning mobility particle sizer (SMPS system and transmission electron microscopy (TEM. Data from these instruments was used to calculate both a dynamic shape factor and a fractal-like dimension for the biomass burning emissions. This data was then used with κ-Köhler theory to adjust the calculated hygroscopicity for experimentally determined morphological characteristics of the aerosol. Laboratory measurement of biomass burning aerosol from two chaparral fuels show that particles are non-spherical with dynamic shape factors greater than 1.15 for aerosol sizes relevant to cloud condensation nuclei (CCN activation. Accounting for particle morphology can shift the hygroscopicity parameter κ by 0.15 or more. To our knowledge, this work provides the first laboratory chamber measurements of morphological characteristics for biomass burning cloud condensation nuclei and provides experimental particle shape evidence to support the variation in reported hygroscopicities of the complex aerosol.

  1. Biomass burning contributions to urban aerosols in a coastal Mediterranean city.

    Science.gov (United States)

    Reche, C; Viana, M; Amato, F; Alastuey, A; Moreno, T; Hillamo, R; Teinilä, K; Saarnio, K; Seco, R; Peñuelas, J; Mohr, C; Prévôt, A S H; Querol, X

    2012-06-15

    Mean annual biomass burning contributions to the bulk particulate matter (PM(X)) load were quantified in a southern-European urban environment (Barcelona, Spain) with special attention to typical Mediterranean winter and summer conditions. In spite of the complexity of the local air pollution cocktail and the expected low contribution of biomass burning emissions to PM levels in Southern Europe, the impact of these emissions was detected at an urban background site by means of tracers such as levoglucosan, K(+) and organic carbon (OC). The significant correlation between levoglucosan and OC (r(2)=0.77) and K(+) (r(2)=0.65), as well as a marked day/night variability of the levoglucosan levels and levoglucosan/OC ratios was indicative of the contribution from regional scale biomass burning emissions during night-time transported by land breezes. In addition, on specific days (21-22 March), the contribution from long-range transported biomass burning aerosols was detected. Quantification of the contribution of biomass burning aerosols to PM levels on an annual basis was possible by means of the Multilinear Engine (ME). Biomass burning emissions accounted for 3% of PM(10) and PM(2.5) (annual mean), while this percentage increased up to 5% of PM(1). During the winter period, regional-scale biomass burning emissions (agricultural waste burning) were estimated to contribute with 7±4% of PM(2.5) aerosols during night-time (period when emissions were clearly detected). Long-range transported biomass burning aerosols (possibly from forest fires and/or agricultural waste burning) accounted for 5±2% of PM(2.5) during specific episodes. Annually, biomass burning emissions accounted for 19%-21% of OC levels in PM(10), PM(2.5) and PM(1). The contribution of this source to K(+) ranged between 48% for PM(10) and 97% for PM(1) (annual mean). Results for K(+) from biomass burning evidenced that this tracer is mostly emitted in the fine fraction, and thus coarse K(+) could not be

  2. Relationship between Amazon biomass burning aerosols and rainfall over La Plata Basin

    Science.gov (United States)

    Camponogara, G.; Silva Dias, M. A. F.; Carrió, G. G.

    2013-09-01

    High aerosol loads are discharged into the atmosphere by biomass burning in Amazon and Central Brazil during the dry season. These particles can interact with clouds as cloud condensation nuclei (CCN) changing cloud microphysics and radiative properties and, thereby, affecting the radiative budget of the region. Furthermore, the biomass burning aerosols can be transported by the low level jet (LLJ) to La Plata Basin where many mesoscale convective systems (MCS) are observed during spring and summer. This work proposes to investigate whether the aerosols from biomass burning may affect the MCS in terms of rainfall over La Plata Basin during spring. Since the aerosol effect is very difficult to isolate because convective clouds are very sensitive to small environment disturbances, detailed analyses using different techniques are used. The binplot, 2D histograms and combined empirical orthogonal function (EOF) methods are used to separate certain environment conditions with the possible effects of aerosol loading. Reanalysis 2, TRMM-3B42 and AERONET data are used from 1999 up to 2012 during September-December. The results show that there are two patterns associated to rainfall-aerosol interaction in La Plata Basin: one in which the dynamic conditions are more important than aerosols to generate rain; and a second one where the aerosol particles have a role in rain formation, acting mainly to suppress rainfall over La Plata Basin.

  3. Relationship between Amazon biomass burning aerosols and rainfall over La Plata Basin

    Directory of Open Access Journals (Sweden)

    G. Camponogara

    2013-09-01

    Full Text Available High aerosol loads are discharged into the atmosphere by biomass burning in Amazon and Central Brazil during the dry season. These particles can interact with clouds as cloud condensation nuclei (CCN changing cloud microphysics and radiative properties and, thereby, affecting the radiative budget of the region. Furthermore, the biomass burning aerosols can be transported by the low level jet (LLJ to La Plata Basin where many mesoscale convective systems (MCS are observed during spring and summer. This work proposes to investigate whether the aerosols from biomass burning may affect the MCS in terms of rainfall over La Plata Basin during spring. Since the aerosol effect is very difficult to isolate because convective clouds are very sensitive to small environment disturbances, detailed analyses using different techniques are used. The binplot, 2D histograms and combined empirical orthogonal function (EOF methods are used to separate certain environment conditions with the possible effects of aerosol loading. Reanalysis 2, TRMM-3B42 and AERONET data are used from 1999 up to 2012 during September-December. The results show that there are two patterns associated to rainfall-aerosol interaction in La Plata Basin: one in which the dynamic conditions are more important than aerosols to generate rain; and a second one where the aerosol particles have a role in rain formation, acting mainly to suppress rainfall over La Plata Basin.

  4. Contributions of dust and biomass-burning to aerosols at a Colorado mountain-top site

    Directory of Open Access Journals (Sweden)

    A. G. Hallar

    2015-08-01

    Full Text Available Visible Multifilter Rotating Shadowband Radiometer (MFRSR data were collected at Storm Peak Laboratory (SPL, a mountain top facility in northwest Colorado, from 1999–2011 and in 2013. From 2011–2014, in situ measurements of aerosol light scattering were also obtained. Using these datasets together, the seasonal impact of dust and biomass burning is considered for the western United States. Analysis indicates that the median contributions to spring and summer aerosol optical depth (AOD from dust and biomass-burning aerosols across the dataset are comparable. The mean AOD is slightly greater in the summer, with significantly more frequent and short duration high AOD measurements due to biomass-burning episodes, than in the spring. The Ångström exponent showed a significant increase in the summer for both the in situ and MFRSR data, indicating an increase in combustion aerosols. Spring dust events are less distinguishable in the in situ data than the column measurement, suggesting that a significant amount of dust may be found above the elevation of SPL, 3220 m a.s.l. Twenty-two known case studies of intercontinental dust, regional dust, and biomass burning events were investigated. These events were found to follow a similar pattern, in both aerosol loading and Ångström exponent, as the seasonal mean signal in both the MFRSR and ground-based nephelometer. This dataset highlights the wide scale implications of a warmer, drier climate on visibility in the western United States.

  5. Radiative Effects of Aerosols Generated from Biomass Burning, Dust Storms, and Forest Fires

    Science.gov (United States)

    Christopher Sundar A.; Vulcan, Donna V.; Welch, Ronald M.

    1996-01-01

    Atmospheric aerosol particles, both natural and anthropogenic, are important to the earth's radiative balance. They scatter the incoming solar radiation and modify the shortwave reflective properties of clouds by acting as Cloud Condensation Nuclei (CCN). Although it has been recognized that aerosols exert a net cooling influence on climate (Twomey et al. 1984), this effect has received much less attention than the radiative forcings due to clouds and greenhouse gases. The radiative forcing due to aerosols is comparable in magnitude to current anthropogenic greenhouse gas forcing but opposite in sign (Houghton et al. 1990). Atmospheric aerosol particles generated from biomass burning, dust storms and forest fires are important regional climatic variables. A recent study by Penner et al. (1992) proposed that smoke particles from biomass burning may have a significant impact on the global radiation balance. They estimate that about 114 Tg of smoke is produced per year in the tropics through biomass burning. The direct and indirect effects of smoke aerosol due to biomass burning could add up globally to a cooling effect as large as 2 W/sq m. Ackerman and Chung (1992) used model calculations and the Earth Radiation Budget Experiment (ERBE) data to show that in comparison to clear days, the heavy dust loading over the Saudi Arabian peninsula can change the Top of the Atmosphere (TOA) clear sky shortwave and longwave radiant exitance by 40-90 W/sq m and 5-20 W/sq m, respectively. Large particle concentrations produced from these types of events often are found with optical thicknesses greater than one. These aerosol particles are transported across considerable distances from the source (Fraser et al. 1984). and they could perturb the radiative balance significantly. In this study, the regional radiative effects of aerosols produced from biomass burning, dust storms and forest fires are examined using the Advanced Very High Resolution Radiometer (AVHRR) Local Area

  6. Recent Short Term Global Aerosol Trends over Land and Ocean Dominated by Biomass Burning

    Science.gov (United States)

    Remer, Lorraine A.; Koren, Ilan; Kleidman, RIchard G.; Levy, Robert C.; Martins, J. Vanderlei; Kim, Kyu-Myong; Tanre, Didier; Mattoo, Shana; Yu, Hongbin

    2007-01-01

    NASA's MODIS instrument on board the Terra satellite is one of the premier tools to assess aerosol over land and ocean because of its high quality calibration and consistency. We analyze Terra-MODIS's seven year record of aerosol optical depth (AOD) observations to determine whether global aerosol has increased or decreased during this period. This record shows that AOD has decreased over land and increased over ocean. Only the ocean trend is statistically significant and corresponds to an increase in AOD of 0.009, or a 15% increase from background conditions. The strongest increasing trends occur over regions and seasons noted for strong biomass burning. This suggests that biomass burning aerosol dominates the increasing trend over oceans and mitigates the otherwise mostly negative trend over the continents.

  7. Vegetation fires, absorbing aerosols and smoke plume characteristics in diverse biomass burning regions of Asia

    International Nuclear Information System (INIS)

    In this study, we explored the relationships between the satellite-retrieved fire counts (FC), fire radiative power (FRP) and aerosol indices using multi-satellite datasets at a daily time-step covering ten different biomass burning regions in Asia. We first assessed the variations in MODIS-retrieved aerosol optical depths (AOD’s) in agriculture, forests, plantation and peat land burning regions and then used MODIS FC and FRP (hereafter FC/FRP) to explain the variations in AOD characteristics. Results suggest that tropical broadleaf forests in Laos burn more intensively than the other vegetation fires. FC/FRP-AOD correlations in different agricultural residue burning regions did not exceed 20% whereas in forest regions they reached 40%. To specifically account for absorbing aerosols, we used Ozone Monitoring Instrument-derived aerosol absorption optical depth (AAOD) and UV aerosol index (UVAI). Results suggest relatively high AAOD and UVAI values in forest fires compared with peat and agriculture fires. Further, FC/FRP could explain a maximum of 29% and 53% of AAOD variations, whereas FC/FRP could explain at most 33% and 51% of the variation in agricultural and forest biomass burning regions, respectively. Relatively, UVAI was found to be a better indicator than AOD and AAOD in both agriculture and forest biomass burning plumes. Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations data showed vertically elevated aerosol profiles greater than 3.2–5.3 km altitude in the forest fire plumes compared to 2.2–3.9 km and less than 1 km in agriculture and peat-land fires, respectively. We infer the need to assimilate smoke plume height information for effective characterization of pollutants from different sources. (letter)

  8. Mixing State and Optical Properties of Biomass Burning Aerosol during the SAMBBA 2012 Campaign

    Science.gov (United States)

    Brooke, Jennifer; Brooks, Barbara; McQuaid, Jim; Osborne, Simon

    2013-04-01

    Emissions of black carbon are a global phenomenon associated with combustion activities with an estimated 40 % of global emissions from biomass burning. These emissions are typically dominated in regional hotspots, such as along the edges of the Amazon Basin, and contribute to the regional air quality and have associated health impacts as well as the global climatic impacts of this major source of black carbon as well as other radiatively active species. New airborne measurements will be presented of biomass burning emissions across the Amazon region from the South AMerican Biomass Burning Analysis (SAMBBA) campaign based at Porto Vehlo, Rondônia, Brazil in September 2012. This airborne campaign aboard the FAAM BAe-146 coincided with the seasonal peak in South American biomass burning emissions, which make up the most dominant source of atmospheric pollutants in the region at this time. SAMBBA included dedicated flights involving in-situ measurements and remote sensing of single plume studies through to multi-plume sampling of smouldering and flaming vegetation fires, regional haze sampling, and measurements of biogenic aerosol and gases across Amazonas. This presentation summarises early findings from the SAMBBA aircraft observations focusing on the relationship between biomass burning aerosol properties; size distributions, aerosol mixing state and optical properties from a suite of instruments onboard the FAAM BAe-146. The interplay of these properties influences the regional radiative balance impacting on weather and climate. The Leeds airborne VACC (Volatile Aerosol Concentration and Composition) instrument is designed to investigate the volatility properties of different aerosol species in order to determine aerosol composition; furthermore it can be used to infer the mixing state of the aerosol. Size distributions measured with the volatility system will be compared with ambient size distribution measurements this allows information on organic coating

  9. Impact of biomass burning sources on seasonal aerosol air quality

    Science.gov (United States)

    Reisen, Fabienne; Meyer, C. P. (Mick); Keywood, Melita D.

    2013-03-01

    In the Huon Valley, Tasmania, current public perception is that smoke from regeneration burning is the principal cause of pollution events in autumn. These events lead to exceedences of national air quality standards and to significant health impacts on the rural population. To date there is little data on the significance of the impact. The aim of the study was to quantitatively assess the seasonal atmospheric particle loadings in the Huon Valley and determine the impact of smoke pollution. The study monitored fine (PM2.5) and coarse (PM10) particle concentrations and their chemical composition at two locations in the Huon Valley, Geeveston, an urban site and Grove, a rural site, between March 2009 and November 2010. The monitoring program clearly showed that biomass burning was a significant source of PM2.5 in the Huon Valley, leading to exceedences of the 24 h PM2.5 Ambient Air Quality National Environment Protection Measures advisory standard on a number of occasions. Significant increases of PM2.5 concentrations above background occurred during periods of prescribed burning as well as during the winter season. Although the intensity of emissions from prescribed burns (PB) and residential woodheaters (WH) was similar, emissions from WH were the largest source of PM2.5, with a contribution of 77% to the ambient PM2.5 load compared to an 11% contribution from PB. The results have also shown a greater impact on air quality at the urban site than at the rural site, indicating that PM2.5 concentrations are primarily influenced by localised sources rather than by regional pollution. The potential impact on local residents of the high PM concentrations during the PB and WH season was assessed. WH pollution is largely a persistent night-time issue in contrast to PB events which generally occur during the day and are of short duration. Due to the long persistence of high PM concentrations in winter, indoor PM concentrations are unlikely to be substantially lower than

  10. Assimilation of Aerosols from Biomass Burning by the Radiative Transfer Model Brasil-Sr

    Science.gov (United States)

    Costa, R. S.; Gonçalves, A. R.; Souza, J. G.; Martins, F. R.; Pereira, E. B.

    2015-12-01

    The radiative transfer model BRASIL-SR is the main tool used by the Earth System Science Centre from the National Institute for Space Research (CCST / INPE) for solar energy resource assessment. Due to large and frequent events of burning biomass in Brazil there is a need to improve the aerosol representation in this model, mainly during the dry season (September - November) in Northern and Central Brazil. The standard aerosol representation in this model is inadequate to capture these events. It is based on the mean monthly climatological horizontal visibility with latitudinal values based on coarse global observation data. To improve the aerosol representation, climatological data of daily horizontal visibility from National Institute of Meteorology (INMET) was used to generate monthly averages from 1999 to 2012. To do a better representation of aerosols from burning biomass events, from megacities aerosol generation, and from transport processes, horizontal visibility estimates performed using aerosol optical thickness at 550 nm data from MACC Project Reanalysis model were used to adjust the aerosol representation in regions were the simple horizontal visibility fails. A methodology to generate these new visibility data from the Reanalysis was made and the resulting data was compared with the average horizontal visibility to implement a new corrected database. The solar irradiation simulated by the model using this new aerosol representation proved to be better than the previous version of the model in all regions with high aerosol loading.

  11. Ground-based aerosol characterization during the South American Biomass Burning Analysis (SAMBBA) field experiment

    Science.gov (United States)

    Brito, J.; Rizzo, L. V.; Morgan, W. T.; Coe, H.; Johnson, B.; Haywood, J.; Longo, K.; Freitas, S.; Andreae, M. O.; Artaxo, P.

    2014-11-01

    This paper investigates the physical and chemical characteristics of aerosols at ground level at a site heavily impacted by biomass burning. The site is located near Porto Velho, Rondônia, in the southwestern part of the Brazilian Amazon rainforest, and was selected for the deployment of a large suite of instruments, among them an Aerosol Chemical Speciation Monitor. Our measurements were made during the South American Biomass Burning Analysis (SAMBBA) field experiment, which consisted of a combination of aircraft and ground-based measurements over Brazil, aimed to investigate the impacts of biomass burning emissions on climate, air quality, and numerical weather prediction over South America. The campaign took place during the dry season and the transition to the wet season in September/October 2012. During most of the campaign, the site was impacted by regional biomass burning pollution (average CO mixing ratio of 0.6 ppm), occasionally superimposed by intense (up to 2 ppm of CO), freshly emitted biomass burning plumes. Aerosol number concentrations ranged from ~1000 cm-3 to peaks of up to 35 000 cm-3 (during biomass burning (BB) events, corresponding to an average submicron mass mean concentrations of 13.7 μg m-3 and peak concentrations close to 100 μg m-3. Organic aerosol strongly dominated the submicron non-refractory composition, with an average concentration of 11.4 μg m-3. The inorganic species, NH4, SO4, NO3, and Cl, were observed, on average, at concentrations of 0.44, 0.34, 0.19, and 0.01 μg m-3, respectively. Equivalent black carbon (BCe) ranged from 0.2 to 5.5 μg m-3, with an average concentration of 1.3 μg m-3. During BB peaks, organics accounted for over 90% of total mass (submicron non-refractory plus BCe), among the highest values described in the literature. We examined the ageing of biomass burning organic aerosol (BBOA) using the changes in the H : C and O : C ratios, and found that throughout most of the aerosol processing (O : C ≅ 0

  12. Chemical, physical, and optical evolution of biomass burning aerosols: a case study

    Directory of Open Access Journals (Sweden)

    G. Adler

    2010-10-01

    Full Text Available In-situ chemical composition measurements of ambient aerosols have been used for characterizing the evolution of submicron aerosols from a large anthropogenic biomass burning (BB event in Israel. A high resolution Time of Flight Aerosol Mass Spectrometer (Hi-RES-TOF-AMS was used to follow the chemical evolution of BB aerosols during a night-long, extensive nationwide wood burning event and during the following day. While extensive BB is not common in this region, burning of agricultural waste is a common practice. The aging process of the BB aerosols was followed through their chemical, physical and optical properties. Mass spectrometric analysis of the aerosol organic component showed that aerosol aging is characterized by shifting from less oxidized fresh BB aerosols to more oxidized aerosols. Evidence for aerosol aging during the day following the BB event was indicated by an increase in the organic mass, its oxidation state, the total aerosol concentration, and a shift in the modal particle diameter. The effective broadband refractive index (EBRI was derived using a white light optical particle counter (WELAS. The average EBRI for a mixed population of aerosols dominated by open fires was m=1.53(±0.03+0.07i(±0.03, during the smoldering phase of the fires we found the EBRI to be m=1.54(±0.01+0.04i(±0.01 compared to m=1.49(±0.01+0.02i(±0.01 of the aged aerosols during the following day. This change indicates a decrease in the overall aerosol absorption and scattering. Elevated levels of particulate Polycyclic Aromatic Hydrocarbons (PAHs were detected during the entire event, which suggest possible implications for human health during such extensive event.

  13. Chemical, physical, and optical evolution of biomass burning aerosols: a case study

    Science.gov (United States)

    Adler, G.; Flores, J. M.; Abo Riziq, A.; Borrmann, S.; Rudich, Y.

    2011-02-01

    In-situ chemical composition measurements of ambient aerosols have been used for characterizing the evolution of submicron aerosols from a large anthropogenic biomass burning (BB) event in Israel. A high resolution Time of Flight Aerosol Mass Spectrometer (HR-RES-TOF-AMS) was used to follow the chemical evolution of BB aerosols during a night-long, extensive nationwide wood burning event and during the following day. While these types of extensive BB events are not common in this region, burning of agricultural waste is a common practice. The aging process of the BB aerosols was followed through their chemical, physical and optical properties. Mass spectrometric analysis of the aerosol organic component showed that aerosol aging is characterized by shifting from less oxidized fresh BB aerosols to more oxidized aerosols. Evidence for aerosol aging during the day following the BB event was indicated by an increase in the organic mass, its oxidation state, the total aerosol concentration, and a shift in the modal particle diameter. The effective broadband refractive index (EBRI) was derived using a white light optical particle counter (WELAS). The average EBRI for a mixed population of aerosols dominated by open fires was m = 1.53(±0.03) + 0.07i(±0.03), during the smoldering phase of the fires we found the EBRI to be m = 1.54(±0.01) + 0.04i(±0.01) compared to m = 1.49(±0.01) + 0.02i(±0.01) of the aged aerosols during the following day. This change indicates a decrease in the overall aerosol absorption and scattering. Elevated levels of particulate Polycyclic Aromatic Hydrocarbons (PAHs) were detected during the entire event, which suggest possible implications for human health during such extensive event.

  14. Chemical, physical, and optical evolution of biomass burning aerosols: a case study

    Directory of Open Access Journals (Sweden)

    G. Adler

    2011-02-01

    Full Text Available In-situ chemical composition measurements of ambient aerosols have been used for characterizing the evolution of submicron aerosols from a large anthropogenic biomass burning (BB event in Israel. A high resolution Time of Flight Aerosol Mass Spectrometer (HR-RES-TOF-AMS was used to follow the chemical evolution of BB aerosols during a night-long, extensive nationwide wood burning event and during the following day. While these types of extensive BB events are not common in this region, burning of agricultural waste is a common practice. The aging process of the BB aerosols was followed through their chemical, physical and optical properties. Mass spectrometric analysis of the aerosol organic component showed that aerosol aging is characterized by shifting from less oxidized fresh BB aerosols to more oxidized aerosols. Evidence for aerosol aging during the day following the BB event was indicated by an increase in the organic mass, its oxidation state, the total aerosol concentration, and a shift in the modal particle diameter. The effective broadband refractive index (EBRI was derived using a white light optical particle counter (WELAS. The average EBRI for a mixed population of aerosols dominated by open fires was m = 1.53(±0.03 + 0.07i(±0.03, during the smoldering phase of the fires we found the EBRI to be m = 1.54(±0.01 + 0.04i(±0.01 compared to m = 1.49(±0.01 + 0.02i(±0.01 of the aged aerosols during the following day. This change indicates a decrease in the overall aerosol absorption and scattering. Elevated levels of particulate Polycyclic Aromatic Hydrocarbons (PAHs were detected during the entire event, which suggest possible implications for human health during such extensive event.

  15. Aerosol characterization over the North China Plain: Haze life cycle and biomass burning impacts in summer

    Science.gov (United States)

    Sun, Yele; Jiang, Qi; Xu, Yisheng; Ma, Yan; Zhang, Yingjie; Liu, Xingang; Li, Weijun; Wang, Fei; Li, Jie; Wang, Pucai; Li, Zhanqing

    2016-03-01

    The North China Plain experiences frequent severe haze pollution during all seasons. Here we present the results from a summer campaign that was conducted at Xianghe, a suburban site located between the megacities of Beijing and Tianjin. Aerosol particle composition was measured in situ by an Aerosol Chemical Speciation Monitor along with a suite of collocated measurements during 1-30 June 2013. Our results showed that aerosol composition at the suburban site was overall similar to that observed in Beijing, which was mainly composed of organics (39%), nitrate (20%), and sulfate (18%). Positive matrix factorization of organic aerosol (OA) identified four OA factors with different sources and processes. While secondary organic aerosol dominated OA, on average accounting for 70%, biomass burning OA (BBOA) was also observed to have a considerable contribution (11%) for the entire study period. The contribution of BBOA was increased to 21% during the BB period in late June, indicating a large impact of agricultural burning on air pollution in summer. Biomass burning also exerted a significant impact on aerosol optical properties. It was estimated that ~60% enhancement of absorption at the ultraviolet spectral region was caused by the organic compounds from biomass burning. The formation mechanisms and sources of severe haze pollution episodes were investigated in a case study. The results highlighted two different mechanisms, i.e., regional transport and local sources, driving the haze life cycles differently in summer in the North China Plain. While secondary aerosol species dominated aerosol composition in the episode from regional transport, organics and black carbon comprised the major fraction in the locally formed haze episode.

  16. A case study on biomass burning aerosols: effects on solar UV irradiance, retrieval of aerosol single scattering albedo

    Directory of Open Access Journals (Sweden)

    A. Bagheri

    2008-10-01

    Full Text Available The aerosol optical depth (AOD from biomass burning aerosols from eastern Europe was measured in Trondheim, Norway (63.43° N , 10.43° E in May 2006. The event was observed as far as the Arctic. In the first part of this paper, the surface measurements of direct and global UV radiation (and retrieved AOD are used to simulate the data using a radiative transfer model. Measured and simulated data were used to study the effect of biomass aerosol on the levels of surface UV radiation. We found reductions of up to 31%, 15% and 2% in direct, global and diffuse surface UV irradiance (at 350 nm, SZA=50°±0.5° as compared to typical aerosol conditions. In the second part of our study, surface measurements of global and direct irradiance at five wavelength in UVB and UVA (305, 313, 320, 340 and 380 nm were coupled with a radiative transfer model to produce values of aerosol single scattering albedo, ω. The aerosol single scattering albedo for biomass aerosols is compared to ω for background aerosols. The values of ω for biomass aerosols were 0.76 at 305 nm, 0.75 at 313 nm, 0.79 at 320 nm, 0.72 at 340 nm and 0.80 at 380 nm.

  17. Trace elements in atmospheric aerosols from background regions and biomass burning from the Amazon Basin

    International Nuclear Information System (INIS)

    Aerosol particles from the tropical rain forest and from savannah biomass burning were collected in several experiments in the Amazon Basin. The size distribution of atmospheric trace elements was measured under both background and biomass burning conditions. Sampling from aircraft was performed over a large area of the Amazon Basin in August/September 1991. The aerosol mass concentration, black carbon and trace element concentrations were determined for fine and coarse aerosol particles. Particle induced X ray emission (PIXE) was used to measure the concentrations of up to 22 elements: Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Br, Rb, Sr, Zr and Pb. During the dry season, when most of the biomass burning occurs, the concentration of inhalable particles exceeds 300 μg/m3 in regions far from the direct influence of emissions from biomass burning. Large amounts of fine particles are injected into the atmosphere, where they can travel over long distances. These particles are rich in K, P, S, Ca, Mg, Cl, Si, Zn, Rb, Sr, Zr and other trace elements. The emissions of trace elements and heavy metals into the global atmosphere owing to biomass burning are very significant, but are currently not considered in global atmospheric heavy metal inventories. Several essential nutrients, such as P, K, S and others, are transported into the atmosphere as a result of biomass burning processes. Most of the particles are water soluble and can be active as cloud condensation nuclei, with the potential to change the cloud formation mechanisms in the Amazon Basin and other regions of the planet. 22 refs, 5 figs, 1 tab

  18. Biomass burning aerosol over the Amazon during SAMBBA: impact of chemical composition on radiative properties

    Science.gov (United States)

    Morgan, William; Allan, James; Flynn, Michael; Darbyshire, Eoghan; Hodgson, Amy; Liu, Dantong; O'shea, Sebastian; Bauguitte, Stephane; Szpek, Kate; Langridge, Justin; Johnson, Ben; Haywood, Jim; Longo, Karla; Artaxo, Paulo; Coe, Hugh

    2014-05-01

    Biomass burning represents one of the largest sources of particulate matter to the atmosphere, resulting in a significant perturbation to the Earth's radiative balance coupled with serious impacts on public health. Globally, biomass burning aerosols are thought to exert a small warming effect but with the uncertainty being 4 times greater than the central estimate. On regional scales, the impact is substantially greater, particularly in areas such as the Amazon Basin where large, intense and frequent burning occurs on an annual basis for several months. Absorption by atmospheric aerosols is underestimated by models over South America, which points to significant uncertainties relating to Black Carbon (BC) aerosol properties. Initial results from the South American Biomass Burning Analysis (SAMBBA) field experiment, which took place during September and October 2012 over Brazil on-board the UK Facility for Airborne Atmospheric Measurement (FAAM) BAe-146 research aircraft, are presented here. Aerosol chemical composition was measured by an Aerodyne Aerosol Mass Spectrometer (AMS) and a DMT Single Particle Soot Photometer (SP2). The physical, chemical and optical properties of the aerosols across the region will be characterized in order to establish the impact of biomass burning on regional air quality, weather and climate. The aircraft sampled a range of conditions including sampling of pristine Rainforest, fresh biomass burning plumes, regional haze and elevated biomass burning layers within the free troposphere. The aircraft sampled biomass burning aerosol across the southern Amazon in the states of Rondonia and Mato Grosso, as well as in a Cerrado (Savannah-like) region in Tocantins state. This presented a range of fire conditions, both in terms of their number, intensity, vegetation-type and their combustion efficiencies. Near-source sampling of fires in Rainforest environments suggested that smouldering combustion dominated, while flaming combustion dominated

  19. Biomass Burning Aerosol Absorption Measurements with MODIS Using the Critical Reflectance Method

    Science.gov (United States)

    Zhu, Li; Martins, Vanderlei J.; Remer, Lorraine A.

    2010-01-01

    This research uses the critical reflectance technique, a space-based remote sensing method, to measure the spatial distribution of aerosol absorption properties over land. Choosing two regions dominated by biomass burning aerosols, a series of sensitivity studies were undertaken to analyze the potential limitations of this method for the type of aerosol to be encountered in the selected study areas, and to show that the retrieved results are relatively insensitive to uncertainties in the assumptions used in the retrieval of smoke aerosol. The critical reflectance technique is then applied to Moderate Resolution Imaging Spectrometer (MODIS) data to retrieve the spectral aerosol single scattering albedo (SSA) in South African and South American 35 biomass burning events. The retrieved results were validated with collocated Aerosol Robotic Network (AERONET) retrievals. One standard deviation of mean MODIS retrievals match AERONET products to within 0.03, the magnitude of the AERONET uncertainty. The overlap of the two retrievals increases to 88%, allowing for measurement variance in the MODIS retrievals as well. The ensemble average of MODIS-derived SSA for the Amazon forest station is 0.92 at 670 nm, and 0.84-0.89 for the southern African savanna stations. The critical reflectance technique allows evaluation of the spatial variability of SSA, and shows that SSA in South America exhibits higher spatial variation than in South Africa. The accuracy of the retrieved aerosol SSA from MODIS data indicates that this product can help to better understand 44 how aerosols affect the regional and global climate.

  20. Ground based aerosol characterization during the South American Biomass Burning Analysis (SAMBBA field experiment

    Directory of Open Access Journals (Sweden)

    J. Brito

    2014-05-01

    Full Text Available This paper investigates the physical and chemical characteristics of aerosols at ground level at a site heavily impacted by biomass burning. The site is located near Porto Velho, Rondônia, in the Southwestern part of the Brazilian Amazon forest, and was selected for the deployment of a large suite of instruments, among them an Aerosol Chemical Speciation Monitor. Our measurements were made during the South American Biomass Burning Analysis (SAMBBA field experiment, which consisted of a combination of aircraft and ground based measurements over Brazil, aiming to investigate the impacts of biomass burning emissions on climate, air quality, and numerical weather prediction over South America. The campaign took place during the dry season and the transition to the wet season in September/October 2012. During most of the campaign, the site was impacted by regional biomass burning pollution (average CO mixing ratio of 0.6 ppm, occasionally superimposed by intense (up to 2 ppm of CO, freshly emitted biomass burning plumes. Aerosol number concentrations ranged from ∼1000 cm−3 to peaks of up to 35 000 cm−3 during biomass burning (BB events, corresponding to an average submicron mass mean concentrations of 13.7 μg m−3 and peak concentrations close to 100 μg m−3. Organic aerosol strongly dominated the submicron non-refractory composition, with an average concentration of 11.4 μg m−3. The inorganic species, NH4, SO4, NO3, and Cl, were observed on average at concentrations of 0.44, 0.34, 0.19, and 0.01 μg m−3, respectively. Equivalent Black Carbon (BCe ranged from 0.2 to 5.5 μg m−3, with an average concentration of 1.3 μg m−3. During BB peaks, organics accounted for over 90% of total mass (submicron non-refractory plus BCe, among the highest values described in the literature. We examined the ageing of Biomass Burning Organic Aerosol (BBOA using the changes in the H : C and O : C ratios, and found that throughout most of the aerosol

  1. OMI tropospheric NO2 air mass factors over South America: effects of biomass burning aerosols

    Directory of Open Access Journals (Sweden)

    P. Castellanos

    2015-03-01

    Full Text Available Biomass burning is an important and uncertain source of aerosols and NOx (NO + NO2 to the atmosphere. OMI observations of tropospheric NO2 are essential for characterizing this emissions source, but inaccuracies in the retrieval of NO2 tropospheric columns due to the radiative effects of aerosols, especially light-absorbing carbonaceous aerosols, are not well understood. It has been shown that the O2–O2 effective cloud fraction and pressure retrieval is sensitive to aerosol optical and physical properties, including aerosol optical depth (AOD. Aerosols implicitly influence the tropospheric air mass factor (AMF calculations used in the NO2 retrieval through the effective cloud parameters used in the independent pixel approximation. In this work, we explicitly account for the effects of biomass burning aerosols in the tropospheric NO2 AMF calculation by including collocated aerosol extinction vertical profile observations from the CALIOP instrument, and aerosol optical depth (AOD and single scattering albedo (SSA retrieved by the OMI near-UV aerosol algorithm (OMAERUV in the DISAMAR radiative transfer model for cloud-free scenes. Tropospheric AMFs calculated with DISAMAR were benchmarked against AMFs reported in the Dutch OMI NO2 (DOMINO retrieval; the mean and standard deviation (SD of the difference was 0.6 ± 8%. Averaged over three successive South American biomass burning seasons (2006–2008, the spatial correlation in the 500 nm AOD retrieved by OMI and the 532 nm AOD retrieved by CALIOP was 0.6, and 72% of the daily OMAERUV AOD observations were within 0.3 of the CALIOP observations. Overall, tropospheric AMFs calculated with observed aerosol parameters were on average 10% higher than AMFs calculated with effective cloud parameters. For effective cloud radiance fractions less than 30%, or effective cloud pressures greater than 800 hPa, the difference between tropospheric AMFs based on implicit and explicit aerosol parameters is on

  2. Airborne measurements of carbonaceous aerosols in southern Africa during the dry, biomass burning season

    Energy Technology Data Exchange (ETDEWEB)

    Kirchstetter, Thomas W.; Novakov, T.; Hobbs, Peter V.; Magi, Brian

    2002-06-17

    Particulate matter collected aboard the University of Washington's Convair-580 research aircraft over southern Africa during the dry, biomass burning season was analyzed for total carbon, organic carbon, and black carbon contents using thermal and optical methods. Samples were collected in smoke plumes of burning savanna and in regional haze. A known artifact, produced by the adsorption of organic gases on the quartz filter substrates used to collect the particulate matter samples, comprised a significant portion of the total carbon collected. Consequently, conclusions derived from the data are greatly dependent on whether or not organic carbon concentrations are corrected for this artifact. For example, the estimated aerosol co-albedo (1 - single scattering albedo), which is a measure of aerosol absorption, of the biomass smoke samples is 60 percent larger using corrected organic carbon concentrations. Thus, the corrected data imply that the biomass smoke is 60 percent more absorbing than do the uncorrected data. The black carbon to (corrected) organic carbon mass ratio (BC/OC) of smoke plume samples (0.18/2610.06) is lower than that of samples collected in the regional haze (0.25/2610.08). The difference may be due to mixing of biomass smoke with background air characterized by a higher BC/OC ratio. A simple source apportionment indicates that biomass smoke contributes about three-quarters of the aerosol burden in the regional haze, while other sources (e.g., fossil fuel burning) contribute the remainder.

  3. Organic aerosols in a Brazilian agro-industrial area: Speciation and impact of biomass burning

    Science.gov (United States)

    Urban, R. C.; Alves, C. A.; Allen, A. G.; Cardoso, A. A.; Campos, M. L. A. M.

    2016-03-01

    This work presents the first comprehensive organic characterization of atmospheric aerosols from an agro-industrial region (São Paulo State, Brazil) highly impacted by biomass burning. The organic speciation was performed using different solvents of increasing polarity, enabling the identification and quantification of 172 different organic species by GC-MS. The mass of organic compounds reached 123 μg m- 3 in an aerosol sample collected during the sugar cane harvest period compared with 0.82 μg m- 3 in the non-harvest period. The samples most impacted by biomass burning were those with the highest percentages of non-polar compounds (n-alkanes; up to 96%). However, in absolute terms, the total mass of polar compounds in such samples was greater than for samples less impacted by this activity. Retene (a marker for biomass combustion) was the most abundant of the 19 polycyclic aromatic hydrocarbons quantified, corresponding to 14%-84%. This work shows that biomass burning was responsible for a benzo(a)pyrene equivalent index value that exceeded the recommendation of the World Health Organization. Principal component analysis indicated that agricultural biomass burning and emissions from crop processing facilities explained 42% of the variance of the data, while 37% was explained by urban emissions, 10% by vehicle emissions, and 10% by biogenic sources. This study provides insights into the emissions of a suite of organic compounds that could participate in anthropic alteration of regional cloud formation and precipitation patterns.

  4. Relationship between Amazon biomass burning aerosols and rainfall over the La Plata Basin

    Science.gov (United States)

    Camponogara, G.; Silva Dias, M. A. F.; Carrió, G. G.

    2014-05-01

    High aerosol loads are discharged into the atmosphere by biomass burning in the Amazon and central Brazil during the dry season. These particles can interact with clouds as cloud condensation nuclei (CCN) changing cloud microphysics and radiative properties and, thereby, affecting the radiative budget of the region. Furthermore, the biomass burning aerosols can be transported by the low-level jet (LLJ) to the La Plata Basin, where many mesoscale convective systems (MCS) are observed during spring and summer. This work proposes to investigate whether the aerosols from biomass burning may affect the MCS in terms of rainfall over the La Plata Basin during spring. Aerosol effects are very difficult to isolate because convective clouds are very sensitive to small environment disturbances; for that reason, detailed analyses using different techniques are used. The binplot, 2-D histograms and combined empirical orthogonal function (EOF) methods are used to identify certain environmental conditions with the possible effects of aerosol loading. Reanalysis 2, TRMM-3B42 and AERONET data are used from 1999 up to 2012 during September-December. The results show that there are two patterns associated with rainfall-aerosol interaction in the La Plata Basin: one in which the dynamic conditions are more important than aerosols to generation of rain; and a second one where the aerosol particles have a more important role in rain formation, acting mainly to suppress rainfall over the La Plata Basin. However, these results need further investigation to strengthen conclusions, especially because there are limitations and uncertainties in the methodology and data set used.

  5. Interannual variability of tropospheric trace gases and aerosols: The role of biomass burning emissions

    Science.gov (United States)

    Voulgarakis, Apostolos; Marlier, Miriam E.; Faluvegi, Greg; Shindell, Drew T.; Tsigaridis, Kostas; Mangeon, Stéphane

    2015-07-01

    Fires are responsible for a range of gaseous and aerosol emissions. However, their influence on the interannual variability of atmospheric trace gases and aerosols has not been systematically investigated from a global perspective. We examine biomass burning emissions as a driver of interannual variability of large-scale abundances of short-lived constituents such as carbon monoxide (CO), hydroxyl radicals (OH), ozone, and aerosols using the Goddard Institute for Space Studies ModelE composition-climate model and a range of observations, with an emphasis on satellite information. Our model captures the observed variability of the constituents examined in most cases, but with substantial underestimates in boreal regions. The strongest interannual variability on a global scale is found for carbon monoxide (~10% for its global annual burden), while the lowest is found for tropospheric ozone (~1% for its global annual burden). Regionally, aerosol optical depth shows the largest variability which exceeds 50%. Areas of strong variability of both aerosols and CO include the tropical land regions (especially Equatorial Asia and South America) and northern high latitudes, while even regions in the northern midlatitudes experience substantial interannual variability of aerosols. Ozone variability peaks over equatorial Asia in boreal autumn, partly due to varying biomass burning emissions, and over the western and central Pacific in the rest of the year, mainly due to meteorological fluctuations. We find that biomass burning emissions are almost entirely responsible for global CO interannual variability, and similarly important for OH variability. The same is true for global and regional aerosol variability, especially when not taking into account dust and sea-salt particles. We show that important implications can arise from such interannual influences for regional climate and air quality.

  6. Dust, Pollution, and Biomass Burning Aerosols in Asian Pacific: A Column Satellite-Surface Perspective

    Science.gov (United States)

    Tsay, Si-Chee

    2004-01-01

    Airborne dusts from northern China contribute a significant part of the air quality problem and, to some extent, regional climatic impact in Asia during spring-time. However, with the economical growth in China, increases in the emission of air pollutants generated from industrial and vehicular sources will not only impact the radiation balance, but adverse health effects to humans all year round. In addition, both of these dust and air pollution clouds can transport swiftly across the Pacific reaching North America within a few days, possessing an even larger scale effect. The Asian dust and air pollution aerosols can be detected by its colored appearance on current Earth observing satellites (e.g., MODIS, SeaWiFS, TOMS, etc.) and its evolution monitored by satellites and surface network. Biomass burning has been a regular practice for land clearing and land conversion in many countries, especially those in Africa, South America, and Southeast Asia. However, the unique climatology of Southeast Asia is very different than that of Africa and South America, such that large-scale biomass burning causes smoke to interact extensively with clouds during the peak-burning season of March to April. Significant global sources of greenhouse gases (e.g., CO2, CH4), chemically active gases (e.g., NO, CO, HC, CH3Br), and atmospheric aerosols are produced by biomass burning processes. These gases influence the Earth-atmosphere system, impacting both global climate and tropospheric chemistry. Some aerosols can serve as cloud condensation nuclei, which play an important role in determining cloud lifetime and precipitation, hence, altering the earth's radiation and water budget. Biomass burning also affects the biogeochemical cycling of nitrogen and carbon compounds from the soil to the atmosphere; the hydrological cycle (i.e., run off and evaporation); land surface reflectivity and emissivity; as well as ecosystem biodiversity and stability. Two new initiatives, EAST-AIRE (East

  7. Ground based characterization of biomass burning aerosols during the South American Biomass Burning Analysis (SAMBBA) field experiment in Brazil during Sept - Oct 2012

    Science.gov (United States)

    Artaxo, Paulo; Ferreira de Brito, Joel; Varanda Rizzo, Luciana; Johnson, Ben; Haywood, Jim; Longo, Karla; Freitas, Saulo; Coe, Hugh

    2013-04-01

    Biomass burning is one of the major drivers for atmospheric composition in the Southern hemisphere. In Amazonia, deforestation rates have been steadily decreasing, from 27,000 Km² in 2004 to about 5,000 Km² in 2011. This large reduction (by factor 5) was not followed by similar reduction in aerosol loading in the atmosphere due to the increase in agricultural fires. AERONET measurements from 5 sites show a large year-to year variability due to climatic and socio-economic issues. Besides this strong reduction in deforestation rate, biomass burning emissions in Amazonia increases concentrations of aerosol particles, CO, ozone and other species, and also change the surface radiation balance in a significant way. To complement the long term biomass burning measurements in Amazonia, it was organized in 2012 the intensive campaign of the South American Biomass Burning Analysis (SAMBBA) experiment with an airborne and a ground based components. A sampling site was set up at Porto Velho, with measurements of aerosol size distribution, optical properties such as absorption and scattering at several wavelengths, organic aerosol characterization with an ACSM - Aerosol Chemical Speciation Monitor. CO, CO2 and O3 were also measured to characterize combustion efficiency and photochemical processes. Filters for trace elements measured by XRF and for OC/EC determined using a Sunset instrument were also collected. An AERONET CIMEL sunphotometer was operated in parallel with a multifilter radiometer (MFR). A large data set was collected from August to October 2012. PM2.5 aerosol concentrations up to 250 ug/m3 were measured, with up to 20 ug/m3 of black carbon. Ozone went up to 60 ppb at mid-day in August. At night time ozone was consumed completely most of the time. ACSM shows that more than 85% of the aerosol mass was organic with a clear diurnal pattern. The organic aerosol volatility was very variable depending on the air mass sampled over Porto Velho. Aerosol optical depth at

  8. Biomass burning aerosol in the State of São Paulo (Southeastern Brazil)

    Science.gov (United States)

    Lara, L. L. S.; Artaxo, P.; Martinelli, L. A.; Camargo, P. B.; Ferraz, E. S. B.

    2003-04-01

    A detailed aerosol source apportionment study has been performed in three sites in State of São Paulo with different land-use: sugarcane crops, cattle, urban area and forest. During the summer and winter, the period when sugarcane is burned every year, PM10 has been sampled during day and night in a period of 48 hours, using stacked filters units collecting fine and coarse particulate mode, providing mass, BC and elemental concentration for each aerosol mode. The concentrations of around 20 elements were determined using particle induced X-ray emission technique (PIXE). Ion chromatography was used to determine up to 11 water-soluble ion components. Highest levels of pollutants have been measured around the sugarcane crops, where the annual PM10 concentration (57.1"45.2µgm-3) exceeds of the other urban and industrialized areas and the BC concentration is significantly higher during the sugarcane burning period (4.2"2.2 µgm-3) than the rest of the year (2.0"1.0 µgm-3). The main sources of the aerosol are correlated to the land cover. Factor and cluster analysis showed the main source int the State of São Paulo is biomass burning, followed by soil dust, biogenic emissions and industrial emissions. The sampling and analytical procedures applied in this study showed the sugarcane burning and agricultural practices are the main source of inhalable particulate, possibly altering the aerosol concentration in some places of the State of São Paulo.

  9. Molecular markers of biomass burning, fungal spores and biogenic SOA in the Taklimakan desert aerosols

    Science.gov (United States)

    Fu, Pingqing; Zhuang, Guoshun; Sun, Yele; Wang, Qiongzhen; Chen, Jing; Ren, Lujie; Yang, Fan; Wang, Zifa; Pan, Xiaole; Li, Xiangdong; Kawamura, Kimitaka

    2016-04-01

    Biogenic primary organic aerosols (POA) and secondary organic aerosols (SOA) are important organic constituents of atmospheric particulate matter (PM). In order to better understand the atmospheric abundances, molecular compositions and sources of the desert aerosols, biomass-burning tracers (e.g. levoglucosan), primary saccharides including fungal spore tracers, and SOA tracers from the oxidation of biogenic volatile organic compounds (e.g. isoprene, monoterpenes and sesquiterpene) have been studied in ambient aerosols from the Taklimakan desert, using gas chromatography-mass spectrometry. Results showed that the total concentrations of biomass-burning tracers at Hetian (177-359 ng m-3, mean 233 ng m-3 in PM2.5) in the south rim of the desert were much higher than those at Tazhong (1.9-8.8 ng m-3 in PM2.5 and 5.9-32 ng m-3 in TSP) in the central Taklimakan desert. Molecular markers of fungal spores were also detected in all the desert aerosols, highlighting the importance of primary bioaerosols in the Asian dust particles. A specific pattern of the dominance of 2-methylglyceric acid over 2-methyltetrols and C5-alkene triols was found in the Taklimakan desert aerosols, especially during the dust storm events, which is different from the 2-methyltetrols-dominated pattern in other ambient aerosols. Our results provide direct evidence on the biogenic POA and SOA tracers in the Taklimakan desert region, which help to better understand their impact on the aerosol chemistry in the down-wind regions.

  10. Biomass burning in the Amazon region: Aerosol source apportionment and associated health risk assessment

    Science.gov (United States)

    de Oliveira Alves, Nilmara; Brito, Joel; Caumo, Sofia; Arana, Andrea; de Souza Hacon, Sandra; Artaxo, Paulo; Hillamo, Risto; Teinilä, Kimmo; Batistuzzo de Medeiros, Silvia Regina; de Castro Vasconcellos, Pérola

    2015-11-01

    The Brazilian Amazon represents about 40% of the world's remaining tropical rainforest. However, human activities have become important drivers of disturbance in that region. The majority of forest fire hotspots in the Amazon arc due to deforestation are impacting the health of the local population of over 10 million inhabitants. In this study we characterize western Amazonia biomass burning emissions through the quantification of 14 Polycyclic Aromatic Hydrocarbons (PAHs), Organic Carbon, Elemental Carbon and unique tracers of biomass burning such as levoglucosan. From the PAHs dataset a toxic equivalence factor is calculated estimating the carcinogenic and mutagenic potential of biomass burning emissions during the studied period. Peak concentration of PM10 during the dry seasons was observed to reach 60 μg m-3 on the 24 h average. Conversely, PM10 was relatively constant throughout the wet season indicating an overall stable balance between aerosol sources and sinks within the filter sampling resolution. Similar behavior is identified for OC and EC components. Levoglucosan was found in significant concentrations (up to 4 μg m-3) during the dry season. Correspondingly, the estimated lung cancer risk calculated during the dry seasons largely exceeded the WHO health-based guideline. A source apportionment study was carried out through the use of Absolute Principal Factor Analysis (APFA), identifying a three-factor solution. The biomass burning factor is found to be the dominating aerosol source, having 75.4% of PM10 loading. The second factor depicts an important contribution of several PAHs without a single source class and therefore was considered as mixed sources factor, contributing to 6.3% of PM10. The third factor was mainly associated with fossil fuel combustion emissions, contributing to 18.4% of PM10. This work enhances the knowledge of aerosol sources and its impact on climate variability and local population, on a site representative of the

  11. The Use of Aerosol Optical Depth in Estimating Trace Gas Emissions from Biomass Burning Plumes

    Science.gov (United States)

    Jones, N.; Paton-Walsh, C.; Wilson, S.; Meier, A.; Deutscher, N.; Griffith, D.; Murcray, F.

    2003-12-01

    We have observed significant correlations between aerosol optical depth (AOD) at 500 nm and column amounts of a number of biomass burning indicators (carbon monoxide, hydrogen cyanide, formaldehyde and ammonia) in bushfire smoke plumes over SE Australia during the 2001/2002 and 2002/2003 fire seasons from remote sensing measurements. The Department of Chemistry, University of Wollongong, operates a high resolution Fourier Transform Spectrometer (FTS), in the city of Wollongong, approximately 80 km south of Sydney. During the recent bushfires we collected over 1500 solar FTIR spectra directly through the smoke over Wollongong. The total column amounts of the biomass burning indicators were calculated using the profile retrieval software package SFIT2. Using the same solar beam, a small grating spectrometer equipped with a 2048 pixel CCD detector array, was used to calculate simultaneous aerosol optical depths. This dataset is therefore unique in its temporal sampling, location to active fires, and range of simultaneously measured constituents. There are several important applications of the AOD to gas column correlation. The estimation of global emissions from biomass burning currently has very large associated uncertainties. The use of visible radiances measured by satellites, and hence AOD, could significantly reduce these uncertainties by giving a direct estimate of global emissions of gases from biomass burning through application of the AOD to gas correlation. On a more local level, satellite-derived aerosol optical depth maps could be inverted to infer approximate concentration levels of smoke-related pollutants at the ground and in the lower troposphere, and thus can be used to determine the nature of any significant health impacts.

  12. The regime of biomass burning aerosols over the Mediterranean basin based on satellite observations

    Science.gov (United States)

    Kalaitzi, Nikoleta; Gkikas, Antonis; Papadimas, Christos. D.; Hatzianastassiou, Nikolaos; Torres, Omar; Mihalopoulos, Nikolaos

    2016-04-01

    Biomass burning (BB) aerosol particles have significant effects on global and regional climate, as well as on regional air quality, visibility, cloud processes and human health.Biomass burning contributes by about 40% to the global emission of black carbonBC, and BB aerosols can exert a significant positive radiative forcing. The BB aerosols can originate from natural fires and human induced burning, such as wood or agricultural waste. However, the magnitude, but also the sign of the radiative forcing of BB aerosols is still uncertain, according to the third assessment report of IPCC (2013). Moreover, there are significant differences between different models as to their representation (inventories) of BB aerosols, more than for others, e.g. of fossil fuel origin. Therefore, it is important to better understand the spatial and temporal regime of BB aerosols. This is attempted here for the broader Mediterranean basin, which is a very interesting study area for aerosols, also being one of the most climaticallysensitive world regions. The determination of spatial and temporal regime of Mediterranean BB aerosols premises the identification of these particles at a complete spatial and long temporal coverage. Such a complete coverage is only ensured by contemporary satellite observations, which offer a challenging ability to characterize the existence of BB aerosols. This is possible thanks to the current availability of derived satellite products offering information on the size and absorption/scattering ability of aerosol particles. A synergistic use of such satellite aerosol data is made here, in conjunction with a developed algorithm, in order to identify the existence of BB aerosols over the Mediterranean basin over the 11-year period from 2005 to 2015. The algorithm operates, on a daily basis and at 1°×1°latitude-longitude resolution, setting threshold values (criteria) for specific physical and optical properties, which are representative of BB aerosols. More

  13. Optical characteristics of biomass burning aerosols over Southeastern Europe determined from UV-Raman lidar measurements

    Directory of Open Access Journals (Sweden)

    V. Amiridis

    2008-10-01

    Full Text Available The influence of smoke on the aerosol loading in the free troposphere over Thessaloniki, Greece is examined in this paper. Ten cases during 2001–2005 were identified when very high aerosol optical depth values in the free troposphere were observed with a UV-Raman lidar. Particle dispersion modeling (FLEXPART and satellite hot spot fire detection (ATSR showed that these high free tropospheric aerosol optical depths are mainly attributed to the advection of smoke plumes from biomass burning regions over Thessaloniki. The biomass burning regions were found to extend across Russia in the latitudinal belt between 45° N–55° N, as well as in Eastern Europe (Baltic countries, Western Russia, Belarus, and the Ukraine. The highest frequency of agricultural fires occurred during the summer season (mainly in August. The data collected allowed the optical characterization of the smoke aerosols that arrived over Greece, where limited information has so far been available. Two-wavelength backscatter lidar measurements showed that the backscatter-related Ångström exponent ranged between 0.5 and 2.4 indicating a variety of particle sizes. UV-Raman lidar measurements showed that for smoke particles the extinction to backscatter ratios varied between 40 sr for small particles to 100 sr for large particles. Dispersion model estimations of the carbon monoxide tracer concentration profiles for smoke particles indicate that the variability of the optical parameters is a function of the age of the smoke plumes.

  14. Secondary organic aerosol formation from biomass burning intermediates: phenol and methoxyphenols

    Directory of Open Access Journals (Sweden)

    L. D. Yee

    2013-02-01

    Full Text Available The formation of secondary organic aerosol from oxidation of phenol, guaiacol (2-methoxyphenol, and syringol (2,6-dimethoxyphenol, major components of biomass burning, is described. Photooxidation experiments were conducted in the Caltech laboratory chambers under low-NOx (<10 ppb conditions using H2O2 as the OH source. Secondary organic aerosol (SOA yields (ratio of mass of SOA formed to mass of primary organic reacted greater than 25% are observed. Aerosol growth is rapid and linear with the primary organic conversion, consistent with the formation of essentially non-volatile products. Gas- and aerosol-phase oxidation products from the guaiacol system provide insight into the chemical mechanisms responsible for SOA formation. Syringol SOA yields are lower than those of phenol and guaiacol, likely due to novel methoxy group chemistry that leads to early fragmentation in the gas-phase photooxidation. Atomic oxygen to carbon (O:C ratios calculated from high-resolution-time-of-flight Aerodyne Aerosol Mass Spectrometer (HR-ToF-AMS measurements of the SOA in all three systems are ~0.9, which represent among the highest such ratios achieved in laboratory chamber experiments and are similar to that of aged atmospheric organic aerosol. The global contribution of SOA from intermediate volatility and semivolatile organic compounds has been shown to be substantial (Pye and Seinfeld, 2010. An approach to representing SOA formation from biomass burning emissions in atmospheric models could involve one or more surrogate species for which aerosol formation under well-controlled conditions has been quantified. The present work provides data for such an approach.

  15. Secondary organic aerosol formation from biomass burning intermediates: phenol and methoxyphenols

    Directory of Open Access Journals (Sweden)

    L. D. Yee

    2013-08-01

    Full Text Available The formation of secondary organic aerosol from oxidation of phenol, guaiacol (2-methoxyphenol, and syringol (2,6-dimethoxyphenol, major components of biomass burning, is described. Photooxidation experiments were conducted in the Caltech laboratory chambers under low-NOx (2O2 as the OH source. Secondary organic aerosol (SOA yields (ratio of mass of SOA formed to mass of primary organic reacted greater than 25% are observed. Aerosol growth is rapid and linear with the primary organic conversion, consistent with the formation of essentially non-volatile products. Gas- and aerosol-phase oxidation products from the guaiacol system provide insight into the chemical mechanisms responsible for SOA formation. Syringol SOA yields are lower than those of phenol and guaiacol, likely due to novel methoxy group chemistry that leads to early fragmentation in the gas-phase photooxidation. Atomic oxygen to carbon (O : C ratios calculated from high-resolution-time-of-flight Aerodyne Aerosol Mass Spectrometer (HR-ToF-AMS measurements of the SOA in all three systems are ~ 0.9, which represent among the highest such ratios achieved in laboratory chamber experiments and are similar to that of aged atmospheric organic aerosol. The global contribution of SOA from intermediate volatility and semivolatile organic compounds has been shown to be substantial (Pye and Seinfeld, 2010. An approach to representing SOA formation from biomass burning emissions in atmospheric models could involve one or more surrogate species for which aerosol formation under well-controlled conditions has been quantified. The present work provides data for such an approach.

  16. Total sugars in atmospheric aerosols: An alternative tracer for biomass burning

    Science.gov (United States)

    Scaramboni, C.; Urban, R. C.; Lima-Souza, M.; Nogueira, R. F. P.; Cardoso, A. A.; Allen, A. G.; Campos, M. L. A. M.

    2015-01-01

    Ambient aerosols were collected in an agro-industrial region of São Paulo State (Brazil) between May 2010 and February 2012 (n = 87). The atmosphere of the study region is highly affected by the emissions of gases and particles from sugar and fuel ethanol production, because part of the area planted with sugarcane is still burned before manual harvesting. This work proposes the quantification of total sugars as an alternative chemical tracer of biomass burning, instead of levoglucosan. The quantification of total sugars requires a small area of a filter sample and a simple spectrophotometer, in contrast to the determination of levoglucosan, which is much more complex and time-consuming. Total sugars concentrations in the aerosol ranged from 0.28 to 12.5 μg m-3, and (similarly to levoglucosan) the emissions were significantly higher at night and during the sugarcane harvest period, when most agricultural fires occur. The linear correlation between levoglucosan and total sugars (r = 0.612) was stronger than between levoglucosan and potassium (r = 0.379), which has previously been used as a biomass burning tracer. In the study region, potassium is used in fertilizers, and this, together with substantial soil dust resuspension, makes potassium unsuitable for use as a tracer. On average, ca. 40% of the total sugars was found in particles smaller than 0.49 μm. By including data from previous work, it was possible to identify from 35 to 42% of the total sugars, with biomass burning making the largest contribution. The high solubility in water of these sugars means that determination of their concentrations could also provide important information concerning the hydrophilic properties of atmospheric aerosols.

  17. Aged boreal biomass-burning aerosol size distributions from BORTAS 2011

    Science.gov (United States)

    Sakamoto, K. M.; Allan, J. D.; Coe, H.; Taylor, J. W.; Duck, T. J.; Pierce, J. R.

    2015-02-01

    Biomass-burning aerosols contribute to aerosol radiative forcing on the climate system. The magnitude of this effect is partially determined by aerosol size distributions, which are functions of source fire characteristics (e.g. fuel type, MCE) and in-plume microphysical processing. The uncertainties in biomass-burning emission number-size distributions in climate model inventories lead to uncertainties in the CCN (cloud condensation nuclei) concentrations and forcing estimates derived from these models. The BORTAS-B (Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellite) measurement campaign was designed to sample boreal biomass-burning outflow over eastern Canada in the summer of 2011. Using these BORTAS-B data, we implement plume criteria to isolate the characteristic size distribution of aged biomass-burning emissions (aged ~ 1-2 days) from boreal wildfires in northwestern Ontario. The composite median size distribution yields a single dominant accumulation mode with Dpm = 230 nm (number-median diameter) and σ = 1.5, which are comparable to literature values of other aged plumes of a similar type. The organic aerosol enhancement ratios (ΔOA / ΔCO) along the path of Flight b622 show values of 0.09-0.17 μg m-3 ppbv-1 (parts per billion by volume) with no significant trend with distance from the source. This lack of enhancement ratio increase/decrease with distance suggests no detectable net OA (organic aerosol) production/evaporation within the aged plume over the sampling period (plume age: 1-2 days), though it does not preclude OA production/loss at earlier stages. A Lagrangian microphysical model was used to determine an estimate of the freshly emitted size distribution corresponding to the BORTAS-B aged size distributions. The model was restricted to coagulation and dilution processes based on the insignificant net OA production/evaporation derived from the ΔOA / ΔCO enhancement ratios. We

  18. Assessment of aerosol-cloud interactions during southern African biomass burning activity, employing cloud parameterizations

    Science.gov (United States)

    Wiston, Modise; McFiggans, Gordon; Schultz, David

    2015-04-01

    In this study, we perform a simulation of the spatial distributions of particle and gas concentrations from a significantly large source of pollution event during a dry season in southern Africa and their interactions with cloud processes. Specific focus is on the extent to which cloud-aerosol interactions are affected by various inputs (i.e. emissions) and parameterizations and feedback mechanisms in a coupled mesoscale chemistry-meteorology model -herein Weather Research and Forecasting model with chemistry (WRF-Chem). The southern African dry season (May-Sep) is characterised by biomass burning (BB) type of pollution. During this period, BB particles are frequently observed over the subcontinent, at the same time a persistent deck of stratocumulus covers the south West African coast, favouring long-range transport over the Atlantic Ocean of aerosols above clouds. While anthropogenic pollutants tend to spread more over the entire domain, biomass pollutants are concentrated around the burning areas, especially the savannah and tropical rainforest of the Congo Basin. BB is linked to agricultural practice at latitudes south of 10° N. During an intense burning event, there is a clear signal of strong interactions of aerosols and cloud microphysics. These species interfere with the radiative budget, and directly affect the amount of solar radiation reflected and scattered back to space and partly absorbed by the atmosphere. Aerosols also affect cloud microphysics by acting as cloud condensation nuclei (CCN), modifying precipitation pattern and the cloud albedo. Key area is to understand the role of pollution on convective cloud processes and its impacts on cloud dynamics. The hypothesis is that an environment of potentially high pollution enables the probability of interactions between co-located aerosols and cloud layers. To investigate this hypothesis, we outline an approach to integrate three elements: i) focusing on regime(s) where there are strong indications of

  19. Characterising Brazilian biomass burning emissions using WRF-Chem with MOSAIC sectional aerosol

    Directory of Open Access Journals (Sweden)

    S. Archer-Nicholls

    2015-03-01

    Full Text Available The South American Biomass Burning Analysis (SAMBBA field campaign took detailed in situ flight measurements of aerosol during the 2012 dry season to characterise biomass burning aerosol and improve understanding of its impacts on weather and climate. Developments have been made to the Weather Research and Forecast model with chemistry (WRF-Chem model to improve the representation of biomass burning aerosol in the region, by coupling a sectional aerosol scheme to the plume-rise parameterisation. Brazilian Biomass Burning Emissions Model (3BEM fire emissions are used, prepared using PREP-CHEM-SRC, and mapped to CBM-Z and MOSAIC species. Model results have been evaluated against remote sensing products, AERONET sites, and four case studies of flight measurements from the SAMBBA campaign. WRF-Chem predicted layers of elevated aerosol loadings (5–20 μg sm−3 of particulate organic matter at high altitude (6–8 km over tropical forest regions, while flight measurements showed a sharp decrease above 2–4 km altitude. This difference was attributed to the plume-rise parameterisation overestimating injection height. The 3BEM emissions product was modified using estimates of active fire size and burned area for the 2012 fire season, which reduced the fire size. The enhancement factor for fire emissions was increased from 1.3 to 5 to retain reasonable aerosol optical depths (AODs. The smaller fire size lowered the injection height of the emissions, but WRF-Chem still showed elevated aerosol loadings between 4–5 km altitude. Over eastern cerrado (savannah-like regions, both modelled and measured aerosol loadings decreased above approximately 4 km altitude. Compared with MODIS satellite data and AERONET sites, WRF-Chem represented AOD magnitude well (between 0.3–1.5 over western tropical forest fire regions in the first half of the campaign, but tended to over-predict them in the second half, when precipitation was more significant. Over eastern

  20. Ground-based aerosol characterization during the South American Biomass Burning Analysis (SAMBBA field experiment

    Directory of Open Access Journals (Sweden)

    J. Brito

    2014-11-01

    Full Text Available This paper investigates the physical and chemical characteristics of aerosols at ground level at a site heavily impacted by biomass burning. The site is located near Porto Velho, Rondônia, in the southwestern part of the Brazilian Amazon rainforest, and was selected for the deployment of a large suite of instruments, among them an Aerosol Chemical Speciation Monitor. Our measurements were made during the South American Biomass Burning Analysis (SAMBBA field experiment, which consisted of a combination of aircraft and ground-based measurements over Brazil, aimed to investigate the impacts of biomass burning emissions on climate, air quality, and numerical weather prediction over South America. The campaign took place during the dry season and the transition to the wet season in September/October 2012. During most of the campaign, the site was impacted by regional biomass burning pollution (average CO mixing ratio of 0.6 ppm, occasionally superimposed by intense (up to 2 ppm of CO, freshly emitted biomass burning plumes. Aerosol number concentrations ranged from ~1000 cm−3 to peaks of up to 35 000 cm−3 (during biomass burning (BB events, corresponding to an average submicron mass mean concentrations of 13.7 μg m−3 and peak concentrations close to 100 μg m−3. Organic aerosol strongly dominated the submicron non-refractory composition, with an average concentration of 11.4 μg m−3. The inorganic species, NH4, SO4, NO3, and Cl, were observed, on average, at concentrations of 0.44, 0.34, 0.19, and 0.01 μg m−3, respectively. Equivalent black carbon (BCe ranged from 0.2 to 5.5 μg m−3, with an average concentration of 1.3 μg m−3. During BB peaks, organics accounted for over 90% of total mass (submicron non-refractory plus BCe, among the highest values described in the literature. We examined the ageing of biomass burning organic aerosol (BBOA using the changes in the H : C and O : C ratios, and found that throughout most of the

  1. Effects of biomass burning aerosols on CO2 fluxes on Amazon Region

    Science.gov (United States)

    Soares Moreira, Demerval; Freitas, Saulo; Longo, Karla; Rosario, Nilton

    2015-04-01

    During the dry season in Central Brazil and Southern Amazon, there is an usually high concentration of aerosol particles associated with intense human activities, with extensive biomass burning. It has been observed through remote sensing that the smoke clouds in these areas often cover an area of about 4 to 5 million km2. Thus, the average aerosol optical depth of these regions at 500 ηm, is usually below 0.1 during the rainy season and can exceed 0.9 in the fire season. Aerosol particles act as condensation nuclei and also increase scattering and absorption of the incident radiation. Therefore, the layer of the aerosol alters the precipitation rate; reduces the amount of solar energy that reaches the surface, producing a cooling; and causes an increase of diffuse radiation. These factors directly and indirectly affect the CO2 fluxes at the surface. In this work, the chemical-atmospheric model CCATT-BRAMS (Coupled Chemistry-Aerosol-Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System) coupled to the surface model JULES (Joint UK Land Environment Simulator) was used to simulate the effects of biomass burning aerosols in CO2 fluxes in the Amazon region. Both the total effect of the aerosols and the contribution related only to the increase of the diffuse fraction caused by the their presence were analyzed. The results show that the effect of the scattered fraction is dominant over all other effects. It was also noted that the presence of aerosols from fires can substantially change biophysiological processes of the carbon cycle. In some situations, it can lead to a sign change in the net ecosystem exchange (NEE), turning it from a source of CO2 to the atmosphere, when the aerosol is not considered in the simulations, to a sink, when it is considered. Thus, this work demonstrates the importance of considering the presence of aerosols in numerical simulations of weather and climate, since carbon dioxide is a major

  2. The role of biomass burning in the budget and cycle of carbonaceous soot aerosols and their climate impact

    International Nuclear Information System (INIS)

    In this chapter, the authors estimate the climate impact from biomass burning due to both the direct radiative effects of smoke and the indirect effects on cloud albedo. They use the model of Walton et al. run in conjunction with the Lawrence Livermore National Laboratory version of the National Center for Atmospheric Research Community Climate Model 1 (NCAR CCM1). They describe the sources of aerosol particles from biomass burning as well as their soot content. After describing their model, they compare this latter quantity (or the predicted soot or black carbon concentration) to measured soot concentrations in the Southern Hemisphere. This provides a partial confirmation of their modeling procedures. Further confirmation of their predicted aerosol concentrations is also presented by comparing their predicted smoke optical depths with typical optical depths measured from satellites. Finally, the authors present the predicted change in outgoing solar radiation from biomass burning and summarize our estimate of the climate impact from biomass burning together with their conclusions

  3. Direct observation of aerosol particles in aged agricultural biomass burning plumes impacting urban atmospheres

    Directory of Open Access Journals (Sweden)

    W. Y. Li

    2010-04-01

    Full Text Available Emissions from agricultural biomass burning (ABB in northern China have a significant impact on the regional and the global climate. According to the Giovanni's Aerosol optical depth (AOD map, the monthly average AOD at 550 nm in northern China in 2007 shows a maximum value of 0.7 in June, suggesting that episodes of severe aerosol pollution occurred in this region. Aerosol particles were collected in urban Beijing during regional brown hazes from 12 to 30 June, 2007. Transmission electron microscopy with energy-dispersive X-ray spectrometry characterized the morphology, composition, and mixing state of aerosol particles. Potassium salts (K2SO4 and KNO3, ammonium sulfate, soot, and organic particles predominated in fine particles (diameter <1 μm collected from 12 to 20 June, 2007. In contrast, from 21 to 30 June, 2007, ammonium sulfate, soot, and organic particles were dominant. Potassium-dominant particles as a tracer of biomass burning, together with wildfire maps, show that intensive regional ABB in northern China from 10 to 20 June, 2007 contributed significantly to the regional haze. After long-range transport, ABB particles exhibited marked changes in their morphology, elemental composition, and mixing state. Heterogeneous reactions completely converted KCl particles from ABB into K2SO4 and KNO3. Soot particles were generally mixed with potassium salts, ammonium salts, and organic particles. In addition, the abundant aged organic particles and soluble salts emitted by ABB become more hygroscopic and increase their size during long-range transport, becoming in effect additional cloud condensation nuclei. The high AOD (average value at 2.2 during 12 to 20 June, 2007, in Beijing is partly explained by the hygroscopic growth of aged fine aerosol particles and by the strong absorption of internally mixed soot particles, both coming from regional ABB emissions.

  4. Absorption characteristics of aerosols over the northwestern region of India: Distinct seasonal signatures of biomass burning aerosols and mineral dust

    Science.gov (United States)

    Gogoi, Mukunda M.; Suresh Babu, S.; Krishna Moorthy, K.; Manoj, M. R.; Chaubey, Jai Prakash

    2013-07-01

    Continuous measurements of aerosol black carbon (BC) mass concentrations made over a period of 3 years from a semi-arid, near-coastal, remote and sparsely inhabited location along with satellite-based data of aerosol absorption index, optical depth and extinction profiles in western India are used to characterize the distinct nature of aerosols near the surface and in the free troposphere and their seasonality. Despite being far remote and sparsely inhabited, significant levels of BC are observed in the ambient during winter (1.45 ± 0.71 μg m-3) attributed to biomass burning aerosols, advected to the site from the north and west; while during summer the concentrations are far reduced (0.23 ± 0.11 μg m-3) and represent the apparent background concentrations. The spectral absorption coefficients suggest the BC during summer be mostly of fossil fuel combustions. The strong convective boundary layer dynamics produces significant diurnal variation during winter and modulates to a lesser extent the seasonal variation. Examination of aerosol (absorption) index from OMI data for the study period showed a seasonal pattern that is almost opposite to that seen at the surface; with high aerosol index in summer, showing a significant difference between the surface and columnar aerosol types in summer. MISR and MODIS-derived columnar AOD follow the OMI pattern. Analysis of the vertical profiles of aerosol extinction and volume depolarization ratio (VDR), derived from CALIPSO data indicates the presence of strong dust layers with VDR ˜ 0.3 in the altitude region 4-6 km, contributing to the high aerosol index in the OMI data, while the surface measurements show absorptive properties representing fossil fuel BC aerosols.

  5. Identification and estimation of the biomass burning contribution to Beijing aerosol using levoglucosan as a molecular marker

    International Nuclear Information System (INIS)

    Two series of size-selective aerosol samples, PM2.5 and PM10, were collected in Beijing from July 2002 to July 2003. The samples were analyzed for levoglucosan and related saccharidic compounds, organic and elemental carbon, and ionic species. Levoglucosan and related saccharidic compounds were mostly present in the fine size fraction. The contribution from biomass burning to the carbonaceous aerosol in Beijing was estimated; biomass burning was responsible for 18-38% of the PM2.5 organic carbon and for 14-32% of the PM10 organic carbon. The biomass burning marker levoglucosan was present all year round in Beijing. High levoglucosan concentrations in October and November were attributed to corn field burning and burning of fallen leaves, while the high level observed on 7 May 2003 was tracked back to a boreal forest fire more than 1000 km away in northeastern China. The biomass burning contribution to the Beijing aerosol is made up of two parts, a background component, which is due to biofuel burning all year round in the neighboring countryside households, and a superimposed component from seasonal crop burning events and wild fires. (authors)

  6. The biomass burning aerosol influence on precipitation over the Central Amazon: an observational study

    Directory of Open Access Journals (Sweden)

    W. A. Gonçalves

    2014-07-01

    Full Text Available Understanding the aerosol influence on clouds and precipitation is an important key to reduce uncertainties in simulations of climate change scenarios with regards to deforestation fires. Here, we associate rainfall characteristics obtained by an S-Band radar in the Amazon with in situ measurements of biomass burning aerosols for the entire year of 2009. The most important results were obtained during the dry semester (July–December. The results indicate that the aerosol influence on precipitating systems is modulated by the atmospheric instability degree. For stable atmospheres, the higher the aerosol concentration, the lower the precipitation over the region. On the other hand, for unstable cases, higher concentrations of particulate material are associated with more precipitation, elevated presence of ice and larger rain cells, which suggests an association with long lived systems. The results presented were statistically significant. However, due to the limitation imposed by the dataset used, some important features such as wet scavenging and droplet size distribution need further clarification. Regional climate model simulations in addition with new field campaigns could aggregate information to the aerosol/precipitation relationship.

  7. Mixing State and Aging of Biomass Burning Aerosols During the 2007 San Diego Wildfires

    Science.gov (United States)

    Zauscher, M. D.; Wang, Y.; Moore, M. J.; Gaston, C. J.; Prather, K. A.

    2011-12-01

    Biomass burning aerosols (BBA) significantly affect regional and global air quality, health and climate, yet their mixing state is not fully characterized. Specifically, aerosols from burning land dominated by chaparral shrubs, such as in Southern California, are less characterized than other BBA, although fires in this area have been increasing in frequency since 1980s. During the 2007 San Diego Wildfires the size-resolved chemistry of 100-400 nm single particles was determined in real-time with an ultra-fine aerosol time of flight mass spectrometer (UF-ATOFMS). BBA, identified by having a strong potassium peak and smaller carbonaceous markers present in the mass spectra, made up 84% of all particles measured between 10/22/07 and 11/1/07. Even though levoglucosan is known as a good biomass burning tracer, only 36% of all BBA in this study had this tracer present. Positive Matrix Factorization (PMF) analysis was utilized to group different BBA chemical markers, such as potassium salts, sulfate, ammonium, oxalate and levoglucosan. A spike in ammonium was observed with the increase in relative humidity on 10/25/07 and correlated with nitric acid and nitrate, indicating that the majority of ammonium was present as NH4NO3. The presence of different potassium salts were used to identify the age of BBA. K2Cl+, indicative of fresh BBA, was only seen at the beginning of the wildfires when the size mode of particles was ~potassium salts and the presence of secondary markers, such as sulfate and oxalate. In summary, we observed the evolution of BBA undergoing four distinct aging steps based on particle size and composition: slightly fresh, slightly aged, moderately aged and aged.

  8. Impact of anthropogenic emissions and open biomass burning on regional carbonaceous aerosols in South China

    International Nuclear Information System (INIS)

    Carbonaceous aerosols were studied at three background sites in south and southwest China. Hok Tsui in Hong Kong had the highest concentrations of carbonaceous aerosols (OC = 8.7 ± 4.5 μg/m3, EC = 2.5 ± 1.9 μg/m3) among the three sites, and Jianfeng Mountains in Hainan Island (OC = 5.8 ± 2.6 μg/m3, EC = 0.8 ± 0.4 μg/m3) and Tengchong mountain over the east edge of the Tibetan Plateau (OC = 4.8 ± 4.0 μg/m3, EC = 0.5 ± 0.4 μg/m3) showed similar concentration levels. Distinct seasonal patterns with higher concentrations during the winter, and lower concentrations during the summertime were observed, which may be caused by the changes of the regional emissions, and monsoon effects. The industrial and vehicular emissions in East, Southeast and South China, and the regional open biomass burning in the Indo-Myanmar region of Asia were probably the two major potential sources for carbonaceous matters in this region. - Anthropogenic emissions in China and open biomass burning in the Indo-Myanmar region were the two major potential sources for carbonaceous matters in South China region.

  9. Impact of anthropogenic emissions and open biomass burning on regional carbonaceous aerosols in South China

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Gan, E-mail: zhanggan@gig.ac.c [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Li Jun [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Li Xiangdong [Department of Civil and Structural Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Xu Yue; Guo Lingli [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Tang Jianhui [Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003 (China); Lee, Celine S.L. [Department of Civil and Structural Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Liu Xiang [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Chen Yingjun [Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003 (China)

    2010-11-15

    Carbonaceous aerosols were studied at three background sites in south and southwest China. Hok Tsui in Hong Kong had the highest concentrations of carbonaceous aerosols (OC = 8.7 {+-} 4.5 {mu}g/m{sup 3}, EC = 2.5 {+-} 1.9 {mu}g/m{sup 3}) among the three sites, and Jianfeng Mountains in Hainan Island (OC = 5.8 {+-} 2.6 {mu}g/m{sup 3}, EC = 0.8 {+-} 0.4 {mu}g/m{sup 3}) and Tengchong mountain over the east edge of the Tibetan Plateau (OC = 4.8 {+-} 4.0 {mu}g/m{sup 3}, EC = 0.5 {+-} 0.4 {mu}g/m{sup 3}) showed similar concentration levels. Distinct seasonal patterns with higher concentrations during the winter, and lower concentrations during the summertime were observed, which may be caused by the changes of the regional emissions, and monsoon effects. The industrial and vehicular emissions in East, Southeast and South China, and the regional open biomass burning in the Indo-Myanmar region of Asia were probably the two major potential sources for carbonaceous matters in this region. - Anthropogenic emissions in China and open biomass burning in the Indo-Myanmar region were the two major potential sources for carbonaceous matters in South China region.

  10. The evolution of biomass-burning aerosol size distributions due to coagulation: dependence on fire and meteorological details and parameterization

    Science.gov (United States)

    Sakamoto, Kimiko M.; Laing, James R.; Stevens, Robin G.; Jaffe, Daniel A.; Pierce, Jeffrey R.

    2016-06-01

    Biomass-burning aerosols have a significant effect on global and regional aerosol climate forcings. To model the magnitude of these effects accurately requires knowledge of the size distribution of the emitted and evolving aerosol particles. Current biomass-burning inventories do not include size distributions, and global and regional models generally assume a fixed size distribution from all biomass-burning emissions. However, biomass-burning size distributions evolve in the plume due to coagulation and net organic aerosol (OA) evaporation or formation, and the plume processes occur on spacial scales smaller than global/regional-model grid boxes. The extent of this size-distribution evolution is dependent on a variety of factors relating to the emission source and atmospheric conditions. Therefore, accurately accounting for biomass-burning aerosol size in global models requires an effective aerosol size distribution that accounts for this sub-grid evolution and can be derived from available emission-inventory and meteorological parameters. In this paper, we perform a detailed investigation of the effects of coagulation on the aerosol size distribution in biomass-burning plumes. We compare the effect of coagulation to that of OA evaporation and formation. We develop coagulation-only parameterizations for effective biomass-burning size distributions using the SAM-TOMAS large-eddy simulation plume model. For the most-sophisticated parameterization, we use the Gaussian Emulation Machine for Sensitivity Analysis (GEM-SA) to build a parameterization of the aged size distribution based on the SAM-TOMAS output and seven inputs: emission median dry diameter, emission distribution modal width, mass emissions flux, fire area, mean boundary-layer wind speed, plume mixing depth, and time/distance since emission. This parameterization was tested against an independent set of SAM-TOMAS simulations and yields R2 values of 0.83 and 0.89 for Dpm and modal width, respectively. The

  11. Effects of aerosol-radiation interaction on precipitation during biomass-burning season in East China

    Science.gov (United States)

    Huang, Xin; Ding, Aijun; Liu, Lixia; Liu, Qiang; Ding, Ke; Niu, Xiaorui; Nie, Wei; Xu, Zheng; Chi, Xuguang; Wang, Minghuai; Sun, Jianning; Guo, Weidong; Fu, Congbin

    2016-08-01

    Biomass burning is a main source for primary carbonaceous particles in the atmosphere and acts as a crucial factor that alters Earth's energy budget and balance. It is also an important factor influencing air quality, regional climate and sustainability in the domain of Pan-Eurasian Experiment (PEEX). During the exceptionally intense agricultural fire season in mid-June 2012, accompanied by rapidly deteriorating air quality, a series of meteorological anomalies was observed, including a large decline in near-surface air temperature, spatial shifts and changes in precipitation in Jiangsu province of East China. To explore the underlying processes that link air pollution to weather modification, we conducted a numerical study with parallel simulations using the fully coupled meteorology-chemistry model WRF-Chem with a high-resolution emission inventory for agricultural fires. Evaluation of the modeling results with available ground-based measurements and satellite retrievals showed that this model was able to reproduce the magnitude and spatial variations of fire-induced air pollution. During the biomass-burning event in mid-June 2012, intensive emission of absorbing aerosols trapped a considerable part of solar radiation in the atmosphere and reduced incident radiation reaching the surface on a regional scale, followed by lowered surface sensible and latent heat fluxes. The perturbed energy balance and re-allocation gave rise to substantial adjustments in vertical temperature stratification, namely surface cooling and upper-air heating. Furthermore, an intimate link between temperature profile and small-scale processes like turbulent mixing and entrainment led to distinct changes in precipitation. On the one hand, by stabilizing the atmosphere below and reducing the surface flux, black carbon-laden plumes tended to dissipate daytime cloud and suppress the convective precipitation over Nanjing. On the other hand, heating aloft increased upper-level convective

  12. Air quality impact and physicochemical aging of biomass burning aerosols during the 2007 San Diego wildfires.

    Science.gov (United States)

    Zauscher, Melanie D; Wang, Ying; Moore, Meagan J K; Gaston, Cassandra J; Prather, Kimberly A

    2013-07-16

    Intense wildfires burning >360000 acres in San Diego during October, 2007 provided a unique opportunity to study the impact of wildfires on local air quality and biomass burning aerosol (BBA) aging. The size-resolved mixing state of individual particles was measured in real-time with an aerosol time-of-flight mass spectrometer (ATOFMS) for 10 days after the fires commenced. Particle concentrations were high county-wide due to the wildfires; 84% of 120-400 nm particles by number were identified as BBA, with particles potassium salts heterogeneously reacting with inorganic acids was observed with continuous high temporal resolution for the first time. Ten distinct chemical types shown as BBA factors were identified through positive matrix factorization coupled to single particle analysis, including particles comprised of potassium chloride and organic nitrogen during the beginning of the wildfires, ammonium nitrate and amines after an increase of relative humidity, and sulfate dominated when the air mass back trajectories passed through the Los Angeles port region. Understanding BBA aging processes and quantifying the size-resolved mass and number concentrations are important in determining the overall impact of wildfires on air quality, health, and climate. PMID:23750590

  13. Temporal and spectral variation of desert dust and biomass burning aerosol scenes from 1995–2000 using GOME

    Directory of Open Access Journals (Sweden)

    I. Aben

    2006-02-01

    Full Text Available Global Ozone Monitoring Experiment (GOME Absorbing Aerosol Index (AAI and AAI-related residue data were used to investigate areas with UV-absorbing aerosols. Time series of regionally averaged residues show the seasonal variation and trends of aerosols and clouds in climatologically important parts of the globe. GOME spectra were used to study scenes containing specific types of aerosols. AAI data are specifically sensitive to biomass burning aerosols (BBA and desert dust aerosols (DDA. Areas where these aerosols are regularly found were analysed to find spectral fingerprints in the ultraviolet (UV, visible and near-infrared (near-IR, to establish an aerosol type classification of BBA and DDA. Spectral residues are different for BBA and DDA, but over deserts the surface albedo is dominant beyond the UV and spectral residues cannot be used over land. Over oceans, about half of the BBA scenes show a very high reflectance that is never observed for DDA scenes. However, in the case of low reflectance scenes BBA and DDA cannot be distinguished. This is in part due to the microphysical and optical properties of biomass burning aerosols, which are highly variable in time, making it difficult to specify them spectrally as one type. Because of their high hygroscopicity BBA are often found in the presence of clouds, which disturb the spectrum of the scenes. Desert dust aerosols are much less hygroscopic and behave spectrally more uniformly.

  14. Chemical characterisation of iron in dust and biomass burning aerosols during AMMA-SOP0/DABEX: implication for iron solubility

    Directory of Open Access Journals (Sweden)

    R. Paris

    2010-05-01

    Full Text Available The chemical composition and the soluble fraction were determined in aerosol samples collected during flights of AMMA-SOP0/DABEX campaign, which were conducted in the West African Sahel during dry season (2006. Two aerosol types are encountered in this period: dust particles (DUST and biomass burning aerosol (BB. Chemical analysis and microscope observations showed that the iron (Fe found in BB samples mainly originates from dust particles mostly internally mixed in the biomass burning layer. Chemical analyses of samples showed that the Fe solubility is lower in African dust samples than in biomass burning aerosols. Our data provide a first idea of the variability of iron dust solubility in the source region (0.1% and 3.4%. We found a relationship between iron solubility/clay content/source which partly confirms that the variability of iron solubility in this source region is related to the character and origin of the aerosols themselves. In the biomass burning samples, no relationship were found between Fe solubility and either the concentrations of acidic species (SO42−, NO3 or oxalate or the content of carbon (TC, OC, BC. Therefore, we were unable to determine what processes are involved in this increase of iron solubility. In terms of supply of soluble Fe to oceanic ecosystems on a global scale, the higher solubility observed for Fe in biomass burning could imply an indirect source of Fe to marine ecosystems. But these aerosols are probably not significant because the Sahara is easily the dominant source of Fe to the Atlantic Ocean.

  15. Weather and climate impacts of biomass burning aerosols during the dry season in Amazonia

    Science.gov (United States)

    Kolusu, Seshagirirao; Marsham, John; Spracklen, Dominic; Parker, Douglas; Dalvi, Mohit; Johnson, Ben; Mann, Graham

    2016-04-01

    Amazonia is a major global source of biomass burning aerosols (BBA) with impacts on weather and climate. BBA can be represented in weather models, with satellite-observed fires used to provide emissions fields, but such emissions normally require tuning to give realistic aerosol fields in models. Here, we investigate the two-way coupling between BBA and regional weather during the South American Biomass Burning Analysis (SAMBBA) field campaign, using both a set of short-range (2-day) forecasts and nested 20-day runs with the Met Office Unified Model (MetUM). Short-range forecasts with parametrised convection show that BBA exert an overall cooling influence on the Earth-atmosphere system, although some levels of the atmosphere are directly warmed by the absorption of solar radiation: BBA reduce the clear-sky net radiation at the surface by 15 ± 1 W m‑2 and reduces net top-of-atmosphere radiation by 8 ± 1 W m‑2, with a direct atmospheric warming of 7 ± 1 W m‑2. BBA-induced reductions in all-sky radiation are smaller in magnitude, but of the same sign. The differences in heating induced by BBA lead to a more anticyclonic circulation at 700 hPa. BBA cools the boundary layer, but warms air above, reducing the BL depth by around 19 m. Locally, on a 150 km scale, changes in precipitation reach around 4 mm day‑1 due to changes in the location of convection, with BBA leading to fewer rain events that are more intense, which may be linked to the BBA changing the vertical profile of stability in the lower atmosphere. The localised changes in rainfall tend to average out to give a 5 % (0.06 mm day‑1) decrease in total precipitation, but the change in regional water budget is dominated by decreased evapotranspiration from the reduced net surface fluxes (0.2 to 0.3 mm day‑1). The results show that although including BBA either prognostoically, or through a climatology, improves forecasts, but differences between the impacts of prognostic and climatological aerosol

  16. Airborne measurements of trace gas and aerosol particle emissions from biomass burning in Amazonia

    Directory of Open Access Journals (Sweden)

    P. Guyon

    2005-05-01

    Full Text Available As part of the LBA-SMOCC (Large-Scale Biosphere-Atmosphere Experiment in Amazonia – Smoke, Aerosols, Clouds, Rainfall, and Climate 2002 campaign, we studied the emission of carbon monoxide (CO, carbon dioxide (CO2, and aerosol particles from Amazonian deforestation fires using an instrumented aircraft. Emission ratios for aerosol number (CN relative to CO (ERCN/CO fell in the range 14–32 cm-3 ppb-1 for most of the time, in agreement with values usually found from tropical savanna fires. The number of particles emitted per amount biomass burned was found to be dependant on the fire condition (combustion efficiency. Variability in the ERCN/CO between fires was similar to the variability caused by variations in combustion behavior within each individual fire. This was confirmed by observations of CO-to-CO2 emission ratios (ERCO/CO2, which stretched across the same wide range of values for individual fires as for all the fires observed during the sampling campaign, indicating that flaming and smoldering phases are present simultaneously in deforestation fires. Emission factors (EF for CO and aerosol particles were computed and a correction was applied for the residual smoldering combustion (RSC fraction of emissions that are not sampled by the aircraft. The correction, previously unpublished for tropical deforestation fires, suggested an EF about one and a half to twice as large for these species. Vertical transport of biomass-burning plumes from the boundary layer (BL to the cloud detrainment layer (CDL and the free troposphere (FT was found to be a very common phenomenon. We observed a 20% loss in particle number as a result of this vertical transport and subsequent cloud processing, attributable to in-cloud coagulation. This small loss fraction suggests that this mode of transport is very efficient in terms of particle numbers and occurs mostly via non

  17. Influence of aerosols from biomass burning on the spectral analysis of Cherenkov telescopes

    CERN Document Server

    Reyes, R de los; Bernloehr, K; Krueger, P; Deil, C; Gast, H; Kosack, K; Marandon, V

    2013-01-01

    During the last decade, imaging atmospheric Cherenkov telescopes (IACTs) have proven themselves as astronomical detectors in the very-high-energy (VHE; E>0.1 TeV) regime. The IACT technique observes the VHE photons indirectly, using the Earth's atmosphere as a calorimeter. Much of the calibration of Cherenkov telescope experiments is done using Monte Carlo simulations of the air shower development, Cherenkov radiation and detector, assuming certain models for the atmospheric conditions. Any deviation of the real conditions during observations from the assumed atmospheric model will result in a wrong reconstruction of the primary gamma-ray energy and the resulting source spectra. During eight years of observations, the High Energy Stereoscopic System (H.E.S.S.) has experienced periodic natural as well as anthropogenic variations of the atmospheric transparency due to aerosols created by biomass burning. In order to identify data that have been taken under such long-term reductions in atmospheric transparency, ...

  18. Composition of Secondary Organic Aerosols Produced by Photo-Oxidation of Biomass Burning Emissions in a Smog Chamber

    Science.gov (United States)

    Desyaterik, Y.; Sullivan, A.; Hennigan, C. J.; Robinson, A. L.; Collett, J. L.

    2009-12-01

    Knowledge of the chemical composition of atmospheric organic aerosols (OA) is essential for accurate representation of OA in air quality and climate models. Both the sources of OA and their properties and effects remain poorly understood. In particular, we still know relatively little about the atmospheric formation of secondary organic aerosols (SOA). There is growing interest in the impact of biomass burning emissions on air quality, human health, and radiative forcing. Through a series of experiments, we are working to quantify changes in the chemical composition of wood smoke particles as a result of photochemical aging under well-controlled laboratory conditions. One specific objective of this study is to identify markers for biomass burning SOA and test whether these markers can be used in atmospheric samples to quantify SOA formation from aging of biomass burning emissions. We analyzed SOA generated in a smog chamber by photooxidation of smoke produced by burning oak wood. In order to initiate photochemistry, the chamber was irradiated with UV light. Aqueous extracts of collected aerosol samples were analyzed with Electrospray Ionization Time-of-Flight Mass Spectrometry. The high mass accuracy of these measurements reduces ambiguity in the assignment of elemental compositions for observed ions. Analysis has shown that primary oak smoke aerosol includes products of the thermal decomposition of cellulose (levoglucosan, cyclotene etc.) and lignin (guaiacol and syringol derivatives, mostly aldehydes and alcohols). After 2 hours of aging at typical summertime hydroxyl radical concentrations, the aerosol mass increased 2.5 fold due to the production of secondary organic aerosol. Mass spectra of the secondary organic aerosol formed are dominated by organic nitrates (nitrophenol, nitrocresol, nitrocatechol, and nitroguaiacol) and aromatic acids (benzoic acid, mono and di-hydroxybenzoic acid). Both nitrates and acids most likely are formed due to oxidation of the

  19. Light absorbing organic aerosols (brown carbon) over the tropical Indian Ocean: impact of biomass burning emissions

    International Nuclear Information System (INIS)

    The first field measurements of light absorbing water-soluble organic carbon (WSOC), referred as brown carbon (BrC), have been made in the marine atmospheric boundary layer (MABL) during the continental outflow to the Bay of Bengal (BoB) and the Arabian Sea (ARS). The absorption signal measured at 365 nm in aqueous extracts of aerosols shows a systematic linear increase with WSOC concentration, suggesting a significant contribution from BrC to the absorption properties of organic aerosols. The mass absorption coefficient (babs) of BrC shows an inverse hyperbolic relation with wavelength (from ∼300 to 700 nm), providing an estimate of the Angstrom exponent (αP, range: 3–19; Av: 9 ± 3). The mass absorption efficiency of brown carbon (σabs−BrC) in the MABL varies from 0.17 to 0.72 m2 g−1 (Av: 0.45 ± 0.14 m2 g−1). The αP and σabs−BrC over the BoB are quite similar to that studied from a sampling site in the Indo-Gangetic Plain (IGP), suggesting the dominant impact of organic aerosols associated with the continental outflow. A comparison of the mass absorption efficiency of BrC and elemental carbon (EC) brings to focus the significant role of light absorbing organic aerosols (from biomass burning emissions) in atmospheric radiative forcing over oceanic regions located downwind of the pollution sources. (letter)

  20. Transport of anthropogenic and biomass burning aerosols from Europe to the Arctic during spring 2008

    Directory of Open Access Journals (Sweden)

    L. Marelle

    2014-11-01

    Full Text Available During the POLARCAT-France airborne campaign in April 2008, pollution originating from anthropogenic and biomass burning emissions was measured in the European Arctic. We compare these aircraft measurements with simulations using the WRF-Chem model to investigate model representation of aerosols transported from Europe to the Arctic. Modeled PM2.5 is evaluated using EMEP measurements in source regions and POLARCAT aircraft measurements in the Scandinavian Arctic, showing a good agreement, although the model overestimates nitrate and underestimates organic carbon in source regions. Using WRF-Chem in combination with the Lagrangian model FLEXPART-WRF, we find that during the campaign the research aircraft sampled two different types of European plumes: mixed anthropogenic and fire plumes from eastern Europe and Russia transported below 2 km, and anthropogenic plumes from central Europe uplifted by warm conveyor belt circulations to 5–6 km. Both modeled plume types had significant wet scavenging (> 50% PM10 during transport. Modeled aerosol vertical distributions and optical properties below the aircraft are evaluated in the Arctic using airborne LIDAR measurements. Evaluating the regional impacts in the Arctic of this event in terms of aerosol vertical structure, we find that during the 4 day presence of these aerosols in the lower European Arctic (2.5, modeled black carbon and SO4= concentrations are more enhanced near the surface. The European plumes sampled during POLARCAT-France were transported over the region of springtime snow cover in Northern Scandinavia, where they had a significant local atmospheric warming effect. We find that, during this transport event, the average modeled top of atmosphere (TOA shortwave direct and semi-direct radiative effect (DSRE north of 60° N over snow and ice-covered surfaces reaches +0.58 W m−2, peaking at +3.3 W m−2 at noon over Scandinavia and Finland.

  1. Modelling the impact of biomass burning on atmospheric aerosol and greenhouse gas abundances

    International Nuclear Information System (INIS)

    Full text: Biomass burning (BB) emissions contribute significantly to the atmospheric composition in the domains of global green-house and reactive gases and frequently dominate aerosols and regional air quality. Due to its high variability on all time scales from hours to years, these emissions can often not be described with static inventories, but need to be derived from satellite-based fire observations of each individual situation. The global GEMS systems use several versions of the BB emission inventory GFEDv2 as baseline. In addition, a dedicated fire assimilation systems based on the Fire Radiative Power (FRP) from SEVIRI, which EUMETSAT is currently developing, has been implemented for the aerosol and greenhouse gas in the African and Southern European domain. By comparing different model and assimilation runs, we show that BB emission input is significant for both types of runs in the aerosol and greenhouse gas monitoring systems. A temporal resolution of the BB emissions of about a week appears sufficient for the greenhouse gas monitoring in GEMs, while the aerosol monitoring requires a temporal resolution of hours. The latter requirement can be generalized for reactive gases and regional air quality. A case study of the forest fires ravaging Greece in August 2008 demonstrates the capability of real-time monitoring and forecasting of large fire plumes in the future GMES atmospheric service. Complementary developments of fire assimilation systems based on observations by further fire observation from geostationary and polar orbiting platforms indicate a the development path to a truly global and real-time fire assimilation system. (author)

  2. Impact of springtime biomass-burning aerosols on radiative forcing over northern Thailand during the 7SEAS campaign

    Science.gov (United States)

    Pani, Shantanu Kumar; Wang, Sheng-Hsiang; Lin, Neng-Huei; Lee, Chung-Te; Tsay, Si-Chee; Holben, Brent; Janjai, Serm; Hsiao, Ta-Chih; Chuang, Ming-Tung; Chantara, Somporn

    2016-04-01

    Biomass-burning (BB) aerosols are the significant contributor to the regional/global aerosol loading and radiation budgets. BB aerosols affect the radiation budget of the earth and atmosphere by scattering and absorbing directly the incoming solar and outgoing terrestrial radiation. These aerosols can exert either cooling or warming effect on climate, depending on the balance between scattering and absorption. BB activities in the form of wildland forest fires and agricultural crop burning are very pronounced in the Indochina peninsular regions in Southeast Asia mainly in spring (late February to April) season. The region of interest includes Doi Ang Khang (19.93° N, 99.05° E, 1536 msl) in northern Thailand, as part of the Seven South East Asian Studies (7-SEAS)/BASELInE (Biomass-burning Aerosols & Stratocumulus Environment: Lifecycles & Interactions Experiment) campaign in 2013. In this study, for the first time, the direct aerosol radiative effects of BB aerosols over near-source BB emissions, during the peak loading spring season, in northern Indochina were investigated by using ground-based physical, chemical, and optical properties of aerosols as well as the aerosol optical and radiative transfer models. Information on aerosol parameters in the field campaign was used in the OPAC (Optical Properties of Aerosols and Clouds) model to estimate various optical properties corresponding to aerosol compositions. Clear-sky shortwave direct aerosol radiative effects were further estimated with a raditive transfer model SBDART (Santa Barbara DISORT Atmospheric Radiative Transfer). The columnar aerosol optical depth (AOD500) was found to be ranged from 0.26 to 1.13 (with the mean value 0.71 ± 0.24). Fine-mode (fine mode fraction ≈0.98, angstrom exponent ≈1.8) and significantly absorbing aerosols (columnar single-scattering albedo ≈0.89, asymmetry-parameter ≈0.67 at 441 nm wavelength) dominated in this region. Water soluble and black carbon (BC) aerosols mainly

  3. Optical and microphysical properties of mineral dust and biomass burning aerosol observed over Warsaw on 10th July 2013

    Science.gov (United States)

    Janicka, Lucja; Stachlewska, Iwona; Veselovskii, Igor; Baars, Holger

    2016-04-01

    Biomass burning aerosol originating from Canadian forest fires was widely observed over Europe in July 2013. Favorable weather conditions caused long-term westward flow of smoke from Canada to Western and Central Europe. During this period, PollyXT lidar of the University of Warsaw took wavelength dependent measurements in Warsaw. On July 10th short event of simultaneous advection of Canadian smoke and Saharan dust was observed at different altitudes over Warsaw. Different origination of both air masses was indicated by backward trajectories from HYSPLIT model. Lidar measurements performed with various wavelength (1064, 532, 355 nm), using also Raman and depolarization channels for VIS and UV allowed for distinguishing physical differences of this two types of aerosols. Optical properties acted as input for retrieval of microphysical properties. Comparisons of microphysical and optical properties of biomass burning aerosols and mineral dust observed will be presented.

  4. Impacts of Amazonia biomass burning aerosols assessed from short-range weather forecasts

    Directory of Open Access Journals (Sweden)

    S. R. Kolusu

    2015-11-01

    Full Text Available The direct radiative impacts of biomass burning aerosols (BBA on meteorology are investigated using short-range forecasts from the Met Office Unified Model (MetUM over South America during the South American Biomass Burning Analysis (SAMBBA. The impacts are evaluated using a set of three simulations: (i no aerosols, (ii with monthly mean aerosol climatologies and (iii with prognostic aerosols modelled using the Coupled Large-scale Aerosol Simulator for Studies In Climate (CLASSIC scheme. Comparison with observations show that the prognostic CLASSIC scheme provides the best representation of BBA. The impacts of BBA are quantified over central and southern Amazonia from the first and second day of 2-day forecasts during 14 September–3 October 2012. On average, during the first day of the forecast, including prognostic BBA reduces the clear-sky net radiation at the surface by 15 ± 1 W m−2 and reduces net top-of-atmosphere (TOA radiation by 8 ± 1 W m−2, with a direct atmospheric warming of 7 ± 1 W m−2. BBA-induced reductions in all-sky radiation are smaller in magnitude: 9.0 ± 1 W m−2 at the surface and 4.0 ± 1 W m−2 at TOA. In this modelling study the BBA therefore exert an overall cooling influence on the Earth–atmosphere system, although some levels of the atmosphere are directly warmed by the absorption of solar radiation. Due to the reduction of net radiative flux at the surface, the mean 2 m air temperature is reduced by around 0.1 ± 0.02 °C. The BBA also cools the boundary layer (BL but warms air above by around 0.2 °C due to the absorption of shortwave radiation. The overall impact is to reduce the BL depth by around 19 ± 8 m. These differences in heating lead to a more anticyclonic circulation at 700 hPa, with winds changing by around 0.6 m s−1. Inclusion of climatological or prognostic BBA in the MetUM makes a small but significant improvement in forecasts of temperature and relative humidity, but improvements were

  5. A multi-decadal history of biomass burning plume heights identified using aerosol index measurements

    Directory of Open Access Journals (Sweden)

    H. Guan

    2010-07-01

    Full Text Available We have quantified the relationship between Aerosol Index (AI measurements and plume height for young biomass burning plumes using coincident Ozone Monitoring Instrument (OMI and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO measurements. This linear relationship allows the determination of high-altitude plumes wherever AI data are available, and it provides a data set for validating global fire plume heights in chemistry transport models. We find that all plumes detected from June 2006 to February 2009 with an AI value ≥9 are located at altitudes higher than 5 km. Older high-altitude plumes have lower AI values than young plumes at similar altitudes. We have examined available AI data from the OMI and TOMS instruments (1978–2009 and find that large AI plumes occur more frequently over North America than over Australia or Russia/Northeast Asia. According to the derived relationship, during this time interval, 181 plumes, in various stages of their evolution, reached altitudes above 8 km.

  6. Historical estimation of carbonaceous aerosol emissions from biomass open burning in China for the period 1990-2005

    International Nuclear Information System (INIS)

    Multi-year inventories of carbonaceous aerosol emissions from biomass open burning at a high spatial resolution of 0.5o x 0.5o have been constructed in China using GIS methodology for the period 1990-2005. Black carbon (BC) emissions have increased by 383.03% at an annual average rate of 25.54% from 14.05 Gg in 1990 to 67.87 Gg in 2005; while organic carbon (OC) emissions have increased by 365.43% from 57.37 Gg in 1990 to 267.00 Gg in 2005. Through the estimation period, OC/BC ratio for biomass burning was averagely 4.09, suggesting that it was not the preferred control source from a climatic perspective. Spatial distribution of BC and OC emissions were similar, mainly concentrated in three northeastern provinces, central provinces of Shandong, Jiangsu, Anhui and Henan, and southern provinces of Guangxi, Guangdong, Hunan and Sichuan basin, covering 24.89% of China's territory, but were responsible for 63.38% and 67.55% of national BC and OC emissions, respectively. - Highlights: → Multi-year carbonaceous aerosol emission inventory of biomass burning is established. → Spatial distribution of carbonaceous aerosol emissions is determined. → Black carbon emissions have increased by 383.03% from 1990 to 2005. → Organic carbon emissions have increased by 365.43% from 1990 to 2005. → OC/BC ratio for biomass burning was averagely 4.09 for the period 1990-2005. - Chinese multi-year carbonaceous aerosol emission inventories from biomass open burning were established for the period of 1990-2005 for the first time.

  7. Dependence of Heterogeneous OH Kinetics with Biomass Burning Aerosol Proxies on Oxidant Concentration and Relative Humidity

    Science.gov (United States)

    Slade, J. H.; Knopf, D. A.

    2013-12-01

    Chemical transformations of aerosol particles by heterogeneous reactions with trace gases such as OH radicals can influence particle physicochemical properties and lifetime, affect cloud formation, light scattering, and human health. Furthermore, OH oxidation can result in degradation of particle mass by volatilization reactions, altering the budget of volatile organic compounds (VOCs). However, the reactive uptake coefficient (γ) and particle oxidation degree can vary depending on several factors including oxidant concentration and relative humidity (RH). While RH can influence the extent of dissociation/ionization, it can also affect particle phase and thus oxidant diffusivity. Only one study so far has investigated the effect of RH on the rate of OH uptake to organic surfaces; however, the underlying processes affecting OH reactivity with organic aerosol under humidified conditions still remains elusive. Here, we determine the effect of RH on OH reactivity with laboratory-generated biomass burning aerosol (BBA) surrogate particles: levoglucosan and 4-methyl-5-nitrocatechol. The effect of OH concentration on γ for three common BBA molecular markers (levoglucosan, abietic acid, and nitroguaiacol) under dry conditions was investigated from [OH]≈107-1011 molecule cm-3, covering both [OH] in biomass burning plumes and [OH] commonly used in particle aging studies. Furthermore, key VOC reaction products and their production pathways resulting from BBA volatilization by OH were identified. OH radicals are produced using a microwave induced plasma (MIP) of H2 in He or Ar followed by reaction with O2, or by photolysis of O3 in the presence of H2O. A cylindrical rotating wall flow-tube reactor and fast-flow aerosol flow reactor are used for conducting kinetic studies. OH is detected using a Chemical Ionization Mass Spectrometer (CIMS) and a Proton Transfer Reaction Time-of-Flight Mass Spectrometer (PTR-ToF-MS) is employed for VOC analysis. γ decreases from 0.2-0.5 at

  8. Characterization of high-resolution aerosol mass spectra of primary organic aerosol emissions from Chinese cooking and biomass burning

    Directory of Open Access Journals (Sweden)

    L.-Y. He

    2010-09-01

    Full Text Available Aerosol Mass Spectrometer (AMS has proved to be a powerful tool to measure submicron particulate composition with high time resolution. Factor analysis of mass spectra (MS collected worldwide by AMS demonstrates that submicron organic aerosol (OA is usually composed of several major components, such as oxygenated (OOA, hydrocarbon-like (HOA, biomass burning (BBOA, and other primary OA. In order to help interpretation of component MS from factor analysis of ambient OA datasets, AMS measurement of different primary sources is required for comparison. Such work, however, has been very scarce in the literature, especially for high resolution MS (HR-MS measurement, which performs improved characterization by separating the ions of different elemental compositions at each m/z in comparison with unit mass resolution MS (UMR-MS measurement. In this study, primary emissions from four types of Chinese cooking (CC and six types of biomass burning (BB were simulated systemically and measured using an Aerodyne High-Resolution Time-of-Flight AMS (HR-ToF-AMS. The MS of the CC emissions show high similarity with m/z 41 and m/z 55 being the highest signals; the MS of the BB emissions also show high similarity with m/z 29 and m/z 43 being the highest signals. The MS difference between the CC and BB emissions is much bigger than that between different CC (or BB types, especially for the HR-MS. The O/C ratio of OA ranges from 0.08 to 0.13 for the CC emissions while from 0.18 to 0.26 for the BB emissions. The ions of m/z 43, m/z 44, m/z 57, and m/z 60, usually used as tracer ions in AMS measurement, were examined for their HR-MS characteristics in the CC and BB emissions. Moreover, the MS of the CC and BB emissions are also used to compare with component MS from factor analysis of ambient OA datasets observed in China, as well as with other AMS measurements of primary sources in the literature. The MS

  9. CCN activation and efficiency of nucleation and impaction removal process of biomass burning aerosols in Brazil: preliminary results.

    Science.gov (United States)

    Sánchez Gácita, Madeleine; Longo, Karla M.; Freitas, Saulo R.; Martin, Scot T.

    2015-04-01

    The biomass burning activity constitutes an important source of aerosols and trace gases to the atmosphere globally. In South America, during the dry season, aerosols prevenient from biomass burning are typically transported to long distances from its sources before being removed though contributing significantly to the aerosol budget on a continental scale. The uncertainties in the magnitude of the impacts on the hydrological cycle, the radiation budget and the biogeochemical cycles on a continental scale are still noteworthy. The still unknowns on the efficiency of biomass burning aerosol to act as cloud condensation nuclei (CCN) and the effectiveness of the nucleation and impaction scavenging mechanisms in removing them from the atmosphere contribute to such uncertainties. In the present work, the explicit modelling of the early stages of cloud development using a parcel model for the typical conditions of the dry season and dry-to-wet transition periods in Amazonia allowed an estimation of the efficiency of nucleation scavenging process and the ability of South American biomass burning aerosol to act as CCN. Additionally, the impaction scavenging was simulated for the same aerosol population following a method based on the widely used concept of the efficiency of collision between a raindrop and an aerosol particle. DMPS and H-TDMA data available in the literature for biomass burning aerosol population in the region indicated the presence of a nearly hydrophobic fraction (on average, with specific hygroscopic parameter κ=0.04, and relative abundance of 73 %) and nearly hygroscopic fraction (κ=0.13, 27 %), externally mixed. The hygroscopic parameters and relative abundances of each hygroscopic group, as well as the weighted average specific hygroscopic parameter for the entire population κ=0.06, were used in calculations of aerosol activation and population mass and number concentration scavenged by nucleation. Results from both groups of simulations are

  10. Secondary organic aerosol formation and primary organic aerosol oxidation from biomass-burning smoke in a flow reactor during FLAME-3

    OpenAIRE

    A. M. Ortega; Day, D. A.; M. J. Cubison; Brune, W. H.; D. Bon; J. A. de Gouw; Jimenez, J. L.

    2013-01-01

    We report the physical and chemical effects of photochemically aging dilute biomass-burning smoke. A "potential aerosol mass" (PAM) flow reactor was used with analysis by a high-resolution aerosol mass spectrometer and a proton-transfer-reaction ion-trap mass spectrometer during the FLAME-3 campaign. Hydroxyl (OH) radical concentrations in the reactor reached up to ~1000 times average tropospheric levels, producing effective OH exposures equivalent to up to 5 days of aging i...

  11. Airborne measurements of trace gas and aerosol particle emissions from biomass burning in Amazonia

    Directory of Open Access Journals (Sweden)

    P. Guyon

    2005-01-01

    Full Text Available As part of the LBA-SMOCC (Large-Scale Biosphere-Atmosphere Experiment in Amazonia - Smoke, Aerosols, Clouds, Rainfall, and Climate 2002 campaign, we studied the emission of carbon monoxide (CO, carbon dioxide (CO2, and aerosol particles from Amazonian deforestation fires using an instrumented aircraft. Emission ratios for aerosol number (CN relative to CO (ERCN/CO fell in the range 14-32 cm-3 ppb-1 in most of the investigated smoke plumes. Particle number emission ratios have to our knowledge not been previously measured in tropical deforestation fires, but our results are in agreement with values usually found from tropical savanna fires. The number of particles emitted per amount biomass burned was found to be dependent on the fire conditions (combustion efficiency. Variability in ERCN/CO between fires was similar to the variability caused by variations in combustion behavior within each individual fire. This was confirmed by observations of CO-to-CO2 emission ratios (ERCO/CO2, which stretched across the same wide range of values for individual fires as for all the fires observed during the sampling campaign, reflecting the fact that flaming and smoldering phases are present simultaneously in deforestation fires. Emission factors (EF for CO and aerosol particles were computed and a correction was applied for the residual smoldering combustion (RSC fraction of emissions that are not sampled by the aircraft, which increased the EF by a factor of 1.5-2.1. Vertical transport of smoke from the boundary layer (BL to the cloud detrainment layer (CDL and the free troposphere (FT was found to be a very common phenomenon. We observed a 20% loss in particle number as a result of this vertical transport and subsequent cloud processing, attributable to in-cloud coagulation. This small loss fraction suggests that this mode of transport is very efficient in terms of particle numbers and occurs mostly via non-precipitating clouds. The detrained aerosol

  12. Impacts of Amazonia biomass burning aerosols assessed from short-range weather forecasts

    Directory of Open Access Journals (Sweden)

    S. R. Kolusu

    2015-07-01

    Full Text Available The direct radiative impacts of Biomass Burning Aerosols (BBA on meteorology are investigated using short-range forecasts from the Met Office Unified Model (MetUM over South America during the South American Biomass Burning Analysis (SAMBBA. The impacts are evaluated using a set of three simulations: (i no aerosols, (ii with monthly mean aerosol climatologies and (iii with prognostic aerosols modelled using the Coupled Large-scale Aerosol Simulator for Studies in Climate (CLASSIC scheme. Comparison with observations show that the prognostic CLASSIC scheme provides the best representation of BBA. The impacts of BBA are quantified over central and southern Amazonia from the first and second day of two day forecasts during 14 September–03 October 2012. On average, during the first day of the forecast, including prognostic BBA reduces the clear-sky net radiation at the surface by 15 ± 1 W m−2, and reduces net TOA radiation by 8 ± 1 W m−2, with a direct atmospheric warming of 7 ± 1 W m−2. BBA-induced reductions in all-sky radiation are smaller in magnitude: 9.0 ± 1 W m−2 at the surface and 4.0 ± 1 W m−2 at TOA. In this modelling study the BBA therefore exert an overall cooling influence on the Earth–atmosphere system, although some levels of the atmosphere are directly warmed by the absorption of solar radiation. Due to the reduction of net radiative flux at the surface the mean 2 m air temperature is reduced by around 0.1 ± 0.02 °C. The BBA also cools the boundary layer (BL but warms air above by around 0.2 °C due to the absorption of shortwave radiation. The overall impact is to reduce the BL depth by around 19 ± 8 m. These differences in heating lead to a more anticyclonic circulation at 700 hPa, with winds changing by around 0.6 m s−1. Inclusion of BBA in the MetUM significantly improves forecasts of temperature and relative humidity, but effects were small compared with model error and differences between effects from

  13. Aerosols from biomass combustion

    Energy Technology Data Exchange (ETDEWEB)

    Nussbaumer, T.

    2001-07-01

    This report is the proceedings of a seminar on biomass combustion and aerosol production organised jointly by the International Energy Agency's (IEA) Task 32 on bio energy and the Swiss Federal Office of Energy (SFOE). This collection of 16 papers discusses the production of aerosols and fine particles by the burning of biomass and their effects. Expert knowledge on the environmental impact of aerosols, formation mechanisms, measurement technologies, methods of analysis and measures to be taken to reduce such emissions is presented. The seminar, visited by 50 participants from 11 countries, shows, according to the authors, that the reduction of aerosol emissions resulting from biomass combustion will remain a challenge for the future.

  14. Effects of aging on organic aerosol from open biomass burning smoke in aircraft and lab studies

    Directory of Open Access Journals (Sweden)

    M. J. Cubison

    2011-04-01

    Full Text Available Biomass burning (BB is a large source of primary and secondary organic aerosols (POA and SOA. This study addresses the physical and chemical evolution of BB organic aerosols. Firstly, the evolution and lifetime of BB POA and SOA signatures observed with the Aerodyne Aerosol Mass Spectrometer are investigated, focusing on measurements at high-latitudes acquired during the 2008 NASA ARCTAS mission, in comparison to data from other field studies and from laboratory aging experiments. The parameter f60, the ratio of the integrated signal at m/z 60 to the total signal in the organic component mass spectrum, is used as a marker to study the rate of oxidation and fate of the BB POA. A background level of f60~0.3% ±0.06% for SOA-dominated ambient OA is shown to be an appropriate background level for this tracer. Using also f44 as a tracer for SOA and aged POA, a novel graphical method is presented to characterise the aging of BB plumes. Similar trends of decreasing f60 and increasing f44 with aging are observed in most field and lab studies. At least some very aged BB plumes retain a clear f60 signature. A statistically significant difference in f60 between highly-oxygenated OA of BB and non-BB origin is observed using this tracer, consistent with a substantial contribution of BBOA to the springtime Arctic aerosol burden in 2008. Secondly, a summary is presented of results on the net enhancement of OA with aging of BB plumes, which shows large variability. The estimates of net OA gain range from ΔOA/ΔCO(mass =−0.01 to ~0.07, with a mean ΔOA/POA ~25%. With these ratios and global inventories of BB CO and POA a global net OA source due to aging of BB plumes of ~9 Tg OA yr−1 is estimated, of the order of 5% of recent total OA source estimates. Further field data following BB plume advection should be a

  15. Effects of aging on organic aerosol from open biomass burning smoke in aircraft and laboratory studies

    Directory of Open Access Journals (Sweden)

    M. J. Cubison

    2011-12-01

    Full Text Available Biomass burning (BB is a large source of primary and secondary organic aerosols (POA and SOA. This study addresses the physical and chemical evolution of BB organic aerosols. Firstly, the evolution and lifetime of BB POA and SOA signatures observed with the Aerodyne Aerosol Mass Spectrometer are investigated, focusing on measurements at high-latitudes acquired during the 2008 NASA ARCTAS mission, in comparison to data from other field studies and from laboratory aging experiments. The parameter f60, the ratio of the integrated signal at m/z 60 to the total signal in the organic component mass spectrum, is used as a marker to study the rate of oxidation and fate of the BB POA. A background level of f60~0.3% ± 0.06% for SOA-dominated ambient OA is shown to be an appropriate background level for this tracer. Using also f44 as a tracer for SOA and aged POA and a surrogate of organic O:C, a novel graphical method is presented to characterise the aging of BB plumes. Similar trends of decreasing f60 and increasing f44 with aging are observed in most field and lab studies. At least some very aged BB plumes retain a clear f60 signature. A statistically significant difference in f60 between highly-oxygenated OA of BB and non-BB origin is observed using this tracer, consistent with a substantial contribution of BBOA to the springtime Arctic aerosol burden in 2008. Secondly, a summary is presented of results on the net enhancement of OA with aging of BB plumes, which shows large variability. The estimates of net OA gain range from ΔOA/ΔCO(mass = −0.01 to ~0.05, with a mean ΔOA/POA ~19%. With these ratios and global inventories of BB CO and POA a global net OA source due to aging of BB plumes of ~8 ± 7 Tg OA yr−1 is estimated, of the order of 5 % of recent total OA source estimates. Further field data

  16. Molecular characterization of urban organic aerosol in tropical India: contributions of biomass/biofuel burning, plastic burning, and fossil fuel combustion

    Directory of Open Access Journals (Sweden)

    P. Q. Fu

    2009-10-01

    Full Text Available Organic molecular composition of PM10 samples, collected at Chennai in tropical India, was studied using capillary gas chromatography/mass spectrometry. Twelve organic compound classes were detected in the aerosols, including aliphatic lipids, sugar compounds, lignin products, terpenoid biomarkers, sterols, aromatic acids, phthalates, hopanes, and polycyclic aromatic hydrocarbons (PAHs. At daytime, phthalates was found to be the most abundant compound class; while at nighttime, fatty acids was the dominant one. Concentrations of total quantified organics were higher in summer (611–3268 ng m−3, average 1586 ng m−3 than in winter (362–2381 ng m−3, 1136 ng m−3, accounting for 11.5±1.93% and 9.35±1.77% of organic carbon mass in summer and winter, respectively. Di-(2-ethylhexyl phthalate, C16 fatty acid, and levoglucosan were identified as the most abundant single compounds. The nighttime maxima of most organics in the aerosols indicate a land/sea breeze effect in tropical India, although some other factors such as local emissions and long-range transport may also influence the composition of organic aerosols. The abundances of anhydrosugars (e.g., levoglucosan, lignin and resin products, hopanes and PAHs in the Chennai aerosols suggest that biomass burning and fossil fuel combustion are significant sources of organic aerosols in tropical India. Interestingly, terephthalic acid was maximized at nighttime, which is different from those of phthalic and isophthalic acids. A positive correlation was found between the concentration of 1,3,5-triphenylbenzene (a tracer for plastic burning and terephthalic acid, suggesting that field burning of municipal solid wastes including plastics is a significant source of terephthalic acid. This study demonstrates that, in addition to biomass burning and fossil fuel combustion, the open-burning of plastics also contributes to the organic

  17. Molecular characterization of urban organic aerosol in tropical India: contributions of biomass/biofuel burning, plastic burning, and fossil fuel combustion

    Science.gov (United States)

    Fu, P. Q.; Kawamura, K.; Pavuluri, C. M.; Swaminathan, T.

    2009-10-01

    Organic molecular composition of PM10 samples, collected at Chennai in tropical India, was studied using capillary gas chromatography/mass spectrometry. Twelve organic compound classes were detected in the aerosols, including aliphatic lipids, sugar compounds, lignin products, terpenoid biomarkers, sterols, aromatic acids, phthalates, hopanes, and polycyclic aromatic hydrocarbons (PAHs). At daytime, phthalates was found to be the most abundant compound class; while at nighttime, fatty acids was the dominant one. Concentrations of total quantified organics were higher in summer (611-3268 ng m-3, average 1586 ng m-3) than in winter (362-2381 ng m-3, 1136 ng m-3), accounting for 11.5±1.93% and 9.35±1.77% of organic carbon mass in summer and winter, respectively. Di-(2-ethylhexyl) phthalate, C16 fatty acid, and levoglucosan were identified as the most abundant single compounds. The nighttime maxima of most organics in the aerosols indicate a land/sea breeze effect in tropical India, although some other factors such as local emissions and long-range transport may also influence the composition of organic aerosols. The abundances of anhydrosugars (e.g., levoglucosan), lignin and resin products, hopanes and PAHs in the Chennai aerosols suggest that biomass burning and fossil fuel combustion are significant sources of organic aerosols in tropical India. Interestingly, terephthalic acid was maximized at nighttime, which is different from those of phthalic and isophthalic acids. A positive correlation was found between the concentration of 1,3,5-triphenylbenzene (a tracer for plastic burning) and terephthalic acid, suggesting that field burning of municipal solid wastes including plastics is a significant source of terephthalic acid. This study demonstrates that, in addition to biomass burning and fossil fuel combustion, the open-burning of plastics also contributes to the organic aerosols in South Asia.

  18. Evolution of biomass burning aerosol over the Amazon: airborne measurements of aerosol chemical composition, microphysical properties, mixing state and optical properties during SAMBBA

    Science.gov (United States)

    Morgan, W.; Allan, J. D.; Flynn, M.; Darbyshire, E.; Hodgson, A.; Liu, D.; O'Shea, S.; Bauguitte, S.; Szpek, K.; Johnson, B.; Haywood, J.; Longo, K.; Artaxo, P.; Coe, H.

    2013-12-01

    Biomass burning represents one of the largest sources of particulate matter to the atmosphere, resulting in a significant perturbation to the Earth's radiative balance coupled with serious impacts on public health. On regional scales, the impacts are substantial, particularly in areas such as the Amazon Basin where large, intense and frequent burning occurs on an annual basis for several months. Absorption by atmospheric aerosols is underestimated by models over South America, which points to significant uncertainties relating to Black Carbon (BC) aerosol properties. Initial results from the South American Biomass Burning Analysis (SAMBBA) field experiment, which took place during September and October 2012 over Brazil on-board the UK Facility for Airborne Atmospheric Measurement (FAAM) BAe-146 research aircraft, are presented here. Aerosol chemical composition was measured by an Aerodyne Aerosol Mass Spectrometer (AMS) and a DMT Single Particle Soot Photometer (SP2). The physical, chemical and optical properties of the aerosols across the region will be characterized in order to establish the impact of biomass burning on regional air quality, weather and climate. The aircraft sampled a range of conditions including sampling of pristine Rainforest, fresh biomass burning plumes, regional haze and elevated biomass burning layers within the free troposphere. The aircraft sampled biomass burning aerosol across the southern Amazon in the states of Rondonia and Mato Grosso, as well as in a Cerrado (Savannah-like) region in Tocantins state. This presented a range of fire conditions, in terms of their number, intensity, vegetation-type and their combustion efficiencies. Near-source sampling of fires in Rainforest environments suggested that smouldering combustion dominated, while flaming combustion dominated in the Cerrado. This led to significant differences in aerosol chemical composition, particularly in terms of the BC content, with BC being enhanced in the Cerrado

  19. A multi-decadal history of biomass burning plume heights identified using aerosol index measurements

    Directory of Open Access Journals (Sweden)

    H. Guan

    2010-01-01

    Full Text Available We have quantified the relationship between Aerosol Index (AI measurements and plume height for young biomass burning plumes using coincident OMI and CALIPSO measurements. This linear relationship allows the determination of high-altitude plumes wherever AI data are available, and it provides a data set for validating global fire plume injection heights in chemistry transport models. We find that all plumes detected from June 2006 to February 2009 with an AI value ≥9 are located at altitudes higher than 5 km. Older high-altitude plumes have lower AI values than young plumes at similar altitudes. We have examined available AI data from the OMI and TOMS instruments (1978–2009 and find that large AI plumes occur more frequently over North America than over Australia or Russia/Northeast Asia. According to the derived relationship, during this time interval, 181 plumes reached altitudes above 8 km. One hundred and thirty-two had injection heights ≥8 km but below 12 km, and 49 were lofted to 12 km or higher, including 14 plumes injected above 16 km.

  20. Biomass burning influences on atmospheric composition: A case study to assess the impact of aerosol data assimilation

    Science.gov (United States)

    Keslake, Tim; Chipperfield, Martyn; Mann, Graham; Flemming, Johannes; Remy, Sam; Dhomse, Sandip; Morgan, Will

    2016-04-01

    The C-IFS (Composition Integrated Forecast System) developed under the MACC series of projects and to be continued under the Copernicus Atmospheric Monitoring System, provides global operational forecasts and re-analyses of atmospheric composition at high spatial resolution (T255, ~80km). Currently there are 2 aerosol schemes implemented within C-IFS, a mass-based scheme with externally mixed particle types and an aerosol microphysics scheme (GLOMAP-mode). The simpler mass-based scheme is the current operational system, also used in the existing system to assimilate satellite measurements of aerosol optical depth (AOD) for improved forecast capability. The microphysical GLOMAP scheme has now been implemented and evaluated in the latest C-IFS cycle alongside the mass-based scheme. The upgrade to the microphysical scheme provides for higher fidelity aerosol-radiation and aerosol-cloud interactions, accounting for global variations in size distribution and mixing state, and additional aerosol properties such as cloud condensation nuclei concentrations. The new scheme will also provide increased aerosol information when used as lateral boundary conditions for regional air quality models. Here we present a series of experiments highlighting the influence and accuracy of the two different aerosol schemes and the impact of MODIS AOD assimilation. In particular, we focus on the influence of biomass burning emissions on aerosol properties in the Amazon, comparing to ground-based and aircraft observations from the 2012 SAMBBA campaign. Biomass burning can affect regional air quality, human health, regional weather and the local energy budget. Tropical biomass burning generates particles primarily composed of particulate organic matter (POM) and black carbon (BC), the local ratio of these two different constituents often determining the properties and subsequent impacts of the aerosol particles. Therefore, the model's ability to capture the concentrations of these two

  1. Western african aerosols modelling with updated biomass burning emission inventories in the frame of the AMMA-IDAF program

    Directory of Open Access Journals (Sweden)

    C. Liousse

    2010-03-01

    Full Text Available African biomass burning emission inventories for gases and particles (AMMABB have been constructed at a resolution of 1 km by 1 km with daily coverage for the 2000–2007 period. They have been evaluated using the ORISAM-TM4 global chemistry transport model, which includes a detailed aerosol module. This paper discussed comparisons between modelled results and new AMMA measurements for surface BC and OC concentrations and scattering coefficients, aerosol optical depths and single scattering albedo from sunphotometer and satellite data. Major aerosol seasonal and interannual evolution over the period 2004–2007 observed at Djougou (Benin and Banizoumbou (Niger AMMA/IDAF sites are well reproduced by our global model, showing the importance of using accurate biomass burning emissions. It is the first time to our knowledge that a global model treating core/shell mixing for optical calculations reproduces aerosol optical depths (AOD values of the same order as satellite and AERONET data. Comparison of simulated and measured concentrations for different class sizes simulated by the model give information on possible refinements of the emissions, according to the particulate size fraction, which have an impact on aerosol optical properties.

  2. The solvent-extractable organic compounds in the Indonesia biomass burning aerosols - characterization studies

    Science.gov (United States)

    Fang, M.; Zheng, M.; Wang, F.; To, K. L.; Jaafar, A. B.; Tong, S. L.

    The large-scale air pollution episode due to the out-of-control biomass burning for agricultural purposes in Indonesia started in June 1997, has become a severe environmental problem for itself and the neighboring countries. The fire lasted for almost five months. Its impact on the health and ecology in the affected areas is expected to be substantial, costly and possibly long lasting. Air pollution Index as high as 839 has been reported in Malaysia. API is calculated based on the five pollutants: NO 2, SO 2, O 3, CO, and respirable suspended particulates (PM10). It ranges in value from 0 to 500. An index above 101 is considered to be unhealthy and a value over 201 is very unhealthy (Abidin and Shin, 1996). The solvent-extractable organic compounds from four total suspended particulate (TSP) high-volume samples collected in Kuala Lumpur, Malaysia (Stations Pudu and SIRIM) were subjected to characterization - the abundance was determined and biomarkers were identified. Two of the samples were from early September when the fire was less intense, while the other two were from late September when Kuala Lumpur experienced very heavy smoke coverage which could be easily observed from NOAA/AVHRR satellite images. The samples contained mainly aliphatic hydrocarbons such as n-alkanes and triterpanes, alkanoic acids, alkanols, and polycyclic aromatic hydrocarbons. The difference between the early and late September samples was very significant. The total yield increased from 0.6 to 24.3 μg m -3 at Pudu and 1.9 to 20.1 μg m -3 at SIRIM, with increases in concentration in every class. The higher input of vascular plant wax components in the late September samples, when the fire was more intense, was characterized by the distribution patterns of the homologous series n-alkanes, n-alkanoic acids, and n-alkanols, e.g., lower U : R, higher >C 22/C 20/forest fire and the controlled experiments reported in the literature. Similar to the biomass burning in Amazonia (Abas et al

  3. Spatial variability of the direct radiative forcing of biomass burning aerosols and the effects of land use change in Amazonia

    Directory of Open Access Journals (Sweden)

    E. T. Sena

    2013-02-01

    Full Text Available This paper addresses the Amazonian shortwave radiative budget over cloud-free conditions after considering three aspects of deforestation: (i the emission of aerosols from biomass burning due to forest fires; (ii changes in surface albedo after deforestation; and (iii modifications in the column water vapour amount over deforested areas. Simultaneous Clouds and the Earth's Radiant Energy System (CERES shortwave fluxes and aerosol optical depth (AOD retrievals from the Moderate Resolution Imaging SpectroRadiometer (MODIS were analysed during the peak of the biomass burning seasons (August and September from 2000 to 2009. A discrete-ordinate radiative transfer (DISORT code was used to extend instantaneous remote sensing radiative forcing assessments into 24-h averages.

    The mean direct radiative forcing of aerosols at the top of the atmosphere (TOA during the biomass burning season for the 10-yr studied period was −5.6 ± 1.7 W m−2. Furthermore, the spatial distribution of the direct radiative forcing of aerosols over Amazonia was obtained for the biomass burning season of each year. It was observed that for high AOD (larger than 1 at 550 nm the maximum daily direct aerosol radiative forcing at the TOA may be as high as −20 W m−2 locally. The surface reflectance plays a major role in the aerosol direct radiative effect. The study of the effects of biomass burning aerosols over different surface types shows that the direct radiative forcing is systematically more negative over forest than over savannah-like covered areas. Values of −15.7 ± 2.4 W m−2τ550 nm and −9.3 ± 1.7 W m−2τ550 nm were calculated for the mean daily aerosol forcing efficiencies over forest and savannah-like vegetation respectively. The overall mean annual land use change radiative forcing due to deforestation over the state of Rondônia, Brazil, was determined as −7.3 ± 0.9 W m

  4. A case study of aerosol depletion in a biomass burning plume over Eastern Canada during the BORTAS field experiment

    Science.gov (United States)

    Franklin, Jonathan E.; Griffin, Debora; Pierce, Jeffrey R.; Drummond, James R.; Waugh, David; Palmer, Paul; Chisholm, Lucy; Duck, Thomas J.; Lesins, Glen; Walker, Kaley A.; Hopper, Jason T.; Curry, Kevin R.; Sakamoto, Kimiko M.; Dan, Lin; Kliever, Jenny; O'Neill, Norm

    2013-04-01

    Wild fires started by lightning are a significant source of carbonaceous aerosols and trace gases to the atmosphere. Careful observations of biomass burning plumes are required to quantify the long range transport and chemical evolution of the outflow from these fires. During the summer of 2011 an international effort - the Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites (BORTAS) project - led by the University of Edinburgh, evaluated the chemistry and dynamics of Boreal biomass burning plumes through aircraft, satellite, and ground-based measurements. The Dalhousie Ground Station (DGS), located in Halifax, Nova Scotia, provided ground support to the BORTAS campaign. Two Fourier Transform Spectrometers (FTSs) provided solar absorption measurements of trace gases while two photometers provided aerosol optical depths. On 20 July 2011 a plume of elevated carbon monoxide and other trace gases was detected by the FTS instruments at the DGS; however, particulate data gathered from the co-located sun photometer and the Dalhousie Raman Lidar system showed no enhancement of fine-mode aerosol for the initial 7 hours of the event. After that time, particulates increased in abundance and a peak aerosol optical depth of 2.3 was measured on 21 July. FLEXPART trajectory analyses suggest that this plume originated in fires that were burning in Northwestern Ontario and Eastern Manitoba from 17 to 19 July. Despite the sparse observing network in the region, there is ample evidence of a significant lofting event via the same meso-scale convective system that tempered the burning on the 19th. We will provide an overview of this event and present evidence that precipitation scavenging was the most likely mechanism for the observed aerosol/trace gas anomaly. Support for this this research was provided by the Canadian Space Agency (CSA) and the Natural Sciences and Engineering Research Council of Canada.

  5. In Situ Chemical Characterization of Aged Biomass-Burning Aerosols Impacting Cold Wave Clouds

    OpenAIRE

    Pratt, Kerri A.; Heymsfield, Andrew J.; Twohy, Cynthia H.; Murphy, Shane M.; DeMott, Paul J.; Hudson , James G.; R. Subramanian; Wang, Zhien; Seinfeld, John H.; Prather, Kimberly A.

    2010-01-01

    During the Ice in Clouds Experiment–Layer Clouds (ICE-L), aged biomass-burning particles were identified within two orographic wave cloud regions over Wyoming using single-particle mass spectrometry and electron microscopy. Using a suite of instrumentation, particle chemistry was characterized in tandem with cloud microphysics. The aged biomass-burning particles comprised ~30%–40% by number of the 0.1–1.0-μm clear-air particles and were composed of potassium, organic carbon, elemental carbon,...

  6. Effect of biomass burning over the western North Pacific Rim: wintertime maxima of anhydrosugars in ambient aerosols from Okinawa

    Science.gov (United States)

    Zhu, C.; Kawamura, K.; Kunwar, B.

    2015-02-01

    Biomass burning (BB) largely modifies the chemical composition of atmospheric aerosols on the globe. We collected aerosol samples (TSP) at Cape Hedo, on subtropical Okinawa Island, from October 2009 to February 2012 to study anhydrosugars as BB tracers. Levoglucosan was detected as the dominant anhydrosugar followed by its isomers, mannosan and galactosan. We found a clear seasonal trend of levoglucosan and mannosan with winter maxima and summer minima. Positive correlation was found between levoglucosan and nss-K+ (r = 0.38, p agricultural waste burning of maize straw in the North China Plain. Anhydrosugars comprised 0.22% of water-soluble organic carbon (WSOC) and 0.13% of organic carbon (OC). The highest values to WSOC (0.37%) and OC (0.25%) were found in winter, again indicating an important BB contribution to Okinawa aerosols in winter. This study provides useful information to better understand the effect of East Asian biomass burning on the air quality in the western North Pacific Rim.

  7. Temporal variability of primary and secondary aerosols over northern India: Impact of biomass burning emissions

    Science.gov (United States)

    Rastogi, N.; Singh, A.; Sarin, M. M.; Singh, D.

    2016-01-01

    The ambient particulate matter injected from biomass burning emissions (BBEs) over northern India has been a subject of major debate in the context of regional air quality and atmospheric chemistry of several organic and inorganic constituents. This necessitates an observational approach over a large spatial and temporal scale. We present an extensive data set on PM2.5 samples (n = 147) collected for one full year from a sampling site (Patiala: 30.2°N, 76.3°E) in the source region of BBEs in northern India. During the sampling period from October 2011 to September 2012, PM2.5 mass concentration varied from ˜20 to 400 μg m-3. Among the major constituents, contribution of total carbonaceous aerosols (OC + EC) ranged from 8 to 60%. The average OC/EC and K+/EC ratio, varying from 3.2 to 12 and 0.26 to 0.80, respectively, emphasizes the dominance of BBEs over the annual seasonal cycle. The average secondary organic matter (SOM) accounts for ˜10-40% of PM2.5 mass in different seasons; whereas contribution of secondary inorganics was maximum (˜40%) during the winter. The pronounced temporal variability in SOM suggests its contribution from varying sources, their emission strength and process of secondary organic formation. Diurnal differences in the chemical constituents are attributable to regional meteorological factors and boundary layer dynamics. The emerging data set from this study is important to understand feedback mechanism from anthropogenic activities to the regional climate change scenario.

  8. Biomass burning contributions to urban aerosols in a coastal Mediterranean City

    NARCIS (Netherlands)

    Reche, C.; Viana, M.; Amato, F.; Alastuey, A.; Moreno, T.; Hillamo, R.; Teinilä, K.; Saarnio, K.; Seco, R.; Peñuelas, J.; Mohr, C.; Prévôt, A.S.H.; Querol, X.

    2012-01-01

    Mean annual biomass burning contributions to the bulk particulate matter (PM X) load were quantified in a southern-European urban environment (Barcelona, Spain) with special attention to typical Mediterranean winter and summer conditions. In spite of the complexity of the local air pollution cocktai

  9. Long-term measurements of carbonaceous aerosols in the Eastern Mediterranean: evidence of long-range transport of biomass burning

    Directory of Open Access Journals (Sweden)

    J. Sciare

    2008-09-01

    Full Text Available Long-term (5-year measurements of Elemental Carbon (EC and Organic Carbon (OC in bulk aerosols are presented here for the first time in the Mediterranean Basin (Crete Island. A multi-analytical approach (including thermal, optical, and thermo-optical techniques was applied for these EC and OC measurements. Light absorbing dust aerosols were shown to poorly contribute (+12% on a yearly average to light absorption coefficient (babs measurements performed by an optical method (aethalometer. Long-range transport of agricultural waste burning from European countries surrounding the Black Sea was shown for each year during two periods (March–April and July–September. The contribution of biomass burning to the concentrations of EC and OC was shown to be rather small (20 and 14%, respectively, on a yearly basis, although this contribution could be much higher on a monthly basis and showed important seasonal and interannual variability. By removing the biomass burning influence, our data revealed an important seasonal variation of OC, with an increase by almost a factor of two for the spring months of May and June, whereas BC was found to be quite stable throughout the year. Preliminary measurements of Water Soluble Organic Carbon (WSOC have shown that the monthly mean WSOC/OC ratio remains stable throughout the year (0.45±0.12, suggesting that the partitioning between water soluble and water insoluble organic matter is not significantly affected by biomass burning and secondary organic aerosol (SOA formation. A chemical mass closure performed in the fine mode (Aerodynamic Diameter, A.D.<1.5μm showed that the mass contribution of organic matter (POM was found to be essentially invariable during the year (monthly average of 26±5%.

  10. Long-term measurements of carbonaceous aerosols in the eastern Mediterranean: evidence of long-range transport of biomass burning

    Directory of Open Access Journals (Sweden)

    J. Sciare

    2008-04-01

    Full Text Available Long-term (5-yr measurements of Black Carbon (BC and Organic Carbon (OC in bulk aerosols are presented here for the first time in the Mediterranean Basin (Crete Island. A multi-analytical approach (including thermal, optical, and thermo-optical techniques was applied for these BC and OC measurements. Light absorbing dust aerosols have shown to poorly contribute (+17% on a yearly average to light absorption coefficient (babs measurements performed by an optical method (aethalometer. Long-range transport of agricultural waste burning from European countries surrounding the Black Sea was shown for each year during two periods (March–April and July–September. The contribution of biomass burning to the concentrations of BC and OC has shown to be rather small (20 and 14%, respectively, on a yearly basis, although this contribution could be much higher on a monthly basis and is expected a high intra and inter annual variability. By removing the biomass burning influence, our data revealed an important seasonal variation of OC, with an increase by almost a factor of two for the Spring months of May and June, whereas BC was found to be quite stable throughout the year. Preliminary measurements of Water Soluble Organic Carbon (WSOC have shown that the monthly mean WSOC/OC ratio remains stable throughout the year (0.45±0.12, suggesting that the partitioning between water soluble and water insoluble organic matter is not significantly affected by biomass burning and secondary organic aerosol (SOA formation. A chemical mass closure performed in the fine mode (Aerodynamic Diameter, A.D.<1.5 μm showed that the mass contribution of organic matter (POM was found to be essentially invariable during the year (monthly average of 26±5%.

  11. Long-term measurements of carbonaceous aerosols in the Eastern Mediterranean: evidence of long-range transport of biomass burning

    International Nuclear Information System (INIS)

    Long-term (5-year) measurements of Elemental Carbon (EC) and Organic Carbon (OC) in bulk aerosols are presented here for the first time in the Mediterranean Basin (Crete Island). A multi-analytical approach (including thermal, optical, and thermo-optical techniques) was applied for these EC and OC measurements. Light absorbing dust aerosols were shown to poorly contribute (+12% on a yearly average) to light absorption coefficient (b(abs)) measurements performed by an optical method (aethalometer). Long-range transport of agricultural waste burning from European countries surrounding the Black Sea was shown for each year during two periods (March-April and July-September). The contribution of biomass burning to the concentrations of EC and OC was shown to be rather small (20 and 14%, respectively, on a yearly basis), although this contribution could be much higher on a monthly basis and showed important seasonal and inter annual variability. By removing the biomass burning influence, our data revealed an important seasonal variation of OC, with an increase by almost a factor of two for the spring months of May and June, whereas BC was found to be quite stable throughout the year. Preliminary measurements of Water Soluble Organic Carbon (WSOC) have shown that the monthly mean WSOC/ OC ratio remains stable throughout the year (0.45 ± 0.12), suggesting that the partitioning between water soluble and water insoluble organic matter is not significantly affected by biomass burning and secondary organic aerosol (SOA) formation. A chemical mass closure performed in the fine mode (Aerodynamic Diameter, A. D.≤ 1.5 μm) showed that the mass contribution of organic matter (POM) was found to be essentially invariable during the year (monthly average of 26 ± 5%). (authors)

  12. A case study on long-range transported aerosols of biomass burning: effects on aerosol optical properties and surface radiation levels

    Directory of Open Access Journals (Sweden)

    A. Arola

    2007-05-01

    Full Text Available In spring 2006, biomass burning aerosols from eastern Europe were transported extensively to Finland, and to other parts of northern Europe. They were observed as far as in the European Arctic. In the first part of this paper, temporal and spatial evolution and transport of these biomass burning aerosols are monitored with MODIS retrieved aerosol optical depth (AOD imagery at visible wavelengths (0.55 μm. Comparison of MODIS and AERONET AOD is conducted at Tõravere, Estonia. Then trajectory analyses, as well as MODIS Fire Mapper products are used to better understand the type and origin of the air masses. During the studied four-week period AOD values ranged from near zero up to 1.2 at 0.55 μm and the linear correlation between MODIS and AERONET was very high (~0.97. Temporal variability observed within this four-week period was also rather well explained by the trajectory analysis in conjunction with the fire detections produced by the MODIS Rapid Response System. In the second part of our study, the surface measurements of global and UV radiation at Jokioinen, Finland are used to study the effect of this haze episode on the levels of surface radiation. We found reductions up to 35% in surface UV irradiance (at 340 nm as compared to typical aerosol conditions. For global (total solar radiation, the reduction was always smaller, in line with the expected wavelength dependence of the aerosol effect.

  13. Modelling the optical properties of fresh biomass burning aerosol produced in a smoke chamber: results from the EFEU campaign

    Directory of Open Access Journals (Sweden)

    K. Hungershöfer

    2007-08-01

    Full Text Available A better characterisation of the optical properties of biomass burning aerosol as a function of the burning conditions is required in order to quantify their effects on climate and atmospheric chemistry. Controlled laboratory combustion experiments with different fuel types were carried out at the combustion facility of the Max Planck Institute for Chemistry (Mainz, Germany as part of the 'Impact of Vegetation Fires on the Composition and Circulation of the Atmosphere' (EFEU project. Using the measured size distributions as well as mass scattering and absorption efficiencies, Mie calculations provided mean effective refractive indices of 1.60−0.010i and 1.56−0.010i (λ=0.55 μm for smoke particles emitted from the combustion of savanna grass and an African hardwood (musasa, respectively. The relatively low imaginary parts suggest that the light-absorbing carbon of the investigated fresh biomass burning aerosol is only partly graphitized, resulting in strongly scattering and less absorbing particles. While the observed variability in mass scattering efficiencies was consistent with changes in particle size, the changes in the mass absorption efficiency can only be explained, if the chemical composition of the particles varies with combustion conditions.

  14. Single particle characterization of biomass burning organic aerosol (BBOA: evidence for non-uniform mixing of high molecular weight organics and potassium

    Directory of Open Access Journals (Sweden)

    A. K. Y. Lee

    2015-11-01

    Full Text Available Biomass burning is a major source of black carbon (BC and primary organic aerosol globally. In particular, biomass burning organic aerosol (BBOA is strongly associated with atmospheric brown carbon (BrC that absorbs near ultraviolet and visible light, resulting in significant impacts on regional visibility degradation and radiative forcing. The mixing state of BBOA can play a critical role in the prediction of aerosol optical properties. In this work, single particle measurements from a soot-particle aerosol mass spectrometer coupled with a light scattering module (LS-SP-AMS were performed to examine the mixing state of BBOA, refractory black carbon (rBC and potassium (K+, a tracer for biomass burning aerosol in an air mass influenced by aged biomass burning. Cluster analysis of single particle measurements identified five BBOA-related particle types. rBC accounted for 3–14 w.t. % of these particle types on average. Only one particle type exhibited a strong ion signal for K+, with mass spectra characterized by low molecular weight organic species. The remaining four particle types were classified based on the apparent molecular weight of the BBOA constituents. Two particle types were associated with low potassium content and significant amounts of high molecular weight (HMW organic compounds. Our observations indicate non-uniform mixing of particles within a biomass burning plume in terms of molecular weight and illustrate that HMW BBOA can be a key contributor to low-volatility BrC observed in BBOA particles.

  15. Single particle characterization of biomass burning organic aerosol (BBOA): evidence for non-uniform mixing of high molecular weight organics and potassium

    Science.gov (United States)

    Lee, A. K. Y.; Willis, M. D.; Healy, R. M.; Wang, J. M.; Jeong, C.-H.; Wenger, J. C.; Evans, G. J.; Abbatt, J. P. D.

    2015-11-01

    Biomass burning is a major source of black carbon (BC) and primary organic aerosol globally. In particular, biomass burning organic aerosol (BBOA) is strongly associated with atmospheric brown carbon (BrC) that absorbs near ultraviolet and visible light, resulting in significant impacts on regional visibility degradation and radiative forcing. The mixing state of BBOA can play a critical role in the prediction of aerosol optical properties. In this work, single particle measurements from a soot-particle aerosol mass spectrometer coupled with a light scattering module (LS-SP-AMS) were performed to examine the mixing state of BBOA, refractory black carbon (rBC) and potassium (K+, a tracer for biomass burning aerosol) in an air mass influenced by aged biomass burning. Cluster analysis of single particle measurements identified five BBOA-related particle types. rBC accounted for 3-14 w.t. % of these particle types on average. Only one particle type exhibited a strong ion signal for K+, with mass spectra characterized by low molecular weight organic species. The remaining four particle types were classified based on the apparent molecular weight of the BBOA constituents. Two particle types were associated with low potassium content and significant amounts of high molecular weight (HMW) organic compounds. Our observations indicate non-uniform mixing of particles within a biomass burning plume in terms of molecular weight and illustrate that HMW BBOA can be a key contributor to low-volatility BrC observed in BBOA particles.

  16. The variability of biomass burning and its influence on regional aerosol properties during the wheat harvest season in North China

    Science.gov (United States)

    Wang, Lili; Xin, Jinyuan; Li, Xingru; Wang, Yuesi

    2015-04-01

    The spatial-temporal variation of biomass burning in June during the wheat harvest season in the North China (32-41°N, 111-120°E) and its influence on the regional aerosol optical depth (AOD) and the chemical compositions of size-segregated aerosols in the urban environment were investigated to evaluate the effectiveness of the burn ban policy and the influence on regional pollution. Fire events that occurred in early and middle June accounted for approximately 89% of the events during the month, and fire points located in mid-eastern China (32.5-35.5°N, 114-120°E) comprised 71%. The occurrences exhibit oscillatory changes with a minimum in 2008 (during the Beijing Olympics) and a peak and explosive growth in 2012. Under high relative humidity and south winds, fire emissions from straw burning combined with high urban/industrial emissions to produce intensive regional haze pollution in the North Plain. The formation of secondary inorganic particles was intensified due to the interactions of smoke plumes and urban/industrial pollutants in an urban environment. Higher concentrations and percentages (79%) of sulfate, nitrate, ammonium, and organic carbon in the fine particles under high relative humidity conditions contributed to a deteriorated urban visibility. Therefore, stronger management and a comprehensive ban on wheat straw burning in June are urgently needed, especially during years when the south wind is dominant.

  17. Contribution of brown carbon and lensing to the direct radiative effect of carbonaceous aerosols from biomass and biofuel burning emissions

    Science.gov (United States)

    Saleh, Rawad; Marks, Marguerite; Heo, Jinhyok; Adams, Peter J.; Donahue, Neil M.; Robinson, Allen L.

    2015-10-01

    We present global direct radiative effect (DRE) calculations of carbonaceous aerosols emitted from biomass/biofuel burning addressing the interplay between two poorly constrained contributions to DRE: mixing state of black carbon (lensing) and light absorption by organic aerosol (OA) due to the presence of brown carbon (BrC). We use the parameterization of Saleh et al. (2014) which captures the variability in biomass/biofuel OA absorption. The global mean effect of OA absorption is +0.22 W/m2 and +0.12 W/m2 for externally and internally mixed cases, while the effect of lensing is +0.39 W/m2 and +0.29 W/m2 for nonabsorbing and absorbing OA cases, signifying the nonlinear interplay between OA absorption and lensing. These two effects can be overestimated if not treated simultaneously in radiative transfer calculations. The combined effect of OA absorption and lensing increases the global mean DRE of biomass/biofuel aerosols from -0.46 W/m2 to +0.05 W/m2 and appears to reduce the gap between existing model-based and observationally constrained DRE estimates. We observed a strong sensitivity to these parameters in key regions, where DRE shifts from strongly negative ( +1 W/m2) when accounting for lensing and OA absorption.

  18. An Overview of Regional Experiments on Biomass Burning Aerosols and Related Pollutants in Southeast Asia: From BASE-ASIA and the Dongsha Experiment to 7-SEAS

    Science.gov (United States)

    Lin, Neng-Huei; Tsay, Si-Chee; Maring, Hal B.; Yen, Ming-Cheng; Sheu, Guey-Rong; Wang, Sheng-Hsiang; Chi, Kai Hsien; Chuang, Ming-Tung; Ou-Yang, Chang-Feng; Fu, Joshua S.; Reid, Jeffrey S.; Lee, Chung-Te; Wang, Lin-Chi; Wang, Jia-Lin; Hsu, Christina N.; Sayer, Andrew M.; Holben, Brent N.; Chu, Yu-Chi; Nguyen, Xuan Anh; Sopajaree, Khajornsak; Chen, Shui-Jen; Cheng, Man-Ting; Tsuang, Ben-Jei; Tsai, Chuen-Jinn; Peng, Chi-Ming; Schnell, Russell C.; Conway, Tom; Chang, Chang-Tang; Lin, Kuen-Song; Tsai, Ying I.; Lee, Wen-Jhy; Chang, Shuenn-Chin; Liu, Jyh-Jian; Chang, Wei-Li; Huang, Shih-Jen; Lin, Tang-Huang; Liu, Gin-Rong

    2013-01-01

    By modulating the Earth-atmosphere energy, hydrological and biogeochemical cycles, and affecting regional-to-global weather and climate, biomass burning is recognized as one of the major factors affecting the global carbon cycle. However, few comprehensive and wide-ranging experiments have been conducted to characterize biomass-burning pollutants in Southeast Asia (SEA) or assess their regional impact on meteorology, the hydrological cycle, the radiative budget, or climate change. Recently, BASEASIA (Biomass-burning Aerosols in South-East Asia: Smoke Impact Assessment) and the 7-SEAS (7- South-East Asian Studies) Dongsha Experiment were conducted during the spring seasons of 2006 and 2010 in northern SEA, respectively, to characterize the chemical, physical, and radiative properties of biomass-burning emissions near the source regions, and assess their effects. This paper provides an overview of results from these two campaigns and related studies collected in this special issue, entitled Observation, modeling and impact studies of biomass burning and pollution in the SE Asian Environment. This volume includes 28 papers, which provide a synopsis of the experiments, regional weatherclimate, chemical characterization of biomass-burning aerosols and related pollutants in source and sink regions, the spatial distribution of air toxics (atmospheric mercury and dioxins) in source and remote areas, a characterization of aerosol physical, optical, and radiative properties, as well as modeling and impact studies. These studies, taken together, provide the first relatively complete dataset of aerosol chemistry and physical observations conducted in the sourcesink region in the northern SEA, with particular emphasis on the marine boundary layer and lower free troposphere (LFT). The data, analysis and modeling included in these papers advance our present knowledge of source characterization of biomass-burning pollutants near the source regions as well as the physical and

  19. Water uptake and chemical composition of fresh aerosols generated in open burning of biomass

    Science.gov (United States)

    Carrico, C. M.; Petters, M. D.; Kreidenweis, S. M.; Sullivan, A. P.; McMeeking, G. R.; Levin, E. J. T.; Engling, G.; Malm, W. C.; Collett, J. L., Jr.

    2010-06-01

    As part of the Fire Lab at Missoula Experiments (FLAME) in 2006-2007, we examined hygroscopic properties of particles emitted from open combustion of 33 select biomass fuels. Measurements of humidification growth factors for subsaturated water relative humidity (RH) conditions were made with a hygroscopic tandem differential mobility analyzer (HTDMA) for dry particle sizes of 50, 100 and 250 nm. Results were then fit to a single-parameter model to obtain the hygroscopicity parameter, κ. Particles in freshly emitted biomass smoke exhibited a wide range of hygroscopicity (individual modes with 0diesel soot emissions to that of pure inorganic salts commonly found in the ambient aerosol. Smoke aerosols dominated by carbonaceous species typically had a unimodal growth factor with corresponding mean κ=0.1 (range of 0fuel type and, to a lesser extent, with combustion conditions. Among the most hygroscopic smokes were those from palmetto, rice straw, and sawgrass, while smoke particles from coniferous species such as spruces, firs, pines, and duffs were among the least hygroscopic. Overall, hygroscopicity decreased with increasing ratios of total carbon to inorganic ions as measured in PM2.5 filter samples. Despite aerosol heterogeneity, reconstructions of κ using PM2.5 bulk chemical composition data fell along a 1:1 line with measured ensemble κ values.

  20. Physical properties and concentration of aerosol particles over the Amazon tropical forest during background and biomass burning conditions

    Directory of Open Access Journals (Sweden)

    P. Guyon

    2003-01-01

    Full Text Available We investigated the size distribution, scattering and absorption properties of Amazonian aerosols and the optical thickness of the aerosol layer under the pristine background conditions typical of the wet season, as well as during the biomass-burning-influenced dry season. The measurements were made during two campaigns in 1999 as part of the European contribution to the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA-EUSTACH. In moving from the wet to the dry season, median particle numbers were observed to increase from values comparable to those of the remote marine boundary layer (~400 cm-3 to values more commonly associated with urban smog (~4000 cm-3, due to a massive injection of submicron smoke particles. Aerosol optical depths at 500 nm increased from 0.05 to 0.8 on average, reaching a value of 2 during the dry season. Scattering and absorption coefficients, measured at 550 nm, showed a concomitant increase from average values of 6.8 and 0.4 Mm-1 to values of 91 and 10 Mm-1, respectively, corresponding to an estimated decrease in single-scattering albedo from ca. 0.97 to 0.91. The roughly tenfold increase in many of the measured parameters attests to the dramatic effect that extensive seasonal biomass burning (deforestation, pasture cleaning is having on the composition and properties of aerosols over Amazonia. The potential exists for these changes to impact on regional and global climate through changes to the extinction of solar radiation as well as the alteration of cloud properties.

  1. Water uptake and chemical composition of fresh aerosols generated in open burning of biomass

    Directory of Open Access Journals (Sweden)

    C. M. Carrico

    2010-02-01

    Full Text Available As part of the Fire Lab at Missoula Experiments (FLAME in 2006–2007, we examined hygroscopic properties of particles emitted from open combustion of 33 select biomass fuels. Measurements of humidification growth factors for subsaturated water relative humidity (RH conditions were made with a hygroscopic tandem differential mobility analyzer (HTDMA for dry particle diameters of 50, 100 and 250 nm. Results were then fit to a single-parameter model to obtain the hygroscopicity parameter, κ. Particles in freshly emitted biomass smoke exhibited a wide range of hygroscopicity (individual modes with 0<κ<1.0, spanning a range from the hygroscopicity of fresh diesel soot emissions to that of pure inorganic salts commonly found in the ambient aerosol. Smoke aerosols dominated by carbonaceous species typically had a unimodal growth factor with corresponding mean κ=0.1 (range of 0<κ<0.4. Those with a substantial inorganic mass fraction typically separated into less- and more-hygroscopic modes at high RH, the latter with mean κ=0.4 (range of 0.1<κ<1. The bimodal κ distributions were indicative of smoke chemical heterogeneity at a single particle size, whereas heterogeneity as a function of size was indicated by typically decreasing κ values with increasing dry particle diameters. Hygroscopicity varied strongly with biomass fuel type and, to a lesser extent, with combustion conditions. Among the most hygroscopic smokes were those from palmetto, rice straw, and sawgrass, while smoke particles from coniferous species such as spruces, firs, pines, and duffs were among the least hygroscopic. Overall, hygroscopicity decreased with increasing ratios of total carbon to inorganic ions as measured in PM2.5 filter samples. Despite aerosol heterogeneity, reconstructions of κ using PM2.5 bulk chemical composition data fell along a 1:1 line with measured ensemble κ values.

  2. Water uptake and chemical composition of fresh aerosols generated in open burning of biomass

    Directory of Open Access Journals (Sweden)

    C. M. Carrico

    2010-06-01

    Full Text Available As part of the Fire Lab at Missoula Experiments (FLAME in 2006–2007, we examined hygroscopic properties of particles emitted from open combustion of 33 select biomass fuels. Measurements of humidification growth factors for subsaturated water relative humidity (RH conditions were made with a hygroscopic tandem differential mobility analyzer (HTDMA for dry particle sizes of 50, 100 and 250 nm. Results were then fit to a single-parameter model to obtain the hygroscopicity parameter, κ. Particles in freshly emitted biomass smoke exhibited a wide range of hygroscopicity (individual modes with 0<κ<1.0, spanning a range from the hygroscopicity of fresh diesel soot emissions to that of pure inorganic salts commonly found in the ambient aerosol. Smoke aerosols dominated by carbonaceous species typically had a unimodal growth factor with corresponding mean κ=0.1 (range of 0<κ<0.4. Those with a substantial inorganic mass fraction typically separated into less- and more-hygroscopic modes at high RH, the latter with mean κ=0.4 (range of 0.1<κ<1. The bimodal κ distributions were indicative of smoke chemical heterogeneity at a single particle size, whereas heterogeneity as a function of size was indicated by typically decreasing κ values with increasing dry particle diameters. Hygroscopicity varied strongly with biomass fuel type and, to a lesser extent, with combustion conditions. Among the most hygroscopic smokes were those from palmetto, rice straw, and sawgrass, while smoke particles from coniferous species such as spruces, firs, pines, and duffs were among the least hygroscopic. Overall, hygroscopicity decreased with increasing ratios of total carbon to inorganic ions as measured in PM2.5 filter samples. Despite aerosol heterogeneity, reconstructions of κ using PM2.5 bulk chemical composition data fell along a 1:1 line with measured ensemble κ values.

  3. Remote sensing measurements of biomass burning aerosol optical properties during the 2015 Indonesian burning season from AERONET and MODIS satellite data

    Science.gov (United States)

    2016-04-01

    The strong El Nino event in 2015 resulted in below normal rainfall leading to very dry conditions throughout Indonesia from August though October 2015. These conditions in turn allowed for exceptionally large numbers of biomass burning fires with very high emissions of aerosols. Over the island of Borneo, three AERONET sites (Palangkaraya, Pontianak, and Kuching) measured monthly mean fine mode aerosol optical depth (AOD) at 500 nm from the spectral deconvolution algorithm in September and October ranging from 1.6 to 3.7, with daily average AOD as high as 6.1. In fact, the AOD was sometimes too high to obtain any significant signal in the mid-visible wavelengths, therefore a previously developed new algorithm in the AERONET Version 3 database was invoked to retain the measurements in as many of the red and near-infrared wavelengths (675, 870, 1020, and 1640 nm) as possible to analyze the AOD in those wavelengths. These AOD at longer wavelengths are then utilized to provide some estimate the AOD in the mid-visible. Additionally, satellite retrievals of AOD at 550 nm from MODIS sensor data and the Dark Target, Beep Blue, and MAIAC algorithms were also analyzed and compared to AERONET measured AOD. Not surprisingly, the AOD was often too high for the satellite algorithms to also measure accurate AOD on many days in the densest smoke regions. The AERONET sky radiance inversion algorithm was utilized to analyze retrievals of the aerosol optical properties of complex refractive indices and size distributions. Since the AOD was often extremely high there was sometimes insufficient direct sun signal for the larger solar zenith angles (> 50 degrees) required for almucantar retrievals. However, the new hybrid sky radiance scan can attain sufficient scattering angle range even at small solar zenith angles when 440 nm direct beam irradiance can be accurately measured, thereby allowing for many more retrievals and also at higher AOD levels during this event. Due to extreme

  4. Hygroscopicity of organic compounds from biomass burning and their influence on the water uptake of mixed organic ammonium sulfate aerosols

    Science.gov (United States)

    Lei, T.; Zuend, A.; Wang, W. G.; Zhang, Y. H.; Ge, M. F.

    2014-10-01

    Hygroscopic behavior of organic compounds, including levoglucosan, 4-hydroxybenzoic acid, and humic acid, as well as their effects on the hygroscopic properties of ammonium sulfate (AS) in internally mixed particles are studied by a hygroscopicity tandem differential mobility analyzer (HTDMA). The organic compounds used represent pyrolysis products of wood that are emitted from biomass burning sources. It is found that humic acid aerosol particles only slightly take up water, starting at RH (relative humidity) above ~70%. This is contrasted by the continuous water absorption of levoglucosan aerosol particles in the range 5-90% RH. However, no hygroscopic growth is observed for 4-hydroxybenzoic acid aerosol particles. Predicted water uptake using the ideal solution theory, the AIOMFAC model and the E-AIM (with UNIFAC) model are consistent with measured hygroscopic growth factors of levoglucosan. However, the use of these models without consideration of crystalline organic phases is not appropriate to describe the hygroscopicity of organics that do not exhibit continuous water uptake, such as 4-hydroxybenzoic acid and humic acid. Mixed aerosol particles consisting of ammonium sulfate and levoglucosan, 4-hydroxybenzoic acid, or humic acid with different organic mass fractions, take up a reduced amount of water above 80% RH (above AS deliquescence) relative to pure ammonium sulfate aerosol particles of the same mass. Hygroscopic growth of mixtures of ammonium sulfate and levoglucosan with different organic mass fractions agree well with the predictions of the thermodynamic models. Use of the Zdanovskii-Stokes-Robinson (ZSR) relation and AIOMFAC model lead to good agreement with measured growth factors of mixtures of ammonium sulfate with 4-hydroxybenzoic acid assuming an insoluble organic phase. Deviations of model predictions from the HTDMA measurement are mainly due to the occurrence of a microscopical solid phase restructuring at increased humidity (morphology

  5. Radiocarbon-based impact assessment of open biomass burning on regional carbonaceous aerosols in North China

    International Nuclear Information System (INIS)

    Samples of total suspended particulates (TSPs) and fine particulate matter (PM2.5) were collected from 29th May to 1st July, 2013 at a regional background site in Bohai Rim, North China. Mass concentrations of particulate matter and carbonaceous species showed a total of 50% and 97% of the measured TSP and PM2.5 levels exceeded the first grade national standard of China, respectively. Daily concentrations of organic carbon (OC) and elemental carbon (EC) were detected 7.3 and 2.5 μg m−3 in TSP and 5.2 and 2.0 μg m−3 in PM2.5, which accounted 5.8% and 2.0% of TSP while 5.6% and 2.2% for PM2.5, respectively. The concentrations of OC, EC, TSP and PM2.5 were observed higher in the day time than those in the night time. The observations were associated with the emission variations from anthropogenic activities. Two merged samples representing from south and north source areas were selected for radiocarbon analysis. The radiocarbon measurements showed 74% of water-insoluble OC (WINSOC) and 59% of EC in PM2.5 derived from biomass burning and biogenic sources when the air masses were from south region, and 63% and 48% for the air masses from north, respectively. Combined with backward trajectories and daily burned area, open burning of agricultural wastes was found to be predominating, which was confirmed by the potential source contribution function (PSCF). - Highlights: • PM2.5 and TSP samples collected at Yellow River Delta were analyzed for OC and EC. • OC, EC, TSP and PM2.5 concentrations were higher in daytime than in nighttime. • Radiocarbon (14C) tracer, backward trajectories, and fire counts were used for the analysis. • Agricultural waste open burning was a main contributor to summer PM2.5, OC and EC

  6. Direct and semi-direct impacts of absorbing biomass burning aerosol on the climate of southern Africa: a Geophysical Fluid Dynamics Laboratory GCM sensitivity study

    Directory of Open Access Journals (Sweden)

    C. A. Randles

    2010-10-01

    Full Text Available Tropospheric aerosols emitted from biomass burning reduce solar radiation at the surface and locally heat the atmosphere. Equilibrium simulations using an atmospheric general circulation model (GFDL AGCM indicate that strong atmospheric absorption from these particles can cool the surface and increase upward motion and low-level convergence over southern Africa during the dry season. These changes increase sea level pressure over land in the biomass burning region and spin-up the hydrologic cycle by increasing clouds, atmospheric water vapor, and, to a lesser extent, precipitation. Cloud increases serve to reinforce the surface radiative cooling tendency of the aerosol. Conversely, if the climate over southern Africa were hypothetically forced by high loadings of scattering aerosol, then the change in the low-level circulation and increased subsidence would serve to decrease clouds, precipitation, and atmospheric water vapor. Surface cooling associated with scattering-only aerosols is mitigated by warming from cloud decreases. The direct and semi-direct climate impacts of biomass burning aerosol over southern Africa are sensitive to the total amount of aerosol absorption and how clouds change in response to the aerosol-induced heating of the atmosphere.

  7. Optical and physical properties of aerosols in the boundary layer and free troposphere over the Amazon Basin during the biomass burning season

    Directory of Open Access Journals (Sweden)

    D. Chand

    2006-01-01

    Full Text Available As part of the Large Scale Biosphere-Atmosphere Experiment in Amazonia – Smoke, Aerosols, Clouds, Rainfall and Climate (LBA-SMOCC campaign, detailed surface and airborne aerosol measurements were performed over the Amazon Basin during the dry to wet season from 16 September to 14 November 2002. Optical and physical properties of aerosols at the surface, and in the boundary layer (BL and free troposphere (FT during the dry season are discussed in this article. Carbon monoxide (CO is used as a tracer for biomass burning emissions. At the surface, good correlation among the light scattering coefficient (σs at 545 nm, PM2.5, and CO indicates that biomass burning is the main source of aerosols. Accumulation of haze during some of the large-scale biomass burning events led to high PM2.5 (225 μg m−3, σs (1435 Mm−1, aerosol optical depth at 500 nm (3.0, and CO (3000 ppb. A few rainy episodes reduced the PM2.5, number concentration (CN and CO concentration by two orders of magnitude. The correlation analysis between σs and aerosol optical thickness shows that most of the optically active aerosols are confined to a layer with a scale height of 1617 m during the burning season. This is confirmed by aircraft profiles. The average mass scattering and absorption efficiencies (545 nm for small particles (diameter Dp2 g−1, respectively, when relating the aerosol optical properties to PM2.5 aerosols. The observed mean single scattering albedo (ωo at 545 nm for submicron aerosols at the surface is 0.92±0.02. The light scattering by particles (Δσs/Δ CN increase 2–10 times from the surface to the FT, most probably due to the combined affects of coagulation and condensation.

  8. Updated African biomass burning emission inventories in the framework of the AMMA-IDAF program, with an evaluation of combustion aerosols

    Directory of Open Access Journals (Sweden)

    C. Liousse

    2010-10-01

    Full Text Available African biomass burning emission inventories for gaseous and particulate species have been constructed at a resolution of 1 km by 1km with daily coverage for the 2000–2007 period. These inventories are higher than the GFED2 inventories, which are currently widely in use. Evaluation specifically focusing on combustion aerosol has been carried out with the ORISAM-TM4 global chemistry transport model which includes a detailed aerosol module. This paper compares modeled results with measurements of surface BC concentrations and scattering coefficients from the AMMA Enhanced Observations period, aerosol optical depths and single scattering albedo from AERONET sunphotometers, LIDAR vertical distributions of extinction coefficients as well as satellite data. Aerosol seasonal and interannual evolutions over the 2004–2007 period observed at regional scale and more specifically at the Djougou (Benin and Banizoumbou (Niger AMMA/IDAF sites are well reproduced by our global model, indicating that our biomass burning emission inventory appears reasonable.

  9. Spatial and seasonal variations of isoprene secondary organic aerosol in China: Significant impact of biomass burning during winter

    Science.gov (United States)

    Ding, Xiang; He, Quan-Fu; Shen, Ru-Qin; Yu, Qing-Qing; Zhang, Yu-Qing; Xin, Jin-Yuan; Wen, Tian-Xue; Wang, Xin-Ming

    2016-02-01

    Isoprene is a substantial contributor to global secondary organic aerosol (SOA). The formation of isoprene SOA (SOAI) is highly influenced by anthropogenic emissions. Currently, there is rare information regarding SOAI in polluted regions. In this study, one-year concurrent observation of SOAI tracers was undertaken at 12 sites across China for the first time. The tracers formed from the HO2-channel exhibited higher concentrations at rural sites, while the tracer formed from the NO/NO2-channel showed higher levels at urban sites. 3-Methyltetrahydrofuran-3,4-diols exhibited linear correlations with their ring-opening products, C5-alkenetriols. And the slopes were steeper in the southern China than the northern China, indicating stronger ring-opening reactions there. The correlation analysis of SOAI tracers with the factor determining biogenic emission and the tracer of biomass burning (levoglucosan) implied that the high level of SOAI during summer was controlled by biogenic emission, while the unexpected increase of SOAI during winter was largely due to the elevated biomass burning emission. The estimated secondary organic carbon from isoprene (SOCI) exhibited the highest levels in Southwest China. The significant correlations of SOCI between paired sites implied the regional impact of SOAI in China. Our findings implicate that isoprene origins and SOAI formation are distinctive in polluted regions.

  10. Size distribution characteristics of carbonaceous aerosol in Xishuangbanna, southwest China: a sign for biomass burning in Asia.

    Science.gov (United States)

    Guo, Yuhong

    2016-03-01

    In 2012, size-segregated aerosol samples were collected in Xishuangbanna, a forest station in southwest China. The concentrations of organic and elemental carbon (OC and EC for short) were quantified with thermal/optical carbon analyzer in the filter samples. OC and EC exhibited similar seasonal patterns, with the highest concentrations in spring, possibly due to the influence of biomass burning in south and southeast Asia. The mass size distributions of OC and EC were bimodal in all the sampling seasons, each with a dominant peak in the fine mode of 0.4-0.7 μm and a coarse peak in the size range of 2.1-4.7 μm. In fine mode, OC and EC showed smaller geometric mean diameters (GMDs) during winter. OC and EC were prone to be more concentrated in fine particles in spring and winter than in summer and autumn. Furthermore, EC was more abundant in fine particles than OC. Good correlations (R (2) = 0.75-0.82) between OC and EC indicated that they had common dominant sources of combustion such as biomass burning and fossil fuel combustion emissions. The daily average OC/EC ratios ranged from 2.1 to 9.1, more elevated OC/EC ratios being found in the winter. PMID:26851952

  11. [Characterization and reconstruction of aerosol light scattering coefficient at Chengdu during biomass burning and dust storm period in spring].

    Science.gov (United States)

    Yue, Jian-Hua; Tao, Jun; Lin, Ze-Jian; Zhu, Li-Hua; Cao, Jun-Ji; Luo, Lei

    2012-07-01

    Aerosol samples for PM2.5 were collected from 19 April to 17 May in 2009 at Chengdu. The concentrations of organic carbon, element carbon, water-solubility ions, crustal elements and levoglucosan of all particle samples were determined by thermal/ optical carbon analyzer,ion chromatography, X-ray fluorescence spectrometer and high performance anion exchange chromatography, respectively. In-situ scattering coefficients (b(sp)) and meteorological parameters for this period were also conducted. Ambient scattering coefficients were reconstructed by IMPROVE formula and compared with measured scattering coefficients. The results showed that the average mass concentration of PM2.5 and measured b(sp) were 133.2 microg x m(-3) and 530 Mm(-1), respectively. Levoglucosan and crustal elements were good traces for biomass burning and dust storm events, respectively. The calculated b'sp was 504 Mm(-1) during campaigning period. The major contributors to scattering coefficients included: (NH4)2SO4 (26%), NH4NO3 (15%), OM (53%), FS (4%) and CM (2%), respectively. The calculated b'sp was 575 Mm(-1) and the dominant species were FS (17%) and CM (21%) during dust storm period (DS). The calculated b'sp was 635 Mm(-1) and OM contributed 62% during biomass burning (BB) period. PMID:23002585

  12. Investigating the links between ozone and organic aerosol chemistry in a biomass burning plume from a prescribed fire in California chaparral

    OpenAIRE

    Alvarado, M. J.; C. R. Lonsdale; R. J. Yokelson; S. K. Akagi; Coe, H.; J. S. Craven; Fischer, E. V.; Mcmeeking, G. R.; Seinfeld, J. H.; Soni, T.; Taylor, J.W.; D. R. Weise; C. E. Wold

    2014-01-01

    Within minutes after emission, complex photochemistry in biomass burning smoke plumes can cause large changes in the concentrations of ozone (O3) and organic aerosol (OA). Being able to understand and simulate this rapid chemical evolution under a wide variety of conditions is a critical part of forecasting the impact of these fires on air quality, atmospheric composition, and climate. Here we use version 2.1 of the Aerosol Simulation Program (ASP) to simulate the evolution ...

  13. Sensitivity studies on the photolysis rates calculation in Amazonian atmospheric chemistry ? Part I: The impact of the direct radiative effect of biomass burning aerosol particles

    OpenAIRE

    Albuquerque, L. M. M.; Longo, K. M.; S. R. Freitas; Tarasova, T.; Plana Fattori, A.; Nobre, C.; Gatti, L. V.

    2005-01-01

    International audience The impact of the direct radiative effect of the aerosol particles on the calculation of the photolysis rates and consequently on the atmospheric chemistry in regional smoke clouds due to biomass burning over the Amazon basin is addressed in this work. It explores a case study for 19 September 2002 at LBA-RACCI-SMOCC (The Large-Scale Biosphere-Atmosphere experiment in Amazonia ? Radiation, Cloud, and Climate Interactions ? Smoke, Aerosols, Clouds, Rainfall and Climat...

  14. Investigation of molar volume and surfactant characteristics of water-soluble organic compounds in biomass burning aerosol

    Directory of Open Access Journals (Sweden)

    A. Asa-Awuku

    2008-02-01

    Full Text Available In this study, we characterize the CCN activity of the water-soluble organics in biomass burning aerosol. The aerosol after collection upon filters is dissolved in water using sonication. Hydrophobic and hydrophilic components are fractionated from a portion of the original sample using solid phase extraction, and subsequently desalted. The surface tension and CCN activity of these different samples are measured with a KSV CAM 200 goniometer and a DMT Streamwise Thermal Gradient CCN Counter, respectively. The measurements show that the strongest surfactants are isolated in the hydrophobic fraction, while the hydrophilics exhibit negligible surface tension depression. The presence of salts (primarily (NH42SO4 in the hydrophobic fraction substantially enhances surface tension depression; their synergistic effects considerably enhance CCN activity, exceeding that of pure (NH42SO4. From our analysis, average thermodynamic properties (i.e, molar volume are determined for samples using our newly developed Köhler Theory Analysis (KTA method. The molar mass of the hydrophilic and hydrophobic aerosol components is estimated to be 87±26 g mol−1 and 780±231 g mol−1, respectively. KTA also suggests that the relative proportion (in moles of hydrophobic to hydrophilic compounds in the original sample to be 1:3. For the first time, KTA is applied to an aerosol with this level of complexity and displays its potential for providing physically-based constraints for GCM parameterizations of the aerosol indirect effect.

  15. Radiocarbon-based impact assessment of open biomass burning on regional carbonaceous aerosols in North China

    Energy Technology Data Exchange (ETDEWEB)

    Zong, Zheng [Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003 (China); Graduate University of Chinese Academy of Sciences, Beijing 100039 (China); Chen, Yingjun, E-mail: yjchen@yic.ac.cn [Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003 (China); Tian, Chongguo, E-mail: cgtian@yic.ac.cn [Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003 (China); Fang, Yin [Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003 (China); Wang, Xiaoping [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Graduate University of Chinese Academy of Sciences, Beijing 100039 (China); Huang, Guopei; Zhang, Fan [Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003 (China); Li, Jun; Zhang, Gan [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China)

    2015-06-15

    Samples of total suspended particulates (TSPs) and fine particulate matter (PM{sub 2.5}) were collected from 29th May to 1st July, 2013 at a regional background site in Bohai Rim, North China. Mass concentrations of particulate matter and carbonaceous species showed a total of 50% and 97% of the measured TSP and PM{sub 2.5} levels exceeded the first grade national standard of China, respectively. Daily concentrations of organic carbon (OC) and elemental carbon (EC) were detected 7.3 and 2.5 μg m{sup −3} in TSP and 5.2 and 2.0 μg m{sup −3} in PM{sub 2.5}, which accounted 5.8% and 2.0% of TSP while 5.6% and 2.2% for PM{sub 2.5}, respectively. The concentrations of OC, EC, TSP and PM{sub 2.5} were observed higher in the day time than those in the night time. The observations were associated with the emission variations from anthropogenic activities. Two merged samples representing from south and north source areas were selected for radiocarbon analysis. The radiocarbon measurements showed 74% of water-insoluble OC (WINSOC) and 59% of EC in PM{sub 2.5} derived from biomass burning and biogenic sources when the air masses were from south region, and 63% and 48% for the air masses from north, respectively. Combined with backward trajectories and daily burned area, open burning of agricultural wastes was found to be predominating, which was confirmed by the potential source contribution function (PSCF). - Highlights: • PM{sub 2.5} and TSP samples collected at Yellow River Delta were analyzed for OC and EC. • OC, EC, TSP and PM{sub 2.5} concentrations were higher in daytime than in nighttime. • Radiocarbon ({sup 14}C) tracer, backward trajectories, and fire counts were used for the analysis. • Agricultural waste open burning was a main contributor to summer PM{sub 2.5}, OC and EC.

  16. Characteristics of carbonaceous aerosols: Impact of biomass burning and secondary formation in summertime in a rural area of the North China Plain.

    Science.gov (United States)

    Yao, Lan; Yang, Lingxiao; Chen, Jianmin; Wang, Xinfeng; Xue, Likun; Li, Weijun; Sui, Xiao; Wen, Liang; Chi, Jianwei; Zhu, Yanhong; Zhang, Junmei; Xu, Caihong; Zhu, Tong; Wang, Wenxing

    2016-07-01

    To determine the characteristics of carbonaceous aerosols in rural areas of the North China Plain, field measurements were conducted at Yucheng (YC) in the summers of 2013 and 2014. The concentrations of carbonaceous aerosols at YC exhibited clear diurnal variation, with higher concentrations in the early morning and at night and lower concentrations during the afternoon hours. The mass-balance method designed for particulate matter smaller than 2.5μm (PM2.5) was used to calculate the organic matter (OM)/organic carbon (OC) ratio. The value obtained, 2.07±0.05, was suggested as a reference to estimate organics in PM2.5 in rural areas of the North China Plain. Biomass burning was identified to be a significant source of carbonaceous aerosols; approximately half of the samples obtained at YC were affected by biomass burning during summer 2013. Case studies revealed that biomass burning accounted for up to 52.6% of the OC and 51.1% of the elemental carbon in PM2.5 samples. The organic coatings observed on sulphur-rich and potassium-rich particles indicated the formation of secondary organic aerosols (SOA) from the oxidation of precursor volatile organic compounds (VOCs) during the aging of smoke released from biomass burning. Based on the evolution of the VOCs, the contribution of VOCs oxidation to SOA concentration was 3.21 and 1.07μgm(-3)ppm(-1) CO under conditions of low nitrogen oxide (NOx) and high NOx, respectively. Aromatics (e.g. benzene, toluene, xylene and ethylbenzene) made the greatest contribution to SOA concentration (88.4% in low-NOx conditions and 80.6% in high-NOx conditions). The results of the study offer novel insights into the effects of biomass burning on the carbonaceous aerosols and SOA formation in polluted rural areas. PMID:27031303

  17. Correlations between Optical, Chemical and Physical Properties ofBiomass Burn Aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Hopkins, Rebecca J.; Lewis, K.; Desyaterik, Yury; Wang, Z.; Tivanski, Alexei V.; Arnott, W.P.; Laskin, Alexander; Gilles, M.K.

    2008-01-29

    Aerosols generated from burning different plant fuels were characterized to determine relationships between chemical, optical and physical properties. Single scattering albedo ({omega}) and Angstrom absorption coefficients ({alpha}{sub ap}) were measured using a photoacoustic technique combined with a reciprocal nephelometer. Carbon-to-oxygen atomic ratios, sp{sup 2} hybridization, elemental composition and morphology of individual particles were measured using scanning transmission X-ray microscopy coupled with near-edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS) and scanning electron microscopy with energy dispersion of X-rays (SEM/EDX). Particles were grouped into three categories based on sp2 hybridization and chemical composition. Measured {omega} (0.4-1.0 at 405 nm) and {alpha}{sub ap} (1.0-3.5) values displayed a fuel dependence. The category with sp{sup 2} hybridization >80% had values of {omega} (<0.5) and {alpha}{sub ap} ({approx}1.25) characteristic of light absorbing soot. Other categories with lower sp2 hybridization (20 to 60%) exhibited higher {omega} (>0.8) and {alpha}{sub ap} (1.0 to 3.5) values, indicating increased absorption spectral selectivity.

  18. Biomass Burning Observation Project Science Plan

    Energy Technology Data Exchange (ETDEWEB)

    Kleinman, KI [Brookhaven National Laboratory; Sedlacek, AJ [Brookhaven National Laboratory

    2013-09-01

    Aerosols from biomass burning perturb Earth’s climate through the direct radiative effect (both scattering and absorption) and through influences on cloud formation and precipitation and the semi-direct effect. Despite much effort, quantities important to determining radiative forcing such as the mass absorption coefficients (MAC) of light-absorbing carbon, secondary organic aerosol (SOA) formation rates, and cloud condensation nuclei (CCN) activity remain in doubt. Field campaigns in northern temperate latitudes have been overwhelmingly devoted to other aerosol sources in spite of biomass burning producing about one-third of the fine particles (PM2.5) in the U.S.

  19. Study of aerosol optical properties at Kunming in southwest China and long-range transport of biomass burning aerosols from North Burma

    Science.gov (United States)

    Zhu, J.; Xia, X.; Che, H.; Wang, J.; Zhang, J.; Duan, Y.

    2016-03-01

    Seasonal variation of aerosol optical properties and dominant aerosol types at Kunming (KM), an urban site in southwest China, is characterized. Substantial influences of the hygroscopic growth and long-range transport of biomass burning (BB) aerosols on aerosol optical properties at KM are revealed. These results are derived from a detailed analysis of (a) aerosol optical properties (e.g. aerosol optical depth (AOD), columnar water vapor (CWV), single scattering albedo (SSA) and size distribution) retrieved from sunphotometer measurements during March 2012-August 2013, (b) satellite AOD and active fire products, (c) the attenuated backscatter profiles from the space-born lidar, and (d) the back-trajectories. The mean AOD440nm and extinction Angstrom exponent (EAE440 - 870) at KM are 0.42 ± 0.32 and 1.25 ± 0.35, respectively. Seasonally, high AOD440nm (0.51 ± 0.34), low EAE440 - 870 (1.06 ± 0.34) and high CWV (4.25 ± 0.97 cm) during the wet season (May - October) contrast with their counterparts 0.17 ± 0.11, 1.40 ± 0.31 and 1.91 ± 0.37 cm during the major dry season (November-February) and 0.53 ± 0.29, 1.39 ± 0.19, and 2.66 ± 0.44 cm in the late dry season (March-April). These contrasts between wet and major dry season, together with the finding that the fine mode radius increases significantly with AOD during the wet season, suggest the importance of the aerosol hygroscopic growth in regulating the seasonal variation of aerosol properties. BB and Urban/Industrial (UI) aerosols are two major aerosol types. Back trajectory analysis shows that airflows on clean days during the major dry season are often from west of KM where the AOD is low. In contrast, air masses on polluted days are from west (in late dry season) and east (in wet season) of KM where the AOD is often large. BB air mass is found mostly originated from North Burma where BB aerosols are lifted upward to 5 km and then subsequently transported to southwest China via prevailing westerly winds.

  20. Emissions of Black Carbon, Organic, and Inorganic Aerosols From Biomass Burning in North America and Asia in 2008

    Science.gov (United States)

    Kondo, Y.; Matsui, H.; Moteki, N.; Sahu, L.; Takegawa, N.; Kajino, M.; Zhao, Y.; Cubison, M. J.; Jimenez, J. L.; Vay, S.; Diskin, G. S.; Anderson, B.; Wisthaler, A.; Mikoviny, T.; Fuelberg, H. E.; Blake, D. R.; Huey, G.; Weinheimer, A. J.; Knapp, D. J.; Brune, W. H.

    2011-01-01

    Reliable assessment of the impact of aerosols emitted from boreal forest fires on the Arctic climate necessitates improved understanding of emissions and the microphysical properties of carbonaceous (black carbon (BC) and organic aerosols (OA)) and inorganic aerosols. The size distributions of BC were measured by an SP2 based on the laser-induced incandescence technique on board the DC-8 aircraft during the NASA ARCTAS campaign. Aircraft sampling was made in fresh plumes strongly impacted by wildfires in North America (Canada and California) in summer 2008 and in those transported from Asia (Siberia in Russia and Kazakhstan) in spring 2008. We extracted biomass burning plumes using particle and tracer (CO, CH3CN, and CH2Cl2) data. OA constituted the dominant fraction of aerosols mass in the submicron range. The large majority of the emitted particles did not contain BC. We related the combustion phase of the fire as represented by the modified combustion efficiency (MCE) to the emission ratios between BC and other species. In particular, we derived the average emission ratios of BC/CO = 2.3 +/- 2.2 and 8.5 +/- 5.4 ng/cu m/ppbv for BB in North America and Asia, respectively. The difference in the BC/CO emission ratios is likely due to the difference in MCE. The count median diameters and geometric standard deviations of the lognormal size distribution of BC in the BB plumes were 136-141 nm and 1.32-1.36, respectively, and depended little on MCE. These BC particles were thickly coated, with shell/core ratios of 1.3-1.6. These parameters can be used directly for improving model estimates of the impact of BB in the Arctic.

  1. Seasonal variation of levoglucosan in aerosols over the western North Pacific and its assessment as a biomass-burning tracer

    Science.gov (United States)

    Mochida, Michihiro; Kawamura, Kimitaka; Fu, Pingqing; Takemura, Toshihiko

    2010-09-01

    Levoglucosan is considered as a useful molecular tracer of biomass-burning aerosols in the atmosphere. To characterize the seasonal variation of its concentrations over the Pacific Ocean and to assess its usefulness as a tracer after long-range transport, we investigated long-term variations of levoglucosan over Chichi-jima in the western North Pacific, from 2001 to 2004. Organic carbon (OC), elemental carbon (EC) and D-glucose were analyzed for comparison. The seasonal variation of levoglucosan concentrations showed a maximum in the winter, which is consistent with the enhanced Asian outflow to the Pacific indicated by backward air-mass trajectories. The concentration levels of levoglucosan estimated from global aerosol model outputs in the winter are, on average, comparable to the observed levels, suggesting that a considerable fraction of levoglucosan did not decompose during long-range transport from the Asian continent by westerly/northwesterly winds. This result is supported by comparable ratios of levoglucosan to EC in Chichi-jima and the East Asian coastal region. Conversely, the measured concentrations of levoglucosan in the summer were significantly lower than the modeled one. This implies a degradation of levoglucosan in the air masses that stagnated over the Pacific, although uncertainties in the model estimate may also be partly responsible for this discrepancy. One possible degradation pathway is oxidation by OH radicals; the contribution of acid-catalyzed reactions needs further investigation.

  2. Water-soluble organic compounds in biomass burning aerosols over Amazonia1. Characterization by NMR and GC-MS

    Science.gov (United States)

    Graham, Bim; Mayol-Bracero, Olga L.; Guyon, Pascal; Roberts, Gregory C.; Decesari, Stefano; Facchini, M. Cristina; Artaxo, Paulo; Maenhaut, Willy; Köll, Peter; Andreae, Meinrat O.

    2002-09-01

    As part of the European contribution to the Large-Scale Atmosphere-Biosphere Experiment in Amazonia (LBA-EUSTACH), aerosols were sampled at representative pasture and primary rainforest sites in Rondônia, Brazil, during the 1999 ``burning season'' and dry-to-wet season transition (September-October). Water-soluble organic compounds (WSOCs) within the samples were characterized using a combination of 1H Nuclear Magnetic Resonance (NMR) spectroscopy for chemical functional group analysis, and Gas Chromatography-Mass Spectrometry (GC-MS) for identification and quantification of individual low-molecular-weight compounds. The 1H NMR analysis indicates that WSOCs are predominantly aliphatic or oxygenated aliphatic compounds (alcohols, carboxylic acids, etc.), with a minor content of aromatic rings carrying carboxylic and phenolic groups. Levoglucosan (1,6-anhydro-β-D-glucose), a well-known cellulose combustion product, was the most abundant individual compound identified by GC-MS (0.04-6.90 μg m-3), accounting for 1-6% of the total carbon (TC) and 2-8% of the water-soluble organic carbon (WSOC). Other anhydrosugars, produced by hemicellulose breakdown, were detected in much smaller amounts, in addition to series of acids, hydroxyacids, oxoacids, and polyalcohols (altogether 2-5% of TC, 3-6% of WSOC). Most correlated well with organic carbon, black carbon, and potassium, indicating biomass burning to be the major source. A series of sugar alcohols (mannitol, arabitol, erythritol) and sugars (glucose, fructose, mannose, galactose, sucrose, trehalose) were identified as part of the natural background aerosol and are probably derived from airborne microbes and other biogenic material. The bulk of the WSOCs (86-91% WSOC) eluded analysis by GC-MS and may be predominantly high-molecular weight in nature.

  3. Airborne measurements of trace gas and aerosol particle emissions from biomass burning in Amazonia

    OpenAIRE

    Guyon, P; Frank, G. P.; M. Welling; D. Chand; Artaxo, P.; L. Rizzo; Nishioka, G.; Kolle, O.; Fritsch, H.; Silva Dias, M. A. F.; L. V. Gatti; Cordova, A. M.; Andreae, M.O.

    2005-01-01

    As part of the LBA-SMOCC (Large-Scale Biosphere-Atmosphere Experiment in Amazonia – Smoke, Aerosols, Clouds, Rainfall, and Climate) 2002 campaign, we studied the emission of carbon monoxide (CO), carbon dioxide (CO2), and aerosol particles from Amazonian deforestation fires using an instrumented aircraft. Emission ratios for aerosol number (CN) relative to CO (ERCN/CO) fell in the range 14–32 cm-3&nbs...

  4. Parameterization of single-scattering albedo (SSA) and absorption Ångström exponent (AAE) with EC / OC for aerosol emissions from biomass burning

    Science.gov (United States)

    Pokhrel, Rudra P.; Wagner, Nick L.; Langridge, Justin M.; Lack, Daniel A.; Jayarathne, Thilina; Stone, Elizabeth A.; Stockwell, Chelsea E.; Yokelson, Robert J.; Murphy, Shane M.

    2016-08-01

    Single-scattering albedo (SSA) and absorption Ångström exponent (AAE) are two critical parameters in determining the impact of absorbing aerosol on the Earth's radiative balance. Aerosol emitted by biomass burning represent a significant fraction of absorbing aerosol globally, but it remains difficult to accurately predict SSA and AAE for biomass burning aerosol. Black carbon (BC), brown carbon (BrC), and non-absorbing coatings all make substantial contributions to the absorption coefficient of biomass burning aerosol. SSA and AAE cannot be directly predicted based on fuel type because they depend strongly on burn conditions. It has been suggested that SSA can be effectively parameterized via the modified combustion efficiency (MCE) of a biomass burning event and that this would be useful because emission factors for CO and CO2, from which MCE can be calculated, are available for a large number of fuels. Here we demonstrate, with data from the FLAME-4 experiment, that for a wide variety of globally relevant biomass fuels, over a range of combustion conditions, parameterizations of SSA and AAE based on the elemental carbon (EC) to organic carbon (OC) mass ratio are quantitatively superior to parameterizations based on MCE. We show that the EC / OC ratio and the ratio of EC / (EC + OC) both have significantly better correlations with SSA than MCE. Furthermore, the relationship of EC / (EC + OC) with SSA is linear. These improved parameterizations are significant because, similar to MCE, emission factors for EC (or black carbon) and OC are available for a wide range of biomass fuels. Fitting SSA with MCE yields correlation coefficients (Pearson's r) of ˜ 0.65 at the visible wavelengths of 405, 532, and 660 nm while fitting SSA with EC / OC or EC / (EC + OC) yields a Pearson's r of 0.94-0.97 at these same wavelengths. The strong correlation coefficient at 405 nm (r = 0.97) suggests that parameterizations based on EC / OC or EC / (EC + OC) have good predictive

  5. Single-particle characterization of biomass burning organic aerosol (BBOA): evidence for non-uniform mixing of high molecular weight organics and potassium

    Science.gov (United States)

    Lee, Alex K. Y.; Willis, Megan D.; Healy, Robert M.; Wang, Jon M.; Jeong, Cheol-Heon; Wenger, John C.; Evans, Greg J.; Abbatt, Jonathan P. D.

    2016-05-01

    Biomass burning organic aerosol (BBOA) can be emitted from natural forest fires and human activities such as agricultural burning and domestic energy generation. BBOA is strongly associated with atmospheric brown carbon (BrC) that absorbs near-ultraviolet and visible light, resulting in significant impacts on regional visibility degradation and radiative forcing. The mixing state of BBOA can play a critical role in the prediction of aerosol optical properties. In this work, single-particle measurements from a Soot-Particle Aerosol Mass Spectrometer coupled with a light scattering module (LS-SP-AMS) were performed to examine the mixing state of BBOA, refractory black carbon (rBC), and potassium (K, a tracer for biomass burning aerosol) in an air mass influenced by wildfire emissions transported from northern Québec to Toronto, representing aged biomass burning plumes. Cluster analysis of single-particle measurements identified five BBOA-related particle types. rBC accounted for 3-14 wt % of these particle types on average. Only one particle type exhibited a strong ion signal for K+, with mass spectra characterized by low molecular weight organic species. The remaining four particle types were classified based on the apparent molecular weight of the BBOA constituents. Two particle types were associated with low potassium content and significant amounts of high molecular weight (HMW) organic compounds. Our observations indicate non-uniform mixing of particles within a biomass burning plume in terms of molecular weight and illustrate that HMW BBOA can be a key contributor to low-volatility BrC observed in BBOA particles. The average mass absorption efficiency of low-volatility BBOA is about 0.8-1.1 m2 g-1 based on a theoretical closure calculation. Our estimates indicate that low-volatility BBOA contributes ˜ 33-44 % of thermo-processed particle absorption at 405 nm; and almost all of the BBOA absorption was associated with low-volatility organics.

  6. Chemical aging of single and multicomponent biomass burning aerosol surrogate particles by OH: implications for cloud condensation nucleus activity

    Directory of Open Access Journals (Sweden)

    J. H. Slade

    2015-09-01

    Full Text Available Multiphase OH and O3 oxidation reactions with atmospheric organic aerosol (OA can influence particle physicochemical properties including composition, morphology, and lifetime. Chemical aging of initially insoluble or low-soluble single-component OA by OH and O3 can increase their water solubility and hygroscopicity, making them more active as cloud condensation nuclei (CCN and susceptible to wet deposition. However, an outstanding problem is whether the effects of chemical aging on their CCN activity are preserved when mixed with other organic or inorganic compounds exhibiting greater water solubility. In this work, the CCN activity of laboratory-generated biomass burning aerosol (BBA surrogate particles exposed to OH and O3 is evaluated by determining the hygroscopicity parameter, κ, as a function of particle type, mixing state, and OH and O3 exposure applying a CCN counter (CCNc coupled to an aerosol flow reactor (AFR. Levoglucosan (LEV, 4-methyl-5-nitrocatechol (MNC, and potassium sulfate (KS serve as representative BBA compounds that exhibit different hygroscopicity, water solubility, chemical functionalities, and reactivity with OH radicals, and thus exemplify the complexity of mixed inorganic/organic aerosol in the atmosphere. The CCN activities of all of the particles were unaffected by O3 exposure. Following exposure to OH, κ of MNC was enhanced by an order of magnitude, from 0.009 to ~ 0.1, indicating that chemically aged MNC particles are better CCN and more prone to wet deposition than pure MNC particles. No significant enhancement in κ was observed for pure LEV particles following OH exposure. κ of the internally mixed particles was not affected by OH oxidation. Furthermore, the CCN activity of OH-exposed MNC-coated KS particles is similar to the OH unexposed atomized 1 : 1 by mass MNC : KS binary-component particles. Our results strongly suggest that when OA is dominated by water-soluble organic carbon (WSOC or inorganic ions

  7. Impacts of controlling biomass burning emissions on wintertime carbonaceous aerosol in Europe

    NARCIS (Netherlands)

    Fountoukis, C.; Butler, T.; Lawrence, M.G.; Denier van der Gon, H.A.C.; Visschedijk, A.J.H.; Charalampidis, P.; Pilinis, C.; Pandis, S.N.

    2014-01-01

    We use a 3-D regional chemical transport model, with the latest advancements in the organic aerosol (OA) treatment, and an updated emission inventory for wood combustion to study the organic aerosol change in response to the replacement of current residential wood combustion technologies with pellet

  8. Effects of biomass-burning-derived aerosols on precipitation and clouds in the Amazon Basin: a satellite-based empirical study

    Science.gov (United States)

    Lin, J. C.; Matsui, T.; Pielke, R. A.; Kummerow, C.

    2006-10-01

    Biomass burning in the Amazon provides strong input of aerosols into the atmosphere, with potential effects on precipitation, cloud properties, and radiative balance. However, few studies to date have systematically examined these effects at the scale of the Amazon Basin, over an entire burning season, using available data sets. We empirically study the relationships of aerosol optical depth (τa) versus rainfall and cloud properties measured from satellites over the entire Brazilian Amazon during the dry, biomass burning seasons (August-October) of 2000 and 2003. Elevated τa was associated with increased rainfall in both 2000 and 2003. With enhanced τa, cloud cover increased significantly, and cloud top temperature/pressure decreased, suggesting higher cloud tops. The cloud droplet effective radius (Re) exhibited minimal growth with cloud height under background levels of τa, while distinct increases in Re at cloud top temperatures below -10°C, indicative of ice formation, were observed with aerosol loading. Although empirical correlations do not unequivocally establish the causal link from aerosols, these results are consistent with previous observational and modeling studies that pointed to dynamical effects from aerosols that invigorate convection, leading to higher clouds, enhanced cloud cover, and stronger rainfall. We speculate that changes in precipitation and cloud properties associated with aerosol loading observed in this study could have important radiative and hydrological effects on the Amazonian climate system. The accelerated forest burning for agricultural land clearing and the resulting enhancements in aerosols and rainfall may even partially account for the observed positive trend in Amazonian precipitation over the past several decades.

  9. Modelling the optical properties of fresh biomass burning aerosol produced in a smoke chamber: results from the EFEU campaign

    Directory of Open Access Journals (Sweden)

    K. Hungershoefer

    2008-07-01

    Full Text Available A better characterisation of the optical properties of biomass burning aerosol as a function of the burning conditions is required in order to quantify their effects on climate and atmospheric chemistry. Controlled laboratory combustion experiments with different fuel types were carried out at the combustion facility of the Max Planck Institute for Chemistry (Mainz, Germany as part of the "Impact of Vegetation Fires on the Composition and Circulation of the Atmosphere" (EFEU project. The combustion conditions were monitored with concomitant CO2 and CO measurements. The mass scattering efficiencies of 8.9±0.2 m2 g−1 and 9.3±0.3 m2 g−1 obtained for aerosol particles from the combustion of savanna grass and an African hardwood (musasa, respectively, are larger than typically reported mainly due to differences in particle size distribution. The photoacoustically measured mass absorption efficiencies of 0.51±0.02 m2 g−1 and 0.50±0.02 m2 g−1 were at the lower end of the literature values. Using the measured size distributions as well as the mass scattering and absorption efficiencies, Mie calculations provided effective refractive indices of 1.60−0.010i (savanna grass and 1.56−0.010i (musasa (λ=0.55 μm. The apparent discrepancy between the low imaginary part of the refractive index and the high apparent elemental carbon (ECa fractions (8 to 15% obtained from the thermographic analysis of impactor samples can be explained by a positive bias in the elemental carbon data due to the presence of high molecular weight organic substances. Potential artefacts in optical properties due to instrument bias, non-natural burning conditions and unrealistic dilution history of the laboratory smoke cannot be ruled out and are also discussed in this study.

  10. Estimation of Biomass Burning Influence on Air Pollution around Beijing from an Aerosol Retrieval Model

    OpenAIRE

    Sonoyo Mukai; Masayoshi Yasumoto; Makiko Nakata

    2014-01-01

    We investigate heavy haze episodes (with dense concentrations of atmospheric aerosols) occurring around Beijing in June, when serious air pollution was detected by both satellite and ground measurements. Aerosol retrieval is achieved by radiative transfer simulation in an Earth atmosphere model. We solve the radiative transfer problem in the case of haze episodes by successive order of scattering. We conclude that air pollution around Beijing in June is mainly due to increased emissions of an...

  11. Are atmospheric aerosols able to modify the surface winds? A sensitivity study of the biomass burning aerosols impact on the spatially-distributed wind over Europe

    Science.gov (United States)

    Baró, Rocío; Lorente-Plazas, Raquel; Jerez, Sonia; Montávez, Juan Pedro; Jiménez-Guerrero, Pedro

    2015-04-01

    Atmospheric aerosols affect the Earth's climate through their radiative effects, being one of the most uncertain areas in climate modelling. Aerosols are widely known to affect radiation, temperature, stability, clouds and precipitation through their radiative effects, which depend mainly on the aerosol optical properties. These can be divided into direct and semi-direct effect, produced by the scattering and absorption of radiation; and indirect effect, which influences the aerosols-cloud interactions. In this sense, wind fields affect aerosols levels by several different processes, finally resulting in a wind-dependent emission over land or ocean. Moreover they can disperse the particles leading to a cleaner atmosphere. But, how do aerosol particles affect the wind? Scientific literature about their effects on wind is scarce. In this sense, the objective of this work is to assess the effects of biomass burning aerosols on spatially-distributed winds over Europe. The methodology carried out consists of three WRF-Chem simulations for Europe during the Russian fires (25 July to 15 August 2010) differing in the inclusion (or not) of aerosol direct and direct+indirect radiative feedbacks. These simulations have been carried out under the umbrella of the EuMetChem COST ES1004 Action. A Euro-CORDEX compliant domain at 0.22° and 23 km resolution has been used. The first simulation does not take into account any aerosol feedbacks (NFB), the second simulation differs from the base case by the inclusion of direct effect (DFB); while the third includes the direct+indirect radiative feedbacks (TFB). Results depict that the presence of aerosol reduces the wind module over Russian. Aerosol radiative effects imply a decrease of the shortwave downwelling radiation at the bottom of the atmosphere (with maximum values of 50 W m-2 over Russia). As a consequence there is a reduction on the temperature at 2 m up to 1 K. The decrease of the temperature reduces the convective processes

  12. Fractional iron solubility of aerosol particles enhanced by biomass burning and ship emission in Shanghai, East China.

    Science.gov (United States)

    Fu, H B; Shang, G F; Lin, J; Hu, Y J; Hu, Q Q; Guo, L; Zhang, Y C; Chen, J M

    2014-05-15

    In terms of understanding Fe mobilization from aerosol particles in East China, the PM2.5 particles were collected in spring at Shanghai. Combined with the backtrajectory analysis, the PM2.5/PM10 and Ca/Al ratios, a serious dust-storm episode (DSE) during the sampling was identified. The single-particle analysis showed that the major iron-bearing class is the aluminosilicate dust during DSE, while the Fe-bearing aerosols are dominated by coal fly ash, followed by a minority of iron oxides during the non-dust storm days (NDS). Chemical analyses of samples showed that the fractional Fe solubility (%FeS) is much higher during NDS than that during DSE, and a strong inverse relationship of R(2)=0.967 between %FeS and total atmospheric iron loading were found, suggested that total Fe (FeT) is not controlling soluble Fe (FeS) during the sampling. Furthermore, no relationship between FeS and any of acidic species was established, suggesting that acidic process on aerosol surfaces are not involved in the trend of iron solubility. It was thus proposed that the source-dependent composition of aerosol particles is a primary determinant for %FeS. Specially, the Al/Fe ratio is poorly correlated (R(2)=0.113) with %FeS, while the apparent relationship between %FeS and the calculated KBB(+)/Fe ratio (R(2)=0.888) and the V/Fe ratio (R(2)=0.736) were observed, reflecting that %FeS could be controlled by both biomass burning and oil ash from ship emission, rather than mineral particles and coal fly ash, although the latter two are the main contributors to the atmospheric Fe loading during the sampling. Such information can be useful improving our understanding on iron solubility on East China, which may further correlate with iron bioavailability to the ocean, as well as human health effects associated with exposure to fine Fe-rich particles in densely populated metropolis in China. PMID:24607631

  13. Low molecular weight organic acids in aerosol particles from Rondônia, Brazil, during the biomass-burning, transition and wet periods

    Directory of Open Access Journals (Sweden)

    A. H. Falkovich

    2005-01-01

    Full Text Available Particles from biomass burning and regional haze were sampled in Rondônia, Brazil, during dry, transition and wet periods from September to November 2002, as part of the LBA-SMOCC (Large-Scale Biosphere-Atmosphere Experiment in Amazonia – Smoke, Aerosols, Clouds, Rainfall, and Climate field campaign. Water soluble organic and inorganic compounds in bulk (High Volume and Stacked Filter Unit sampler and size-resolved (Micro Orifice Uniform Deposit Impactor – MOUDI smoke samples were determined by ion chromatography. It was found that low molecular weight polar organic acids account for a significant fraction of the water soluble organic carbon (WSOC in biomass burning aerosols (C2-C6 dicarboxylic acids reached up to 3.7% and one-ring aromatic acids reached up to 2% of fine fraction WSOC during burning period. Short dicarboxylic (C2-C6 acids are dominated by oxalic acid followed by malonic and succinic acids. The largest ionic species is ammonium sulfate (60–70% of ionic mass. It was found that most of the ionic mass is concentrated in submicrometer-sized particles. Based on the size distribution and correlations with K+, a known biomass burning tracer, it is suggested that many of the organic acids are directly emitted by vegetation fires. Concentrations of dicarboxylic acids in the front and back filters of high volume sampler were determined. Based on these measurements, it was concluded that in the neutral or slightly basic smoke particles typical of this region, dicarboxylic acids are mostly confined to the particulate phase. Finally, it is shown that the distribution of water soluble species shifts to larger aerosols sizes as the aerosol population ages and mixes with other aerosol types in the atmosphere.

  14. Low molecular weight organic acids in aerosol particles from Rondônia, Brazil, during the biomass-burning, transition and wet periods

    Directory of Open Access Journals (Sweden)

    P. Artaxo

    2004-10-01

    Full Text Available Particles from biomass burning and regional haze were sampled in Rondônia, Brazil, during dry, transition and wet periods from September to November 2002, as part of the LBA-SMOCC (Large-Scale Biosphere-Atmosphere Experiment in Amazonia – Smoke, Aerosols, Clouds, Rainfall, and Climate field campaign. Water soluble organic and inorganic compounds in bulk (High Volume and Stacked Filter Unit sampler and size-resolved (Micro Orifice Uniform Deposit Impactor – MOUDI smoke samples were determined by ion chromatography. It was found that low molecular weight polar organic acids account for a significant fraction of the water soluble organic carbon (WSOC in biomass burning aerosols (C2-C6 dicarboxylic acids reached up to 3.7% and one-ring aromatic acids reached up to 2% of fine fraction WSOC during burning period. Short dicarboxylic (C2-C6 acids are dominated by oxalic acid followed by malonic and succinic acids. The largest ionic species is ammonium sulfate (60–70% of ionic mass. It was found that most of the ionic mass is concentrated in submicrometer-sized particles. Based on the size distribution and correlations with K+, a known biomass burning tracer, it is suggested that many of the organic acids are directly emitted by vegetation fires. It is concluded that the dicarboxylic acids are mostly confined to the particulate phase, and no evidence for semi-volatile behavior was observed. Finally, it is shown that the distribution of water soluble species shifts to larger aerosols sizes as the aerosol population ages and mixes with other aerosol types in the atmosphere.

  15. Low molecular weight organic acids in aerosol particles from Rondônia, Brazil, during the biomass-burning, transition and wet periods

    OpenAIRE

    Falkovich, A. H.; E. R. Graber; G. Schkolnik; Rudich, Y.; Maenhaut, W.; Artaxo, P.

    2005-01-01

    Particles from biomass burning and regional haze were sampled in Rondônia, Brazil, during dry, transition and wet periods from September to November 2002, as part of the LBA-SMOCC (Large-Scale Biosphere-Atmosphere Experiment in Amazonia – Smoke, Aerosols, Clouds, Rainfall, and Climate) field campaign. Water soluble organic and inorganic compounds in bulk (High Volume and Stacked Filter Unit sampler) and size-resolved (Micro Orifice Uniform Deposit Impactor – MOUDI) smoke samp...

  16. Low molecular weight organic acids in aerosol particles from Rondônia, Brazil, during the biomass-burning, transition and wet periods

    OpenAIRE

    Falkovich, A. H.; E. R. Graber; G. Schkolnik; Rudich, Y.; Maenhaut, W.; Artaxo, P.

    2005-01-01

    Particles from biomass burning and regional haze were sampled in Rondônia, Brazil, during dry, transition and wet periods from September to November 2002, as part of the LBA-SMOCC (Large-Scale Biosphere-Atmosphere Experiment in Amazonia – Smoke, Aerosols, Clouds, Rainfall, and Climate) field campaign. Water soluble organic and inorganic compounds in bulk (High Volume and Stacked Filter Unit sampler) and size-resolved (Micro Orifice Uniform Deposit Impactor –...

  17. Low molecular weight organic acids in aerosol particles from Rondônia, Brazil, during the biomass-burning, transition and wet periods

    OpenAIRE

    Artaxo, P.; Maenhaut, W.; Rudich, Y.; G. Schkolnik; Falkovich, A. H.; E. R. Graber

    2004-01-01

    Particles from biomass burning and regional haze were sampled in Rondônia, Brazil, during dry, transition and wet periods from September to November 2002, as part of the LBA-SMOCC (Large-Scale Biosphere-Atmosphere Experiment in Amazonia – Smoke, Aerosols, Clouds, Rainfall, and Climate) field campaign. Water soluble organic and inorganic compounds in bulk (High Volume and Stacked Filter Unit sampler) and size-resolved (Micro Orifice Uniform Deposit Impactor – MOUDI) smoke samp...

  18. Diurnal variations of organic molecular tracers and stable carbon isotopic compositions in atmospheric aerosols over Mt. Tai in North China Plain: an influence of biomass burning

    Directory of Open Access Journals (Sweden)

    Z. F. Wang

    2012-04-01

    Full Text Available Organic tracer compounds of tropospheric aerosols, as well as organic carbon (OC, elemental carbon (EC, water-soluble organic carbon (WSOC, and stable carbon isotope ratios (δ13C of total carbon (TC have been investigated for aerosol samples collected during early and late periods of Mount Tai eXperiment 2006 (MTX2006 field campaign in North China Plain. Total solvent extracts were investigated by gas chromatography/mass spectrometry. More than 130 organic compounds were detected in the aerosol samples. They were grouped into twelve organic compound classes, including biomass burning tracers, biogenic primary sugars, biogenic secondary organic aerosol (SOA tracers, and anthropogenic tracers such as phthalates, hopanes and polycyclic aromatic hydrocarbons (PAHs. In early June when the field burning activities of wheat straws in North China Plain were very active, the total identified organics (2090 ± 1170 ng m−3 were double those in late June (926 ± 574 ng m−3. All the compound classes were more abundant in early June than in late June, except phthalate esters, which were higher in late June. Levoglucosan (88–1210 ng m−3, 403 ng m−3 was found as the most abundant single compound in early June, while diisobutyl phthalate was the predominant species in late June. During the biomass-burning period in early June, the diurnal trends of most of the primary and secondary organic aerosol tracers were characterized by the concentration peaks observed at mid-night or in early morning, while in late June most of the organic species peaked in late afternoon. This suggests that smoke plumes from biomass burning can uplift the aerosol particulate matter to a certain altitude and then transported to and encountered the summit of Mt. Tai during nighttime. On the basis of the tracer-based method for the estimation of biomass-burning OC, fungal-spore OC and biogenic secondary organic carbon (SOC

  19. Diurnal variations of organic molecular tracers and stable carbon isotopic composition in atmospheric aerosols over Mt. Tai in the North China Plain: an influence of biomass burning

    Directory of Open Access Journals (Sweden)

    P. Q. Fu

    2012-09-01

    Full Text Available Organic tracer compounds, as well as organic carbon (OC, elemental carbon (EC, water-soluble organic carbon (WSOC, and stable carbon isotope ratios (δ13C of total carbon (TC have been investigated in aerosol samples collected during early and late periods of the Mount Tai eXperiment 2006 (MTX2006 field campaign in the North China Plain. Total solvent-extractable fractions were investigated by gas chromatography/mass spectrometry. More than 130 organic compounds were detected in the aerosol samples. They were grouped into twelve organic compound classes, including biomass burning tracers, biogenic primary sugars, biogenic secondary organic aerosol (SOA tracers, and anthropogenic tracers such as phthalates, hopanes and polycyclic aromatic hydrocarbons (PAHs. In early June when the field burning activities of wheat straws in the North China Plain were very active, the total identified organics (2090 ± 1170 ng m−3 were double those in late June (926 ± 574 ng m−3. All the compound classes were more abundant in early June than in late June, except phthalate esters, which were higher in late June. Levoglucosan (88–1210 ng m−3, mean 403 ng m−3 was found as the most abundant single compound in early June, while diisobutyl phthalate was the predominant species in late June. During the biomass-burning period in early June, the diurnal trends of most of the primary and secondary organic aerosol tracers were characterized by the concentration peaks observed at mid-night or in early morning, while in late June most of the organic species peaked in late afternoon. This suggests that smoke plumes from biomass burning can uplift the aerosol particulate matter to a certain altitude, which could be further transported to and encountered the summit of Mt. Tai during nighttime. On the basis of the tracer-based method for the estimation of biomass-burning OC, fungal-spore OC and biogenic secondary

  20. Using Raman-lidar-based regularized microphysical retrievals and Aerosol Mass Spectrometer measurements for the characterization of biomass burning aerosols

    Science.gov (United States)

    Samaras, Stefanos; Nicolae, Doina; Böckmann, Christine; Vasilescu, Jeni; Binietoglou, Ioannis; Labzovskii, Lev; Toanca, Florica; Papayannis, Alexandros

    2015-10-01

    In this work we extract the microphysical properties of aerosols for a collection of measurement cases with low volume depolarization ratio originating from fire sources captured by the Raman lidar located at the National Institute of Optoelectronics (INOE) in Bucharest. Our algorithm was tested not only for pure smoke but also for mixed smoke and urban aerosols of variable age and growth. Applying a sensitivity analysis on initial parameter settings of our retrieval code was proved vital for producing semi-automatized retrievals with a hybrid regularization method developed at the Institute of Mathematics of Potsdam University. A direct quantitative comparison of the retrieved microphysical properties with measurements from a Compact Time of Flight Aerosol Mass Spectrometer (CToF-AMS) is used to validate our algorithm. Microphysical retrievals performed with sun photometer data are also used to explore our results. Focusing on the fine mode we observed remarkable similarities between the retrieved size distribution and the one measured by the AMS. More complicated atmospheric structures and the factor of absorption appear to depend more on particle radius being subject to variation. A good correlation was found between the aerosol effective radius and particle age, using the ratio of lidar ratios (LR: aerosol extinction to backscatter ratios) as an indicator for the latter. Finally, the dependence on relative humidity of aerosol effective radii measured on the ground and within the layers aloft show similar patterns.

  1. The effect of ENSO-induced rainfall and circulation changes on the direct and indirect radiative forcing from Indonesian biomass-burning aerosols

    Directory of Open Access Journals (Sweden)

    A. Chrastansky

    2012-12-01

    Full Text Available Emissions of biomass-burning aerosols from the Indonesian region are known to vary in response to rainfall anomalies associated with the El Niño Southern Oscillation (ENSO. For the severe El Niño-related drought in 1997, there have been several attempts to estimate the direct radiative forcing from increased aerosol emissions over Indonesia, as well as the associated feedbacks on climate. However, these estimates have not considered indirect aerosol effects. Another question that has not been addressed is whether the effect of ENSO-related circulation and rainfall anomalies on radiative forcing is significant relative to the effect of changes in emissions. In this study, we analyse the direct and first indirect radiative forcing from El Niño-related increased emissions of Indonesian biomass-burning aerosols, with and without the influence of ENSO-related rainfall and circulation anomalies.

    We compare two experiments that are performed with the CSIRO-Mk3.6 atmospheric global climate model (GCM. The first experiment (AMIP consists of a pair of runs that respectively represent El Niño and La Niña conditions. In these runs, the distribution of aerosols is simulated under the influence of realistic Indonesian biomass-burning aerosol emissions and sea surface temperatures (SSTs for 1997 (El Niño and 2000 (La Niña. The second experiment (CLIM is identical to AMIP, but is forced by climatological SSTs, so that in CLIM meteorological differences between 1997 and 2000 are suppressed.

    The comparison of AMIP and CLIM shows that the aerosol radiative forcing anomalies associated with ENSO (El Niño minus La Niña are substantially stronger when ENSO-related SST anomalies are taken into account. For the first indirect effect, the influence of SST-induced changes in rainfall and circulation exceeds that of changes in emissions. For the direct aerosol forcing, the influence of changes in SSTs and emissions are of comparable magnitude

  2. Microphysical and radiative effects of aerosols on warm clouds during the Amazon biomass burning season as observed by MODIS: impacts of water vapor and land cover

    Directory of Open Access Journals (Sweden)

    J. E. Ten Hoeve

    2011-04-01

    Full Text Available Aerosol, cloud, water vapor, and temperature profile data from the Moderate Resolution Imaging Spectroradiometer (MODIS are utilized to examine the impact of aerosols on clouds during the Amazonian biomass burning season in Rondônia, Brazil. It is found that increasing background column water vapor (CWV throughout this transition season between the Amazon dry and wet seasons likely exerts a strong effect on cloud properties. As a result, proper analysis of aerosol-cloud relationships requires that data be stratified by CWV to account better for the influence of background meteorological variation. Many previous studies of aerosol-cloud interactions over Amazonia have ignored the systematic changes to meteorological factors during the transition season, leading to possible misinterpretation of their results. Cloud fraction (CF is shown to increase or remain constant with aerosol optical depth (AOD, depending on the value of CWV, whereas the relationship between cloud optical depth (COD and AOD is quite different. COD increases with AOD until AOD ~ 0.3, which is assumed to be due to the first indirect (microphysical effect. At higher values of AOD, COD is found to decrease with increasing AOD, which may be due to: (1 the inhibition of cloud development by absorbing aerosols (radiative effect/semi-direct effect and/or (2 a possible retrieval artifact in which the measured reflectance in the visible is less than expected from a cloud top either from the darkening of clouds through the addition of carbonaceous biomass burning aerosols within or above clouds or subpixel dark surface contamination in the measured cloud reflectance. If (1 is a contributing mechanism, as we suspect, then an empirically-derived increasing function between cloud drop number and aerosol concentration, assumed in a majority of global climate models, is inaccurate since these models do not include treatment of aerosol absorption in and around clouds. The relationship between

  3. Long-range transport and mixing of aerosol sources during the 2013 North American biomass burning episode: analysis of multiple lidar observations in the western Mediterranean basin

    Science.gov (United States)

    Ancellet, Gerard; Pelon, Jacques; Totems, Julien; Chazette, Patrick; Bazureau, Ariane; Sicard, Michaël; Di Iorio, Tatiana; Dulac, Francois; Mallet, Marc

    2016-04-01

    Long-range transport of biomass burning (BB) aerosols between North America and the Mediterranean region took place in June 2013. A large number of ground-based and airborne lidar measurements were deployed in the western Mediterranean during the Chemistry-AeRosol Mediterranean EXperiment (ChArMEx) intensive observation period. A detailed analysis of the potential North American aerosol sources is conducted including the assessment of their transport to Europe using forward simulations of the FLEXPART Lagrangian particle dispersion model initialized using satellite observations by MODIS and CALIOP. The three-dimensional structure of the aerosol distribution in the ChArMEx domain observed by the ground-based lidars (Minorca, Barcelona and Lampedusa), a Falcon-20 aircraft flight and three CALIOP tracks, agrees very well with the model simulation of the three major sources considered in this work: Canadian and Colorado fires, a dust storm from western US and the contribution of Saharan dust streamers advected from the North Atlantic trade wind region into the westerlies region. Four aerosol types were identified using the optical properties of the observed aerosol layers (aerosol depolarization ratio, lidar ratio) and the transport model analysis of the contribution of each aerosol source: (i) pure BB layer, (ii) weakly dusty BB, (iii) significant mixture of BB and dust transported from the trade wind region, and (iv) the outflow of Saharan dust by the subtropical jet and not mixed with BB aerosol. The contribution of the Canadian fires is the major aerosol source during this episode while mixing of dust and BB is only significant at an altitude above 5 km. The mixing corresponds to a 20-30 % dust contribution in the total aerosol backscatter. The comparison with the MODIS aerosol optical depth horizontal distribution during this episode over the western Mediterranean Sea shows that the Canadian fire contributions were as large as the direct northward dust outflow

  4. Biomass burning as an important source of reactive oxygen species associated with the atmospheric aerosols in Southeastern United States - Implications for health effects of ambient particulate matter

    Science.gov (United States)

    Verma, V.; Weber, R. J. J.; Fang, T.; Xu, L.; Ng, N. L.; Russell, A. G.

    2014-12-01

    We assessed the potential of water-soluble fraction of atmospheric fine aerosols in the southeastern US to generate reactive oxygen species (ROS). ROS-generation potential of particles was quantified by the dithiothreitol (DTT) assay and involved analysis of fine particulate matter (PM) extracted from high-volume quartz filters (23 h integrated daily samples) collected for one year at various sites in different environmental settings in the southeast, including three urban Atlanta sites, and one rural site in Yorkville. Water-soluble PM extracts were further separated into the hydrophobic and hydrophilic fractions using a C-18 column, and both fractions were analyzed for the DTT activity. Organic aerosol (OA) composition was measured at selected sites using a High-Resolution Time-of-Flight Aerosol Mass Spectrophotometer (HR-ToF-AMS). The various factors of the organic aerosols, i.e. Isoprene OA (Isop-OA), hydrocarbon-like OA (HOA), less-oxidized oxygenated OA, (LO-OOA), more-oxidized OOA (MO-OOA), cooking OA (COA), and biomass burning OA (BBOA) were also resolved, and their ability to generate ROS investigated by linear regression techniques. Among all OA factors, BBOA was most consistently associated with ROS, with the highest intrinsic DTT activity of 151±20 pmol/min/μg. The water-soluble bioavailable fraction of BBOA-DTT activity is 2-3 times higher than the reported total-DTT activity of diesel exhaust particles. The total contribution of various aerosol sources to the ROS generating potential was also determined by the positive matrix factorization approach. Interestingly, biomass burning appears as the strongest source of ROS generation, with its annual contribution of 35 % to DTT activity; the contribution was higher in winter (47 %), than summer (24 %) and fall (17 %) seasons. The good agreement between the hydrophobic DTT activity with that estimated from the summed OA components, indicates that humic-like substances (HULIS), which are abundantly emitted

  5. Reduction in biomass burning aerosol light absorption upon humidification: Roles of inorganically-induced hygroscopicity, particle collapse, and photoacoustic heat and mass transfer

    Energy Technology Data Exchange (ETDEWEB)

    lewis, Kristen A.; Arnott, W. P.; Moosmuller, H.; Chakrabarti, Raj; Carrico, Christian M.; Kreidenweis, Sonia M.; Day, Derek E.; Malm, William C.; Laskin, Alexander; Jimenez, Jose L.; Ulbrich, Ingrid M.; Huffman, John A.; Onasch, Timothy B.; Trimborn, Achim; Liu, Li; Mishchenko, M.

    2009-11-27

    Smoke particle emissions from the combustion of biomass fuels typical for the western and southeastern United States were studied and compared under high humidity and ambient conditions in the laboratory. The fuels used are Montana ponderosa pine (Pinus ponderosa), southern California chamise (Adenostoma fasciculatum), and Florida saw palmetto (Serenoa repens). Information on the non-refractory chemical composition of biomass burning aerosol from each fuel was obtained with an aerosol mass spectrometer and through estimation of the black carbon concentration from light absorption measurements at 870 nm. Changes in the optical and physical particle properties under high humidity conditions were observed for hygroscopic smoke particles containing substantial inorganic mass fractions that were emitted from combustion of chamise and palmetto fuels. Light scattering cross sections increased under high humidity for these particles, consistent with the hygroscopic growth measured for 100 nm particles in HTDMA measurements. Photoacoustic measurements of aerosol light absorption coefficients reveal a 20% reduction with increasing relative humidity, contrary to the expectation of light absorption enhancement by the liquid coating taken up by hygroscopic particles. This reduction is hypothesized to arise from two mechanisms: 1. Shielding of inner monomers after particle consolidation or collapse with water uptake; 2. The contribution of mass transfer through evaporation and condensation at high relative humidity to the usual heat transfer pathway for energy release by laser heated particles in the photoacoustic measurement of aerosol light absorption. The mass transfer contribution is used to evaluate the fraction of aerosol surface covered with liquid water solution as a function of RH.

  6. Absorbing and scattering aerosols over the source region of biomass burning emissions: Implications in the assessment of optical and radiative properties

    Science.gov (United States)

    Singh, Atinderpal; Srivastava, Rohit; Rastogi, Neeraj; Singh, Darshan

    2016-02-01

    The current study focuses on the assessment of model simulated optical and radiative properties of aerosols incorporating the measured chemical composition of aerosol samples collected at Patiala during October, 2011-February, 2012. Monthly average mass concentration of PM2.5, elemental carbon (EC), primary organic carbon (POC), water-soluble (WS) and insoluble (INS) aerosols ranged from 120 to 192, 6.2 to 7.2, 20 to 39, 59 to 111 and 35 to 90 μg m-3, respectively. Mass concentration of different components of aerosols was further used for the assessment of optical properties derived from Optical Properties of Aerosols and Clouds (OPAC) model simulations. Microtops based measured aerosol optical depth (AOD500) ranged from 0.47 to 0.62 showing maximum value during November and December, and minimum during February. Ångström exponent (α380-870) remained high (>0.90) throughout the study period except in February (0.74), suggesting predominance of fine mode particles over the study region. The observed ratio of scattering to absorbing aerosols was incorporated in OPAC model simulations and single scattering albedo (SSA at 500 nm) so obtained ranged between 0.80 and 0.92 with relatively low values during the period of extensive biomass burning. In the present study, SBDART based estimated values of aerosol radiative forcing (ARF) at the surface (SRF) and top of the atmosphere (TOA) ranged from -31 to -66 Wm-2 and -2 to -18 W m-2 respectively. The atmospheric ARF, ranged between + 18 and + 58 Wm-2 resulting in the atmospheric heating rate between 0.5 and 1.6 K day-1. These results signify the role of scattering and absorbing aerosols in affecting the magnitude of aerosol forcing.

  7. Molecular characterization of free tropospheric aerosol collected at the Pico Mountain Observatory: a case study with long range transported biomass burning plumes

    Science.gov (United States)

    Dzepina, K.; Mazzoleni, C.; Fialho, P.; China, S.; Zhang, B.; Owen, R. C.; Helmig, D.; Hueber, J.; Kumar, S.; Perlinger, J. A.; Kramer, L.; Dziobak, M. P.; Ampadu, M. T.; Olsen, S.; Wuebbles, D. J.; Mazzoleni, L. R.

    2014-09-01

    Free tropospheric aerosol was sampled at the Pico Mountain Observatory located at 2225 m a.m.s.l. on Pico Island of the Azores archipelago in the North Atlantic. The observatory (38°28'15'' N; 28°24'14'' W) is located ∼3900 km east and downwind of North America, which enables studies of free tropospheric air transported over long distances, mainly from North America. Aerosol samples collected on filters from June to October 2012 were analyzed to characterize organic carbon, elemental carbon and inorganic ion species. The average ambient concentration of aerosol was 0.9 μg m-3; on average organic aerosol contributes the majority of mass (57%), followed by sulfate (21%) and nitrate (17%). Filter-collected aerosol measurements were positively correlated (with an r2 ≥ 0.80) with continuous aerosol measurements of black carbon, aerosol light scattering and number concentration. Water-soluble organic carbon (WSOC) species extracted from two aerosol samples (9/24 and 9/25) collected consecutively during a pollution event were analyzed using ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry. FLEXPART retroplume analysis shows the sampled air masses were very aged (average plume age > 12 days). Approximately 4000 molecular formulas were assigned to each of the mass spectra in the range of m/z 100-1000. The majority of the assigned molecular formulas have unsaturated structures with CHO and CHNO elemental compositions. These aged WSOC compounds have an average O / C ratio of ∼0.45, which is relatively low compared to O / C ratios of other aged aerosol and might be the result of evaporation and increased fragmentation during long-range transport. The increase in aerosol loading during the measurement period of 9/24 was linked to biomass burning emissions from North America by FLEXPART retroplume analysis and Moderate Resolution Imaging Spectroradiometer (MODIS) fire counts. This was confirmed with biomass burning markers detected in

  8. Molecular characterization of free tropospheric aerosol collected at the Pico Mountain Observatory: a case study with long range transported biomass burning plumes

    Directory of Open Access Journals (Sweden)

    K. Dzepina

    2014-09-01

    Full Text Available Free tropospheric aerosol was sampled at the Pico Mountain Observatory located at 2225 m a.m.s.l. on Pico Island of the Azores archipelago in the North Atlantic. The observatory (38°28'15'' N; 28°24'14'' W is located ∼3900 km east and downwind of North America, which enables studies of free tropospheric air transported over long distances, mainly from North America. Aerosol samples collected on filters from June to October 2012 were analyzed to characterize organic carbon, elemental carbon and inorganic ion species. The average ambient concentration of aerosol was 0.9 μg m−3; on average organic aerosol contributes the majority of mass (57%, followed by sulfate (21% and nitrate (17%. Filter-collected aerosol measurements were positively correlated (with an r2 ≥ 0.80 with continuous aerosol measurements of black carbon, aerosol light scattering and number concentration. Water-soluble organic carbon (WSOC species extracted from two aerosol samples (9/24 and 9/25 collected consecutively during a pollution event were analyzed using ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry. FLEXPART retroplume analysis shows the sampled air masses were very aged (average plume age > 12 days. Approximately 4000 molecular formulas were assigned to each of the mass spectra in the range of m/z 100–1000. The majority of the assigned molecular formulas have unsaturated structures with CHO and CHNO elemental compositions. These aged WSOC compounds have an average O / C ratio of ∼0.45, which is relatively low compared to O / C ratios of other aged aerosol and might be the result of evaporation and increased fragmentation during long-range transport. The increase in aerosol loading during the measurement period of 9/24 was linked to biomass burning emissions from North America by FLEXPART retroplume analysis and Moderate Resolution Imaging Spectroradiometer (MODIS fire counts. This was confirmed with biomass burning markers

  9. Evaluation of the carbon content of aerosols from the burn- ing of biomass in the Brazilian Amazon using thermal, op- tical and thermal-optical analysis methods

    Energy Technology Data Exchange (ETDEWEB)

    Soto-Garcia, Lydia L.; Andreae, Meinrat O.; Andreae, Tracey W.; taxo, Paulo Ar-; Maenhaut, Willy; Kirchstetter, Thomas; Novakov, T.; Chow, Judith C.; Mayol-Bracero, Olga L.

    2011-06-03

    Aerosol samples were collected at a pasture site in the Amazon Basin as part of the project LBA-SMOCC-2002 (Large-Scale Biosphere-Atmosphere Experiment in Amazonia - Smoke Aerosols, Clouds, Rainfall and Climate: Aerosols from Biomass Burning Perturb Global and Regional Climate). Sampling was conducted during the late dry season, when the aerosol composition was dominated by biomass burning emissions, especially in the submicron fraction. A 13-stage Dekati low-pressure impactor (DLPI) was used to collect particles with nominal aerodynamic diameters (D{sub p}) ranging from 0.03 to 0.10 m. Gravimetric analyses of the DLPI substrates and filters were performed to obtain aerosol mass concentrations. The concentrations of total, apparent elemental, and organic carbon (TC, EC{sub a}, and OC) were determined using thermal and thermal-optical analysis (TOA) methods. A light transmission method (LTM) was used to determine the concentration of equivalent black carbon (BC{sub e}) or the absorbing fraction at 880 nm for the size-resolved samples. During the dry period, due to the pervasive presence of fires in the region upwind of the sampling site, concentrations of fine aerosols (D{sub p} < 2.5 {mu}m: average 59.8 {mu}g m{sup -3}) were higher than coarse aerosols (D{sub p} > 2.5 {mu}m: 4.1 {mu}g m{sup -3}). Carbonaceous matter, estimated as the sum of the particulate organic matter (i.e., OC x 1.8) plus BC{sub e}, comprised more than 90% to the total aerosol mass. Concentrations of EC{sub a} (estimated by thermal analysis with a correction for charring) and BCe (estimated by LTM) averaged 5.2 {+-} 1.3 and 3.1 {+-} 0.8 {mu}g m{sup -3}, respectively. The determination of EC was improved by extracting water-soluble organic material from the samples, which reduced the average light absorption {angstrom} exponent of particles in the size range of 0.1 to 1.0 {mu}m from > 2.0 to approximately 1.2. The size-resolved BC{sub e} measured by the LTM showed a clear maximum between 0.4 and

  10. Biomass burning emissions over northern Australia constrained by aerosol measurements: II—Model validation, and impacts on air quality and radiative forcing

    Science.gov (United States)

    Luhar, Ashok K.; Mitchell, Ross M.; (Mick) Meyer, C. P.; Qin, Yi; Campbell, Susan; Gras, John L.; Parry, David

    This two-part series investigates the emission and transport of biomass burning aerosol (or particulate matter) across the Top End of the Northern Territory of Australia. In Part I, Meyer et al. [2008. Biomass burning emissions over northern Australia constrained by aerosol measurements: I—Modelling the distribution of hourly emissions. Atmospheric Environment, in press, doi:10.1016/j.atmosenv.2007.10.089.] used a fuel load distribution coupled with a satellite-derived imagery of fire scars and hotspots and the diurnal variation of a fire danger index to estimate hourly emission rates of particulate matter with an aerodynamic diameter of 2.5 μm or less (PM 2.5) for the dry season April-November 2004 at a spatial resolution of 1 km×1 km. In the present paper, these emission rates are used in TAPM, a three-dimensional meteorological and air pollution model, and the modelled PM 2.5 concentrations and aerosol optical depths are compared with satellite and ground-based measurements. This exercise also seeks to fine-tune and validate the emission calculation methodology, a process through which it is found that cases with hotspots without any corresponding fire scars (e.g. in mountainous terrain), which were initially ignored, need to be included to improve the accuracy of model predictions. Overall, the model is able to describe the measurements satisfactorily, considering the issues associated with the model resolution, emission uncertainty, and modelled meteorology. The model hindcasts numerous exceedences of the advisory maximum PM 2.5 exposure limit across the study region, with large areas in excess of 30 exceedences during the study period. Estimated mean top of atmosphere direct radiative forcing due to aerosol shows a seasonal mean of -1.8 W m -2 with a region of strong enhancement over the western portion of the Top End.

  11. Mixing state and sources of submicron regional background aerosols in the northern Qinghai-Tibet Plateau and the influence of biomass burning

    Science.gov (United States)

    Li, W. J.; Chen, S. R.; Xu, Y. S.; Guo, X. C.; Sun, Y. L.; Yang, X. Y.; Wang, Z. F.; Zhao, X. D.; Chen, J. M.; Wang, W. X.

    2015-12-01

    Transmission electron microscopy (TEM) was employed to obtain morphology, size, composition, and mixing state of background aerosols with diameter less than 1 μm in the northern Qinghai-Tibet Plateau (QTP) during 15 September to 15 October 2013. Individual aerosol particles mainly contained secondary inorganic aerosols (SIA - sulfate and nitrate) and organics during clean periods (PM2.5 mass concentration less than 2.5 μg m-3). The presence of K-Na-Cl associated with organics and an increase in soot particles suggest that an intense biomass burning event caused the highest PM2.5 concentrations (> 30 μg m-3) during the study. A large number fraction of the fly-ash-containing particles (21.73 %) suggests that coal combustion emissions in the QTP significantly contributed to air pollutants at the medium pollution level (PM2.5: 10-30 μg m-3). We concluded that emissions from biomass burning and from coal combustion both constantly contribute to anthropogenic particles in the QTP atmosphere. Based on size distributions of individual particles at different pollution levels, we found that gas condensation on existing particles is an important chemical process for the formation of SIA with organic coating. TEM observations show that refractory aerosols (e.g., soot, fly ash, and visible organic particles) likely adhere to the surface of SIA particles larger than 200 nm due to coagulation. Organic coating and soot on surface of the aged particles likely influence their hygroscopic and optical properties, respectively, in the QTP. To our knowledge, this study reports the first microscopic analysis of fine particles in the background QTP air.

  12. Molecular characterization of free tropospheric aerosol collected at the Pico Mountain Observatory: a case study with a long-range transported biomass burning plume

    Science.gov (United States)

    Dzepina, K.; Mazzoleni, C.; Fialho, P.; China, S.; Zhang, B.; Owen, R. C.; Helmig, D.; Hueber, J.; Kumar, S.; Perlinger, J. A.; Kramer, L. J.; Dziobak, M. P.; Ampadu, M. T.; Olsen, S.; Wuebbles, D. J.; Mazzoleni, L. R.

    2015-05-01

    Free tropospheric aerosol was sampled at the Pico Mountain Observatory located at 2225 m above mean sea level on Pico Island of the Azores archipelago in the North Atlantic. The observatory is located ~ 3900 km east and downwind of North America, which enables studies of free tropospheric air transported over long distances. Aerosol samples collected on filters from June to October 2012 were analyzed to characterize organic carbon, elemental carbon, and inorganic ions. The average ambient concentration of aerosol was 0.9 ± 0.7 μg m-3. On average, organic aerosol components represent the largest mass fraction of the total measured aerosol (60 ± 51%), followed by sulfate (23 ± 28%), nitrate (13 ± 10%), chloride (2 ± 3%), and elemental carbon (2 ± 2%). Water-soluble organic matter (WSOM) extracted from two aerosol samples (9/24 and 9/25) collected consecutively during a pollution event were analyzed using ultrahigh-resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Approximately 4000 molecular formulas were assigned to each of the mass spectra in the range of m/z 100-1000. The majority of the assigned molecular formulas had unsaturated structures with CHO and CHNO elemental compositions. FLEXPART retroplume analyses showed the sampled air masses were very aged (average plume age > 12 days). These aged aerosol WSOM compounds had an average O/C ratio of ~ 0.45, which is relatively low compared to O/C ratios of other aged aerosol. The increase in aerosol loading during the measurement period of 9/24 was linked to biomass burning emissions from North America by FLEXPART retroplume analysis and Moderate Resolution Imaging Spectroradiometer (MODIS) fire counts. This was confirmed with biomass burning markers detected in the WSOM and with the morphology and mixing state of particles as determined by scanning electron microscopy. The presence of markers characteristic of aqueous-phase reactions of phenolic species suggests

  13. Reduction in biomass burning aerosol light absorption upon humidification: roles of inorganically-induced hygroscopicity, particle collapse, and photoacoustic heat and mass transfer

    Directory of Open Access Journals (Sweden)

    K. A. Lewis

    2009-07-01

    Full Text Available Smoke particle emissions from the combustion of biomass fuels typical for the western and southeastern United States were studied and compared under high humidity and ambient conditions in the laboratory. The fuels used are Montana ponderosa pine (Pinus ponderosa, southern California chamise (Adenostoma fasciculatum, and Florida saw palmetto (Serenoa repens. Information on the non-refractory chemical composition of biomass burning aerosol from each fuel was obtained with an aerosol mass spectrometer and through estimation of the black carbon concentration from light absorption measurements at 870 nm. Changes in the optical and physical particle properties under high humidity conditions were observed for hygroscopic smoke particles containing substantial inorganic mass fractions that were emitted from combustion of chamise and palmetto fuels. Light scattering cross sections increased under high humidity for these particles, consistent with the hygroscopic growth measured for 100 nm particles in HTDMA measurements. Photoacoustic measurements of aerosol light absorption coefficients reveal a 20% reduction with increasing relative humidity, contrary to the expectation of light absorption enhancement by the liquid coating taken up by hygroscopic particles. This reduction is hypothesized to arise from two mechanisms: 1. Shielding of inner monomers after particle consolidation or collapse with water uptake; 2. The contribution of mass transfer through evaporation and condensation at high relative humidity to the usual heat transfer pathway for energy release by laser-heated particles in the photoacoustic measurement of aerosol light absorption. The mass transfer contribution is used to evaluate the fraction of aerosol surface covered with liquid water solution as a function of RH.

  14. Reduction in biomass burning aerosol light absorption upon humidification: roles of inorganically-induced hygroscopicity, particle collapse, and photoacoustic heat and mass transfer

    Directory of Open Access Journals (Sweden)

    L. Liu

    2009-11-01

    Full Text Available Smoke particle emissions from the combustion of biomass fuels typical for the western and southeastern United States were studied and compared under high humidity and ambient conditions in the laboratory. The fuels used were Montana ponderosa pine (Pinus ponderosa, southern California chamise (Adenostoma fasciculatum, and Florida saw palmetto (Serenoa repens. Information on the non-refractory chemical composition of biomass burning aerosol from each fuel was obtained with an aerosol mass spectrometer and through estimation of the black carbon concentration from light absorption measurements at 870 nm. Changes in the optical and physical particle properties under high humidity conditions were observed for hygroscopic smoke particles containing substantial inorganic mass fractions that were emitted from combustion of chamise and palmetto fuels. Light scattering cross sections increased under high humidity for these particles, consistent with the hygroscopic growth measured for 100 nm particles in HTDMA measurements. Photoacoustic measurements of aerosol light absorption coefficients revealed a 20% reduction with increasing relative humidity, contrary to the expectation of light absorption enhancement by the liquid coating taken up by hygroscopic particles. This reduction is hypothesized to arise from two mechanisms: (1 shielding of inner monomers after particle consolidation or collapse with water uptake; (2 the lower case contribution of mass transfer through evaporation and condensation at high relative humidity (RH to the usual heat transfer pathway for energy release by laser-heated particles in the photoacoustic measurement of aerosol light absorption. The mass transfer contribution is used to evaluate the fraction of aerosol surface covered with liquid water solution as a function of RH.

  15. Mixing state, composition, and sources of fine aerosol particles in the Qinghai-Tibetan Plateau and the influence of agricultural biomass burning

    Science.gov (United States)

    Li, W. J.; Chen, S. R.; Xu, Y. S.; Guo, X. C.; Sun, Y. L.; Yang, X. Y.; Wang, Z. F.; Zhao, X. D.; Chen, J. M.; Wang, W. X.

    2015-09-01

    Transmission electron microscopy (TEM) was employed to obtain morphology, size, composition, and mixing state of background fine particles with diameter less than 1 μm in the Qinghai-Tibetan Plateau (QTP) during 15 September to 15 October 2013. Individual aerosol particles mainly contained secondary inorganic aerosols (SIA-sulfate and nitrate) and organics during clean periods (PM2.5: particles less than 2.5 μg m-3). The presence of KCl-NaCl associated with organics and an increase of soot particles suggest that an intense biomass burning event caused the highest PM2.5 concentrations (> 30 μg m-3) during the study. A large number fraction of the fly ash-containing particles (21.73 %) suggests that coal combustion emissions in the QTP significantly contributed to air pollutants at the median pollution level (PM2.5: 10-30 μg m-3). We concluded that emissions from biomass burning and from coal combustion both constantly contribute to anthropogenic particles in the QTP atmosphere. Based on size distributions of individual particles in different pollution levels, we found that gas condensation on existing particles is an important chemical process for the formation of SIA with organic coating. TEM observations show that refractory aerosols (e.g., soot, fly ash, and visible organic particles) likely adhere to the surface of SIA particles larger than 200 nm due to coagulation. Organic coating and soot on surface of the aged particles likely influence their hygroscopic and optical properties in the QTP, respectively. To our knowledge, this study reports the first microscopic analysis of fine particles in the background QTP air.

  16. Burning of biomass waste

    International Nuclear Information System (INIS)

    The amounts of waste wood from the Danish wood processing industry available for the energy market has been made. Furthermore a statement of residues based on biomass, including waste wood, used in 84 plants has been made. The 84 plants represent a large part of the group of purchasers of biomass. A list of biomass fuel types being used or being potential fuels in the future has been made. Conditions in design of plants of importance for the environmental impact and possibility of changing between different biomass fuels are illustrated through interview of the 84 plants. Emissions from firing with different types of residues based on biomass are illustrated by means of different investigations described in the literature of the composition of fuels, of measured emissions from small scale plants and full scale plants, and of mass balance investigations where all incoming and outgoing streams are analysed. An estimate of emissions from chosen fuels from the list of types of fuels is given. Of these fuels can be mentioned residues from particle board production with respectively 9% and 1% glue, wood pellets containing binding material with sulphur and residues from olive production. (LN)

  17. Investigating the links between ozone and organic aerosol chemistry in a biomass burning plume from a prescribed fire in California chaparral

    Directory of Open Access Journals (Sweden)

    M. J. Alvarado

    2014-12-01

    Full Text Available Within minutes after emission, rapid, complex photochemistry within a biomass burning smoke plume can cause large changes in the concentrations of ozone (O3 and organic aerosol (OA. Being able to understand and simulate this rapid chemical evolution under a wide variety of conditions is a critical part of forecasting the impact of these fires on air quality, atmospheric composition, and climate. Here we use version 2.1 of the Aerosol Simulation Program (ASP to simulate the evolution of O3 and secondary organic aerosol (SOA within a young biomass burning smoke plume from the Williams prescribed burn in chaparral, which was sampled over California in November 2009. We demonstrate the use of a method for simultaneously accounting for the impact of the unidentified semi-volatile to extremely low volatility organic compounds (here collectively called "SVOCs" on the formation of OA (using the Volatility Basis Set and O3 (using the concept of mechanistic reactivity. We show that this method can successfully simulate the observations of O3, OA, PAN, NOx, and C2H4 to within measurement uncertainty using reasonable assumptions about the chemistry of the unidentified SVOCs. These assumptions were: (1 a~reaction rate constant with OH of ~10−11cm3s−1, (2 a significant fraction (~50% of the RO2 + NO reaction resulted in fragmentation, rather than functionalization, of the parent SVOC, (3 ~1.1 molecules of O3 were formed for every molecule of SVOC that reacted, (4 ~60% of the OH that reacted with the unidentified SVOCs was regenerated as HO2, and (5 that ~50% of the NO that reacted with the SVOC peroxy radicals was lost, presumably to organic nitrate formation. Additional evidence for the fragmentation pathway is provided by the observed rate of formation of acetic acid, which is consistent with our assumed fragmentation rate. This method could provide a way for classifying different smoke plume observations in terms of the average chemistry of their SVOCs

  18. Historic records of organic aerosols from a high Alpine glacier: implications of biomass burning, anthropogenic emissions, and dust transport

    Directory of Open Access Journals (Sweden)

    C. Müller-Tautges

    2015-05-01

    Full Text Available Historic records of α-dicarbonyls (glyoxal, methylglyoxal, carboxylic acids (C6–C12 dicarboxylic acids, pinic acid, p-hydroxybenzoic acid, phthalic acid, 4-methylphthalic acid, and major ions (oxalate, formate, calcium were determined with annual resolution in an ice core from Grenzgletscher in the southern Swiss Alps, covering the time period from 1942 to 1993. Measurements were conducted using ultra-high performance liquid chromatography (UHPLC coupled to electrospray ionization high resolution mass spectrometry (ESI-HRMS. For the first time, long-term records of the carboxylic acids and dicarbonyls as well as their source apportionment are reported for Western Europe. Source assignment of the organic species present in the ice core was performed using principal component analysis. Our results suggest biomass burning, anthropogenic emissions, and transport of mineral dust to be the main parameters influencing the concentration of organic compounds. Ice core records of several highly correlated compounds (e.g. p-hydroxybenzoic acid, pinic acid, C7 and C8 dicarboxylic acids can be related to the forest fire history in southern Switzerland. P-hydroxybenzoic acid was found to be the best organic fire tracer in the study area, revealing the highest correlation with the burned area from fires. Historical records of methylglyoxal, phthalic acid, and dicarboxylic acids C6, C10, and C12 are comparable with that of anthropogenic emissions of volatile organic compounds (VOCs. The small organic acids oxalic acid and formic acid are both highly correlated with calcium, suggesting their records to be affected by changing mineral dust transport to the drilling site.

  19. From BASE-ASIA Toward 7-SEAS: A Satellite-Surface Perspective of Boreal Spring Biomass-Burning Aerosols and Clouds in Southeast Asia

    Science.gov (United States)

    Tsay, Si-Chee; Hsu, N. Christina; Lau, William K.-M.; Li, Can; Gabriel, Philip M.; Ji, Qiang; Holben, Brent N.; Welton, E. Judd; Nguyen, Anh X.; Janjai, Serm; Lin, Neng-Huei; Reid, Jeffrey S.; Boonjawat, Jariya; Howell, Steven G.; Huebert, Barry J.; Fu, Joshua S.; Hansell, Richard A.; Sayer, Andrew M.; Gautam, Ritesh; Wang, Sheng-Hsiang; Goodloe, Colby S.; Miko, Laddawan R.; Shu, Peter K.; Loftus, Adrian M.; Huang, Jingfeng; Kim, Jin Young; Jeong, Myeong-Jae; Pantina, Peter

    2013-01-01

    In this paper, we present recent field studies conducted by NASA's SMART-COMMIT (and ACHIEVE, to be operated in 2013) mobile laboratories, jointly with distributed ground-based networks (e.g., AERONET, http://aeronet.gsfc.nasa.gov/ and MPLNET, http://mplnet.gsfc.nasa.gov/) and other contributing instruments over northern Southeast Asia. These three mobile laboratories, collectively called SMARTLabs (cf. http://smartlabs.gsfc.nasa.gov/, Surface-based Mobile Atmospheric Research & Testbed Laboratories) comprise a suite of surface remote sensing and in-situ instruments that are pivotal in providing high spectral and temporal measurements, complementing the collocated spatial observations from various Earth Observing System (EOS) satellites. A satellite-surface perspective and scientific findings, drawn from the BASE-ASIA (2006) field deployment as well as a series of ongoing 7-SEAS (2010-13) field activities over northern Southeast Asia are summarized, concerning (i) regional properties of aerosols from satellite and in situ measurements, (ii) cloud properties from remote sensing and surface observations, (iii) vertical distribution of aerosols and clouds, and (iv) regional aerosol radiative effects and impact assessment. The aerosol burden over Southeast Asia in boreal spring, attributed to biomass burning, exhibits highly consistent spatial and temporal distribution patterns, with major variability arising from changes in the magnitude of the aerosol loading mediated by processes ranging from large-scale climate factors to diurnal meteorological events. Downwind from the source regions, the tightly coupled-aerosolecloud system provides a unique, natural laboratory for further exploring the micro- and macro-scale relationships of the complex interactions. The climatic significance is presented through large-scale anti-correlations between aerosol and precipitation anomalies, showing spatial and seasonal variability, but their precise cause-and-effect relationships

  20. Light absorption by biomass burning source emissions

    Science.gov (United States)

    Cheng, Yuan; Engling, Guenter; Moosmüller, Hans; Arnott, W. Patrick; Chen, L.-W. Antony; Wold, Cyle E.; Hao, Wei Min; He, Ke-bin

    2016-02-01

    Black carbon (BC) aerosol has relatively short atmospheric lifetimes yet plays a unique and important role in the Earth's climate system, making it an important short-term climate mitigation target. Globally, biomass burning is the largest source of BC emissions into the atmosphere. This study investigated the mass absorption efficiency (MAE) of biomass burning BC generated by controlled combustion of various wildland fuels during the Fire Laboratory at Missoula Experiments (FLAME). MAE values derived from a photoacoustic spectrometer (∼7.8 m2/g at a wavelength of 532 nm) were in good agreement with those suggested for uncoated BC when the emission ratios of organic carbon (OC) to elemental carbon (EC) were extremely low (i.e., below 0.3). With the increase of OC/EC, two distinct types of biomass smoke were identified. For the first type, MAE exhibited a positive dependence on OC/EC, while the overestimation of the light absorption coefficient (babs) by a filter-based method was less significant and could be estimated by a nearly constant correction factor. For the second type, MAE was biased low and correlated negatively with OC/EC, while the overestimation of babs by the filter-based method was much more significant and showed an apparent OC/EC dependence. This study suggests that BC emission factors determined by the commonly used thermal-optical methods might be sustantially overestimated for some types of biomass burning emissions. Our results also indicate that biomass burning emissions may include some liquid-like organics that can significantly bias filter-based babs measurements.

  1. Investigating the links between ozone and organic aerosol chemistry in a biomass burning plume from a prescribed fire in California chaparral

    Science.gov (United States)

    Alvarado, M. J.; Lonsdale, C. R.; Yokelson, R. J.; Akagi, S. K.; Coe, H.; Craven, J. S.; Fischer, E. V.; McMeeking, G. R.; Seinfeld, J. H.; Soni, T.; Taylor, J. W.; Weise, D. R.; Wold, C. E.

    2015-06-01

    Within minutes after emission, complex photochemistry in biomass burning smoke plumes can cause large changes in the concentrations of ozone (O3) and organic aerosol (OA). Being able to understand and simulate this rapid chemical evolution under a wide variety of conditions is a critical part of forecasting the impact of these fires on air quality, atmospheric composition, and climate. Here we use version 2.1 of the Aerosol Simulation Program (ASP) to simulate the evolution of O3 and secondary organic aerosol (SOA) within a young biomass burning smoke plume from the Williams prescribed fire in chaparral, which was sampled over California in November 2009. We demonstrate the use of a method for simultaneously accounting for the impact of the unidentified intermediate volatility, semi-volatile, and extremely low volatility organic compounds (here collectively called "SVOCs") on the formation of OA (using the Volatility Basis Set - VBS) and O3 (using the concept of mechanistic reactivity). We show that this method can successfully simulate the observations of O3, OA, NOx, ethylene (C2H4), and OH to within measurement uncertainty using reasonable assumptions about the average chemistry of the unidentified SVOCs. These assumptions were (1) a reaction rate constant with OH of ~ 10-11 cm3 s-1; (2) a significant fraction (up to ~ 50 %) of the RO2 + NO reaction resulted in fragmentation, rather than functionalization, of the parent SVOC; (3) ~ 1.1 molecules of O3 were formed for every molecule of SVOC that reacted; (4) ~ 60 % of the OH that reacted with the unidentified non-methane organic compounds (NMOC) was regenerated as HO2; and (5) that ~ 50 % of the NO that reacted with the SVOC peroxy radicals was lost, presumably to organic nitrate formation. Additional evidence for the fragmentation pathway is provided by the observed rate of formation of acetic acid (CH3COOH), which is consistent with our assumed fragmentation rate. However, the model overestimates peroxyacetyl

  2. Vertical Profiles of Aerosol Optical and Microphysical Properties During a Rare Case of Long-range Transport of Mixed Biomass Burning-polluted Dust Aerosols from the Russian Federation-kazakhstan to Athens, Greece

    Science.gov (United States)

    Papayannis, Alexandros; Argyrouli, Athina; Kokkalis, Panayotis; Tsaknakis, Georgios; Binietoglou, Ioannis; Solomos, Stavros; Kazadzis, Stylianos; Samaras, Stefanos; Böckmann, Christine; Raptis, Panagiotis; Amiridis, Vassilis

    2016-06-01

    Multi-wavelength aerosol Raman lidar measurements with elastic depolarization at 532 nm were combined with sun photometry during the HYGRA-CD campaign over Athens, Greece, on May-June 2014. We retrieved the aerosol optical [3 aerosol backscatter profiles (baer) at 355-532-1064 nm, 2 aerosol extinction (aaer) profiles at 355-532 nm and the aerosol linear depolarization ratio (δ) at 532 nm] and microphysical properties [effective radius (reff), complex refractive index (m), single scattering albedo (ω)]. We present a case study of a long distance transport (~3.500-4.000 km) of biomass burning particles mixed with dust from the Russian Federation-Kazakhstan regions arriving over Athens on 21-23 May 2014 (1.7-3.5 km height). On 23 May, between 2-2.75 km we measured mean lidar ratios (LR) of 35 sr (355 nm) and 42 sr (532 nm), while the mean Ångström exponent (AE) aerosol backscatter-related values (355nm/532nm and 532nm/1064nm) were 2.05 and 1.22, respectively; the mean value of δ at 532 nm was measured to be 9%. For that day the retrieved mean aerosol microphysical properties at 2-2.75 km height were: reff=0.26 μm (fine mode), reff=2.15 μm (coarse mode), m=1.36+0.00024i, ω=0.999 (355 nm, fine mode), ω=0.992(355 nm, coarse mode), ω=0.997 (532 nm, fine mode), and ω=0.980 (532 nm, coarse mode).

  3. Characterization of submicron aerosols influenced by biomass burning at a site in the Sichuan Basin, southwestern China

    OpenAIRE

    Hu, Wei; Hu, Min; Hu, Weiwei; Niu, Hongya; Zheng, Jing; Wu, Yusheng; Chen, Wentai; Chen, Chen; Li, Lingyu; Shao, Min; Xie, Shaodong; Zhang, Yuanhang

    2016-01-01

    Severe air pollution caused by large amount of pollutants and adverse synoptic processes appears often in Asia. However, limited studies on aerosols have been conducted under high emission intensity, and unique geographical and meteorological conditions. In this study, an Aerodyne high resolution time-of-flight aerosol mass spectrometry (HR-ToF-AMS) and other state-of-the-art instruments were utilized at a suburban site, Ziyang, in the Sichuan Basin during December 2012 to January 2013. The c...

  4. Ozone photochemistry in boreal biomass burning plumes

    Directory of Open Access Journals (Sweden)

    M. Parrington

    2013-08-01

    by high aerosol loading, relative humidity greater than 40%, and low ozone production efficiency (OPE of 7.7 ± 3.5 ppbv ppbv−1 relative to ΣAN and 1.6 ± 0.9 ppbv ppbv−1 relative to NOz. In plumes with ages greater than 4 days, OPE increased to 472 ± 28 ppbv ppbv−1 relative to ΣAN and 155 ± 5 ppbv ppbv−1 relative to NOz. From the BORTAS measurements we estimated that aged plumes with low aerosol loading were close to being in photostationary steady state and O3 production in younger plumes was inhibited by high aerosol loading and greater production of ΣAN relative to O3. The BORTAS measurements of O3 photochemistry in boreal biomass burning plumes were found to be consistent with previous summertime aircraft measurements made over the same region during the Arctic Research of the Composition of the Troposphere (ARCTAS-B in 2008 and Atmospheric Boundary Layer Experiment (ABLE 3B in 1990.

  5. Atmospheric reactivity of hydroxyl radicals with guaiacol (2-methoxyphenol), a biomass burning emitted compound: Secondary organic aerosol formation and gas-phase oxidation products

    Science.gov (United States)

    Lauraguais, Amélie; Coeur-Tourneur, Cécile; Cassez, Andy; Deboudt, Karine; Fourmentin, Marc; Choël, Marie

    2014-04-01

    Methoxyphenols are low molecular weight semi-volatile polar aromatic compounds produced from the pyrolysis of wood lignin. The reaction of guaiacol (2-methoxyphenol) with hydroxyl radicals has been studied in the LPCA simulation chamber at (294 ± 2) K, atmospheric pressure, low relative humidity (RH Flame Ionization Detection) and GC-MS (Gas Chromatography - Mass Spectrometry) analysis show the formation of nitroguaiacol isomers as main oxidation products in the gas- and aerosol-phases. In the gas-phase, the formation yields were (10 ± 2) % for 4-nitroguaiacol (1-hydroxy-2-methoxy-4-nitrobenzene; 4-NG) and (6 ± 2) % for 3- or 6-nitroguaiacol (1-hydroxy-2-methoxy-3-nitrobenzene or 1-hydroxy-2-methoxy-6-nitrobenzene; 3/6-NG; the standards are not commercially available so both isomers cannot be distinguished) whereas in SOA their yield were much lower (≤0.1%). To our knowledge, this work represents the first identification of nitroguaiacols as gaseous oxidation products of the OH reaction with guaiacol. As the reactivity of nitroguaiacols with atmospheric oxidants is probably low, we suggest using them as biomass burning emission gas tracers. The atmospheric implications of the guaiacol + OH reaction are also discussed.

  6. Does chronic nitrogen deposition during biomass growth affect atmospheric emissions from biomass burning?

    International Nuclear Information System (INIS)

    Chronic nitrogen deposition has measureable impacts on soil and plant health. We investigate burning emissions from biomass grown in areas of high and low NOx deposition. Gas and aerosol-phase emissions were measured as a function of photochemical aging in an environmental chamber at UC-Riverside. Though aerosol chemical speciation was not available, results indicate a systemic compositional difference between biomass grown in high and low deposition areas. Aerosol emissions from biomass grown in areas of high NOx deposition exhibit a lower volatility than biomass grown in a low deposition area. Furthermore, fuel elemental analysis, NOx emission rates, and aerosol particle number distributions differed significantly between the two sites. Despite the limited scale of fuels explored, there is strong evidence that the atmospheric emissions community must pay attention to the regional air quality of biomass fuels growth areas. (letter)

  7. A case study of aerosol scavenging in a biomass burning plume over eastern Canada during the 2011 BORTAS field experiment

    OpenAIRE

    Franklin, J. E.; J. R. Drummond; D. Griffin; J. R. Pierce; Waugh, D. L.; Palmer, P. I.; Parrington, M.; Lee, J. D.; Lewis, A. C.; A. R. Rickard; J. W. Taylor; Allan, J. D.; Coe, H.; Walker, K A; L. Chisholm

    2014-01-01

    We present measurements of a long-range smoke transport event recorded on 20-21 July 2011 over Halifax, Nova Scotia, Canada, during the Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites (BORTAS-B) campaign. Ground-based Fourier transform spectrometers and photometers detected air masses associated with large wild-land fires burning in eastern Manitoba and western Ontario.We investigate a plume with high trace gas amounts but...

  8. An evaluation of the impact of aerosol particles on weather forecasts from a biomass burning aerosol event over the Midwestern United States: observational-based analysis of surface temperature

    Science.gov (United States)

    Zhang, Jianglong; Reid, Jeffrey S.; Christensen, Matthew; Benedetti, Angela

    2016-05-01

    A major continental-scale biomass burning smoke event from 28-30 June 2015, spanning central Canada through the eastern seaboard of the United States, resulted in unforecasted drops in daytime high surface temperatures on the order of 2-5 °C in the upper Midwest. This event, with strong smoke gradients and largely cloud-free conditions, provides a natural laboratory to study how aerosol radiative effects may influence numerical weather prediction (NWP) forecast outcomes. Here, we describe the nature of this smoke event and evaluate the differences in observed near-surface air temperatures between Bismarck (clear) and Grand Forks (overcast smoke), to evaluate to what degree solar radiation forcing from a smoke plume introduces daytime surface cooling, and how this affects model bias in forecasts and analyses. For this event, mid-visible (550 nm) smoke aerosol optical thickness (AOT, τ) reached values above 5. A direct surface cooling efficiency of -1.5 °C per unit AOT (at 550 nm, τ550) was found. A further analysis of European Centre for Medium-Range Weather Forecasts (ECMWF), National Centers for Environmental Prediction (NCEP), United Kingdom Meteorological Office (UKMO) near-surface air temperature forecasts for up to 54 h as a function of Moderate Resolution Imaging Spectroradiometer (MODIS) Dark Target AOT data across more than 400 surface stations, also indicated the presence of the daytime aerosol direct cooling effect, but suggested a smaller aerosol direct surface cooling efficiency with magnitude on the order of -0.25 to -1.0 °C per unit τ550. In addition, using observations from the surface stations, uncertainties in near-surface air temperatures from ECMWF, NCEP, and UKMO model runs are estimated. This study further suggests that significant daily changes in τ550 above 1, at which the smoke-aerosol-induced direct surface cooling effect could be comparable in magnitude with model uncertainties, are rare events on a global scale. Thus, incorporating

  9. Global biomass burning: Atmospheric, climatic, and biospheric implications

    International Nuclear Information System (INIS)

    As a significant source of atmospheric gases, biomass burning must be addressed as a major environmental problem. Biomass burning includes burning forests and savanna grasslands for land clearing and conversion, burning agricultural stubble and waste after harvesting, and burning biomass fuels. The editor discusses the history of biomass burning and provides an overview of the individual chapters

  10. Molecular characterization of urban organic aerosol in tropical India: contributions of biomass/biofuel burning, plastic burning, and fossil fuel combustion

    OpenAIRE

    Fu, P. Q.; K. Kawamura; C. M. Pavuluri; T. Swaminathan

    2009-01-01

    Organic molecular composition of PM10 samples, collected at Chennai in tropical India, was studied using capillary gas chromatography/mass spectrometry. Twelve organic compound classes were detected in the aerosols, including aliphatic lipids, sugar compounds, lignin products, terpenoid biomarkers, sterols, aromatic acids, phthalates, hopanes, and polycyclic aromatic hydrocarbons (PAHs). At daytime, phthalates was found to be the most abundant compound class; while ...

  11. Mexico City Aerosol Analysis during MILAGRO using High Resolution Aerosol Mass Spectrometry at the Urban Supersite (T0). Part 2: Analysis of the Biomass Burning Contribution and the Modern Carbon Fraction

    Energy Technology Data Exchange (ETDEWEB)

    Aiken, Allison; de Foy, B.; Wiedinmyer, Christine; DeCarlo, Peter; Ulbrich, Ingrid M.; Wehrli, M. N.; Szidat, S.; Prevot, A. S. H.; Noda, J.; Wacker, L.; Volkamer, Rainer M.; Fortner, Edward; Wang, J. X.; Laskin, Alexander; Shutthanandan, V.; Zheng, J.; Zhang, Renyi; Paredes-Miranda, Guadalupe L.; Arnott, W. P.; Molina, Luis; Sosa, G.; Querol, X.; Jimenez, J. L.

    2010-06-16

    Submicron aerosol was analyzed during the MILAGRO field campaign in March 2006 at the T0 urban supersite in Mexico City with a High-Resolution Aerosol Mass Spectrometer (AMS) and complementary instrumentation. Positive Matrix Factorization (PMF) of high resolution AMS spectra identified a biomass burning OA (BBOA) component, which includes several large plumes that appear to be from forest fires within the region. Here, we show that the AMS BBOA concentration at T0 correlates with fire counts in the vicinity of Mexico City and that most of the BBOA variability is captured when the FLEXPART model is used for the dispersion of fire emissions as estimated from satellite fire counts. The resulting FLEXPART fire impact index correlates well with the observed BBOA, CH3CN, levoglucosan, and potassium, indicating that wildfires in the region surrounding Mexico City are the dominant source of BBOA at T0 during MILAGRO. The impact of distant BB sources such as the Yucatan is very small during this period. All fire tracers are correlated, with BBOA and levoglucosan showing little background, acetonitrile having a well-known tropospheric background of ~100-150 ppt, and PM2.5 potassium having a background of ~160 ng m-3 (two-thirds of its average concentration), which does not appear to be related to BB sources.

  12. Biomass Burning Observation Project (BBOP) Final Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Kleinman, LI [Brookhaven National Lab. (BNL), Upton, NY (United States); Sedlacek, A. J. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-01-01

    The Biomass Burning Observation Project (BBOP) was conducted to obtain a better understanding of how aerosols generated from biomass fires affect the atmosphere and climate. It is estimated that 40% of carbonaceous aerosol produced originates from biomass burning—enough to affect regional and global climate. Several biomass-burning studies have focused on tropical climates; however, few campaigns have been conducted within the United States, where millions of acres are burned each year, trending to higher values and greater climate impacts because of droughts in the West. Using the Atmospheric Radiation Measurement (ARM) Aerial Facility (AAF), the BBOP deployed the Gulfstream-1 (G-1) aircraft over smoke plumes from active wildfire and agricultural burns to help identify the impact of these events and how impacts evolve with time. BBOP was one of very few studies that targeted the near-field time evolution of aerosols and aimed to obtain a process-level understanding of the large changes that occur within a few hours of atmospheric processing.

  13. The role of semi-volatile organic compounds in the mesoscale evolution of biomass burning aerosol: a modeling case study of the 2010 mega-fire event in Russia

    Science.gov (United States)

    Konovalov, I. B.; Beekmann, M.; Berezin, E. V.; Petetin, H.; Mielonen, T.; Kuznetsova, I. N.; Andreae, M. O.

    2015-12-01

    Chemistry transport models (CTMs) are an indispensable tool for studying and predicting atmospheric and climate effects associated with carbonaceous aerosol from open biomass burning (BB); this type of aerosol is known to contribute significantly to both global radiative forcing and to episodes of air pollution in regions affected by wildfires. Improving model performance requires systematic comparison of simulation results with measurements of BB aerosol and elucidation of possible reasons for discrepancies between them, which, by default, are frequently attributed in the literature to uncertainties in emission data. Based on published laboratory data on the atmospheric evolution of BB aerosol and using the volatility basis set (VBS) framework for organic aerosol modeling, we examined the importance of taking gas-particle partitioning and oxidation of semi-volatile organic compounds (SVOCs) into account in simulations of the mesoscale evolution of smoke plumes from intense wildfires that occurred in western Russia in 2010. Biomass burning emissions of primary aerosol components were constrained with PM10 and CO data from the air pollution monitoring network in the Moscow region. The results of the simulations performed with the CHIMERE CTM were evaluated by considering, in particular, the ratio of smoke-related enhancements in PM10 and CO concentrations (ΔPM10 and ΔCO) measured in Finland (in the city of Kuopio), nearly 1000 km downstream of the fire emission sources. It is found that while the simulations based on a "conventional" approach to BB aerosol modeling (disregarding oxidation of SVOCs and assuming organic aerosol material to be non-volatile) strongly underestimated values of ΔPM10/ΔCO observed in Kuopio (by a factor of 2), employing the "advanced" representation of atmospheric processing of organic aerosol material resulted in bringing the simulations to a much closer agreement with the ground measurements. Furthermore, taking gas

  14. A review of biomass burning emissions part III: intensive optical properties of biomass burning particles

    Directory of Open Access Journals (Sweden)

    J. S. Reid

    2005-01-01

    Full Text Available Because of its wide coverage over much of the globe, biomass burning has been widely studied in the context of direct radiative forcing. Such study is warranted as smoke particles scatter and at times absorb solar radiation efficiently. Further, as much of what is known about smoke transport and impacts is based on remote sensing measurements, the optical properties of smoke particles have far reaching effects into numerous aspects of biomass burning studies. Global estimates of direct forcing have been widely varying, ranging from near zero to −1 W m-2. A significant part of this difference can be traced to varying assumptions on the optical properties of smoke. This manuscript is the third part of four examining biomass-burning emissions. Here we review and discuss the literature concerning measurement and modeling of optical properties of biomass-burning particles. These include available data from published sensitivity studies, field campaigns, and inversions from the Aerosol Robotic Network (AERONET of Sun photometer sites. As a whole, optical properties reported in the literature are varied, reflecting both the dynamic nature of fires, variations in smoke aging processes and differences in measurement technique. We find that forward modeling or ''internal closure'' studies ultimately are of little help in resolving outstanding measurement issues due to the high degree of degeneracy in solutions when using ''reasonable'' input parameters. This is particularly notable with respect to index of refraction and the treatment of black carbon. Consequently, previous claims of column closure may in fact be more ambiguous. Differences between in situ and retrieved ωo values have implications for estimates of mass scattering and mass absorption efficiencies. In this manuscript we review and discuss this community dataset. Strengths and lapses are pointed out, future research topics are prioritized, and best estimates and uncertainties of key

  15. A review of biomass burning emissions part III: intensive optical properties of biomass burning particles

    Directory of Open Access Journals (Sweden)

    J. S. Reid

    2004-09-01

    Full Text Available Because of its wide coverage over much of the globe, biomass burning has been widely studied in the context of direct radiative forcing. Such study is warranted as smoke particles scatter and at times absorb solar radiation efficiently. Further, as much of what is known about smoke transport and impacts is based on remote sensing measurements, the optical properties of smoke particles have far reaching effects into numerous aspects of biomass burning studies. Global estimates of direct forcing have been widely varying, ranging from near zero to −1 Wm−2. A significant part of this difference can be traced to varying assumptions on the optical properties of smoke. This manuscript is the third part of four examining biomass-burning emissions. Here we review and discuss the literature concerning measurement and modeling of optical properties of biomass-burning particles. These include available data from published sensitivity studies, field campaigns, and inversions from the Aerosol Robotic Network (AERONET of Sun photometer sites. As a whole, optical properties reported in the literature are varied, reflecting both the dynamic nature of fires, variations in smoke aging processes and differences in measurement technique. We find that forward modeling or "internal closure" studies ultimately are of little help in resolving outstanding measurement issues due to the high degree of degeneracy in solutions when using "reasonable" input parameters. This is particularly notable with respect to index of refraction and the treatment of black carbon. Consequently, previous claims of column closure may in fact be more ambiguous. Differences between in situ and retrieved ωo values have implications for estimates of mass scattering and mass absorption efficiencies. In this manuscript we review and discuss this community dataset. Strengths and lapses are pointed out, future research topics are prioritized, and best estimates and

  16. Impact of deforestation on biomass burning in the tropics

    International Nuclear Information System (INIS)

    Fires are widely used for various land use practices in tropical countries. Large amounts of trace gases and aerosol particles are produced during the fires. It is important to assess the potential impact of these gases and particulate matter on the chemistry of the atmosphere and global climate. One of the largest uncertainties in quantifying the effects is the lack of information on the source strengths. The authors quantify the amount of biomass burned due to deforestation in each tropical country on basis of the deforestation rate, the above ground density, and the fraction of above ground biomass burned. Approximately 725 Tg of biomass were burned in 1980 and 984 Tg were burned in 1990. The 36% increase took place mostly in Latin America and tropical Asia. The largest source was Brazil, contributing about 29% of the total biomass burned in the tropics. The second largest source was Indonesia accounting for 10%, followed by Zaire accounting for about 8%. The burning of biomass due to increased deforestation has resulted in an additional 33 Tg CO and 2.5 Tg CH4 emitted annually to the atmosphere from 1980 to 1990

  17. Ozone photochemistry in boreal biomass burning plumes

    Directory of Open Access Journals (Sweden)

    M. Parrington

    2013-01-01

    Full Text Available We present an analysis of ozone photochemistry observed by aircraft measurements of boreal biomass burning plumes over Eastern Canada in the summer of 2011. Measurements of ozone and a number of key chemical species associated with ozone photochemistry, including non-methane hydrocarbons (NMHCs, nitrogen oxides (NOx and total nitrogen containing species (NOy, were made from the UK FAAM BAe-146 research aircraft as part of the quantifying the impact of BOReal forest fires on tropospheric oxidants over the Atlantic using Aircraft and Satellites (BORTAS experiment between 12 July and 3 August 2011. We found that ozone mixing ratios measured in biomass burning plumes were indistinguishable from non-plume measurements, but evaluating them in relationship to measurements of carbon monoxide (CO, total alkyl nitrates (ΣAN and the surrogate species NOz (=NOy - NOx revealed that the potential for ozone production increased with plume age. We used NMHC ratios to estimate photochemical ages of the observed biomass burning plumes between 0 and 15 days. Ozone production, calculated from ΔO3/ΔCO enhancement ratios, increased from 0.020 ± 0.008 ppbv ppbv−1 in plumes with photochemical ages less than 2 days to 0.55 ± 0.29 ppbv ppbv−1 in plumes with photochemical ages greater than 5 days. In comparing ozone mixing ratios with components of the NOy budget we observed that plumes with ages between 2 and 4 days were characterised by high aerosol loading, relative humidity greater than 40%, and low ozone production efficiencies of 8 ppbv ppbv−1 relative to ΣAN and 2 ppbv ppbv−1 relative to NOz. In plumes with ages greater than 4 days, ozone production efficiency increased to 473 ppbv ppbv−1 relative to ΣAN and 155 ppbv ppbv−1 relative to NOz. From the BORTAS measurements we estimated

  18. Heterogeneous processing of biomass burning aerosol proxies by OH radicals for a wide range of OH concentrations and detection of volatilization products

    Science.gov (United States)

    Slade, J. H.; Knopf, D. A.

    2012-12-01

    Biomass burning aerosol (BBA) constitutes the majority of primary organic aerosol found in the atmosphere, with emission rates comparable to fossil-fuel burning. BBA affects earth's radiative budget directly through absorption and scattering of radiation or indirectly by modifying cloud radiative properties, and impacts air quality. Quantifying BBA source strength and thus its effects on air quality, human health, and climate can be difficult since these organic particles can chemically transform during atmospheric transport, a process also termed aging, due to heterogeneous reactions with oxidants and radicals such as OH. In this work we investigate the reactive uptake of OH radicals by typical BBA compounds that also serve as molecular markers for source apportionment studies. Organic substrates of cellulose pyrolysis products such as levoglucosan (1,6-anhydro-β-glucopyranose, C6H10O5), resin acids such as abietic acid (1-phenanthrenecarboxylic acid, C20H30O2), and lignin decomposition products such as 5-nitroguaiacol (2-methoxy-5-nitrophenol, C7H7NO4) have been exposed to a wide range of OH concentrations (~107-1011 cm-3), in presence of O2 in a rotating wall flow reactor operated at 2-6 mbar coupled to a custom built chemical ionization mass spectrometer (CIMS). OH radicals were generated through H2 dissociation in an Evenson microwave resonant cavity operated at 2.45 GHz followed by reaction with O2 or NO2. In addition, potential volatilization of organic material due to heterogeneous oxidation by OH has been determined in-situ by monitoring the volatile organic compounds using a high resolution-proton transfer reaction-time of flight-mass spectrometer (HR-PTR-ToF-MS). The volatilization studies are conducted at 1 atm and OH is generated by O3 photolysis in the presence of H2O vapor and quantified using a photochemical box model as well as through reaction with a known concentration of isoprene (2-methyl-1,3-butadiene, C5H8). Reactive uptake validation

  19. Biomass Burning observed during IAGOS - CARIBIC

    Science.gov (United States)

    Neumaier, Marco; Fischbeck, Garlich; Hermann, Markus; Scharffe, Dieter; Safadi, Layal; Zahn, Andreas

    2016-04-01

    Biomass Burning observed during IAGOS - CARIBIC Since May 2005 the CARIBIC passenger aircraft (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container - Lufthansa, Airbus 340-600) measures ˜100 trace gases and aerosol components in the UTLS (9-12 km altitude) on 4-6 consecutive long-distance flights per month. Volatile Organic Compounds (VOCs) are measured with a Proton-Transfer-Reaction Mass Spectrometer (PTR-MS). Worldwide ~1.3 Tg/y of acetonitrile (CH3CN) is emitted into the atmosphere almost exclusively from biomass burning (BB) together with other VOCs (e.g. ketones, aldehydes, aromatics), CO, CO2, NOx and aerosol particles. Therefore, and due to its rather long tropospheric lifetime of ~6 months, acetonitrile constitutes a reliable BB tracer. Based on the signal of acetonitrile and CO we checked several algorithms to detect BB plumes in the IAGOS-CARIBIC data set. It turned out that the most intense BB plumes were sampled during summer over North America and during autumn over South America. The results will also be discussed with respect to biases due to flight statistics (i.e. destination, flight season, sampling of tropospheric and stratospheric air, etc.). Two flights that took place during the strong ENSO (El Niño/Southern Oscillation) event in July 2015 between Munich (MUC) and Los Angeles (LAX) will be discussed in more detail by taking into account other VOCs and aerosol particles. Here acetonitrile mixing ratios of up to ~1100 pptv were sampled over Greenland ~0.5 km above the tropopause. It is shown that the sampled air originated from Northern America / Canada where strong wildfires took place. During the flight from LAX to MUC the boundary layer air entered the upper troposphere by isentropic quasi-horizontal mixing and not by fast convective transport. The correlation of some VOCs (i.e. acetone, methanol and acetonitrile) with CO will be discussed and contrasted to findings from the literature. It is

  20. Local biomass burning is a dominant cause of the observed precipitation reduction in southern Africa

    Science.gov (United States)

    Hodnebrog, Øivind; Myhre, Gunnar; Forster, Piers M.; Sillmann, Jana; Samset, Bjørn H.

    2016-04-01

    Observations indicate a precipitation decline over large parts of southern Africa since the 1950s. Concurrently, atmospheric concentrations of greenhouse gases and aerosols have increased due to anthropogenic activities. Here we show that local black carbon and organic carbon aerosol emissions from biomass burning activities are a main cause of the observed decline in southern African dry season precipitation over the last century. Near the main biomass burning regions, global and regional modelling indicates precipitation decreases of 20-30%, with large spatial variability. Increasing global CO2 concentrations further contribute to precipitation reductions, somewhat less in magnitude but covering a larger area. Whereas precipitation changes from increased CO2 are driven by large-scale circulation changes, the increase in biomass burning aerosols causes local drying of the atmosphere. This study illustrates that reducing local biomass burning aerosol emissions may be a useful way to mitigate reduced rainfall in the region.

  1. Modeling the impacts of biomass burning on air quality in and around Mexico City

    OpenAIRE

    W. Lei; G Li; L. T. Molina

    2013-01-01

    The local and regional impacts of open fires and trash burning on ground-level ozone (O3) and fine carbonaceous aerosols in the Mexico City Metropolitan Area (MCMA) and surrounding region during two high fire periods in March 2006 have been evaluated using WRF-CHEM model. The model captured reasonably well the measurement-derived magnitude and temporal variation of the biomass burning organic aerosol (BBOA), and the simulated impacts of open fires on organic aerosol (OA) wer...

  2. Modeling the impacts of biomass burning on air quality in and around Mexico City

    OpenAIRE

    W. Lei; G Li; L. T. Molina

    2012-01-01

    The local and regional impacts of open fires and trash burning on ground-level ozone (O[subscript 3]) and fine carbonaceous aerosols in the Mexico City Metropolitan Area (MCMA) and surrounding region during two high fire periods in March 2006 have been evaluated using WRF-CHEM model. The model captured reasonably well the measurement-derived magnitude and temporal variation of the biomass burning organic aerosol (BBOA), and the simulated impacts of open fires on organic aerosol (OA) were cons...

  3. Sources, solubility, and acid processing of aerosol iron and phosphorous over the South China Sea: East Asian dust and pollution outflows vs. Southeast Asian biomass burning

    Science.gov (United States)

    Hsu, S.-C.; Gong, G.-C.; Shiah, F.-K.; Hung, C.-C.; Kao, S.-J.; Zhang, R.; Chen, W.-N.; Chen, C.-C.; Chou, C. C.-K.; Lin, Y.-C.; Lin, F.-J.; Lin, S.-H.

    2014-08-01

    Iron and phosphorous are essential to marine microorganisms in vast regions in oceans worldwide. Atmospheric inputs are important allochthonous sources of Fe and P. The variability in airborne Fe deposition is hypothesized to serve an important function in previous glacial-interglacial cycles, contributing to the variability in atmospheric CO2 and ultimately the climate. Understanding the mechanisms underlying the mobilization of airborne Fe and P from insoluble to soluble forms is critical to evaluate the biogeochemical effects of these elements. In this study, we present a robust power-law correlation between fractional Fe solubility and non-sea-salt-sulfate / Total-Fe (nss-sulfate / FeT) molar ratio independent of distinct sources of airborne Fe of natural and/or anthropogenic origins over the South China Sea. This area receives Asian dust and pollution outflows and Southeast Asian biomass burning. This correlation is also valid for nitrate and total acids, demonstrating the significance of acid processing in enhancing Fe mobilization. Such correlations are also found for P, yet source dependent. These relationships serve as straightforward parameters that can be directly incorporated into available atmosphere-ocean coupling models that facilitate the assessment of Fe and P fertilization effects. Although biomass burning activity may supply Fe to the bioavailable Fe pool, pyrogenic soils are possibly the main contributors, not the burned plants. This finding warrants a multidisciplinary investigation that integrates atmospheric observations with the resulting biogeochemistry in the South China Sea, which is influenced by atmospheric forcings and nutrient dynamics with monsoons.

  4. Impact Assessment of Biomass Burning on Air Quality in Southeast and East Asia During BASE-ASIA

    Science.gov (United States)

    Huang, Kan; Fu, Joshua S.; Hsu, N. Christina; Gao, Yang; Dong, Xinyi; Tsay, Si-Chee; Lam, Yun Fat

    2013-01-01

    A synergy of numerical simulation, ground-based measurement and satellite observation was applied to evaluate the impact of biomass burning originating from Southeast Asia (SE Asia) within the framework of NASA's 2006 Biomass burning Aerosols in Southeast Asia: Smoke Impact Assessment (BASE-ASIA). Biomass burning emissions in the spring of 2006 peaked in MarcheApril when most intense biomass burning occurred in Myanmar, northern Thailand, Laos, and parts of Vietnam and Cambodia. Model performances were reasonably validated by comparing to both satellite and ground-based observations despite overestimation or underestimation occurring in specific regions due to high uncertainties of biomass burning emission. Chemical tracers of particulate K(+), OC concentrations, and OC/EC ratios showed distinct regional characteristics, suggesting biomass burning and local emission dominated the aerosol chemistry. CMAQ modeled aerosol chemical components were underestimated at most circumstances and the converted AOD values from CMAQ were biased low at about a factor of 2, probably due to the underestimation of biomass emissions. Scenario simulation indicated that the impact of biomass burning to the downwind regions spread over a large area via the Asian spring monsoon, which included Southern China, South China Sea, and Taiwan Strait. Comparison of AERONET aerosol optical properties with simulation at multi-sites clearly demonstrated the biomass burning impact via longrange transport. In the source region, the contribution from biomass burning to AOD was estimated to be over 56%. While in the downwind regions, the contribution was still significant within the range of 26%-62%.

  5. Cloud condensation nuclei in polluted air and biomass burning smoke near the mega-city Guangzhou, China – Part 1: Size-resolved measurements and implications for the modeling of aerosol particle hygroscopicity and CCN activity

    Directory of Open Access Journals (Sweden)

    M. O. Andreae

    2008-09-01

    Full Text Available Atmospheric aerosol particles serving as cloud condensation nuclei (CCN are key elements of the hydrological cycle and climate, but their abundance, properties and sources are highly variable and not well known. We have measured and characterized CCN in polluted air and biomass burning smoke during the PRIDE-PRD2006 campaign on 1–30 July 2006 at a rural site ~60 km northwest of the mega-city Guangzhou in southeastern China. CCN efficiency spectra (activated fraction vs. dry particle diameter; 20–300 nm were recorded at water vapor supersaturations (S in the range of 0.07% to 1.27%. Depending on S, the dry CCN activation diameters were in the range of 30–200 nm, corresponding to effective hygroscopicity parameters κ in the range of 0.1–0.5. The hygroscopicity of particles in the accumulation size range was generally higher than that of particles in the nucleation and Aitken size range. The campaign average value of κ for all aerosol particles across the investigated size range was 0.3, which equals the average value of κ for other continental locations. During a strong local biomass burning event, the activation diameters increased by ~10% and the average value of κ dropped to 0.2, which can be considered as characteristic for freshly emitted smoke from the burning of agricultural waste. At low S (≤0.27%, the maximum activated fraction remained generally well below one, which indicates substantial proportions of externally mixed CCN-inactive particles with much lower hygroscopicity – most likely soot particles (up to ~60% at ~250 nm. The mean CCN number concentrations (NCCN,S ranged from 1100 cm−3 at S=0.07% to 16 000 cm−3 at S=1.27%, representing ~7% to ~85% of the total aerosol particle number concentration. Based on the measurement data, we have tested different model approaches (power laws and κ-Köhler model for the approximation/prediction of NCCN,S as a function of water vapor supersaturation, aerosol particle number

  6. Emissions from biomass burning in the Yucatan

    Directory of Open Access Journals (Sweden)

    R. J. Yokelson

    2009-08-01

    Full Text Available In March 2006 two instrumented aircraft made the first detailed field measurements of biomass burning (BB emissions in the Northern Hemisphere tropics as part of the MILAGRO project. The aircraft were the National Center for Atmospheric Research C-130 and a University of Montana/US Forest Service Twin Otter. The initial emissions of up to 49 trace gas or particle species were measured from 20 deforestation and crop residue fires on the Yucatan peninsula. This included two trace gases useful as indicators of BB (HCN and acetonitrile and several rarely, or never before, measured species: OH, peroxyacetic acid, propanoic acid, hydrogen peroxide, methane sulfonic acid, and sulfuric acid. Crop residue fires emitted more organic acids and ammonia than deforestation fires, but the emissions from the main fire types were otherwise fairly similar. The Yucatan fires emitted unusually high amounts of SO2 and particle chloride, likely due to a strong marine influence on this peninsula. As smoke from one fire aged, the ratio ΔO3/ΔCO increased to ~15% in <~1 h similar to the fast net production of O3 in BB plumes observed earlier in Africa. The rapid change in O3 occurs at a finer spatial scale than is employed in global models and is also faster than predicted by micro-scale models. Fast increases in PAN, H2O2, and two organic acids were also observed. The amount of secondary organic acid is larger than the amount of known precursors. Rapid secondary formation of organic and inorganic aerosol was observed with the ratio ΔPM2.5/ΔCO more than doubling in ~1.4±0.7 h. The OH measurements revealed high initial levels (>1×107 molecules/cm3 that were likely caused in part by high initial HONO (~10% of NOy. Thus, more research is needed to understand critical post emission processes for the second-largest trace gas source on Earth. It is estimated that

  7. Emissions from biomass burning in the Yucatan

    Directory of Open Access Journals (Sweden)

    R. Yokelson

    2009-01-01

    Full Text Available In March 2006 two instrumented aircraft made the first detailed field measurements of biomass burning (BB emissions in the Northern Hemisphere tropics as part of the MILAGRO project. The aircraft were the National Center for Atmospheric Research C-130 and a University of Montana/US Forest Service Twin Otter. The initial emissions of up to 49 trace gas or particle species were measured from 20 deforestation and crop residue fires on the Yucatan peninsula. This included two trace gases useful as indicators of BB (HCN and acetonitrile and several rarely, or never before, measured species: OH, peroxyacetic acid, propanoic acid, hydrogen peroxide, methane sulfonic acid, and sulfuric acid. Crop residue fires emitted more organic acids and ammonia than deforestation fires, but the emissions from the main fire types were otherwise fairly similar. The Yucatan fires emitted unusually high amounts of SO2 and particle chloride, likely due to a strong marine influence on this peninsula. As smoke from one fire aged, the ratio ΔO3/ΔCO increased to ~15% in <~1 h similar to the fast net production of O3 in BB plumes observed earlier in Africa. The rapid change in O3 occurs at a finer spatial scale than is employed in global models and is also faster than predicted by micro-scale models. Fast increases in PAN, H2O2, and two organic acids were also observed. The amount of secondary organic acid is larger than the amount of known precursors. Rapid secondary formation of organic and inorganic aerosol was observed with the ratio ΔPM2.5/ΔCO more than doubling in ~1.4±0.7 h. The OH measurements revealed high initial OH levels >1×107 molecules/cm3. Thus, more research is needed to understand critical post emission processes for the second-largest trace gas source on Earth. It is estimated that ~44 Tg of biomass burned in the Yucatan in the spring of 2006

  8. Chemical characterisation of fine particles from biomass burning

    Energy Technology Data Exchange (ETDEWEB)

    Saarnio, K.

    2013-10-15

    Biomass burning has lately started to attract attention because there is a need to decrease the carbon dioxide (CO{sub 2}) emissions from the combustion of fossil fuels. Biomass is considered as CO{sub 2} neutral fuel. However, the burning of biomass is one of the major sources of fine particles both at the local and global scale. In addition to the use of biomass as a fuel for heat energy production, biomass burning emissions can be caused, e.g. by slash-and-burn agriculture and wild open-land fires. Indeed, the emissions from biomass burning are crucially important for the assessment of the potential impacts on global climate and local air quality and hence on human health. The chemical composition of fine particles has a notable influence on these impacts. The overall object of this thesis was to gain knowledge on the chemistry of fine particles that originate from biomass burning as well as on the contribution of biomass burning emissions to the ambient fine particle concentrations. For this purpose novel analytical methods were developed and tested in this thesis. Moreover, the thesis is based on ambient aerosol measurements that were carried out in six European countries at 12 measurement sites during 2002-2011. Additionally, wood combustion experiments were conducted in a laboratory. The measurements included a wide range of techniques: filter and impactor samplings, offline chemical analyses (chromatographic and mass spectrometric techniques, thermal-optical method), and online measurements of particles' physical properties and chemical composition (incl. particle number and mass concentrations and size distributions, concentrations of carbonaceous components, water-soluble ions, and tracer compounds). This thesis presents main results of different studies aimed towards chemical characterisation of fine particle emissions from biomass burning. It was found that wood combustion had a significant influence on atmospheric fine particle concentrations in

  9. The role of semi-volatile organic compounds in the mesoscale evolution of biomass burning aerosol: a modelling case study of the 2010 mega-fire event in Russia

    Science.gov (United States)

    Konovalov, I. B.; Beekmann, M.; Berezin, E. V.; Petetin, H.; Mielonen, T.; Kuznetsova, I. N.; Andreae, M. O.

    2015-03-01

    Chemistry transport models (CTMs) are an indispensable tool for studying and predicting atmospheric and climate effects associated with carbonaceous aerosol from open biomass burning (BB); this type of aerosol is known to contribute significantly to both global radiative forcing and to episodes of air pollution in regions affected by wildfires. Improving model performance requires systematic comparison of simulation results with measurements of BB aerosol and elucidating possible reasons for discrepancies between them, which, "by default", are frequently attributed in the literature to uncertainties in emission data. Based on published laboratory data regarding atmospheric evolution of BB aerosol and by using the volatility basis set (VBS) approach to organic aerosol modeling along with a "conventional" approach, we examined the importance of taking gas-particle partitioning and oxidation of semi-volatile organic compounds (SVOCs) into account in simulations of the mesoscale evolution of smoke plumes from intense wildfires that occurred in western Russia in 2010. BB emissions of primary aerosol components were constrained with the PM10 and CO data from the air pollution monitoring network in the Moscow region. The results of the simulations performed with the CHIMERE CTM were evaluated by considering, in particular, the ratio of smoke-related enhancements in PM10 and CO concentrations (ΔPM10 and ΔCO) measured in Finland (in the city of Kuopio), nearly 1000 km downstream of the fire emission sources. It is found that while the conventional approach (disregarding oxidation of SVOCs and assuming organic aerosol material to be non-volatile) strongly underestimates values of ΔPM10/ΔCO observed in Kuopio (by almost a factor of two), the VBS approach is capable to bring the simulations to a reasonable agreement with the ground measurements both in Moscow and in Kuopio. Using the VBS instead of the conventional approach is also found to result in a major improvement of

  10. The role of semi-volatile organic compounds in the mesoscale evolution of biomass burning aerosol: a modelling case study of the 2010 mega-fire event in Russia

    Directory of Open Access Journals (Sweden)

    I. B. Konovalov

    2015-03-01

    Full Text Available Chemistry transport models (CTMs are an indispensable tool for studying and predicting atmospheric and climate effects associated with carbonaceous aerosol from open biomass burning (BB; this type of aerosol is known to contribute significantly to both global radiative forcing and to episodes of air pollution in regions affected by wildfires. Improving model performance requires systematic comparison of simulation results with measurements of BB aerosol and elucidating possible reasons for discrepancies between them, which, "by default", are frequently attributed in the literature to uncertainties in emission data. Based on published laboratory data regarding atmospheric evolution of BB aerosol and by using the volatility basis set (VBS approach to organic aerosol modeling along with a "conventional" approach, we examined the importance of taking gas-particle partitioning and oxidation of semi-volatile organic compounds (SVOCs into account in simulations of the mesoscale evolution of smoke plumes from intense wildfires that occurred in western Russia in 2010. BB emissions of primary aerosol components were constrained with the PM10 and CO data from the air pollution monitoring network in the Moscow region. The results of the simulations performed with the CHIMERE CTM were evaluated by considering, in particular, the ratio of smoke-related enhancements in PM10 and CO concentrations (ΔPM10 and ΔCO measured in Finland (in the city of Kuopio, nearly 1000 km downstream of the fire emission sources. It is found that while the conventional approach (disregarding oxidation of SVOCs and assuming organic aerosol material to be non-volatile strongly underestimates values of ΔPM10/ΔCO observed in Kuopio (by almost a factor of two, the VBS approach is capable to bring the simulations to a reasonable agreement with the ground measurements both in Moscow and in Kuopio. Using the VBS instead of the conventional approach is also found to result in a major

  11. Effect of biomass burning on marine stratocumulus clouds off the California coast

    Directory of Open Access Journals (Sweden)

    E.-Y. Hsie

    2009-11-01

    Full Text Available Aerosol-cloud interactions are considered to be one of the most important and least known forcings in the climate system. Biomass burning aerosols are of special interest due to their radiative impact (direct and indirect effect and their potential to increase in the future due to climate change. Combining data from Geostationary Operational Environmental Satellite (GOES and MODerate-resolution Imaging Spectroradiometer (MODIS with passive tracers from the FLEXPART Lagrangian Particle Dispersion Model, the impact of biomass burning aerosols on marine stratocumulus clouds has been examined in June and July of 2006–2008 off the California coast. Using a continental tracer, the indirect effect of biomass burning aerosols has been isolated by comparing the average cloud fraction and cloud albedo for different meteorological situations, and for clean versus polluted (in terms of biomass burning continental air masses at 14:00 local time. Within a 500 km-wide band along the coast of California, biomass burning aerosols, which tend to reside above the marine boundary layer, increased the cloud fraction by 0.143, and the cloud albedo by 0.038. Absorbing aerosols located above the marine boundary layer lead to an increase of the lower tropospheric stability and a reduction in the vertical entrainment of dry air from above, leading to increased cloud formation. The combined effect was an indirect radiative forcing of −7.5% ±1.7% (cooling effect of the outgoing radiative flux at the top of the atmosphere on average, with a bias due to meteorology of +0.9%. Further away from the coast, the biomass burning aerosols, which were located within the boundary layer, reduced the cloud fraction by 0.023 and the cloud albedo by 0.006, resulting in an indirect radiative forcing of +1.3% ±0.3% (warming effect with a bias of +0.5%. These results underscore the dual role that absorbing aerosols play in cloud radiative forcing.

  12. Global biomass burning. Atmospheric, climatic, and biospheric implications

    International Nuclear Information System (INIS)

    Biomass burning is a significant source of atmospheric gases and, as such, may contribute to global climate changes. Biomass burning includes burning forests and savanna grasslands for land clearing, burning agricultural stubble and waste after harvesting, and burning biomass fuels. The chapters in this volume include the following topics: remote sensing of biomass burning from space;geographical distribution of burning; combustion products of burning in tropical, temperate and boreal ecosystems; burning as a global source of atmospheric gases and particulates; impacts of biomass burning gases and particulates on global climate; and the role of biomass burning on biodiversity and past global extinctions. A total of 1428 references are cited for the 63 chapters. Individual chapters are indexed separately for the data bases

  13. Mexico City aerosol analysis during MILAGRO using high resolution aerosol mass spectrometry at the urban supersite (T0 – Part 2: Analysis of the biomass burning contribution and the modern carbon fraction

    Directory of Open Access Journals (Sweden)

    J. L. Jimenez

    2009-12-01

    Full Text Available Submicron aerosol was analyzed during the MILAGRO field campaign in March 2006 at the T0 urban supersite in Mexico City with a High-Resolution Aerosol Mass Spectrometer (AMS and complementary instrumentation. Positive Matrix Factorization (PMF of high resolution AMS spectra identified a biomass burning OA (BBOA component, which includes several large plumes that appear to be from forest fires within the region. Here, we show that the AMS BBOA concentration at T0 correlates with fire counts in the vicinity of Mexico City and that most of the BBOA variability is captured when the FLEXPART model is used for the dispersion of fire emissions as estimated from satellite fire counts. The resulting FLEXPART fire impact index correlates well with the observed BBOA, CH3CN, levoglucosan, and potassium, indicating that wildfires in the region surrounding Mexico City are the dominant source of BBOA at T0 during MILAGRO. The impact of distant BB sources such as the Yucatan is small during this period. All fire tracers are correlated, with BBOA and levoglucosan showing little background, acetonitrile having a well-known tropospheric background of ~100–150 ppt, and PM2.5 potassium having a background of ~160 ng m−3 (two-thirds of its average concentration, which does not appear to be related to BB sources. We define two high fire periods based on satellite fire counts and predicted fire impacts. We then compare these periods with a low fire period when the impact of regional fires is about a factor of 5 smaller. Fire tracers are very elevated in the high fire periods whereas tracers of urban pollution do not change between these periods. Dust is also elevated during the high BB period but this appears to be coincidental due to the drier conditions and not driven by direct dust emission from the fires. The AMS oxygenated OA factor (OOA, mostly secondary OA or SOA does not show an increase during the fire periods or a

  14. Polar organic marker compounds in atmospheric aerosols during the LBA-SMOCC 2002 biomass burning experiment in Rondônia, Brazil: sources and source processes, time series, diel variations and size distributions

    Directory of Open Access Journals (Sweden)

    M. Claeys

    2010-04-01

    Full Text Available Measurements of polar organic marker compounds were performed on aerosols that were collected at a pasture site in the Amazon basin (Rondônia, Brazil using a High-Volume dichotomous sampler (HVDS and a Micro-Orifice Uniform Deposit Impactor (MOUDI. The samplings were conducted within the framework of the LBA-SMOCC (Large-Scale Biosphere Atmosphere Experiment in Amazônia – Smoke Aerosols, Clouds, Rainfall, and Climate: Aerosols From Biomass Burning Perturb Global and Regional Climate campaign, which took place from 9 September till 14 November 2002, spanning the late dry season (biomass burning, the transition period, and the onset of the wet season (clean conditions. In the present study a more detailed discussion is presented compared to previous reports on the behavior of selected polar marker compounds, including: (a levoglucosan, a tracer for biomass burning, (b malic acid, a tracer for the oxidation of semivolatile carboxylic acids, (c tracers for secondary organic aerosol (SOA from isoprene, i.e., the 2-methyltetrols (2-methylthreitol and 2-methylerythritol and the C5-alkene triols [2-methyl-1,3,4-trihydroxy-1-butene (cis and trans and 3-methyl-2,3,4-trihydroxy-1-butene], and (d sugar alcohols (arabitol, mannitol, and erythritol, tracers for fungal spores. The results obtained for levoglucosan are covered first with the aim to address its contrasting behavior with that of malic acid, the isoprene SOA tracers, and the fungal spore tracers. The tracer data are discussed taking into account new insights that recently became available into their stability and/or aerosol formation processes. During all three periods, levoglucosan was the most dominant identified organic species in the PM2.5 size fraction of the HVDS samples. In the dry period levoglucosan reached concentrations of up to 7.5 μg m−3 and exhibited diel variations with a nighttime prevalence. It was closely associated with the

  15. Biomass Burning Emissions from Fire Remote Sensing

    Science.gov (United States)

    Ichoku, Charles

    2010-01-01

    Knowledge of the emission source strengths of different (particulate and gaseous) atmospheric constituents is one of the principal ingredients upon which the modeling and forecasting of their distribution and impacts depend. Biomass burning emissions are complex and difficult to quantify. However, satellite remote sensing is providing us tremendous opportunities to measure the fire radiative energy (FRE) release rate or power (FRP), which has a direct relationship with the rates of biomass consumption and emissions of major smoke constituents. In this presentation, we will show how the satellite measurement of FRP is facilitating the quantitative characterization of biomass burning and smoke emission rates, and the implications of this unique capability for improving our understanding of smoke impacts on air quality, weather, and climate. We will also discuss some of the challenges and uncertainties associated with satellite measurement of FRP and how they are being addressed.

  16. Discrimination of Biomass Burning Smoke and Clouds in MAIAC Algorithm

    Science.gov (United States)

    Lyapustin, A.; Korkin, S.; Wang, Y.; Quayle, B.; Laszlo, I.

    2012-01-01

    The multi-angle implementation of atmospheric correction (MAIAC) algorithm makes aerosol retrievals from MODIS data at 1 km resolution providing information about the fine scale aerosol variability. This information is required in different applications such as urban air quality analysis, aerosol source identification etc. The quality of high resolution aerosol data is directly linked to the quality of cloud mask, in particular detection of small (sub-pixel) and low clouds. This work continues research in this direction, describing a technique to detect small clouds and introducing the smoke test to discriminate the biomass burning smoke from the clouds. The smoke test relies on a relative increase of aerosol absorption at MODIS wavelength 0.412 micrometers as compared to 0.47-0.67 micrometers due to multiple scattering and enhanced absorption by organic carbon released during combustion. This general principle has been successfully used in the OMI detection of absorbing aerosols based on UV measurements. This paper provides the algorithm detail and illustrates its performance on two examples of wildfires in US Pacific North-West and in Georgia/Florida of 2007.

  17. Discrimination of biomass burning smoke and clouds in MAIAC algorithm

    Directory of Open Access Journals (Sweden)

    A. Lyapustin

    2012-07-01

    Full Text Available The multi-angle implementation of atmospheric correction (MAIAC algorithm makes aerosol retrievals from MODIS data at 1 km resolution providing information about the fine scale aerosol variability. This information is required in different applications such as urban air quality analysis, aerosol source identification etc. The quality of high resolution aerosol data is directly linked to the quality of cloud mask, in particular detection of small (sub-pixel and low clouds. This work continues research in this direction, describing a technique to detect small clouds and introducing the "smoke test" to discriminate the biomass burning smoke from the clouds. The smoke test relies on a relative increase of aerosol absorption at MODIS wavelength 0.412 μm as compared to 0.47–0.67 μm due to multiple scattering and enhanced absorption by organic carbon released during combustion. This general principle has been successfully used in the OMI detection of absorbing aerosols based on UV measurements. This paper provides the algorithm detail and illustrates its performance on two examples of wildfires in US Pacific North-West and in Georgia/Florida of 2007.

  18. A New IGAC/iLEAPS/WMO Initiative on Biomass Burning

    Science.gov (United States)

    Kaiser, Johannes W.; Keywood, Melita; Granier, Claire; Jalkanen, Liisa; Melamed, Megan L.; Suni, Tanja

    2013-04-01

    Biomass burning changes the land surface drastically and leads to the release of large amounts of trace gases and aerosol particles that play important roles in atmospheric chemistry and climate. In addition, there is large uncertainty on how climate change and global change will impact the frequency, intensity, duration, and location of biomass burning in the short- and long-term, making their emissions a large source of uncertainty in future atmospheric composition. Therefore biomass burning and its emissions need to be observed and modeled accurately to understand the composition of the atmosphere and how it changes at different temporal and spatial scales. Significant gaps remain in our understanding of the contribution of deforestation and savanna, forest, agricultural waste, and peat fires to emissions. International activities (e.g., interdisciplinary laboratory measurements and field campaigns that integrate ground-based and airborne observations, as well as detailed analysis of satellite data and numerical modeling results) will help to better quantify the present and future impact of biomass burning emissions on the composition and chemistry of the Earth's atmosphere. Therefore IGAC, iLEAPS, and WMO have held a workshop on biomass burning in summer 2012 and subsequently created a new joint initiative on biomass burning. The initiative aims to coordinate the world-wide and interdisciplinary activities in order to improve our quantitative understanding of biomass burning. It is in its start-up phase and input from the community is invited. More information is available at http://www.igacproject.org/BiomassBurning .

  19. Aged Boreal Biomass Burning Size Distributions from Bortas 2011

    Science.gov (United States)

    Pierce, J. R.; Sakamoto, K.; Allan, J. D.; Coe, H.; Taylor, J.; Duck, T.

    2014-12-01

    Biomass-burning aerosols contribute to aerosol radiative forcing on the climate system. The magnitude of this effect is partially determined by aerosol size distributions, which are strong functions of source fire characteristics (e.g. fuel type, MCE) and in-plume microphysical processing. The uncertainties in biomass-burning emission number size-distributions in climate model inventories lead to uncertainties in the CCN concentrations and forcing estimates derived from these models. The BORTAS-B measurement campaign was designed to sample boreal biomass-burning outflow over Eastern Canada in the summer of 2011. Using these BORTAS-B data, we implement plume criteria to isolate the characteristic size-distribution of aged biomass-burning emissions (aged ~ 1.5 - 2 days) from boreal wildfires in Northwestern Ontario. The composite median size-distribution yields a single dominant accumulation mode with Dpm = 232 nm, σ = 1.7, which are comparable to literature values of other aged plumes of a similar type. The organic aerosol enhancement ratios (ΔOA/ΔCO) along the path of Flight b622 show values of 0.08-0.18 μg m-3 ppbv-1 with no significant trend with distance from the source. This lack of enhancement ratio increase/decrease with distance suggests no detectable net OA production/evaporation within the aged plume over the sampling period. A Lagrangian microphysical model was used to determine an estimate of the freshly emitted size distribution and flux corresponding to the BORTAS-B aged size-distributions. The model was restricted to coagulation and dilution processes only based on the insignificant net OA production/evaporation derived from the ΔOA/ΔCO enhancement ratios. Depending on the, we estimate that the fresh-plume median diameter was in the range of 59-94 nm with modal widths in the range of 1.7-2.8. Thus, the size of the freshly emitted particles is somewhat unconstrained due to the uncertainties in the plume dilution rates.

  20. Cloud condensation nuclei in polluted air and biomass burning smoke near the mega-city Guangzhou, China – Part 2: Size-resolved aerosol chemical composition, diurnal cycles, and externally mixed weakly CCN-active soot particles

    Directory of Open Access Journals (Sweden)

    D. Rose

    2011-03-01

    Full Text Available Size-resolved chemical composition, mixing state, and cloud condensation nucleus (CCN activity of aerosol particles in polluted mega-city air and biomass burning smoke were measured during the PRIDE-PRD2006 campaign near Guangzhou, China, using an aerosol mass spectrometer (AMS, a volatility tandem differential mobility analyzer (VTDMA, and a continuous-flow CCN counter (DMT-CCNC.

    The size-dependence and temporal variations of the effective average hygroscopicity parameter for CCN-active particles (κa could be parameterized as a function of organic and inorganic mass fractions (forg, finorg determined by the AMS: κa,porg·forg + κinorg·finorg. The characteristic κ values of organic and inorganic components were similar to those observed in other continental regions of the world: κorg≈0.1 and κinorg≈0.6. The campaign average κa values increased with particle size from ~0.25 at ~50 nm to ~0.4 at ~200 nm, while forg decreased with particle size. At ~50 nm, forg was on average 60% and increased to almost 100% during a biomass burning event.

    The VTDMA results and complementary aerosol optical data suggest that the large fractions of CCN-inactive particles observed at low supersaturations (up to 60% at S≤0.27% were externally mixed weakly CCN-active soot particles with low volatility (diameter reduction <5% at 300 °C and effective hygroscopicity parameters around κLV≈0.01. A proxy for the effective average hygroscopicity of the total ensemble of CCN-active particles including weakly CCN-active particles (κt could be parameterized as a function of κa,p and the number fraction of low volatility particles determined by VTDMA (φLV: κt,pa,p−φLV

  1. Mexico city aerosol analysis during MILAGRO using high resolution aerosol mass spectrometry at the urban supersite (T0) - Part 2: Analysis of the biomass burning contribution and the non-fossil carbon fraction

    Energy Technology Data Exchange (ETDEWEB)

    Aiken, A.C.; Wang, J.; de Foy, B.; Wiedinmyer, C.; DeCarlo, P. F.; Ulbrich, I. M.; Wehrli, M. N.; Szidat, S.; Prevot, A. S. H.; Noda, J.; Wacker, L.; Volkamer, R.; Fortner, E.; Laskin, A.; Shutthanandan, V.; Zheng, J.; Zhang, R.; Paredes-Miranda, G.; Arnott, W. P.; Molina, L. T.; Sosa, G.; Querol, X.; Jimenez, J. L.

    2010-06-16

    Submicron aerosol was analyzed during the MILAGRO field campaign in March 2006 at the T0 urban supersite in Mexico City with a High-Resolution Aerosol Mass Spectrometer (AMS) and complementary instrumentation. Positive Matrix Factorization (PMF) of high resolution AMS spectra identified a biomass burning organic aerosol (BBOA) component, which includes several large plumes that appear to be from forest fires within the region. Here, we show that the AMS BBOA concentration at T0 correlates with fire counts in the vicinity of Mexico City and that most of the BBOA variability is captured when the FLEXPART model is used for the dispersion of fire emissions as estimated from satellite fire counts. The resulting FLEXPART fire impact factor (FIF) correlates well with the observed BBOA, acetonitrile (CH3CN), levoglucosan, and potassium, indicating that wildfires in the region surrounding Mexico City are the dominant source of BBOA at T0 during MILAGRO. The impact of distant BB sources such as the Yucatan is small during this period. All fire tracers are correlated, with BBOA and levoglucosan showing little background, acetonitrile having a well-known tropospheric background of {approx}100-150 pptv, and PM2.5 potassium having a background of {approx}160 ng m3 (two-thirds of its average concentration), which does not appear to be related to BB sources. We define two high fire periods based on satellite fire counts and FLEXPART-predicted FIFs. We then compare these periods with a low fire period when the impact of regional fires is about a factor of 5 smaller. Fire tracers are very elevated in the high fire periods whereas tracers of urban pollution do not change between these periods. Dust is also elevated during the high BB period but this appears to be coincidental due to the drier conditions and not driven by direct dust emission from the fires. The AMS oxygenated organic aerosol (OA) factor (OOA, mostly secondary OA or SOA) does not show an increase during the fire

  2. Overview of the South American biomass burning analysis (SAMBBA) field experiment

    Science.gov (United States)

    Morgan, W. T.; Allan, J. D.; Flynn, M.; Darbyshire, E.; Hodgson, A.; Johnson, B. T.; Haywood, J. M.; Freitas, S.; Longo, K.; Artaxo, P.; Coe, H.

    2013-05-01

    Biomass burning represents one of the largest sources of particulate matter to the atmosphere, which results in a significant perturbation to the Earth's radiative balance coupled with serious negative impacts on public health. Globally, biomass burning aerosols are thought to exert a small warming effect of 0.03 Wm-2, however the uncertainty is 4 times greater than the central estimate. On regional scales, the impact is substantially greater, particularly in areas such as the Amazon Basin where large, intense and frequent burning occurs on an annual basis for several months (usually from August-October). Furthermore, a growing number of people live within the Amazon region, which means that they are subject to the deleterious effects on their health from exposure to substantial volumes of polluted air. Initial results from the South American Biomass Burning Analysis (SAMBBA) field experiment, which took place during September and October 2012 over Brazil, are presented here. A suite of instrumentation was flown on-board the UK Facility for Airborne Atmospheric Measurement (FAAM) BAe-146 research aircraft and was supported by ground based measurements, with extensive measurements made in Porto Velho, Rondonia. The aircraft sampled a range of conditions with sampling of fresh biomass burning plumes, regional haze and elevated biomass burning layers within the free troposphere. The physical, chemical and optical properties of the aerosols across the region will be characterized in order to establish the impact of biomass burning on regional air quality, weather and climate.

  3. Cloud condensation nuclei in polluted air and biomass burning smoke near the mega-city Guangzhou, China – Part 1: Size-resolved measurements and implications for the modeling of aerosol particle hygroscopicity and CCN activity

    Directory of Open Access Journals (Sweden)

    D. Rose

    2010-04-01

    Full Text Available Atmospheric aerosol particles serving as Cloud Condensation Nuclei (CCN are key elements of the hydrological cycle and climate. We measured and characterized CCN in polluted air and biomass burning smoke during the PRIDE-PRD2006 campaign from 1–30 July 2006 at a rural site ~60 km northwest of the mega-city Guangzhou in southeastern China.

    CCN efficiency spectra (activated fraction vs. dry particle diameter; 20–290 nm were recorded at water vapor supersaturations (S in the range of 0.068% to 1.27%. The corresponding effective hygroscopicity parameters describing the influence of particle composition on CCN activity were in the range of κ≈0.1–0.5. The campaign average value of κ=0.3 equals the average value of κ for other continental locations. During a strong local biomass burning event, the average value of κ dropped to 0.2, which can be considered as characteristic for freshly emitted smoke from the burning of agricultural waste. At low S (≤0.27%, the maximum activated fraction remained generally well below one, indicating substantial portions of externally mixed CCN-inactive particles with much lower hygroscopicity – most likely soot particles (up to ~60% at ~250 nm.

    The mean CCN number concentrations (NCCN,S ranged from 1000 cm−3 at S=0.068% to 16 000 cm−3 at S=1.27%, which is about two orders of magnitude higher than in pristine air. Nevertheless, the ratios between CCN concentration and total aerosol particle concentration (integral CCN efficiencies were similar to the ratios observed in pristine continental air (~6% to ~85% at S=0.068% to 1.27%. Based on the measurement data, we have tested different model approaches for the approximation/prediction of NCCN,S. Depending on S and on the model approach, the relative deviations between observed and predicted NCCN,S ranged from a few

  4. Cloud condensation nuclei in polluted air and biomass burning smoke near the mega-city Guangzhou, China - Part 1: Size-resolved measurements and implications for the modeling of aerosol particle hygroscopicity and CCN activity

    Science.gov (United States)

    Rose, D.; Nowak, A.; Achtert, P.; Wiedensohler, A.; Hu, M.; Shao, M.; Zhang, Y.; Andreae, M. O.; Pöschl, U.

    2010-04-01

    Atmospheric aerosol particles serving as Cloud Condensation Nuclei (CCN) are key elements of the hydrological cycle and climate. We measured and characterized CCN in polluted air and biomass burning smoke during the PRIDE-PRD2006 campaign from 1-30 July 2006 at a rural site ~60 km northwest of the mega-city Guangzhou in southeastern China. CCN efficiency spectra (activated fraction vs. dry particle diameter; 20-290 nm) were recorded at water vapor supersaturations (S) in the range of 0.068% to 1.27%. The corresponding effective hygroscopicity parameters describing the influence of particle composition on CCN activity were in the range of κ≍0.1-0.5. The campaign average value of κ=0.3 equals the average value of κ for other continental locations. During a strong local biomass burning event, the average value of κ dropped to 0.2, which can be considered as characteristic for freshly emitted smoke from the burning of agricultural waste. At low S (≤0.27%), the maximum activated fraction remained generally well below one, indicating substantial portions of externally mixed CCN-inactive particles with much lower hygroscopicity - most likely soot particles (up to ~60% at ~250 nm). The mean CCN number concentrations (NCCN,S) ranged from 1000 cm-3 at S=0.068% to 16 000 cm-3 at S=1.27%, which is about two orders of magnitude higher than in pristine air. Nevertheless, the ratios between CCN concentration and total aerosol particle concentration (integral CCN efficiencies) were similar to the ratios observed in pristine continental air (~6% to ~85% at S=0.068% to 1.27%). Based on the measurement data, we have tested different model approaches for the approximation/prediction of NCCN,S. Depending on S and on the model approach, the relative deviations between observed and predicted NCCN,S ranged from a few percent to several hundred percent. The largest deviations occurred at low S with a simple power law. With a Köhler model using variable κ values obtained from

  5. Impact of biomass burning on the atmosphere

    International Nuclear Information System (INIS)

    Fire has played an important part in biogeochemical cycling throughout most of the history of our planet. Ice core studies have been very beneficial in paleoclimate studies and constraining the budgets of biogeochemical cycles through the past 160,000 years of the Vostok ice core. Although to date there has been no way of determining cause and effect, concentration of greenhouse gases directly correlates with temperature in ice core analyses. Recent ice core studies on Greenland have shown that significant climate change can be very rapid on the order of a decade. This chapter addresses the coupled evolution of our planet's atmospheric composition and biomass burning. Special attention is paid to the chemical and climatic impacts of biomass burning on the atmosphere throughout the last century, specifically looking at the cycles of carbon, nitrogen, and sulfur. Information from ice core measurements may be useful in understanding the history of fire and its historic affect on the composition of the atmosphere and climate

  6. Ozone photochemistry in boreal biomass burning plumes

    OpenAIRE

    M. Parrington; Palmer, P. I.; Lewis, A. C.; J. D. Lee; A. R. Rickard; De Carlo, P; Taylor, J.W.; J. R. Hopkins; S. Punjabi; D. E. Oram; G. Forster; Aruffo, E.; Moller, S. J.; Bauguitte, S. J.-B.; Allan, J. D.

    2013-01-01

    We present an analysis of ozone (O3) photochemistry observed by aircraft measurements of boreal biomass burning plumes over eastern Canada in the summer of 2011. Measurements of O3 and a number of key chemical species associated with O3 photochemistry, including non-methane hydrocarbons (NMHCs), nitrogen oxides (NOx) and total nitrogen containing species (NOy), were made from the UK FAAM BAe-146 research aircraft as part of the "quantifying the impact of BOReal forest fires on Tropospheric ox...

  7. Ozone photochemistry in boreal biomass burning plumes

    OpenAIRE

    M. Parrington; Palmer, P. I.; Lewis, A. C.; J. D. Lee; A. R. Rickard; P. Di Carlo; Taylor, J.W.; J. R. Hopkins; S. Punjabi; D. E. Oram; G. Forster; Aruffo, E.; Moller, S. J.; S. J.-B. Bauguitte; Allan, J. D.

    2013-01-01

    We present an analysis of ozone photochemistry observed by aircraft measurements of boreal biomass burning plumes over Eastern Canada in the summer of 2011. Measurements of ozone and a number of key chemical species associated with ozone photochemistry, including non-methane hydrocarbons (NMHCs), nitrogen oxides (NOx) and total nitrogen containing species (NOy), were made from the UK FAAM BAe-146 research aircraft as part of the quantifying ...

  8. Ozone photochemistry in boreal biomass burning plumes

    OpenAIRE

    M. Parrington; Palmer, P. I.; Lewis, A. C.; J. D. Lee; A. R. Rickard; P. Di Carlo; Taylor, J.W.; J. R. Hopkins; S. Punjabi; D. E. Oram; G. Forster; Aruffo, E.; Moller, S. J.; Bauguitte, S. J.-B.; Allan, J. D.

    2013-01-01

    We present an analysis of ozone photochemistry observed by aircraft measurements of boreal biomass burning plumes over Eastern Canada in the summer of 2011. Measurements of ozone and a number of key chemical species associated with ozone photochemistry, including non-methane hydrocarbons (NMHCs), nitrogen oxides (NOx) and total nitrogen containing species (NOy), were made from the UK FAAM BAe-146 research aircraft as part of the quantifying the impact of BOReal forest fires on tropospheric ox...

  9. Biomass Burning and Polonium-210 in the Atmosphere: a Review

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Fernando P. [Instituto Superior Tecnico/Campus Tecnologico e Nuclear/(IST/CTN), Universidade de Lisboa, Estrada Nacional 10 - ao km 139,7 - 2695-066 Bobadela LRS (Portugal)

    2014-07-01

    Naturally-occurring radionuclides, such as those of uranium series, are part of the lithosphere and hydrosphere and plants do accumulate them up to a certain extent being the activity concentrations in plants generally low, less than 10 Bq/kg (dry weight). Forest and vegetation fires, as well as biomass burning for energy production, release large amounts of carbon, particulate materials, and gaseous compounds into the atmosphere including the naturally-occurring radionuclides present in plants. Near forest fires, and at local and regional scales, surface aerosol sampling followed by radionuclide analysis showed enhanced radionuclide concentrations, especially those of {sup 210}Po. In surface air with smoke from wild fires {sup 210}Po concentration attained 70 mBq/m{sup 3}, more than 2000 times above {sup 210}Po background in surface air, and aerosols displayed {sup 210}Po/{sup 210}Pb concentration ratios up to 12, i.e., about 20 times higher than the average concentration ratio in surface air. Taking into account the amount of plant biomass burned every year, the total activity of {sup 210}Po released into the atmosphere from this source is able to disrupt the usual {sup 210}Po/{sup 210}Pb concentration ratios in atmosphere and atmospheric depositions. A review of atmospheric polonium sources is presented. (authors)

  10. Biomass Burning and Polonium-210 in the Atmosphere: a Review

    International Nuclear Information System (INIS)

    Naturally-occurring radionuclides, such as those of uranium series, are part of the lithosphere and hydrosphere and plants do accumulate them up to a certain extent being the activity concentrations in plants generally low, less than 10 Bq/kg (dry weight). Forest and vegetation fires, as well as biomass burning for energy production, release large amounts of carbon, particulate materials, and gaseous compounds into the atmosphere including the naturally-occurring radionuclides present in plants. Near forest fires, and at local and regional scales, surface aerosol sampling followed by radionuclide analysis showed enhanced radionuclide concentrations, especially those of 210Po. In surface air with smoke from wild fires 210Po concentration attained 70 mBq/m3, more than 2000 times above 210Po background in surface air, and aerosols displayed 210Po/210Pb concentration ratios up to 12, i.e., about 20 times higher than the average concentration ratio in surface air. Taking into account the amount of plant biomass burned every year, the total activity of 210Po released into the atmosphere from this source is able to disrupt the usual 210Po/210Pb concentration ratios in atmosphere and atmospheric depositions. A review of atmospheric polonium sources is presented. (authors)

  11. Methoxyphenols in smoke from biomass burning

    Energy Technology Data Exchange (ETDEWEB)

    Kjaellstrand, J.

    2000-07-01

    Wood and other forest plant materials were burned in laboratory experiments with the ambition to simulate the natural burning course in a fireplace or a forest fire. Smoke samples were taken and analysed with respect to methoxyphenols, using gas chromatography and mass spectrometry. Different kinds of bio pellets, intended for residential heating were studied in the same way. The aim of a first study was to establish analytical data to facilitate further research. Thirty-six specific methoxyphenols were identified, and gas chromatographic retention and mass spectrometric data were determined for these. In a subsequent study, the methoxyphenol emissions from the burning of wood and other forest plant materials were investigated. Proportions and concentrations of specific methoxyphenols were determined. Methoxyphenols and anhydrosugars, formed from the decomposition of lignin and cellulose respectively, were the most prominent semi-volatile compounds in the biomass smoke. The methoxyphenol compositions reflected the lignin structures of different plant materials. Softwood smoke contained almost only 2-methoxyphenols, while hardwood smoke contained both 2-methoxyphenols and 2,6-dimethoxyphenols. The methoxyphenols in smoke from pellets, made of sawdust, bark and lignin, reflected the source of biomass. Although smoke from incompletely burned wood contains mainly methoxyphenols and anhydrosugars, there is also a smaller amount of well-known hazardous compounds present. The methoxyphenols are antioxidants. They appear mainly condensed on particles and are presumed to be inhaled together with other smoke components. As antioxidants, phenols interrupt free radical chain reactions and possibly counteract the effect of hazardous smoke components. Health hazards of small-scale wood burning should be re-evaluated considering antioxidant effects of the methoxyphenols.

  12. Modeling the impacts of biomass burning on air quality in and around Mexico City

    Directory of Open Access Journals (Sweden)

    W. Lei

    2012-09-01

    Full Text Available The local and regional impacts of open fires and trash burning on ground-level ozone (O3 and fine carbonaceous aerosols in the Mexico City Metropolitan Area (MCMA and surrounding region during two high fire periods in March 2006 have been evaluated using WRF-CHEM model. The model captured reasonably well the measurement-derived magnitude and temporal variation of the biomass burning organic aerosol (BBOA, and the simulated impacts of open fires on organic aerosol (OA were consistent with many observation-based estimates. We did not detect significant effects of open fires and trash burning on surface O3 concentrations in the MCMA and surrounding region. In contrast, they had important influences on OA and elemental carbon (EC, contributing about 60, 22, 33, and 22% to primary OA (POA, secondary OA (SOA, total OA (TOA, and EC, respectively, on both the local and regional scales. Although the emissions of trash burning are substantially lower than those from open fires, trash burning made slightly smaller but comparable contributions to OA as open fires did, and exerted an even higher influence on EC. SOA formation due to the open fires and trash burning enhanced the OA concentration by about 10 and 5% in the MCMA, respectively. On the annual basis and taking the biofuel use emissions into consideration, we estimated that biomass burning contributed about 60, 30, and 25%, respectively, to the loadings of POA, SOA and EC in both the MCMA and its surrounding region, with about 35, 18, and 15% from open fires and trash burning. The estimates of biomass burning impacts in this study may contain considerable uncertainties due to the uncertainties in their emission estimates, extrapolations and the nature of spot comparison. More observation and modeling studies are needed to accurately assess the impacts of biomass burning on tropospheric chemistry, regional and global air quality, and climate change.

  13. The radiative effect of aerosols from biomass burning on the transition from dry to wet season over the Amazon as tested by a regional climate model

    Science.gov (United States)

    Zhang, Yan

    2008-10-01

    I have carried out a set of ensemble simulations of a regional climate model with observed radiative forcing for smoke aerosols over the Amazon to investigate the radiative effects of aerosols on clouds, rainfall, and circulation from dry to wet season. I first modified the land surface scheme such that the modeled daily mean and diurnal cycle of the surface sensible and latent heat fluxes are much more realistic over the Amazon rainforest. The results of the ensemble simulations suggest that the radiative effect of the smoke aerosols can reduce daytime surface radiative and sensible fluxes, the depth and instability of the planetary boundary layer (PBL), consequently the clouds in the lower troposphere in early afternoon in the smoke center, where the aerosols optical depth, AOD, exceeds 0.3. The aerosol radiative forcing also appears to weaken moisture transport into the smoke center and increase moisture transport and cloudiness in the region upwind to the smoke center, namely, the northern Amazon. In particular, the absorption of solar radiation by smoke aerosols reduces cloudiness in early afternoon. This reduction of cloud partially compensates for the reduction of surface solar flux by aerosol scattering, shifting the strongest changes of surface flux and the PBL to late morning. The reduction of net solar radiation at the surface by smoke is locally largely compensated by reduction of surface sensible flux; with reduction of latent flux only about 30% as large. This is because, in model, transpiration of the forest canopy response favorably to the reduced leaf temperature by aerosols at local noon, which compensates the reduction of evapotranspiration (ET) in morning and later afternoon. Strong aerosol absorption in the top 1 km of the aerosol layer stabilizes the 2 to 3 km layer immediately above the daytime PBL and consequently cloudiness decreases. This reduced surface solar flux and more stable lapse rate at the top of the PBL stabilize the lower

  14. Natural organic compounds as tracers for biomass combustion in aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Simoneit, B.R.T. [Brookhaven National Lab., Upton, NY (United States)]|[Oregon State Univ., Corvallis, OR (United States). Coll. of Oceanic and Atmospheric Sciences; Abas, M.R. bin [Brookhaven National Lab., Upton, NY (United States)]|[Univ. of Malaya, Kuala Lumpur (Malaysia); Cass, G.R. [Brookhaven National Lab., Upton, NY (United States)]|[California Inst. of Tech., Pasadena, CA (United States). Environmental Engineering Science Dept.; Rogge, W.F. [Brookhaven National Lab., Upton, NY (United States)]|[Florida International Univ., University Park, FL (United States). Dept. of Civil and Environmental Engineering; Mazurek, M.A. [Brookhaven National Lab., Upton, NY (United States); Standley, L.J. [Academy of Natural Sciences, Avondale, PA (United States). Stroud Water Research Center; Hildemann, L.M. [Stanford Univ., CA (United States). Dept. of Civil Engineering

    1995-08-01

    Biomass combustion is an important primary source of carbonaceous particles in the global atmosphere. Although various molecular markers have already been proposed for this process, additional specific organic tracers need to be characterized. The injection of natural product organic tracers to smoke occurs primarily by direct volatilization/steam stripping and by thermal alteration based on combustion temperature. The degree of alteration increases as the burn temperature rises and the moisture content of the fuel decreases. Although the molecular composition of organic matter in smoke particles is highly variable, the molecular structures of the tracers are generally source specific. The homologous compound series and biomarkers present in smoke particles are derived directly from plant wax, gum and resin by volatilization and secondarily from pyrolysis of biopolymers, wax, gum and resin. The complexity of the organic components of smoke aerosol is illustrated with examples from controlled burns of temperate and tropical biomass fuels. Burning of biomass from temperate regions (i.e., conifers) yields characteristic tracers from diterpenoids as well as phenolics and other oxygenated species, which are recognizable in urban airsheds. The major organic components of smoke particles from tropical biomass are straight-chain, aliphatic and oxygenated compounds and triterpenoids. The precursor-to-product approach of organic geochemistry can be applied successfully to provide tracers for studying smoke plume chemistry and dispersion.

  15. Seasonal, interannual, and long-term variabilities in biomass burning activity over South Asia.

    Science.gov (United States)

    Bhardwaj, P; Naja, M; Kumar, R; Chandola, H C

    2016-03-01

    The seasonal, interannual, and long-term variations in biomass burning activity and related emissions are not well studied over South Asia. In this regard, active fire location retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS), the retrievals of aerosol optical depth (AOD) from MODIS Terra, and tropospheric column NO2 from Ozone Monitoring Instrument (OMI) are used to understand the effects of biomass burning on the tropospheric pollution loadings over South Asia during 2003-2013. Biomass burning emission estimates from Global Fire Emission Database (GFED) and Global Fire Assimilation System (GFAS) are also used to quantify uncertainties and regional discrepancies in the emissions of carbon monoxide (CO), nitrogen oxide (NOx), and black carbon (BC) due to biomass burning in South Asia. In the Asian continent, the frequency of fire activity is highest over Southeast Asia, followed by South Asia and East Asia. The biomass burning activity in South Asia shows a distinct seasonal cycle that peaks during February-May with some differences among four (north, central, northeast, and south) regions in India. The annual biomass burning activity in north, central, and south regions shows an increasing tendency, particularly after 2008, while a decrease is seen in northeast region during 2003-2013. The increase in fire counts over the north and central regions contributes 24 % of the net enhancement in fire counts over South Asia. MODIS AOD and OMI tropospheric column NO2 retrievals are classified into high and low fire activity periods and show that biomass burning leads to significant enhancement in tropospheric pollution loading over both the cropland and forest regions. The enhancement is much higher (110-176 %) over the forest region compared to the cropland (34-62 %) region. Further efforts are required to understand the implications of biomass burning on the regional air quality and climate of South Asia. PMID:26503008

  16. Working group report: methane emissions from biomass burning

    International Nuclear Information System (INIS)

    Biomass burning is a significant source of atmospheric methane. Like most other sources of methane, it has both natural and anthropogenic causes, although anthropogenic causes now predominate. Most of the estimates of methane emissions from biomass burning in the past have relied on a uniform emission factor for all types of burning. This results in the share of trace gas emissions for different types of burning being the same as the amounts of biomass burned in those types. The Working Group endorsed the extension of an approach followed for Africa by Delmas et al. (1991) to use different emission factors for different types of biomass burning to estimate national emissions of methane. This is really critical as emission factors present important variations. While the focus of discussions of the Working Group was on methane emissions from biomass burning, the Group endorsed the IPCC-OECD methodology of estimating all greenhouse related trace gases from biomass burning. Neither the IPCC-OECD nor the methodology suggested here applies to estimation of trace gas emissions from the processing of biomass to upgraded fuels. They must be estimated separately. The Group also discussed technical options for controlling methane emissions from biomass. 12 refs

  17. Size and chemical characterization of individual particles resulting from biomass burning of local southern California species

    International Nuclear Information System (INIS)

    The chemical composition and size of individual particles derived from combustion products of several species found in Southern California were obtained using aerosol time-of-flight mass spectrometry. The major inorganic species observed in > 90% of all biomass burning particles is potassium, indicated by the atomic ion, as well as clusters containing chloride, nitrate, and sulfate ions in the mass spectra. By obtaining positive and negative ion mass spectra it is possible to identify distinct chemical marker combinations in particles resulting from the burning of plant species, which in turn allows for differentiation from particles produced from other combustion sources such as vehicle emissions. Using these markers, particles derived from biomass burning were identified in ambient aerosol samples

  18. Emissions from Biomass Burning in the Yucatan

    Science.gov (United States)

    Yokelson, R.; Crounse, J. D.; DeCarlo, P. F.; Karl, T.; Urbanski, S.; Atlas, E.; Campos, T.; Shinozuka, Y.; Kapustin, V.; Clarke, A. D.; Weinheimer, A.; Knapp, D. J.; Montzka, D. D.; Holloway, J.; Weibring, P.; Flocke, F.; Zheng, W.; Toohey, D.; Wennberg, P. O.; Wiedinmyer, C.; Mauldin, L.; Fried, A.; Richter, D.; Walega, J.; Jimenez, J. L.

    2009-01-01

    In March 2006 two instrumented aircraft made the first detailed field measurements of biomass burning (BB) emissions in the Northern Hemisphere tropics as part of the MILAGRO project. The aircraft were the National Center for Atmospheric Research C-130 and a University of Montana/US Forest Service Twin Otter. The initial emissions of up to 49 trace gas or particle species were measured from 20 deforestation and crop residue fires on the Yucatan peninsula. This included two trace gases useful as indicaters of BB (HCN and acetonitrile) and several rarely, or never before, measured species: OH, peroxyacetic acid, propanoic acid, hydrogen peroxide, methane sulfonic acid, and sulfuric acid. Crop residue fires emitted more organic acids and ammonia than deforestation fires, but the emissions from the main fire types were otherwise fairly similar. The Yucatan fires emitted unusually amounts of SO2 and particle chloride, likely due to a strong marine influence on the peninsula.

  19. Possible indicators for bio-mass burning in a small Swedish city as studied by energy dispersive fluorescence (EDXRF) spectrometry

    DEFF Research Database (Denmark)

    Selin Lindgren, Eva; Henriksson, Dag; Lundin, Magnus; Therning, Peter; Laursen, Jens; Pind, Niels

    2006-01-01

    biomass burning to particulate air pollution. In order to identify typical indicators for biomass burning, principle component analysis was performed on data on elemental contents and black carbon. Analysis suggests that the K/Zn ratio will be useful as an indicator for biomass incineration.......Biomass is increasingly used in energy plants of different size and sophistication in Sweden. Biomass is also available in Sweden owing to its large forest-covered areas. Incineration of biomass in an environmentally friendly manner is one of the key issues in Swedish policy for sustainable...... development. Hence there is ongoing research on the effects of biomass burning on the air quality in Swedish cities. The relative contributions of anthropogenic sources to pollution in the urban environment are usually difficult to evaluate owing to the complexity of the ambient aerosol. In order to...

  20. Fossil fuel and biomass burning effect on climate - heating or cooling?

    International Nuclear Information System (INIS)

    Emission from burning of fossil fuels and biomass (associated with deforestation) generates a radiative forcing on the atmosphere and a possible climate change. Emitted trace gases heat the atmosphere through their greenhouse effect, while particulates formed from emitted SO2 cause cooling by increasing cloud albedos through alteration of droplet size distributions. This paper reviews the characteristics of the cooling effect and applies Twomey's theory to check whether the radiative balance favours heating or cooling for the cases of fossil fuel and biomass burning. It is also shown that although coal and oil emit 120 times as many CO2 molecules as SO2 molecules, each SO2 molecule is 50-1100 times more effective in cooling the atmosphere (through the effect of aerosol particles on cloud albedo) than a CO2 molecule is in heating it. Note that this ratio accounts for the large difference in the aerosol (3-10 days) and CO2 (7-100 years) lifetimes. It is concluded, that the cooling effect from coal and oil burning may presently range from 0.4 to 8 times the heating effect. Within this large uncertainty, it is presently more likely that fossil fuel burning causes cooling of the atmosphere rather than heating. Biomass burning associated with deforestation, on the other hand, is more likely to cause heating of the atmosphere than cooling since its aerosol cooling effect is only half that from fossil fuel burning and its heating effect is twice as large. Future increases in coal and oil burning, and the resultant increase in concentration of cloud condensation nuclei, may saturate the cooling effect, allowing the heating effect to dominate. For a doubling in the CO2 concentration due to fossil fuel burning, the cooling effect is expected to be 0.1 to 0.3 of the heating effect. 75 refs., 8 tabs

  1. Organic functional groups in aerosol particles from burning and non-burning forest emissions at a high-elevation mountain site

    Science.gov (United States)

    Takahama, S.; Schwartz, R. E.; Russell, L. M.; MacDonald, A. M.; Sharma, S.; Leaitch, W. R.

    2011-07-01

    Ambient particles collected on teflon filters at the Peak of Whistler Mountain, British Columbia (2182 m a.s.l.) during spring and summer 2009 were measured by Fourier transform infrared (FTIR) spectroscopy for organic functional groups (OFG). The project mean and standard deviation of organic aerosol mass concentrations (OM) for all samples was 3.2±3.3 (μg m-3). Measurements of aerosol mass fragments, size, and number concentrations were used to separate fossil-fuel combustion and burning and non-burning forest sources of the measured organic aerosol. The OM was composed of the same anthropogenic and non-burning forest components observed at Whistler mid-valley in the spring of 2008; during the 2009 campaign, biomass burning aerosol was additionally observed from fire episodes occurring between June and September. On average, organic hydroxyl, alkane, carboxylic acid, ketone, and primary amine groups represented 31 %±11 %, 34 %±9 %, 23 %±6 %, 6 %±7 %, and 6 %±3 % of OM, respectively. Ketones in aerosols were associated with burning and non-burning forest origins, and represented up to 27 % of the OM. The organic aerosol fraction resided almost entirely in the submicron fraction without significant diurnal variations. OM/OC mass ratios ranged mostly between 2.0 and 2.2 and O/C atomic ratios between 0.57 and 0.76, indicating that the organic aerosol reaching the site was highly aged and possibly formed through secondary formation processes.

  2. Chemical characterization of particle emissions from controlled burns of biomass fuels using a high resolution time-of-flight aerosol mass spectrometer

    Directory of Open Access Journals (Sweden)

    L. Qi

    2012-03-01

    Full Text Available A total of forty-nine burns were conducted at the Missoula Fire Sciences Lab consisting of nine fuel types; i.e., chamise scrub oak, ceanothus, maritime chaparral, coastal sage scrub, California sage brush, Manzanita, oak savanna, oak woodland and masticated mesquite. This paper focuses on the chemical characterization of fine particle emissions collected for flaming, mixed and smoldering phases using a HR ToF-AMS. The evolution of OM/OC, H/C, O/C and N/C from fire ignition to extinction was measured to capture the transient and integrated chemical composition of the non-refractory portion of bulk particles. Real time elemental ratios and empirical formulas derived with respect to modified combustion efficiency (MCE are reported. For each fuel, the hydrogen fragment ions dominate the unit mass resolution (UMR mass spectra with no specific fragment ions attributable to an individual ecological combination. An interference ion in the UMR m/z 73, a fragment normally attributed to levoglucosan, is noted. Therefore, the results imply that C2H4O2+ (m/z 60.021 plus C3H5O2+ (m/z 73.029 are more sufficient to estimate the contribution of levoglucosan. The results did not show significant variations of levoglucosan content in the organic particle with the overall average contribution fraction ranging from 0.74% for coastal sage to 1.93% for chamise.

  3. The use of levoglucosan for tracing biomass burning in PM2.5 samples in Tuscany (Italy)

    International Nuclear Information System (INIS)

    Levoglucosan was present in all samples and its concentrations showed a pronounced annual cycle with maximum levels in the cold season. The annual percentage of ratios of levoglucosan to OC ranged from 0.04 to 9.75% evidencing a major contribution of biomass burning to the aerosol OC during the winter. In the urban-background site, OC was strongly correlated with EC in winter, suggesting that the major fraction of OC was generated as primary particles along with EC. A background levoglucosan component showed that biomass burning was continuously taking place in all the investigated sites. The biomass burning contribution to the Tuscany aerosol was made up of a background component and an additional component during winter probably due to wood burning for domestic heating. - Highlights: ► PM2.5 samples were collected from three sites of different typology in Tuscany, Italy. ► Levoglucosan, OC and EC were investigated to estimate biomass burning contribution. ► Correlations between levoglucosan, OC and EC were evaluated. ► Levoglucosan showed a pronounced annual cycle with maximum levels in the cold season. ► A background biomass burning contribution was estimated in all sites. - Levoglucosan, organic and elemental carbon were investigated to estimate contribution of biomass burning in Italy

  4. Atmospheric polycyclic aromatic hydrocarbons and isomer ratios as tracers of biomass burning emissions in Northern India.

    Science.gov (United States)

    Rajput, Prashant; Sarin, M M; Sharma, Deepti; Singh, Darshan

    2014-04-01

    Emission from large-scale post-harvest agricultural-waste burning (paddy-residue burning during October-November and wheat-residue burning in April-May) is a conspicuous feature in northern India. The poor and open burning of agricultural residue result in massive emission of carbonaceous aerosols and organic pollutants to the atmosphere. In this context, concentrations of atmospheric polycyclic aromatic hydrocarbons (PAHs) and their isomer ratios have been studied for a 2-year period from a source region (Patiala: 30.2°N; 76.3°E) of two distinct biomass burning emissions. The concentrations of 4-6 ring PAHs are considerably higher compared to 2-3 ring PAHs in the ambient particulate matter (PM2.5). The crossplots of PAH isomer ratios, fluoranthene / (fluoranthene + pyrene) and indeno[1,2,3-cd]pyrene/(indeno[1,2,3-cd]pyrene + benzo[g,h,i]perylene) for two biomass burning emissions, exhibit distinctly different source characteristics compared to those for fossil-fuel combustion sources in south and south-east Asia. The PAH isomer ratios studied from different geographical locations in northern India also exhibit similar characteristics on the crossplot, suggesting their usefulness as diagnostic tracers of biomass burning emissions. PMID:24442960

  5. Biomass burning: Combustion emissions, satellite imagery, and biogenic emissions

    International Nuclear Information System (INIS)

    This chapter deals with two different, but related, aspects of biomass burning. The first part of the chapter deals with a technique to estimate the instantaneous emissions of trace gases produced by biomass burning using satellite imagery. The second part of the chapter concerns the recent discovery that burning results in significantly enhanced biogenic emissions of N2O, NO, and CH4. Hence, biomass burning has both an immediate and long-term impact on the production of trace gases to the atmosphere. The objective of this research is to better assess and quantify the role of this research is to better assess and quantify the role and impact of biomass as a driver for global change. It will be demonstrated that satellite imagery of fires may be used to estimate combustion emissions and may in the future be used to estimate the long-term postburn biogenic emissions of trace gases to the atmosphere

  6. Improving the simulation of organic aerosols from anthropogenic and burning sources: a simplified SOA formation mechanism and the impact of trash burning

    Science.gov (United States)

    Hodzic, A.; Wiedinmyer, C.; Jimenez, J. L.

    2011-12-01

    Organic aerosols (OA) are an major component of fine aerosols, but their sources are poorly understood. We present results of two methods to improve OA predictions in anthropogenic pollution and biomass-burning impacted regions. (1) An empirical parameterization for secondary organic aerosol (SOA) formation in polluted air and biomass burning smoke is implemented into community chemistry-transport models (WRF/Chem and CHIMERE) and tested in this work, towards the goal of a computationally inexpensive method to calculate pollution and biomass burning SOA. This approach is based on the observed proportionality of SOA concentrations to excess CO and photochemical age of the airmass, as described in Hodzic and Jimenez (GMDD, 2011). The oxygen to carbon ratio in organic aerosols is also parameterizated vs. photochemical aged based on the ambient observations, and is used to estimate the aerosol hygroscopicity and CCN activity. The predicted SOA is assessed against observations from the Mexico City metropolitan area during the MILAGRO 2006 field experiment, and compared to previous model results using the more complex volatility basis approach (VBS) of Robinson et al.. The results suggest that the simplified approach reproduces the observed average SOA mass within 30% in the urban area and downwind, and gives better results than the original VBS. In addition to being much less computationally expensive than VBS-type methods, the empirical approach can also be used in regions where the emissions of SOA precursors are not yet available. (2) The contribution of trash burning emissions to primary and secondary organic aerosols in Mexico City are estimated, using a recently-developed emission inventory. Submicron antimony (Sb) is used as a garbage-burning tracer following the results of Christian et al. (ACP 2010), which allows evaluation of the emissions inventory. Results suggests that trash burning may be an appreciable source of organic aerosols in the Mexico City

  7. Absorptivity of brown carbon in fresh and photo-chemically aged biomass-burning emissions

    OpenAIRE

    Saleh, R.; Hennigan, C. J.; McMeeking, G. R; W. K. Chuang; E. S. Robinson; Coe, H.; Donahue, N. M.; Robinson, A. L.

    2013-01-01

    Experiments were conducted to investigate light absorption of organic aerosol (OA) in fresh and photo-chemically aged biomass-burning emissions. The experiments considered residential hardwood fuel (oak) and fuels commonly consumed in wild-land and prescribed fires in the United States (pocosin pine and gallberry). Photo-chemical aging was performed in an environmental chamber. We constrained the effective light-absorption properties of the OA using conservative limiting assumptions, and foun...

  8. Absorptivity of brown carbon in fresh and photo-chemically aged biomass-burning emissions

    OpenAIRE

    Saleh, R.; Hennigan, C. J.; McMeeking, G. R; W. K. Chuang; E. S. Robinson; Coe, H.; Donahue, N. M.; Robinson, A. L.

    2013-01-01

    Experiments were conducted to investigate light absorption of organic aerosol (OA) in fresh and photo-chemically aged biomass-burning emissions. The experiments considered residential hardwood fuel (oak) and fuels commonly consumed in wild-land and prescribed fires in the United States (pocosin pine and gallberry). Photo-chemical aging was performed in an environmental chamber. We constrained the light-absorption properties of the OA using conservative limiting assumptions, and found t...

  9. High-resolution mapping of biomass burning emissions in tropical regions across three continents

    Science.gov (United States)

    Shi, Yusheng; Matsunaga, Tsuneo; Saito, Makoto

    2015-04-01

    Biomass burning emissions from open vegetation fires (forest fires, savanna fires, agricultural waste burning), human waste and biofuel combustion contain large amounts of trace gases (e.g., CO2, CH4, and N2O) and aerosols (BC and OC), which significantly impact ecosystem productivity, global atmospheric chemistry, and climate . With the help of recently released satellite products, biomass density based on satellite and ground-based observation data, and spatial variable combustion factors, this study developed a new high-resolution emissions inventory for biomass burning in tropical regions across three continents in 2010. Emissions of trace gases and aerosols from open vegetation burning are estimated from burned areas, fuel loads, combustion factors, and emission factors. Burned areas were derived from MODIS MCD64A1 burned area product, fuel loads were mapped from biomass density data sets for herbaceous and tree-covered land based on satellite and ground-based observation data. To account for spatial heterogeneity in combustion factors, global fractional tree cover (MOD44B) and vegetation cover maps (MCD12Q1) were introduced to estimate the combustion factors in different regions by using their relationship with tree cover under less than 40%, between 40-60% and above 60% conditions. For emission factors, the average values for each fuel type from field measurements are used. In addition to biomass burning from open vegetation fires, the emissions from human waste (residential and dump) burning and biofuel burning in 2010 were also estimated for 76 countries in tropical regions across the three continents and then allocated into each pixel with 1 km grid based on the population density (Gridded Population of the World v3). Our total estimates for the tropical regions across the three continents in 2010 were 17744.5 Tg CO2, 730.3 Tg CO, 32.0 Tg CH4, 31.6 Tg NOx, 119.2 Tg NMOC, 6.3 Tg SO2, 9.8 NH3 Tg, 81.8 Tg PM2.5, 48.0 Tg OC, and 5.7 Tg BC, respectively. Open

  10. Importance of transboundary transport of biomass burning emissions to regional air quality in Southeast Asia

    Directory of Open Access Journals (Sweden)

    B. Aouizerats

    2014-05-01

    Full Text Available Smoke from biomass and peat burning has a notable impact on ambient air quality and climate in the Southeast Asia (SEA region. We modeled the largest fire-induced haze episode in the past decade (2006 in Indonesia using the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem. We focused mainly on the evolution of the fire plume composition and its interaction with the urbanized area of the city-state of Singapore, and on comparisons of modeled and measured aerosol and CO concentrations. Two simulations were run with the model using the complex Volatility Basis Set (VBS scheme to reproduce primary and secondary aerosol evolution and concentration. The first simulation referred to as WRF-FIRE included anthropogenic, biogenic, and b iomass burning emissions from the Global Fire Emissions Database (GFED3 while the second simulation referred to as WRF-NOFIRE was run without emissions from biomass burning. To test model performance, we used three independent datasets for comparison including airborne measurements of Particulate Matter with a diameter of 10 μm or less (PM10 in Singapore, CO measurements in Sumatra, and Aerosol Optical Depth (AOD column observations from 4 satellite-based sensors. We found reasonable agreement of the model runs with both ground-based measurements of CO and PM10. The comparison with AOD was less favorable and indicated the model underestimated AOD, although the degree of mismatch varied between different satellite data sets. During our study period, forest and peat fires in Sumatra were the main cause of enhanced aerosol concentrations from regional transport over Singapore. Analysis of the biomass burning plume showed high concentrations of primary organic aerosols (POA with values up to 600 μg m−3 over the fire locations. The concentration of POA remained quite stable within the plume between the main burning region and Singapore while secondary organic aerosol (SOA concentration slightly

  11. Importance of transboundary transport of biomass burning emissions to regional air quality in Southeast Asia

    Science.gov (United States)

    Aouizerats, B.; van der Werf, G. R.; Balasubramanian, R.; Betha, R.

    2014-05-01

    Smoke from biomass and peat burning has a notable impact on ambient air quality and climate in the Southeast Asia (SEA) region. We modeled the largest fire-induced haze episode in the past decade (2006) in Indonesia using the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem). We focused mainly on the evolution of the fire plume composition and its interaction with the urbanized area of the city-state of Singapore, and on comparisons of modeled and measured aerosol and CO concentrations. Two simulations were run with the model using the complex Volatility Basis Set (VBS) scheme to reproduce primary and secondary aerosol evolution and concentration. The first simulation referred to as WRF-FIRE included anthropogenic, biogenic, and b iomass burning emissions from the Global Fire Emissions Database (GFED3) while the second simulation referred to as WRF-NOFIRE was run without emissions from biomass burning. To test model performance, we used three independent datasets for comparison including airborne measurements of Particulate Matter with a diameter of 10 μm or less (PM10) in Singapore, CO measurements in Sumatra, and Aerosol Optical Depth (AOD) column observations from 4 satellite-based sensors. We found reasonable agreement of the model runs with both ground-based measurements of CO and PM10. The comparison with AOD was less favorable and indicated the model underestimated AOD, although the degree of mismatch varied between different satellite data sets. During our study period, forest and peat fires in Sumatra were the main cause of enhanced aerosol concentrations from regional transport over Singapore. Analysis of the biomass burning plume showed high concentrations of primary organic aerosols (POA) with values up to 600 μg m-3 over the fire locations. The concentration of POA remained quite stable within the plume between the main burning region and Singapore while secondary organic aerosol (SOA) concentration slightly increased. The

  12. Absorptivity of brown carbon in fresh and photo-chemically aged biomass-burning emissions

    Science.gov (United States)

    Saleh, R.; Hennigan, C. J.; McMeeking, G. R.; Chuang, W. K.; Robinson, E. S.; Coe, H.; Donahue, N. M.; Robinson, A. L.

    2013-08-01

    Experiments were conducted to investigate light absorption of organic aerosol (OA) in fresh and photo-chemically aged biomass-burning emissions. The experiments considered residential hardwood fuel (oak) and fuels commonly consumed in wild-land and prescribed fires in the United States (pocosin pine and gallberry). Photo-chemical aging was performed in an environmental chamber. We constrained the effective light-absorption properties of the OA using conservative limiting assumptions, and found that both primary organic aerosol (POA) in the fresh emissions and secondary organic aerosol (SOA) produced by photo-chemical aging contain brown carbon, and absorb light to a significant extent. This work presents the first direct evidence that SOA produced in aged biomass-burning emissions is absorptive. For the investigated fuels, SOA is less absorptive than POA in the long visible, but exhibits stronger wavelength-dependence and is more absorptive in the short visible and near-UV. Light absorption by SOA in biomass-burning emissions might be an important contributor to the global radiative forcing budget.

  13. Absorptivity of brown carbon in fresh and photo-chemically aged biomass-burning emissions

    Directory of Open Access Journals (Sweden)

    R. Saleh

    2013-08-01

    Full Text Available Experiments were conducted to investigate light absorption of organic aerosol (OA in fresh and photo-chemically aged biomass-burning emissions. The experiments considered residential hardwood fuel (oak and fuels commonly consumed in wild-land and prescribed fires in the United States (pocosin pine and gallberry. Photo-chemical aging was performed in an environmental chamber. We constrained the effective light-absorption properties of the OA using conservative limiting assumptions, and found that both primary organic aerosol (POA in the fresh emissions and secondary organic aerosol (SOA produced by photo-chemical aging contain brown carbon, and absorb light to a significant extent. This work presents the first direct evidence that SOA produced in aged biomass-burning emissions is absorptive. For the investigated fuels, SOA is less absorptive than POA in the long visible, but exhibits stronger wavelength-dependence and is more absorptive in the short visible and near-UV. Light absorption by SOA in biomass-burning emissions might be an important contributor to the global radiative forcing budget.

  14. Absorptivity of brown carbon in fresh and photo-chemically aged biomass-burning emissions

    Directory of Open Access Journals (Sweden)

    R. Saleh

    2013-05-01

    Full Text Available Experiments were conducted to investigate light absorption of organic aerosol (OA in fresh and photo-chemically aged biomass-burning emissions. The experiments considered residential hardwood fuel (oak and fuels commonly consumed in wild-land and prescribed fires in the United States (pocosin pine and gallberry. Photo-chemical aging was performed in an environmental chamber. We constrained the light-absorption properties of the OA using conservative limiting assumptions, and found that both primary organic aerosol (POA in the fresh emissions and secondary organic aerosol (SOA produced by photo-chemical aging absorb light to a significant extent, and are categorized as brown carbon. This work presents the first direct evidence that SOA produced in aged biomass-burning emissions is absorptive. For the investigated fuels, SOA is less absorptive than POA in the long visible, but exhibits steeper wavelength-dependence (larger Absorption Ångström Exponent and is more absorptive in the short visible and near-UV. Light absorption by SOA in biomass-burning emissions might be an important contributor to the global radiative forcing budget.

  15. Assessment of fire emission inventories during the South American Biomass Burning Analysis (SAMBBA) experiment

    Science.gov (United States)

    Pereira, Gabriel; Siqueira, Ricardo; Rosário, Nilton E.; Longo, Karla L.; Freitas, Saulo R.; Cardozo, Francielle S.; Kaiser, Johannes W.; Wooster, Martin J.

    2016-06-01

    Fires associated with land use and land cover changes release large amounts of aerosols and trace gases into the atmosphere. Although several inventories of biomass burning emissions cover Brazil, there are still considerable uncertainties and differences among them. While most fire emission inventories utilize the parameters of burned area, vegetation fuel load, emission factors, and other parameters to estimate the biomass burned and its associated emissions, several more recent inventories apply an alternative method based on fire radiative power (FRP) observations to estimate the amount of biomass burned and the corresponding emissions of trace gases and aerosols. The Brazilian Biomass Burning Emission Model (3BEM) and the Fire Inventory from NCAR (FINN) are examples of the first, while the Brazilian Biomass Burning Emission Model with FRP assimilation (3BEM_FRP) and the Global Fire Assimilation System (GFAS) are examples of the latter. These four biomass burning emission inventories were used during the South American Biomass Burning Analysis (SAMBBA) field campaign. This paper analyzes and inter-compared them, focusing on eight regions in Brazil and the time period of 1 September-31 October 2012. Aerosol optical thickness (AOT550 nm) derived from measurements made by the Moderate Resolution Imaging Spectroradiometer (MODIS) operating on board the Terra and Aqua satellites is also applied to assess the inventories' consistency. The daily area-averaged pyrogenic carbon monoxide (CO) emission estimates exhibit significant linear correlations (r, p > 0.05 level, Student t test) between 3BEM and FINN and between 3BEM_ FRP and GFAS, with values of 0.86 and 0.85, respectively. These results indicate that emission estimates in this region derived via similar methods tend to agree with one other. However, they differ more from the estimates derived via the alternative approach. The evaluation of MODIS AOT550 nm indicates that model simulation driven by 3BEM and FINN

  16. Hydrocarbon and carbon monoxide emissions from biomass burning in Brazil

    International Nuclear Information System (INIS)

    Field measurements of hydrocarbon emissions from biomass burning in the cerrado (grasslands) and selva (tropical forest) regions of Brazil in 1979 and 1980 are characterized and quantified here. Regional consequences of burning activities include increased background mixing ratios of carbon monoxide and ozone, as well as reduced visibility, over extensive areas. Global extrapolation of the emission rate of hydrocarbons from these fires indicates that 6 x 1013 g C of gas phase hydrocarbons and 8 x 1014 g CO may be released annually from biomass burning. These emissions contribute significantly to the global budgets of hydrocarbons and carbon monoxide

  17. High-Resolution Mapping of Biomass Burning Emissions in Three Tropical Regions.

    Science.gov (United States)

    Shi, Yusheng; Matsunaga, Tsuneo; Yamaguchi, Yasushi

    2015-09-15

    Biomass burning in tropical regions plays a significant role in atmospheric pollution and climate change. This study quantified a comprehensive monthly biomass burning emissions inventory with 1 km high spatial resolution, which included the burning of vegetation, human waste, and fuelwood for 2010 in three tropical regions. The estimations were based on the available burned area product MCD64A1 and statistical data. The total emissions of all gases and aerosols were 17382 Tg of CO2, 719 Tg of CO, 30 Tg of CH4, 29 Tg of NOx, 114 Tg of NMOC (nonmethane organic compounds), 7 Tg of SO2, 10 Tg of NH3, 79 Tg of PM2.5 (particulate matter), 45 Tg of OC (organic carbon), and 6 Tg of BC (black carbon). Taking CO as an example, vegetation burning accounted for 74% (530 Tg) of the total CO emissions, followed by fuelwood combustion and human waste burning. Africa was the biggest emitter (440 Tg), larger than Central and South America (113 Tg) and South and Southeast Asia (166 Tg). We also noticed that the dominant fire types in vegetation burning of these three regions were woody savanna/shrubland, savanna/grassland, and forest, respectively. Although there were some slight overestimations, our results are supported by comparisons with previously published data. PMID:26287650

  18. High temporal resolution measurements of biomass burning events during summertime in the Eastern Mediterranean.

    Science.gov (United States)

    Bougiatioti, Aikaterini; Zarmpas, Pavlos; Theodosi, Christina; Stavroulas, Iasonas; Kouvarakis, Giorgos; Canonaco, Francesco; Prevot, Andre S. H.; Pandis, Spyros N.; Mihalopoulos, Nikolaos

    2013-04-01

    Several major wildfires occurred at the Greek islands of Chios, Euboea and Andros during the summer of 2012. The corresponding biomass burning-influenced air masses were studied at the remote background site of Finokalia, Crete. The smoke was transported several hundreds of kilometers, arriving at the measurement station after approximately half a day of atmospheric processing, mostly during night-time. The origin of air masses was confirmed by back-trajectory analyses and the chemical composition of the particulate matter was studied by different high-resolution measurements, including an Aerosol Chemical Speciation Monitor (ACSM), and a seven wavelengths aethalometer. Despite the distance between the islands and the travel time, a clear biomass burning profile containing characteristic markers could be derived from BC measurements and exploiting the statistical tool Multilinear Engine (ME-2). During these events aerosol particles contained a noteworthy amount of black carbon, ranging from 2.8 up to 5 μg m-3, which exceeds typical background values by a factor of 8 or more. Simultaneously organic matter concentrations increased significantly. In the case of the island of Chios fires the fine PM levels exceeded background values by a factor of 4 ranging from 2.9 to11.6 μg m-3. PMF is a statistical tool used to deconvolve the organic aerosol spectral matrix measured by the Aerosol Chemical Speciation Monitor (ACSM), resulting in a number of components/factors that are a posteriori validated as possible sources. A successful unconstrained run (PMF) within the Multilinear Engine (ME-2) over the fire events only, lead to a clear biomass burning profile which correlates well with reference biomass burning spectra (R2=0.9). The model was rerun over the entire period by constraining this biomass burning profile and the fire events were all well-represented. More than 70% of the measured OA is "aged", oxidized organic aerosol, which correlates well with reference OOA

  19. Comparison of AOD between CALIPSO and MODIS: significant differences over major dust and biomass burning regions

    Directory of Open Access Journals (Sweden)

    X. Ma

    2012-11-01

    Full Text Available Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO provide, for the first time, global vertical profiles of aerosol optical properties, but further research is needed to evaluate the CALIPSO products. In this study, we employed about 6 yr (2006–2011 of CALIPSO level-3 monthly mean gridded aerosol optical depth (AOD products (daytime and nighttime, for cloud free conditions, to compare with the MODIS Terra/Aqua level-3 monthly mean AOD dataset for the same time period. While the spatial distribution and seasonal variability of CALIPSO AOD is generally consistent with that of MODIS, CALIPSO is overall lower than MODIS as much more of the CALIPSO data is smaller than 0.1, while more of the MODIS data is greater than 0.1. We will focus on four regions that have large systematic differences: two over dust regions (the Sahara and Northwest China and two over biomass burning regions (South Africa and South America. It is found that CALIPSO AOD is significantly lower than MODIS AOD over dust regions during the whole time period, with a maximum low bias of 0.3 over the Saharan region, and 0.25 over Northwest China. For biomass burning regions, CALIPSO AOD is significantly higher than MODIS AOD over South Africa, with a maximum high bias of 0.25. Additionally CALIPSO AOD is slightly higher than MODIS AOD over South America for most of the time period, with a few exceptions in 2006, 2007, and 2010, when biomass burning is significantly stronger than during other years. The results in this study indicate that systematic biases of CALIPSO relative to MODIS are closely associated with aerosol types, which vary by location and season. Large differences over dust and biomass burning regions may suggest that assumptions made in satellite retrievals, such as the assumed lidar ratios for CALIPSO retrievals over dust and biomass burning regions, or the surface reflectance information and/or the aerosol model utilized by MODIS algorithm

  20. Modeling the impacts of biomass burning on air quality in and around Mexico City

    Directory of Open Access Journals (Sweden)

    W. Lei

    2013-03-01

    Full Text Available The local and regional impacts of open fires and trash burning on ground-level ozone (O3 and fine carbonaceous aerosols in the Mexico City Metropolitan Area (MCMA and surrounding region during two high fire periods in March 2006 have been evaluated using WRF-CHEM model. The model captured reasonably well the measurement-derived magnitude and temporal variation of the biomass burning organic aerosol (BBOA, and the simulated impacts of open fires on organic aerosol (OA were consistent with many observation-based estimates. We did not detect significant effects of open fires and trash burning on surface O3 concentrations in the MCMA and surrounding region. In contrast, they had important influences on OA and elemental carbon (EC, increasing primary OA (POA by ~60%, secondary OA (SOA by ~22%, total OA (TOA = POA + SOA by ~33%, and EC by ~22%, on both the local (urban and regional scales. Although the emissions of trash burning are substantially lower than those from open fires, trash burning made slightly smaller but comparable contributions to OA as open fires did, and exerted an even higher influence on EC. Of the ~22% enhancement in SOA concentrations (equivalent to a ~15% increase in TOA simulated, about two third was attributed to the open fires and one-third to the trash burning. On the annual basis and taking the biofuel use emissions into consideration, we estimated that open fires, trash burning and biofuel use together contributed about 60% to the loading of POA, 30% to SOA, and 25% to EC in both the MCMA and its surrounding region, of which the open fires and trash burning contributed about 35% to POA, 18% to SOA, and 15% to EC. The estimates of biomass burning impacts in this study may contain considerable uncertainties due to the uncertainties in their emission estimates in magnitude, temporal and spatial distribution, extrapolations and the nature of spot comparison. More observation and modeling studies are needed to accurately assess

  1. Modeling the impacts of biomass burning on air quality in and around Mexico City

    Science.gov (United States)

    Lei, W.; Li, G.; Molina, L. T.

    2013-03-01

    The local and regional impacts of open fires and trash burning on ground-level ozone (O3) and fine carbonaceous aerosols in the Mexico City Metropolitan Area (MCMA) and surrounding region during two high fire periods in March 2006 have been evaluated using WRF-CHEM model. The model captured reasonably well the measurement-derived magnitude and temporal variation of the biomass burning organic aerosol (BBOA), and the simulated impacts of open fires on organic aerosol (OA) were consistent with many observation-based estimates. We did not detect significant effects of open fires and trash burning on surface O3 concentrations in the MCMA and surrounding region. In contrast, they had important influences on OA and elemental carbon (EC), increasing primary OA (POA) by ~60%, secondary OA (SOA) by ~22%, total OA (TOA = POA + SOA) by ~33%, and EC by ~22%, on both the local (urban) and regional scales. Although the emissions of trash burning are substantially lower than those from open fires, trash burning made slightly smaller but comparable contributions to OA as open fires did, and exerted an even higher influence on EC. Of the ~22% enhancement in SOA concentrations (equivalent to a ~15% increase in TOA) simulated, about two third was attributed to the open fires and one-third to the trash burning. On the annual basis and taking the biofuel use emissions into consideration, we estimated that open fires, trash burning and biofuel use together contributed about 60% to the loading of POA, 30% to SOA, and 25% to EC in both the MCMA and its surrounding region, of which the open fires and trash burning contributed about 35% to POA, 18% to SOA, and 15% to EC. The estimates of biomass burning impacts in this study may contain considerable uncertainties due to the uncertainties in their emission estimates in magnitude, temporal and spatial distribution, extrapolations and the nature of spot comparison. More observation and modeling studies are needed to accurately assess the

  2. Global burned area and biomass burning emissions from small fires

    NARCIS (Netherlands)

    Randerson, J.T; Chen, Y.; Werf, van der G.R.; Rogers, B.M.; Morton, D.C.

    2012-01-01

    [1] In several biomes, including croplands, wooded savannas, and tropical forests, many small fires occur each year that are well below the detection limit of the current generation of global burned area products derived from moderate resolution surface reflectance imagery. Although these fires ofte

  3. When smoke comes to town: The impact of biomass burning smoke on air quality

    Science.gov (United States)

    Keywood, Melita; Cope, Martin; Meyer, C. P. Mick; Iinuma, Yoshi; Emmerson, Kathryn

    2015-11-01

    Biomass burning aerosols influence the radiative balance of the earth-atmosphere system. They also reduce visibility and impact human health. In addition, trace gases and aerosols emitted to the atmosphere during large biomass burning episodes may have a significant effect on atmospheric chemistry due to the presence of reactive species. Six hundred and ninety wildfires burned more than one million hectares in Victoria, Australia between December 2006 and February 2007. Thick smoke haze was transported to Melbourne (population 3.9 million) on several occasions, causing PM10 (particulate mass less than 10 μm in diameter) concentrations to exceed 200 μg m-3. The presence of elevated total secondary organic aerosol (SOA) and speciated SOA compounds (including pinene and cineole oxidation products), O3, and the larger aerosol mode diameter during smoke impacted periods indicated the presence of photochemical oxidation within the plume. The presence of organosulfate compounds and nitro-oxy organosulfate compounds indicated oxidation may have occurred in the presence of acidic seed aerosol and that oxidation may also have occurred at night. Older smoke plumes (aged 30 h) displayed higher concentrations of a number of gaseous and aerosol species relative to the younger smoke plumes (aged 3 h). SOA compounds made up a greater fraction of speciated organic mass in the old plume than in the young plume where speciated biomass burning compounds dominated. Cineole oxidation products made up a greater fraction of the speciated SOA compounds in the old plume while pinene oxidation products made up a greater fraction of the total SOA speciated mass in the samples from the young plume. This may be a result of the slower reaction rate of cineole with OH. Organosulfate compounds and nitro-oxy organosulfate compounds made up greater fractions of the speciated SOA mass in the old plume consistent with the production of nitro-oxy organosulfate compounds under night time conditions in

  4. Biomass burning: A significant source of nutrients for Andean rainforests

    Science.gov (United States)

    Fabian, P. F.; Rollenbeck, R.; University Of Marburg, Germany

    2010-12-01

    Regular rain and fogwater sampling in the Podocarpus National Park,on the humid eastern slopes of the Ecuadorian Andes,has been carried out since 2002.The samples,accumulated over about 1-week intervals,were analysed for pH,conductivity,and major ions (K+, Na+, NH4+, Ca2+, Mg2+, Cl-, SO4 2-, NO3-, PO4 3- ).Annual deposition rates of these ions which, due to poor acidic soils with low mineralization rates,constitute the dominant nutrient supply to the mountaineous rainforests, and major ion sources could be determined using back trajectories,along with satellite data. While most of the Na, Cl, and K as well as Ca and Mg input was found to originate from natural oceanic and desert dust sources,respectively (P.Fabian et al.,Adv.Geosci.22,85-94, 2009), NO3, NH4, and about 90% of SO4 (about 10 % is from active volcanoes) are almost entirely due to anthropogenic sources,most likely biomass burning. Industrial and transportation emissions and other pollutants,however,act in a similar way as the precursors produced by biomass burning.For quantifying the impacts of biomass burning vs. those of anthropogenic sources other than biomass burning we used recently established emission inventories,along with simplified model calculations on back trajectories.First results yielding significant contributions of biomass burning will be discussed.

  5. Biomass burning in the tropics: Impact on atmospheric chemistry and biogeochemical cycles

    International Nuclear Information System (INIS)

    Biomass burning is widespread, especially in the tropics. It serves to clear land for shifting cultivation, to convert forests to agricultural and pastoral lands, and to remove dry vegetation in order to promote agricultural productivity and the growth of higher yield grasses. Furthermore, much agricultural waste and fuel wood is being combusted, particularly in developing countries. Biomass containing 2 to 5 petagrams of carbon is burned annually (1 petagram = 1015 grams), producing large amounts of trace gases and aerosol particles that play important roles in atmospheric chemistry and climate. Emissions of carbon monoxide and methane by biomass burning affect the oxidation efficiency of the atmosphere by reacting with hydroxyl radicals, and emissions of nitric oxide and hydrocarbons lead to high ozone concentrations in the tropics during the dry season. Large quantities of smoke particles are produced as well, and these can serve as cloud condensation nuclei. These particles may thus substantially influence cloud microphysical and optical properties, an effect that could have repercussions for the radiation budget and the hydrological cycle in the tropics. Widespread burning may also disturb biogeochemical cycles, especially that of nitrogen. About 50% of the nitrogen in the biomass fuel can be released as molecular nitrogen. This pyrodenitrification process causes a sizable loss of fixed nitrogen in tropical ecosystems, in the range of 10 to 20 teragrams per year (1 teragram = 1012 grams)

  6. Evaluating the influences of biomass burning during 2006 BASE-ASIA: a regional chemical transport modeling

    Directory of Open Access Journals (Sweden)

    J. S. Fu

    2011-12-01

    Full Text Available To evaluate the impact of biomass burning from Southeast Asia to East Asia, this study conducted numerical simulations during NASA's 2006 Biomass-burning Aerosols in South-East Asia: Smoke Impact Assessment (BASE-ASIA. Two typical episode periods (27–28 March and 13–14 April were examined. Two emission inventories, FLAMBE and GFED, were used in the simulations. The influences during two episodes in the source region (Southeast Asia contributed to the surface CO, O3 and PM2.5 concentrations as high as 400 ppbv, 20 ppbv and 80 μg m−3, respectively. The perturbations with and without biomass burning of the above three species during the intense episodes were in the range of 10 to 60%, 10 to 20% and 30 to 70%, respectively. The impact due to long-range transport could spread over the southeastern parts of East Asia and could reach about 160 to 360 ppbv, 8 to 18 ppbv and 8 to 64 μg m−3 on CO, O3 and PM2.5, respectively; the percentage impact could reach 20 to 50% on CO, 10 to 30% on O3, and as high as 70% on PM2.5. In March, the impact of biomass burning was mainly concentrated in Southeast Asia and Southern China, while in April the impact becomes slightly broader, potentially including the Yangtze River Delta region.

    Two cross-sections at 15° N and 20° N were used to compare the vertical flux of biomass burning. In the source region (Southeast Asia, CO, O3 and PM2.5 concentrations had a strong upward transport from surface to high altitudes. The eastward transport becomes strong from 2 to 8 km in the free troposphere. The subsidence process during the long-range transport contributed 60 to 70%, 20 to 50%, and 80% to CO, O3 and PM2.5, respectively to surface in the downwind area. The study reveals the significant impact of Southeastern Asia biomass burning on the air quality in both local and

  7. Aerosol emissions from forest and grassland burnings in the Southern Amazonas Basin and Central Brazil

    International Nuclear Information System (INIS)

    Forest and grassland clearing by means of prescribed fires in tropical areas of the world may be responsible for large inputs of fine particulates to the global atmosphere besides being a major source of trace gases. The major continents on which extensive biomass burning takes place are Africa and South America. Such agricultural practices of burning have been employed throughout man's existence, but the importance and significance of such burning relative to anthropogenic industrial emissions to the atmosphere has not until extremely recently been seriously studied. In August-September 1979 project Brushfire 1979 took place based in Brasilia, Brazil. The Air Quality Division of the National Center for Atmospheric Research made ground level and aircraft measurements of trace gases (e.g. CO2, CO, CH4, N2O, H2, CH3CL, COS, NO, NO2, O3) and Florida State University sampled ground level aerosol emissions from grass and forest burnings. (orig./RW)

  8. Biomass burning and the disappearing tropical rainforest

    International Nuclear Information System (INIS)

    The author discusses the implications of reduced biological diversity as a result of slash and burn agriculture in the tropical rainforest. The importance of global management of forests to prevent a buildup of carbon dioxide and the resulting greenhouse effect is emphasized

  9. Health impacts of anthropogenic biomass burning in the developed world.

    Science.gov (United States)

    Sigsgaard, Torben; Forsberg, Bertil; Annesi-Maesano, Isabella; Blomberg, Anders; Bølling, Anette; Boman, Christoffer; Bønløkke, Jakob; Brauer, Michael; Bruce, Nigel; Héroux, Marie-Eve; Hirvonen, Maija-Riitta; Kelly, Frank; Künzli, Nino; Lundbäck, Bo; Moshammer, Hanns; Noonan, Curtis; Pagels, Joachim; Sallsten, Gerd; Sculier, Jean-Paul; Brunekreef, Bert

    2015-12-01

    Climate change policies have stimulated a shift towards renewable energy sources such as biomass. The economic crisis of 2008 has also increased the practice of household biomass burning as it is often cheaper than using oil, gas or electricity for heating. As a result, household biomass combustion is becoming an important source of air pollutants in the European Union.This position paper discusses the contribution of biomass combustion to pollution levels in Europe, and the emerging evidence on the adverse health effects of biomass combustion products.Epidemiological studies in the developed world have documented associations between indoor and outdoor exposure to biomass combustion products and a range of adverse health effects. A conservative estimate of the current contribution of biomass smoke to premature mortality in Europe amounts to at least 40 000 deaths per year.We conclude that emissions from current biomass combustion products negatively affect respiratory and, possibly, cardiovascular health in Europe. Biomass combustion emissions, in contrast to emissions from most other sources of air pollution, are increasing. More needs to be done to further document the health effects of biomass combustion in Europe, and to reduce emissions of harmful biomass combustion products to protect public health. PMID:26405285

  10. Biomass burning contribution to black carbon in the Western United States Mountain Ranges

    Directory of Open Access Journals (Sweden)

    Y. H. Mao

    2011-11-01

    Full Text Available Forest fires are an important source to carbonaceous aerosols in the Western United States (WUS. We quantify the relative contribution of biomass burning to black carbon (BC in the WUS mountain ranges by analyzing surface BC observations for 2006 from the Interagency Monitoring of PROtected Visual Environment (IMPROVE network using the GEOS-Chem global chemical transport model. Observed surface BC concentrations show broad maxima during late June to early November. Enhanced potassium concentrations and potassium/sulfur ratios observed during the high-BC events indicate a dominant biomass burning influence during the peak fire season. Model surface BC reproduces the observed day-to day and synoptic variabilities in regions downwind of but near urban centers. Major discrepancies are found at elevated mountainous sites during the July-October fire season when simulated BC concentrations are biased low by a factor of two. We attribute these low biases largely to the underestimated (by more than a factor of two and temporally misplaced biomass burning emissions of BC in the model. Additionally, we find that the biomass burning contribution to surface BC concentrations in the USA likely was underestimated in a previous study using GEOS-Chem (Park et al., 2003, because of the unusually low planetary boundary layer (PBL heights in the GEOS-3 meteorological reanalysis data used to drive the model. PBL heights from GEOS-4 and GEOS-5 reanalysis data are comparable to those from the North American Regional Reanalysis (NARR. Model simulations show slightly improved agreements with the observations when driven by GEOS-5 reanalysis data, but model results are still biased low. The use of biomass burning emissions with diurnal cycle, synoptic variability, and plume injection has relatively small impact on the simulated surface BC concentrations in the WUS.

  11. Biomass burning contribution to black carbon in the western United States mountain ranges

    Directory of Open Access Journals (Sweden)

    Y. Mao

    2011-05-01

    Full Text Available Forest fires are an important source to carbonaceous aerosols in the western United States (WUS. We quantify the relative contribution of biomass burning to black carbon (BC in the WUS mountain ranges by analyzing surface BC observations for 2006 from the Interagency Monitoring of PROtected Visual Environment (IMPROVE network using the GEOS-Chem global chemical transport model. Observed surface BC concentrations show broad maxima during late June to early November. Enhanced potassium concentrations and potassium/sulfur ratios observed during the high-BC events indicate a dominant biomass burning influence during the peak fire season. Model surface BC reproduces the observed day-to-day and synoptic variabilities in regions downwind of and near urban centers. Major discrepancies are found at elevated mountainous sites during the July–October when simulated BC concentrations are biased low by a factor of two. We attribute these biases largely to the underestimated and temporally misplaced biomass burning emissions of BC in the model. Additionally, we find that the biomass burning contribution to surface BC concentrations in the US likely was underestimated in a previous study using GEOS-Chem (Park et al., 2003, because of the unusually low planetary boundary layer (PBL heights and weak precipitation in the GEOS-3 meteorological reanalysis data used to drive the model. PBL heights from GEOS-4 and GEOS-5 reanalysis data are comparable to those from the North American Regional Reanalysis (NARR. Model simulations show improved agreements with the observations when driven by GEOS-5 reanalysis data, but model results are still biased low. The use of biomass burning emissions with diurnal cycle, synoptic variability, and plume injection has relatively small impact on the simulated surface BC concentrations in the WUS.

  12. Comparison of GFED3, QFED2 and FEER1 Biomass Burning Emissions Datasets in a Global Model

    Science.gov (United States)

    Pan, Xiaohua; Ichoku, Charles; Bian, Huisheng; Chin, Mian; Ellison, Luke; da Silva, Arlindo; Darmenov, Anton

    2015-01-01

    Biomass burning contributes about 40% of the global loading of carbonaceous aerosols, significantly affecting air quality and the climate system by modulating solar radiation and cloud properties. However, fire emissions are poorly constrained in models on global and regional levels. In this study, we investigate 3 global biomass burning emission datasets in NASA GEOS5, namely: (1) GFEDv3.1 (Global Fire Emissions Database version 3.1); (2) QFEDv2.4 (Quick Fire Emissions Dataset version 2.4); (3) FEERv1 (Fire Energetics and Emissions Research version 1.0). The simulated aerosol optical depth (AOD), absorption AOD (AAOD), angstrom exponent and surface concentrations of aerosol plumes dominated by fire emissions are evaluated and compared to MODIS, OMI, AERONET, and IMPROVE data over different regions. In general, the spatial patterns of biomass burning emissions from these inventories are similar, although the strength of the emissions can be noticeably different. The emissions estimates from QFED are generally larger than those of FEER, which are in turn larger than those of GFED. AOD simulated with all these 3 databases are lower than the corresponding observations in Southern Africa and South America, two of the major biomass burning regions in the world.

  13. Organic functional groups in aerosol particles from burning and non-burning forest emissions at a high-elevation mountain site

    Directory of Open Access Journals (Sweden)

    S. Takahama

    2011-07-01

    Full Text Available Ambient particles collected on teflon filters at the Peak of Whistler Mountain, British Columbia (2182 m a.s.l. during spring and summer 2009 were measured by Fourier transform infrared (FTIR spectroscopy for organic functional groups (OFG. The project mean and standard deviation of organic aerosol mass concentrations (OM for all samples was 3.2±3.3 (μg m−3. Measurements of aerosol mass fragments, size, and number concentrations were used to separate fossil-fuel combustion and burning and non-burning forest sources of the measured organic aerosol. The OM was composed of the same anthropogenic and non-burning forest components observed at Whistler mid-valley in the spring of 2008; during the 2009 campaign, biomass burning aerosol was additionally observed from fire episodes occurring between June and September. On average, organic hydroxyl, alkane, carboxylic acid, ketone, and primary amine groups represented 31 %±11 %, 34 %±9 %, 23 %±6 %, 6 %±7 %, and 6 %±3 % of OM, respectively. Ketones in aerosols were associated with burning and non-burning forest origins, and represented up to 27 % of the OM. The organic aerosol fraction resided almost entirely in the submicron fraction without significant diurnal variations. OM/OC mass ratios ranged mostly between 2.0 and 2.2 and O/C atomic ratios between 0.57 and 0.76, indicating that the organic aerosol reaching the site was highly aged and possibly formed through secondary formation processes.

  14. Global modeling study of soluble organic nitrogen from open biomass burning

    Science.gov (United States)

    Ito, Akinori; Lin, Guangxing; Penner, Joyce E.

    2015-11-01

    Atmospheric deposition of reactive nitrogen (N) species from large fires may contribute to enrichment of nutrients in aquatic ecosystems. Here we use an atmospheric chemistry transport model to investigate the supply of soluble organic nitrogen (ON) from open biomass burning to the ocean. The model results show that the annual deposition rate of soluble ON to the oceans (14 Tg N yr-1) is increased globally by 13% with the increase being particularly notable over the tropical oceans downwind from the source regions. The estimated deposition of soluble ON due to biomass burning from the secondary formation (1.0 Tg N yr-1) is close to that from the primary sources (1.2 Tg N yr-1). We examine the secondary formation of particulate C-N compounds (i.e., imidazole, methyl imidazole, and N-containing oligomers) from the reactions of glyoxal (CHOCHO) and methylglyoxal (CH3COCHO) with ammonium (NH4+) in wet aerosols and upon cloud evaporation. These ON sources result in a significant contribution to the open ocean (1.3 Tg N yr-1), suggesting that atmospheric processing in aqueous-phase may have a large effect. We compare the soluble ON concentration in aerosols with and without open biomass burning as a case study in Singapore. The model results demonstrate that the soluble ON concentration in aerosols is episodically enriched during the fire events, compared to the case without smoke simulations. At the same time, the model results show that the daily soluble ON concentration can be also enhanced in the case without smoke simulations, compared to the monthly averages. These results may suggest that both the primary source strength of ON and the secondary formation rates of ON should be taken into consideration when using in-situ observations to constrain the calculated soluble ON burden due to biomass burning. More accurate quantification of the soluble ON burdens both with and without smoke sources is therefore needed to assess the effect of biomass burning on bioavailable

  15. Modelling and prediction of air pollutant transport during the 2014 biomass burning and forest fires in peninsular Southeast Asia.

    Science.gov (United States)

    Duc, Hiep Nguyen; Bang, Ho Quoc; Quang, Ngo Xuan

    2016-02-01

    During the dry season, from November to April, agricultural biomass burning and forest fires especially from March to late April in mainland Southeast Asian countries of Myanmar, Thailand, Laos and Vietnam frequently cause severe particulate pollution not only in the local areas but also across the whole region and beyond due to the prevailing meteorological conditions. Recently, the BASE-ASIA (Biomass-burning Aerosols in South East Asia: Smoke Impact Assessment) and 7-SEAS (7-South-East Asian Studies) studies have provided detailed analysis and important understandings of the transport of pollutants, in particular, the aerosols and their characteristics across the region due to biomass burning in Southeast Asia (SEA). Following these studies, in this paper, we study the transport of particulate air pollution across the peninsular region of SEA and beyond during the March 2014 burning period using meteorological modelling approach and available ground-based and satellite measurements to ascertain the extent of the aerosol pollution and transport in the region of this particular event. The results show that the air pollutants from SEA biomass burning in March 2014 were transported at high altitude to southern China, Hong Kong, Taiwan and beyond as has been highlighted in the BASE-ASIA and 7-SEAS studies. There are strong evidences that the biomass burning in SEA especially in mid-March 2014 has not only caused widespread high particle pollution in Thailand (especially the northern region where most of the fires occurred) but also impacted on the air quality in Hong Kong as measured at the ground-based stations and in LulinC (Taiwan) where a remote background monitoring station is located. PMID:26797812

  16. Characterization of long-range transported Canadian biomass burning over Central Europe - A case study

    Science.gov (United States)

    Gross, Silke; Geiss, Alexander; Heimerl, Katharina; Gasteiger, Josef; Freudenthaler, Volker; Weinzierl, Bernadett; Wiegner, Matthias

    2015-04-01

    Aerosols are a major component of the Earth's atmosphere and have substantial impact on the Earth's radiation budget and on the hydrological cycle. Biomass burning smoke is one important component with respect of global climate warming as it is an important source of black carbon, which is a key player in atmospheric heating. As biomass burning smoke layers are often transported over long distances they cannot be considered as local events only but have a global effect. During transport the smoke particles are affected by aging and mixing processes. Thus their microphysical and optical properties change and, as a consequence their effect on the Earth's radiation budget. However, the influence of aging and mixing processes on the particle microphysical and optical properties is still only poorly understood. To improve our knowledge, studies of transport conditions together with measurements of the horizontal and vertical distribution the smoke layers as well as of their microphysical and optical properties are crucial. We present a case study of long-range transported Canadian biomass burning smoke to Central Europe in summer 2013. The smoke layer is characterized by multi-wavelength lidar measurements over Maisach and by continuous Ceilometer measurements over Munich, Germany. Multi-wavelength lidar measurements are an important tool for the characterization of aerosols, as they provide vertically resolved information of their optical properties which serve as input parameters for the determination of microphysical properties of the aerosol layers. Additionally, airborne in-situ measurements of size distribution and black carbon mass concentration onboard the DLR research aircraft Falcon are presented. The source regions and transport conditions are studied using a combination of satellite measurements and model simulations.

  17. Influence of biomass burning plumes on HONO chemistry in eastern China

    Science.gov (United States)

    Nie, W.; Ding, A. J.; Xie, Y. N.; Xu, Z.; Mao, H.; Kerminen, V.-M.; Zheng, L. F.; Qi, X. M.; Huang, X.; Yang, X.-Q.; Sun, J. N.; Herrmann, E.; Petäjä, T.; Kulmala, M.; Fu, C. B.

    2015-02-01

    Nitrous acid (HONO) plays a key role in atmospheric chemistry by influencing the budget of hydroxyl radical (OH). In this study, a two-month measurement of HONO and related quantities were analyzed during a biomass burning season in 2012 at a suburban site in the western Yangtze River delta, eastern China. An overall high HONO concentration with the mean value of 0.76 ppbv (0.01 ppbv to 5.95 ppbv) was observed. During biomass burning (BB) periods, both HONO concentration and HONO/NO2 ratio were enhanced significantly (more than a factor of 2, p air masses was lower than that of non-BB air masses, these results suggest BB aerosols have higher NO2 conversion potentials to form HONO than non-BB aerosols. A further analysis based on comparing the surface area at similar particle mass levels and HONO/NO2 ratios at similar surface area levels suggested larger specific surface areas and higher NO2 conversion efficiencies of BB aerosols. A mixed plume of BB and anthropogenic fossil fuel (FF) emissions was observed on 10 June with even higher HONO concentrations and HONO/NO2 ratios. The strong HONO production potential (high HONO/NO2 to PM2.5 ratio) was accompanied with a high sulfate concentration in this plume, suggesting a promotion of mixed aerosols to the HONO formation. In summary, our study suggests an important role of BB in atmospheric chemistry by affecting the HONO budget. This can be especially important in eastern China, where agricultural burning plumes are inevitably mixed with urban and industrial pollution.

  18. Determination of biomass burning emission factors. Methods and results

    International Nuclear Information System (INIS)

    Biomass burning, in a broad sense, encompasses different burning practices, including open and confined burnings, and different types of vegetation. Emission factors of gaseous or particulate trace compounds are directly dependent both on the fuel type and the combustion process. Emission factors are generally calculated by stoichiometric considerations using the carbon mass balance method, applied either to combustion chamber experiments or to field experiments based on ground-level measurements or aircraft sampling in smoke plumes. There have been a number of experimental studies in the last 10 years to investigate wildfires in tropical, temperate, or boreal regions. This article presents an overview of measurement methods and experimental data on emission factors of reactive or radiatively active trace compounds, including trace gases and particles. It focuses on fires in tropical regions, that is, forest and savanna fires, agricultural burns, charcoal production, use of fuel wood and charcoal combustion. 6 figs., 8 tabs., 65 refs

  19. Evaluation of biomass burning across North West Europe and its impact on air quality

    Science.gov (United States)

    Cordell, R. L.; Mazet, M.; Dechoux, C.; Hama, S. M. L.; Staelens, J.; Hofman, J.; Stroobants, C.; Roekens, E.; Kos, G. P. A.; Weijers, E. P.; Frumau, K. F. A.; Panteliadis, P.; Delaunay, T.; Wyche, K. P.; Monks, P. S.

    2016-09-01

    Atmospheric particulate pollution is a significant problem across the EU and there is concern that there may be an increasing contribution from biomass burning, driven by rising fuel prices and an increased interest in the use of renewable energy sources. This study was carried out to assess current levels of biomass burning and the contribution to total PM10 across five sites in North-West Europe; an area which is frequently affected by poor air quality. Biomass burning was quantified by the determination of levoglucosan concentrations from PM10 aerosol filters collected over a 14 month period in 2013/2014 and continued for a further 12 months at the UK site in Leicester. Levoglucosan levels indicated a distinct period of increased biomass combustion between November and March. Within this period monthly average concentrations ranged between 23 ± 9.7 and 283 ± 163 ng/m3, with Lille showing consistently higher levels than the sites in Belgium, the Netherlands and the UK. The estimated contribution to PM10 was, as expected, highest in the winter season where the season average percentage contribution was lowest in Wijk aan Zee at 2.7 ± 1.4% and again highest in Lille at 11.6 ± 3.8%, with a PM10 mass concentration from biomass that ranged from 0.56 μg/m3 in Leicester to 2.08 μg/m3 in Lille. Overall there was poor correlation between the levoglucosan concentrations measured at the different sites indicating that normally biomass burning would only affect atmospheric particulate pollution in the local area; however, there was evidence that extreme burning events such as the Easter fires traditionally held in parts of North-West Europe can have far wider ranging effects on air quality. Network validation measurements were also taken using a mobile monitoring station which visited the fixed sites to carry out concurrent collections of aerosol filters; the result of which demonstrated the reliability of both PM10 and levoglucosan measurements.

  20. Implications of high altitude desert dust transport from Western Sahara to Nile Delta during biomass burning season.

    Science.gov (United States)

    Prasad, Anup K; El-Askary, Hesham; Kafatos, Menas

    2010-11-01

    The air over major cities and rural regions of the Nile Delta is highly polluted during autumn which is the biomass burning season, locally known as black cloud. Previous studies have attributed the increased pollution levels during the black cloud season to the biomass or open burning of agricultural waste, vehicular, industrial emissions, and secondary aerosols. However, new multi-sensor observations (column and vertical profiles) from satellites, dust transport models and associated meteorology present a different picture of the autumn pollution. Here we show, for the first time, the evidence of long range transport of dust at high altitude (2.5-6 km) from Western Sahara and its deposition over the Nile Delta region unlike current Models. The desert dust is found to be a major contributor to the local air quality which was previously considered to be due to pollution from biomass burning enhanced by the dominant northerly winds coming from Europe. PMID:20797813

  1. Influence of biomass burning plumes on HONO chemistry in eastern China

    Directory of Open Access Journals (Sweden)

    W. Nie

    2014-03-01

    Full Text Available Nitrous acid (HONO plays a key role in atmospheric chemistry via influencing the budget of hydroxyl radical (OH. In this study, a two-month measurement period of HONO and related quantities were analyzed during a biomass burning season in 2012 at a suburban site in the western Yangtze River delta, eastern China. An overall high HONO concentration with the mean value of 1.1 ppbv was observed. During biomass burning (BB periods, both HONO concentration and HONO / NO2 ratio were enhanced significantly compared with non-biomass burning periods. A correlation analysis showed that the HONO concentration was not associated potassium (a tracer of BB in BB plumes, but showed a high correlation with the NO2 concentration, suggesting a principle role of secondary production rather than direct emissions in elevated HONO concentrations. A further analysis based on comparing the surface area at similar PM levels and HONO / NO2 ratios at similar surface area levels suggested larger specific surface areas and higher NO2 conversion efficiencies of BB aerosols. A mixed plume of BB and anthropogenic fossil fuel (FF emissions was observed on 10 June with even higher HONO concentrations and HONO / NO2 ratios. The strong HONO production potential (high HONO / NO2 to PM2.5 ratio was accompanied with a high sulfate concentration in this plume, suggesting a promotion of mixed aerosols to HONO formation. In summary, our study suggests an important role of BB in atmospheric oxidation capacity by affecting the HONO budget. This can be especially important in eastern China, where agricultural burning plumes are inevitably mixed with urban pollutions.

  2. Possible indicators for bio-mass burning in a small Swedish city as studied by EDXRF techniques

    International Nuclear Information System (INIS)

    Full text: One of the major challenges in air pollution research is to make source apportionment from different sources of pollution. Examples of anthropogenic large sources of global impact are vehicle exhaust, oil and coal fired power and heat plants, industrial emissions and bio-mass burning. The relative contributions of these sources are usually difficult to evaluate due to the complexity of the ambient aerosol. XRS is one of the most reliable methods for giving information on elemental composition and elemental ratios of the aerosol particles. If this information is combined with data on other components in the polluted air there is a better chance of identifying the relative strengths of different pollution sources to the air quality in a specific location. In the present work XRS analysis has been performed on aerosol particles, PM2,5 and PM2,5-10 which were sampled in the centre of the small Swedish city of Vaexjoe, with the special aim to identify the possible contribution of bio-mass burning to the air pollution. In order to identify typical indicators for bio-mass burning principle component analysis was performed on data of elemental contents, black carbon and gaseous species in the aerosol

  3. Carbonaceous aerosols from prescribed burning of a boreal forest ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Mazurek, M.A. (Brookhaven National Lab., Upton, NY (United States)); Cofer, W.R. III; Levine, J.S. (National Aeronautics and Space Administration, Hampton, VA (United States). Langley Research Center)

    1990-10-01

    The identity and ambient mass concentrations of radiatively important carbonaceous aerosols were measured for a boreal forest prescribed burn conducted in northern Ontario, CAN in August 1989. Nonsize-segregated airborne particles were collected for smoldering-fire and full-fire conditions using a helicopter sampling platform. Total carbon (TC), organic carbon (OC) and elemental carbon (EC) were measured. Smoke plume mass concentrations of the OC and EC particles were greatest for full-fire conditions and had ranges of 1.560 to 2.160 mg/m{sup {minus}1} (OC) and 0.120 to 0.160 mg/m{sup {minus}3} (EC) with OC:EC ratios of 10 to 18, respectively. Smoldering fire conditions showed smoke plume OC and EC levels of 0.570--1.030 mg/m{sup {minus}3} (OC) and 0.006--0.050 mg/m{sup {minus}3} (EC) and much higher ratios of OC:EC (21 to 95). These aerosol data indicate the formation of EC particles is greatest during full-fire combustion of boreal forest material relative to smoldering combustion. However, EC particles comprise a minor fraction of the particulate carbon smoke aerosols for both full-fire and smoldering conditions; the major component of carbonaceous smoke aerosols emitted during the prescribed burn is OC. Overall, the OC and EC in-plume smoke aerosol data show nonuniform production of these particles during various stages of the prescribed burn, and major differences in the type of carbonaceous aerosol that is generated (OC versus EC).

  4. Carbonaceous aerosols from prescribed burning of a boreal forest ecosystem

    International Nuclear Information System (INIS)

    The identity and ambient mass concentrations of radiatively important carbonaceous aerosols were measured for a boreal forest prescribed burn conducted in northern Ontario, CAN in August 1989. Nonsize-segregated airborne particles were collected for smoldering-fire and full-fire conditions using a helicopter sampling platform. Total carbon (TC), organic carbon (OC) and elemental carbon (EC) were measured. Smoke plume mass concentrations of the OC and EC particles were greatest for full-fire conditions and had ranges of 1.560 to 2.160 mg/m-1 (OC) and 0.120 to 0.160 mg/m-3 (EC) with OC:EC ratios of 10 to 18, respectively. Smoldering fire conditions showed smoke plume OC and EC levels of 0.570--1.030 mg/m-3 (OC) and 0.006--0.050 mg/m-3 (EC) and much higher ratios of OC:EC (21 to 95). These aerosol data indicate the formation of EC particles is greatest during full-fire combustion of boreal forest material relative to smoldering combustion. However, EC particles comprise a minor fraction of the particulate carbon smoke aerosols for both full-fire and smoldering conditions; the major component of carbonaceous smoke aerosols emitted during the prescribed burn is OC. Overall, the OC and EC in-plume smoke aerosol data show nonuniform production of these particles during various stages of the prescribed burn, and major differences in the type of carbonaceous aerosol that is generated (OC versus EC)

  5. Size-dependent wet removal of black carbon in Canadian biomass burning plumes

    Directory of Open Access Journals (Sweden)

    J. W. Taylor

    2014-07-01

    Full Text Available Wet deposition is the dominant mechanism for removing black carbon (BC from the atmosphere, and is key in determining its atmospheric lifetime, vertical gradient and global transport. Despite the importance of BC in the climate system, especially in terms of its ability to modulate the radiative energy budget, there are few quantitative case studies of wet removal in ambient environments. We present a case study of BC wet removal by examining aerosol size distributions and BC coating properties sampled in three Canadian boreal biomass burning plumes, one of which passed through a precipitating cloud. In this plume, the largest and most coated BC particles were found to be preferentially removed, suggesting that nucleation scavenging was the likely dominant mechanism. Calculated mass absorption coefficient (MAC in the plumes showed no significant variation, as the shifts to smaller BC cores and thinner coatings had opposing effects. Similarly, calculated single-scatter albedo (SSA showed little variation, as a large number of non-BC particles were also present in the precipitation-affected plume. The remaining BC cores were smaller than those observed in previous studies of BC in post-precipitation outflow over Asia, possibly due to the thick coatings associated with the biomass burning particles. This study provides important constraints to model parameterisations of BC wet removal in biomass burning regions, which will help to reduce uncertainty in radiative forcing calculations.

  6. Assessing the regional impact of Indonesian biomass burning emissions based on organic molecular tracers and chemical mass balance modeling

    Directory of Open Access Journals (Sweden)

    G. Engling

    2014-01-01

    Full Text Available Biomass burning activities commonly occur in Southeast Asia (SEA, and are particularly intense in Indonesia during dry seasons. The effect of biomass smoke emissions on air quality in the city state of Singapore was investigated during a haze episode in October 2006. Substantially increased levels of airborne particulate matter (PM and associated chemical species were observed during the haze period. Specifically, the enhancement in the concentration of molecular tracers for biomass combustion such as levoglucosan by as much as two orders of magnitude and diagnostic ratios of individual organic compounds indicated that biomass burning emissions caused a regional smoke haze episode due to their long-range transport by prevailing winds. With the aid of air mass back trajectories and chemical mass balance modeling, large-scale forest and peat fires in Sumatra and Kalimantan were identified as the sources of the smoke aerosol, exerting a significant impact on air quality in downwind areas, such as Singapore.

  7. The contributions of biomass burning to primary and secondary organics: A case study in Pearl River Delta (PRD), China.

    Science.gov (United States)

    Wang, BaoLin; Liu, Ying; Shao, Min; Lu, SiHua; Wang, Ming; Yuan, Bin; Gong, ZhaoHeng; He, LingYan; Zeng, LiMin; Hu, Min; Zhang, YuanHang

    2016-11-01

    Synchronized online measurements of gas- and particle- phase organics including non-methane hydrocarbons (NMHCs), oxygenated volatile organic compounds (OVOCs) and submicron organic matters (OM) were conducted in November 2010 at Heshan, Guangdong provincial supersite, China. Several biomass burning events were identified by using acetonitrile as a tracer, and enhancement ratios (EnRs) of organics to carbon monoxide (CO) obtained from this work generally agree with those from rice straw burning in previous studies. The influences of biomass burning on NMHCs, OVOCs and OM were explored by comparing biomass burning impacted plumes (BB plumes) and non-biomass burning plumes (non-BB plumes). A photochemical age-based parameterization method was used to characterize primary emission and chemical behavior of those three organic groups. The emission ratios (EmRs) of NMHCs, OVOCs and OM to CO increased by 27-71%, 34-55% and 67% in BB plumes, respectively, in comparison with non-BB plumes. The estimated formation rate of secondary organic aerosol (SOA) in BB plumes was found to be 24% faster than non-BB plumes. By applying the above emission ratios to the whole PRD, the annual emissions of VOCs and OM from open burning of crop residues would be 56.4 and 3.8Gg in 2010 in PRD, respectively. PMID:27371770

  8. Determination of specific molecular markers of biomass burning in lake sediments

    Science.gov (United States)

    Kirchgeorg, Torben; Schüpbach, Simon; Kehrwald, Natalie; McWethy, David; Barbante, Carlo

    2014-05-01

    Fire influences regional to global atmospheric chemistry and climate. Molecular markers of biomass burning archived in lake sediments are becoming increasingly important in paleoenvironmental reconstruction and may help determine interactions between climate and fire activity. One group of these molecular markers is the monosaccharide anhydrides levoglucosan, mannosan and galactosan. Several aerosol studies and recent ice core research use these compounds as a marker for biomass burning, but studies from lake sediment cores are rare. Previous sediment methods used gas chromatography - mass spectrometry and required derivatization of samples. Here, we present a high performance anion exchange chromatography-mass spectrometry method to allow separation and detection of the three monosaccharide anhydrides in lake sediments with implications for reconstructing past biomass burning events. We validated the method by quantifying levoglucosan, mannosan and galactosan in selected sediment core samples from Lake Kirkpatrick, New Zealand. The freeze-dried, milled and homogenized sediment samples were first extracted with methanol by pressurized solvent extraction, pre-concentrated and finally separated and analyzed by high performance anion exchange chromatography-mass spectrometry. We compared these isomers with macroscopic charcoal concentrations, as charcoal is a well-known proxy for biomass burning. In addition, we applied the method to a sediment core from Lake Petén Itzá, Guatemala to prove the suitability of these markers for reconstructing biomass burning history over the entire Holocene. In the Lake Kirkpatrick samples, levoglucosan, mannosan and galactosan concentrations significantly correlate with macroscopic charcoal concentrations. The three isomers are present in samples without any macroscopic charcoal, and may reflect the presence of microscopic charcoal. Levoglucosan/mannosan and levoglucosan/(mannosan+galactosan) ratios differ between samples with high

  9. Central American biomass burning smoke can increase tornado severity in the U.S.

    Science.gov (United States)

    Saide, P. E.; Spak, S. N.; Pierce, R. B.; Otkin, J. A.; Schaack, T. K.; Heidinger, A. K.; Silva, A. M.; Kacenelenbogen, M.; Redemann, J.; Carmichael, G. R.

    2015-02-01

    Tornadoes in the Southeast and central U.S. are episodically accompanied by smoke from biomass burning in central America. Analysis of the 27 April 2011 historical tornado outbreak shows that adding smoke to an environment already conducive to severe thunderstorm development can increase the likelihood of significant tornado occurrence. Numerical experiments indicate that the presence of smoke during this event leads to optical thickening of shallow clouds while soot within the smoke enhances the capping inversion through radiation absorption. The smoke effects are consistent with measurements of clouds and radiation before and during the outbreak. These effects result in lower cloud bases and stronger low-level wind shear in the warm sector of the extratropical cyclone generating the outbreak, two indicators of higher probability of tornadogenesis and tornado intensity and longevity. These mechanisms may contribute to tornado modulation by aerosols, highlighting the need to consider aerosol feedbacks in numerical severe weather forecasting.

  10. Importance of transboundary transport of biomass burning emissions to regional air quality in Southeast Asia during a high fire event

    Science.gov (United States)

    Aouizerats, B.; van der Werf, G. R.; Balasubramanian, R.; Betha, R.

    2015-01-01

    Smoke from biomass and peat burning has a notable impact on ambient air quality and climate in the Southeast Asia (SEA) region. We modeled a large fire-induced haze episode in 2006 stemming mostly from Indonesia using the Weather Research and Forecasting model coupled with chemistry (WRF-Chem). We focused on the evolution of the fire plume composition and its interaction with the urbanized area of the city state of Singapore, and on comparisons of modeled and measured aerosol and carbon monoxide (CO) concentrations. Two simulations were run with WRF-Chem using the complex volatility basis set (VBS) scheme to reproduce primary and secondary aerosol evolution and concentration. The first simulation referred to as WRF-FIRE included anthropogenic, biogenic and biomass burning emissions from the Global Fire Emissions Database (GFED3) while the second simulation referred to as WRF-NOFIRE was run without emissions from biomass burning. To test model performance, we used three independent data sets for comparison including airborne measurements of particulate matter (PM) with a diameter of 10 μm or less (PM10) in Singapore, CO measurements in Sumatra, and aerosol optical depth (AOD) column observations from four satellite-based sensors. We found reasonable agreement between the model runs and both ground-based measurements of CO and PM10. The comparison with AOD was less favorable and indicated the model underestimated AOD, although the degree of mismatch varied between different satellite data sets. During our study period, forest and peat fires in Sumatra were the main cause of enhanced aerosol concentrations from regional transport over Singapore. Analysis of the biomass burning plume showed high concentrations of primary organic aerosols (POA) with values up to 600 μg m-3 over the fire locations. The concentration of POA remained quite stable within the plume between the main burning region and Singapore while the secondary organic aerosol (SOA) concentration

  11. The impacts of a plume-rise scheme on earth system modeling: climatological effects of biomass aerosols on the surface temperature and energy budget of South America

    Science.gov (United States)

    de Menezes Neto, Otacilio L.; Coutinho, Mariane M.; Marengo, José A.; Capistrano, Vinícius B.

    2016-05-01

    Seasonal forest fires in the Amazon are the largest source of pollutants in South America. The impacts of aerosols due to biomass burning on the temperature and energy balance in South America are investigated using climate simulations from 1979 to 2005 using HadGEM2-ES, which includes the hot plume-rise scheme (HPR) developed by Freitas et al. (Estudos Avançados 19:167-185, 2005, Atmos Chem Phys 7:3385-3398, 2007, Atmos Chem Phys 10:585-594, 2010). The HPR scheme is used to estimate the vertical heights of biomass-burning aerosols based on the thermodynamic characteristics of the underlying model. Three experiments are performed. The first experiment includes the HPR scheme, the second experiment turns off the HPR scheme and the effects of biomass aerosols (BIOMASS OFF), and the final experiment assumes that all biomass aerosols are released at the surface (HPR OFF). Relative to the BIOMASS OFF experiment, the temperature decreased in the HPR experiment as the net shortwave radiation at the surface decreased in a region with a large amount of biomass aerosols. When comparing the HPR and HPR OFF experiments, the release of biomass aerosols higher on the atmosphere impacts on temperature and the energy budget because the aerosols were transported by strong winds in the upper atmospheric levels.

  12. Investigation of Biomass Combustion Rate of Fire Radiative Energy Using Multiple-Satellite-observed Active Fires and Landsat TM Burn Severities across the Continental United States

    Science.gov (United States)

    Li, F.; Zhang, X.; Kondragunta, S.

    2015-12-01

    Biomass burning is a major source of atmospheric aerosol and greenhouse gases that substantially influence climate and regional air quality. However, the accuracy of biomass burning emissions estimated using traditional method is limited by large uncertainties in burned area and fuel loading. Alternatively, fire radiative energy (FRE) has recently been demonstrated to be linearly related to biomass combustion, which potentially improves the estimation of biomass burning emissions. The FRE-based combustion rate is 0.368-0.453 kg/MJ according to field controlled experiments while it varies from 1.37-4.5 kg/MJ derived from satellite-based bottom-up and top-down aerosol optical thickness estimates. Here we investigate the FRE combustion rate in over 1000 burn scars from 2011 to 2012 across the Continental United States (CONUS). Specifically, FRE was calculated by combining the high spatial observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the high temporal observations from the Geostationary Operational Environmental Satellite (GOES). Biomass consumption in burn scars was modeled using Landsat TM 30m burn severities, 30m fuel loading from Fuel Characteristic Classification System, and combustion completeness compiled from recent literatures. The combustion rate was then investigated by correlating FRE to biomass consumption across CONUS and Bailey's ecoregions. Our results show that the combustion rate can be extracted from the linear relationship between biomass consumption and FRE. The combustion rate is 0.415±10% kg/MJ across CONUS, which is similar to the rate derived from field experiments. However, it varies from 0.18-1.9 kg/MJ among ecoregions. This implies that a single combustion rate could produce large uncertainty in the estimation of biomass consumption at large scales. We suggest that ecoregion specified combustion rates should help to improve the accuracy of quantifying biomass burning emissions regionally and globally.

  13. Biomass burning fuel consumption rates: a field measurement database

    Directory of Open Access Journals (Sweden)

    T. T. van Leeuwen

    2014-06-01

    Full Text Available Landscape fires show large variability in the amount of biomass or fuel consumed per unit area burned. These fuel consumption (FC rates depend on the biomass available to burn and the fraction of the biomass that is actually combusted, and can be combined with estimates of area burned to assess emissions. While burned area can be detected from space and estimates are becoming more reliable due to improved algorithms and sensors, FC rates are either modeled or taken selectively from the literature. We compiled the peer-reviewed literature on FC rates for various biomes and fuel categories to better understand FC rates and variability, and to provide a~database that can be used to constrain biogeochemical models with fire modules. We compiled in total 76 studies covering 10 biomes including savanna (15 studies, average FC of 4.6 t DM (dry matter ha−1, tropical forest (n = 19, FC = 126, temperate forest (n = 11, FC = 93, boreal forest (n = 16, FC = 39, pasture (n = 6, FC = 28, crop residue (n = 4, FC = 6.5, chaparral (n = 2, FC = 32, tropical peatland (n = 4, FC = 314, boreal peatland (n = 2, FC = 42, and tundra (n = 1, FC = 40. Within biomes the regional variability in the number of measurements was sometimes large, with e.g. only 3 measurement locations in boreal Russia and 35 sites in North America. Substantial regional differences were found within the defined biomes: for example FC rates of temperate pine forests in the USA were 38% higher than Australian forests dominated by eucalypt trees. Besides showing the differences between biomes, FC estimates were also grouped into different fuel classes. Our results highlight the large variability in FC rates, not only between biomes but also within biomes and fuel classes. This implies that care should be taken with using averaged values, and our comparison with FC rates from GFED3 indicates that also modeling studies have difficulty in representing the dynamics governing FC.

  14. When smoke comes to town - effects of biomass burning smoke on air quality down under

    Science.gov (United States)

    Keywood, Melita; Cope, Martin; (C. P) Meyer, Mick; Iinuma, Yoshi; Emmerson, Kathryn

    2014-05-01

    Annually, biomass burning results in the emission of quantities of trace gases and aerosol to the atmosphere. Biomass burning emissions have a significant effect on atmospheric chemistry due to the presence of reactive species. Biomass burning aerosols influence the radiative balance of the earth-atmosphere system directly through the scattering and absorption of radiation, and indirectly through their influence on cloud microphysical processes, and therefore constitute an important forcing in climate models. They also reduce visibility, influence atmospheric photochemistry and can be inhaled into the deepest parts of the lungs, so that they can have a significant effect on human health. Australia experiences bushfires on an annual basis. In most years fires are restricted to the tropical savannah forests of Northern Australia. However in the summer of 2006/2007 (December 2006 - February 2007), South Eastern Australia was affected by the longest recorded fires in its history. During this time the State of Victoria was ravaged by 690 separate bushfires, including the major Great Divide Fire, which devastated 1,048,238 hectares over 69 days. On several occasions, thick smoke haze was transported to the Melbourne central business district and PM10 concentrations at several air quality monitoring stations peaked at over 200 µg m-3 (four times the National Environment Protection Measure PM10 24 hour standard). During this period, a comprehensive suite of air quality measurements was carried out at a location 25 km south of the Melbourne CBD, including detailed aerosol microphysical and chemical composition measurements. Here we examine the chemical and physical properties of the smoke plume as it impacted Melbourne's air shed and discuss its impact on air quality over the city. We estimate the aerosol emission rates of the source fires, the age of the plumes and investigate the transformation of the smoke as it progressed from its source to the Melbourne airshed. We

  15. Influence of biomass aerosol on precipitation over the Central Amazon: an observational study

    Science.gov (United States)

    Gonçalves, W. A.; Machado, L. A. T.; Kirstetter, P.-E.

    2015-06-01

    Understanding the influence of biomass burning aerosol on clouds and precipitation in the Amazon is key to reducing uncertainties in simulations of climate change scenarios with regard to deforestation fires. Here, we associate rainfall characteristics obtained from an S-band radar in the Amazon with in situ measurements of biomass burning aerosol for the entire year of 2009. The most important results were obtained during the dry season (July-December). The results indicate that the influence of aerosol on precipitating systems is modulated by the atmospheric degree of instability. For less unstable atmospheres, the higher the aerosol concentration is, the lower the precipitation is over the region. In contrast, for more unstable cases, higher concentrations of black carbon are associated with greater precipitation, increased ice content, and larger rain cells; this finding suggests an association with long-lived systems. The results presented are statistically significant. However, due to limitations imposed by the available data set, important features, such as the contribution of each mechanism to the rainfall suppression, need further investigation. Regional climate model simulations with aircraft and radar measurements would help clarify these questions.

  16. Vertical distribution of agriculture crop residue burning aerosol observed by space-borne lidar CALIOP - A case study over the Indo-Gangetic Basin (IGB)

    Science.gov (United States)

    Mishra, A. K.; Shibata, T.

    2011-12-01

    Agriculture crop residue burning is one of the important sources of trace gas emissions and aerosol loading over the Indo-Gangetic Basin (IGB). It is also one of the main causes for dense atmospheric brown clouds (ABCs) formation over South Asian region. Present study deals with spatial and vertical variability of aerosol optical and microphysical properties during the crop residue burning season (October and November) over the IGB. MODIS (MODerate resolution Imaging Spectroradiometer) fire location data and MODIS AOD data confirms the crop residue burning activities over irrigated cropland of the IGB during October and November, 2009. Large values (> 0.7) of MODIS AOD (aerosol optical depth) and CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) backscatter (>0.006 km-1 sr-1 below 1.0 km altitude) are suggesting enhanced atmospheric pollution associated with agriculture crop residue burning. The increase in tropospheric columnar NO2 and surface CO concentration during October and November also emphasized the significant contribution of crop residue burning activities in enhanced anthropogenic pollution over the IGB. Vertical distribution of backscatter coefficients showed trapping of biomass (crop residues) burning aerosol within boundary layer. Spatial variation of aerosol backscatter and AOD showed large value above north-west part of IGB, major area of crop residue burning activities. The results of this study will be very useful in quantification of optical properties of atmospheric brown clouds and its effect on climate.

  17. A Seasonal Trend of Single Scattering Albedo in Southern African Biomass-burning Particles: Implications for Satellite Products and Estimates of Emissions for the World's Largest Biomass-burning Source

    Science.gov (United States)

    Eck, T. F.; Holben, B. N.; Reid, J. S.; Mukelabai, M. M.; Piketh, S. J.; Torres, O.; Jethva, H. T.; Hyer, E. J.; Ward, D. E.; Dubovik, O.; Sinyuk, A.; Schafer, J. S.; Giles, D. M.; Sorokin, M.; Smirnov, A.; Slutsker, I.

    2013-01-01

    As a representative site of the southern African biomass-burning region, sun-sky data from the 15 year Aerosol Robotic Network (AERONET) deployment at Mongu, Zambia, was analyzed. For the biomass-burning season months (July-November), we investigate seasonal trends in aerosol single scattering albedo (SSA), aerosol size distributions, and refractive indices from almucantar sky scan retrievals. The monthly mean single scattering albedo at 440 nm in Mongu was found to increase significantly from approx.. 0.84 in July to approx. 0.93 in November (from 0.78 to 0.90 at 675 nm in these same months). There was no significant change in particle size, in either the dominant accumulation or secondary coarse modes during these months, nor any significant trend in the Angstrom exponent (440-870 nm; r(exp 2) = 0.02). A significant downward seasonal trend in imaginary refractive index (r(exp 2) = 0.43) suggests a trend of decreasing black carbon content in the aerosol composition as the burning season progresses. Similarly, burning season SSA retrievals for the Etosha Pan, Namibia AERONET site also show very similar increasing single scattering albedo values and decreasing imaginary refractive index as the season progresses. Furthermore, retrievals of SSA at 388 nm from the Ozone Monitoring Instrument satellite sensor show similar seasonal trends as observed by AERONET and suggest that this seasonal shift is widespread throughout much of southern Africa. A seasonal shift in the satellite retrieval bias of aerosol optical depth from the Moderate Resolution Imaging Spectroradiometer collection 5 dark target algorithm is consistent with this seasonal SSA trend since the algorithm assumes a constant value of SSA. Multi-angle Imaging Spectroradiometer, however, appears less sensitive to the absorption-induced bias.

  18. Biomass-burning impact on CCN number, hygroscopicity and cloud formation during summertime in the eastern Mediterranean

    Science.gov (United States)

    Bougiatioti, Aikaterini; Bezantakos, Spiros; Stavroulas, Iasonas; Kalivitis, Nikos; Kokkalis, Panagiotis; Biskos, George; Mihalopoulos, Nikolaos; Papayannis, Alexandros; Nenes, Athanasios

    2016-06-01

    This study investigates the concentration, cloud condensation nuclei (CCN) activity and hygroscopic properties of particles influenced by biomass burning in the eastern Mediterranean and their impacts on cloud droplet formation. Air masses sampled were subject to a range of atmospheric processing (several hours up to 3 days). Values of the hygroscopicity parameter, κ, were derived from CCN measurements and a Hygroscopic Tandem Differential Mobility Analyzer (HTDMA). An Aerosol Chemical Speciation Monitor (ACSM) was also used to determine the chemical composition and mass concentration of non-refractory components of the submicron aerosol fraction. During fire events, the increased organic content (and lower inorganic fraction) of the aerosol decreases the values of κ, for all particle sizes. Particle sizes smaller than 80 nm exhibited considerable chemical dispersion (where hygroscopicity varied up to 100 % for particles of same size); larger particles, however, exhibited considerably less dispersion owing to the effects of condensational growth and cloud processing. ACSM measurements indicate that the bulk composition reflects the hygroscopicity and chemical nature of the largest particles (having a diameter of ˜ 100 nm at dry conditions) sampled. Based on positive matrix factorization (PMF) analysis of the organic ACSM spectra, CCN concentrations follow a similar trend as the biomass-burning organic aerosol (BBOA) component, with the former being enhanced between 65 and 150 % (for supersaturations ranging between 0.2 and 0.7 %) with the arrival of the smoke plumes. Using multilinear regression of the PMF factors (BBOA, OOA-BB and OOA) and the observed hygroscopicity parameter, the inferred hygroscopicity of the oxygenated organic aerosol components is determined. We find that the transformation of freshly emitted biomass burning (BBOA) to more oxidized organic aerosol (OOA-BB) can result in a 2-fold increase of the inferred organic hygroscopicity; about 10

  19. Million year records of biomass burning from Australia and Africa

    International Nuclear Information System (INIS)

    A chemical technique has been developed which can isolate elemental carbon (charcoal, soot, etc) derived from biomass burning in any sediment containing any quantity of elemental carbon. Sediment samples (generally containing 0.01 to 0.001% elemental carbon) are decarbonated using 1 N HCl, and silicate minerals are destroyed by HF/HCl. The demineralized residue, containing organic carbon and elemental carbon is the;n subjected to an acid oxidation using a K2Cr2O7/H2SO4 solution. This procedure destroys 95% of the organic carbon with only minor loss of dense charcoal particles. The small and action of remaining acid-resistant organic carbon is then rapidly destroyed using an additional alkaline oxidation step with a KOH/H2O2 reagent. This leaves a residue composed entirely of elemental carbon. The amount of elemental carbon is determined by combustion of the sample, cryogenic purification of the resultant CO2 and manometric measurement of CO2 yield. The carbon-isotope composition of the CO2 was then determined by mass spectrometry, in order to provide information on the type of vegetation being burnt. The carbon-isotope composition of elemental carbon suggests that the bulk of carbon during the large scale events was derived from a C4 source. The concurrence of large biomass burning events with transition periods in global climate, suggests that the large-scale biomass burning may be one mechanism whereby terrestrial organic carbon accumulated during interglacial periods is transferred to other reservoirs at the onset of the following glacial period

  20. Fuel characteristics and trace gases produced through biomass burning

    Directory of Open Access Journals (Sweden)

    BAMBANG HERO SAHARJO

    2010-01-01

    Full Text Available Saharjo BH, Sudo S, Yonemura S, Tsuruta H (2010 Fuel characteristics and trace gases produced through biomass burning. Biodiversitas 11: 40-45. Indonesian 1997/1998 forest fires resulted in forest destruction totally 10 million ha with cost damaged about US$ 10 billion, where more than 1 Gt CO2 has been released during the fire episode and elevating Indonesia to one of the largest polluters of carbon in the world where 22% of world’s carbon dioxide produced. It has been found that 80-90% of the fire comes from estate crops and industrial forest plantation area belongs to the companies which using fire illegally for the land preparation. Because using fire is cheap, easy and quick and also support the companies purpose in achieving yearly planted area target. Forest management and land use practices in Sumatra and Kalimantan have evolved very rapidly over the past three decades. Poor logging practices resulted in large amounts of waste will left in the forest, greatly elevating fire hazard. Failure by the government and concessionaires to protect logged forests and close old logging roads led to and invasion of the forest by agricultural settlers whose land clearances practices increased the risk of fire. Several field experiments had been done in order to know the quality and the quantity of trace produced during biomass burning in peat grass, peat soil and alang-alang grassland located in South Sumatra, Indonesia. Result of research show that different characteristics of fuel burned will have the different level also in trace gasses produced. Peat grass with higher fuel load burned produce more trace gasses compared to alang-alang grassland and peat soil.

  1. Fuel characteristics and trace gases produced through biomass burning

    OpenAIRE

    BAMBANG HERO SAHARJO; SHIGETO SUDO; SEIICHIRO YONEMURA; HARUO TSURUTA

    2010-01-01

    Saharjo BH, Sudo S, Yonemura S, Tsuruta H (2010) Fuel characteristics and trace gases produced through biomass burning. Biodiversitas 11: 40-45. Indonesian 1997/1998 forest fires resulted in forest destruction totally 10 million ha with cost damaged about US$ 10 billion, where more than 1 Gt CO2 has been released during the fire episode and elevating Indonesia to one of the largest polluters of carbon in the world where 22% of world’s carbon dioxide produced. It has been found that 80-90% of ...

  2. Identification and quantification of gaseous organic compounds emitted from biomass burning using two-dimensional gas chromatography/time-of-flight mass spectrometry

    OpenAIRE

    Hatch, L. E.; Luo, W.; Pankow, J. F.; Yokelson, R. J.; C. E. Stockwell; K. C. Barsanti

    2014-01-01

    The current understanding of secondary organic aerosol (SOA) formation within biomass burning (BB) plumes is limited by the incomplete identification and quantification of the non-methane organic compounds (NMOCs) emitted from such fires. Gaseous organic compounds were collected on sorbent cartridges during laboratory burns as part of the fourth Fire Lab at Missoula Experiment (FLAME-4), with analysis by two-dimensional gas chromatography/time-of-flight mas...

  3. Contributions from transport, solid fuel burning and cooking to primary organic aerosols in two UK cities

    Directory of Open Access Journals (Sweden)

    J. D. Allan

    2009-09-01

    with biomass burning and occurred mainly at night. Grid-scale emission factors of the combustion aerosols suitable for use in chemical transport models were derived relative to CO and NOx. The traffic aerosols were found to be 14.4 μg m−3 ppm−1 relative to CO for Manchester and 28 μg m−3 ppm−1 relative to NOx for London. Solid fuel emissions were derived as 17.3 μg m−3 ppm−1 relative to CO for Manchester. These correspond to mass emission ratios of 0.012, 0.021 (as NO and 0.014 respectively and are of a similar order to previously published estimates, derived from other regions or using other approaches.

  4. Siberian Biomass Burning Plumes Across the Pacific: Impact on Surface Air Quality in the Pacific Northwest

    Science.gov (United States)

    Jaffe, D.; Weiss-Penzias, P.; Dennison, J.; Bertschi, I.; Westphal, D.

    2003-12-01

    During the summer of 2003, we conducted ground and airborne observations of CO, O3 and aerosols in the Pacific Northwest. The airborne data is discussed by Bertschi and Jaffe. In this paper we discuss the surface data. Observations were made at the Cheeka Peak Observatory on the remote northwest tip of Washington state and we have supplemented this with data from the regional Puget Sound air quality network. In two cases we observed significant enhancements in surface CO, O3 and aerosols associated with the large Siberian biomass fires which occurred during the summer of 2003. The first episode occurred on June 2-3, 2003. During this period our aircraft observations and the NAAPS global model identified significant enhancements due to long range transport of emissions from Siberian fires and this was also seen at surface sites around the Puget Sound. In some locations the ozone enhancements were significant and may have contributed to a local air pollution episode two days later. In the second case, on August 4-5, our aircraft observations and the NAAPS global model again confirmed the presence of Siberian biomass burning emissions. This was seen at our Cheeka Peak site as a substantial elevation in CO and aerosols, but with a more modest enhancement in O3. During this period, aerosol concentrations were elevated to 10-15 ug/m3 (PM 2.5) around the Puget Sound. Our observations demonstrate that long range transport can occur during summer and that it can have a significant influence on surface air quality in the western U.S.

  5. Annual and diurnal african biomass burning temporal dynamics

    Directory of Open Access Journals (Sweden)

    G. Roberts

    2009-05-01

    Full Text Available Africa is the single largest continental source of biomass burning emissions. Here we conduct the first analysis of one full year of geostationary active fire detections and fire radiative power data recorded over Africa at 15-min temporal interval and a 3 km sub-satellite spatial resolution by the Spinning Enhanced Visible and Infrared Imager (SEVIRI imaging radiometer onboard the Meteosat-8 satellite. We use these data to provide new insights into the rates and totals of open biomass burning over Africa, particularly into the extremely strong seasonal and diurnal cycles that exist across the continent. We estimate peak daily biomass combustion totals to be 9 and 6 million tonnes of fuel per day in the northern and southern hemispheres respectively, and total fuel consumption between February 2004 and January 2005 is estimated to be at least 855 million tonnes. Analysis is carried out with regard to fire pixel temporal persistence, and we note that the majority of African fires are detected only once in consecutive 15 min imaging slots. An investigation of the variability of the diurnal fire cycle is carried out with respect to 20 different land cover types, and whilst differences are noted between land covers, the fire diurnal cycle characteristics for most land cover type are very similar in both African hemispheres. We compare the Fire Radiative Power (FRP derived biomass combustion estimates to burned-areas, both at the scale of individual fires and over the entire continent at a 1-degree scale. Fuel consumption estimates are found to be less than 2 kg/m2 for all land cover types noted to be subject to significant fire activity, and for savanna grasslands where literature values are commonly reported the FRP-derived median fuel consumption estimate of 300 g/m2 is well within commonly quoted values. Meteosat-derived FRP data of the type presented here is now available freely to interested users continuously and in near

  6. Implications of high altitude desert dust transport from Western Sahara to Nile Delta during biomass burning season

    International Nuclear Information System (INIS)

    The air over major cities and rural regions of the Nile Delta is highly polluted during autumn which is the biomass burning season, locally known as black cloud. Previous studies have attributed the increased pollution levels during the black cloud season to the biomass or open burning of agricultural waste, vehicular, industrial emissions, and secondary aerosols. However, new multi-sensor observations (column and vertical profiles) from satellites, dust transport models and associated meteorology present a different picture of the autumn pollution. Here we show, for the first time, the evidence of long range transport of dust at high altitude (2.5-6 km) from Western Sahara and its deposition over the Nile Delta region unlike current Models. The desert dust is found to be a major contributor to the local air quality which was previously considered to be due to pollution from biomass burning enhanced by the dominant northerly winds coming from Europe. - New evidence of desert dust transport from Western Sahara to Nile Delta during black cloud season and its significance for regional aerosols, dust models, and potential impact on the regional climate.

  7. Haze types in Beijing and the influence of agricultural biomass burning

    Directory of Open Access Journals (Sweden)

    W. J. Li

    2010-09-01

    Full Text Available Emissions from agricultural biomass burning (ABB in northern China have a significant impact on the regional and global climate. The monthly average aerosol optical depth (AOD at 550 nm in northern China in 2007 had a maximum of 0.7 in June. The AOD measurements are consistent with regional brown hazes that occurred at that time, which was a period of severe aerosol pollution. Aerosol particles were collected in urban Beijing from 12 to 30 June 2007, during a period of high haze, and studied using transmission electron microscopy with energy-dispersive X-ray spectrometry. The dominant particle types collected in the fine fraction (diameter <1 μm were ammonium sulfate, soot, K2SO4, KNO3, and organic matter, except that the K salts were minor between 21 and 30 June. K-rich particles as tracers of biomass burning, together with wildfire maps, show that intense regional ABB in northern China contributed significantly to the regional haze between 12 and 20 June. We therefore grouped the episodes into type-1 and -2 haze, with the former occurring between 12 and 20 June and the latter between 21 and 30 June. After long-range transport, ABB particles in the type-1 haze exhibited marked changes in morphology, composition, and mixing state. KCl particles were absent, presumably having been converted by heterogeneous reactions to K2SO4 and KNO3. Soot particles were mixed with the other particle types. Abundant organic matter and soluble salts emitted by ABB increased their sizes during transport and resulted in more hygroscopic aerosol particles in downwind areas, becoming additional cloud condensation nuclei. The high AOD (average value 2.2 in Beijing during 12 to 20 June is partly explained by the hygroscopic growth of fine aerosol particles and by the strong absorption of internally mixed soot particles, both coming from regional ABB emissions. Therefore, it is important to consider the

  8. Geostationary satellite estimation of biomass burning in Amazonia during BASE-A

    International Nuclear Information System (INIS)

    This chapter presents the results of using Geostationary Operational Environmental Satellite (GOES) Visible Infrared Spin Scan Radiometer Atmospheric Sounder (VAS) infrared window (3.9 and 11.2 microns) data to monitor biomass burning several times per day in Amazonia. The technique of Matson and Dozier using two window channels was adapted to GOES VAS infrared data to estimate the size and temperature of fires associated with deforestation in the vicinity of Alta Floresta, Brazil, during the Biomass Burning Airborne and Spaceborne Experiment - Amazonia (BASE-A). Although VAS data do not offer the spatial resolution available with AVHRR data 97 km versus 1 km, respectively, this decreased resolution does not seem to hinder the ability of the VAS instrument to detect fires; in some cases it proves to be advantageous in that saturation does not occur as often. VAS visible data are additionally helpful in verifying that the hot spots sensed in the infrared are actually related to fires. Furthermore, the fire plumes can be tracked in time to determine their motion and extent. In this way, the GOES satellite offers a unique ability to monitor diurnal variations in fire activity and transport of related aerosols

  9. Biomass burning - Its history, use, and distribution and its impact on environmental quality and global climate

    International Nuclear Information System (INIS)

    The present discussion of the historical development of biomass burning (BMB) and its role in agriculture and society furnishes current estimates of the types and quantities of pollutants emitted, as well as of their environmental effects. Attention is given to the clearing of forest and brushland, BMB in tropical savannas, the use of wood and charcoal as major fuels, the geographical distribution of BMB, and the seasonality of BMB. While CO2 is the primary atmospheric pollutant, CO, CH4, and various other hydrocarbons are also generated by BMB, in conjunction with the aerosol particles of 'smoke'. Accounts are given of the long-range transport and photochemistry of smoke plumes, ozone pollution of the stratosphere, the perturbation of tropospheric oxidant cycles, and the disruption of nutrient cycles and soil degradation by BMB

  10. Physical properties of black carbon aerosol emitted by a series of laboratory biomass fires

    Science.gov (United States)

    McMeeking, Gavin; Flynn, Michael; Wold, Cyle; Hao, Wei Min; Fortner, Ed; Onasch, Tim; Carrico, Christian; Kreidenweis, Sonia; Coe, Hugh

    2010-05-01

    Black carbon aerosols have major impacts on the transfer of radiation in the atmosphere and affect climate and air quality on regional and global scales. Globally averaged, biomass burning represents roughly 40% of the total BC emissions to the atmosphere. The amount and physical properties of BC emitted by fires is highly uncertain as is our knowledge regarding the processing/transformation of BC once emitted to the atmosphere. To address these areas, we measured emissions of black carbon (BC) aerosol emitted by a series of controlled laboratory-scale burns involving a range of biomass fuels commonly consumed during prescribed and wildfires in North America. Black carbon aerosol physical properties including size distribution and mixing state were determined using a Droplet Measurement Technologies single particle soot photometer (SP2). The SP2 uses a laser induced incandescence technique to determine the mass of individual BC particles. Unlike filter-based methods previously used to quantify BC emitted from fires, the SP2 does not suffer from artefacts related to the presence of non-BC material co-sampled with BC particles. The SP2 also allows for simultaneous measurement of light scattered by BC particles to diagnose the presence of non-BC material associated with the BC particles (i.e., coatings). We also compare the BC physical property measurements to simultaneous light absorption and scattering measurements made by a DMT photoacoustic spectrometer at multiple wavelengths (405, 532, and 870 nm). Both BC physical and optical properties are linked to fuel properties and combustion conditions. The SP2 and photoacoustic spectrometer sampled downstream of a thermal denuder and three-stage dilution system throughout the study to examine the volatility of aerosol emitted by the fires. This allowed for the examination of the role of non-BC material on aerosol optical properties and BC coatings as measured by the SP2 and has implications for BC atmospheric aging

  11. Evolution of biomass burning smoke particles in the dark

    Science.gov (United States)

    Li, Chunlin; Ma, Zhen; Chen, Jianmin; Wang, Xinming; Ye, Xingnan; Wang, Lin; Yang, Xin; Kan, Haidong; Donaldson, D. J.; Mellouki, Abdelwahid

    2015-11-01

    The evolution in the dark of physiochemical properties and chemical composition of smoke particles emitted from wheat straw burning, as well as the effect of relative humidity (RH) on these properties, was investigated in an aerosol chamber. The smoke particles are composed primarily of carbonaceous materials and a considerable amount of inorganic salts (˜25 wt.%). During aging, the fraction of inorganic salts in smoke PM1.0 increases, mainly due to the formation of more sulfate and nitrate at the expense of chloride; this heterogeneous conversion is facilitated at high RH. The hygroscopicity parameter κH of fresh smoke particles is 0.27 and this is estimated to decrease by 0.01 after 4 h dark aging. Both aging and high RH lead to increases of particle size and density. The effective densities of smoke PM2.5 and PM1.0 deduced from concurrent mass and volume concentration measurements gradually increase from about 1.18 to 1.44 g/m3 within 4 h aging at 45%-55% RH, in line with the results obtained both from size-resolved particle density analysis using an aerosol particle mass analyzer (APM) and from estimation using composition-weighted bulk densities. The density of smoke particle is size-, RH-, and aging extent-dependent; the size effect becomes less pronounced with aging.

  12. Modeling Regional Air Quality Impacts from Indonesian Biomass Burning

    Science.gov (United States)

    Jumbam, L.; Raffuse, S. M.; Wiedinmyer, C.; Larkin, N.

    2012-12-01

    Smoke from thousands of forest-clearing burns in Indonesia cause widespread air quality impacts in cities across southeastern Asia. These fires, which can produce significant smoke due to peat burning, are readily detected by polar orbiting satellites. Widespread smoke can be seen in satellite imagery, and high concentrations of particulate matter are detected by ground based sensors. Here we present results of a pilot modeling study focusing on the September 2011 Indonesian smoke episode. In the study, fire location information was collected from the National Aeronautics and Space Administration's (NASA) Moderate Resolution Imaging Spectroradiometer (MODIS). The BlueSky modeling framework, which links information about fire locations with smoke emissions and meteorological models, was used to pass the fire location information from MODIS through the Fire INventories from NCAR (FINN) methodology to estimate emissions of aerosol and gaseous pollutants from the fires. These emissions were further directed by BlueSky through the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model, which predicted the dispersion and transport of PM2.5 from the fires. The resulting regional PM2.5 concentration maps from BlueSky were compared with satellite imagery and urban ground stations, where available. This work demonstrates the extension of a system developed for producing daily smoke predictions in the United States outside of North America for the first time. We discuss the implications of regional smoke impacts and possibilities for predictive smoke modeling to protect public health in southeastern Asia.

  13. Origin, variability and age of biomass burning plumes intercepted during BORTAS-B

    Directory of Open Access Journals (Sweden)

    D. P. Finch

    2014-03-01

    Full Text Available We use the GEOS-Chem atmospheric chemistry transport model to interpret aircraft measurements of carbon monoxide (CO in biomass burning outflow taken during the 2011 BORTAS-B campaign over eastern Canada. The model has some skill reproducing the observed variability (r = 0.45 but has a negative bias for observations below 100 ppb and a positive bias above 300 ppb. We find that observed CO variations are largely due to NW North American biomass burning, as expected, with smaller and less variable contributions from fossil fuel combustion from eastern Asia and NE North America. To help interpret observed variations of CO we develop an Eulerian effective age of emissions (A metric, accounting for mixing and chemical decay, which we apply to pyrogenic emissions of CO. We find that during BORTAS-B the age of emissions intercepted over Halifax, Nova Scotia is typically 4–11 days, and on occasion as young as two days. We show that A is typically 1–5 days older than the associated photochemical ages inferred from colocated measurements of different hydrocarbons. We find that the median difference between the age measures (Δτ in plumes (CH3CN > 150 ppt peaks at 3–5 days corresponding to a chemical retardation of 50%. We find a strong relationship in plumes between A and Δτ (r2 = 0.60, which is not evident outwith these plumes (r2 = 0.23. We argue that these observed relationships, together with a robust observed relationship between CO and black carbon aerosol during BORTAS-B (r2 > 0.7, form the basis of indirect evidence that aerosols co-emitted with gases during pyrolysis markedly slowed down the plume photochemistry during BORTAS-B with respect to photochemistry at the same latitude and altitude in clear skies.

  14. Origin, variability and age of biomass burning plumes intercepted during BORTAS-B

    Science.gov (United States)

    Finch, D. P.; Palmer, P. I.; Parrington, M.

    2014-12-01

    We use the GEOS-Chem atmospheric chemistry transport model to interpret aircraft measurements of carbon monoxide (CO) in biomass burning outflow taken during the 2011 BORTAS-B campaign over eastern Canada. The model has some skill reproducing the observed variability, with a Spearman's rank correlation rs = 0.65, but has a positive negative bias for observations 300 ppb. We find that observed CO variations are largely due to fires over Ontario, as expected, with smaller and less variable contributions from fossil fuel combustion from eastern Asia and NE North America. To help interpret observed variations of CO we develop a Eulerian effective physical age of emissions (A) metric, accounting for mixing and chemical decay, which we apply to pyrogenic emissions of CO. We find that during BORTAS-B the age of emissions intercepted over Halifax, Nova Scotia is typically 4-11 days, and on occasion as young as two days. We show that A is typically 1-5 days older than the associated photochemical ages inferred from co-located measurements of different hydrocarbons. We find that the frequency distribution of differences between the age measures (Δτ) in plumes (defined by CH3CN > 150 ppt) peaks at 3 days. This corresponds to a chemical retardation of 50%. We find a strong relationship in biomass burning plumes between A and Δτ (r2 = 0.80), which is not present outwith these plumes (r2 = 0.28). We argue that these observed relationships, together with a robust observed relationship between CO and black carbon aerosol during BORTAS-B (r2 > 0.7), form the basis of indirect evidence that aerosols co-emitted with gases during pyrolysis markedly slowed down the plume photochemistry during BORTAS-B with respect to photochemistry at the same latitude and altitude in clear skies.

  15. Assessment of atmospheric impacts of biomass open burning in Kalimantan, Borneo during 2004

    Science.gov (United States)

    Mahmud, Mastura

    2013-10-01

    Biomass burning from the combustion of agricultural wastes and forest materials is one of the major sources of air pollution. The objective of the study is to investigate the major contribution of the biomass open burning events in the island of Borneo, Indonesia to the degradation of air quality in equatorial Southeast Asia. A total of 10173 active fire counts were detected by the MODIS Aqua satellite during August 2004, and consequently, elevated the PM10 concentration levels at six air quality stations in the state of Sarawak, in east Malaysia, which is located in northwestern Borneo. The PM10 concentrations measured on a daily basis were above the 50 μg m-3 criteria as stipulated by the World Health Organization Air Quality Guidelines for most of the month, and exceeded the 24-h Recommended Malaysian Air Quality Guidelines of 150 μg m-3 on three separate periods from the 13th to the 30th August 2004. The average correlation between the ground level PM10 concentrations and the satellite derived aerosol optical depth (AOD) of 0.3 at several ground level air quality stations, implied the moderate relationship between the aerosols over the depth of the entire column of atmosphere and the ground level suspended particulate matter. Multiple regression for meteorological parameters such as rainfall, windspeed, visibility, mean temperature, relative humidity at two stations in Sarawak and active fire counts that were located near the centre of fire activities were only able to explain for 61% of the total variation in the AOD. The trajectory analysis of the low level mesoscale meteorological conditions simulated by the TAPM model illustrated the influence of the sea and land breezes within the lowest part of the planetary boundary layer, embedded within the prevailing monsoonal southwesterlies, in circulating the aged and new air particles within Sarawak.

  16. Aircraft-Measured Indirect Cloud Effects from Biomass Burning Smoke in the Arctic and Subarctic

    Science.gov (United States)

    Zamora, L. M.; Kahn, R. A.; Cubison, M. J.; Diskin, G. S.; Jimenez, J. L.; Kondo, Y.; McFarquhar, G. M.; Nenes, A.; Thornhill, K. L.; Wisthaler, A.; Zelenyuk, A.; Ziemba, L. D.

    2016-01-01

    The incidence of wildfires in the Arctic and subarctic is increasing; in boreal North America, for example, the burned area is expected to increase by 200-300% over the next 50-100 years, which previous studies suggest could have a large effect on cloud microphysics, lifetime, albedo, and precipitation. However, the interactions between smoke particles and clouds remain poorly quantified due to confounding meteorological influences and remote sensing limitations. Here, we use data from several aircraft campaigns in the Arctic and subarctic to explore cloud microphysics in liquid-phase clouds influenced by biomass burning. Median cloud droplet radii in smoky clouds were approx. 40- 60% smaller than in background clouds. Based on the relationship between cloud droplet number (N(liq)/ and various biomass burning tracers (BBt/ across the multi-campaign data set, we calculated the magnitude of subarctic and Arctic smoke aerosol-cloud interactions (ACIs, where ACI = (1/3) x dln(N(liq))/dln(BBt)) to be approx. 0.16 out of a maximum possible value of 0.33 that would be obtained if all aerosols were to nucleate cloud droplets. Interestingly, in a separate subarctic case study with low liquid water content (0.02 gm/cu m and very high aerosol concentrations (2000- 3000/ cu cm in the most polluted clouds, the estimated ACI value was only 0.05. In this case, competition for water vapor by the high concentration of cloud condensation nuclei (CCN) strongly limited the formation of droplets and reduced the cloud albedo effect, which highlights the importance of cloud feedbacks across scales. Using our calculated ACI values, we estimate that the smoke-driven cloud albedo effect may decrease local summertime short-wave radiative flux by between 2 and 4 W/sq m or more under some low and homogeneous cloud cover conditions in the subarctic, although the changes should be smaller in high surface albedo regions of the Arctic.We lastly explore evidence suggesting that numerous northern

  17. Aircraft-measured indirect cloud effects from biomass burning smoke in the Arctic and subarctic

    Science.gov (United States)

    Zamora, L. M.; Kahn, R. A.; Cubison, M. J.; Diskin, G. S.; Jimenez, J. L.; Kondo, Y.; McFarquhar, G. M.; Nenes, A.; Thornhill, K. L.; Wisthaler, A.; Zelenyuk, A.; Ziemba, L. D.

    2016-01-01

    The incidence of wildfires in the Arctic and subarctic is increasing; in boreal North America, for example, the burned area is expected to increase by 200-300 % over the next 50-100 years, which previous studies suggest could have a large effect on cloud microphysics, lifetime, albedo, and precipitation. However, the interactions between smoke particles and clouds remain poorly quantified due to confounding meteorological influences and remote sensing limitations. Here, we use data from several aircraft campaigns in the Arctic and subarctic to explore cloud microphysics in liquid-phase clouds influenced by biomass burning. Median cloud droplet radii in smoky clouds were ˜ 40-60 % smaller than in background clouds. Based on the relationship between cloud droplet number (Nliq) and various biomass burning tracers (BBt) across the multi-campaign data set, we calculated the magnitude of subarctic and Arctic smoke aerosol-cloud interactions (ACIs, where ACI = (1/3) × dln(Nliq)/dln(BBt)) to be ˜ 0.16 out of a maximum possible value of 0.33 that would be obtained if all aerosols were to nucleate cloud droplets. Interestingly, in a separate subarctic case study with low liquid water content ( ˜ 0.02 g m-3) and very high aerosol concentrations (2000-3000 cm-3) in the most polluted clouds, the estimated ACI value was only 0.05. In this case, competition for water vapor by the high concentration of cloud condensation nuclei (CCN) strongly limited the formation of droplets and reduced the cloud albedo effect, which highlights the importance of cloud feedbacks across scales. Using our calculated ACI values, we estimate that the smoke-driven cloud albedo effect may decrease local summertime short-wave radiative flux by between 2 and 4 W m-2 or more under some low and homogeneous cloud cover conditions in the subarctic, although the changes should be smaller in high surface albedo regions of the Arctic. We lastly explore evidence suggesting that numerous northern

  18. Aircraft-measured indirect cloud effects from biomass burning smoke in the Arctic and subarctic

    Energy Technology Data Exchange (ETDEWEB)

    Zamora, Lauren M.; Kahn, Ralph; Cubison, Michael J.; Diskin, G. S.; Jimenez, J. L.; Kondo, Yutaka; McFarquhar, Greg; Nenes, Athanasios; Thornhill, K. L.; Wisthaler, Armin; Zelenyuk, Alla; Ziemba, L. D.

    2016-01-21

    The incidence of wildfires in the Arctic and subarctic is increasing; in boreal North 24 America, for example, the burned area is expected to increase by 200-300% over the next 50-100 years, which previous studies suggest could have a large effect on cloud 1 microphysics, lifetime, albedo, and precipitation. However, the interactions between smoke particles and clouds remain poorly quantified due to confounding meteorological influences and remote sensing limitations. Here, we use data from several aircraft campaigns in the Arctic and subarctic to explore cloud microphysics in liquid-phase clouds influenced by biomass burning. Median cloud droplet radii in smoky clouds were ~50% smaller than in background clouds. Based on the relationship between cloud droplet number (Nliq) and various biomass burning tracers (BBt) across the multi campaign dataset, we calculated the magnitude of subarctic and Arctic smoke aerosol cloud interactions (ACI, where ACI = (1/3)* d ln(Nliq)/d ln(BBt)) to be ~0.12 out of a maximum possible value of 0.33 that would be obtained if all aerosols were to nucleate cloud droplets. Interestingly, in a separate subarctic case study with low liquid water content (~0.02 g m-3) and very high aerosol concentrations (2000-3000 cm-3) in the most polluted clouds, the estimated ACI value was only 0.06. In this case, competition for water vapor by the high concentration of CCN strongly limited the formation of droplets and reduced the cloud albedo effect, which highlights the importance of cloud feedbacks across scales. Using our calculated ACI values, we estimate that the smoke-driven cloud albedo effect may decrease shortwave radiative flux by 2-4 W m-2 or more under some low and homogeneous cloud cover conditions in the subarctic, although the changes should be smaller in high surface albedo regions of the Arctic. We lastly show evidence to suggest that numerous northern latitude background Aitken particles can interact with combustion particles

  19. Characterization of submicron particles during biomass burning and coal combustion periods in Beijing, China.

    Science.gov (United States)

    Zhang, J K; Cheng, M T; Ji, D S; Liu, Z R; Hu, B; Sun, Y; Wang, Y S

    2016-08-15

    An Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) was deployed along with other observation instruments to measure the characteristics of PM1 (particulate matter with a vacuum aerodynamic diameter of ≤1μm) during the biomass burning period (October 1 to 27; BBP) and the coal combustion period (December 10 to 31; CCP) in Beijing in 2014. The average PM1 mass concentrations during the BBP and CCP were 82.3 and 37.5μgm(-3), respectively. Nitrate, ammonium and other pollutants emitted by the burning processes, especially coal combustion, increased significantly in association with increased pollution levels. Positive matrix factorization (PMF) was applied to a unified high-resolution mass spectra database of organic species with NO(+) and NO2(+) ions to discover the relationships between organic and inorganic species. One inorganic factor was identified in both periods, and another five and four distinct organic factors were identified in the BBP and CCP, respectively. Secondary organic aerosols (SOAs) accounted for 55% of the total organic aerosols (OAs) during the BBP, which is higher than the proportion during the CCP (oxygenated OA, 40%). The organic nitrate and inorganic nitrate were first successfully separated through the PMF analysis based on the HR-ToF-AMS observations in Beijing, and organic nitrate components accounted for 21% and 18% of the total nitrate mass during the BBP and CCP, respectively. Although the PM1 mass concentration during the CCP was much lower than in the BBP, the average concentration of polycyclic aromatic hydrocarbons (PAHs) during the CCP (107.3±171.6ngm(-3)) was ~5 times higher than that in the BBP (21.9±21.7ngm(-3)). PMID:27110992

  20. What could have caused pre-industrial biomass burning emissions to exceed current rates?

    NARCIS (Netherlands)

    van der Werf, G. R.; Peters, W.; van Leeuwen, T. T.; Giglio, L.

    2012-01-01

    Recent studies based on trace gas mixing ratios in ice cores and charcoal data indicate that biomass burning emissions over the past millennium exceeded contemporary emissions by up to a factor of 4 for certain time periods. This is surprising because various sources of biomass burning are linked wi

  1. What could have caused pre-industrial biomass burning emissions to exceed current rates?

    NARCIS (Netherlands)

    van der Werf, G. R.; Peters, W.; Giglio, L.; van Leeuwen, T. T.

    2013-01-01

    Recent studies based on trace gas mixing ratios in ice cores and charcoal data indicate that biomass burning emissions over the past millennium exceeded contemporary emissions by up to a factor of 4 for certain time periods. This is surprising because various sources of biomass burning are linked wi

  2. An overview of present knowledge on methane emission from biomass burning

    International Nuclear Information System (INIS)

    An overview is given of the present knowledge on methane emissions from biomass burning. An inventory is given of the different types of biomasses submitted to fire as well as a discussion on the emission factors related to the burning processes. 39 refs., 6 figs., 3 tabs

  3. Characterization of Primary Organic Aerosol Emissions from Meat Cooking, Trash Burning, and Combustion Engines with High-Resolution Aerosol Mass Spectrometry and Comparison with Ambient and Chamber Observations

    Science.gov (United States)

    Mohr, C.; Huffman, J. A.; Cubison, M. J.; Aiken, A. C.; Docherty, K. S.; Kimmel, J. R.; Ulbrich, I. M.; Hannigan, M.; Garcia, J.; Jimenez, J. L.

    2009-04-01

    Organic aerosol (OA) emissions from motor vehicles, meat-cooking and trash burning are analyzed here using a high-resolution aerosol mass spectrometer (AMS) and supporting instrumentation. A semi-quantitative comparison of emission factors highlights the potential importance of meat cooking as an OA source. GC-MS and AMS mass spectra are compared for the first time and show high similarity, but with more fragmentation in the AMS due to higher vaporization temperatures. High resolution data show that aerosols emitted by combustion engines and plastic burning are dominated by hydrocarbon-like organic compounds. Meat cooking and especially paper burning contain significant fractions of oxygenated organic compounds; however, their unit-resolution mass spectral signatures are very similar to mass spectral signatures from hydrocarbon-like OA or primary OA, and very different from the mass spectra of ambient secondary or oxygenated OA (OOA). Thus, primary OA from any of these sources is very unlikely to be a significant direct source of ambient OOA. There are significant differences in high-resolution tracer m/z's that may be useful for differentiating these sources from each other. Unlike in most ambient spectra, all of these sources have low total m/z 44 and this signal is not dominated by the CO2+ ion. All sources have high m/z 57, which is low during high OOA ambient periods. Spectra from paper burning are similar to some types of biomass burning OA, with elevated m/z 60. Meat cooking aerosols also have slightly elevated m/z 60, while motor vehicle emissions have very low signal at this m/z.

  4. Role of Central American biomass burning smoke in increasing tornado severity in the US

    Science.gov (United States)

    Saide, P. E.; Spak, S.; Pierce, R.; Otkin, J.; Rabin, R.; Schaack, T.; Heidinger, A. K.; da Silva, A.; Kacenelenbogen, M. S.; Redemann, J.; Carmichael, G. R.

    2013-12-01

    Violent tornadoes in the Southeast and Central US during spring are often accompanied by smoke from biomass burning in Central America. We analyzed the effect of smoke on a historic severe weather outbreak that occurred 27 April 2011 using a coupled aerosol, chemistry and weather model (WRF-Chem) and a suite of satellite and ground-based observations. Smoke from Central American biomass burning was present in the boundary layer and lower free troposphere before and during the storm outbreak. Simulations show that adding smoke to the environment already conducive to severe thunderstorm development increases the likelihood of significant tornado occurrence, which is assessed by analyzing effects of smoke on meteorological conditions (tornado parameters) used by prediction centers to forecast tornado occurrence and severity. Smoke effects generate slightly lower rain rates and cloud top heights, indicating no evidence of storm invigoration for these storms and instead pointing towards convection inhibition. Further analysis shows that there are two mechanisms responsible for the parameter intensification: First, through indirect effects, stratiform clouds present during and before the outbreak became optically thicker, which reduced the amount of solar radiation reaching the ground and produced more stable conditions and higher low-level shear in the mixed layer. Second, through semi-direct effects, soot contained in the smoke heated the aerosol layer stabilizing the atmosphere and enhancing cloud cover below the aerosol layer, producing a more stable boundary layer and conditions leading to higher probability of violent tornadoes. The inclusion of aerosol-cloud-radiation interactions in weather forecasts may help improve the predictability of these extreme events, which can improve the timeliness and accuracy of severe weather alerts within future operational forecast systems. Left panel: Back trajectories from the beginning of violent tornado tracks, with circles

  5. Biomass burning related ozone damage on vegetation over the Amazon forest: a model sensitivity study

    OpenAIRE

    Pacifico, F.; Folberth, G. A.; Sitch, S.; Haywood, J. M.; Rizzo, L. V.; F. F. Malavelle; P. Artaxo

    2015-01-01

    The HadGEM2 earth system climate model was used to assess the impact of biomass burning on surface ozone concentrations over the Amazon forest and its impact on vegetation, under present-day climate conditions. Here we consider biomass burning emissions from wildfires, deforestation fires, agricultural forest burning, and residential and commercial combustion. Simulated surface ozone concentration is evaluated against observations taken at two sites in the Brazilian Amazon f...

  6. Experimental biomass burning emission assessment by combustion chamber

    Science.gov (United States)

    Lusini, Ilaria; Pallozzi, Emanuele; Corona, Piermaria; Ciccioli, Paolo; Calfapietra, Carlo

    2014-05-01

    Biomass burning is a significant source of several atmospheric gases and particles and it represents an important ecological factor in the Mediterranean ecosystem. In this work we describe the performances of a recently developed combustion chamber to show the potential of this facility in estimating the emission from wildland fire showing a case study with leaves, small branches and litter of two representative species of Mediterranean vegetation, Quercus pubescens and Pinus halepensis. The combustion chamber is equipped with a thermocouple, a high resolution balance, an epiradiometer, two different sampling lines to collect organic volatile compounds (VOCs) and particles, a sampling line connected to a Proton Transfer Reaction Mass-Spectrometer (PTR-MS) and a portable analyzer to measure CO and CO2 emission. VOCs emission were both analyzed with GC-MS and monitored on-line with PTR-MS. The preliminary qualitative analysis of emission showed that CO and CO2 are the main gaseous species emitted during the smoldering and flaming phase, respectively. Many aromatics VOCs as benzene and toluene, and many oxygenated VOC as acetaldehyde and methanol were also released. This combustion chamber represents an important tool to determine the emission factor of each plant species within an ecosystem, but also the contribution to the emissions of the different plant tissues and the kinetics of different compound emissions during the various combustion phases. Another important feature of the chamber is the monitoring of the carbon balance during the biomass combustion.

  7. Fire Radiative Energy and Biomass Burned Estimation Under Sparse Satellite Sampling Conditions: Using Power Law Probability Distribution Properties of MODIS Fire Radiative Power Retrievals

    Science.gov (United States)

    Sathyachandran, S.; Roy, D. P.; Boschetti, L.

    2010-12-01

    Spatially and temporally explicit mapping of the amount of biomass burned by fire is needed to estimate atmospheric emissions of green house gases and aerosols. The instantaneous Fire Radiative Power (FRP) [units: W] is retrieved at active fire detections from mid-infrared wavelength remotely sensed data and can be used to estimate the rate of biomass consumed. Temporal integration of FRP measurements over the duration of the fire provides the Fire Radiative Energy (FRE) [units: J] that has been shown to be linearly related to the total biomass burned [units: g]. However, FRE, and thus biomass burned retrieval, is sensitive to the satellite spatial and temporal sampling of FRP which can be sparse under cloudy conditions and with polar orbiting sensors such as MODIS. In this paper the FRE is derived in a new way as the product of the fire duration and the first moment of the FRP power law probability distribution. MODIS FRP data retrieved over savanna fires in Australia and deforestation fires in Brazil are shown to have power law distributions with different scaling parameters that are related to the fire energy in these two contrasting systems. The FRE derived burned biomass estimates computed using this new method are compared to estimates using the conventional temporal FRP integration method and with literature values. The results of the comparison suggest that the new method may provide more reliable burned biomass estimates under sparse satellite sampling conditions if the fire duration and the power law distribution parameters are characterized a priori.

  8. Evidence for Biomass Burning from 14C and 13C/12C Measurements at T-0 and T-1 during MILAGRO.

    Science.gov (United States)

    Gaffney, J. S.; Marley, N. A.; Tackett, M. J.; Sturchio, N. C.; Heraty, L. J.; Martinez, N.; Hardy, K.; Guilderson, T.

    2007-12-01

    Both stable carbon isotopic and radiocarbon characterizations of aerosols can yield important information regarding the sources of carbonaceous aerosols in urban and regional environments. Biomass derived materials are labeled due to their recent photochemical activity in radiocarbon and vary depending upon the photochemical pathway (either C-4 or C-3) in stable carbon-13 content. C-4 being enriched over C-3. During the MILAGRO campaign, quartz filter samples were taken at 12 hour intervals from 5 am to 5 pm (day) and from 5 pm to 5 am (night) during the month of March 2006. These samples were taken at the two super-sites, T-0 (Instituto Mexicano de Petroleo in Mexico City) and T-1 (Universidad Technologica de Tecamac, State of Mexico). The total carbon content was analyzed for stable carbon isotopic composition as well as for radiocarbon. Stable isotope mass spectroscopy was used to determine the carbon-13 to carbon-12 isotopic ratios on carbon dioxide. The carbon dioxide was then converted to graphite for analysis by accelerator mass spectrometry at the Center for Accelerator Mass Spectrometry at Lawrence Livermore National Laboratory. Results are presented for the carbon-13 content relative to the PDB standard and radiocarbon is given relative to recent carbon. The results for total radiocarbon content show that the carbonaceous aerosol content in Mexico City has more than half of the carbon coming from biomass derived sources. These can include inflow of biomass burning aerosols into the T-0 site as well as the input from local burning of biofuels and trash containing biomass derived materials (paper, boxes, etc.). Data also indicate that at the T-1 site biomass burning of C-4 grasses appears to be significant in that the carbon-13 values observed are enriched. Also at T-1 the radiocarbon levels are also found to be slightly higher indicating regional biomass burning as a significant contributor to aerosol carbon in the 0.1 to 1.0 micron size fraction. Some day

  9. A model for global biomass burning in preindustrial time: LPJ-LMfire (v1.0

    Directory of Open Access Journals (Sweden)

    M. Pfeiffer

    2013-05-01

    Full Text Available Fire is the primary disturbance factor in many terrestrial ecosystems. Wildfire alters vegetation structure and composition, affects carbon storage and biogeochemical cycling, and results in the release of climatically relevant trace gases including CO2, CO, CH4, NOx, and aerosols. One way of assessing the impacts of global wildfire on centennial to multi-millennial timescales is to use process-based fire models linked to dynamic global vegetation models (DGVMs. Here we present an update to the LPJ-DGVM and a new fire module based on SPITFIRE that includes several improvements to the way in which fire occurrence, behaviour, and the effects of fire on vegetation are simulated. The new LPJ-LMfire model includes explicit calculation of natural ignitions, the representation of multi-day burning and coalescence of fires, and the calculation of rates of spread in different vegetation types. We describe a new representation of anthropogenic biomass burning under preindustrial conditions that distinguishes the different relationships between humans and fire among hunter-gatherers, pastoralists, and farmers. We evaluate our model simulations against remote-sensing-based estimates of burned area at regional and global scale. While wildfire in much of the modern world is largely influenced by anthropogenic suppression and ignitions, in those parts of the world where natural fire is still the dominant process (e.g. in remote areas of the boreal forest and subarctic, our results demonstrate a significant improvement in simulated burned area over the original SPITFIRE. The new fire model we present here is particularly suited for the investigation of climate–human–fire relationships on multi-millennial timescales prior to the Industrial Revolution.

  10. Recent Progress and Emerging Issues in Measuring and Modeling Biomass Burning Emissions

    Science.gov (United States)

    Yokelson, R. J.; Stockwell, C.; Veres, P. R.; Hatch, L. E.; Barsanti, K. C.; Simpson, I. J.; Blake, D. R.; Alvarado, M.; Kreidenweis, S. M.; Robinson, A. L.; Akagi, S. K.; McMeeking, G. R.; Stone, E.; Gilman, J.; Warneke, C.; Sedlacek, A. J.; Kleinman, L. I.

    2013-12-01

    Nine recent multi-PI campaigns (6 airborne, 3 laboratory) have quantified biomass burning emissions and the subsequent smoke evolution in unprecedented detail. Among these projects were the Fourth Fire Lab at Missoula Experiment (FLAME-4) and the DOE airborne campaign BBOP (Biomass Burning Observation Project). Between 2009 and 2013 a large selection of fuels and ecosystems were probed including: (1) 21 US prescribed fires in pine forests, chaparral, and shrublands; (2) numerous wildfires in the Pacific Northwest of the US; (3) 77 lab fires burning fuels collected from the sites of the prescribed fires; and (4) 158 lab fires burning authentic fuels in traditional cooking fires and advanced stoves; peat from Indonesia, Canada, and North Carolina; savanna grasses from Africa; temperate grasses from the US; crop waste from the US; rice straw from Taiwan, China, Malaysia, and California; temperate and boreal forest fuels collected in Montana and Alaska; chaparral fuels from California; trash; and tires. Instrumentation for gases included: FTIR, PTR-TOF-MS, 2D-GC and whole air sampling. Particle measurements included filter sampling (with IC, elemental carbon (EC), organic carbon (OC), and GC-MS) and numerous real-time measurements such as: HR-AMS (high-resolution aerosol MS), SP-AMS (soot particle AMS), SP2 (single particle soot photometer), SP-MS (single particle MS), ice nuclei, CCN (cloud condensation nuclei), water soluble OC, size distribution, and optical properties in the UV-VIS. New data include: emission factors for over 400 gases, black carbon (BC), brown carbon (BrC), organic aerosol (OA), ions, metals, EC, and OC; and details of particle morphology, mixing state, optical properties, size distributions, and cloud nucleating activity. Large concentrations (several ppm) of monoterpenes were present in fresh smoke. About 30-70% of the initially emitted gas-phase non-methane organic compounds were semivolatile and could not be identified with current technology

  11. A five-century sedimentary geochronology of biomass burning in Nicaragua and Central America

    International Nuclear Information System (INIS)

    In spite of the extensive use of fire as an agricultural agent in Central America today, little is known of its history of biomass burning or agriculture. As an indicator of the burning practices on the adjacent land, a sedimentary record of carbonized particles sheds light on the trends in frequency and areal extent of biomass burning. This research focuses on a sediment core recovered from an anoxic site in the Pacific Ocean adjacent to the Central American Isthmus and reports a five-century record of charcoal deposition. The research illustrates that biomass burning has been an important ecological factor in the Pacific watershed of Central America at least during the past five centuries. Fluxes of charcoal have generally decreased toward the present suggesting a reduction in the charcoal source function. Perhaps, five centuries ago, the frequency of biomass burning was greater than it is today, larger areas were burned, or biomass per unit area of burned grassland was greater. The major type of biomass burned throughout this five-century period has been grass, as opposed to woods, indicating that any major deforestation of the Pacific watershed of Central America occurred prior to the Conquest

  12. Preliminary Observations of organic gas-particle partitioning from biomass combustion smoke using an aerosol mass spectrometer

    Science.gov (United States)

    Lee, T.; Kreidenweis, S. M.; Collett, J. L.; Sullivan, A. P.; Carrico, C. M.; Jimenez, J. L.; Cubison, M.; Saarikoski, S.; Worsnop, D. R.; Onasch, T. B.; Fortner, E.; Malm, W. C.; Lincoln, E.; Wold, C. E.; Hao, W.

    2010-12-01

    Aerosols play important roles in adverse health effects, indirect and direct forcing of Earth’s climate, and visibility degradation. Biomass burning emissions from wild and prescribed fires can make a significant contribution to ambient aerosol mass in many locations and seasons. In order to better understand the chemical properties of particles produced by combustion of wild land fuels, an experiment was conducted in 2009 at the U.S. Forest Service/United States Department of Agriculture (USFS/USDA) Fire Science Laboratory (FSL) located in Missoula, Montana, to measure volatility of open biomass burning emissions for a variety of fuel types. Both isothermal and temperature-dependent volatilization were studied, using an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) coupled with thermal denuder. Small quantities (200-800g) of various fuel types, primarily from the U.S., were burned in a large combustion chamber and diluted in two stages in continuous-flow residence chambers. The partitioning of particulate organic mass concentrations by the HR-ToF-AMS was evaluated for each fuel type using nominal dilution ratios characterized both by measuring flow rates in continuous-flow residence chambers and from the concentrations of several conserved tracers. The volatility of biomass burning smoke was found to vary across fuel types. Up to ~60% volatile loss of organic matter was observed as a result of dilution for some smoke samples (e.g., Lodgepole pine and Ponderosa pine). We will investigate relationships between volatility and several parameters such as the absolute mass concentration and chemical composition. We will also examine the behavior of biomass burning tracers, such as AMS m/z 60, under dilution conditions. Previous studies (e.g. Lee et al., AS&T 2010 and Aiken et al., ACP 2009) have observed a strong relationship between OA and AMS m/z 60 in fresh biomass burning smoke. We will examine whether this relationship is altered

  13. Improving biomass burning pollution predictions in Singapore using AERONET and Lidar observations.

    Science.gov (United States)

    Hardacre, Catherine; Chew, Boon Ning; Gan, Christopher; Burgin, Laura; Hort, Matthew; Lee, Shao Yi; Shaw, Felicia; Witham, Claire

    2016-04-01

    Every year millions of people are affected by poor air quality from trans-boundary smoke haze emitted from large scale biomass burning in Asia. These fires are a particular problem in the Indonesian regions of Sumatra and Kalimantan where peat fires, lit to clear land for oil palm plantations and agriculture, typically result in high levels of particulate matter (PM) emissions. In June 2013 and from August-October 2015 the combination of widespread burning, meteorological and climatological conditions resulted in severe air pollution throughout Southeast Asia. The Met Office of the United Kingdom (UKMO) and the Hazard and Risk Impact Assessment Unit of the Meteorological Service of Singapore (MSS) have developed a quantitative haze forecast to provide a reliable, routine warning of haze events in the Singapore region. The forecast system uses the UKMO's Lagrangian particle dispersion model NAME (Numerical Atmosphere-dispersion Modelling Environment) in combination with high resolution, satellite based emission data from the Global Fire Emissions System (GFAS). The buoyancy of biomass burning smoke and it's rise through the atmosphere has a large impact on the amount of air pollution at the Earth's surface. This is important in Singapore, which is affected by pollution that has travelled long distances and that will have a vertical distribution influenced by meteorology. The vertical distribution of atmospheric aerosol can be observed by Lidar which provides information about haze plume structure. NAME output from two severe haze periods that occurred in June 2013 and from August-October 2015 was compared with observations of total column aerosol optical depth (AOD) from AERONET stations in Singapore and the surrounding region, as well as vertically resolved Lidar data from a station maintained by MSS and from MPLNET. Comparing total column and vertically resolved AOD observations with NAME output indicates that the model underestimates PM concentrations throughout

  14. Thermal IR radiative properties of mixed mineral dust and biomass aerosol during SAMUM-2

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, Claas H.; Trautmann, Thomas; Lindermeir, Erwin (Deutsches Zentrum fur Luft- und Raumfahrt (DLR), Institut fur Methodik der Fernerkundung, Oberpfaffenhofen (Germany)), e-mail: claas.koehler@dlr.de; Vreeling, Willem (Netherlands Inst. for Space Research (SRON), Groningen, (Netherlands)); Lieke, Kirsten; Kandler, Konrad (Institut fur Angewandte Geowissenschaften, Technische Universitaet Darmstadt, Darmstadt (Germany)); Weinzierl, Bernadett (Deutsches Zentrum fur Luft- und Raumfahrt (DLR) Institut fur Physik der Atmosphaere, Oberpfaffenhofen (Germany)); Gross, Silke (Ludwig-Maximilians-Universitaet Munchen, Meteorologisches Institut, Munchen (Germany)); Tesche, Matthias (Leibniz-Institut fur Troposphaerenforschung (IfT), Leipzig (Germany)); Wendisch, Manfred (Universitaet Leipzig, Leipziger Institut fur Meteorologie, Leipzig (Germany))

    2011-09-15

    Ground-based high spectral resolution measurements of downwelling radiances from 800 to 1200 cm-1 were conducted between 20 January and 6 February 2008 within the scope of the SAMUM-2 field experiment. We infer the spectral signature of mixed biomass burning/mineral dust aerosols at the surface from these measurements and at top of the atmosphere from IASI observations. In a case study for a day characterized by the presence of high loads of both dust and biomass we attempt a closure with radiative transfer simulations assuming spherical particles. A detailed sensitivity analysis is performed to investigate the effect of uncertainties in the measurements ingested into the simulation on the simulated radiances. Distinct deviations between modelled and observed radiances are limited to a spectral region characterized by resonance bands in the refractive index. A comparison with results obtained during recent laboratory studies and field experiments reveals, that the deviations could be caused by the aerosol particles' non-sphericity, although an unequivocal discrimination from measurement uncertainties is not possible. Based on radiative transfer simulations we estimate the aerosol's direct radiative effect in the atmospheric window region to be 8 W m-2 at the surface and 1 W m-2 at top of the atmosphere

  15. Effects of agriculture crop residue burning on aerosol properties and long-range transport over northern India: A study using satellite data and model simulations

    Science.gov (United States)

    Vijayakumar, K.; Safai, P. D.; Devara, P. C. S.; Rao, S. Vijaya Bhaskara; Jayasankar, C. K.

    2016-09-01

    Agriculture crop residue burning in the tropics is a major source of the global atmospheric aerosols and monitoring their long-range transport is an important element in climate change studies. In this paper, we study the effects of agriculture crop residue burning on aerosol properties and long-range transport over northern India during a smoke event that occurred between 09 and 17 November 2013, with the help of satellite measurements and model simulation data. Satellite data observations on aerosol properties suggested transport of particles from agriculture crop residue burning in Indo-Gangetic Plains (IGP) over large regions. Additionally, ECMWF winds at 850 hPa have been used to trace the source, path and spatial extent of smoke events. Most of the smoke aerosols, during the study period, travel from a west-to-east pathway from the source-to-sink region. Furthermore, aerosol vertical profiles from CALIPSO show a layer of thick smoke extending from surface to an altitude of about 3 km. Smoke aerosols emitted from biomass burning activity from Punjab have been found to be a major contributor to the deterioration of local air quality over the NE Indian region due to their long range transport.

  16. Comparison of chemical characteristics of 495 biomass burning plumes intercepted by the NASA DC-8 aircraft during the ARCTAS/CARB-2008 field campaign

    Directory of Open Access Journals (Sweden)

    A. Hecobian

    2011-12-01

    Full Text Available This paper compares measurements of gaseous and particulate emissions from a wide range of biomass-burning plumes intercepted by the NASA DC-8 research aircraft during the three phases of the ARCTAS-2008 experiment: ARCTAS-A, based out of Fairbanks, Alaska, USA (3 April to 19 April 2008; ARCTAS-B based out of Cold Lake, Alberta, Canada (29 June to 13 July 2008; and ARCTAS-CARB, based out of Palmdale, California, USA (18 June to 24 June 2008. Approximately 500 smoke plumes from biomass burning emissions that varied in age from minutes to days were segregated by fire source region and urban emission influences. The normalized excess mixing ratios (NEMR of gaseous (carbon dioxide, acetonitrile, hydrogen cyanide, toluene, benzene, methane, oxides of nitrogen and ozone and fine aerosol particulate components (nitrate, sulfate, ammonium, chloride, organic aerosols and water soluble organic carbon of these plumes were compared. A detailed statistical analysis of the different plume categories for different gaseous and aerosol species is presented in this paper.

    The comparison of NEMR values showed that CH4 concentrations were higher in air-masses that were influenced by urban emissions. Fresh biomass burning plumes mixed with urban emissions showed a higher degree of oxidative processing in comparison with fresh biomass burning only plumes. This was evident in higher concentrations of inorganic aerosol components such as sulfate, nitrate and ammonium, but not reflected in the organic components. Lower NOx NEMRs combined with high sulfate, nitrate and ammonium NEMRs in aerosols of plumes subject to long-range transport, when comparing all plume categories, provided evidence of advanced processing of these plumes.

  17. Comparison of chemical characteristics of 495 biomass burning plumes intercepted by the NASA DC-8 aircraft during the ARCTAS/CARB-2008 field campaign

    Science.gov (United States)

    Hecobian, A.; Liu, Z.; Hennigan, C. J.; Huey, L. G.; Jimenez, J. L.; Cubison, M. J.; Vay, S.; Diskin, G. S.; Sachse, G. W.; Wisthaler, A.; Mikoviny, T.; Weinheimer, A. J.; Liao, J.; Knapp, D. J.; Wennberg, P. O.; Kürten, A.; Crounse, J. D.; St. Clair, J.; Wang, Y.; Weber, R. J.

    2011-12-01

    This paper compares measurements of gaseous and particulate emissions from a wide range of biomass-burning plumes intercepted by the NASA DC-8 research aircraft during the three phases of the ARCTAS-2008 experiment: ARCTAS-A, based out of Fairbanks, Alaska, USA (3 April to 19 April 2008); ARCTAS-B based out of Cold Lake, Alberta, Canada (29 June to 13 July 2008); and ARCTAS-CARB, based out of Palmdale, California, USA (18 June to 24 June 2008). Approximately 500 smoke plumes from biomass burning emissions that varied in age from minutes to days were segregated by fire source region and urban emission influences. The normalized excess mixing ratios (NEMR) of gaseous (carbon dioxide, acetonitrile, hydrogen cyanide, toluene, benzene, methane, oxides of nitrogen and ozone) and fine aerosol particulate components (nitrate, sulfate, ammonium, chloride, organic aerosols and water soluble organic carbon) of these plumes were compared. A detailed statistical analysis of the different plume categories for different gaseous and aerosol species is presented in this paper. The comparison of NEMR values showed that CH4 concentrations were higher in air-masses that were influenced by urban emissions. Fresh biomass burning plumes mixed with urban emissions showed a higher degree of oxidative processing in comparison with fresh biomass burning only plumes. This was evident in higher concentrations of inorganic aerosol components such as sulfate, nitrate and ammonium, but not reflected in the organic components. Lower NOx NEMRs combined with high sulfate, nitrate and ammonium NEMRs in aerosols of plumes subject to long-range transport, when comparing all plume categories, provided evidence of advanced processing of these plumes.

  18. Open burning of agricultural biomass: Physical and chemical properties of particle-phase emissions

    Science.gov (United States)

    Hays, Michael D.; Fine, Philip M.; Geron, Christopher D.; Kleeman, Michael J.; Gullett, Brian K.

    We present the physical and chemical characterization of particulate matter (PM 2.5) emissions from simulated agricultural fires (AFs) of surface residuals of two major grain crops, rice ( Oryza sativa) and wheat ( Triticum aestivum L.). The O 2 levels and CO/CO 2 ratios of the open burn simulations are typical of the field fires of agricultural residues. In the AF plumes, we observe predominantly accumulation mode (100-1000 nm) aerosols. The mean PM 2.5 mass emission factors from replicate burns of the wheat and rice residuals are 4.7±0.04 and 13.0±0.3 g kg -1 of dry biomass, respectively. The combustion-derived PM emissions from wheat are enriched in K (31% weight/weight, w/w) and Cl (36% w/w), whereas the PM emissions from rice are largely carbonaceous (84% w/w). Molecular level gas chromatography/mass spectrometry analysis of PM 2.5 solvent extracts identifies organic matter that accounts for as much as 18% of the PM mass emissions. A scarcity of detailed PM-phase chemical emissions data from AFs required that comparisons among other biomass combustion groups (wildfire, woodstove, and fireplace) be made. Statistical tests for equal variance among these groups indicate that the degree to which molecular emissions vary is compound dependent. Analysis of variance testing shows significant differences in the mean values of certain n-alkane, polycyclic aromatic hydrocarbon (PAH), oxy-PAH, and sugar marker compounds common to the biomass combustion types. Individual pairwise comparisons of means at the combustion group level confirm this result but suggest that apportioning airborne PM to these sources may require a more comprehensive use of the chemical emissions fingerprints. Hierarchical clustering of source test observations using molecular markers indicates agricultural fuels as distinct from other types of biomass combustion or biomass species. Rough approximations of the total potential PM 2.5 emissions outputs from the combustion of the wheat and rice

  19. Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power

    Directory of Open Access Journals (Sweden)

    J. W. Kaiser

    2012-01-01

    Full Text Available The Global Fire Assimilation System (GFASv1.0 calculates biomass burning emissions by assimilating Fire Radiative Power (FRP observations from the MODIS instruments onboard the Terra and Aqua satellites. It corrects for gaps in the observations, which are mostly due to cloud cover, and filters spurious FRP observations of volcanoes, gas flares and other industrial activity. The combustion rate is subsequently calculated with land cover-specific conversion factors. Emission factors for 40 gas-phase and aerosol trace species have been compiled from a literature survey. The corresponding daily emissions have been calculated on a global 0.5° × 0.5° grid from 2003 to the present. General consistency with the Global Fire Emission Database version 3.1 (GFED3.1 within its accuracy is achieved while maintaining the advantages of an FRP-based approach: GFASv1.0 makes use of the quantitative information on the combustion rate that is contained in the FRP observations, and it detects fires in real time at high spatial and temporal resolution. GFASv1.0 indicates omission errors in GFED3.1 due to undetected small fires. It also exhibits slightly longer fire seasons in South America and North Africa and a slightly shorter fire season in Southeast Asia. GFASv1.0 has already been used for atmospheric reactive gas simulations in an independent study, which found good agreement with atmospheric observations. We have performed simulations of the atmospheric aerosol distribution with and without the assimilation of MODIS aerosol optical depth (AOD. They indicate that the emissions of particulate matter need to be boosted by a factor of 2–4 to reproduce the global distribution of organic matter and black carbon. This discrepancy is also evident in the comparison of previously published top-down and bottom-up estimates. For the time being, a global enhancement of the particulate matter emissions by 3.4 is recommended. Validation with independent AOD and PM10

  20. Cross-hemispheric transport of central African biomass burning pollutants: implications for downwind ozone production

    Directory of Open Access Journals (Sweden)

    E. Real

    2010-03-01

    Full Text Available Pollutant plumes with enhanced concentrations of trace gases and aerosols were observed over the southern coast of West Africa during August 2006 as part of the AMMA wet season field campaign. Plumes were observed both in the mid and upper troposphere. In this study we examined the origin of these pollutant plumes, and their potential to photochemically produce ozone (O3 downwind over the Atlantic Ocean. Their possible contribution to the Atlantic O3 maximum is also discussed. Runs using the BOLAM mesoscale model including biomass burning carbon monoxide (CO tracers were used to confirm an origin from central African biomass burning fires. The plumes measured in the mid troposphere (MT had significantly higher pollutant concentrations over West Africa compared to the upper tropospheric (UT plume. The mesoscale model reproduces these differences and the two different pathways for the plumes at different altitudes: transport to the north-east of the fire region, moist convective uplift and transport to West Africa for the upper tropospheric plume versus north-west transport over the Gulf of Guinea for the mid-tropospheric plume. Lower concentrations in the upper troposphere are mainly due to enhanced mixing during upward transport. Model simulations suggest that MT and UT plumes are 16 and 14 days old respectively when measured over West Africa. The ratio of tracer concentrations at 600 hPa and 250 hPa was estimated for 14–15 August in the region of the observed plumes and compares well with the same ratio derived from observed carbon dioxide (CO2 enhancements in both plumes. It is estimated that, for the period 1–15 August, the ratio of Biomass Burning (BB tracer concentration transported in the UT to the ones transported in the MT is 0.6 over West Africa and the equatorial South Atlantic.

    Runs using a photochemical trajectory model, CiTTyCAT, initialized with the observations, were used to estimate

  1. Chemical characterization of biomass burning deposits from cooking stoves in Bangladesh

    International Nuclear Information System (INIS)

    Biomass burning smoke deposits were characterized from cooking stoves in Brahmondi, Narsingdi, Bangladesh. Arjun, bamboo, coconut, madhabilata, mahogany, mango, rice husk coil, plum and mixed dried leaves were used as biomasses. Smoke deposits were collected from the ceiling (above the stove) of the kitchen on aluminum foil. Deposits samples were analyzed with X-ray fluorescence (XRF) spectroscopy for trace elements determination. UV–visible spectrophotometer was used for ions analysis. The surface morphology of the smoke deposits was studied with scanning electron microscope (SEM). Elevated concentrations of the trace elements were observed, especially for toxic metals (Pb, Co, Cu). The highest concentration of lead was observed in rice husk coil among the determined biomasses followed by mahogany and arjun, whereas the lowest concentration was observed in bamboo. Potassium has the highest concentration among the determined trace elements followed by calcium, iron and titanium. Trace elements such as potassium, calcium, iron showed significant variation among different biomass burning smoke deposits. The average concentrations of sulfate, nitrate, and phosphate were 38.0, 0.60, 0.73 mg kg−1, respectively. The surface morphology was almost similar for these biomass burning deposit samples. The Southeast Asian biomass burning smoke deposits had distinct behavior from European and USA wood fuels combustion. -- Highlights: •Elevated concentrations of trace elements were observed in biomass burning deposits. •Very high concentration of lead was observed in biomasses burring deposits •Elevated toxic trace elements concentrations in kitchens need further surveillance

  2. Catalytic Control of Typical Particulate Matters and Volatile Organic Compounds Emissions from Simulated Biomass Burning.

    Science.gov (United States)

    Chen, Yaxin; Tian, Guangkai; Zhou, Meijuan; Huang, Zhiwei; Lu, Chenxi; Hu, Pingping; Gao, Jiayi; Zhang, Zhaoliang; Tang, Xingfu

    2016-06-01

    Emissions of particulate matters (PMs) and volatile organic compounds (VOCs) from open burning of biomass often cause severe air pollution; a viable approach is to allow biomass to burn in a furnace to collectively control these emissions, but practical control technologies for this purpose are lacking. Here, we report a hollandite manganese oxide (HMO) catalyst that can efficiently control both typical PMs and VOCs emissions from biomass burning. The results reveal that typical alkali-rich PMs such as KCl particles are disintegrated and the K(+) ions are trapped in the HMO "single-walled" tunnels with a great trapping capacity. The K(+)-trapping HMO increases the electron density of the lattice oxygen and the redox ability, thus promoting the combustion of soot PMs and the oxidation of typical VOCs such as aldehydes and acetylates. This could pave a way to control emissions from biomass burning concomitant with its utilization for energy or heat generation. PMID:27128185

  3. Impacts of Combustion Conditions and Photochemical Processing on the Light Absorption of Biomass Combustion Aerosol.

    Science.gov (United States)

    Martinsson, J; Eriksson, A C; Nielsen, I Elbæk; Malmborg, V Berg; Ahlberg, E; Andersen, C; Lindgren, R; Nyström, R; Nordin, E Z; Brune, W H; Svenningsson, B; Swietlicki, E; Boman, C; Pagels, J H

    2015-12-15

    The aim was to identify relationships between combustion conditions, particle characteristics, and optical properties of fresh and photochemically processed emissions from biomass combustion. The combustion conditions included nominal and high burn rate operation and individual combustion phases from a conventional wood stove. Low temperature pyrolysis upon fuel addition resulted in "tar-ball" type particles dominated by organic aerosol with an absorption Ångström exponent (AAE) of 2.5-2.7 and estimated Brown Carbon contributions of 50-70% to absorption at the climate relevant aethalometer-wavelength (520 nm). High temperature combustion during the intermediate (flaming) phase was dominated by soot agglomerates with AAE 1.0-1.2 and 85-100% of absorption at 520 nm attributed to Black Carbon. Intense photochemical processing of high burn rate flaming combustion emissions in an oxidation flow reactor led to strong formation of Secondary Organic Aerosol, with no or weak absorption. PM1 mass emission factors (mg/kg) of fresh emissions were about an order of magnitude higher for low temperature pyrolysis compared to high temperature combustion. However, emission factors describing the absorption cross section emitted per kg of fuel consumed (m(2)/kg) were of similar magnitude at 520 nm for the diverse combustion conditions investigated in this study. These results provide a link between biomass combustion conditions, emitted particle types, and their optical properties in fresh and processed plumes which can be of value for source apportionment and balanced mitigation of biomass combustion emissions from a climate and health perspective. PMID:26561964

  4. Hydrocarbons in smoke aerosols from controlled burning of Mangifera foetida litter falls and Panicum repens

    International Nuclear Information System (INIS)

    A study has been carried out to characterize hydrocarbons emitted from the burning of two typical garden wastes, bachang (Mangifera foetida) litter falls and grass (panicum repens). The biomass samples were burned and their respective smoke particulate emitted was sampled using high volume sampler fitted with pre-cleaned glass fibre filters under smouldering and flaming conditions. Hydrocarbons were extracted using dichloromethane-methanol mixture as solvent and the extracts fractionated on silica-alumina column. Detection and quantification of aliphatic hydrocarbons and PAHs compounds were carried out using GC-MS. For comparison, hydrocarbons in fresh unburnt bachang litter falls and grass were also analyzed for aliphatic and PAHs content. Result indicated that the major components in the aliphatic fraction for all samples were n-alkane compounds which exhibited a saw-tooth pattern that is characteristic of a biogenic origin. The major components in this aliphatic fraction for smoke particulate matters were n-alkanes in the range of C12-C36, with an odd to even carbon predominance with CPI values ranging from 2.89-4.32 and Cmax generally at C31; total identified n-alkanes for these samples ranged from 221-939 μgg-1. On the other hand, hydrocarbons present in the fresh unburnt bachang litter falls and grass ranged from C12-C36 with C27 and C33 species dominating and CPI value of 4.5 and 23.1, respectively; total identified n-alkanes were significantly higher (1530-33000 μgg-1) than those found in smoke aerosols. In general, CPI > 1 indicates n-alkanes contribution from epicuticular waxes thus it could be concluded that, even though the overall signature of the source of n-alkanes is maintained, burning seems to alter the distribution of aliphatic hydrocarbon emitted accompanied with a decrease in the CPI values and shifting in Cmax. In addition, results also indicated that burning resulted in the formation of many PAHs compounds in all smoke aerosols samples with

  5. Global combustion: the connection between fossil fuel and biomass burning emissions (1997-2010).

    Science.gov (United States)

    Balch, Jennifer K; Nagy, R Chelsea; Archibald, Sally; Bowman, David M J S; Moritz, Max A; Roos, Christopher I; Scott, Andrew C; Williamson, Grant J

    2016-06-01

    Humans use combustion for heating and cooking, managing lands, and, more recently, for fuelling the industrial economy. As a shift to fossil-fuel-based energy occurs, we expect that anthropogenic biomass burning in open landscapes will decline as it becomes less fundamental to energy acquisition and livelihoods. Using global data on both fossil fuel and biomass burning emissions, we tested this relationship over a 14 year period (1997-2010). The global average annual carbon emissions from biomass burning during this time were 2.2 Pg C per year (±0.3 s.d.), approximately one-third of fossil fuel emissions over the same period (7.3 Pg C, ±0.8 s.d.). There was a significant inverse relationship between average annual fossil fuel and biomass burning emissions. Fossil fuel emissions explained 8% of the variation in biomass burning emissions at a global scale, but this varied substantially by land cover. For example, fossil fuel burning explained 31% of the variation in biomass burning in woody savannas, but was a non-significant predictor for evergreen needleleaf forests. In the land covers most dominated by human use, croplands and urban areas, fossil fuel emissions were more than 30- and 500-fold greater than biomass burning emissions. This relationship suggests that combustion practices may be shifting from open landscape burning to contained combustion for industrial purposes, and highlights the need to take into account how humans appropriate combustion in global modelling of contemporary fire. Industrialized combustion is not only an important driver of atmospheric change, but also an important driver of landscape change through companion declines in human-started fires.This article is part of the themed issue 'The interaction of fire and mankind'. PMID:27216509

  6. Recent Biomass Burning in the Tropics and Related Changes in Tropospheric Ozone

    Science.gov (United States)

    Ziemke; Chandra, J. R. S.; Duncan, B. N.; Schoeberl, M. R.; Torres, O.; Damon, M. R.; Bhartia, P. K.

    2009-01-01

    Biomass burning is an important source of chemical precursors of tropospheric ozone. In the tropics, biomass burning produces ozone enhancements over broad regions of Indonesia, Africa, and South America including Brazil. Fires are intentionally set in these regions during the dry season each year to clear cropland and to clear land for human/industrial expansion. In Indonesia enhanced burning occurs during dry El Nino conditions such as in 1997 and 2006. These burning activities cause enhancement in atmospheric particulates and trace gases which are harmful to human health. Measurements from the Aura Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) from October 2004-November 2008 are used to evaluate the effects of biomass burning on tropical tropospheric ozone. These measurements show sizeable decreases approx.15-20% in ozone in Brazil during 2008 compared to 2007 which we attribute to the reduction in biomass burning. Three broad biomass burning regions in the tropics (South America including Brazil, western Africa, and Indonesia) were analyzed in the context of OMI/MLS measurements and the Global Modeling Initiative (GMI) chemical transport model developed at Goddard Space Flight Center. The results indicate that the impact of biomass burning on ozone is significant within and near the burning regions with increases of approx.10-25% in tropospheric column ozone relative to average background concentrations. The model suggests that about half of the increases in ozone from these burning events come from altitudes below 3 km. Globally the model indicates increases of approx.4-5% in ozone, approx.7-9% in NO, (NO+NO2), and approx.30-40% in CO.

  7. Contributions from transport, solid fuel burning and cooking to primary organic aerosols in two UK cities

    Directory of Open Access Journals (Sweden)

    J. D. Allan

    2010-01-01

    features associated with biomass burning and occurred mainly at night. Grid-scale emission factors of the combustion aerosols suitable for use in chemical transport models were derived relative to CO and NOx. The traffic aerosols were found to be 20.5 μg m−3 ppm−1 relative to CO for Manchester and 31.6 μg m−3 ppm−1 relative to NOx for London. Solid fuel emissions were derived as 24.7 μg m−3 ppm−1 relative to CO for Manchester. These correspond to mass emission ratios of 0.018, 0.026 (as NO and 0.021 respectively and are of a similar order to previously published estimates, derived from other regions or using other approaches.

  8. Origin, variability and age of biomass burning plumes intercepted during BORTAS-B

    OpenAIRE

    D. P. Finch; Palmer, P.I.; M. Parrington

    2014-01-01

    We use the GEOS-Chem atmospheric chemistry transport model to interpret aircraft measurements of carbon monoxide (CO) in biomass burning outflow taken during the 2011 BORTAS-B campaign over eastern Canada. The model has some skill reproducing the observed variability (r = 0.45) but has a negative bias for observations below 100 ppb and a positive bias above 300 ppb. We find that observed CO variations are largely due to NW North American biomass burning, as...

  9. IASI measurements of reactive trace species in biomass burning plumes

    Directory of Open Access Journals (Sweden)

    P.-F. Coheur

    2009-08-01

    Full Text Available This work presents observations of a series of short-lived species in biomass burning plumes from the Infrared Atmospheric Sounding Interferometer (IASI, launched onboard the MetOp-A platform in October 2006. The strong fires that have occurred in the Mediterranean Basin – and particularly Greece – in August 2007, and those in Southern Siberia and Eastern Mongolia in the early spring of 2008 are selected to support the analyses. We show that the IASI infrared spectra in these fire plumes contain distinctive signatures of ammonia (NH3, ethene (C2H4, methanol (CH3OH and formic acid (HCOOH in the atmospheric window between 800 and 1200 cm−1, with some noticeable differences between the plumes. Peroxyacetyl nitrate (CH3COOONO2, abbreviated as PAN was also observed with good confidence in some plumes and a tentative assignment of a broadband absorption spectral feature to acetic acid (CH3COOH is made. For several of these species these are the first reported measurements made from space in nadir geometry. The IASI measurements are analyzed for plume height and concentration distributions of NH3, C2H4 and CH3OH. The Greek fires are studied in greater detail for the days associated with the largest emissions. In addition to providing information on the spatial extent of the plume, the IASI retrievals allow an estimate of the total mass emissions for NH3, C2H4 and CH3OH. Enhancement ratios are calculated for the latter relative to carbon monoxide (CO, giving insight in the chemical processes occurring during the transport, the first day after the emission.

  10. [Estimating Biomass Burned Areas from Multispectral Dataset Detected by Multiple-Satellite].

    Science.gov (United States)

    Yu, Chao; Chen, Liang-fu; Li, Shen-shen; Tao, Jin-hua; Su, Lin

    2015-03-01

    Biomass burning makes up an important part of both trace gases and particulate matter emissions, which can efficiently degrade air quality and reduce visibility, destabilize the global climate system at regional to global scales. Burned area is one of the primary parameters necessary to estimate emissions, and considered to be the largest source of error in the emission inventory. Satellite-based fire observations can offer a reliable source of fire occurrence data on regional and global scales, a variety of sensors have been used to detect and map fires in two general approaches: burn scar mapping and active fire detection. However, both of the two approaches have limitations. In this article, we explore the relationship between hotspot data and burned area for the Southeastern United States, where a significant amount of biomass burnings from both prescribed and wild fire took place. MODIS (Moderate resolution imaging spectrometer) data, which has high temporal-resolution, can be used to monitor ground biomass. burning in time and provided hot spot data in this study. However, pixel size of MODIS hot spot can't stand for the real ground burned area. Through analysis of the variation of vegetation band reflectance between pre- and post-burn, we extracted the burned area from Landsat-5 TM (Thematic Mapper) images by using the differential normalized burn ratio (dNBR) which is based on TM band4 (0.84 μm) and TM band 7(2.22 μm) data. We combined MODIS fire hot spot data and Landsat-5 TM burned scars data to build the burned area estimation model, results showed that the linear correlation coefficient is 0.63 and the relationships vary as a function of vegetation cover. Based on the National Land Cover Database (NLCD), we built burned area estimation model over different vegetation cover, and got effective burned area per fire pixel, values for forest, grassland, shrub, cropland and wetland are 0.69, 1.27, 0.86, 0.72 and 0.94 km2 respectively. We validated the

  11. Intercomparison of Near-Real-Time Biomass Burning Emissions Estimates Constrained by Satellite Fire Data

    Science.gov (United States)

    We compare biomass burning emissions estimates from four different techniques that use satellite based fire products to determine area burned over regional to global domains. Three of the techniques use active fire detections from polar-orbiting MODIS sensors and one uses detec...

  12. Fuel characteristics and emissions from biomass burning and land-use change in Nigeria

    International Nuclear Information System (INIS)

    Nigeria is one of the 13 low-latitude countries that have significant biomass burning activities. Biomass burning occurs in moist savanna, dry forests, and forest plantations. Fires in the forest zone are associated with slash-and-burn agriculture; the areal extent of burning is estimated to be 80% of the natural savanna. In forest plantations, close to 100% of litter is burned. Current estimates of emissions from land-use change are based on a 1976 national study and extrapolations from it. The following non-carbon dioxide (CO2) trace gas emissions were calculated from savanna burning: methane (CH4), 145 gigagrams (Gg); carbon monoxide (CO), 3831 Gg; nitrous oxide (N2O), 2 Gg; and nitrogen oxides (NOx), 49 Gg. Deforestation rates in forests and woodlands are 300 x 103 ha (kilohectare, or kha) and 200 x kha per year, respectively. Trace gas emissions from deforestation were estimated to be 300 Gg CH4, 2.4 Gg N2O, and 24 Gg NOx. CO2 emissions from burning, decay of biomass, and long-term emissions from soil totaled 125,561 Gg. These estimates should be viewed as preliminary, because greenhouse gas emission inventories from burning, deforestation, and land-use change require two components: fuel load and emission factors. Fuel load is dependent on the areal extent of various land uses, and the biomass stocking and some of these data in Nigeria are highly uncertain. 9 tabs., 44 refs

  13. Application of remote sensing to understanding fire regimes and biomass burning emissions of the tropical Andes

    NARCIS (Netherlands)

    Oliveras Menor, I.; Anderson, L.O.; Malhi, Y.

    2014-01-01

    In the tropical Andes, there have been very few systematic studies aimed at understanding the biomass burning dynamics in the area. This paper seeks to advance on our understanding of burning regimes in this region, with the first detailed and comprehensive assessment of fire occurrence and the deri

  14. Fuel characteristics and emissions from biomass burning and land-use change in Nigeria.

    Science.gov (United States)

    Isichei, A O; Muoghalu, J I; Akeredolu, F A; Afolabi, O A

    1995-01-01

    Nigeria is one of the 13 low-latitude countries that have significant biomass burning activities. Biomass burning occurs in moist savanna, dry forests, and forest plantations. Fires in the forest zone are associated with slash-and-burn agriculture; the areal extent of burning is estimated to be 80% of the natural savanna. In forest plantations, close to 100% of litter is burned. Current estimates of emissions from land-use change are based on a 1976 national study and extrapolations from it. The following non-carbon dioxide (CO2) trace gas emissions were calculated from savanna burning: methane (CH4), 145 gigagrams (Gg); carbon monoxide (CO), 3831 Gg; nitrous oxide (N2O), 2 Gg; and nitrogen oxides (NOx), 49 Gg. Deforestation rates in forests and woodlands are 300 × 10(3) ha (kilohectare, or kha) and 200 × kha per year, respectively. Trace gas emissions from deforestation were estimated to be 300 Gg CH4, 2.4 Gg N2O, and 24 Gg NOx. CO2 emissions from burning, decay of biomass, and long-term emissions from soil totaled 125 561 Gg. These estimates should be viewed as preliminary, because greenhouse gas emission inventories from burning, deforestation, and land-use change require two components: fuel load and emission factors. Fuel load is dependent on the areal extent of various land uses, and the biomass stocking and some of these data in Nigeria are highly uncertain. PMID:24197951

  15. Investigation of the tracers for plastic-enriched waste burning aerosols

    Science.gov (United States)

    Kumar, Sudhanshu; Aggarwal, Shankar G.; Gupta, Prabhat K.; Kawamura, Kimitaka

    2015-05-01

    To better identify the tracers for open-waste burning (OWB) aerosols, we have conducted aerosol sampling at 2 landfill sites, i.e., Okhla and Bhalswa in New Delhi. The metals such as, As, Cd, Sb and Sn, which have been observed almost negligible in remote aerosols, are found abundantly in these OWB aerosol samples (n = 26), i.e., 60 ± 65, 41 ± 53, 537 ± 847 and 1325 ± 1218 ng m-3, respectively. Samples (n = 20) collected at urban locations in New Delhi, i.e., at Employees' State Insurance (ESI) hospital and National Physical Laboratory (NPL) also show high abundances of these metals in the particles. Filter samples are also analyzed for water-soluble dicarboxylic acids (C2-C12) and related compounds (oxocarboxylic acids and α-dicarbonyls). Terephthalic acid (tPh) was found to account for more than 77% of total diacids determined in OWB aerosols. However, such a high abundance of tPh is not observed in aerosols collected at urban sites. Instead, phthalic acid (Ph) was found as the third/fourth most abundant diacid (∼3%) following C2 (>70%) and C4 (>12%) in these waste burning influenced urban aerosols. A possible secondary formation pathway of Ph by photo-degradation of phthalate ester (di-2-ethylhexyl phthalate) in plastic-waste burning aerosol is suggested. Ionic composition of OWB aerosols showed that Cl- is the most abundant ion (40 ± 8% of total ions determined). The correlation studies of the potential metals with the organic tracers of garbage burning, i.e., phthalic, isophthalic and terephthalic acids show that especially Sn can be used as marker for tracing the plastic-enriched waste burning aerosols.

  16. Biomass Burning: The Cycling of Gases and Particulates from the Biosphere to the Atmosphere

    Science.gov (United States)

    Levine, J. S.

    2003-12-01

    Biomass burning is both a process of geochemical cycling of gases and particulates from the biosphere to the atmosphere and a process of global change. In the preface to the book, One Earth, One Future: Our Changing Global Environment (National Academy of Sciences, 1990), Dr. Frank Press, the President of the National Academy of Sciences, writes: "Human activities are transforming the global environment, and these global changes have many faces: ozone depletion, tropical deforestation, acid deposition, and increased atmospheric concentrations of gases that trap heat and may warm the global climate."It is interesting to note that all four global change "faces" identified by Dr. Press have a common thread - they are all caused by biomass burning.Biomass burning or vegetation burning is the burning of living and dead vegetation and includes human-initiated burning and natural lightning-induced burning. The bulk of the world's biomass burning occurs in the tropics - in the tropical forests of South America and Southeast Asia and in the savannasof Africa and South America. The majority of the biomass burning, primarily in the tropics (perhaps as much as 90%), is believed to be human initiated for land clearing and land-use change. Natural fires triggered by atmospheric lightning only accounts for ˜10% of all fires (Andreae, 1991). As will be discussed, a significant amount of biomass burning occurs in the boreal forests of Russia, Canada, and Alaska.Biomass burning is a significant source of gases and particulates to the regional and global atmosphere (Crutzen et al., 1979; Seiler and Crutzen, 1980; Crutzen and Andreae, 1990; Levine et al., 1995). Its burning is truly a multidiscipline subject, encompassing the following areas: fire ecology, fire measurements, fire modeling, fire combustion, remote sensing, fire combustion gaseous and particulate emissions, the atmospheric transport of these emissions, and the chemical and climatic impacts of these emissions. Recently

  17. Spontaneous Aerosol Ejection: Origin of Inorganic Particles in Biomass Pyrolysis.

    Science.gov (United States)

    Teixeira, Andrew R; Gantt, Rachel; Joseph, Kristeen E; Maduskar, Saurabh; Paulsen, Alex D; Krumm, Christoph; Zhu, Cheng; Dauenhauer, Paul J

    2016-06-01

    At high thermal flux and temperatures of approximately 500 °C, lignocellulosic biomass transforms to a reactive liquid intermediate before evaporating to condensable bio-oil for downstream upgrading to renewable fuels and chemicals. However, the existence of a fraction of nonvolatile compounds in condensed bio-oil diminishes the product quality and, in the case of inorganic materials, catalyzes undesirable aging reactions within bio-oil. In this study, ablative pyrolysis of crystalline cellulose was evaluated, with and without doped calcium, for the generation of inorganic-transporting aerosols by reactive boiling ejection from liquid intermediate cellulose. Aerosols were characterized by laser diffraction light scattering, inductively coupled plasma spectroscopy, and high-speed photography. Pyrolysis product fractionation revealed that approximately 3 % of the initial feed (both organic and inorganic) was transported to the gas phase as aerosols. Large bubble-to-aerosol size ratios and visualization of significant late-time ejections in the pyrolyzing cellulose suggest the formation of film bubbles in addition to the previously discovered jet formation mechanism. PMID:27125341

  18. Characterisation of the impact of open biomass burning on urban air quality in Brisbane, Australia.

    Science.gov (United States)

    He, Congrong; Miljevic, Branka; Crilley, Leigh R; Surawski, Nicholas C; Bartsch, Jennifer; Salimi, Farhad; Uhde, Erik; Schnelle-Kreis, Jürgen; Orasche, Jürgen; Ristovski, Zoran; Ayoko, Godwin A; Zimmermann, Ralf; Morawska, Lidia

    2016-05-01

    Open biomass burning from wildfires and the prescribed burning of forests and farmland is a frequent occurrence in South-East Queensland (SEQ), Australia. This work reports on data collected from 10 to 30 September 2011, which covers the days before (10-14 September), during (15-20 September) and after (21-30 September) a period of biomass burning in SEQ. The aim of this project was to comprehensively quantify the impact of the biomass burning on air quality in Brisbane, the capital city of Queensland. A multi-parameter field measurement campaign was conducted and ambient air quality data from 13 monitoring stations across SEQ were analysed. During the burning period, the average concentrations of all measured pollutants increased (from 20% to 430%) compared to the non-burning period (both before and after burning), except for total xylenes. The average concentration of O3, NO2, SO2, benzene, formaldehyde, PM10, PM2.5 and visibility-reducing particles reached their highest levels for the year, which were up to 10 times higher than annual average levels, while PM10, PM2.5 and SO2 concentrations exceeded the WHO 24-hour guidelines and O3 concentration exceeded the WHO maximum 8-hour average threshold during the burning period. Overall spatial variations showed that all measured pollutants, with the exception of O3, were closer to spatial homogeneity during the burning compared to the non-burning period. In addition to the above, elevated concentrations of three biomass burning organic tracers (levoglucosan, mannosan and galactosan), together with the amount of non-refractory organic particles (PM1) and the average value of f60 (attributed to levoglucosan), reinforce that elevated pollutant concentration levels were due to emissions from open biomass burning events, 70% of which were prescribed burning events. This study, which is the first and most comprehensive of its kind in Australia, provides quantitative evidence of the significant impact of open biomass burning

  19. Desert dust,Ocean spray,Volcanoes,Biomass burning: Pathways of nutrients into Andean rainforests

    Science.gov (United States)

    Fabian, P.; Rollenbeck, R.; Spichtinger, N.; Dominguez, G.; Brothers, L.; Thiemens, M.

    2009-04-01

    Atlantic air masses to reach the receptor site within less than 5 days.Episodes of enhanced Ca 2+ and Mg 2+ were found to be associated with air masses from African deserts.Satellite aerosol data clearly confirmed desert sources both on the Northern (Sahara) as on the Southern Hemisphere (Namib),depending on season. Few episodes of distinct PO43-deposition are due to air masses either from north African (phosphate mining) or coastal sites of Peru (guano?). While volcanic,oceanic and desert sources are natural, large scale biomass burning is an anthropogenic source which adds about 7 kg/ha of NO3- and 14 kg/ha of SO4 2- per year .The episodic PO4 3- deposition amounts to about 2.6 kg/ha PO4 3- per year.Controlled fertilizing experiments are presently carried out to investigate the impact of these disturbances on the mountain forest ecosystem.

  20. The dual microphysical behavior of Namibia-Angola marine boundary layer clouds regime during the biomass-burning season

    Science.gov (United States)

    Painemal, D.; Kato, S.

    2013-12-01

    Transport of biomass burning aerosols off the coast of Namibia/Angola has drawn increasing interest due to its strong direct radiative effect and the potential dynamical feedbacks between the atmospheric circulation, cloud cover, and the solar absorbing aerosol layer. Here, we study the less explored link between boundary layer variability, cloud microphysics, and aerosol layer. In this investigation, we make use of satellite observations from A-Train constellation, to describe a unique dual microphysical behavior of the Namibia/Angola cloud regime. The dataset for this investigation consists of collocated retrievals from AMSR-E, MODIS, CERES, and CALIOP during the biomass season of July to September of 2006, and June to September of 2007 through 2010. We find a distinctive correlation between AMSR-E liquid water path (LWP) and cloud effective radius (re, 3.7 μm-based retrieval), with positive correlations, south of 5o S (r >0.4) and negative ones north of 5o S when they are computed for cloudy scenes only. We investigate further this feature, by analyzing the dependence of the cloud properties on variations in the cloud top height (HT). LWP correlates positively with HT (r >0.4) throughout the domain, and is consistent with adiabatic calculations made with HT and lifting condensation level. The correlation between re and HT is negative north of 5oS (r0.4), indicating that re becomes smaller when the aerosol layer remains closer to the cloud top, independent of the aerosol optical depth. Furthermore, we will show an evidence of the Twomey effect and albedo susceptibility associated with changes in re.

  1. Aerosol classification by airborne high spectral resolution lidar observations

    OpenAIRE

    S. Groß; Esselborn, M.; Weinzierl, B.; M. Wirth; Fix, A.; Petzold, A

    2012-01-01

    During four aircraft field experiments with the DLR research aircraft Falcon in 1998 (LACE), 2006 (SAMUM-1) and 2008 (SAMUM-2 and EUCAARI), airborne High Spectral Resolution Lidar (HSRL) and in situ measurements of aerosol microphysical and optical properties were performed. Altogether, the properties of six different aerosol types and aerosol mixtures – Saharan mineral dust, Saharan dust mixtures, Canadian biomass burning aerosol, African biomass burning aerosol, anthropogenic polluti...

  2. Fossil fuel and biomass burning effect on climate - Heating or cooling?

    Science.gov (United States)

    Kaufman, Yoram J.; Fraser, Robert S.; Mahoney, Robert L.

    1991-01-01

    The basic theory of the effect of pollution on cloud microphysics and its global implications is applied to compare the relative effect of a small increase in the consumption rate of oil, coal, or biomass burning on cooling and heating of the atmosphere. The characteristics of and evidence for the SO2 induced cooling effect are reviewed. This perturbation analysis approach permits linearization, therefore simplifying the analysis and reducing the number of uncertain parameters. For biomass burning the analysis is restricted to burning associated with deforestation. Predictions of the effect of an increase in oil or coal burning show that within the present conditions the cooling effect from oil and coal burning may range from 0.4 to 8 times the heating effect.

  3. Biomass burning impact on PM 2.5 over the southeastern US during 2007: integrating chemically speciated FRM filter measurements, MODIS fire counts and PMF analysis

    Directory of Open Access Journals (Sweden)

    R. J. Weber

    2010-07-01

    Full Text Available Archived Federal Reference Method (FRM Teflon filters used by state regulatory agencies for measuring PM2.5 mass were acquired from 15 sites throughout the southeastern US and analyzed for water-soluble organic carbon (WSOC, water-soluble ions and carbohydrates to investigate biomass burning contributions to fine aerosol mass. Based on over 900 filters that spanned all of 2007, levoglucosan and K+ were studied in conjunction with MODIS Aqua fire count data to compare their performances as biomass burning tracers. Levoglucosan concentrations exhibited a distinct seasonal variation with large enhancement in winter and spring and a minimum in summer, and were well correlated with fire counts, except in winter when residential wood burning contributions were significant. In contrast, K+ concentrations had no apparent seasonal trend and poor correlation with fire counts. Levoglucosan and K+ only correlated well in winter (r2=0.59 when biomass burning emissions were highest, whereas in other seasons they were not correlated due to the presence of other K+ sources. Levoglucosan also exhibited larger spatial variability than K+. Both species were higher in urban than rural sites (mean 44% higher for levoglucosan and 86% for K+. Positive Matrix Factorization (PMF was applied to analyze PM2.5 sources and four factors were resolved: biomass burning, refractory material, secondary light absorbing WSOC and secondary sulfate/WSOC. The biomass burning source contributed 13% to PM2.5 mass annually, 27% in winter, and less than 2% in summer, consistent with other souce apportionment studies based on levoglucosan, but lower in summer compared to studies based on K+.

  4. Biomass burning impact on PM2.5 over the southeastern US during 2007: integrating chemically speciated FRM filter measurements, MODIS fire counts and PMF analysis

    Directory of Open Access Journals (Sweden)

    R. J. Weber

    2010-03-01

    Full Text Available Archived Federal Reference Method (FRM Teflon filters used by state regulatory agencies for measuring PM2.5 mass were acquired from 15 sites throughout the southeastern US and analyzed for Water-Soluble Organic Carbon (WSOC, water-soluble ions and carbohydrates to investigate biomass burning contributions to fine aerosol mass. Based on over 900 filters that spanned all of 2007, levoglucosan and K+ were studied in conjunction with MODIS Aqua fire count data to compare their performances as biomass burning tracers. Levoglucosan concentrations exhibited a distinct seasonal variation with large enhancement in winter and spring and a minimum in summer, and were well correlated with fire counts, except in winter when residential wood burning contributions were significant. In contrast, K+ concentrations had no apparent seasonal trend and poor correlation with fire counts. Levoglucosan and K+ only correlated well in winter (r2=0.59 when biomass burning emissions were highest, whereas in other seasons they were not correlated due to the presence of other K+ sources. Levoglucosan also exhibited larger spatial variability than K+. Both species were higher in urban than rural sites (mean 44% higher for levoglucosan and 86% for K+. Positive Matrix Factorization (PMF was applied to analyze PM2.5 sources and four factors were resolved: biomass burning, refractory material, secondary light absorbing WSOC and secondary sulfate/WSOC. The biomass burning source contributed 13% to PM2.5 mass annually, 27% in winter, and less than 2% in summer, consistent with other souce apportionment studies based on levoglucosan, but lower in summer compared to studies based on K+.

  5. Impact of biomass burning on urban air quality estimated by organic tracers: Guangzhou and Beijing as cases

    International Nuclear Information System (INIS)

    The impacts of biomass burning have not been adequately studied in China. In this work, chemical compositions of volatile organic compounds and particulate organic matters were measured in August 2005 in Beijing and in October 2004 in Guangzhou city. The performance of several possible tracers for biomass burning is compared by using acetonitrile as a reference compound. The correlations between the possible tracers and acetonitrile show that the use of K+ as a tracer could result in bias because of the existence of other K+ sources in urban areas, while chloromethane is not reliable due to its wide use as industrial chemical. The impact of biomass burning on air quality is estimated using acetonitrile and levoglucosan as tracers. The results show that the impact of biomass burning is ubiquitous in both suburban and urban Guangzhou, and the frequencies of air pollution episodes significantly influenced by biomass burning were 100% for Xinken and 58% for downtown Guangzhou city. Fortunately, the air quality in only 2 out of 22 days was partly impacted by biomass burning in August in Beijing, the month that 2008 Olympic games will take place. The quantitative contribution of biomass burning to ambient PM2.5 concentrations in Guangzhou city was also estimated by the ratio of levoglocusan to PM2.5 in both the ambient air and biomass burning plumes. The results show that biomass burning contributes 3.02013;16.8% and 4.02013;19.0% of PM2.5 concentrations in Xinken and Guangzhou downtown, respectively. (Author)

  6. Impact of biomass burning on urban air quality estimated by organic tracers: Guangzhou and Beijing as cases

    Science.gov (United States)

    Wang, Qiaoqiao; Shao, Min; Liu, Ying; William, Kuster; Paul, Goldan; Li, Xiaohua; Liu, Yuan; Lu, Sihua

    The impacts of biomass burning have not been adequately studied in China. In this work, chemical compositions of volatile organic compounds and particulate organic matters were measured in August 2005 in Beijing and in October 2004 in Guangzhou city. The performance of several possible tracers for biomass burning is compared by using acetonitrile as a reference compound. The correlations between the possible tracers and acetonitrile show that the use of K + as a tracer could result in bias because of the existence of other K + sources in urban areas, while chloromethane is not reliable due to its wide use as industrial chemical. The impact of biomass burning on air quality is estimated using acetonitrile and levoglucosan as tracers. The results show that the impact of biomass burning is ubiquitous in both suburban and urban Guangzhou, and the frequencies of air pollution episodes significantly influenced by biomass burning were 100% for Xinken and 58% for downtown Guangzhou city. Fortunately, the air quality in only 2 out of 22 days was partly impacted by biomass burning in August in Beijing, the month that 2008 Olympic games will take place. The quantitative contribution of biomass burning to ambient PM2.5 concentrations in Guangzhou city was also estimated by the ratio of levoglocusan to PM2.5 in both the ambient air and biomass burning plumes. The results show that biomass burning contributes 3.0-16.8% and 4.0-19.0% of PM2.5 concentrations in Xinken and Guangzhou downtown, respectively.

  7. Sahara dust, ocean spray, volcanoes, biomass burning: pathways of nutrients into Andean rainforests

    Science.gov (United States)

    Fabian, P.; Rollenbeck, R.; Spichtinger, N.; Brothers, L.; Dominguez, G.; Thiemens, M.

    2009-10-01

    Regular rain and fogwater sampling in the Podocarpus National Park, on the humid eastern slopes of the Ecuadorian Andes, along an altitude profile between 1960 and 3180 m, has been carried out since 2002. The samples, accumulated over about 1-week intervals, were analysed for pH, conductivity and major ions (K+, Na+, NH4+, Ca2+, Mg2+, Cl-, SO42-, NO3-, PO43-). About 35% of the weekly samples had very low ion contents, with pH mostly above 5 and conductivity below 10 μS/cm. 10-days back trajectories (FLEXTRA) showed that respective air masses originated in pristine continental areas, with little or no obvious pollution sources. About 65%, however, were significantly loaded with cations and anions, with pH as low as 3.5 to 4.0 and conductivity up to 50 μS/cm. The corresponding back trajectories clearly showed that air masses had passed over areas of intense biomass burning, active volcanoes, and the ocean, with episodic Sahara and/or Namib desert dust interference. Enhanced SO42- and NO3+ were identified, by combining satellite-based fire pixel observations with back trajectories, as predominantly resulting from biomass burning. Analyses of oxygen isotopes 16O, 17O, and 18O in nitrate show that nitrate in the samples is indeed a product of atmospheric conversion of precursors. Some SO42-, about 10% of the total input, could be identified to originate from active volcanoes, whose plumes were encountered by about 10% of all trajectories. Enhanced Na+, K+, and Cl- were found to originate from ocean spray sources. They were associated with winds providing Atlantic air masses to the receptor site within less than 5 days. Episodes of enhanced Ca2+ and Mg2+ were found to be associated with air masses from African deserts. Satellite aerosol data confirm desert sources both on the Northern (Sahara) as on the Southern Hemisphere (Namib), depending on the season. A few significant PO43- peaks are related with air masses originating from North African phosphate mining fields.

  8. Indirect Cloud Effects from Biomass Burning Smoke in the Arctic and Subarctic: Insights from Multiple In-Situ Datasets

    Science.gov (United States)

    Zamora, L. M.; Kahn, R. A.; Anderson, B. E.; McFarquhar, G. M.; Wisthaler, A.; Zelenyuk, A.

    2014-12-01

    The incidence of wildfires in the Arctic and subarctic is increasing; in boreal North America, for example, the burned area is expected to increase by 200- 300% over the next 50-100 years. In some cases, local and long-range smoke transported to the Arctic has already increased aerosol concentrations twofold, which previous studies suggest could have a large effect on cloud microphysics, lifetime, albedo, and precipitation. However, the interactions between smoke particles and clouds remain poorly understood, in part due to the confounding influence of varying meteorological and surface conditions. Here, we use data from several aircraft campaigns in the Arctic and subarctic (the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites-B campaign (ARCTAS-B), the Indirect and Semi-Direct Aerosol Campaign (ISDAC), and the First ISCCP Regional Experiment Arctic Clouds Experiment (FIRE.ACE)) to compare cloud microphysics in liquid, ice, and mixed-phase clouds sampled at similar temperature and pressure in the presence and absence of biomass burning smoke. Care is taken to place findings in context of meteorological conditions. Preliminary data from the ARCTAS-B campaign suggest a noticeable impact of smoke on cloud properties in the liquid phase, consistent with the Twomey effect (smaller cloud droplet radius), and greater liquid water path and estimated cloud optical depth. Continuing work involves using the combination of field cases and satellite data from MISR, MODIS, CALIPSO, and other sources to more fully characterize the impact of smoke on Arctic clouds.

  9. Biomass Burning Airborne and Spaceborne Experiment in the Amazonas (BASE-A)

    Science.gov (United States)

    Kaufman, Y. J.; Setzer, A.; Ward, D.; Tanre, D.; Holben, B. N.; Menzel, P.; Pereira, M. C.; Rasmussen, R.

    1992-01-01

    Results are presented on measurements of the trace gas and particulate matter emissions due to biomass burning during deforestation and grassland fires in South America, conducted as part of the Biomass Burning Airborne and Spaceborne Experiment in the Amazonas in September 1989. Field observations by an instrumented aircraft were used to estimate concentrations of O3, CO2, CO, CH4, and particulate matter. Fires were observed from satellite imagery, and the smoke optical thickness, particle size, and profiles of the extinction coefficient were measured from the aircraft and from the ground. Four smoke plumes were sampled, three vertical profiles were measured, and extensive ground measurements of smoke optical characteristics were carried out for different smoke types. The simultaneous measurements of the trace gases, smoke particles, and the distribution of fires were used to correlate biomass burning with the elevated levels of ozone.

  10. Analysis of derived optical parameters of atmospheric particles during a biomass burning event. Comparison with fossil fuel burning

    Science.gov (United States)

    Costa, A.; Mogo, S.; Cachorro, V.; de Frutos, A.; Medeiros, M.; Martins, R.; López, J. F.; Marcos, A.; Marcos, N.; Bizarro, S.; Mano, F.

    2015-12-01

    During the day November 26, 2014, a scheduled cleanup of the woods took place around the GOA-UVa aerosol measurement station located at the campus of the University of Beira Interior (40° 16’30”N, 7°30’35”W, 704m a.s.l.), Covilhã, Portugal. This cleanup included excessive vegetation removal during the morning, using fossil fuel-burning machinery, and burning of the vegetation during the afternoon. In situ measurements of aerosol optical properties were made and this study aims the characterization of the evolution of aerosol properties during the day. The optical parameters were monitored using a 3-wavelength nephelometer and a 3-wavelength particle soot absorption photometer. Selective sampling/exclusion of the coarse particles was done each 5 minutes. The scattering and absorption Ångström exponents as well as the single scattering albedo were derived and fully analyzed. The scattering and absorption coefficients increased dramatically during the event, reaching values as high as 720.3 Mm-1 and 181.9 Mm-1, respectively, for the green wavelength and PM10 size fraction. The spectral behavior of these parameters also changed wildly along the day and an inversion of the slope from positive to negative in the case of the single scattering albedo was observed.

  11. The impact of infield biomass burning on PM levels and its chemical composition.

    Science.gov (United States)

    Dambruoso, P; de Gennaro, G; Di Gilio, A; Palmisani, J; Tutino, M

    2014-12-01

    In the South of Italy, it is common for farmers to burn pruning waste from olive trees in spring. In order to evaluate the impact of the biomass burning source on the physical and chemical characteristics of the particulate matter (PM) emitted by these fires, a PM monitoring campaign was carried out in an olive grove. Daily PM10 samples were collected for 1 week, when there were no open fires, and when biomass was being burned, and at two different distances from the fires. Moreover, an optical particle counter and a polycyclic aromatic hydrocarbon (PAH) analyzer were used to measure the high time-resolved dimensional distribution of particles emitted and total PAHs concentrations, respectively. Chemical analysis of PM10 samples identified organic and inorganic components such as PAHs, ions, elements, and carbonaceous fractions (OC, EC). Analysis of the collected data showed the usefulness of organic and inorganic tracer species and of PAH diagnostic ratios for interpreting the impact of biomass fires on PM levels and on its chemical composition. Finally, high time-resolved monitoring of particle numbers and PAH concentrations was performed before, during, and after biomass burning, and these concentrations were seen to be very dependent on factors such as weather conditions, combustion efficiency, and temperature (smoldering versus flaming conditions), and moisture content of the wood burned. PMID:24310905

  12. Inclusion of biomass burning in WRF-Chem: impact of wildfires on weather forecasts

    OpenAIRE

    G. Grell; S. R. Freitas; M. Stuefer; Fast, J.

    2010-01-01

    A plume rise algorithm for wildfires was included in WRF-Chem, and applied to look at the impact of intense wildfires during the 2004 Alaska wildfire season on weather simulations using model resolutions of 10 km and 2 km. Biomass burning emissions were estimated using a biomass burning emissions model. In addition a 1-D time dependent cloud model was used online in WRF-Chem to estimate injection heights as well as the final emission rates. It was shown that with the inclusion of the i...

  13. Inclusion of biomass burning in WRF-Chem: impact of wildfires on weather forecasts

    OpenAIRE

    G. Grell; S. R. Freitas; M. Stuefer; Fast, J.

    2011-01-01

    A plume rise algorithm for wildfires was included in WRF-Chem, and applied to look at the impact of intense wildfires during the 2004 Alaska wildfire season on weather simulations using model resolutions of 10 km and 2 km. Biomass burning emissions were estimated using a biomass burning emissions model. In addition, a 1-D, time-dependent cloud model was used online in WRF-Chem to estimate injection heights as well as the vertical distribution of the emission rates. It was shown that with the ...

  14. Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles

    Science.gov (United States)

    Simoneit, B. R. T.; Schauer, J. J.; Nolte, C. G.; Oros, D. R.; Elias, V. O.; Fraser, M. P.; Rogge, W. F.; Cass, G. R.

    The major organic components of smoke particles from biomass burning are monosaccharide derivatives from the breakdown of cellulose, accompanied by generally lesser amounts of straight-chain, aliphatic and oxygenated compounds and terpenoids from vegetation waxes, resins/gums, and other biopolymers. Levoglucosan and the related degradation products from cellulose can be utilized as specific and general indicator compounds for the presence of emissions from biomass burning in samples of atmospheric fine particulate matter. This enables the potential tracking of such emissions on a global basis. There are other compounds (e.g. amyrones, friedelin, dehydroabietic acid, and thermal derivatives from terpenoids and from lignin—syringaldehyde, vanillin, syringic acid, vanillic acid), which are additional key indicators in smoke from burning of biomass specific to the type of biomass fuel. The monosaccharide derivatives (e.g. levoglucosan) are proposed as specific indicators for cellulose in biomass burning emissions. Levoglucosan is emitted at such high concentrations that it can be detected at considerable distances from the original combustion source.

  15. Fine ash morphology and aerosol formation: A comparison of coal and biomass fuels

    Science.gov (United States)

    Chenevert, Blake Charles

    1998-12-01

    Modeling and experimental methods were used to investigate ash formation mechanisms of four industrially significant high-alkali biomass (sawdust/sanderdust) fuels. Alkali minerals tend to vaporize and recondense to form sub-micron aerosol, which poses health risks and causes special operational problems for industrial combustors. Sawdust/sanderdust was burned in a 15 kW natural gas-fired tunnel furnace. The resulting ash was collected by a water-cooled probe, and size sorted by cascade impaction and Electrical Aerosol Size Analysis. Scanning Electron Microscopy and Energy Dispersive X-Ray Spectroscopy techniques were used to determine morphology and composition by size cut. Three ash modes were present: (1) A residual mode composed primarily of porous calcium structures with a scale length of 8 microns and larger. This mode was likely the result of direct oxide and carbonate formation. (2) A secondary residual mode near 2 microns composed of fluxed and fragmented calcium, but also containing significant amounts of Si, Fe, Mn and Al. This mode appeared to be composed of eutectic melts separated from the parent ash particle. (3) An aerosol mode composed of Na and K with Cl anion, or sulfate anion when Cl was not present. The aerosol mode diameter was found to be a function of initial nucleate number density and coagulation time. Long coagulation time or high initial number density resulted in an aerosol mode diameter near 0.1 micron. Modeling was composed of three elements: (1) Equilibrium modeling---These calculations validated experimental evidence for alkali vaporization and condensation, predicting all alkali to enter the vapor phase as NaCl or KCl when Cl is available, or NaOH and KOH otherwise. (2) Condensation modeling---This model was used to determine the partitioning of alkali metal between homogeneous particulate matter formation (self-nucleation) and deposition on existing residual particles. It was shown that vaporized alkali can be collected on the

  16. What could have caused pre-industrial biomass burning emissions to exceed current rates?

    Directory of Open Access Journals (Sweden)

    G. R. van der Werf

    2012-08-01

    Full Text Available Recent studies based on trace gas mixing ratios in ice cores and charcoal data indicate that biomass burning emissions over the past millennium exceeded contemporary emissions by up to a factor of 4 for certain time periods. This is surprising because various sources of biomass burning are linked with population density, which has increased over the past centuries. Here we have analyzed how emissions from several biomass burning sources could have fluctuated to yield emissions that are in correspondence with recent results based on ice core mixing ratios of carbon monoxide (CO and its isotopic signature measured at South Pole station (SPO. Based on estimates of contemporary fire emissions and the TM5 chemical transport model, we found that CO mixing ratios at SPO are more sensitive to emissions from South America and Australia than from Africa, and are relatively insensitive to emissions from the Northern Hemisphere. We then explored how various biomass burning sources may have varied over the past centuries and what the resulting emissions and corresponding CO mixing ratio at SPO would be, using population density variations to reconstruct sources driven by humans (e.g. fuelwood burning and a new model to relate savanna emissions to changes in fire return times. We found that to match the observed ice core CO data all savannas in the Southern Hemisphere had to burn annually, or bi-annually in combination with deforestation and slash and burn agriculture matching current levels despite much lower population densities and lack of machinery to aid the deforestation process. While possible, these scenarios are unlikely and in conflict with current literature. However, we do show the large potential for increased emissions from savannas in a pre-industrial world. This is mainly because in the past, fuel beds were probably less fragmented compared to the current situation; we show that the majority of savannas have not burned in the past 10 yr, even

  17. Moisture effects on carbon and nitrogen emission from burning of wildland biomass

    Directory of Open Access Journals (Sweden)

    L.-W. A. Chen

    2010-07-01

    Full Text Available Carbon (C and nitrogen (N released from biomass burning have multiple effects on the Earth's biogeochemical cycle, climate change, and ecosystem. These effects depend on the relative abundances of C and N species emitted, which vary with fuel type and combustion conditions. This study systematically investigates the emission characteristics of biomass burning under different fuel moisture contents, through controlled burning experiments with biomass and soil samples collected from a typical alpine forest in North America. Fuel moisture in general lowers combustion efficiency, shortens flaming phase, and introduces prolonged smoldering before ignition. It increases emission factors of incompletely oxidized C and N species, such as carbon monoxide (CO and ammonia (NH3. Substantial particulate carbon and nitrogen (up to 4 times C in CO and 75% of N in NH3 were also generated from high-moisture fuels, maily associated with the pre-flame smoldering. This smoldering process emits particles that are larger and contain lower elemental carbon fractions than soot agglomerates commonly observed in flaming smoke. Hydrogen (H/C ratio and optical properties of particulate matter from the high-moisture fuels show their resemblance to plant cellulous and brown carbon, respectively. These findings have implications for modeling biomass burning emissions and impacts.

  18. Satellite observations indicate substantial spatiotemporal variability in biomass burning NOx emission factors for South America

    NARCIS (Netherlands)

    Castellanos, P.; Boersma, K.F.; Werf, van de G.R.

    2014-01-01

    Biomass burning is an important contributor to global total emissions of NOx (NO+NO2). Generally bottom-up fire emissions models calculate NOx emissions by multiplying fuel consumption estimates with static biome-specific emission factors, defined in units of grams of NO per kilogram of dry matter c

  19. Reconstructions of biomass burning from sediment-charcoal records to improve data-model comparisons

    Science.gov (United States)

    Marlon, Jennifer R.; Kelly, Ryan; Daniau, Anne-Laure; Vannière, Boris; Power, Mitchell J.; Bartlein, Patrick; Higuera, Philip; Blarquez, Olivier; Brewer, Simon; Brücher, Tim; Feurdean, Angelica; Gil Romera, Graciela; Iglesias, Virginia; Yoshi Maezumi, S.; Magi, Brian; Mustaphi, Colin J. Courtney; Zhihai, Tonishtan

    2016-06-01

    The location, timing, spatial extent, and frequency of wildfires are changing rapidly in many parts of the world, producing substantial impacts on ecosystems, people, and potentially climate. Paleofire records based on charcoal accumulation in sediments enable modern changes in biomass burning to be considered in their long-term context. Paleofire records also provide insights into the causes and impacts of past wildfires and emissions when analyzed in conjunction with other paleoenvironmental data and with fire models. Here we present new 1000-year and 22 000-year trends and gridded biomass burning reconstructions based on the Global Charcoal Database version 3 (GCDv3), which includes 736 charcoal records (57 more than in version 2). The new gridded reconstructions reveal the spatial patterns underlying the temporal trends in the data, allowing insights into likely controls on biomass burning at regional to global scales. In the most recent few decades, biomass burning has sharply increased in both hemispheres but especially in the north, where charcoal fluxes are now higher than at any other time during the past 22 000 years. We also discuss methodological issues relevant to data-model comparisons and identify areas for future research. Spatially gridded versions of the global data set from GCDv3 are provided to facilitate comparison with and validation of global fire simulations.

  20. Reconstructions of biomass burning from sediment charcoal records to improve data-model comparisons

    Science.gov (United States)

    Marlon, J. R.; Kelly, R.; Daniau, A.-L.; Vannière, B.; Power, M. J.; Bartlein, P.; Higuera, P.; Blarquez, O.; Brewer, S.; Brücher, T.; Feurdean, A.; Gil-Romera, G.; Iglesias, V.; Maezumi, S. Y.; Magi, B.; Mustaphi, C. J. C.; Zhihai, T.

    2015-11-01

    The location, timing, spatial extent, and frequency of wildfires are changing rapidly in many parts of the world, producing substantial impacts on ecosystems, people, and potentially climate. Paleofire records based on charcoal accumulation in sediments enable modern changes in biomass burning to be considered in their long-term context. Paleofire records also provide insights into the causes and impacts of past wildfires and emissions when analyzed in conjunction with other paleoenvironmental data and with fire models. Here we present new 1000 year and 22 000 year trends and gridded biomass burning reconstructions based on the Global Charcoal Database version 3, which includes 736 charcoal records (57 more than in version 2). The new gridded reconstructions reveal the spatial patterns underlying the temporal trends in the data, allowing insights into likely controls on biomass burning at regional to global scales. In the most recent few decades, biomass burning has sharply increased in both hemispheres, but especially in the north, where charcoal fluxes are now higher than at any other time during the past 22 000 {years}. We also discuss methodological issues relevant to data-model comparisons, and identify areas for future research. Spatially gridded versions of the global dataset from GCDv3 are provided to facilitate comparison with and validation of global fire simulations.

  1. Five years of ozonesoundings from the central Himalayas: role of dynamical processes and biomass burning

    Science.gov (United States)

    Naja, Manish; Bhardhwaj, Piyush; Lal, Shyam; Venkataramani, Sethuram; Kumar, Rajesh

    2016-04-01

    Higher water vapour, intense solar radiation and increasing levels of trace species over the tropical Asia are making this region more complex for understanding the physical, dynamical and chemical process over here. One of the most populated regions (The Indo-Gangetic Plain, IGP) of the world and a variety of anthropogenic and biogenic emission sources are also housing in the foothill of one of the pristine region, i.e. Himalaya. Uplifting and transport of polluted air-masses to the higher heights is a major concern in the South Asia. However, observations of vertical distribution of ozone, and other trace gases including water vapour, aerosols and meteorological parameters are very limited in South Asia. In view of this, an observational facility was setup at ARIES, Nainital (29.4N, 79.5E; 1950 m) in the central Himalayas. Regular, once in a week, balloon borne measurements of ozone, RH, temperature and GPS winds are being made since January 2011. Surface observations of different trace gases (Ozone, CO, NO, NOy, light NMHCs, SO2, CO2 and other GHGs) and aerosols are also being made at this site. Here, we present five years of ozonesoundings observations. A strong seasonal cycle in the lower tropospheric ozone with highest values during spring (~ 100 ppbv) and lowest during summer-monsoon (20-40 ppbv) is discerned. Elevated ozone levels (~120 ppbv) were observed in the middle-upper troposphere along with very high wind speed (~50 m/s) which indicates the role of dynamics in bringing ozone rich air from higher altitude. The signatures of ozone downward transport have also been noticed in TES water vapour and PV. In contrast, such influence is seen to be weaker in the eastern part of the Himalayas. A very clear enhancement (20-30 ppbv) in the lower tropospheric ozone is seen that is induced by the biomass burning. Further analysis of these observations with the help of air trajectories and satellite data will be presented.

  2. Hygroscopic behaviour of aerosol particles emitted from biomass fired grate boilers

    Energy Technology Data Exchange (ETDEWEB)

    Rissler, Jenny; Swietlicki, Erik [Lund Univ. (Sweden). Div. of Nuclear Physics; Pagels, Joakim; Wierzbicka, Aneta; Bohgard, Mats [Lund Univ. (Sweden). Div. of Ergonomics and Aerosol Technology; Strand, Michael; Lillieblad, Lena; Sanati, Mehri [Vaexjoe Univ. (Sweden). Bioenergy Technology

    2005-02-01

    This study focuses on the hygroscopic properties of sub-micrometer aerosol particles emitted from two small-scale district heating combustion plants (1 and 1.5 MW) burning two types of biomass fuels (moist forest residue and pellets). The hygroscopic particle diameter growth was measured when taken from a dehydrated to a humidified state for particle diameters between 30-350 nm (dry size) using a Hygroscopic Tandem Differential Mobility Analyzer (H-TDMA). Particles of a certain dry size all showed similar hygroscopic growth and the average diameter growth at RH=90% for 110/100 nm particles was 1.68 in the 1 MW boiler, and 1.52 in the 1.5 MW boiler. These growth factors are considerably higher in comparison to other combustion aerosol particles such as diesel exhaust, and are the result of the efficient combustion and the high concentration of alkali species in the fuel. The observed water uptake could be explained using the Zdanovskii-Stokes-Robinson (ZSR) mixing rule and a chemical composition of only potassium salts, taken from an Ion Chromatography analysis of filter sample (KCl, K{sub 2}SO{sub 4}, and K{sub 2}CO{sub 3}). Agglomerated particles collapsed and became more spherical when initially exposed to a moderately high relative humidity. When diluting with hot particle-free air, the fractal-like structures remained intact until humidified in the HTDMA. A method is presented to by which to estimate the fractal dimension of the agglomerated combustion aerosol and correct the measured mobility diameter hygroscopic growth to the more useful property volume growth. The fractal dimension was estimated to be {approx}2.5.

  3. Hygroscopic behaviour of aerosol particles emitted from biomass fired grate boilers

    International Nuclear Information System (INIS)

    This study focuses on the hygroscopic properties of sub-micrometer aerosol particles emitted from two small-scale district heating combustion plants (1 and 1.5 MW) burning two types of biomass fuels (moist forest residue and pellets). The hygroscopic particle diameter growth was measured when taken from a dehydrated to a humidified state for particle diameters between 30-350 nm (dry size) using a Hygroscopic Tandem Differential Mobility Analyzer (H-TDMA). Particles of a certain dry size all showed similar hygroscopic growth and the average diameter growth at RH=90% for 110/100 nm particles was 1.68 in the 1 MW boiler, and 1.52 in the 1.5 MW boiler. These growth factors are considerably higher in comparison to other combustion aerosol particles such as diesel exhaust, and are the result of the efficient combustion and the high concentration of alkali species in the fuel. The observed water uptake could be explained using the Zdanovskii-Stokes-Robinson (ZSR) mixing rule and a chemical composition of only potassium salts, taken from an Ion Chromatography analysis of filter sample (KCl, K2SO4, and K2CO3). Agglomerated particles collapsed and became more spherical when initially exposed to a moderately high relative humidity. When diluting with hot particle-free air, the fractal-like structures remained intact until humidified in the HTDMA. A method is presented to by which to estimate the fractal dimension of the agglomerated combustion aerosol and correct the measured mobility diameter hygroscopic growth to the more useful property volume growth. The fractal dimension was estimated to be ∼2.5

  4. Air toxic emissions from burning of biomass globally-preliminary results

    International Nuclear Information System (INIS)

    Emissions of trace gases, particles, and air toxic substances in the smoke plumes from biomass fires are of importance to global climate change. The potential impact of the air toxic emissions on the human population of specific regions globally is another major concern. The toxic materials are produced in high concentrations in areas of heavy biomass burning, e.g., Amazon Basin and Central/southern Africa. We provide new estimates of air toxics based on the combustion efficiency (percent of total carbon released as CO2) for fires burning in different ecosystems on a global basis. Estimates of total biomass consumed on a global basis range from 2 to 10 Pg (1 petagram = 1015g) per year. We apply emission factors for various air toxics (g of emission released per kg of fuel consumed) to the estimate of global biomass consumption of 6.4 Pg per year. The principal air toxics analyzed in this paper include: Total particulate matter, CO, formaldehyde, acetaldehyde, acrolein, benzene, toluene, o-xylene, m, p-xylene, benzo[a]pyrene, and polycyclic organic material. The total emissions calculated for these materials on a yearly global basis are: 75, 362, 4.9, 1.5, 1.5, 2.1, 2.1, 0.3, 0.6, 0.001, 0.026, Tg (1 teragram = 1012g) per year, respectively. Biomass burning in the United States contributes less than 3% to the total global emissions

  5. What could have caused pre-industrial biomass burning emissions to exceed current rates?

    Science.gov (United States)

    van der Werf, G. R.; Peters, W.; van Leeuwen, T. T.; Giglio, L.

    2013-01-01

    Recent studies based on trace gas mixing ratios in ice cores and charcoal data indicate that biomass burning emissions over the past millennium exceeded contemporary emissions by up to a factor of 4 for certain time periods. This is surprising because various sources of biomass burning are linked with population density, which has increased over the past centuries. We have analysed how emissions from several landscape biomass burning sources could have fluctuated to yield emissions that are in correspondence with recent results based on ice core mixing ratios of carbon monoxide (CO) and its isotopic signature measured at South Pole station (SPO). Based on estimates of contemporary landscape fire emissions and the TM5 chemical transport model driven by present-day atmospheric transport and OH concentrations, we found that CO mixing ratios at SPO are more sensitive to emissions from South America and Australia than from Africa, and are relatively insensitive to emissions from the Northern Hemisphere. We then explored how various landscape biomass burning sources may have varied over the past centuries and what the resulting emissions and corresponding CO mixing ratio at SPO would be, using population density variations to reconstruct sources driven by humans (e.g., fuelwood burning) and a new model to relate savanna emissions to changes in fire return times. We found that to match the observed ice core CO data, all savannas in the Southern Hemisphere had to burn annually, or bi-annually in combination with deforestation and slash and burn agriculture exceeding current levels, despite much lower population densities and lack of machinery to aid the deforestation process. While possible, these scenarios are unlikely and in conflict with current literature. However, we do show the large potential for increased emissions from savannas in a pre-industrial world. This is mainly because in the past, fuel beds were probably less fragmented compared to the current situation

  6. What could have caused pre-industrial biomass burning emissions to exceed current rates?

    Directory of Open Access Journals (Sweden)

    G. R. van der Werf

    2013-01-01

    Full Text Available Recent studies based on trace gas mixing ratios in ice cores and charcoal data indicate that biomass burning emissions over the past millennium exceeded contemporary emissions by up to a factor of 4 for certain time periods. This is surprising because various sources of biomass burning are linked with population density, which has increased over the past centuries. We have analysed how emissions from several landscape biomass burning sources could have fluctuated to yield emissions that are in correspondence with recent results based on ice core mixing ratios of carbon monoxide (CO and its isotopic signature measured at South Pole station (SPO. Based on estimates of contemporary landscape fire emissions and the TM5 chemical transport model driven by present-day atmospheric transport and OH concentrations, we found that CO mixing ratios at SPO are more sensitive to emissions from South America and Australia than from Africa, and are relatively insensitive to emissions from the Northern Hemisphere. We then explored how various landscape biomass burning sources may have varied over the past centuries and what the resulting emissions and corresponding CO mixing ratio at SPO would be, using population density variations to reconstruct sources driven by humans (e.g., fuelwood burning and a new model to relate savanna emissions to changes in fire return times. We found that to match the observed ice core CO data, all savannas in the Southern Hemisphere had to burn annually, or bi-annually in combination with deforestation and slash and burn agriculture exceeding current levels, despite much lower population densities and lack of machinery to aid the deforestation process. While possible, these scenarios are unlikely and in conflict with current literature. However, we do show the large potential for increased emissions from savannas in a pre-industrial world. This is mainly because in the past, fuel beds were probably less fragmented compared to the

  7. Large injection of carbon monoxide into the upper troposphere due to intense biomass burning in 1997

    Science.gov (United States)

    Matsueda, Hidekazu; Inoue, Hisayuki Y.; Ishii, Masao; Tsutsumi, Yukitomo

    1999-11-01

    Air samples at 8-13 km were collected regularly using a commercial airliner to obtain long-term measurements of carbon monoxide (CO) mixing ratio in the upper troposphere over the western Pacific between Australia and Japan during April 1993-December 1997. The measurements in 1997 clearly reveal an anomalous CO increase during September to November in the Southern Hemisphere, with a maximum of 320-380 ppb around 20°S in October. Tropical biomass burning, not urban/industrial emissions, was the main source for the enhanced CO in 1997. A similar southern-spring increase due to biomass burning was observed in previous years. The peaks showed a large interannual variation associated with the El Niño/Southern Oscillation (ENSO) events. The largest CO spring peak appeared during the strong El Niño event in 1997, while the weak La Niña year of 1996 was marked by a largely suppressed CO spring peak. The outgoing longwave radiation (OLR) anomaly is largest during the El Niño events indicating that the events cause a longer drought in the tropics and significantly influence the enlargement of biomass burning in tropical Southeast Asia. Thus the most likely cause for the ENSO-cycle CO variability is a year-to-year change of biomass-burning emissions mainly from Southeast Asia. The appearance of the CO spring peak in the southern subtropics is discussed on the basis of the possible long-range transport of biomass-burning CO from Southeast Asia to the upper troposphere over the western South Pacific.

  8. Emission ratio and isotopic signatures of molecular hydrogen emissions from tropical biomass burning

    Science.gov (United States)

    Haumann, F. A.; Batenburg, A. M.; Pieterse, G.; Gerbig, C.; Krol, M. C.; Röckmann, T.

    2013-09-01

    In this study, we identify a biomass-burning signal in molecular hydrogen (H2) over the Amazonian tropical rainforest. To quantify this signal, we measure the mixing ratios of H2 and several other species as well as the H2 isotopic composition in air samples that were collected in the BARCA (Balanço Atmosférico Regional de Carbono na Amazônia) aircraft campaign during the dry season. We derive a relative H2 emission ratio with respect to carbon monoxide (CO) of 0.31 ± 0.04 ppb ppb-1 and an isotopic source signature of -280 ± 41‰ in the air masses influenced by tropical biomass burning. In order to retrieve a clear source signal that is not influenced by the soil uptake of H2, we exclude samples from the atmospheric boundary layer. This procedure is supported by data from a global chemistry transport model. The ΔH2 / ΔCO emission ratio is significantly lower than some earlier estimates for the tropical rainforest. In addition, our results confirm the lower values of the previously conflicting estimates of the H2 isotopic source signature from biomass burning. These values for the emission ratio and isotopic source signatures of H2 from tropical biomass burning can be used in future bottom-up and top-down approaches aiming to constrain the strength of the biomass-burning source for H2. Hitherto, these two quantities relied only on combustion experiments or on statistical relations, since no direct signal had been obtained from in-situ observations.

  9. Emission ratio and isotopic signatures of molecular hydrogen emissions from tropical biomass burning

    Directory of Open Access Journals (Sweden)

    F. A. Haumann

    2013-09-01

    Full Text Available In this study, we identify a biomass-burning signal in molecular hydrogen (H2 over the Amazonian tropical rainforest. To quantify this signal, we measure the mixing ratios of H2 and several other species as well as the H2 isotopic composition in air samples that were collected in the BARCA (Balanço Atmosférico Regional de Carbono na Amazônia aircraft campaign during the dry season. We derive a relative H2 emission ratio with respect to carbon monoxide (CO of 0.31 ± 0.04 ppb ppb−1 and an isotopic source signature of −280 ± 41‰ in the air masses influenced by tropical biomass burning. In order to retrieve a clear source signal that is not influenced by the soil uptake of H2, we exclude samples from the atmospheric boundary layer. This procedure is supported by data from a global chemistry transport model. The ΔH2 / ΔCO emission ratio is significantly lower than some earlier estimates for the tropical rainforest. In addition, our results confirm the lower values of the previously conflicting estimates of the H2 isotopic source signature from biomass burning. These values for the emission ratio and isotopic source signatures of H2 from tropical biomass burning can be used in future bottom-up and top-down approaches aiming to constrain the strength of the biomass-burning source for H2. Hitherto, these two quantities relied only on combustion experiments or on statistical relations, since no direct signal had been obtained from in-situ observations.

  10. Emission ratio and isotopic signatures of molecular hydrogen emissions from tropical biomass burning

    Directory of Open Access Journals (Sweden)

    F. A. Haumann

    2013-04-01

    Full Text Available In this study, we identify a biomass-burning signal in molecular hydrogen (H2 over the Amazonian tropical rainforest. To quantify this signal, we measure the mixing ratios of H2 and several other species as well as the H2 isotopic composition in air samples that were collected in the BARCA (Balanço Atmosférico Regional de Carbono na Amazônia aircraft campaign during the dry season. We derive a relative H2 emission ratio with respect to carbon monoxide (CO of 0.31 ± 0.04 ppb/ppb and an isotopic source signature of −280 ± 41‰ in the air masses influenced by tropical biomass burning. In order to retrieve a clear source signal that is not influenced by the soil uptake of H2, we exclude samples from the atmospheric boundary layer. This procedure is supported by data from a global chemistry transport model. The ΔH2/ΔCO emission ratio is significantly lower than some earlier estimates for the tropical rainforest. In addition, our results confirm the lower values of the previously conflicting estimates of the H2 isotopic source signature from biomass burning. These values for the emission ratio and isotopic source signatures of H2 from tropical biomass burning can be used in future bottom-up and top-down approaches aiming to constrain the strength of the biomass-burning source for H2. Hitherto, these two quantities relied only on combustion experiments or on statistical relations, since no direct signal had been obtained from in-situ observations.

  11. ACE-FTS observations of pyrogenic trace species in boreal biomass burning plumes during BORTAS

    Directory of Open Access Journals (Sweden)

    K. A. Tereszchuk

    2012-12-01

    Full Text Available To further our understanding of the effects of biomass burning emissions on atmospheric composition, the Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites (BORTAS campaign was conducted on 12 July to 3 August 2011 during the Boreal forest fire season in Canada. The simultaneous aerial, ground and satellite measurement campaign sought to record instances of Boreal biomass burning to measure the tropospheric volume mixing ratios (VMRs of short- and long-lived trace molecular species from biomass burning emissions. The goal was to investigate the connection between the composition and the distribution of these pyrogenic outflows and their resulting perturbation to atmospheric chemistry, with particular focus on oxidant species to determine the overall impact on the oxidizing capacity of the free troposphere.

    Measurements of pyrogenic trace species in Boreal biomass burning plumes were made by the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS onboard the Canadian Space Agency (CSA SCISAT-1 satellite during the BORTAS campaign. Even though most biomass burning smoke is typically confined to the boundary layer, emissions are often injected directly into the upper troposphere via fire-related convective processes, thus allowing space-borne instruments to measure these pyrogenic outflows. An extensive set of 15 molecules, CH3OH, CH4, C2H2, C2H6, C3H6O, CO, HCN, HCOOH, HNO3, H2CO, NO, NO2, OCS, O3 and PAN have been analyzed. Included in this analysis is the calculation of age-dependent sets of enhancement ratios for each of the species.

  12. The influence of biomass burning on the global distribution of selected non-methane organic compounds.

    Science.gov (United States)

    Lewis, Alastair; Evans, Mathew; Hopkins, James; Punjabi, Shalini; Read, Katie; Purvis, Ruth; Andrews, Stephen; Moller, Sarah; Carpenter, Lucy; Lee, James; Rickard, Andrew; Palmer, Paul; Parrington, Mark

    2013-04-01

    Forests fires are a significant source of chemicals to the atmosphere including numerous non-methane organic compounds (NMHCs). We report airborne measurement of NMHCs, acetone and methanol from > 500 whole air samples collected over Eastern Canada, including interceptions of several different boreal biomass burning plumes. From these and concurrent measurements of carbon monoxide (CO) we derive fire emission ratios for 29 different organic species relative to the emission of CO. These range from 8.9 ± 3.2 ppt/ppb CO for methanol to 0.007 ± 0.004 ppt/ppb CO for cyclopentane. The ratios are in good to excellent agreement with literature values. Using the GEOS-Chem global 3-D chemical transport model (CTM) we show the influence of biomass burning on the global distributions of benzene, toluene, ethene and propene (species which are controlled for air quality purposes sometimes used as indicative tracers of anthropogenic activity). Using our observationally derived emission ratios and the GEOS-Chem CTM, we show that biomass burning can be the largest fractional contributor to observed benzene, toluene, ethene and propene levels in many global locations. The widespread biomass burning contribution to atmospheric benzene, a heavily regulated air pollutant, suggests that pragmatic approaches are needed when setting air quality targets as tailpipe and solvent emissions decline in developed countries. We subsequently determine the extent to which the 28 global-status World Meteorological Organisation - Global Atmosphere Watch stations worldwide are influenced by biomass burning sourced benzene, toluene, ethene and propene as compared to their exposure to anthropogenic emissions.

  13. The influence of biomass burning on the global distribution of selected non-methane organic compounds

    Directory of Open Access Journals (Sweden)

    A. C. Lewis

    2013-01-01

    Full Text Available Forests fires are a significant source of chemicals to the atmosphere including numerous non-methane organic compounds (NMOCs. We report airborne measurement of hydrocarbons, acetone and methanol from >500 whole air samples collected over Eastern Canada, including interceptions of several different boreal biomass burning plumes. From these and concurrent measurements of carbon monoxide (CO we derive fire emission ratios for 29 different organic species relative to the emission of CO. These range from 8.9 ± 3.2 ppt ppb−1 CO for methanol to 0.007 ± 0.004 ppt ppb−1 CO for cyclopentane. The ratios are in good to excellent agreement with literature values. Using the GEOS-Chem global 3-D chemical transport model (CTM we show the influence of biomass burning on the global distributions of benzene, toluene, ethene and propene (species which are controlled for air quality purposes and sometimes used as indicative tracers of anthropogenic activity. Using our observationally derived emission ratios and the GEOS-Chem CTM, we show that biomass burning can be the largest fractional contributor to observed benzene, toluene, ethene and propene levels in many global locations. The widespread biomass burning contribution to atmospheric benzene, a heavily regulated air pollutant, suggests that pragmatic approaches are needed when setting air quality targets as tailpipe and solvent emissions decline in developed countries. We subsequently determine the extent to which the 28 global-status World Meteorological Organisation – Global Atmosphere Watch stations worldwide are influenced by biomass burning sourced benzene, toluene, ethene and propene as compared to their exposure to anthropogenic emissions.

  14. Emission characteristics of black carbon in anthropogenic and biomass burning plumes over California during ARCTAS-CARB 2008

    Science.gov (United States)

    Sahu, L. K.; Kondo, Y.; Moteki, N.; Takegawa, N.; Zhao, Y.; Cubison, M. J.; Jimenez, J. L.; Vay, S.; Diskin, G. S.; Wisthaler, A.; Mikoviny, T.; Huey, L. G.; Weinheimer, A. J.; Knapp, D. J.

    2012-08-01

    The impact of aerosols on regional air quality and climate necessitates improved understanding of their emission and microphysical properties. The size distributions of black carbon (BC) and light scattering particles (LSP) were measured with a single particle soot photometer on board the NASA DC-8 aircraft during the ARCTAS mission 2008. Air sampling was made in the air plumes of both urban and forest fire emissions over California during the CARB (California Air Resources Board) phase of the mission. A total of eleven plumes were identified using SO2 and CH3CN tracers for fossil fuel (FF) combustion and biomass burning (BB), respectively. The enhancements of BC and LSP in BB plumes were significantly higher compared to those in FF plumes. The average mass concentration of BC in BB plumes was more than twice that in FF plumes. Except for the BC/CO ratio, distinct emission ratios of BC/CO2, BC/CH3CN, CH3CN/CO, and CO/CO2 were observed in the plumes from the two sources. Similarly, the microphysical properties of BC and LSP also showed distinct behaviors. The BC count median diameter (CMD) of 115 ± 5 nm in FF plumes was smaller compared to 141 ± 9 nm in the BB plumes. BC aerosols were thickly coated in BB plumes, the average shell/core ratios were 1.47 and 1.24 in BB and FF plumes, respectively. In the total mass of submicron aerosols, organic aerosols constituted about 67% in the FF plumes and 84% in BB plumes. The contribution of sulfate was also significant in the FF plumes.

  15. Emission reductions from woody biomass waste for energy as an alternative to open burning.

    Science.gov (United States)

    Springsteen, Bruce; Christofk, Tom; Eubanks, Steve; Mason, Tad; Clavin, Chris; Storey, Brett

    2011-01-01

    Woody biomass waste is generated throughout California from forest management, hazardous fuel reduction, and agricultural operations. Open pile burning in the vicinity of generation is frequently the only economic disposal option. A framework is developed to quantify air emissions reductions for projects that alternatively utilize biomass waste as fuel for energy production. A demonstration project was conducted involving the grinding and 97-km one-way transport of 6096 bone-dry metric tons (BDT) of mixed conifer forest slash in the Sierra Nevada foothills for use as fuel in a biomass power cogeneration facility. Compared with the traditional open pile burning method of disposal for the forest harvest slash, utilization of the slash for fuel reduced particulate matter (PM) emissions by 98% (6 kg PM/BDT biomass), nitrogen oxides (NOx) by 54% (1.6 kg NOx/BDT), nonmethane volatile organics (NMOCs) by 99% (4.7 kg NMOCs/BDT), carbon monoxide (CO) by 97% (58 kg CO/BDT), and carbon dioxide equivalents (CO2e) by 17% (0.38 t CO2e/BDT). Emission contributions from biomass processing and transport operations are negligible. CO2e benefits are dependent on the emission characteristics of the displaced marginal electricity supply. Monetization of emissions reductions will assist with fuel sourcing activities and the conduct of biomass energy projects. PMID:21305889

  16. Carbonaceous aerosols from prescribed burning of a boreal forest ecosystem. Revision

    Energy Technology Data Exchange (ETDEWEB)

    Mazurek, M.A. [Brookhaven National Lab., Upton, NY (United States); Cofer, W.R. III; Levine, J.S. [National Aeronautics and Space Administration, Hampton, VA (United States). Langley Research Center

    1990-10-01

    The identity and ambient mass concentrations of radiatively important carbonaceous aerosols were measured for a boreal forest prescribed burn conducted in northern Ontario, CAN in August 1989. Nonsize-segregated airborne particles were collected for smoldering-fire and full-fire conditions using a helicopter sampling platform. Total carbon (TC), organic carbon (OC) and elemental carbon (EC) were measured. Smoke plume mass concentrations of the OC and EC particles were greatest for full-fire conditions and had ranges of 1.560 to 2.160 mg/m{sup {minus}1} (OC) and 0.120 to 0.160 mg/m{sup {minus}3} (EC) with OC:EC ratios of 10 to 18, respectively. Smoldering fire conditions showed smoke plume OC and EC levels of 0.570--1.030 mg/m{sup {minus}3} (OC) and 0.006--0.050 mg/m{sup {minus}3} (EC) and much higher ratios of OC:EC (21 to 95). These aerosol data indicate the formation of EC particles is greatest during full-fire combustion of boreal forest material relative to smoldering combustion. However, EC particles comprise a minor fraction of the particulate carbon smoke aerosols for both full-fire and smoldering conditions; the major component of carbonaceous smoke aerosols emitted during the prescribed burn is OC. Overall, the OC and EC in-plume smoke aerosol data show nonuniform production of these particles during various stages of the prescribed burn, and major differences in the type of carbonaceous aerosol that is generated (OC versus EC).

  17. Contribution of biomass burning to atmospheric polycyclic aromatic hydrocarbons at three European background sites

    Energy Technology Data Exchange (ETDEWEB)

    Manolis Mandalakis; Oerjan Gustafsson; Tomas Alsberg; Anna-Lena Egebaeck; Christopher M. Reddy; Li Xu; Jana Klanova; Ivan Holoubek; Euripides G. Stephanou [Stockholm University, Stockholm (Sweden). Department of Applied Environmental Science (ITM)

    2005-05-01

    Radiocarbon analysis of atmospheric polycyclic aromatic hydrocarbons (PAHs) from three background areas in Sweden, Croatia, and Greece was performed to apportion their origin between fossil and biomass combustion. Diagnostic ratios of PAHs implied that wood and coal combustion was relatively more important in the northern European site, while combustion of fossil fuels was the dominant source of PAHs to the two central-southern European background sites. The radiocarbon content ({Delta}{sup 14}C) of atmospheric PAHs in Sweden ranged between -388{per_thousand} and -381{per_thousand}, while more depleted values were observed for Greece (-914{per_thousand}) and Croatia (-888{per_thousand}). Using a 14C isotopic mass balance model it was calculated that biomass burning contributes nearly 10% of the total PAH burden in the studied southern European atmosphere with fossil fuel combustion making up the 90% balance. In contrast, biomass burning contributes about 50% of total PAHs in the atmosphere at the Swedish site. Results suggest that the relative contributions of biomass burning and fossil fuels to atmospheric PAHs may differ considerably between countries, and therefore, different national control strategies might be needed if a further reduction of these pollutants is to be achieved on a continental-global scale. 54 refs., 2 figs., 1 tab.

  18. Aqueous-phase photochemical oxidation and direct photolysis of vanillin - a model compound of methoxy phenols from biomass burning

    Science.gov (United States)

    Li, Y. J.; Huang, D. D.; Cheung, H. Y.; Lee, A. K. Y.; Chan, C. K.

    2014-03-01

    We present here experimental results on aqueous-phase (A) photochemical oxidation (with UV and OH radicals generated from H2O2 photolysis) and (B) direct photolysis (with only UV irradiation) of a methoxy phenol, vanillin (VL), as a model compound from biomass burning. Both on-line aerosol mass spectrometric (AMS) characterization and off-line chemical analyses were performed. AMS analyses of dried atomized droplets of the bulk reacting mixtures showed that VL almost entirely evaporates during the drying process. Large amounts of organic mass remained in the particle phase after reactions under both conditions. Under condition (A), AMS measured organic mass first increased rapidly and then decreased, attributable to the formation of non-volatile products and subsequent formation of smaller and volatile products, respectively. The oxygen-to-carbon (O : C) ratio of the products reached 1.5 after about 80 min, but dropped substantially thereafter. In contrast, organic mass increased slowly under condition (B). The O : C ratio reached 1.0 after 180 min. In off-line analyses, small oxygenates were detected under condition (A), while hydroxylated products and dimers of VL were detected under condition (B). Particle hygroscopic growth factor (GF) and cloud condensation nuclei (CCN) activity of the reacting mixtures were found to depend on both organic volume fraction and the degree of oxygenation of organics. Results show that (1) aqueous-phase processes can lead to the retention of a large portion of the organic mass in the particle phase; (2) once retained, this portion of organic mass significantly changes the hygroscopicity and CCN activity of the aerosol particles; (3) intensive photochemical oxidation gave rise to an O : C ratio as high as 1.5 but the ratio decreased as further oxidation led to smaller and more volatile products; and (4) polymerization occurred with direct photolysis, resulting in high-molecular-weight products of a yellowish color. This study

  19. Aqueous-phase photochemical oxidation and direct photolysis of vanillin - a model compound of methoxy-phenols from biomass burning

    Science.gov (United States)

    Li, Y. J.; Huang, D. D.; Cheung, H. Y.; Lee, A. K. Y.; Chan, C. K.

    2013-10-01

    We present here experimental results on aqueous-phase (A) photochemical oxidation (with UV and OH radicals generated from H2O2 photolysis) and (B) direct photolysis (with only UV irradiation) of a methoxy-phenol, vanillin (VL), as a model compound from biomass burning. Both on-line aerosol mass spectrometric (AMS) characterization and off-line chemical analyses were performed. AMS analyses of dried atomized droplets of the bulk reacting mixtures showed that VL almost entirely evaporates during the drying process. Large amounts of organic mass remained in the particle phase after reactions under both conditions. Under condition (A), AMS measured organic mass first increased rapidly and then decreased, attributable to the formation of non-volatile products and subsequent formation of smaller and volatile products, respectively. The oxygen-to-carbon (O:C) ratio of the products reached 1.5 after about 80 min, but dropped substantially thereafter. In contrast, organic mass increased slowly under condition (B). The O:C ratio reached 1.0 after 180 min. In off-line analyses, small oxygenates were detected under condition (A), while hydroxylated products and dimers of VL were detected under condition (B). Particle hygroscopic growth factor (GF) and cloud condensation nuclei (CCN) activity of the reacting mixtures were found to be dependent on both organic volume fraction and the degree of oxygenation of organics. Results show that (1) aqueous-phase processes can lead to the retention of a large portion of the organic mass in the particle phase; (2) once retained, this portion of organic mass significantly changes the hygroscopicity and CCN activity of the aerosol particles; (3) intensive photochemical oxidation gave rise to an O:C ratio as high as 1.5 but the ratio decreased as further oxidation led to smaller and more volatile products; and (4) polymerization occurred with direct photolysis, resulting in high-molecular-weight products of a yellowish color. This study

  20. Exploring links between biomass burning smoke and tornado likelihood: From regional to large-eddy scale simulations

    Science.gov (United States)

    Saide, P. E.; Thompson, G.; Eidhammer, T.; da Silva, A. M., Jr.; Pierce, R. B.; Carmichael, G. R.

    2015-12-01

    Biomass burning smoke from Central America can have the potential to enhance the likelihood of tornado occurrence and intensity in the SE US by changing the environment where tornadic storms form (Saide et al., GRL 2015). In this presentation we build over this study to further our understanding of these interactions on multiple dimensions: 1) Biomass burning smoke emissions are constrained using an inverse modeling technique to improve the representation of smoke loads and its impacts, 2) The representation of these smoke-tornado interactions are assessed when using a simplified aerosol scheme with the intent of introducing these feedbacks into numerical weather prediction in the future, 3) The occurrence of these interactions is investigated for other tornado outbreaks on the record to learn about their frequency and under what conditions they occur, and 4) Multi-scale simulations are performed from regional to tornado-resolving scales to assess the impact of smoke on the number of tornadoes formed and their EF intensity. Future steps will also be discussed. The image below shows MODIS-Aqua satellite products for 27 April 2011 over the southeast US, Central America and the Gulf of Mexico (GoM), along with tornado tracks (red solid lines, thickness indicates the magnitude of the tornado reports , thickest=5, thinnest=1) for the period from April 26-28. The background is a true color image of the surface, clouds, and smoke, with yellow markers indicating fire detections and an iridescent overlay showing aerosol optical depth (AOD). Red, green and purple colors show high (1.0), medium (0.6) and low (0.1) AOD values. The article by Saide et al. (2015) shows that the increase in aerosol loads in the GoM is produced by fires in Central America, and this smoke is further transported to the southeast US where it can interact with clouds and radiation producing environmental conditions more favorable to significant tornado occurrence for the historical outbreak on 27

  1. Emissions of N2O from the burning of biomass in an experimental system

    International Nuclear Information System (INIS)

    Fifteen experiments were conducted in an open burning system to determine the amounts of N2O produced from burning savanna grass (Venezuelan Trachypogon, Australian Sorghum intrans), straw, hay, oak, pine needles and litter of pine forest. Samples in stainless steel canisters were analyzed within one day after sampling in order to avoid artifact N2O formation during storage. Emissions of N2O were observed to be nearly coincident with the emissions of CO2 during the burning period for all the experiments. The amount of N2O produced was dependent on the nitrogen content of the biomass. About 0.7% of the fuel nitrogen was oxidized to N2O and most of the N2O was formed during the flaming stage. Using the experimental data and the amounts of different types of vegetation burned globally per year, the authors estimate that about 2.7 x 1011 g of N2O-N are produced per year from burning biomass, contributing only 2% to the global source of N2O

  2. Domestic biomass burning in rural and urban Zimbabwe: Pt. A

    International Nuclear Information System (INIS)

    A questionnaire survey, to estimate biofuel consumption rates in rural and urban households in Zimbabwe, was conducted during the months of March and April 1995. The survey formed part of an integrated campaign aimed at establishing the extent to which domestic biofuel burning in Africa contributes to the atmospheric trace gas budget. Five study areas, four rural and one urban, were covered by the survey. The forms of biofuel used in rural areas were found to be wood, agricultural residues and cow dung, with wood being predominant. When available, agricultural residues were the second most popular form of fuel. Cow dung was only used in situations of severe fuel shortages. On average, rural consumption rates of wood, agricultural residues and cow dung for this time of the year were found to be 3.2, 1.5 and 0.2 kg/capita/day respectively. Wood and agricultural residues were the only biofuels used by urban households and were consumed at rates of 1.6 and > 0.1 kg/capitaday respectively. Across the study areas, consumption rates were a function of fuel availability. (author)

  3. Impact of biomass burning on urban air quality estimated by organic tracers: Guangzhou and Beijing as cases

    Energy Technology Data Exchange (ETDEWEB)

    Qiaoqiao Wang; Min Shao; Ying Liu [State Joint Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences, Peking University, Beijing 100871, (China); Kuster, William; Goldan, Paul [Earth System Research Laboratory, U.S. Department of Commerce, Boulder, CO 80305, (United States); Xiaohua Li; Yuan Liu; Sihua Lu [State Joint Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences, Peking University, Beijing 100871, (China)

    2007-12-15

    The impacts of biomass burning have not been adequately studied in China. In this work, chemical compositions of volatile organic compounds and particulate organic matters were measured in August 2005 in Beijing and in October 2004 in Guangzhou city. The performance of several possible tracers for biomass burning is compared by using acetonitrile as a reference compound. The correlations between the possible tracers and acetonitrile show that the use of K{sup +} as a tracer could result in bias because of the existence of other K+ sources in urban areas, while chloromethane is not reliable due to its wide use as industrial chemical. The impact of biomass burning on air quality is estimated using acetonitrile and levoglucosan as tracers. The results show that the impact of biomass burning is ubiquitous in both suburban and urban Guangzhou, and the frequencies of air pollution episodes significantly influenced by biomass burning were 100% for Xinken and 58% for downtown Guangzhou city. Fortunately, the air quality in only 2 out of 22 days was partly impacted by biomass burning in August in Beijing, the month that 2008 Olympic games will take place. The quantitative contribution of biomass burning to ambient PM{sub 2.5} concentrations in Guangzhou city was also estimated by the ratio of levoglocusan to PM{sub 2.5} in both the ambient air and biomass burning plumes. The results show that biomass burning contributes 3.02013;16.8% and 4.02013;19.0% of PM{sub 2.5} concentrations in Xinken and Guangzhou downtown, respectively. (Author).

  4. Impact of biomass burning on urban air quality estimated by organic tracers: Guangzhou and Beijing as cases

    Energy Technology Data Exchange (ETDEWEB)

    Qiaoqiao Wang; Min Shao; Ying Liu [State Joint Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences, Peking University, Beijing 100871, (China); Kuster, William; Goldan, Paul [Earth System Research Laboratory, U.S. Department of Commerce, Boulder, CO 80305, (United States); Xiaohua Li; Yuan Liu; Sihua Lu [State Joint Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences, Peking University, Beijing 100871, (China)

    2007-12-15

    The impacts of biomass burning have not been adequately studied in China. In this work, chemical compositions of volatile organic compounds and particulate organic matters were measured in August 2005 in Beijing and in October 2004 in Guangzhou city. The performance of several possible tracers for biomass burning is compared by using acetonitrile as a reference compound. The correlations between the possible tracers and acetonitrile show that the use of K{sup +} as a tracer could result in bias because of the existence of other K+ sources in urban areas, while chloromethane is not reliable due to its wide use as industrial chemical. The impact of biomass burning on air quality is estimated using acetonitrile and levoglucosan as tracers. The results show that the impact of biomass burning is ubiquitous in both suburban and urban Guangzhou, and the frequencies of air pollution episodes significantly influenced by biomass burning were 100% for Xinken and 58% for downtown Guangzhou city. Fortunately, the air quality in only 2 out of 22 days was partly impacted by biomass burning in August in Beijing, the month that 2008 Olympic games will take place. The quantitative contribution of biomass burning to ambient PM{sub 2.5} concentrations in Guangzhou city was also estimated by the ratio of levoglocusan to PM{sub 2.5} in both the ambient air and biomass burning plumes. The results show that biomass burning contributes 3.02013;16.8% and 4.02013;19.0% of PM{sub 2.5} concentrations in Xinken and Guangzhou downtown, respectively. (Author)

  5. The impact of diverse types of biomass burning in a tropical country

    Science.gov (United States)

    Yokelson, R. J.; Burling, I. R.; Urbanski, S. P.; Christian, T. J.; Atlas, E. L.; Wiedinmyer, C.; Akagi, S. K.; Engling, G.

    2010-12-01

    We couple laboratory work, airborne and ground-based field measurements, remote sensing of fires, and modeling to assess the impact of diverse types of biomass burning (BB) in Mexico as a model tropical country. About 70-80% of open BB occurs in the tropics along with large amounts of biofuel use and garbage burning (GB); both in rural and urban areas. During the Mexican dry season two instrumented aircraft measured emission factors (EF) from 57 fires including crop residue, tropical forest deforestation, pine forest, and savanna fires and GB. A mobile ground-based lab sampled 22 fires including GB, crop residue and cooking fires, and brick/charcoal-making kilns. The Fire INventory from NCAR (FINN) model calculates that open BB consumes 96 Tg of biomass in Mexico in a typical year and an estimated 68 Tg of biofuel is also consumed in Mexico in an average year. The fuel consumption estimates, coupled with our field-measured EF, indicate that the total BB emissions of CO and primary PM2.5 exceed those from fossil fuel (FF) use in Mexico by factors of about 1.4 and 40-50, respectively. Coupling recent laboratory measurements of the amount of unidentified non-methane organic compounds (NMOC) emitted by BB with our field measurements of identified species suggests that the mass ratio of gas-phase NMOC to PM2.5 is > 5 in fresh BB plumes. This indicates high potential for secondary organic aerosol (SOA) formation. Rapid formation of both SOA and ozone was observed in the one plume that could be sampled both at the source and downwind in the airborne measurements. The SOA production may be common since visual observations and forward trajectories suggest that the plumes from most open BB in Mexico dilute in the boundary layer; which often has high levels of organics and high RH. Mexico City may be most frequently affected by open BB in the surrounding pine-oak forest, which may have enhanced NOx emissions due to deposition of urban pollutants. Mexico City is also commonly

  6. Sahara dust, ocean spray, volcanoes, biomass burning: pathways of nutrients into Andean rainforests

    Directory of Open Access Journals (Sweden)

    P. Fabian

    2009-10-01

    Full Text Available Regular rain and fogwater sampling in the Podocarpus National Park, on the humid eastern slopes of the Ecuadorian Andes, along an altitude profile between 1960 and 3180 m, has been carried out since 2002. The samples, accumulated over about 1-week intervals, were analysed for pH, conductivity and major ions (K+, Na+, NH4+, Ca2+, Mg2+, Cl, SO42−, NO3, PO43−.

    About 35% of the weekly samples had very low ion contents, with pH mostly above 5 and conductivity below 10 μS/cm. 10-days back trajectories (FLEXTRA showed that respective air masses originated in pristine continental areas, with little or no obvious pollution sources.

    About 65%, however, were significantly loaded with cations and anions, with pH as low as 3.5 to 4.0 and conductivity up to 50 μS/cm. The corresponding back trajectories clearly showed that air masses had passed over areas of intense biomass burning, active volcanoes, and the ocean, with episodic Sahara and/or Namib desert dust interference.

    Enhanced SO42− and NO3+ were identified, by combining satellite-based fire pixel observations with back trajectories, as predominantly resulting from biomass burning. Analyses of oxygen isotopes 16O, 17O, and 18O in nitrate show that nitrate in the samples is indeed a product of atmospheric conversion of precursors. Some SO42−, about 10% of the total input, could be identified to originate from active volcanoes, whose plumes were encountered by about 10% of all trajectories.

    Enhanced Na+, K+, and Cl were found to originate from ocean spray sources. They were associated with winds providing Atlantic air masses to the receptor site within less than 5 days. Episodes of

  7. Aircraft Observations into the Characteristics of Biomass Burning Instigated 'Regional Haze' Over the Amazon during the SAMBBA Campaign

    Science.gov (United States)

    Darbyshire, Eoghan

    2013-04-01

    E. J. N. Darbyshire, J. D. Allan, M. Flynn, W. T. Morgan, A. Hodgson, B. T. Johnson, J. M. Haywood, K. Longo, P. Artaxo and H. Coe Aerosols associated with large scale Biomass Burning (BB) impact upon weather and climate at global and regional scales. However, quantitative evaluation of these effects is impeded by i) a limited understanding of BB processes and ii) a lack of quantitative knowledge of precise BB aerosol physiochemical characteristics, thus resulting in large model uncertainties. One region where these uncertainties are especially manifest is the Amazon Basin (AzB). Intense and widespread burning results in high atmospheric loadings of BB aerosol, which over the course of the dry season develops into a so-called 'regional haze'. This cloaks the AzB in a complex and inhomogeneous mix of BB emissions, characterized by large Aerosol Optical Depths (>1), low visibility and poor air quality. This haze has a substantial impact on the radiation budget over the AzB through direct scattering/absorption and indirect cloud microphysics effects. In order to best constrain the model uncertainties, and given the scale of the AzB earth-atmosphere system, an intensive observation campaign by multiple international institutions was instigated in the South American Biomass Burning Analyses (SAMBBA) project. The findings reported here are from the SAMBBA aircraft campaign, conducted during the 2012 dry season using the large UK research aircraft (FAAM BAe-146). The dense (high AOD), persistent haze expected throughout the campaign was only present for the first five or so days, due to removal via washout/transportation associated with large storms. For the remaining period, a haze was present but much reduced in area and intensity (mostly AOD's rainforest in Rhondonia and Cerrado agricultural fires in Mato Grosso. Thus, the ten (of twenty) SAMMBA flights that encountered haze, sampled from a diversity of haze types. The haze was sampled using the standard

  8. Oxidative potential of smoke from burning wood and mixed biomass fuels.

    Science.gov (United States)

    Kurmi, O P; Dunster, C; Ayres, J G; Kelly, F J

    2013-10-01

    More than half the world's population still rely on burning biomass fuels to heat and light their homes and cook food. Household air pollution, a common component of which is inhalable particulate matter (PM), emitted from biomass burning is associated with increased vulnerability to respiratory infection and an enhanced risk of developing chronic obstructive pulmonary disease. In the light of an emerging hypothesis linking chronic PM exposure during childhood and increased vulnerability to respiratory diseases in adulthood, in a chain of events involving oxidative stress, reduced immunity and subsequent infection, the aim of this study was to characterise the oxidative potential (OP) of PM collected during the burning of wood and mixed biomass, whilst cooking food in the Kathmandu Valley, Nepal. Our assessments were based on the capacity of the particles to deplete the physiologically relevant antioxidants from a validated, synthetic respiratory tract lining fluid (RTLF). Incubation of mixed biomass and wood smoke particles suspensions with the synthetic RTLF for 4 h resulted in a mean loss of ascorbate of 64.76 ± 16.83% and 83.37 ± 14.12% at 50 μg/ml, respectively. Reduced glutathione was depleted by 49.29 ± 15.22% in mixed biomass and 65.33 ± 13.01% in wood smoke particles under the same conditions. Co-incubation with the transition metal chelator diethylenetriaminepentaacetate did not inhibit the rate of ascorbate oxidation, indicating a negligible contribution by redox-active metals in these samples. The capacity of biomass smoke particles to elicit oxidative stress certainly has the potential to contribute towards negative health impacts associated with traditional domestic fuels in the developing world. PMID:23926954

  9. Measurements of reactive trace gases and variable O3 formation rates in some South Carolina biomass burning plumes

    Directory of Open Access Journals (Sweden)

    D. W. T. Griffith

    2012-09-01

    Full Text Available In October–November 2011 we measured trace gas emission factors from seven prescribed fires in South Carolina (SC,