WorldWideScience

Sample records for biomass alternate fueling

  1. Synthetic and Biomass Alternate Fueling in Aviation

    Science.gov (United States)

    Hendricks, Robert C.; Bushnell, Dennis M.

    2009-01-01

    Must use earth's most abundant natural resources - Biomass, Solar, Arid land (43%), Seawater (97%) with nutrients (80%) plus brackish waters and nutrients resolve environmental triangle of conflicts energy-food-freshwater and ultrafine particulate hazards. Requires Paradigm Shift - Develop and Use Solar* for energy; Biomass for aviation and hybrid-electric-compressed air mobility fueling with transition to hydrogen long term.

  2. Synthetic and Biomass Alternate Fueling in Aviation

    Science.gov (United States)

    Hendricks, R. C.; Bushnell, D. M.

    2009-01-01

    While transportation fueling can accommodate a broad range of alternate fuels, aviation fueling needs are specific, such as the fuel not freezing at altitude or become too viscous to flow properly or of low bulk energy density that shortens range. The fuel must also be compatible with legacy aircraft, some of which are more than 50 years old. Worldwide, the aviation industry alone uses some 85-95 billion gallons of hydrocarbon-based fossil fuel each year, which is about 10% of the transportation industry. US civil aviation alone consumes nearly 14 billion gallons. The enormity of the problem becomes overwhelming, and the aviation industry is taking alternate fueling issues very seriously. Biofuels (algae, cyanobacteria, halophytes, weeds that use wastelands, wastewater and seatwater), when properly sourced, have the capacity to be drop-in fuel replacements for petroleum fuels. As such, biojet from such sources solves the aviation CO2 emissions issue without the downsides of 'conventional' biofuels, such as competing with food and fresh water resources. Of the many current fundamental problems, the major biofuel problem is cost. Both research and development and creative engineering are required to reduce these biofuels costs. Research is also ongoing in several 'improvement' areas including refining/processing and biologics with greater disease resistance, greater bio-oil productivity, reduced water/nutrient requirements, etc. The authors' current research is aimed at aiding industry efforts in several areas. They are considering different modeling approaches, growth media and refining approaches, different biologic feedstocks, methods of sequestering carbon in the processes, fuel certification for aviation use and, overall, ensuring that biofuels are feasible from all aspects - operability, capacity, carbon cycle and financial. The authors are also providing common discussion grounds/opportunities for the various parties, disciplines and concerned organization to

  3. Biomass - alternative renewable energy source to the fossil fuels

    Directory of Open Access Journals (Sweden)

    Koruba Dorota

    2017-01-01

    Full Text Available The article presents the fossil fuels combustion effects in terms of the dangers of increasing CO2 concentration in the atmosphere. Based on the bibliography review the negative impact of increased carbon dioxide concentration on the human population is shown in the area of the external environment, particularly in terms of the air pollution and especially the impact on human health. The paper presents biomass as the renewable energy alternative source to fossil fuels which combustion gives a neutral CO2 emissions and therefore should be the main carrier of primary energy in Poland. The paper presents the combustion heat results and humidity of selected dry wood pellets (pellets straw, energy-crop willow pellets, sawdust pellets, dried sewage sludge from two sewage treatment plants of the Holly Cross province pointing their energy potential. In connection with the results analysis of these studies the standard requirements were discussed (EN 14918:2010 “Solid bio-fuels-determination of calorific value” regarding the basic parameters determining the biomass energy value (combustion heat, humidity.

  4. Hydropyrolysis of biomass to produce liquid hydrocarbon fuels. Final report. Biomass Alternative-Fuels Program

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, R K; Bodle, W W; Yuen, P C

    1982-10-01

    The ojective of the study is to provide a process design and cost estimates for a biomass hydropyrolysis plant and to establish its economic viability for commercial applications. A plant site, size, product slate, and the most probable feedstock or combination of feedstocks were determined. A base case design was made by adapting IGT's HYFLEX process to Hawaiian biomass feedstocks. The HYFLEX process was developed by IGT to produce liquid and/or gaseous fuels from carbonaceous materials. The essence of the process is the simultaneous extraction of valuable oil and gaseous products from cellulosic biomass feedstocks without forming a heavy hard-to-handle tar. By controlling rection time and temperature, the product slate can be varied according to feedstock and market demand. An optimum design and a final assessment of the applicability of the HYFLEX process to the conversion of Hawaiian biomass was made. In order to determine what feedstocks could be available in Hawaii to meet the demands of the proposed hydropyrolysis plant, various biomass sources were studied. These included sugarcane and pineapple wastes, indigenous and cultivated trees and indigenous and cultivated shrubs and grasses.

  5. Biomass pyrolysis: use of some agricultural wastes for alternative fuel production

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Lygia Maestri; Santos, Larissa Cardoso; Vieira, Paula Fraga; Parreira, Priciane Martins; Henrique, Humberto Molinar, E-mail: lygiamk@gmail.com, E-mail: larinha_cardoso@yahoo.com.br, E-mail: paulavieira88@gmail.com, E-mail: priciane.mp@bol.com.br, E-mail: humberto@ufu.br [Universidade Federal de Uberlandia (UFU), MG (Brazil). Faculdade de Engenharia Quimica

    2009-07-01

    The use of biomass for energy generation has aroused great attention and interest because of the global climate changes, environmental pollution and reduction of availability of fossil energy. This study deals with pyrolysis of four agricultural wastes (sawdust, sugarcane straw, chicken litter and cashew nut shell) in a fixed bed pyrolytic reactor. The yields of char, liquid and gas were quantified at 300, 400, 500, 600 and 700 deg C and the temperature and pressure effects were investigated. Pyrolytic liquids produced were separated into aqueous and oil phases. XRF spectroscopy was used for qualitative and quantitative elemental analysis of the liquids and solids produced at whole temperature range. Calorific value analysis of liquids and solids were also performed for energy content evaluation. Experimental results showed sawdust, sugarcane straw and cashew nut waste have very good potential for using in pyrolysis process for alternative fuel production. (author)

  6. EXPERIMENTAL STUDY OF PALM OIL MILL EFFLUENT AND OIL PALM FROND WASTE MIXTURE AS AN ALTERNATIVE BIOMASS FUEL

    Directory of Open Access Journals (Sweden)

    S. HASSAN, L. S. KEE

    2013-12-01

    Full Text Available Palm oil mill effluent (POME sludge generated from palm oil mill industry and oil palm frond (OPF from oil palm plantation are considered biomass wastes that can be fully utilized as a renewable energy sources. In this study, an attempt has been made to convert these residues into solid biomass fuel. The study was conducted by developing experimental testing on the POME and OPF mixture. The performance of each sample with different weight percentage was investigated using standard tests. The biomass mixture was converted into compressed form of briquette through a simple process. The properties of the briquettes were observed and compared at different weight percentage following standard testing methods included ultimate and proximate analyses, burning characteristics, dimensional stability and crack analysis. Experimental results showed that POME sludge and OPF mixture is feasible as an alternative biomass fuel, with briquette of 90:10 POME sludge to OPF ratio has a good combination of properties as an overall.

  7. Ash Properties of Alternative Biomass

    DEFF Research Database (Denmark)

    Capablo, Joaquin; Jensen, Peter Arendt; Pedersen, Kim Hougaard

    2009-01-01

    The ash behavior during suspension firing of 12 alternative solid biofuels, such as pectin waste, mash from a beer brewery, or waste from cigarette production have been studied and compared to wood and straw ash behavior. Laboratory suspension firing tests were performed on an entrained flow...... analysis into three main groups depending upon their ash content of silica, alkali metal, and calcium and magnesium. To further detail the biomass classification, the relative molar ratio of Cl, S, and P to alkali were included. The study has led to knowledge on biomass fuel ash composition influence...... on ash transformation, ash deposit flux, and deposit chlorine content when biomass fuels are applied for suspension combustion....

  8. Fuels made from agricultural biomass - (biogas) alternative types(Alternativne vrste goriva iz poljoprivredne biomase - biogas)

    OpenAIRE

    Jovanovska, Vangelica; Jovanovski, Nikola; Sovreski, Zlatko; Pop-Andonov, Goran; Sinani, Feta

    2013-01-01

    Biogas is a typical "product" of urban discharges, which has a great negative environmental impact. To avoid this negative effect, it can be burnt at very high temperatures, producing smoke emissions composed of CO2. A useful alternative is to use biogas as fuel to feed co-generation plants, producing electricity. At the moment biogas is used as fuel, introducing it directly in the combustion chamber. Nevertheless the heterogeneity of the gas stresses the engine, reducing its life. The new te...

  9. Gasohol - Analysis and biomass alternatives

    Science.gov (United States)

    1980-11-01

    The economics of fermentation ethanol as a near-term alternative to liquid hydrocarbon fuels are analyzed and alternatives to grain-fermented ethanol are examined. Based on estimates of raw material and production costs and energy consumption, it is shown that net production costs for alcohol fuel from corn amount to $2.14/gallon, with no significant net consumption or gain in energy. It is also pointed out that the use of grain for alcohol production will influence quantities available for livestock production and export, and that land available for grain production is limited. Consideration is then given to the economic potential of using cellulosic biomass from agricultural and forest residues in the production of ethanol fuels and coal gasification for methanol production, and it is pointed out that these alternatives offer economic, energy and oil-savings advantages over ethanol production from grains.

  10. Producing liquid fuels from biomass

    Science.gov (United States)

    Solantausta, Yrjo; Gust, Steven

    The aim of this survey was to compare, on techno-economic criteria, alternatives of producing liquid fuels from indigenous raw materials in Finland. Another aim was to compare methods under development and prepare a proposal for steering research related to this field. Process concepts were prepared for a number of alternatives, as well as analogous balances and production and investment cost assessments for these balances. Carbon dioxide emissions of the alternatives and the price of CO2 reduction were also studied. All the alternatives for producing liquid fuels from indigenous raw materials are utmost unprofitable. There are great differences between the alternatives. While the production cost of ethanol is 6 to 9 times higher than the market value of the product, the equivalent ratio for substitute fuel oil produced from peat by pyrolysis is 3 to 4. However, it should be borne in mind that the technical uncertainties related to the alternatives are of different magnitude. Production of ethanol from barley is of commercial technology, while biomass pyrolysis is still under development. If the aim is to reach smaller carbon dioxide emissions by using liquid biofuels, the most favorable alternative is pyrolysis oil produced from wood. Fuels produced from cultivated biomass are more expensive ways of reducing CO2 emissions. Their potential of reducing CO2 emissions in Finland is insignificant. Integration of liquid fuel production to some other production line is more profitable.

  11. Alternative Fuels: Research Progress

    Directory of Open Access Journals (Sweden)

    Maher A.R. Sadiq Al-Baghdadi

    2013-01-01

    Full Text Available Chapter 1: Pollutant Emissions and Combustion Characteristics of Biofuels and Biofuel/Diesel Blends in Laminar and Turbulent Gas Jet Flames. R. N. Parthasarathy, S. R. Gollahalli Chapter 2: Sustainable Routes for The Production of Oxygenated High-Energy Density Biofuels from Lignocellulosic Biomass. Juan A. Melero, Jose Iglesias, Gabriel Morales, Marta Paniagua Chapter 3: Optical Investigations of Alternative-Fuel Combustion in an HSDI Diesel Engine. T. Huelser, M. Jakob, G. Gruenefeld, P. Adomeit, S. Pischinger Chapter 4: An Insight into Biodiesel Physico-Chemical Properties and Exhaust Emissions Based on Statistical Elaboration of Experimental Data. Evangelos G. Giakoumis Chapter 5: Biodiesel: A Promising Alternative Energy Resource. A.E. Atabani Chapter 6: Alternative Fuels for Internal Combustion Engines: An Overview of the Current Research. Ahmed A. Taha, Tarek M. Abdel-Salam, Madhu Vellakal Chapter 7: Investigating the Hydrogen-Natural Gas Blends as a Fuel in Internal Combustion Engine. ?lker YILMAZ Chapter 8: Conversion of Bus Diesel Engine into LPG Gaseous Engine; Method and Experiments Validation. M. A. Jemni , G. Kantchev , Z. Driss , R. Saaidia , M. S. Abid Chapter 9: Predicting the Combustion Performance of Different Vegetable Oils-Derived Biodiesel Fuels. Qing Shu, ChangLin Yu Chapter 10: Production of Gasoline, Naphtha, Kerosene, Diesel, and Fuel Oil Range Fuels from Polypropylene and Polystyrene Waste Plastics Mixture by Two-Stage Catalytic Degradation using ZnO. Moinuddin Sarker, Mohammad Mamunor Rashid

  12. The Mississippi University Research Consortium for the Utilization of Biomass: Production of Alternative Fuels from Waste Biomass Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Drs. Mark E. Zapp; Todd French; Lewis Brown; Clifford George; Rafael Hernandez; Marvin Salin (from Mississippie State University); Drs. Huey-Min Hwang, Ken Lee, Yi Zhang; Maria Begonia (from Jackson State University); Drs. Clint Williford; Al Mikell (from the University of Mississippi); Drs. Robert Moore; Roger Hester (from the University of Southern Mississippi).

    2009-03-31

    The Mississippi Consortium for the Utilization of Biomass was formed via funding from the US Department of Energy's EPSCoR Program, which is administered by the Office of Basic Science. Funding was approved in July of 1999 and received by participating Mississippi institutions by 2000. The project was funded via two 3-year phases of operation (the second phase was awarded based on the high merits observed from the first 3-year phase), with funding ending in 2007. The mission of the Consortium was to promote the utilization of biomass, both cultured and waste derived, for the production of commodity and specialty chemicals. These scientific efforts, although generally basic in nature, are key to the development of future industries within the Southeastern United States. In this proposal, the majority of the efforts performed under the DOE EPSCoR funding were focused primarily toward the production of ethanol from lignocellulosic feedstocks and biogas from waste products. However, some of the individual projects within this program investigated the production of other products from biomass feeds (i.e. acetic acid and biogas) along with materials to facilitate the more efficient production of chemicals from biomass. Mississippi is a leading state in terms of raw biomass production. Its top industries are timber, poultry production, and row crop agriculture. However, for all of its vast amounts of biomass produced on an annual basis, only a small percentage of the biomass is actually industrially produced into products, with the bulk of the biomass being wasted. This situation is actually quite representative of many Southeastern US states. The research and development efforts performed attempted to further develop promising chemical production techniques that use Mississippi biomass feedstocks. The three processes that were the primary areas of interest for ethanol production were syngas fermentation, acid hydrolysis followed by hydrolyzate fermentation, and

  13. The Mississippi University Research Consortium for the Utilization of Biomass: Production of Alternative Fuels from Waste Biomass Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Drs. Mark E. Zapp; Todd French; Lewis Brown; Clifford George; Rafael Hernandez; Marvin Salin (from Mississippie State University); Drs. Huey-Min Hwang, Ken Lee, Yi Zhang; Maria Begonia (from Jackson State University); Drs. Clint Williford; Al Mikell (from the University of Mississippi); Drs. Robert Moore; Roger Hester (from the University of Southern Mississippi).

    2009-03-31

    The Mississippi Consortium for the Utilization of Biomass was formed via funding from the US Department of Energy's EPSCoR Program, which is administered by the Office of Basic Science. Funding was approved in July of 1999 and received by participating Mississippi institutions by 2000. The project was funded via two 3-year phases of operation (the second phase was awarded based on the high merits observed from the first 3-year phase), with funding ending in 2007. The mission of the Consortium was to promote the utilization of biomass, both cultured and waste derived, for the production of commodity and specialty chemicals. These scientific efforts, although generally basic in nature, are key to the development of future industries within the Southeastern United States. In this proposal, the majority of the efforts performed under the DOE EPSCoR funding were focused primarily toward the production of ethanol from lignocellulosic feedstocks and biogas from waste products. However, some of the individual projects within this program investigated the production of other products from biomass feeds (i.e. acetic acid and biogas) along with materials to facilitate the more efficient production of chemicals from biomass. Mississippi is a leading state in terms of raw biomass production. Its top industries are timber, poultry production, and row crop agriculture. However, for all of its vast amounts of biomass produced on an annual basis, only a small percentage of the biomass is actually industrially produced into products, with the bulk of the biomass being wasted. This situation is actually quite representative of many Southeastern US states. The research and development efforts performed attempted to further develop promising chemical production techniques that use Mississippi biomass feedstocks. The three processes that were the primary areas of interest for ethanol production were syngas fermentation, acid hydrolysis followed by hydrolyzate fermentation, and

  14. Special Issue: Aviation Alternative Fuels

    Directory of Open Access Journals (Sweden)

    Yang Zhang

    2014-12-01

    Full Text Available The investigation of aviation alternative fuels has increased significantly in recent years in an effort to reduce the environment and climate impact by aviation industry. Special requirements have to be met for qualifying as a suitable aviation fuel. The fuel has to be high in energy content per unit of mass and volume, thermally stable and avoiding freezing at low temperatures. There are also many other special requirements on viscosity, ignition properties and compatibility with the typical aviation materials. There are quite a few contending alternative fuels which can be derived from coal, natural gas and biomass.[...

  15. Alternate-Fueled Flight: Halophytes, Algae, Bio-, and Synthetic Fuels

    Science.gov (United States)

    Hendricks, R. C.

    2012-01-01

    Synthetic and biomass fueling are now considered to be near-term aviation alternate fueling. The major impediment is a secure sustainable supply of these fuels at reasonable cost. However, biomass fueling raises major concerns related to uses of common food crops and grasses (some also called "weeds") for processing into aviation fuels. These issues are addressed, and then halophytes and algae are shown to be better suited as sources of aerospace fuels and transportation fueling in general. Some of the history related to alternate fuels use is provided as a guideline for current and planned alternate fuels testing (ground and flight) with emphasis on biofuel blends. It is also noted that lessons learned from terrestrial fueling are applicable to space missions. These materials represent an update (to 2009) and additions to the Workshop on Alternate Fueling Sustainable Supply and Halophyte Summit at Twinsburg, Ohio, October 17 to 18, 2007.

  16. Alternative Fuels Data Center

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-06-01

    Fact sheet describes the Alternative Fuels Data Center, which provides information, data, and tools to help fleets and other transportation decision makers find ways to reduce petroleum consumption through the use of alternative and renewable fuels, advanced vehicles, and other fuel-saving measures.

  17. Alternative fuel information sources

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This short document contains a list of more than 200 US sources of information (Name, address, phone number, and sometimes contact) related to the use of alternative fuels in automobiles and trucks. Electric-powered cars are also included.

  18. Biomass and secondary fuels as difficult fuels; Biomasse und Ersatzbrennstoffe als schwierige Brennstoffe

    Energy Technology Data Exchange (ETDEWEB)

    Beckmann, M. [Bauhaus-Univ. Weimar (Germany). Lehrstuhl fuer Verfahren und Umwelt; Scholz, R. [Technische Univ. Clausthal (Germany). Inst. fuer Energie- und Verfahrenstechnik

    2006-07-01

    The present contribution starts out by dealing with the combustion properties of biomass fuels and secondary fuels. It uses examples to illustrate their influence on the behaviour of combustion processes. One avenue for development is to adapt the combustion properties of secondary fuels to their designated application during production. Another is to use the various possibilities of controlling the combustion process of a given application according to fuel being used. These possibilities are also addressed in the present article on the basis of examples. In considering the great variety of biomasses and secondary fuels the authors close with a discussion of methods for determining the combustion properties of these fuels. In doing so they focus on alternative methods of examining ignition and burnout behaviour and slagging and corrosion potential.

  19. Outlook for alternative transportation fuels

    Energy Technology Data Exchange (ETDEWEB)

    Gushee, D.E. [Univ. of Illinois, Chicago, IL (United States)

    1996-12-31

    This presentation provides a brief review of regulatory issues and Federal programs regarding alternative fuel use in automobiles. A number of U.S. DOE initiatives and studies aimed at increasing alternative fuels are outlined, and tax incentives in effect at the state and Federal levels are discussed. Data on alternative fuel consumption and alternative fuel vehicle use are also presented. Despite mandates, tax incentives, and programs, it is concluded alternative fuels will have minimal market penetration. 7 refs., 5 tabs.

  20. Global Energy Issues and Alternate Fueling

    Science.gov (United States)

    Hendricks, Robert C.

    2007-01-01

    This viewgraph presentation describes world energy issues and alternate fueling effects on aircraft design. The contents include: 1) US Uses about 100 Quad/year (1 Q = 10(exp 15) Btu) World Energy Use: about 433 Q/yr; 2) US Renewable Energy about 6%; 3) Nuclear Could Grow: Has Legacy Problems; 4) Energy Sources Primarily NonRenewable Hydrocarbon; 5) Notes; 6) Alternate Fuels Effect Aircraft Design; 7) Conventional-Biomass Issue - Food or Fuel; 8) Alternate fuels must be environmentally benign; 9) World Carbon (CO2) Emissions Problem; 10) Jim Hansen s Global Warming Warnings; 11) Gas Hydrates (Clathrates), Solar & Biomass Locations; 12) Global Energy Sector Response; 13) Alternative Renewables; 14) Stratospheric Sulfur Injection Global Cooling Switch; 15) Potential Global Energy Sector Response; and 16) New Sealing and Fluid Flow Challenges.

  1. Energy balances in the production and end use of alcohols derived from biomass. A fuels-specific comparative analysis of alternate ethanol production cycles

    Energy Technology Data Exchange (ETDEWEB)

    1980-10-01

    Considerable public interest and debate have been focused on the so-called energy balance issue involved in the conversion of biomass materials into ethanol for fuel use. This report addresses questions of net gains in premium fuels that can be derived from the production and use of ethanol from biomass, and shows that for the US alcohol fuel program, energy balance need not be a concern. Three categories of fuel gain are discussed in the report: (1) Net petroleum gain; (2) Net premium fuel gain (petroleum and natural gas); and (3) Net energy gain (for all fuels). In this study the investment of energy (in the form of premium fuels) in alcohol production includes all investment from cultivating, harvesting, or gathering the feedstock and raw materials, through conversion of the feedstock to alcohol, to the delivery to the end-user. To determine the fuel gains in ethanol production, six cases, encompassing three feedstocks, five process fuels, and three process variations, have been examined. For each case, two end-uses (automotive fuel use and replacement of petrochemical feedstocks) were scrutinized. The end-uses were further divided into three variations in fuel economy and two different routes for production of ethanol from petrochemicals. Energy requirements calculated for the six process cycles accounted for fuels used directly and indirectly in all stages of alcohol production, from agriculture through distribution of product to the end-user. Energy credits were computed for byproducts according to the most appropriate current use.

  2. Combustion of solid alternative fuels in the cement kiln burner

    DEFF Research Database (Denmark)

    Nørskov, Linda Kaare

    In the cement industry there is an increasing environmental and financial motivation for substituting conventional fossil fuels with alternative fuels, being biomass or waste derived fuels. However, the introduction of alternative fuels may influence emissions, cement product quality, process...... stability, and process efficiency. Alternative fuel substitution in the calciner unit has reached close to 100% at many cement plants and to further increase the use of alternative fuels rotary kiln substitution must be enhanced. At present, limited systematic knowledge of the alternative fuel combustion...... modelling, data collection and observations at an industrial cement plant firing alternative fuels. Alternative fuels may differ from conventional fossil fuels in combustion behaviour through differences in physical and chemical properties and reaction kinetics. Often solid alternative fuels are available...

  3. Alternate fuels; Combustibles alternos

    Energy Technology Data Exchange (ETDEWEB)

    Romero Paredes R, Hernando; Ambriz G, Juan Jose [Universidad Autonoma Metropolitana. Iztapalapa (Mexico)

    2003-07-01

    In the definition and description of alternate fuels we must center ourselves in those technological alternatives that allow to obtain compounds that differ from the traditional ones, in their forms to be obtained. In this article it is tried to give an overview of alternate fuels to the conventional derivatives of petroleum and that allow to have a clear idea on the tendencies of modern investigation and the technological developments that can be implemented in the short term. It is not pretended to include all the tendencies and developments of the present world, but those that can hit in a relatively short term, in accordance with agreed with the average life of conventional fuels. Nevertheless, most of the conversion principles are applicable to the spectrum of carbonaceous or cellulosic materials which are in nature, are cultivated or wastes of organic origin. Thus one will approach them in a successive way, the physical, chemical and biological conversions that can take place in a production process of an alternate fuel or the same direct use of the fuel such as burning the sweepings derived from the forests. [Spanish] En la definicion y descripcion de combustibles alternos nos debemos centrar en aquellas alternativas tecnologicas que permitan obtener compuestos que difieren de los tradicionales, al menos en sus formas de ser obtenidos. En este articulo se pretende dar un panorama de los combustibles alternos a los convencionales derivados del petroleo y que permita tener una idea clara sobre las tendencias de la investigacion moderna y los desarrollos tecnologicos que puedan ser implementados en el corto plazo. No se pretende abarcar todas las tendencias y desarrollos del mundo actual, sino aquellas que pueden impactar en un plazo relativamente corto, acordes con la vida media de los combustibles convencionales. Sin embargo, la mayor parte de los principios de conversion son aplicables al espectro de materiales carbonaceos o celulosicos los cuales se

  4. Techno-economic evaluation of alternative process configurations for the production of biomass-to-liquid (BTL) fuels and chemicals; Techno-oekonomische Bewertung alternativer Verfahrenskonfigurationen zur Herstellung von Biomass-to-Liquid (BtL) Kraftstoffen und Chemikalien

    Energy Technology Data Exchange (ETDEWEB)

    Trippe, Frederik

    2013-11-01

    The aim of the present work is to identify, from a technical and economic point of view promising procedural configurations of a biomass-to-liquid (BTL) concept for the production of fuels and chemicals from biomass and to evaluate. The example of the process bioliq a techno-economic assessment model is developed, the process design parameters directly linked to their economic impact.

  5. NASA Alternative Aviation Fuel Research

    Science.gov (United States)

    Anderson, B. E.; Beyersdorf, A. J.; Thornhill, K. L., II; Moore, R.; Shook, M.; Winstead, E.; Ziemba, L. D.; Crumeyrolle, S.

    2015-12-01

    We present an overview of research conducted by NASA Aeronautics Research Mission Directorate to evaluate the performance and emissions of "drop-in" alternative jet fuels, highlighting experiment design and results from the Alternative Aviation Fuel Experiments (AAFEX-I & -II) and Alternative Fuel-Effects on Contrails and Cruise Emissions flight series (ACCESS-I & II). These projects included almost 100 hours of sampling exhaust emissions from the NASA DC-8 aircraft in both ground and airborne operation and at idle to takeoff thrust settings. Tested fuels included Fischer-Tropsch (FT) synthetic kerosenes manufactured from coal and natural-gas feedstocks; Hydro-treated Esters and Fatty-Acids (HEFA) fuels made from beef-tallow and camelina-plant oil; and 50:50 blends of these alternative fuels with Jet A. Experiments were also conducted with FT and Jet A fuels doped with tetrahydrothiophene to examine the effects of fuel sulfur on volatile aerosol and contrail formation and microphysical properties. Results indicate that although the absence of aromatic compounds in the alternative fuels caused DC-8 fuel-system leaks, the fuels did not compromise engine performance or combustion efficiency. And whereas the alternative fuels produced only slightly different gas-phase emissions, dramatic reductions in non-volatile particulate matter (nvPM) emissions were observed when burning the pure alternative fuels, particularly at low thrust settings where particle number and mass emissions were an order of magnitude lower than measured from standard jet fuel combustion; 50:50 blends of Jet A and alternative fuels typically reduced nvPM emissions by ~50% across all thrust settings. Alternative fuels with the highest hydrogen content produced the greatest nvPM reductions. For Jet A and fuel blends, nvPM emissions were positively correlated with fuel aromatic and naphthalene content. Fuel sulfur content regulated nucleation mode aerosol number and mass concentrations within aging

  6. Alternative Fuels in Cement Production

    DEFF Research Database (Denmark)

    Larsen, Morten Boberg

    for the most significant alternative fuel energy contributors in the German cement industry. Solid alternative fuels are typically high in volatile content and they may differ significantly in physical and chemical properties compared to traditional solid fossil fuels. From the process point of view......The substitution of alternative for fossil fuels in cement production has increased significantly in the last decade. Of these new alternative fuels, solid state fuels presently account for the largest part, and in particular, meat and bone meal, plastics and tyre derived fuels (TDF) accounted......, considering a modern kiln system for cement production, the use of alternative fuels mainly influences 1) kiln process stability (may accelerate build up of blockages preventing gas and/or solids flow), 2) cement clinker quality, 3) emissions, and 4) decreased production capacity. Kiln process stability...

  7. Standardization of Alternative Fuels. Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-08-15

    There are different interpretations of the term 'alternative fuels', depending on the part of the world in which the definition is used. In this report, alternative fuels mainly stand for fuels that can replace gasoline and diesel oil and at the same time contribute to lowered emissions with impact on health, environment and climate. The use of alternative vehicle fuels has increased during the last 30 years. However, the increase has developed slowly and today the use is very limited, compared to the use of conventional fuels. Although, the use in some special applications, often in rather small geographical areas, can be somewhat larger. The main interest for alternative fuels has for a long time been driven by supply security issues and the possibility to reduce emissions with a negative impact on health and environment. However, the development of reformulated gasoline and low sulphur diesel oil has contributed to substantially decreased emissions from these fuels without using any alternative fuel. This has reduced the environmental impact driving force for the introduction of alternative fuels. In line with the increased interest for climate effects and the connections between these effects and the emission of greenhouse gases, and then primarily carbon dioxide, the interest for biomass based alternative fuels has increased during the 1990s. Even though one of the driving forces for alternative fuels is small today, alternative fuels are more commonly accepted than ever before. The European Commission has for example in May 2003 agreed on a directive for the promotion of the use of bio fuels. In the directive there are goals for the coming 7 years that will increase the use of alternative fuels in Europe rather dramatically, from below 1 percent now up to almost 6 percent of the total vehicle fuel consumption in 2010. The increased use of alternative fuels in Europe and the rest of the world will create a need for a common interpretation of what we

  8. Outlook on Standardization of Alternative Vehicle Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Rehnlund, B. [Atrax Energi AB (Sweden)

    2008-10-15

    The use of fossil but in first hand biobased alternative fuels in transportation has increased over the last decades. This change is primarily driven by concerns about climate change that is caused by emissions of fossil carbon dioxide and other greenhouse gases, but also by the impact on health and environment, caused by emissions of regulated as well as non-regulated emissions from the transport sector. Most alternative fuels will help to reduce the emissions of regulated and non-regulated emissions, while alternative fuels based on biomass also will contribute to reduced net emissions of carbon dioxide. Since the mid 1990s, the use of biomass based fuels such as ethanol and biodiesel has reached levels high enough in for example Europe, Brazil and the U.S. to motivate national or regional specifications/standards. Especially from the vehicle/engine manufacturer's point of view standards are of high importance. From early 2000 onwards, the international trade of biofuels (for example from Brazil to the U.S. and Europe) has grown, and this has created a need for common international specifications/standards. This report presents information about national and regional standards for alternative fuels, but also, when existing and reported, standards on a global level are described and discussed. Ongoing work concerning new or revised standards on alternative fuels on national, regional or global level is also discussed. In this report we have covered standards on all kind of alternative fuels, exemplified below. However, the focus is on liquid biofuels for diesel engines and Otto engines. 1) Liquid fuels for diesel engines (compression ignition engines), such as Fatty Acid Methyl Esters (FAME), Fatty Acid Ethyl Esters (FAEE), alcohols, alcohol derivates and synthetic diesel fuels. 2) Liquid fuels for Otto engines (spark ignition engines), such as alcohols, ethers and synthetic gasoline. 3) Liquefied fossil petroleum gas (LPG). 4) Di-Methyl Ether (DME). 5

  9. Alternative Fuels (Briefing Charts)

    Science.gov (United States)

    2009-06-19

    SASOL Jet Fuel Qatar GTL Syntroleum Jet fuel in B-52 Nigeria GTL China Coal GTL Shell Bintulu GTL Cellulose ethanol for ground use Ocean Bio...Bintulu GTL Ocean Bio-fuel Factories Bio-butanol for ground use Future Energy Source Resurgence in Nuclear Power Bio-jet tests done ASTM Spec...High energy deoxygenated bio-jet fuel from algae PSU coal derived JP-8 B-52 emissions Scoping study HBR TF emissions New bio- fuel impacts Adv

  10. Spent-fuel-storage alternatives

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    The Spent Fuel Storage Alternatives meeting was a technical forum in which 37 experts from 12 states discussed storage alternatives that are available or are under development. The subject matter was divided into the following five areas: techniques for increasing fuel storage density; dry storage of spent fuel; fuel characterization and conditioning; fuel storage operating experience; and storage and transport economics. Nineteen of the 21 papers which were presented at this meeting are included in this Proceedings. These have been abstracted and indexed. (ATT)

  11. Alternative aviation turbine fuels

    Science.gov (United States)

    Grobman, J.

    1977-01-01

    The efficient utilization of fossil fuels by future jet aircraft may necessitate the broadening of current aviation turbine fuel specifications. The most significant changes in specifications would be an increased aromatics content and a higher final boiling point in order to minimize refinery energy consumption and costs. These changes would increase the freezing point and might lower the thermal stability of the fuel and could cause increased pollutant emissions, increased smoke and carbon formation, increased combustor liner temperatures, and poorer ignition characteristics. This paper discusses the effects that broadened specification fuels may have on present-day jet aircraft and engine components and the technology required to use fuels with broadened specifications.

  12. Catalytic routes from biomass to fuels

    DEFF Research Database (Denmark)

    Riisager, Anders

    2014-01-01

    The carbon-based chemicals and fuels that are necessary to meet the energy demand for our society originate presently almost exclusively from inexpensive fossil resources – coal, oil and natural gas. The forecast of diminishing and more expensive petroleum reserves has, however, engaged...... chain unaffected. This presentation will survey the status of biofuels production from different sources, and discuss the sustainability of making transportation fuels from biomass. Furthermore, recently developed chemocatalytic technologies that allow efficient conversion of lignocellulosic biomass...... components into transportation fuels and fuel additives will be highlighted....

  13. Fuel and fuel blending components from biomass derived pyrolysis oil

    Science.gov (United States)

    McCall, Michael J.; Brandvold, Timothy A.; Elliott, Douglas C.

    2012-12-11

    A process for the conversion of biomass derived pyrolysis oil to liquid fuel components is presented. The process includes the production of diesel, aviation, and naphtha boiling point range fuels or fuel blending components by two-stage deoxygenation of the pyrolysis oil and separation of the products.

  14. Fuels from biomass program. Program summary

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    An overview of the ongoing research, development, and demonstration efforts of the period Oct. 1, 1976--Sept. 30, 1977 is presented. Accomplishments are highlighted and plans for continued activities are included. Discussion is presented under the following section headings: the Fuels from Biomass Program; organizational and functional responsibilities; program funding; fiscal year 1977 summary tables; current projects: production and collection of biomass and conversion of biomass; bibliography; index of contractors; and, appendix--unsolicited proposal requirements. (JGB)

  15. Mobile Alternative Fueling Station Locator

    Energy Technology Data Exchange (ETDEWEB)

    2009-04-01

    The Department of Energy's Alternative Fueling Station Locator is available on-the-go via cell phones, BlackBerrys, or other personal handheld devices. The mobile locator allows users to find the five closest biodiesel, electricity, E85, hydrogen, natural gas, and propane fueling sites using Google technology.

  16. Sustainability of fossil fuels and alternative energies for Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Tasdemiroglu, E.

    1989-01-01

    Reserves and production of fossil fuels in Turkey are discussed, as well as projections of production rates to the year 2010. Sustainability of fossil-fuel production has been estimated on the basis of presently known data. Fossil fuels will have a very limited lifetime. Bitumens, hydropower, geothermal energy, solar energy, wind power, biomass, and nuclear energy are appropriate alternative technologies. The potentials of these alternatives are given and recommendations made to enhance their contributions. 19 refs., 1 fig., 2 tabs.

  17. Use of alternative fuels in solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-05-15

    A future sustainable energy system will certainly be based on a variety of environmentally benign energy production technologies. Fuel cells can be a key element in this scenario. One of the fuel cells types the solid oxide fuel cell (SOFC) has a number of advantages that places them in a favorable position: high efficiency, parallel production of electricity and high value heat, prevention of NOx emission, flexibility regarding usable fuels, and certain tolerance towards impurities. It is thus a natural option, to combine such a highly efficient energy conversion tool with a sustainable fuel supply. In the present contribution, the use of alternative compared to conventional fuels in SOFCs was evaluated. Regarding carbon containing, biomass derived fuels, SOFCs showed excellent power output and stability behavior during long-term testing under technologically relevant conditions. Moreover, ammonia can be used directly as fuel. The chemical and structural properties of the SOFC anode makes it even possible, to combine a chemical conversion of the fuel, for example methane into synthesis gas via steam reforming and decomposition of ammonia into hydrogen and nitrogen, with the electrochemical production of electricity in one step. (au)

  18. SMALL SCALE BIOMASS FUELED GAS TURBINE ENGINE

    Science.gov (United States)

    A new generation of small scale (less than 20 MWe) biomass fueled, power plants are being developed based on a gas turbine (Brayton cycle) prime mover. These power plants are expected to increase the efficiency and lower the cost of generating power from fuels such as wood. The n...

  19. Biomass: old fuel for modern times

    Energy Technology Data Exchange (ETDEWEB)

    Domac, J. [IEA Bioenergy Task 29, Zagreb (Croatia); Richards, K. [TV Energy Ltd., (United Kingdom); IEA Bioenergy Task 29, Zagreb (Croatia); Segon, V. [Energy Institute Hrvoje Pozar, Zagreb (Croatia)

    2005-08-01

    The article extols the virtues of biomass in terms of environmental benefits, job creation, economics and sustainable development. At present, biomass is the biggest single renewable energy source worldwide and its use amounts to about 1 billion tonnes of oil equivalent. The various routes for deriving bioenergy from biomass are mentioned. Bioenergy is said to have the potential to supply 50% of the world's energy demand during the next century, but so far, in the UK at least, the bioenergy/wood fuel market has not materialised. The barriers and challenges which need to be overcome for the further exploitation of biomass are listed. Biomass has a bright future and should no longer be regarded as the 'poor man's fuel'.

  20. Biomass fuel based on wastes from the paper industry

    Directory of Open Access Journals (Sweden)

    Budzyń Stanisław

    2016-01-01

    Full Text Available Wastes from paper industry are mostly combustible. It is possible to recycle them with energy recovery. These wastes have a high moisture content (up to 60% and thus a small calorific value. An alternative to waste incineration is the production of solid recovered fuel. The benefits are: easy adjustment of the physical and chemical properties of the fuel (via the change of proportions of ingredients, low moisture and high calorific value. The study involved the following types of cellulose wastes: - Belmer - the rejects from recovered paper, Krofta - deinking sludge, sludge - wastewater treatment sludge, bark - the rejects from virgin pulps. The results of investigations of waste produced in one of the biggest Polish paper mill - are shown. Following aspects were investigated: energy properties, content of carbon, hydrogen, sulfur, chlorine and nitrogen, chemical composition of ash. Authors proposed two formulas of the biomass fuel. The properties of the fuel such as the content of carbon, hydrogen, sulfur, chlorine or nitrogen, the chemical composition of the ash were investigated. Due to the fact that the combustion of the biomass fuel is preferred in view of law regulations (zero CO2 emission, green certificates the content of biodegradable fraction was examined. It has been shown that the fuel is a biomass one. Fuel from waste can be a substitute for approx. 25% of primary fuel (coal used by the paper mill.

  1. Opportunities for Alternative Fuels Production

    Science.gov (United States)

    2011-05-05

    fuels derived from a mixture of coal and biomass. It is highly uncertain whether appreciable amounts of hydrotreated renewable oils can be...affordably and cleanly produced within the United States or abroad. Hydrotreated renewable oils are produced by processing animal fats or vegetable oils...possible source of oil for hydrotreatment. Fifty-fifty blends of hydrotreated oils have already been successfully demonstrated in flight tests sponsored by

  2. Alternatives for nuclear fuel disposal

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez S, J. R.; Badillo A, V.; Palacios H, J.; Celis del Angel, L., E-mail: ramon.ramirez@inin.gob.m [ININ, Carretera Mexico-Toluca s/n, Ocoyoacac 52750, Estado de Mexico (Mexico)

    2010-10-15

    The spent fuel is one of the most important issues in the nuclear industry, currently spent fuel management is been cause of great amount of research, investments in the construction of repositories or constructing the necessary facilities to reprocess the fuel, and later to recycle the plutonium recovered in thermal reactors. What is the best solution? or, What is the best technology for a specific solution? Many countries have deferred the decision on selecting an option, while other works actively constructing repositories and others implementing the reprocessing facilities to recycle the plutonium obtained from nuclear spent fuel. In Mexico the nuclear power is limited to two reactors BWR type and medium size. So the nuclear spent fuel discharged has been accommodated at reactor's spent fuel pools. Originally these pools have enough capacity to accommodate spent fuel for the 40 years of designed plant operation. However, currently is under process an extended power up rate to 20% of their original power and also there are plans to extend operational life for 20 more years. Under these conditions there will not be enough room for spent fuel in the pools. So this work describes some different alternatives that have been studied in Mexico to define which will be the best alternative to follow. (Author)

  3. Investigation of Heat Generation from Biomass Fuels

    Directory of Open Access Journals (Sweden)

    Naoharu Murasawa

    2015-06-01

    Full Text Available New biomass fuels are constantly being developed from renewable resources in an effort to counter global warming and to create a sustainable society based on recycling. Among these, biomass fuels manufactured from waste are prone to microbial fermentation, and are likely to cause fires and explosions if safety measures, including sufficient risk assessments and long-term storage, are not considered. In this study, we conducted a series of experiments on several types of newly developed biomass fuels, using combinations of various thermal- and gas-analysers, to identify the risks related to heat- and gas-generation. Since a method for the evaluation of the relative risks of biomass fuels is not yet established in Japan, we also such a method based on our experimental results. The present study found that in cases where safety measures are not thoroughly observed, biomass fuels manufactured from waste materials have a higher possibility of combusting spontaneously at the storage site due to microbial fermentation and heat generation.

  4. Alternative fuels for vehicles; Alternative drivmidler

    Energy Technology Data Exchange (ETDEWEB)

    2012-02-15

    Up until 2020 and onwards the analysis indicates that especially electricity, biogas and natural gas as propellants is economically attractive compared to conventional gasoline and diesel while other fuels have the same or higher costs for petrol and diesel. Especially biogas and electricity will also offer significant reductions in CO{sub 2} emissions, but also hydrogen, methanol, DME and to a lesser extent the second generation bioethanol and most of the other alternative fuels reduce CO{sub 2} emissions. Use of the traditional food-based first generation biofuels involves, at best, only modest climate benefits if land use changes are counted, and at worst, significant negative climate effects. Natural gas as a propellant involves a moderate climate gain, but may play a role for building infrastructure and market for gaseous fuels in large fleets, thereby contributing to the phasing in of biogas for transport. The electric-based automotive fuels are the most effective due to a high efficiency of the engine and an increasing proportion of wind energy in the electricity supply. The methanol track also has a relatively high efficiency. Among the others, the track based on diesel engines (biodiesel) is more effective than the track based on gasoline/Otto engines (gas and ethanol) as a result of the diesel engine's better efficiency. For the heavy vehicles all the selected alternative fuels to varying degrees reduce emissions of CO{sub 2}, particularly DME based on wood. The only exception to this is - as for passenger cars - the propellant synthetic diesel based on coal. (LN).

  5. Alternative Aviation Fuel Experiment (AAFEX)

    Science.gov (United States)

    Anderson, B. E.; Beyersdorf, A. J.; Hudgins, C. H.; Plant, J. V.; Thornhill, K. L.; Winstead, E. L.; Ziemba, L. D.; Howard, R.; Corporan, E.; Miake-Lye, R. C.; Herndon, S. C.; Timko, M.; Woods, E.; Dodds, W.; Lee, B.; Santoni, G.; Whitefield, P.; Hagen, D.; Lobo, P.; Knighton, W. B.; Bulzan, D.; Tacina, K.; Wey, C.; VanderWal, R.; Bhargava, A.

    2011-01-01

    The rising cost of oil coupled with the need to reduce pollution and dependence on foreign suppliers has spurred great interest and activity in developing alternative aviation fuels. Although a variety of fuels have been produced that have similar properties to standard Jet A, detailed studies are required to ascertain the exact impacts of the fuels on engine operation and exhaust composition. In response to this need, NASA acquired and burned a variety of alternative aviation fuel mixtures in the Dryden Flight Research Center DC-8 to assess changes in the aircraft s CFM-56 engine performance and emission parameters relative to operation with standard JP-8. This Alternative Aviation Fuel Experiment, or AAFEX, was conducted at NASA Dryden s Aircraft Operations Facility (DAOF) in Palmdale, California, from January 19 to February 3, 2009 and specifically sought to establish fuel matrix effects on: 1) engine and exhaust gas temperatures and compressor speeds; 2) engine and auxiliary power unit (APU) gas phase and particle emissions and characteristics; and 3) volatile aerosol formation in aging exhaust plumes

  6. Production of chemicals and fuels from biomass

    Energy Technology Data Exchange (ETDEWEB)

    Woods, Elizabeth; Qiao, Ming; Myren, Paul; Cortright, Randy D.; Kania, John

    2015-12-15

    Described are methods, reactor systems, and catalysts for converting biomass to fuels and chemicals in a batch and/or continuous process. The process generally involves the conversion of water insoluble components of biomass, such as hemicellulose, cellulose and lignin, to volatile C.sub.2+O.sub.1-2 oxygenates, such as alcohols, ketones, cyclic ethers, esters, carboxylic acids, aldehydes, and mixtures thereof. In certain applications, the volatile C.sub.2+O.sub.1-2 oxygenates can be collected and used as a final chemical product, or used in downstream processes to produce liquid fuels, chemicals and other products.

  7. Lignin biomass conversion into chemicals and fuels

    DEFF Research Database (Denmark)

    Melián Rodríguez, Mayra

    Second-generation biomass or lignocellulosic biomass, which is mainly composed of cellulose, hemicellulose and lignin, is a very important and promising feedstock for the renewable production of fuels and chemicals of the future. Lignin is the second most abundant natural polymer, representing 30......% of the weight and 40% of the energy content of lignocellulosic biomass. While designated applications for cellulose already exist in form of the current pulp and paper production as well as its prospective hydrolysis and fermentation into biofuels (mainly bioethanol), sustainable ways to valorize the lignin...

  8. Utilization of Alternative Fuels in Cement Pyroprocessing : the Messebo Factory case study in Ethiopia

    OpenAIRE

    Ebuy Teka, Axumawi

    2015-01-01

    Energy costs and environmental standards encouraged cement manufacturers worldwide to evaluate to what extent conventional fuels (Furnace oil, Coal and Petcock) can be replaced by alternative fuels in cement production, i.e. biomass or processed waste materials like sewage sludge, MSW (municipal solid waste), Refuse Derived Fuels (RDF), Tire Derived Fuel (TDF), Plastic Derived Fuel (PDF), Biomass Derived Fuels (BDF), meat and bone meal (MBM), etc.  High temperature of >1500 C, long residen...

  9. Sulfur Release during Alternative fuels Combustion in Cement Rotary Kilns

    OpenAIRE

    Cortada Mut, Maria del Mar; Dam-Johansen, Kim; Glarborg, Peter; Nørskov, Linda Kaare

    2014-01-01

    Cement production is an energy-intensive process, whic h has traditionally been dependent on fossil fuels. However, the usage of selected waste, biomass, and by-products with recoverable calorific value, defined as alternative fuels, is increasing and their combustion is mo re challenging compared to fossil fuels, due to the lack of experience in handling the different and va rying combustion characteristics caused by different chemical and physical properties, e.g. higher moisture content an...

  10. Algae fuels : a tantalizing alternative

    Energy Technology Data Exchange (ETDEWEB)

    Granson, E.

    2010-11-15

    This article surveyed the current state of research and development in the area of algae use as a basis for fuel and as a feedstock for the chemical industry. The constraints inhibiting the commercialization of algae-related processes were discussed and a brief overview of the history of algae research was presented. Interest in algae research has ebbed and flowed in conjunction with economic and social concerns. It is unknown whether algae can be grown on a scale and cost that is commercially viable. A bench-scale algae cultivation system involving photobioreactors was described. Algae are increasingly being used in treating wastewater from industrial processes, as algae can reduce ammonia and phosphate loads in effluent. Exhaust carbon dioxide is being used to feed algae crops. Advances are needed to make turning algae oil into fuel cost effective. A bench-stage process for extracting algae oil from water for biofuel conversion was described. The process results in easier-to-dry biomass without using chemical solvents or centrifuges. Algae biomass is also being explored for used as a polymer feedstock. Algae can be grown anywhere there is sun, but the challenge is in developing a large enough supply of algae biomass. Second generation algae plastic products will be more complex and may involve the creation of a monomer out of algae itself, which could make algae competitive with oil in the plastics industry. Skeptics doubt that algae processes can be commercialized, but some within the industry believe that algae biomass will eventually work within the norms of industrial processes. 5 figs.

  11. Alternatives to traditional transportation fuels: An overview

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This report presents the first compilation by the Energy Information Administration (EIA) of information on alternatives to gasoline and diesel fuel. The purpose of the report is: (1) to provide background information on alternative transportation fuels and replacement fuels compared with gasoline and diesel fuel, and (2) to furnish preliminary estimates of alternative transportation fuels and alternative fueled vehicles as required by the Energy Policy Act of 1992 (EPACT), Title V, Section 503, ``Replacement Fuel Demand Estimates and Supply Information.`` Specifically, Section 503 requires the EIA to report annually on: (1) the number and type of alternative fueled vehicles in existence the previous year and expected to be in use the following year, (2) the geographic distribution of these vehicles, (3) the amounts and types of replacement fuels consumed, and (4) the greenhouse gas emissions likely to result from replacement fuel use. Alternative fueled vehicles are defined in this report as motorized vehicles licensed for on-road use, which may consume alternative transportation fuels. (Alternative fueled vehicles may use either an alternative transportation fuel or a replacement fuel.) The intended audience for the first section of this report includes the Secretary of Energy, the Congress, Federal and State agencies, the automobile manufacturing industry, the transportation fuel manufacturing and distribution industries, and the general public. The second section is designed primarily for persons desiring a more technical explanation of and background for the issues surrounding alternative transportation fuels.

  12. Upgrading Fuel Properties of Biomass by Torrefaction

    DEFF Research Database (Denmark)

    Shang, Lei; Holm, Jens Kai

    Torrefaction is a mild thermal (200 – 300 ÛC) treatment in an inert atmosphere, which is known to increase the energy density of biomass by evaporating water and a proportion of volatiles. In this work, the influence of torrefaction on the chemical and mechanical properties (grindability and hygr......Torrefaction is a mild thermal (200 – 300 ÛC) treatment in an inert atmosphere, which is known to increase the energy density of biomass by evaporating water and a proportion of volatiles. In this work, the influence of torrefaction on the chemical and mechanical properties (grindability...... biomass were detected in situ by coupling mass spectrometer with a thermogravimetric analyzer (TGA). The main components were water, carbon monoxide, formic acid, formaldehyde, methanol, acetic acid, carbon dioxide, and methyl chloride. The cumulative releases of gas products from three biomass fuels...

  13. Upgrading Fuel Properties of Biomass by Torrefaction

    DEFF Research Database (Denmark)

    Shang, Lei; Holm, Jens Kai

    biomass were detected in situ by coupling mass spectrometer with a thermogravimetric analyzer (TGA). The main components were water, carbon monoxide, formic acid, formaldehyde, methanol, acetic acid, carbon dioxide, and methyl chloride. The cumulative releases of gas products from three biomass fuels......Torrefaction is a mild thermal (200 – 300 ÛC) treatment in an inert atmosphere, which is known to increase the energy density of biomass by evaporating water and a proportion of volatiles. In this work, the influence of torrefaction on the chemical and mechanical properties (grindability...... and hygroscopicity) of wood chips, wood pellets and wheat straw was investigated and compared. The mass loss during torrefaction was found to be a useful indicator for determining the degree of torrefaction. For all three biomass, higher torrefaction temperature or longer residence time resulted in higher mass loss...

  14. HFIR spent fuel management alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Begovich, J.M.; Green, V.M.; Shappert, L.B.; Lotts, A.L.

    1992-10-15

    The High Flux Isotope Reactor (HFIR) at Martin Marietta Energy Systems' Oak Ridge National Laboratory (ORNL) has been unable to ship its spent fuel to Savannah River Site (SRS) for reprocessing since 1985. The HFIR storage pools are expected to fill up in the February 1994 to February 1995 time frame. If a management altemative to existing HFIR pool storage is not identified and implemented before the HFIR pools are full, the HFIR will be forced to shut down. This study investigated several alternatives for managing the HFIR spent fuel, attempting to identify options that could be implemented before the HFIR pools are full. The options investigated were: installing a dedicated dry cask storage facility at ORNL, increasing HFIR pool storage capacity by clearing the HFIR pools of debris and either close-packing or stacking the spent fuel elements, storing the spent fuel at another ORNL pool, storing the spent fuel in one or more hot cells at ORNL, and shipping the spent fuel offsite for reprocessing or storage elsewhere.

  15. Catalytic conversion of biomass-derived synthesis gas to liquid fuels

    OpenAIRE

    2016-01-01

    Climate change is one of the biggest global threats of the 21st century. Fossil fuels constitute by far the most important energy source for transportation and the different governments are starting to take action to promote the use of cleaner fuels. Biomass-derived fuels are a promising alternative for diversifying fuel sources, reducing fossil fuel dependency and abating greenhouse gas emissions. The research interest has quickly shifted from first-generation biofuels, obtained from food co...

  16. Sulphur release from alternative fuel firing

    DEFF Research Database (Denmark)

    Cortada Mut, Maria del Mar; Nørskov, Linda Kaare; Glarborg, Peter;

    2014-01-01

    The cement industry has long been dependent on the use of fossil fuels, although a recent trend in replacing fossil fuels with alternative fuels has arisen. 1, 2 However, when unconverted or partly converted alternative fuels are admitted directly in the rotary kiln inlet, the volatiles released...

  17. Alternative Fuel from Biomass:Experiences and Inspirations of Alternative Fuel Production in the United States of America%关于发展生物质替代燃料的讨论--美国替代燃料生产经验对中国的启示

    Institute of Scientific and Technical Information of China (English)

    张丽丽; 张东杰

    2014-01-01

    介绍了美国发展粮食乙醇的历史、现状及世界各国对美国继续发展该产业的担忧和质疑,分析了中国未来大规模发展生物质替代燃料的途径选择:走出一条不同于美国或巴西的发展道路。%The history and current status of grain-based ethanol production in the United States of America is introduced and analyzed , which has raised great anxieties and questions among countries over the world about the future develop -ment of such industry in the United States .It shows that the massive development of alternative fuel from biomass in Chi-na should be in a different path from the United States or Brazil .

  18. Fuel gas from biomass - utilisation concepts

    Energy Technology Data Exchange (ETDEWEB)

    Greil, C.; Vierrath, H. [Lurgi Envirotherm GmbH, Frankfurt am Main (Germany)

    2000-07-01

    This paper presents an overview on the Lurgi-Circulating Fluidized Bed technology (CFB). CFB units are state of the art and have proven their capability of converting biomass, waste of coal into power and/or steam. CFB reactors are in commercial operation for reduction processes and for combustion and gasification of solid fuels. In this paper reduction processes are not considered. The fact, that world-wide over 80 CFB combustion plants using Lurgi technology are commercially operating proves that this technology is well accepted. Lurgi's CFB gasification technology is at present applied in two industrial plants. It is the key process for our advanced biomass or waste utilisation plants. The subject paper will focus on CFB fuel gas production for combined cycle plants (IGCC) and for co-firing into existing boiler plants. (orig.)

  19. BIOMASS AS AN ALTERNATIVE SOURCE OF ENERGY IN INDIA

    Directory of Open Access Journals (Sweden)

    DEEPAK PALIWAL,

    2010-10-01

    Full Text Available The fossil fuel is a main source of energy for generation of electricity in India. Overall, about 80% of greenhouse gas (GHS emissions are related to the production and use of energy, and particularly, burning of fossils fuels. The environmental problems are associated with the generation of conventional sources of energy.The Kyoto protocol has established flexible mechanisms for developing countries to meet there GHG reduction commitment. Therefore, renewable source of energy is an alternative to conserve the natural resources and reduce the pollution burden. At present renewable sources of energy such as solar, wind, geothermal and hydropower provide small fraction of energy need. The most prevalent source is biomass, which accounts around 12% of total energy requirement. This source of energy includes wood, logging waste, sawdust, animal dung and vegetables consisting of grass, leaves, grass residues and agricultural waste. The biomass is abundant in nature which can be trapped as source of energy for generation of electricity for the rural as well as urban population. The technology needs to be developed for use of biomass as a source of energy. This paperdiscusses about its prospects in Asia and particularly in India. The recent developments and projects in India are discussed. A note on pollution control strategies has also been added.

  20. Sulfur Release during Alternative fuels Combustion in Cement Rotary Kilns

    DEFF Research Database (Denmark)

    Cortada Mut, Maria del Mar

    Cement production is an energy-intensive process, whic h has traditionally been dependent on fossil fuels. However, the usage of selected waste, biomass, and by-products with recoverable calorific value, defined as alternative fuels, is increasing and their combustion is mo re challenging compared...... in order to separate the influence of the simultaneous phenomena occurring in the experimental set-up, such as mixing th e fuel with the bed material, heating up of a particle, 5 iii Abstract Cement production is an energy-intensive process, whic h has traditionally been dependent on fossil fuels. However...... to fossil fuels, due to the lack of experience in handling the different and va rying combustion characteristics caused by different chemical and physical properties, e.g. higher moisture content and larger particle sizes. When full combustion of alternative fuels in the calcin er and/or main burner...

  1. Aviation turbine fuels: An assessment of alternatives

    Science.gov (United States)

    1982-01-01

    The general outlook for aviation turbine fuels, the effect that broadening permissible aviation turbine fuel properties could have on the overall availability of such fuels, the fuel properties most likely to be affected by use of lower grade petroleum crudes, and the research and technology required to ensure that aviation turbine fuels and engines can function satisfactorily with fuels having a range of fuel properties differing from those of current specification fuel are assessed. Views of industry representatives on alternative aviation turbine fuels are presented.

  2. Alternative Fuels Data Center (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2013-07-01

    Fact sheet describes the Alternative Fuels Data Center, which provides information, data, and tools to help fleets and other transportation decision makers find ways to reduce petroleum consumption through the use of alternative and renewable fuels, advanced vehicles, and other fuel-saving measures.

  3. Integration of alternative feedstreams for biomass treatment and utilization

    Science.gov (United States)

    Hennessey, Susan Marie; Friend, Julie; Dunson, Jr., James B.; Tucker, III, Melvin P.; Elander, Richard T.; Hames, Bonnie

    2011-03-22

    The present invention provides a method for treating biomass composed of integrated feedstocks to produce fermentable sugars. One aspect of the methods described herein includes a pretreatment step wherein biomass is integrated with an alternative feedstream and the resulting integrated feedstock, at relatively high concentrations, is treated with a low concentration of ammonia relative to the dry weight of biomass. In another aspect, a high solids concentration of pretreated biomass is integrated with an alternative feedstream for saccharifiaction.

  4. Liquid fuels production from biomass. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Levy, P. F.; Sanderson, J. E.; Ashare, E.; Wise, D. L.; Molyneaux, M. S.

    1980-06-30

    The current program to convert biomass into liquid hydrocarbon fuels is an extension of a previous program to ferment marine algae to acetic acid. In that study it was found that marine algae could be converted to higher aliphatic organic acids and that these acids could be readily removed from the fermentation broth by membrane or liquid-liquid extraction. It was then proposed to convert these higher organic acids via Kolbe electrolysis to aliphatic hydrocarbons, which may be used as a diesel fuel. The specific goals for the current porgram are: (1) establish conditions under which substrates other than marine algae may be converted in good yield to organic acids, here the primary task is methane suppression; (2) modify the current 300-liter fixed packed bed batch fermenter to operate in a continuous mode; (3) change from membrane extraction of organic acids to liquid-liquid extraction; (4) optimize the energy balance of the electrolytic oxidation process, the primary task is to reduce the working potential required for the electrolysis while maintaining an adequate current density; (5) scale the entire process up to match the output of the 300 liter fermenter; and (6) design pilot plant and commercial size plant (1000 tons/day) processes for converting biomass to liquid hydrocarbon fuels and perform an economic analysis for the 1000 ton/day design.

  5. Fuel briquettes from biomass-lignite blends

    Energy Technology Data Exchange (ETDEWEB)

    Yaman, S.; Haykiri-Acma, H.; Sesen, K.; Kuecuekbayrak, S. [Chemical Engineering Department, Chemical and Metallurgical Engineering Faculty, Istanbul Technical University, Maslak, 80626 Istanbul (Turkey)

    2001-08-01

    In this study, a western Turkish lignite (Kuetahya-Seyitoemer) was blended with some biomass samples such as molasses, pine cone, olive refuse, sawdust, paper mill waste, and cotton refuse, and these blends was used in the production of fuel briquettes. Blends were subjected to briquetting pressures between 50 and 250 MPa; the ratio of biomass to lignite was changed between 0 and 30 wt.%. The mechanical strength of obtained briquettes was investigated considering shatter index and compressive strength. Effects of the ratio of biomass to lignite and applied pressure on the strength of the briquettes were examined. This study indicated that the mechanical strength of the briquettes produced from Kuetahya-Seyitoemer lignite can be improved by adding some biomass samples. For example, the presence of paper mill waste increased the shatter index of the briquettes obtained. Similarly, sawdust and paper mill waste increased compressive strength of the briquettes. Water resistance of the briquettes can be augmented by adding olive refuse, cotton refuse, pine cone or paper mill waste.

  6. Alternate-Fueled Combustion-Sector Emissions

    Science.gov (United States)

    Saxena, Nikita T.; Thomas, Anna E.; Shouse, Dale T.; Neuroth, Craig; Hendricks, Robert C.; Lynch, Amy; Frayne, Charles W.; Stutrud, Jeffrey S.; Corporan, Edwin; Hankins, Terry

    2012-01-01

    In order to meet rapidly growing demand for fuel, as well as address environmental concerns, the aviation industry has been testing alternate fuels for performance and technical usability in commercial and military aircraft. Currently, alternate aviation fuels must satisfy MIL-DTL- 83133F(2008) (military) or ASTM D 7566- Annex(2011) (commercial) standards and are termed drop-in fuel replacements. Fuel blends of up to 50% alternative fuel blended with petroleum (JP-8), which have become a practical alternative, are individually certified on the market. In order to make alternate fuels (and blends) a viable option for aviation, the fuel must be able to perform at a similar or higher level than traditional petroleum fuel. They also attempt to curb harmful emissions, and therefore a truly effective alternate fuel would emit at or under the level of currently used fuel. This paper analyzes data from gaseous and particulate emissions of an aircraft combustor sector. The data were evaluated at various inlet conditions, including variation in pressure and temperature, fuel-to-air ratios, and percent composition of alternate fuel. Traditional JP-8+100 data were taken as a baseline, and blends of JP- 8+100 with synthetic-paraffinic-kerosene (SPK) fuel (Fischer-Tropsch (FT)) were used for comparison. Gaseous and particulate emissions, as well as flame luminosity, were assessed for differences between FT composition of 0%, 50%, and 100%. The data showed that SPK fuel (a FT-derived fuel) had slightly lower harmful gaseous emissions, and smoke number information corroborated the hypothesis that SPK-FT fuels are cleaner burning fuels.

  7. Decision-making of biomass ethanol fuel policy based on life cycle 3E assessment

    Institute of Scientific and Technical Information of China (English)

    LENG Ru-bo; DAI Du; CHEN Xiao-jun; WANG Cheng-tao

    2005-01-01

    To evaluate the environmental, economic, energy performance of biomass ethanol fuel in China and tosupport the decision-making of biomass ethanol energy policy, an assessment method of life cycle 3E (economy, en vironment, energy) was applied to the three biomass ethanol fuel cycle alternatives, which includes cassava-based, corn-based and wheat-based ethanol fuel. The assessments provide a comparison of the economical performance, energy efficiency and environmental impacts of the three alternatives. And the development potential of the three alternatives in China was examined. The results are very useful for the Chinese government to make decisions on the biomass ethanol energy policy, and some advises for the decision-making of Chinese government were given.

  8. Alternatives to traditional transportation fuels 1993

    Energy Technology Data Exchange (ETDEWEB)

    1995-01-01

    In recent years, gasoline and diesel fuel have accounted for about 80 percent of total transportation fuel and nearly all of the fuel used in on-road vehicles. Growing concerns about the environmental effects of fossil fuel use and the Nation`s high level of dependence on foreign oil are providing impetus for the development of replacements or alternatives for these traditional transportation fuels. (The Energy Policy Act of 1992 definitions of {open_quotes}replacement{close_quotes} and {open_quotes}alternative{close_quotes} fuels are presented in the following box.) The Alternative Motor Fuels Act of 1988, the Clean Air Act Amendments of 1990 (CAAA90) and the Energy Policy Act of 1992 (EPACT) are significant legislative forces behind the growth of replacement fuel use. Alternatives to Traditional Transportation Fuels 1993 provides the number of on-road alternative fueled vehicles in use in the United States, alternative and replacement fuel consumption, and information on greenhouse gas emissions resulting from the production, delivery, and use of replacement fuels for 1992, 1993, and 1995.

  9. Life-cycle analysis of alternative aviation fuels in GREET

    Energy Technology Data Exchange (ETDEWEB)

    Elgowainy, A.; Han, J.; Wang, M.; Carter, N.; Stratton, R.; Hileman, J.; Malwitz, A.; Balasubramanian, S. (Energy Systems)

    2012-07-23

    The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, developed at Argonne National Laboratory, has been expanded to include well-to-wake (WTWa) analysis of aviation fuels and aircraft. This report documents the key WTWa stages and assumptions for fuels that represent alternatives to petroleum jet fuel. The aviation module in GREET consists of three spreadsheets that present detailed characterizations of well-to-pump and pump-to-wake parameters and WTWa results. By using the expanded GREET version (GREET1{_}2011), we estimate WTWa results for energy use (total, fossil, and petroleum energy) and greenhouse gas (GHG) emissions (carbon dioxide, methane, and nitrous oxide) for (1) each unit of energy (lower heating value) consumed by the aircraft or (2) each unit of distance traveled/ payload carried by the aircraft. The fuel pathways considered in this analysis include petroleum-based jet fuel from conventional and unconventional sources (i.e., oil sands); Fisher-Tropsch (FT) jet fuel from natural gas, coal, and biomass; bio-jet fuel from fast pyrolysis of cellulosic biomass; and bio-jet fuel from vegetable and algal oils, which falls under the American Society for Testing and Materials category of hydroprocessed esters and fatty acids. For aircraft operation, we considered six passenger aircraft classes and four freight aircraft classes in this analysis. Our analysis revealed that, depending on the feedstock source, the fuel conversion technology, and the allocation or displacement credit methodology applied to co-products, alternative bio-jet fuel pathways have the potential to reduce life-cycle GHG emissions by 55-85 percent compared with conventional (petroleum-based) jet fuel. Although producing FT jet fuel from fossil feedstock sources - such as natural gas and coal - could greatly reduce dependence on crude oil, production from such sources (especially coal) produces greater WTWa GHG emissions compared with petroleum jet

  10. Life-Cycle Analysis of Alternative Aviation Fuels in GREET

    Energy Technology Data Exchange (ETDEWEB)

    Elgowainy, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Han, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Wang, M. [Argonne National Lab. (ANL), Argonne, IL (United States); Carter, N. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Stratton, R. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Hileman, J. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Malwitz, A. [Volpe National Transportation Systems Center, Cambridge, MA (United States); Balasubramanian, S. [Volpe National Transportation Systems Center, Cambridge, MA (United States)

    2012-06-01

    The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, developed at Argonne National Laboratory, has been expanded to include well-to-wake (WTWa) analysis of aviation fuels and aircraft. This report documents the key WTWa stages and assumptions for fuels that represent alternatives to petroleum jet fuel. The aviation module in GREET consists of three spreadsheets that present detailed characterizations of well-to-pump and pump-to-wake parameters and WTWa results. By using the expanded GREET version (GREET1_2011), we estimate WTWa results for energy use (total, fossil, and petroleum energy) and greenhouse gas (GHG) emissions (carbon dioxide, methane, and nitrous oxide) for (1) each unit of energy (lower heating value) consumed by the aircraft or(2) each unit of distance traveled/ payload carried by the aircraft. The fuel pathways considered in this analysis include petroleum-based jet fuel from conventional and unconventional sources (i.e., oil sands); Fisher-Tropsch (FT) jet fuel from natural gas, coal, and biomass; bio-jet fuel from fast pyrolysis of cellulosic biomass; and bio-jet fuel from vegetable and algal oils, which falls under the American Society for Testing and Materials category of hydroprocessed esters and fatty acids. For aircraft operation, we considered six passenger aircraft classes and four freight aircraft classes in this analysis. Our analysis revealed that, depending on the feedstock source, the fuel conversion technology, and the allocation or displacement credit methodology applied to co-products, alternative bio-jet fuel pathways have the potential to reduce life-cycle GHG emissions by 55–85 percent compared with conventional (petroleum-based) jet fuel. Although producing FT jet fuel from fossil feedstock sources — such as natural gas and coal — could greatly reduce dependence on crude oil, production from such sources (especially coal) produces greater WTWa GHG emissions compared with petroleum jet

  11. A Primer on Alternative Transportation Fuels

    Science.gov (United States)

    2010-09-01

    for millennia that certain sugars can be fermented (anaerobically decomposed into alcohols and carbon dioxide) in the presence of enzymes (complex...here involves the hydrolysis (decomposition by reaction with water) of cornstarch ( 6 10 5C H O− − ) and the fermentation of the resulting Maltose ( 12...transportation fuels. Fuels made from natural oils are generally referred to as biodiesel fuels. About 95% of biomass oils are triglycerides (three fatty

  12. Upgrading fuel properties of biomass by torrefaction

    Energy Technology Data Exchange (ETDEWEB)

    Lei Shang

    2012-12-15

    Torrefaction is a mild thermal (200 - 300 UC) treatment in an inert atmosphere, which is known to increase the energy density of biomass by evaporating water and a proportion of volatiles. In this work, the influence of torrefaction on the chemical and mechanical properties (grindability and hygroscopicity) of wood chips, wood pellets and wheat straw was investigated and compared. The mass loss during torrefaction was found to be a useful indicator for determining the degree of torrefaction. For all three biomass, higher torrefaction temperature or longer residence time resulted in higher mass loss, higher heating value, better grindability, and less moisture absorption. However, severe torrefaction conditions were found not necessary in order to save energy during grinding, since strain energy and grinding energy decreased tremendously in the first 5 - 25% anhydrous weight loss. By correlating the heating value and mass loss, it was found that wheat straw contained less heating value on mass basis than the other two fuels, but the fraction of energy retained in the torrefied sample as a function of mass loss was very similar for all three biomass. Gas products formed during torrefaction of three biomass were detected in situ by coupling mass spectrometer with a thermogravimetric analyzer (TGA). The main components were water, carbon monoxide, formic acid, formaldehyde, methanol, acetic acid, carbon dioxide, and methyl chloride. The cumulative releases of gas products from three biomass fuels at 300 UC for 1 h were compared, and water was found to be the dominant product during torrefaction. The degradation kinetics of wheat straw was studied in TGA by applying a two-step reaction in series model and taking the mass loss during the initial heating period into account. The model and parameters were proven to be able to predict the residual mass of wheat straw in a batch scale torrefaction reactor with different heating rates well. It means the mass yield of solids

  13. Biomass Conversion into Solid Composite Fuel for Bed-Combustion

    Directory of Open Access Journals (Sweden)

    Tabakaev Roman B.

    2015-01-01

    Full Text Available The purpose of this research is the conversion of different types of biomass into solid composite fuel. The subject of research is the heat conversion of biomass into solid composite fuel. The research object is the biomass of the Tomsk region (Russia: peat, waste wood, lake sapropel. Physical experiment of biomass conversion is used as method of research. The new experimental unit for thermal conversion of biomass into carbon residue, fuel gas and pyrolysis condensate is described. As a result of research such parameters are obtained: thermotechnical biomass characteristics, material balances and product characteristics of the heat-technology conversion. Different methods of obtaining solid composite fuel from the products of thermal technologies are considered. As a result, it is established: heat-technology provides efficient conversion of the wood chips and peat; conversion of the lake sapropel is inefficient since the solid composite fuel has the high ash content and net calorific value.

  14. Production of distillate fuels from biomass-derived polyoxygenates

    Energy Technology Data Exchange (ETDEWEB)

    Kania, John; Blommel, Paul; Woods, Elizabeth; Dally, Brice; Lyman, Warren; Cortright, Randy

    2017-03-14

    The present invention provides methods, reactor systems and catalysts for converting biomass and biomass-derived feedstocks to C.sub.8+ hydrocarbons using heterogenous catalysts. The product stream may be separated and further processed for use in chemical applications, or as a neat fuel or a blending component in jet fuel and diesel fuel, or as heavy oils for lubricant and/or fuel oil applications.

  15. Biomass equipments. The wood-fueled heating plants; Materiels pour la biomasse. Les chaudieres bois

    Energy Technology Data Exchange (ETDEWEB)

    Chieze, B. [SA Compte R, 63 - Arlanc (France)

    1997-12-31

    This paper analyzes the consequences of the classification of biomass fuels in the French 2910 by-law on the classification of biomass-fueled combustion installations. Biomass fuels used in such installations must be only wood wastes without any treatment or coating. The design of biomass combustion systems must follow several specifications relative to the fueling system, the combustion chamber, the heat exchanger and the treatment of exhaust gases. Other technical solutions must be studied for other type of wood wastes in order to respect the environmental pollution laws. (J.S.)

  16. A review on biomass as a fuel for boilers

    Energy Technology Data Exchange (ETDEWEB)

    Saidur, R.; Abelaziz, E.A.; Demirbas, A.; Hossain, M.S.; Mekhilef, S. [University of Malaya, Kuala Lumpur (Malaysia). Dept. of Mechanical Engineering

    2011-06-15

    Currently, fossil fuels such as oil, coal and natural gas represent the prime energy sources in the world. However, it is anticipated that these sources of energy will deplete within the next 40-50 years. Moreover, the expected environmental damages such as the global warming, acid rain and urban smog due to the production of emissions from these sources have tempted the world to try to reduce carbon emissions by 80% and shift towards utilizing a variety of renewable energy resources (RES) which are less environmentally harmful such as solar, wind, biomass etc. in a sustainable way. Biomass is one of the earliest sources of energy with very specific properties. In this review, several aspects which are associated with burning biomass in boilers have been investigated such as composition of biomass, estimating the higher heating value of biomass, comparison between biomass and other fuels, combustion of biomass, co-firing of biomass and coal, impacts of biomass, economic and social analysis of biomass, transportation of biomass, densification of biomass, problems of biomass and future of biomass. It has been found that utilizing biomass in boilers offers many economical, social and environmental benefits such as financial net saving, conservation of fossil fuel resources, job opportunities creation and CO{sub 2} and NO emissions reduction. However, care should be taken to other environmental impacts of biomass such as land and water resources, soil erosion, loss of biodiversity and deforestation. Fouling, marketing, low heating value, storage and collections and handling are all associated problems when burning biomass in boilers. The future of biomass in boilers depends upon the development of the markets for fossil fuels and on policy decisions regarding the biomass market.

  17. Fuel cells : a viable fossil fuel alternative

    Energy Technology Data Exchange (ETDEWEB)

    Paduada, M.

    2007-02-15

    This article presented a program initiated by Natural Resources Canada (NRCan) to develop proof-of-concept of underground mining vehicles powered by fuel cells in order to eliminate emissions. Recent studies on American and Canadian underground mines provided the basis for estimating the operational cost savings of switching from diesel to fuel cells. For the Canadian mines evaluated, the estimated ventilation system operating cost reductions ranged from 29 per cent to 75 per cent. In order to demonstrate the viability of a fuel cell-powered vehicle, NRCan has designed a modified Caterpillar R1300 loader with a 160 kW hybrid power plant in which 3 stacks of fuel cells deliver up to 90 kW continuously, and a nickel-metal hydride battery provides up to 70 kW. The battery subsystem transiently boosts output to meet peak power requirements and also accommodates regenerative braking. Traction for the loader is provided by a brushless permanent magnet traction motor. The hydraulic pump motor is capable of a 55 kW load continuously. The loader's hydraulic and traction systems are operated independently. Future fuel cell-powered vehicles designed by the program may include a locomotive and a utility vehicle. Future mines running their operations with hydrogen-fueled equipment may also gain advantages by employing fuel cells in the operation of handheld equipment such as radios, flashlights, and headlamps. However, the proton exchange membrane (PEM) fuel cells used in the project are prohibitively expensive. The catalytic content of a fuel cell can add hundreds of dollars per kW of electric output. Production of catalytic precious metals will be strongly connected to the scale of use and acceptance of fuel cells in vehicles. In addition, the efficiency of hydrogen production and delivery is significantly lower than the well-to-tank efficiency of many conventional fuels. It was concluded that an adequate hydrogen infrastructure will be required for the mining industry

  18. Alternatives to traditional transportation fuels 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    Interest in alternative transportation fuels (ATF`s) has increased in recent years due to the drives for cleaner air and less dependence upon foreign oil. This report, Alternatives to Traditional Transportation Fuels 1996, provides information on ATFs, as well as the vehicles that consume them.

  19. Dimethyl ether (DME) as an alternative fuel

    Science.gov (United States)

    Semelsberger, Troy A.; Borup, Rodney L.; Greene, Howard L.

    With ever growing concerns on environmental pollution, energy security, and future oil supplies, the global community is seeking non-petroleum based alternative fuels, along with more advanced energy technologies (e.g., fuel cells) to increase the efficiency of energy use. The most promising alternative fuel will be the fuel that has the greatest impact on society. The major impact areas include well-to-wheel greenhouse gas emissions, non-petroleum feed stocks, well-to-wheel efficiencies, fuel versatility, infrastructure, availability, economics, and safety. Compared to some of the other leading alternative fuel candidates (i.e., methane, methanol, ethanol, and Fischer-Tropsch fuels), dimethyl ether appears to have the largest potential impact on society, and should be considered as the fuel of choice for eliminating the dependency on petroleum. DME can be used as a clean high-efficiency compression ignition fuel with reduced NO x, SO x, and particulate matter, it can be efficiently reformed to hydrogen at low temperatures, and does not have large issues with toxicity, production, infrastructure, and transportation as do various other fuels. The literature relevant to DME use is reviewed and summarized to demonstrate the viability of DME as an alternative fuel.

  20. Biomass gasification for liquid fuel production

    Energy Technology Data Exchange (ETDEWEB)

    Najser, Jan, E-mail: jan.najser@vsb.cz, E-mail: vaclav.peer@vsb.cz; Peer, Václav, E-mail: jan.najser@vsb.cz, E-mail: vaclav.peer@vsb.cz [VSB - Technical university of Ostrava, Energy Research Center, 17. listopadu 15/2172, 708 33 Ostrava-Poruba (Czech Republic); Vantuch, Martin [University of Zilina, Faculty of Mechanical Engineering, Department of Power Engineering, Univerzitna 1, 010 26 Zilina (Slovakia)

    2014-08-06

    In our old fix-bed autothermal gasifier we tested wood chips and wood pellets. We make experiments for Czech company producing agro pellets - pellets made from agricultural waste and fastrenewable natural resources. We tested pellets from wheat and rice straw and hay. These materials can be very perspective, because they dońt compete with food production, they were formed in sufficient quantity and in the place of their treatment. New installation is composed of allothermal biomass fixed bed gasifier with conditioning and using produced syngas for Fischer - Tropsch synthesis. As a gasifying agent will be used steam. Gas purification will have two parts - separation of dust particles using a hot filter and dolomite reactor for decomposition of tars. In next steps, gas will be cooled, compressed and removed of sulphur and chlorine compounds and carbon dioxide. This syngas will be used for liquid fuel synthesis.

  1. Fixed bed gasification of solid biomass fuels

    Energy Technology Data Exchange (ETDEWEB)

    Haavisto, I. [Condens Oy, Haemeenlinna (Finland)

    1996-12-31

    Fixed bed biomass gasifiers are feasible in the effect range of 100 kW -10 MW. Co-current gasification is available only up to 1 MW for technical reasons. Counter-current gasifiers have been used in Finland and Sweden for 10 years in gasification heating plants, which are a combination of a gasifier and an oil boiler. The plants have proved to have a wide control range, flexible and uncomplicated unmanned operation and an excellent reliability. Counter-current gasifiers can be applied for new heating plants or for converting existing oil and natural gas boilers into using solid fuels. There is a new process development underway, aiming at motor use of the producer gas. The development work involves a new, more flexible cocurrent gasifier and a cleaning step for the counter-current producer gas. (orig.)

  2. Emission reductions from woody biomass waste for energy as an alternative to open burning.

    Science.gov (United States)

    Springsteen, Bruce; Christofk, Tom; Eubanks, Steve; Mason, Tad; Clavin, Chris; Storey, Brett

    2011-01-01

    Woody biomass waste is generated throughout California from forest management, hazardous fuel reduction, and agricultural operations. Open pile burning in the vicinity of generation is frequently the only economic disposal option. A framework is developed to quantify air emissions reductions for projects that alternatively utilize biomass waste as fuel for energy production. A demonstration project was conducted involving the grinding and 97-km one-way transport of 6096 bone-dry metric tons (BDT) of mixed conifer forest slash in the Sierra Nevada foothills for use as fuel in a biomass power cogeneration facility. Compared with the traditional open pile burning method of disposal for the forest harvest slash, utilization of the slash for fuel reduced particulate matter (PM) emissions by 98% (6 kg PM/BDT biomass), nitrogen oxides (NOx) by 54% (1.6 kg NOx/BDT), nonmethane volatile organics (NMOCs) by 99% (4.7 kg NMOCs/BDT), carbon monoxide (CO) by 97% (58 kg CO/BDT), and carbon dioxide equivalents (CO2e) by 17% (0.38 t CO2e/BDT). Emission contributions from biomass processing and transport operations are negligible. CO2e benefits are dependent on the emission characteristics of the displaced marginal electricity supply. Monetization of emissions reductions will assist with fuel sourcing activities and the conduct of biomass energy projects.

  3. DoD use of Domestically-Produced Alternative Fuels and Alternative Fuel Vehicles

    Science.gov (United States)

    2014-04-10

    fuels and vehicles. 15. SUBJECT TERMS alternative fuel infrastructure, electric vehicles, biofuels, ethanol , biodiesel , drop-in, synthetic fuel...control number. 1. REPORT DATE 10 APR 2014 2. REPORT TYPE Final 3. DATES COVERED 06 JAN 2014 - 2014 APR 10 4. TITLE AND SUBTITLE DoD use of...based fuels and biodiesel , in DoD vehicles; (2) current and projected actions by the DoD to increase the use of alternative fuels in vehicles; (3) a

  4. A life-cycle comparison of alternative automobile fuels.

    Science.gov (United States)

    MacLean, H L; Lave, L B; Lankey, R; Joshi, S

    2000-10-01

    We examine the life cycles of gasoline, diesel, compressed natural gas (CNG), and ethanol (C2H5OH)-fueled internal combustion engine (ICE) automobiles. Port and direct injection and spark and compression ignition engines are examined. We investigate diesel fuel from both petroleum and biosources as well as C2H5OH from corn, herbaceous bio-mass, and woody biomass. The baseline vehicle is a gasoline-fueled 1998 Ford Taurus. We optimize the other fuel/powertrain combinations for each specific fuel as a part of making the vehicles comparable to the baseline in terms of range, emissions level, and vehicle lifetime. Life-cycle calculations are done using the economic input-output life-cycle analysis (EIO-LCA) software; fuel cycles and vehicle end-of-life stages are based on published model results. We find that recent advances in gasoline vehicles, the low petroleum price, and the extensive gasoline infrastructure make it difficult for any alternative fuel to become commercially viable. The most attractive alternative fuel is compressed natural gas because it is less expensive than gasoline, has lower regulated pollutant and toxics emissions, produces less greenhouse gas (GHG) emissions, and is available in North America in large quantities. However, the bulk and weight of gas storage cylinders required for the vehicle to attain a range comparable to that of gasoline vehicles necessitates a redesign of the engine and chassis. Additional natural gas transportation and distribution infrastructure is required for large-scale use of natural gas for transportation. Diesel engines are extremely attractive in terms of energy efficiency, but expert judgment is divided on whether these engines will be able to meet strict emissions standards, even with reformulated fuel. The attractiveness of direct injection engines depends on their being able to meet strict emissions standards without losing their greater efficiency. Biofuels offer lower GHG emissions, are sustainable, and

  5. PRODUCTION OF NEW BIOMASS/WASTE-CONTAINING SOLID FUELS

    Energy Technology Data Exchange (ETDEWEB)

    David J. Akers; Glenn A. Shirey; Zalman Zitron; Charles Q. Maney

    2001-04-20

    CQ Inc. and its team members (ALSTOM Power Inc., Bliss Industries, McFadden Machine Company, and industry advisors from coal-burning utilities, equipment manufacturers, and the pellet fuels industry) addressed the objectives of the Department of Energy and industry to produce economical, new solid fuels from coal, biomass, and waste materials that reduce emissions from coal-fired boilers. This project builds on the team's commercial experience in composite fuels for energy production. The electric utility industry is interested in the use of biomass and wastes as fuel to reduce both emissions and fuel costs. In addition to these benefits, utilities also recognize the business advantage of consuming the waste byproducts of customers both to retain customers and to improve the public image of the industry. Unfortunately, biomass and waste byproducts can be troublesome fuels because of low bulk density, high moisture content, variable composition, handling and feeding problems, and inadequate information about combustion and emissions characteristics. Current methods of co-firing biomass and wastes either use a separate fuel receiving, storage, and boiler feed system, or mass burn the biomass by simply mixing it with coal on the storage pile. For biomass or biomass-containing composite fuels to be extensively used in the U.S., especially in the steam market, a lower cost method of producing these fuels must be developed that includes both moisture reduction and pelletization or agglomeration for necessary fuel density and ease of handling. Further, this method of fuel production must be applicable to a variety of combinations of biomass, wastes, and coal; economically competitive with current fuels; and provide environmental benefits compared with coal. Notable accomplishments from the work performed in Phase I of this project include the development of three standard fuel formulations from mixtures of coal fines, biomass, and waste materials that can be used in

  6. Land-use and alternative bioenergy pathways for waste biomass.

    Science.gov (United States)

    Campbell, J E; Block, E

    2010-11-15

    Rapid escalation in biofuels consumption may lead to a trade regime that favors exports of food-based biofuels from tropical developing countries to developed countries. There is growing interest in mitigating the land-use impacts of these potential biofuels exports by converting biorefinery waste streams into cellulosic ethanol, potentially reducing the amount of land needed to meet production goals. This increased land-use efficiency for ethanol production may lower the land-use greenhouse gas emissions of ethanol but would come at the expense of converting the wastes into bioelectricity which may offset fossil fuel-based electricity and could provide a vital source of domestic electricity in developing countries. Here we compare these alternative uses of wastes with respect to environmental and energy security outcomes considering a range of electricity production efficiencies, ethanol yields, land-use scenarios, and energy offset assumptions. For a given amount of waste biomass, we found that using bioelectricity production to offset natural gas achieves 58% greater greenhouse gas reductions than using cellulosic ethanol to offset gasoline but similar emissions when cellulosic ethanol is used to offset the need for more sugar cane ethanol. If bioelectricity offsets low-carbon energy sources such as nuclear power then the liquid fuels pathway is preferred. Exports of cellulosic ethanol may have a small impact on the energy security of importing nations while bioelectricity production may have relatively large impacts on the energy security in developing countries.

  7. Making alcohol fuels for transportation via biomass gasification

    Energy Technology Data Exchange (ETDEWEB)

    Hannula, I. [VTT Technical Research Centre of Finland, Espoo (Finland)], email: ilkka.hannula@vtt.fi

    2012-07-01

    The objective of this project was to examine and identify process configurations that prove most promising for the largescale production of transportation fuels via biomass gasification. Special attention was given to the production of alcohol fuels. Other objectives of the project included: reviewing the status of biomass-to-syngas technology in the US, strengthening of networks between Finland and the US in the area of biomass gasification, deepening VTT's process evaluation know-how in the biomass-to-liquids area, and investigation of availability and gasification properties of selected North American agricultural residues and energy crops.

  8. 10 CFR 490.506 - Alternative fueled vehicle credit transfers.

    Science.gov (United States)

    2010-01-01

    ... Section 490.506 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.506 Alternative fueled vehicle credit transfers. (a) Any fleet... fueled vehicle credit to— (1) A fleet that is required to acquire alternative fueled vehicles; or (2)...

  9. Alternative motor fuels today and tomorrow

    Energy Technology Data Exchange (ETDEWEB)

    Bensaid, B

    2004-07-01

    Today, petroleum products account for 97% of the energy consumed in road transport. The purpose of replacing these products with alternative energies is to reduce oil dependence as well as greenhouse gas emissions. The high price of oil has promoted the use of 'conventional' alternative motor fuels (biofuels, LPG, NGV) and also renewed interest in syn-fuels (GTL, CTL, BTL) that have already given rise to industrial and pilot projects. (author)

  10. A methodology for assessing the market benefits of alternative motor fuels: The Alternative Fuels Trade Model

    Energy Technology Data Exchange (ETDEWEB)

    Leiby, P.N.

    1993-09-01

    This report describes a modeling methodology for examining the prospective economic benefits of displacing motor gasoline use by alternative fuels. The approach is based on the Alternative Fuels Trade Model (AFTM). AFTM development was undertaken by the US Department of Energy (DOE) as part of a longer term study of alternative fuels issues. The AFTM is intended to assist with evaluating how alternative fuels may be promoted effectively, and what the consequences of substantial alternative fuels use might be. Such an evaluation of policies and consequences of an alternative fuels program is being undertaken by DOE as required by Section 502(b) of the Energy Policy Act of 1992. Interest in alternative fuels is based on the prospective economic, environmental and energy security benefits from the substitution of these fuels for conventional transportation fuels. The transportation sector is heavily dependent on oil. Increased oil use implies increased petroleum imports, with much of the increase coming from OPEC countries. Conversely, displacement of gasoline has the potential to reduce US petroleum imports, thereby reducing reliance on OPEC oil and possibly weakening OPEC`s ability to extract monopoly profits. The magnitude of US petroleum import reduction, the attendant fuel price changes, and the resulting US benefits, depend upon the nature of oil-gas substitution and the supply and demand behavior of other world regions. The methodology applies an integrated model of fuel market interactions to characterize these effects.

  11. ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    1999-04-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  12. Alternative Fuels and Chemicals from Synthesis Gas

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1998-12-02

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  13. ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    Energy Technology Data Exchange (ETDEWEB)

    Peter Tijrn

    2003-02-03

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  14. Alternative fuels and chemicals from synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    1998-08-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  15. Alternative Fuels and Chemicals from Synthesis Gas

    Energy Technology Data Exchange (ETDEWEB)

    Peter Tijrn

    2003-01-02

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  16. ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    1999-01-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  17. Alternative Fuels and Chemicals From Synthesis Gas

    Energy Technology Data Exchange (ETDEWEB)

    none

    1998-07-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  18. Turbine Fuel Alternatives (Near Term)

    Science.gov (United States)

    1989-10-01

    There was some evidence that the use of the alcohol blends affected the combustion properties of the fuel. A temperature survey was conducted with a T-34C...Jet-A. Also, the corrected fuel flow is lower when using an alcohol blend than when operating on Jet-A. These two factors indicate the combustion ...VERSUS CORRECTED TURBINE OUTLET TEMPERATURE A-7 200, -T ’go-I 190 170- ETA oix 15X ETANOL ! ¶,0-1 1 20- S 110j 1. 001 9 0 I 7 0 10 zo 460 500 540 580

  19. Alternative Fuels and Sustainable Development

    DEFF Research Database (Denmark)

    Jørgensen, Kaj; Nielsen, Lars Henrik

    1996-01-01

    The main report of the project on Transportation Fuels based on Renewable Energy. The report contains a review of potential technologies for electric, hybrid and hydrogen propulsion in the Danish transport sector, including an assessment of their development status. In addition, the energy...

  20. Outlook for alternative energy sources. [aviation fuels

    Science.gov (United States)

    Card, M. E.

    1980-01-01

    Predictions are made concerning the development of alternative energy sources in the light of the present national energy situation. Particular emphasis is given to the impact of alternative fuels development on aviation fuels. The future outlook for aircraft fuels is that for the near term, there possibly will be no major fuel changes, but minor specification changes may be possible if supplies decrease. In the midterm, a broad cut fuel may be used if current development efforts are successful. As synfuel production levels increase beyond the 1990's there may be some mixtures of petroleum-based and synfuel products with the possibility of some shale distillate and indirect coal liquefaction products near the year 2000.

  1. Alternatives to traditional transportation fuels 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    This report provides information on transportation fuels other than gasoline and diesel, and the vehicles that use these fuels. The Energy Information Administration (EIA) provides this information to support the U.S. Department of Energy`s reporting obligations under Section 503 of the Energy Policy Act of 1992 (EPACT). The principal information contained in this report includes historical and year-ahead estimates of the following: (1) the number and type of alterative-fueled vehicles (AFV`s) in use; (2) the consumption of alternative transportation fuels and {open_quotes}replacement fuels{close_quotes}; and (3) the number and type of alterative-fueled vehicles made available in the current and following years. In addition, the report contains some material on special topics. The appendices include a discussion of the methodology used to develop the estimates (Appendix A), a map defining geographic regions used, and a list of AFV suppliers.

  2. Alternative Fuels in Cement Production

    OpenAIRE

    2007-01-01

    Substitutionen af fossilt med alternativt brændsel i cement produktionen er steget betydeligt i den sidste dekade. Af disse nye alternative brændsler, udgør de faste brændsler p.t. den største andel, hvor kød- og benmel, plastic og dæk i særdeleshed har været de alternative brændsler der har bidraget med mest alternativ brændsels energi til den tyske cement industri. De nye alternative brændsler er typisk karakteriseret ved et højt indhold af flygtige bestanddele og adskiller sig typisk fra t...

  3. Solid Oxide Fuel Cells coupled with a biomass gasification unit

    Directory of Open Access Journals (Sweden)

    Skrzypkiewicz Marek

    2016-01-01

    Full Text Available A possibility of fuelling a solid oxide fuel cell stack (SOFC with biomass fuels can be realized by coupling a SOFC system with a self-standing gasification unit. Such a solution enables multi-fuel operation, elasticity of the system as well as the increase of the efficiency of small-scale biomass-to-electricity conversion units. A system of this type, consisting of biomass gasification unit, gas purification unit, SOFC stack, anode off-gas afterburner and peripherals was constructed and operated successfully. During the process, biomass fuel (wood chips was gasified with air as gasification agent. The gasifier was capable of converting up to 30 kW of fuel to syngas with efficiencies up to 75%. Syngas leaving the gasification unit is delivered to a medium temperature adsorber for sulphur compounds removal. Steam is added to the purified fuel to maintain steam to carbon ratio higher than 2. The syngas then is passed to a SOFC stack through a fuel preheater. In such a configuration it was possible to operate a commercial 1.3 kW stack within its working regime. Conducted tests confirmed successful operation of a SOFC stack fuelled by biomass-sourced syngas.

  4. EPAct Alternative Fuel Transporation Program - State and Alternative Fuel Provider Fleets: Frequently Asked Questions

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-03-01

    Factsheet answering frequently asked questions about the U.S. Department of Energy's Alternative Fuel Transportation Program (the Program) that implements provisions of Titles III–V of the Energy Policy Act of 1992 (EPAct). Answers to questions that are frequently asked about the Program by managers of state government and alternative fuel provider fleets are provided in the factsheet.

  5. Zeolite-catalyzed biomass conversion to fuels and chemicals

    DEFF Research Database (Denmark)

    Taarning, Esben; Osmundsen, Christian Mårup; Yang, Xiaobo

    2011-01-01

    Heterogeneous catalysts have been a central element in the efficient conversion of fossil resources to fuels and chemicals, but their role in biomass utilization is more ambiguous. Zeolites constitute a promising class of heterogeneous catalysts and developments in recent years have demonstrated...... their potential to find broad use in the conversion of biomass. In this perspective we review and discuss the developments that have taken place in the field of biomass conversion using zeolites. Emphasis is put on the conversion of lignocellulosic material to fuels using conventional zeolites as well...

  6. Distillate Fuel Trends: International Supply Variations and Alternate Fuel Properties

    Science.gov (United States)

    2013-01-31

    Acids derived Synthetic Paraffinic Kerosene HFRR High Frequency Reciprocating Rig, ASTM D6079 HVO Hydrotreated Vegetable Oil IARC International...including hydrotreated vegetable oil (HVO) and Biomass-to- Liquid (BTL), provided all other specifications are respected and the resulting blend meets...number of commercial, middle distillate fuels (diesel and jet). It is most often made through either hydrotreating processes or Fischer-Tropsch (FT

  7. Catalytic conversion of biomass to fuels. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Garten, R. L.; Ushiba, K. K.; Cooper, M.; Mahawili, I.

    1978-01-01

    This report presents an assessment and perspective concerning the application of catalytic technologies to the thermochemical conversion of biomass resources to fuels. The major objectives of the study are: to provide a systematic assessment of the role of catalysis in the direct thermochemical conversion of biomass into gaseous and liquid fuels; to establish the relationship between potential biomass conversion processes and catalytic processes currently under development in other areas, with particular emphasis on coal conversion processes; and to identify promising catalytic systems which could be utilized to reduce the overall costs of fuels production from biomass materials. The report is divided into five major parts which address the above objectives. In Part III the physical and chemical properties of biomass and coal are compared, and the implications for catalytic conversion processes are discussed. With respect to chemical properties, biomass is shown to have significant advantages over coal in catalytic conversion processes because of its uniformly high H/C ratio and low concentrations of potential catalyst poisons. The physical properties of biomass can vary widely, however, and preprocessing by grinding is difficult and costly. Conversion technologies that require little preprocessing and accept a wide range of feed geometries, densities, and particle sizes appear desirable. Part IV provides a comprehensive review of existing and emerging thermochemical conversion technologies for biomass and coal. The underlying science and technology for gasification and liquefaction processes are presented.

  8. Alternate-Fueled Combustor-Sector Performance

    Science.gov (United States)

    Thomas, Anna E.; Saxena, Nikita T.; Shouse, Dale T.; Neuroth, Craig; Hendricks, Robert C.; Lynch, Amy; Frayne, Charles W.; Stutrud, Jeffrey S.; Corporan, Edwin; Hankins, Terry

    2013-01-01

    In order to realize alternative fueling for military and commercial use, the industry has set forth guidelines that must be met by each fuel. These aviation fueling requirements are outlined in MIL-DTL-83133F(2008) or ASTM D 7566 Annex (2011) standards, and are classified as "drop-in" fuel replacements. This report provides combustor performance data for synthetic-paraffinic-kerosene- (SPK-) type (Fischer-Tropsch (FT)) fuel and blends with JP-8+100, relative to JP-8+100 as baseline fueling. Data were taken at various nominal inlet conditions: 75 psia (0.52 MPa) at 500 degF (533 K), 125 psia (0.86 MPa) at 625 degF (603 K), 175 psia (1.21 MPa) at 725 degF (658 K), and 225 psia (1.55 MPa) at 790 degF (694 K). Combustor performance analysis assessments were made for the change in flame temperatures, combustor efficiency, wall temperatures, and exhaust plane temperatures at 3, 4, and 5 percent combustor pressure drop (DP) for fuel:air ratios (F/A) ranging from 0.010 to 0.025. Significant general trends show lower liner temperatures and higher flame and combustor outlet temperatures with increases in FT fueling relative to JP-8+100 fueling. The latter affects both turbine efficiency and blade and vane lives.

  9. Review of alternative fuels data bases

    Science.gov (United States)

    Harsha, P. T.; Edelman, R. B.

    1983-01-01

    Based on an analysis of the interaction of fuel physical and chemical properties with combustion characteristics and indicators, a ranking of the importance of various fuel properties with respect to the combustion process was established. This ranking was used to define a suite of specific experiments whose objective is the development of an alternative fuels design data base. Combustion characteristics and indicators examined include droplet and spray formation, droplet vaporization and burning, ignition and flame stabilization, flame temperature, laminar flame speed, combustion completion, soot emissions, NOx and SOx emissions, and the fuels' thermal and oxidative stability and fouling and corrosion characteristics. Key fuel property data is found to include composition, thermochemical data, chemical kinetic rate information, and certain physical properties.

  10. CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS (CFB AND CLB) FUELS IN PULVERIZED FUEL AND FIXED BED BURNERS

    Energy Technology Data Exchange (ETDEWEB)

    Kalyan Annamalai; John Sweeten; Saqib Mukhtar; Ben Thein; Gengsheng Wei; Soyuz Priyadarsan; Senthil Arumugam; Kevin Heflin

    2003-08-28

    Intensive animal feeding operations create large amounts of animal waste that must be safely disposed of in order to avoid environmental degradation. Cattle feedlots and chicken houses are two examples. In feedlots, cattle are confined to small pens and fed a high calorie grain-diet diet in preparation for slaughter. In chicken houses, thousands of chickens are kept in close proximity. In both of these operations, millions of tons of manure are produced every year. The manure could be used as a fuel by mixing it with coal in a 90:10 blend and firing it in an existing coal suspension fired combustion systems. This technique is known as co-firing, and the high temperatures produced by the coal will allow the biomass to be completely combusted. Reburn is a process where a small percentage of fuel called reburn fuel is injected above the NO{sub x} producing, conventional coal fired burners in order to reduce NO{sub x}. The manure could also be used as reburn fuel for reducing NO{sub x} in coal fired plants. An alternate approach of using animal waste is to adopt the gasification process using a fixed bed gasifier and then use the gases for firing in gas turbine combustors. In this report, the cattle manure is referred to as feedlot biomass (FB) and chicken manure as litter biomass (LB). The report generates data on FB and LB fuel characteristics. Co-firing, reburn, and gasification tests of coal, FB, LB, coal: FB blends, and coal: LB blends and modeling on cofiring, reburn systems and economics of use of FB and LB have also been conducted. The biomass fuels are higher in ash, lower in heat content, higher in moisture, and higher in nitrogen and sulfur (which can cause air pollution) compared to coal. Small-scale cofiring experiments revealed that the biomass blends can be successfully fired, and NO{sub x} emissions will be similar to or lower than pollutant emissions when firing coal. Further experiments showed that biomass is twice or more effective than coal when

  11. Alternative Liquid Fuels Simulation Model (AltSim).

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Ryan; Baker, Arnold Barry; Drennen, Thomas E.

    2009-12-01

    The Alternative Liquid Fuels Simulation Model (AltSim) is a high-level dynamic simulation model which calculates and compares the production and end use costs, greenhouse gas emissions, and energy balances of several alternative liquid transportation fuels. These fuels include: corn ethanol, cellulosic ethanol from various feedstocks (switchgrass, corn stover, forest residue, and farmed trees), biodiesel, and diesels derived from natural gas (gas to liquid, or GTL), coal (coal to liquid, or CTL), and coal with biomass (CBTL). AltSim allows for comprehensive sensitivity analyses on capital costs, operation and maintenance costs, renewable and fossil fuel feedstock costs, feedstock conversion ratio, financial assumptions, tax credits, CO{sub 2} taxes, and plant capacity factor. This paper summarizes the structure and methodology of AltSim, presents results, and provides a detailed sensitivity analysis. The Energy Independence and Security Act (EISA) of 2007 sets a goal for the increased use of biofuels in the U.S., ultimately reaching 36 billion gallons by 2022. AltSim's base case assumes EPA projected feedstock costs in 2022 (EPA, 2009). For the base case assumptions, AltSim estimates per gallon production costs for the five ethanol feedstocks (corn, switchgrass, corn stover, forest residue, and farmed trees) of $1.86, $2.32, $2.45, $1.52, and $1.91, respectively. The projected production cost of biodiesel is $1.81/gallon. The estimates for CTL without biomass range from $1.36 to $2.22. With biomass, the estimated costs increase, ranging from $2.19 per gallon for the CTL option with 8% biomass to $2.79 per gallon for the CTL option with 30% biomass and carbon capture and sequestration. AltSim compares the greenhouse gas emissions (GHG) associated with both the production and consumption of the various fuels. EISA allows fuels emitting 20% less greenhouse gases (GHG) than conventional gasoline and diesels to qualify as renewable fuels. This allows several of the

  12. Alternative Liquid Fuels Simulation Model (AltSim).

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Ryan; Baker, Arnold Barry; Drennen, Thomas E.

    2009-12-01

    The Alternative Liquid Fuels Simulation Model (AltSim) is a high-level dynamic simulation model which calculates and compares the production and end use costs, greenhouse gas emissions, and energy balances of several alternative liquid transportation fuels. These fuels include: corn ethanol, cellulosic ethanol from various feedstocks (switchgrass, corn stover, forest residue, and farmed trees), biodiesel, and diesels derived from natural gas (gas to liquid, or GTL), coal (coal to liquid, or CTL), and coal with biomass (CBTL). AltSim allows for comprehensive sensitivity analyses on capital costs, operation and maintenance costs, renewable and fossil fuel feedstock costs, feedstock conversion ratio, financial assumptions, tax credits, CO{sub 2} taxes, and plant capacity factor. This paper summarizes the structure and methodology of AltSim, presents results, and provides a detailed sensitivity analysis. The Energy Independence and Security Act (EISA) of 2007 sets a goal for the increased use of biofuels in the U.S., ultimately reaching 36 billion gallons by 2022. AltSim's base case assumes EPA projected feedstock costs in 2022 (EPA, 2009). For the base case assumptions, AltSim estimates per gallon production costs for the five ethanol feedstocks (corn, switchgrass, corn stover, forest residue, and farmed trees) of $1.86, $2.32, $2.45, $1.52, and $1.91, respectively. The projected production cost of biodiesel is $1.81/gallon. The estimates for CTL without biomass range from $1.36 to $2.22. With biomass, the estimated costs increase, ranging from $2.19 per gallon for the CTL option with 8% biomass to $2.79 per gallon for the CTL option with 30% biomass and carbon capture and sequestration. AltSim compares the greenhouse gas emissions (GHG) associated with both the production and consumption of the various fuels. EISA allows fuels emitting 20% less greenhouse gases (GHG) than conventional gasoline and diesels to qualify as renewable fuels. This allows several of the

  13. Characterization of Canadian biomass for alternative renewable biofuel

    Energy Technology Data Exchange (ETDEWEB)

    Naik, Satyanarayan; Goud, Vaibhav V.; Rout, Prasant K.; Jacobson, Kathlene; Dalai, Ajay K. [Catalysis and Chemical Engineering Laboratories, Department of Chemical Engineering, University of Saskatchewan, Saskatoon, SK (Canada)

    2010-08-15

    Biomass represents the renewable energy source and their use reduces the consumption of fossil fuels and limits the emission of CO{sub 2}, SO{sub x}, NO{sub x} and heavy metals. They are used in pyrolysis, gasification, combustion and co-combustion. Present study aims to highlight the common biomass available in Canada such as wheat straw, barley straw, flax straw, timothy grass and pinewood. The biomass samples were collected form Saskatoon, Canada and examined for their physical and chemical characteristics using static bomb calorimeter, XRD, TGA, ICP-MS, CHNSO, FT-IR and FT-NIR. The biomass samples were subjected to three-step extraction process, i.e. hexane, alcohol and water extraction separately, after extraction the raffinate biomass was acid hydrolyzed. The acid soluble fractions, which mainly contained degraded sugars, were analysed by HPLC and the lignin content was determined using acid insoluble fraction. The hexane extract (i.e. waxes), alcohol extract and lignin were characterized by FT-IR spectroscopy. Among all the biomass samples pinewood shows lower ash and lignin content, while shows higher calorific value, cellulose and hemicellulose content. The appreciable amount of hexane soluble in pinewood was due to the presence of terpene hydrocarbons. However among the agricultural biomass samples barley straw shows higher ash, wax and lignin content compared to wheat and flax straw. All these properties combined together have shown that pinewood, wheat and flax can act as the potential candidates for bio-energy production. (author)

  14. Production of jet fuel from alternative source

    Energy Technology Data Exchange (ETDEWEB)

    Eller, Zoltan; Papp, Anita; Hancsok, Jenoe [Pannonia Univ., Veszprem (Hungary). MOL Dept. of Hydrocarbon and Coal Processing

    2013-06-01

    Recent demands for low aromatic content jet fuels have shown significant increase in the last 20 years. This was generated by the growing of aviation. Furthermore, the quality requirements have become more aggravated for jet fuels. Nowadays reduced aromatic hydrocarbon fractions are necessary for the production of jet fuels with good burning properties, which contribute to less harmful material emission. In the recent past the properties of gasolines and diesel gas oils were continuously severed, and the properties of jet fuels will be more severe, too. Furthermore, it can become obligatory to blend alternative components into jet fuels. With the aromatic content reduction there is a possibility to produce high energy content jet fuels with the desirable properties. One of the possibilities is the blending of biocomponents from catalytic hydrogenation of triglycerides. Our aim was to study the possibilities of producing low sulphur and aromatic content jet fuels in a catalytic way. On a CoMo/Al{sub 2}O{sub 3} catalyst we studied the possibilities of quality improving of a kerosene fraction and coconut oil mixture depending on the change of the process parameters (temperature, pressure, liquid hourly space velocity, volume ratio). Based on the quality parameters of the liquid products we found that we made from the feedstock in the adequate technological conditions products which have a high smoke point (> 35 mm) and which have reduced aromatic content and high paraffin content (90%), so these are excellent jet fuels, and their stack gases damage the environment less. (orig.)

  15. Solid Oxide Fuel Cells Operating on Alternative and Renewable Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoxing; Quan, Wenying; Xiao, Jing; Peduzzi, Emanuela; Fujii, Mamoru; Sun, Funxia; Shalaby, Cigdem; Li, Yan; Xie, Chao; Ma, Xiaoliang; Johnson, David; Lee, Jeong; Fedkin, Mark; LaBarbera, Mark; Das, Debanjan; Thompson, David; Lvov, Serguei; Song, Chunshan

    2014-09-30

    This DOE project at the Pennsylvania State University (Penn State) initially involved Siemens Energy, Inc. to (1) develop new fuel processing approaches for using selected alternative and renewable fuels – anaerobic digester gas (ADG) and commercial diesel fuel (with 15 ppm sulfur) – in solid oxide fuel cell (SOFC) power generation systems; and (2) conduct integrated fuel processor – SOFC system tests to evaluate the performance of the fuel processors and overall systems. Siemens Energy Inc. was to provide SOFC system to Penn State for testing. The Siemens work was carried out at Siemens Energy Inc. in Pittsburgh, PA. The unexpected restructuring in Siemens organization, however, led to the elimination of the Siemens Stationary Fuel Cell Division within the company. Unfortunately, this led to the Siemens subcontract with Penn State ending on September 23rd, 2010. SOFC system was never delivered to Penn State. With the assistance of NETL project manager, the Penn State team has since developed a collaborative research with Delphi as the new subcontractor and this work involved the testing of a stack of planar solid oxide fuel cells from Delphi.

  16. Pulse Detonation Assessment for Alternative Fuels

    Directory of Open Access Journals (Sweden)

    Muhammad Hanafi Azami

    2017-03-01

    Full Text Available The higher thermodynamic efficiency inherent in a detonation combustion based engine has already led to considerable interest in the development of wave rotor, pulse detonation, and rotating detonation engine configurations as alternative technologies offering improved performance for the next generation of aerospace propulsion systems, but it is now important to consider their emissions also. To assess both performance and emissions, this paper focuses on the feasibility of using alternative fuels in detonation combustion. Thus, the standard aviation fuels Jet-A, Acetylene, Jatropha Bio-synthetic Paraffinic Kerosene, Camelina Bio-synthetic Paraffinic Kerosene, Algal Biofuel, and Microalgae Biofuel are all asessed under detonation combustion conditions. An analytical model accounting for the Rankine-Hugoniot Equation, Rayleigh Line Equation, and Zel’dovich–von Neumann–Doering model, and taking into account single step chemistry and thermophysical properties for a stoichiometric mixture, is applied to a simple detonation tube test case configuration. The computed pressure rise and detonation velocity are shown to be in good agreement with published literature. Additional computations examine the effects of initial pressure, temperature, and mass flux on the physical properties of the flow. The results indicate that alternative fuels require higher initial mass flux and temperature to detonate. The benefits of alternative fuels appear significant.

  17. Spent Nuclear Fuel Alternative Technology Decision Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Shedrow, C.B.

    1999-11-29

    The Westinghouse Savannah River Company (WSRC) made a FY98 commitment to the Department of Energy (DOE) to recommend a technology for the disposal of aluminum-based spent nuclear fuel (SNF) at the Savannah River Site (SRS). The two technologies being considered, direct co-disposal and melt and dilute, had been previously selected from a group of eleven potential SNF management technologies by the Research Reactor Spent Nuclear Fuel Task Team chartered by the DOE''s Office of Spent Fuel Management. To meet this commitment, WSRC organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and ultimately provide a WSRC recommendation to DOE on a preferred SNF alternative management technology.

  18. Alternative Fuel for Portland Cement Processing

    Energy Technology Data Exchange (ETDEWEB)

    Schindler, Anton K; Duke, Steve R; Burch, Thomas E; Davis, Edward W; Zee, Ralph H; Bransby, David I; Hopkins, Carla; Thompson, Rutherford L; Duan, Jingran; ; Venkatasubramanian, Vignesh; Stephen, Giles

    2012-06-30

    The production of cement involves a combination of numerous raw materials, strictly monitored system processes, and temperatures on the order of 1500 °C. Immense quantities of fuel are required for the production of cement. Traditionally, energy from fossil fuels was solely relied upon for the production of cement. The overarching project objective is to evaluate the use of alternative fuels to lessen the dependence on non-renewable resources to produce portland cement. The key objective of using alternative fuels is to continue to produce high-quality cement while decreasing the use of non-renewable fuels and minimizing the impact on the environment. Burn characteristics and thermodynamic parameters were evaluated with a laboratory burn simulator under conditions that mimic those in the preheater where the fuels are brought into a cement plant. A drop-tube furnace and visualization method were developed that show potential for evaluating time- and space-resolved temperature distributions for fuel solid particles and liquid droplets undergoing combustion in various combustion atmospheres. Downdraft gasification has been explored as a means to extract chemical energy from poultry litter while limiting the throughput of potentially deleterious components with regards to use in firing a cement kiln. Results have shown that the clinkering is temperature independent, at least within the controllable temperature range. Limestone also had only a slight effect on the fusion when used to coat the pellets. However, limestone addition did display some promise in regards to chlorine capture, as ash analyses showed chlorine concentrations of more than four times greater in the limestone infused ash as compared to raw poultry litter. A reliable and convenient sampling procedure was developed to estimate the combustion quality of broiler litter that is the best compromise between convenience and reliability by means of statistical analysis. Multi-day trial burns were conducted

  19. 78 FR 49411 - Denial of Petitions for Reconsideration of Regulation of Fuels and Fuel Additives: 2013 Biomass...

    Science.gov (United States)

    2013-08-14

    ... Fuel Additives: 2013 Biomass-Based Diesel Renewable Fuel Volume Final Rule AGENCY: Environmental... entitled Regulation of Fuels and Fuel Additives: 2013 Biomass-Based Diesel Renewable Fuel Volume. DATES...(o)(2)(B)(ii) of the Clean Air Act requires that EPA determine the applicable volume of...

  20. DOD Alternative Fuels: Policy, Initiatives and Legislative Activity

    Science.gov (United States)

    2012-12-14

    hydrotreated jet and diesel biofuels,15 alcohol-to-jet fuels, and direct-sugar-to-hydrocarbons fuels).16 All services have purchased various types of... hydrotreated jet and diesel biofuels. The Air Force has also purchased alcohol-to-jet fuels derived from both petroleum and biomass feedstocks. The...liquid fuels from coal, natural gas, or biomass feedstocks. 15 Hydrotreated jet and diesel biofuels are the more common terms for HEFA (Hydroprocessed

  1. Pyrolysis of biomass to produce fuels and chemical feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Yaman, Serdar E-mail: yamans@itu.edu.tr

    2004-03-01

    This review presents the summary of new studies on pyrolysis of biomass to produce fuels and chemical feedstocks. A number of biomass species, varying from woody and herbaceous biomass to municipal solid waste, food processing residues and industrial wastes, were subjected to different pyrolysis conditions to obtain liquid, gas and solid products. The results of various biomass pyrolysis investigations connected with the chemical composition and some properties of the pyrolysis products as a result of the applied pyrolysis conditions were combined. The characteristics of the liquid products from pyrolysis were examined, and some methods, such as catalytic upgrading or steam reforming, were considered to improve the physical and chemical properties of the liquids to convert them to economic and environmentally acceptable liquid fuels or chemical feedstocks. Outcomes from the kinetic studies performed by applying thermogravimetric analysis were also presented.

  2. Pyrolysis of biomass to produce fuels and chemical feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Serdar Yaman [Istanbul Technical University (Turkey). Chemical Engineering Dept.

    2004-03-01

    This review presents the summary of new studies on pyrolysis of biomass to produce fuels and chemical feedstocks. A number of biomass species, varying from woody and herbaceous biomass to municipal solid waste, food processing residues and industrial wastes, were subjected to different pyrolysis conditions to obtain liquid, gas and solid products. The results of various biomass pyrolysis investigations connected with the chemical composition and some properties of the pyrolysis products as a result of the applied pyrolysis conditions were combined. The characteristics of the liquid products from pyrolysis were examined, and some methods, such as catalytic upgrading or steam reforming, were considered to improve the physical and chemical properties of the liquids to convert them to economic and environmentally acceptable liquid fuels or chemical feedstocks. Outcomes from the kinetic studies performed by applying thermogravimetric analysis were also presented. (author)

  3. Direct production of fractionated and upgraded hydrocarbon fuels from biomass

    Science.gov (United States)

    Felix, Larry G.; Linck, Martin B.; Marker, Terry L.; Roberts, Michael J.

    2014-08-26

    Multistage processing of biomass to produce at least two separate fungible fuel streams, one dominated by gasoline boiling-point range liquids and the other by diesel boiling-point range liquids. The processing involves hydrotreating the biomass to produce a hydrotreatment product including a deoxygenated hydrocarbon product of gasoline and diesel boiling materials, followed by separating each of the gasoline and diesel boiling materials from the hydrotreatment product and each other.

  4. Transportation Energy Futures Series: Projected Biomass Utilization for Fuels and Power in a Mature Market

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, M.; Mai, T.; Newes, E.; Aden, A.; Warner, E.; Uriarte, C.; Inman, D.; Simpkins, T.; Argo, A.

    2013-03-01

    The viability of biomass as transportation fuel depends upon the allocation of limited resources for fuel, power, and products. By focusing on mature markets, this report identifies how biomass is projected to be most economically used in the long term and the implications for greenhouse gas (GHG) emissions and petroleum use. In order to better understand competition for biomass between these markets and the potential for biofuel as a market-scale alternative to petroleum-based fuels, this report presents results of a micro-economic analysis conducted using the Biomass Allocation and Supply Equilibrium (BASE) modeling tool. The findings indicate that biofuels can outcompete biopower for feedstocks in mature markets if research and development targets are met. The BASE tool was developed for this project to analyze the impact of multiple biomass demand areas on mature energy markets. The model includes domestic supply curves for lignocellulosic biomass resources, corn for ethanol and butanol production, soybeans for biodiesel, and algae for diesel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  5. Transportation Energy Futures Series. Projected Biomass Utilization for Fuels and Power in a Mature Market

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mai, T. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Newes, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Aden, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Warner, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Uriarte, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Inman, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Simpkins, T. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Argo, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-03-01

    The viability of biomass as transportation fuel depends upon the allocation of limited resources for fuel, power, and products. By focusing on mature markets, this report identifies how biomass is projected to be most economically used in the long term and the implications for greenhouse gas (GHG) emissions and petroleum use. In order to better understand competition for biomass between these markets and the potential for biofuel as a market-scale alternative to petroleum-based fuels, this report presents results of a micro-economic analysis conducted using the Biomass Allocation and Supply Equilibrium (BASE) modeling tool. The findings indicate that biofuels can outcompete biopower for feedstocks in mature markets if research and development targets are met. The BASE tool was developed for this project to analyze the impact of multiple biomass demand areas on mature energy markets. The model includes domestic supply curves for lignocellulosic biomass resources, corn for ethanol and butanol production, soybeans for biodiesel, and algae for diesel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  6. Life cycle models of conventional and alternative-fueled automobiles

    Science.gov (United States)

    Maclean, Heather Louise

    development for the combinations. Overall, none of the alternatives emerges as a clear winner, lowering the externalities and improving sustainability, while considering technology issues and vehicle attributes. The majority of the alternatives are not likely to displace the baseline automobile. However, the attractiveness of the alternatives depends on the focus of future regulations, government priorities, and technology development. If long-term global sustainability is the principal concern, then improvements in fuel economy alone will not provide the level of reduction in impact required. A switch to renewable fuels (e.g., alcohols or diesel produced from biomass) to power the vehicles will likely be necessary. (Abstract shortened by UMI.)

  7. Mathematical modeling of biomass fuels formation process.

    Science.gov (United States)

    Gaska, Krzysztof; Wandrasz, Andrzej J

    2008-01-01

    The increasing demand for thermal and electric energy in many branches of industry and municipal management accounts for a drastic diminishing of natural resources (fossil fuels). Meanwhile, in numerous technical processes, a huge mass of wastes is produced. A segregated and converted combustible fraction of the wastes, with relatively high calorific value, may be used as a component of formed fuels. The utilization of the formed fuel components from segregated groups of waste in associated processes of co-combustion with conventional fuels causes significant savings resulting from partial replacement of fossil fuels, and reduction of environmental pollution resulting directly from the limitation of waste migration to the environment (soil, atmospheric air, surface and underground water). The realization of technological processes with the utilization of formed fuel in associated thermal systems should be qualified by technical criteria, which means that elementary processes as well as factors of sustainable development, from a global viewpoint, must not be disturbed. The utilization of post-process waste should be preceded by detailed technical, ecological and economic analyses. In order to optimize the mixing process of fuel components, a mathematical model of the forming process was created. The model is defined as a group of data structures which uniquely identify a real process and conversion of this data in algorithms based on a problem of linear programming. The paper also presents the optimization of parameters in the process of forming fuels using a modified simplex algorithm with a polynomial worktime. This model is a datum-point in the numerical modeling of real processes, allowing a precise determination of the optimal elementary composition of formed fuels components, with assumed constraints and decision variables of the task.

  8. Release of fuel-bound nitrogen during biomass gasification

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, J.; Masutani, S.M.; Ishimura, D.M.; Turn, S.Q.; Kinoshita, C.M.

    2000-03-01

    Gasification of four biomass feedstocks (leucaena, sawdust, bagasse, and banagrass) with significantly different fuel-bound nitrogen (FBN) content was investigated to determine the effects of operational parameters and nitrogen content of biomass on the partitioning of FBN among nitrogenous gas species. Experiments were performed using a bench-scale, indirectly heated, fluidized-bed gasifier. Data were obtained over a range of temperatures and equivalence ratios representative of commercial biomass gasification processes. An assay of all major nitrogenous components in the gasification products was performed for the first time, providing a clear accounting of the evolution of FBN. Important findings of this research include the following: (1) NH{sub 3} and N{sub 2} are the dominant species evolved from fuel nitrogen during biomass gasification; >90% of FBN in feedstock is converted to NH{sub 3} and N{sub 2}; (2) relative levels of NH{sub 3} and N{sub 2} are determined by thermochemical reactions in the gasifier; these reactions are affected strongly by temperature; (3) N{sub 2} appears to be primarily produced through the conversion of NH{sub 3} in the gas phase; (4) the structural formula and content of fuel nitrogen in biomass feedstock significantly affect the formation and evolution of nitrogen species during biomass gasification.

  9. Pollutants generated by the combustion of solid biomass fuels

    CERN Document Server

    Jones, Jenny M; Ma, Lin; Williams, Alan; Pourkashanian, Mohamed

    2014-01-01

    This book considers the pollutants formed by the combustion of solid biomass fuels. The availability and potential use of solid biofuels is first discussed because this is the key to the development of biomass as a source of energy.This is followed by details of the methods used for characterisation of biomass and their classification.The various steps in the combustion mechanisms are given together with a compilation of the kinetic data. The chemical mechanisms for the formation of the pollutants: NOx, smoke and unburned hydrocarbons, SOx, Cl compounds, and particulate metal aerosols

  10. Biomass Cooking Fuels and Health Outcomes for Women in Malawi.

    Science.gov (United States)

    Das, Ipsita; Jagger, Pamela; Yeatts, Karin

    2017-03-01

    In sub-Saharan Africa, biomass fuels account for approximately 90% of household energy consumption. Limited evidence exists on the association between different biomass fuels and health outcomes. We report results from a cross-sectional sample of 655 households in Malawi. We calculated odds ratios between hypothesized determinants of household air pollution (HAP) exposure (fuel, stove type, and cooking location) and five categories of health outcomes (cardiopulmonary, respiratory, neurologic, eye health, and burns). Reliance on high- or low-quality firewood or crop residue (vs. charcoal) was associated with significantly higher odds of shortness of breath, difficulty breathing, chest pains, night phlegm, forgetfulness, dizziness, and dry irritated eyes. Use of high-quality firewood was associated with significantly lower odds of persistent phlegm. Cooks in rural areas (vs. urban areas) had significantly higher odds of experiencing shortness of breath, persistent cough, and phlegm, but significantly lower odds of phlegm, forgetfulness, and burns. With deforestation and population pressures increasing reliance on low-quality biomass fuels, prevalence of HAP-related cardiopulmonary and neurologic symptoms will likely increase among cooks. Short- to medium-term strategies are needed to secure access to high-quality biomass fuels given limited potential for scalable transitions to modern energy.

  11. Systems impacts of spent fuel disassembly alternatives

    Energy Technology Data Exchange (ETDEWEB)

    1984-07-01

    Three studies were completed to evaluate four alternatives to the disposal of intact spent fuel assemblies in a geologic repository. A preferred spent fuel waste form for disposal was recommended on consideration of (1) package design and fuel/package interaction, (2) long-term, in-repository performance of the waste form, and (3) overall process performance and costs for packaging, handling, and emplacement. The four basic alternative waste forms considered were (1) end fitting removal, (2) fission gas venting, (3) disassembly and close packing, and (4) shearing/immobilization. None of the findings ruled out any alternative on the basis of waste package considerations or long-term performance of the waste form. The third alternative offers flexibility in loading that may prove attractive in the various geologic media under consideration, greatly reduces the number of packages, and has the lowest unit cost. These studies were completed in October, 1981. Since then Westinghouse Electric Corporation and the Office of Nuclear Waste Isolation have completed studies in related fields. This report is now being published to provide publicly the background material that is contained within. 47 references, 28 figures, 31 tables.

  12. Review: Circulation of Inorganic Elements in Combustion of Alternative Fuels in Cement Plants

    DEFF Research Database (Denmark)

    Cortada Mut, Maria del Mar; Nørskov, Linda Kaare; Jappe Frandsen, Flemming

    2015-01-01

    Cement production is an energy-intensive process, which traditionally has been dependent on fossil fuels. However, the use of alternative fuels, i.e., selected waste, biomass, and byproducts with recoverable calorific value, is constantly increasing. Combustion of these fuels is more challenging......, compared to fossil fuels, because of a lack of experience and different chemical and physical properties. When complete oxidation Of fuels in the calciner and main burner is not achieved, they burn in direct contact with the bed material of the rotary kiln, causing local reducing conditions and increasing...

  13. Transport and supply logistics of biomass fuels: Vol. 2. Biomass and strategic modelling

    Energy Technology Data Exchange (ETDEWEB)

    Allen, J.; Browne, M.; Cook, A.; Wicks, N.; Palmer, H.; Hunter, A.; Boyd, J.

    1996-10-01

    This document forms part of the United Kingdom Department of Trade and Industry project ''Transport and Logistics of Biomass Fuels'', which aimed to describe the distribution of existing and potential biomass resources in terms of their supply potential for power stations. Fixed areas of supply, or catchments, have been identified on colour maps of Britain showing the distribution of forest fuel, short rotation coppices, and various types of straw and animal slurry, using a specially written strategic modelling program. Adequate supplies of biomass resources are shown to exist in Britain, but siting of power stations to exploit these resources, will depend on transport and economic considerations appropriate at the time of construction. Biomass power stations in the megawatt capacity range could be resourced. (UK)

  14. Liquid alternative diesel fuels with high hydrogen content

    Energy Technology Data Exchange (ETDEWEB)

    Hancsok, Jenoe; Varga, Zoltan; Eller, Zoltan; Poelczmann, Gyoergy [Pannonia Univ., Veszprem (Hungary). MOL Dept. of Hydrocarbon Processing; Kasza, Tamas [MOL Hungarian Oil and Gas Plc., Szazhalombatta (Hungary)

    2013-06-01

    Mobility is a keystone of the sustainable development. In the operation of the vehicles as the tools of mobility internal combustion engines, so thus Diesel engines will play a remarkable role in the next decades. Beside fossil fuels - used for power these engines - liquid alternative fuels have higher and higher importance, because of their known advantages. During the presentation the categorization possibilities based on the chronology of their development and application will be presented. The importance of fuels with high hydrogen content will be reviewed. Research and development activity in the field of such kind of fuels will be presented. During this developed catalytic systems and main performance properties of the product will be presented which were obtained in case of biogasoils produced by special hydrocracking of natural triglycerides and in case of necessity followed by isomerization; furthermore in case of synthetic biogasoils obtained by the isomerization hydrocracking of Fischer-Tropsch paraffins produced from biomass based synthesis gas. Excellent combustion properties (cetane number > 65-75), good cold flow properties and reduced harmful material emission due to the high hydrogen content (C{sub n}H{sub 2n+2}) are highlighted. Finally production possibilities of linear and branched paraffins based on lignocelluloses are briefly reviewed. Summarizing it was concluded that liquid hydrocarbons with high isoparaffin content are the most suitable fuels regarding availability, economical and environmental aspects, namely the sustainable development. (orig.)

  15. Effect of alternative fuel properties on NOx reduction

    OpenAIRE

    Axelsen, Ernst Petter; Tokheim, Lars-André; Bjerketvedt, Dag

    2002-01-01

    Today we see a substantial increase in the use of alternative fuels in the cement industry. The prospect of reduction in fuel costs and the environmental benefits of waste to energy conversion are the driving forces. For several years Norcem have steadily increased their use of alternative fuels such as refuse derived fuel (RDF), liquid hazardous waste (LHW), solid hazardous waste (SHW), animal meal (AM) and waste oil (WO). Alternative fuels behave differently compared to e.g. coa...

  16. LIQUID BIO-FUEL PRODUCTION FROM NON-FOOD BIOMASS VIA HIGH TEMPERATURE STEAM ELECTROLYSIS

    Energy Technology Data Exchange (ETDEWEB)

    G. L. Hawkes; J. E. O' Brien; M. G. McKellar

    2011-11-01

    Bio-Syntrolysis is a hybrid energy process that enables production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), bio-syntrolysis has the potential to provide a significant alternative petroleum source that could reduce US dependence on imported oil. Combining hydrogen from HTSE with CO from an oxygen-blown biomass gasifier yields syngas to be used as a feedstock for synthesis of liquid transportation fuels via a Fischer-Tropsch process. Conversion of syngas to liquid hydrocarbon fuels, using a biomass-based carbon source, expands the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-blown biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the power

  17. Spent Nuclear Fuel Alternative Technology Risk Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Perella, V.F.

    1999-11-29

    A Research Reactor Spent Nuclear Fuel Task Team (RRTT) was chartered by the Department of Energy (DOE) Office of Spent Fuel Management with the responsibility to recommend a course of action leading to a final technology selection for the interim management and ultimate disposition of the foreign and domestic aluminum-based research reactor spent nuclear fuel (SNF) under DOE''s jurisdiction. The RRTT evaluated eleven potential SNF management technologies and recommended that two technologies, direct co-disposal and an isotopic dilution alternative, either press and dilute or melt and dilute, be developed in parallel. Based upon that recommendation, the Westinghouse Savannah River Company (WSRC) organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and provide a WSRC recommendation to DOE for a preferred SNF alternative management technology. A technology risk assessment was conducted as a first step in this recommendation process to determine if either, or both, of the technologies posed significant risks that would make them unsuitable for further development. This report provides the results of that technology risk assessment.

  18. Clean fuels from biomass. [feasibility of converting plant systems to fuels

    Science.gov (United States)

    Hsu, Y. Y.

    1974-01-01

    The feasibility of converting biomass to portable fuels is studied. Since plants synthesize biomass from H2O and CO2 with the help of solar energy, the conversion methods of pyrolysis, anaerobic fermentation, and hydrogenation are considered. Cost reduction methods and cost effectiveness are emphasized.

  19. Woody Biomass Conversion to JP-8 Fuels

    Science.gov (United States)

    2014-02-15

    the downstream hydrotreating required to produce a drop-in transportation fuel. Furthermore, this process does not use a catalyst, making it tolerant...Approximately 40% of the hydrotreated TDO oil mass is in the JP-8 (180-250C), and 60% is in the F-76 (150-325C) boiling point range, respectively

  20. Fuels and chemicals from biomass using solar thermal energy

    Science.gov (United States)

    Giori, G.; Leitheiser, R.; Wayman, M.

    1981-01-01

    The significant nearer term opportunities for the application of solar thermal energy to the manufacture of fuels and chemicals from biomass are summarized, with some comments on resource availability, market potential and economics. Consideration is given to the production of furfural from agricultural residues, and the role of furfural and its derivatives as a replacement for petrochemicals in the plastics industry.

  1. Biofuels for fuel cells: renewable energy from biomass fermentation

    NARCIS (Netherlands)

    Lens, P.N.L.; Westermann, P.; Haberbauer, M.; Moreno, A.

    2005-01-01

    This book has been produced under the auspices of the Network ‘Biomass Fermentation Towards Usage in Fuel Cells’. The Network comprises nine partners from eight European countries and is funded by the European Science Foundation. This volume includes a chapter, from each of the member institutions,

  2. INVESTIGATION OF LAMINAR FLAME SPEED OF ALTERNATIVE LIQUID FUEL BLENDS

    OpenAIRE

    2016-01-01

    The rapid fluctuation in oil prices and increased demand of clean fuels to reduce emissions has forced the researchers to find alternative fuels that can give the same or better overall fuel characteristics. This thesis aims at looking into the prospects of Gas to Liquid (GTL) fuel as an alternative fuel for Internal Combustion Engines (ICEs), by investigating the flame speed of GTL fuel and its 50/50 (by volume) blend with conventional diesel. The tests were conducted in a new...

  3. Crop production without fossil fuel: production systems for tractor fuel and mineral nitrogen based on biomass

    Energy Technology Data Exchange (ETDEWEB)

    Ahlgren, Serina

    2009-12-15

    With diminishing fossil fuel reserves and concerns about global warming, the agricultural sector needs to reduce its use of fossil fuels. The objective of this thesis was to evaluate different systems for biomass-based production of tractor fuel and mineral nitrogen fertilisers, which at present are the two largest fossil energy carriers in Swedish agriculture. The land use, energy input and environmental load of the systems were calculated using life cycle assessment methodology. Two categories of renewable tractor fuel were studied: first generation fuels and second generation fuels, the latter defined as fuels not yet produced on a commercial scale. An organic farm self-sufficient in tractor fuel was modelled. Raw material from the farm was assumed to be delivered to a large fuel production facility and fuel transported back to the farm, where it was utilised. In general, the second generation renewable fuels had higher energy balance and lower environmental impact than the first generation fuels. However all systems studied reduced the use of fossil fuels to a great extent and lowered the contribution to global warming. The land needed to be set aside for tractor fuel varied between 2% and 5% of the farm's available land. Two major routes for biomass-based production of mineral nitrogen for conventional agriculture were studied, one based on anaerobic digestion and one on thermochemical gasification of biomass. The crops studied were able to produce between 1.6 and 3.9 tonnes N per hectare in the form of ammonium nitrate. The use of fossil fuel for ammonium nitrate production was 35 MJ per kg N in the fossil reference scenario, but only 1-4 MJ per kg N in the biomass systems. The contribution to global warming can be greatly reduced by the biomass systems, but there is an increased risk of eutrophication and acidification. It is clear that the agricultural sector has great potential to reduce the use of fossil fuel and to lower the emissions of greenhouse

  4. Production of New Biomass/Waste-Containing Solid Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Glenn A. Shirey; David J. Akers

    2005-09-23

    CQ Inc. and its industry partners--PBS Coals, Inc. (Friedens, Pennsylvania), American Fiber Resources (Fairmont, West Virginia), Allegheny Energy Supply (Williamsport, Maryland), and the Heritage Research Group (Indianapolis, Indiana)--addressed the objectives of the Department of Energy and industry to produce economical, new solid fuels from coal, biomass, and waste materials that reduce emissions from coal-fired boilers. This project builds on the team's commercial experience in composite fuels for energy production. The electric utility industry is interested in the use of biomass and wastes as fuel to reduce both emissions and fuel costs. In addition to these benefits, utilities also recognize the business advantage of consuming the waste byproducts of customers both to retain customers and to improve the public image of the industry. Unfortunately, biomass and waste byproducts can be troublesome fuels because of low bulk density, high moisture content, variable composition, handling and feeding problems, and inadequate information about combustion and emissions characteristics. Current methods of co-firing biomass and wastes either use a separate fuel receiving, storage, and boiler feed system, or mass burn the biomass by simply mixing it with coal on the storage pile. For biomass or biomass-containing composite fuels to be extensively used in the U.S., especially in the steam market, a lower cost method of producing these fuels must be developed that is applicable to a variety of combinations of biomass, wastes, and coal; economically competitive with current fuels; and provides environmental benefits compared with coal. During Phase I of this project (January 1999 to July 2000), several biomass/waste materials were evaluated for potential use in a composite fuel. As a result of that work and the team's commercial experience in composite fuels for energy production, paper mill sludge and coal were selected for further evaluation and demonstration

  5. 18 CFR 281.304 - Computation of alternative fuel volume.

    Science.gov (United States)

    2010-04-01

    ... alternative fuel volume. 281.304 Section 281.304 Conservation of Power and Water Resources FEDERAL ENERGY... Determination § 281.304 Computation of alternative fuel volume. (a) General rule. For purposes of § 281.208(b)(1)(i)(B), and § 281.305: (1) Alternative fuel volume of an essential agricultural user is equal to...

  6. Alternate-Fuel Vehicles and Their Application in Schools.

    Science.gov (United States)

    Taggart, Chip

    1991-01-01

    Alternative fuels are becoming increasingly attractive from environmental, energy independence, and economic perspectives. Addresses the following topics: (1) federal and state legislation; (2) alternative fuels and their attributes; (3) practical experience with alternative-fuel vehicles in pupil transportation; and (4) options for school…

  7. Proceedings of the 1996 Windsor workshop on alternative fuels

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This document contains information which was presented at the 1996 Windsor Workshop on Alternative Fuels. Topics include: international links; industry topics and infrastructure issues; propane; engine developments; the cleanliness of alternative fuels; heavy duty alternative fuel engines; California zev commercialization efforts; and in-use experience.

  8. Fourth annual report to Congress, Federal Alternative Motor Fuels Programs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This annual report to Congress presents the current status of the alternative fuel vehicle programs being conducted across the country in accordance with the Alternative Motor Fuels Act of 1988. These programs, which represent the most comprehensive data collection effort ever undertaken on alternative fuels, are beginning their fifth year. This report summarizes tests and results from the fourth year.

  9. METHANOL PRODUCTION FROM BIOMASS AND NATURAL GAS AS TRANSPORTATION FUEL

    Science.gov (United States)

    Two processes are examined for production of methanol. They are assessed against the essential requirements of a future alternative fuel for road transport: that it (i) is producible in amounts comparable to the 19 EJ of motor fuel annually consumed in the U.S., (ii) minimizes em...

  10. Water consumption footprint and land requirements of large-scale alternative diesel and jet fuel production.

    Science.gov (United States)

    Staples, Mark D; Olcay, Hakan; Malina, Robert; Trivedi, Parthsarathi; Pearlson, Matthew N; Strzepek, Kenneth; Paltsev, Sergey V; Wollersheim, Christoph; Barrett, Steven R H

    2013-01-01

    Middle distillate (MD) transportation fuels, including diesel and jet fuel, make up almost 30% of liquid fuel consumption in the United States. Alternative drop-in MD and biodiesel could potentially reduce dependence on crude oil and the greenhouse gas intensity of transportation. However, the water and land resource requirements of these novel fuel production technologies must be better understood. This analysis quantifies the lifecycle green and blue water consumption footprints of producing: MD from conventional crude oil; Fischer-Tropsch MD from natural gas and coal; fermentation and advanced fermentation MD from biomass; and hydroprocessed esters and fatty acids MD and biodiesel from oilseed crops, throughout the contiguous United States. We find that FT MD and alternative MD derived from rainfed biomass have lifecycle blue water consumption footprints of 1.6 to 20.1 Lwater/LMD, comparable to conventional MD, which ranges between 4.1 and 7.4 Lwater/LMD. Alternative MD derived from irrigated biomass has a lifecycle blue water consumption footprint potentially several orders of magnitude larger, between 2.7 and 22 600 Lwater/LMD. Alternative MD derived from biomass has a lifecycle green water consumption footprint between 1.1 and 19 200 Lwater/LMD. Results are disaggregated to characterize the relationship between geo-spatial location and lifecycle water consumption footprint. We also quantify the trade-offs between blue water consumption footprint and areal MD productivity, which ranges from 490 to 4200 LMD/ha, under assumptions of rainfed and irrigated biomass cultivation. Finally, we show that if biomass cultivation for alternative MD is irrigated, the ratio of the increase in areal MD productivity to the increase in blue water consumption footprint is a function of geo-spatial location and feedstock-to-fuel production pathway.

  11. 75 FR 29605 - Clean Alternative Fuel Vehicle and Engine Conversions

    Science.gov (United States)

    2010-05-26

    ... Exceptions b. Heavy-Duty Engine Types and Gross Vehicle Weight Classes c. Dual-Fuel Standards 2. Useful Life... first type, dedicated alternative fueled vehicles or engines, are only capable of operating on one type of fuel. Dual-fueled vehicles or engines, the second type, can operate on two types of fuel,...

  12. High quality fuel gas from biomass pyrolysis with calcium oxide.

    Science.gov (United States)

    Zhao, Baofeng; Zhang, Xiaodong; Chen, Lei; Sun, Laizhi; Si, Hongyu; Chen, Guanyi

    2014-03-01

    The removal of CO2 and tar in fuel gas produced by biomass thermal conversion has aroused more attention due to their adverse effects on the subsequent fuel gas application. High quality fuel gas production from sawdust pyrolysis with CaO was studied in this paper. The results of pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) experiments indicate that the mass ratio of CaO to sawdust (Ca/S) remarkably affects the behavior of sawdust pyrolysis. On the basis of Py-GC/MS results, one system of a moving bed pyrolyzer coupled with a fluid bed combustor has been developed to produce high quality fuel gas. The lower heating value (LHV) of the fuel gas was above 16MJ/Nm(3) and the content of tar was under 50mg/Nm(3), which is suitable for gas turbine application to generate electricity and heat. Therefore, this technology may be a promising route to achieve high quality fuel gas for biomass utilization.

  13. Production of Solid Fuel by Torrefaction Using Coconut Leaves As Renewable Biomass

    Directory of Open Access Journals (Sweden)

    Lola Domnina Bote Pestaño

    2016-11-01

    Full Text Available The reserves of non-renewable energy sources such as coal, crude oil and natural gas are not limitless, they gradually get exhausted and their price continually increases. In the last four decades, researchers have been focusing on alternate fuel resources to meet the ever increasing energy demand and to avoid dependence on crude oil. Amongst different sources of renewable energy, biomass residues hold special promise due to their inherent capability to store solar energy and amenability to subsequent conversion to convenient solid, liquid and gaseous fuels. At present, among the coconut farm wastes such as husks, shell, coir dust and coconut leaves, the latter is considered the most grossly under-utilized by in situ burning in the coconut farm as means of disposal. In order to utilize dried coconut leaves and to improve its biomass properties, this research attempts to produce solid fuel by torrefaction using dried coconut leaves for use as alternative source of energy. Torrefaction is a thermal method for the conversion of biomass operating in the low temperature range of 200oC-300oC under atmospheric conditions in absence of oxygen. Dried coconut leaves were torrefied at different feedstock conditions. The key torrefaction products were collected and analyzed. Physical and combustion characteristics of both torrefied and untorrefied biomass were investigated. Torrefaction of dried coconut leaves significantly improved the heating value compared to that of the untreated biomass.  Proximate compositions of the torrefied biomass also improved and were comparable to coal. The distribution of the products of torrefaction depends highly on the process conditions such as torrefaction temperature and residence time. Physical and combustion characteristics of torrefied biomass were superior making it more suitable for fuel applications. Article History: Received June 24th 2016; Received in revised form August 16th 2016; Accepted 27th 2016; Available

  14. Biomass Biorefinery for the production of Polymers and Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Oliver P. Peoples

    2008-05-05

    The conversion of biomass crops to fuel is receiving considerable attention as a means to reduce our dependence on foreign oil imports and to meet future energy needs. Besides their use for fuel, biomass crops are an attractive vehicle for producing value added products such as biopolymers. Metabolix, Inc. of Cambridge proposes to develop methods for producing biodegradable polymers polyhydroxyalkanoates (PHAs) in green tissue plants as well as utilizating residual plant biomass after polymer extraction for fuel generation to offset the energy required for polymer extraction. The primary plant target is switchgrass, and backup targets are alfalfa and tobacco. The combined polymer and fuel production from the transgenic biomass crops establishes a biorefinery that has the potential to reduce the nation’s dependence on foreign oil imports for both the feedstocks and energy needed for plastic production. Concerns about the widespread use of transgenic crops and the grower’s ability to prevent the contamination of the surrounding environment with foreign genes will be addressed by incorporating and expanding on some of the latest plant biotechnology developed by the project partners of this proposal. This proposal also addresses extraction of PHAs from biomass, modification of PHAs so that they have suitable properties for large volume polymer applications, processing of the PHAs using conversion processes now practiced at large scale (e.g., to film, fiber, and molded parts), conversion of PHA polymers to chemical building blocks, and demonstration of the usefulness of PHAs in large volume applications. The biodegradability of PHAs can also help to reduce solid waste in our landfills. If successful, this program will reduce U.S. dependence on imported oil, as well as contribute jobs and revenue to the agricultural economy and reduce the overall emissions of carbon to the atmosphere.

  15. Preliminary ecotoxicity assessment of new generation alternative fuels in seawater.

    Science.gov (United States)

    Rosen, Gunther; Dolecal, Renee E; Colvin, Marienne A; George, Robert D

    2014-06-01

    The United States Navy (USN) is currently demonstrating the viability of environmentally sustainable alternative fuels to power its fleet comprised of aircraft and ships. As with any fuel used in a maritime setting, there is potential for introduction into the environment through transport, storage, and spills. However, while alternative fuels are often presumed to be eco-friendly relative to conventional petroleum-based fuels, their environmental fate and effects on marine environments are essentially unknown. Here, standard laboratory-based toxicity experiments were conducted for two alternative fuels, jet fuel derived from Camelina sativa (wild flax) seeds (HRJ5) and diesel fuel derived from algae (HRD76), and two conventional counterparts, jet fuel (JP5) and ship diesel (F76). Initial toxicity tests performed on water-accommodated fractions (WAF) from neat fuels partitioned into seawater, using four standard marine species in acute and chronic/sublethal tests, indicate that the alternative fuels are significantly less toxic to marine organisms.

  16. [Biomass energy utilization in microbial fuel cells: potentials and challenges].

    Science.gov (United States)

    Huang, Liping; Cheng, Shaoan

    2010-07-01

    Microbial fuel cells (MFCs) that can harvest biomass energy from organic wastes through microbial catalysis have garnered more and more attention within the past decade due to its potential benefits to ecological environment. In this article, the updated progress in MFCs is reviewed, with a focus on frontier technologies such as chamber configurations, feedstock varieties and the integration of MFCs with microbial electrolysis cells for hydrogen production. And on the other hand, the challenges like development of cost-effective electrode materials, improvement of biomass energy recovery and power output, design and optimization of commercial MFC devices are presented.

  17. The impact of alternate fuels on future candidate automotive engines

    Energy Technology Data Exchange (ETDEWEB)

    Rahnke, C.J.; Nichols, R.J.

    1982-06-01

    The thermal efficiency that could occur in the future for a variety of automotive engine candidates operating on conventional and alternate fuels is projected based on current automotive engine development trends and the special characteristics of the various alternate fuels. The multi-fuel engine candidates include mixture cycle and direct injection reciprocating engines, as well as adiabatic turbocompound engines and advanced gas turbine and Stirling engines. The alternate fuels considered are propane, methanol, ethanol, diesel and methane.

  18. Emissions from Petrol Engine Fueled Gasoline–Ethanol–Methanol (GEM Ternary mixture as Alternative Fuel

    Directory of Open Access Journals (Sweden)

    Thangavelu Saravana Kannan

    2015-01-01

    Full Text Available The increasing demands of petroleum fuels due to the rapid development automotive society coupled with the environmental pollution issues have inspired the efforts on exploring alternative fuels for internal combustion engines. Bioethanol obtained from biomass and bioenergy crops has been proclaimed as one of the feasible alternative to gasoline. In this study, the effect of gasoline–ethanol–methanol (GEM ternary blend on the emission characteristics of petrol engine was studied. Three different fuel blends, namely, E0 (gasoline, G75E21M4 (75% gasoline, 21% hydrous ethanol and 4% methanol and E25 (25% anhydrous ethanol and 75% gasoline were tested in a 1.3-l K3-VE spark-ignition engine. The results indicate that, when G75E21M4 fuel blend was used, a significant drop in CO, CO2, NOx and HC emissions by about 42%, 15%, 7% and 5.2% compared to E0, respectively. Moreover, the emission results for G75E21M4 are marginally lower than E25 whereas; HC emission was slightly higher than E25.

  19. Impact study on the use of biomass-derived fuels in gas turbines for power generation

    Energy Technology Data Exchange (ETDEWEB)

    Moses, C A; Bernstein, H [Southwest Research Inst., San Antonio, TX (United States)

    1994-01-01

    This report evaluates the properties of fuels derived from biomass, both gaseous and liquid, against the fuel requirements of gas turbine systems for gernating electrical power. The report attempts to be quantitative rather than merely qualitative to establish the significant variations in the properties of biomass fuels from those of conventional fuels. Three general categories are covered: performance, durability, and storage and handling.

  20. Compacting biomass waste materials for use as fuel

    Science.gov (United States)

    Zhang, Ou

    Every year, biomass waste materials are produced in large quantity. The combustibles in biomass waste materials make up over 70% of the total waste. How to utilize these waste materials is important to the nation and the world. The purpose of this study is to test optimum processes and conditions of compacting a number of biomass waste materials to form a densified solid fuel for use at coal-fired power plants or ordinary commercial furnaces. Successful use of such fuel as a substitute for or in cofiring with coal not only solves a solid waste disposal problem but also reduces the release of some gases from burning coal which cause health problem, acid rain and global warming. The unique punch-and-die process developed at the Capsule Pipeline Research Center, University of Missouri-Columbia was used for compacting the solid wastes, including waste paper, plastics (both film and hard products), textiles, leaves, and wood. The compaction was performed to produce strong compacts (biomass logs) under room temperature without binder and without preheating. The compaction conditions important to the commercial production of densified biomass fuel logs, including compaction pressure, pressure holding time, back pressure, moisture content, particle size, binder effects, and mold conditions were studied and optimized. The properties of the biomass logs were evaluated in terms of physical, mechanical, and combustion characteristics. It was found that the compaction pressure and the initial moisture content of the biomass material play critical roles in producing high-quality biomass logs. Under optimized compaction conditions, biomass waste materials can be compacted into high-quality logs with a density of 0.8 to 1.2 g/cm3. The logs made from the combustible wastes have a heating value in the range 6,000 to 8,000 Btu/lb which is only slightly (10 to 30%) less than that of subbituminous coal. To evaluate the feasibility of cofiring biomass logs with coal, burn tests were

  1. Brown clouds over South Asia: biomass or fossil fuel combustion?

    Science.gov (United States)

    Gustafsson, Orjan; Kruså, Martin; Zencak, Zdenek; Sheesley, Rebecca J; Granat, Lennart; Engström, Erik; Praveen, P S; Rao, P S P; Leck, Caroline; Rodhe, Henning

    2009-01-23

    Carbonaceous aerosols cause strong atmospheric heating and large surface cooling that is as important to South Asian climate forcing as greenhouse gases, yet the aerosol sources are poorly understood. Emission inventory models suggest that biofuel burning accounts for 50 to 90% of emissions, whereas the elemental composition of ambient aerosols points to fossil fuel combustion. We used radiocarbon measurements of winter monsoon aerosols from western India and the Indian Ocean to determine that biomass combustion produced two-thirds of the bulk carbonaceous aerosols, as well as one-half and two-thirds of two black carbon subfractions, respectively. These constraints show that both biomass combustion (such as residential cooking and agricultural burning) and fossil fuel combustion should be targeted to mitigate climate effects and improve air quality.

  2. Efficient Fuel Pretreatment: Simultaneous Torrefaction and Grinding of Biomass

    DEFF Research Database (Denmark)

    Saleh, Suriyati Binti; Hansen, Brian Brun; Jensen, Peter Arendt

    2013-01-01

    Combining torrefaction and grinding of biomass in one reactor may be an attractive fuel pretreatment process. A combined laboratory torrefaction and ball mill reactor has been constructed for studies of the influence of temperature and residence time on the product yields and particle size......, and ash composition, where straw has a higher alkali content. This and other studies indicate that the large difference in the alkali contents of the biomasses is the main cause for the observed difference in torrefaction characteristics. Experiments with separate particle heating and grinding showed...... of straw for 90 min yielded a higher mass loss (27–60 wt %) and relative size reduction (59–95%) compared with spruce (mass loss of 10–56 wt % and size reduction of 20–60%). The two types of biomass investigated differ with respect to hemicellulose type, lignocellulosic composition, particle morphology...

  3. Economical process for growing seaweed as biomass fuel source

    Energy Technology Data Exchange (ETDEWEB)

    Lagovskiy, V.

    1985-10-10

    Calculations made by researchers of Moscow State University have shown that the Aral Sea is capable of providing energy for almost the entire country. An experimental unit called Biosolar, for growing such energy already exists. Up to 40 liters of fuel gas a day can be gathered from a single square meter of plant beds. Seaweed yields biomass, which is placed in special vats. There it is eaten by bacteria, which release methane.

  4. Southern Nevada Alternative Fuels Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Hyde, Dan; Fast, Matthew

    2009-12-31

    The Southern Nevada Alternative Fuels Program is designed to demonstrate, in a day-to-day bus operation, the reliability and efficiency of a hydrogen bus operation under extreme conditions. By using ICE technology and utilizing a virtually emission free fuel, benefits to be derived include air quality enhancement and vehicle performance improvements from domestically produced, renewable energy sources. The project objective is to help both Ford and the City demonstrate and evaluate the performance characteristics of the E-450 H2ICE shuttle buses developed by Ford, which use a 6.8-liter supercharged Triton V-10 engine with a hydrogen storage system equivalent to 29 gallons of gasoline. The technology used during the demonstration project in the Ford buses is a modified internal combustion engine that allows the vehicles to run on 100% hydrogen fuel. Hydrogen gives a more thorough fuel burn which results in more power and responsiveness and less pollution. The resultant emissions from the tailpipe are 2010 Phase II compliant with NO after treatment. The City will lease two of these E-450 H2ICE buses from Ford for two years. The buses are outfitted with additional equipment used to gather information needed for the evaluation. Performance, reliability, safety, efficiency, and rider comments data will be collected. The method of data collection will be both electronically and manually. Emissions readings were not obtained during the project. The City planned to measure the vehicle exhaust with an emissions analyzer machine but discovered the bus emission levels were below the capability of their machine. Passenger comments were solicited on the survey cards. The majority of comments were favorable. The controllable issues encountered during this demonstration project were mainly due to the size of the hydrogen fuel tanks at the site and the amount of fuel that could be dispensed during a specified period of time. The uncontrollable issues encountered during this

  5. Biomass burning fuel consumption rates: a field measurement database

    Directory of Open Access Journals (Sweden)

    T. T. van Leeuwen

    2014-06-01

    Full Text Available Landscape fires show large variability in the amount of biomass or fuel consumed per unit area burned. These fuel consumption (FC rates depend on the biomass available to burn and the fraction of the biomass that is actually combusted, and can be combined with estimates of area burned to assess emissions. While burned area can be detected from space and estimates are becoming more reliable due to improved algorithms and sensors, FC rates are either modeled or taken selectively from the literature. We compiled the peer-reviewed literature on FC rates for various biomes and fuel categories to better understand FC rates and variability, and to provide a~database that can be used to constrain biogeochemical models with fire modules. We compiled in total 76 studies covering 10 biomes including savanna (15 studies, average FC of 4.6 t DM (dry matter ha−1, tropical forest (n = 19, FC = 126, temperate forest (n = 11, FC = 93, boreal forest (n = 16, FC = 39, pasture (n = 6, FC = 28, crop residue (n = 4, FC = 6.5, chaparral (n = 2, FC = 32, tropical peatland (n = 4, FC = 314, boreal peatland (n = 2, FC = 42, and tundra (n = 1, FC = 40. Within biomes the regional variability in the number of measurements was sometimes large, with e.g. only 3 measurement locations in boreal Russia and 35 sites in North America. Substantial regional differences were found within the defined biomes: for example FC rates of temperate pine forests in the USA were 38% higher than Australian forests dominated by eucalypt trees. Besides showing the differences between biomes, FC estimates were also grouped into different fuel classes. Our results highlight the large variability in FC rates, not only between biomes but also within biomes and fuel classes. This implies that care should be taken with using averaged values, and our comparison with FC rates from GFED3 indicates that also modeling studies have difficulty in representing the dynamics governing FC.

  6. Biomass fuel based on wastes from the paper industry

    OpenAIRE

    Budzyń Stanisław; Tora Barbara

    2016-01-01

    Wastes from paper industry are mostly combustible. It is possible to recycle them with energy recovery. These wastes have a high moisture content (up to 60%) and thus a small calorific value. An alternative to waste incineration is the production of solid recovered fuel. The benefits are: easy adjustment of the physical and chemical properties of the fuel (via the change of proportions of ingredients), low moisture and high calorific value. The study involved the following types of cellulose ...

  7. Comparison of PM emissions from a commercial jet engine burning conventional, biomass, and Fischer-Tropsch fuels.

    Science.gov (United States)

    Lobo, Prem; Hagen, Donald E; Whitefield, Philip D

    2011-12-15

    Rising fuel costs, an increasing desire to enhance security of energy supply, and potential environmental benefits have driven research into alternative renewable fuels for commercial aviation applications. This paper reports the results of the first measurements of particulate matter (PM) emissions from a CFM56-7B commercial jet engine burning conventional and alternative biomass- and, Fischer-Tropsch (F-T)-based fuels. PM emissions reductions are observed with all fuels and blends when compared to the emissions from a reference conventional fuel, Jet A1, and are attributed to fuel properties associated with the fuels and blends studied. Although the alternative fuel candidates studied in this campaign offer the potential for large PM emissions reductions, with the exception of the 50% blend of F-T fuel, they do not meet current standards for aviation fuel and thus cannot be considered as certified replacement fuels. Over the ICAO Landing Takeoff Cycle, which is intended to simulate aircraft engine operations that affect local air quality, the overall PM number-based emissions for the 50% blend of F-T fuel were reduced by 34 ± 7%, and the mass-based emissions were reduced by 39 ± 7%.

  8. Chemical biorefinery perspectives : the valorisation of functionalised chemicals from biomass resources compared to the conventional fossil fuel production route

    NARCIS (Netherlands)

    Brehmer, B.

    2008-01-01

    In response to the impending problems related to fossil fuels (continued supply, price, and regional and global pollution) alternative feedstocks are gaining interest as possible solutions. Biomass, considered sustainable and renewable, is an option with the potential to replace a wide diversity

  9. Hawaii alternative fuels utilization program. Phase 3, final report

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, C.M.; Staackmann, M.

    1996-08-01

    The Hawaii Alternative Fuels Utilization Program originated as a five-year grant awarded by the US Department of Energy (USDOE) to the Hawaii Natural Energy Institute (HNEI) of the University of Hawaii at Manoa. The overall program included research and demonstration efforts aimed at encouraging and sustaining the use of alternative (i.e., substitutes for gasoline and diesel) ground transportation fuels in Hawaii. Originally, research aimed at overcoming technical impediments to the widespread adoption of alternative fuels was an important facet of this program. Demonstration activities centered on the use of methanol-based fuels in alternative fuel vehicles (AFVs). In the present phase, operations were expanded to include flexible fuel vehicles (FFVs) which can operate on M85 or regular unleaded gasoline or any combination of these two fuels. Additional demonstration work was accomplished in attempting to involve other elements of Hawaii in the promotion and use of alcohol fuels for ground transportation in Hawaii.

  10. Sustainable Production of Asphalt using Biomass as Primary Process Fuel

    DEFF Research Database (Denmark)

    Bühler, Fabian; Nguyen, Tuong-Van; Elmegaard, Brian

    2016-01-01

    The production of construction materials is very energy intensive and requires large quantities of fossil fuels.Asphalt is the major road paving material in Europe and is being produced primarily in stationary batch mixasphalt factories. The production process requiring the most energy...... is the heating and drying of aggregate,where natural gas, fuel oil or LPG is burned in a direct-fired rotary dryer. Replacing this energy source with amore sustainable one presents several technical and economic challenges, as high temperatures, short startuptimes and seasonal production variations are required....... This paper analyses different pathways for the useof biomass feedstock as a primary process fuel. The analysed cases consider the gasification of straw andwood chips and the direct combustion of wood pellets. The additional use of syngas from the gasifier for theproduction of heat or combined heat and power...

  11. Forest biomass flow for fuel wood, fodder and timber security among tribal communities of Jharkhand.

    Science.gov (United States)

    Islam, M A; Quli, S M S; Rai, R; Ali, Angrej; Gangoo, S A

    2015-01-01

    The study investigated extraction and consumption pattern of fuel wood, fodder and timber and forest biomass flow for fuel wood, fodder and timber security among tribal communities in Bundu block of Ranchi district in Jharkhand (India). The study is based on personal interviews of the selected respondents through structured interview schedule, personal observations and participatory rural appraisal tools i.e. key informant interviews and focus group discussions carried out in the sample villages, using multi-stage random sampling technique. The study revealed that the total extraction of fuel wood from different sources in villages was 2978.40 tons annum(-1), at the rate of 0.68 tons per capita annum(-1), which was mostly consumed in cooking followed by cottage industries, heating, community functions and others. The average fodder requirement per household was around 47.77 kg day(-1) with a total requirement of 14227.34 tons annum(-1). The average timber requirement per household was computed to be 0.346 m3 annum(-1) accounting for a total timber demand of 282.49 m3 annum(-1), which is mostly utilized in housing, followed by agricultural implements, rural furniture, carts and carriages, fencing, cattle shed/ store house and others. Forest biomass is the major source of fuel wood, fodder and timber for the primitive societies of the area contributing 1533.28 tons annum(-1) (51.48%) of the total fuel wood requirement, 6971.55 tons annum(-1) (49.00%) of the total fodder requirement and 136.36 m3 annum(-1) (48.27%) of the total timber requirement. The forest biomass is exposed to enormous pressure for securing the needs by the aboriginal people, posing great threat to biodiversity and environment of the region. Therefore, forest biomass conservation through intervention of alternative avenues is imperative to keep pace with the current development and future challenges in the area.

  12. Biomass-powered Solid Oxide Fuel Cells: Experimental and Modeling Studies for System Integrations

    NARCIS (Netherlands)

    Liu, M.

    2013-01-01

    Biomass is a sustainable energy source which, through thermo-chemical processes of biomass gasification, is able to be converted from a solid biomass fuel into a gas mixture, known as syngas or biosyngas. A solid oxide fuel cell (SOFC) is a power generation device that directly converts the chemical

  13. Standardization of Alternative Fuels. Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-08-15

    March 2003 the Executive Committee of the International Energy Agency's Implementing Agreement on Advanced Motor fuels (IEA/AMF) decided to continue annex XXVII 'Standardization of alternative fuels' with a second phase. The purpose of the second phase was to go further in the contacts with the International Organization for Standardization (ISO) as well as the European Committee for Standardization (CEN) and their technical committees, to better understand their needs and to investigate how IEA/AMF could contribute to their work. It was also scheduled to put forward proposals on how IEA/AMF could cooperate with CEN and ISO and their technical committees (TC: s), primarily ISO/TC 28 'Petroleum Products and Lubricants' and CEN/TC 19 'Petroleum Products, Lubricants and Related Products'. The main part of the work in IEA/AMF annex XXVII phase two has focused on personal contacts within CEN/TC 19 and ISO/TC 28, but also on data and information collection from websites and written information. Together with the analysis of this information, the internal organization of a cooperation between IEA/AMF and ISO/TC 28 and of a cooperation between IEA/AMF and CEN/TC 19 have also been discussed and analysed.

  14. Biomass-derived Syngas Utilization for Fuels and Chemicals - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Dayton, David C

    2010-03-24

    Executive Summary The growing gap between petroleum production and demand, mounting environmental concerns, and increasing fuel prices have stimulated intense interest in research and development (R&D) of alternative fuels, both synthetic and bio-derived. Currently, the most technically defined thermochemical route for producing alternative fuels from lignocellulosic biomass involves gasification/reforming of biomass to produce syngas (carbon monoxide [CO] + hydrogen [H2]), followed by syngas cleaning, Fischer-Tropsch synthesis (FTS) or mixed alcohol synthesis, and some product upgrading via hydroprocessing or separation. A detailed techno-economic analysis of this type of process has recently been published [1] and it highlights the need for technical breakthroughs and technology demonstration for gas cleanup and fuel synthesis. The latter two technical barrier areas contribute 40% of the total thermochemical ethanol cost and 70% of the production cost, if feedstock costs are factored out. Developing and validating technologies that reduce the capital and operating costs of these unit operations will greatly reduce the risk for commercializing integrated biomass gasification/fuel synthesis processes for biofuel production. The objective of this project is to develop and demonstrate new catalysts and catalytic processes that can efficiently convert biomass-derived syngas into diesel fuel and C2-C4 alcohols. The goal is to improve the economics of the processes by improving the catalytic activity and product selectivity, which could lead to commercialization. The project was divided into 4 tasks: Task 1: Reactor Systems: Construction of three reactor systems was a project milestone. Construction of a fixed-bed microreactor (FBR), a continuous stirred tank reactor (CSTR), and a slurry bubble column reactor (SBCR) were completed to meet this milestone. Task 2: Iron Fischer-Tropsch (FT) Catalyst: An attrition resistant iron FT catalyst will be developed and tested

  15. Vehicle conversion to hybrid gasoline/alternative fuel operation

    Science.gov (United States)

    Donakowski, T. D.

    1982-01-01

    The alternative fuels considered are compressed natural gas (CNG), liquefied natural gas (LNG), liquid petroleum gas (LPG), and methanol; vehicles were required to operate in a hybrid or dual-fuel gasoline/alternative fuel mode. Economic feasibility was determined by comparing the costs of continued use of gasoline fuel with the use of alternative fuel and retrofitted equipment. Differences in the amounts of future expenditures are adjusted by means of a total life-cycle costing. All fuels studied are technically feasible to allow a retrofit conversion to hybrid gasoline/alternative fuel operation except for methanol. Conversion to LPG is not recommended for vehicles with more than 100,000 km (60,000 miles) of prior use. Methanol conversion is not recommended for vehicles with more than 50,00 km (30,000 miles).

  16. Alternative Fabrication of Recycling Fast Reactor Metal Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki-Hwan; Kim, Jong Hwan; Song, Hoon; Kim, Hyung-Tae; Lee, Chan-Bock [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Metal fuels such as U-Zr/U-Pu-Zr alloys have been considered as a nuclear fuel for a sodium-cooled fast reactor (SFR) related to the closed fuel cycle for managing minor actinides and reducing a high radioactivity levels since the 1980s. In order to develop innovative fabrication method of metal fuel for preventing the evaporation of volatile elements such as Am, modified casting under inert atmosphere has been applied for metal fuel slugs for SFR. Alternative fabrication method of fuel slugs has been introduced to develop an improved fabrication process of metal fuel for preventing the evaporation of volatile elements. In this study, metal fuel slugs for SFR have been fabricated by modified casting method, and characterized to evaluate the feasibility of the alternative fabrication method. In order to prevent evaporation of volatile elements such as Am and improve quality of fuel slugs, alternative fabrication methods of metal fuel slugs have been studied in KAERI. U-10Zr-5Mn fuel slug containing volatile surrogate element Mn was soundly cast by modified injection casting under modest pressure. Evaporation of Mn during alternative casting could not be detected by chemical analysis. Mn element was most recovered with prevention of evaporation by alternative casting. Modified injection casting has been selected as an alternative fabrication method in KAERI, considering evaporation prevention, and proven benefits of high productivity, high yield, and good remote control.

  17. Application and Development of Biomass Fuels for Transportation in China

    Institute of Scientific and Technical Information of China (English)

    WANG Jianxin; SHUAI Shijin; CHEN Hu

    2007-01-01

    Biomass fuels have become a big concern due to the large increase in green house gases and the rapid rise of petroleum prices around the world. This paper reviews recent developments in biomass fuels,such as ethanol and biodiesel, in China. Ethanol-gasoline mixture (E10) for vehicles is currently distributed in nine provinces while biodiesel is under development. One way to extend the application of ethanol is to burn it in diesel engines to lower soot emissions. The effects of the different methods blending ethanol with fossil diesel, and blending biodiesel with fossil diesel and ethanol-diesel on the combustion and emissions are investigated. The test results show that ethanol and biodiesel can be mixed with fossil diesel to greatly reduce particulate matter and soot emissions from diesel engines. But the application of ethanol blending with fossil diesel is more difficult than that of ethanol blending with gasoline, and biodiesel blending with fossil diesel. The dual-fuel injection of ethanol and diesel systems has the highest smoke reduction effect for a high ethanol fraction.

  18. Fuel Pellets from Biomass. Processing, Bonding, Raw Materials

    DEFF Research Database (Denmark)

    Stelte, Wolfgang

    The depletion of fossil fuels and the need to reduce green house gas emissions has resulted in a strong growth of biomass utilization for heat and power production. Attempts to overcome the poor handling properties of biomass, i.e. its low bulk density and inhomogeneous structure, have resulted...... influence of the different processing parameters on the pressure built up in the press channel of a pellet mill. It showed that the major factor was the press channel length as well as temperature, moisture content, particle size and extractive content. Furthermore, extractive migration to the pellet...... surface at an elevated temperature played an important role. The second study presented a method of how key processing parameters can be estimated, based on a pellet model and a small number of fast and simple laboratory trials using a single pellet press. The third study investigated the bonding...

  19. Estimating externalities of biomass fuel cycles, Report 7

    Energy Technology Data Exchange (ETDEWEB)

    Barnthouse, L.W.; Cada, G.F.; Cheng, M.-D.; Easterly, C.E.; Kroodsma, R.L.; Lee, R.; Shriner, D.S.; Tolbert, V.R.; Turner, R.S.

    1998-01-01

    This report documents the analysis of the biomass fuel cycle, in which biomass is combusted to produce electricity. The major objectives of this study were: (1) to implement the methodological concepts which were developed in the Background Document (ORNL/RFF 1992) as a means of estimating the external costs and benefits of fuel cycles, and by so doing, to demonstrate their application to the biomass fuel cycle; (2) to develop, given the time and resources, a range of estimates of marginal (i.e., the additional or incremental) damages and benefits associated with selected impact-pathways from a new wood-fired power plant, using a representative benchmark technology, at two reference sites in the US; and (3) to assess the state of the information available to support energy decision making and the estimation of externalities, and by so doing, to assist in identifying gaps in knowledge and in setting future research agendas. The demonstration of methods, modeling procedures, and use of scientific information was the most important objective of this study. It provides an illustrative example for those who will, in the future, undertake studies of actual energy options and sites. As in most studies, a more comprehensive analysis could have been completed had budget constraints not been as severe. Particularly affected were the air and water transport modeling, estimation of ecological impacts, and economic valuation. However, the most important objective of the study was to demonstrate methods, as a detailed example for future studies. Thus, having severe budget constraints was appropriate from the standpoint that these studies could also face similar constraints. Consequently, an important result of this study is an indication of what can be done in such studies, rather than the specific numerical estimates themselves.

  20. Biomass co-firing under oxy-fuel conditions

    DEFF Research Database (Denmark)

    Álvarez, L.; Yin, Chungen; Riaza, J.

    2014-01-01

    to have favourable synergy effects in all the cases: it significantly improves the burnout and remarkably lowers NOx emissions. The reduced peak temperatures during co-firing can also help to mitigate deposition formation in real furnaces. Co-firing CO2-neutral biomass with coals under oxy-fuel conditions...... can achieve a below-zero CO2 emission if the released CO2 is captured and sequestered. The model-predicted burnout and gaseous emissions were compared against the experimental results. A very good agreement was observed, the differences in a range of ± 5–10% of the experimental values, which indicates...

  1. Process Design and Economics for the Conversion of Algal Biomass to Biofuels: Algal Biomass Fractionation to Lipid-and Carbohydrate-Derived Fuel Products

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-09-11

    The U.S. Department of Energy (DOE) promotes the production of a range of liquid fuels and fuel blendstocks from biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass production, conversion, and sustainability. As part of its involvement in this program, the National Renewable Energy Laboratory (NREL) investigates the conceptual production economics of these fuels. This includes fuel pathways from lignocellulosic (terrestrial) biomass, as well as from algal (aquatic) biomass systems.

  2. Gasification Characteristics of Coal/Biomass Mixed Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Reginald [Stanford Univ., CA (United States). Mechanical Engineering Dept.

    2014-09-01

    A research project was undertaken that had the overall objective of developing the models needed to accurately predict conversion rates of coal/biomass mixtures to synthesis gas under conditions relevant to a commercially-available coal gasification system configured to co-produce electric power as well as chemicals and liquid fuels. In our efforts to accomplish this goal, experiments were performed in an entrained flow reactor in order to produce coal and biomass chars at high heating rates and temperatures, typical of the heating rates and temperatures fuel particles experience in real systems. Mixed chars derived from coal/biomass mixtures containing up to 50% biomass and the chars of the pure coal and biomass components were subjected to a matrix of reactivity tests in a pressurized thermogravimetric analyzer (TGA) in order to obtain data on mass loss rates as functions of gas temperature, pressure and composition as well as to obtain information on the variations in mass specific surface area during char conversion under kinetically-limited conditions. The experimental data were used as targets when determining the unknown parameters in the chemical reactivity and specific surface area models developed. These parameters included rate coefficients for the reactions in the reaction mechanism, enthalpies of formation and absolute entropies of adsorbed species formed on the carbonaceous surfaces, and pore structure coefficients in the model used to describe how the mass specific surface area of the char varies with conversion. So that the reactivity models can be used at high temperatures when mass transport processes impact char conversion rates, Thiele modulus – effectiveness factor relations were also derived for the reaction mechanisms developed. In addition, the reactivity model and a mode of conversion model were combined in a char-particle gasification model that includes the effects of chemical reaction and diffusion of reactive gases through particle

  3. Self-deconstructing algae biomass as feedstock for transportation fuels

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Ryan Wesley [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Biomass Science and Conversion Technologies

    2014-09-01

    The potential for producing biofuels from algae has generated much excitement based on projections of large oil yields with relatively little land use. However, numerous technical challenges remain for achieving market parity with conventional non-renewable liquid fuel sources. Among these challenges, the energy intensive requirements of traditional cell rupture, lipid extraction, and residuals fractioning of microalgae biomass have posed significant challenges to the nascent field of algal biotechnology. Our novel approach to address these problems was to employ low cost solution-state methods and biochemical engineering to eliminate the need for extensive hardware and energy intensive methods for cell rupture, carbohydrate and protein solubilization and hydrolysis, and fuel product recovery using consolidated bioprocessing strategies. The outcome of the biochemical deconstruction and conversion process consists of an emulsion of algal lipids and mixed alcohol products from carbohydrate and protein fermentation for co-extraction or in situ transesterification.

  4. Modelling of Biomass Gasification Integrated with a Solid Oxide Fuel Cell System

    OpenAIRE

    Doherty, Wayne

    2014-01-01

    Biomass is of major interest as a renewable energy source in the context of climate change and energy security. Traditional biomass conversion technologies achieve low electrical efficiencies. Biomass gasification (BG) coupled with fuel cells offer higher efficiencies. Gasification is a process in which a carbonaceous fuel is converted to a combustible gas. It occurs when a controlled amount of oxidant is reacted at high temperatures with available carbon in a fuel within a gasifier. Two tech...

  5. Thermal efficiency and particulate pollution estimation of four biomass fuels grown on wasteland

    Energy Technology Data Exchange (ETDEWEB)

    Kandpal, J.B.; Madan, M. [Indian Inst. of Tech., New Delhi (India). Centre for Rural Development and Technology

    1996-10-01

    The thermal performance and concentration of suspended particulate matter were studied for 1-hour combustion of four biomass fuels, namely Acacia nilotica, Leucaena leucocepholea, Jatropha curcus, and Morus alba grown in wasteland. Among the four biomass fuels, the highest thermal efficiency was achieved with Acacia nilotica. The suspended particulate matter concentration for 1-hour combustion of four biomass fuels ranged between 850 and 2,360 {micro}g/m{sup 3}.

  6. 77 FR 14583 - Notice to Manufacturers of Alternative Fuel Vans

    Science.gov (United States)

    2012-03-12

    ... Federal Aviation Administration Notice to Manufacturers of Alternative Fuel Vans AGENCY: Federal Aviation Administration (FAA), U.S. DOT. ACTION: Notice to Manufacturers of Alternative Fuel Vans. SUMMARY: Projects... American Preferences. The Federal Aviation Administration (FAA) is considering issuing waivers to...

  7. Preferences for alternative fuel vehicles by Dutch local governments

    NARCIS (Netherlands)

    Rijnsoever, F.J. van; Hagen, P.; Willems, M

    2013-01-01

    Using a choice model, we estimate the preferences for alternative fuel vehicles by Dutch local governments. The analysis shows that local governments are willing to pay between 25% and 50% extra for an alternative fuel vehicle without a serious loss of utility. Further, local emissions are an import

  8. Thermochemical Process Development Unit: Researching Fuels from Biomass, Bioenergy Technologies (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2009-01-01

    The Thermochemical Process Development Unit (TCPDU) at the National Renewable Energy Laboratory (NREL) is a unique facility dedicated to researching thermochemical processes to produce fuels from biomass.

  9. Biomass Energy Self-Sufficiency Resource Alternatives for a Forested Air Force Installation.

    Science.gov (United States)

    1982-05-01

    to support basewide biomass energy systems. The study confirmed the feasibility of a biomass energy plantation supplying the required fuel wood to...support the basewide biomass energy systems while, at the same time not conflicting with any of the operational missions of Eglin AFB. This conclusion is...have an installation that provides all of its electrical and thermal energy requirements through the utilization of the Biomass Energy Island concept. (Author)

  10. Alternative membranes for polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, A.K.; Pitchumani, S.; Sridhar, P.; Shukla, A.K. [Central Electrochemical Research Inst., Karaikudi (India)

    2009-07-01

    Nafion, a perfluoro-sulfonated membrane, is utilized as a membrane electrolyte in polymer electrolyte fuel cells (PEFCs). However, to realize optimum PEFC performance, the Nafion membrane needs to be fully humidified, making the system quite costly. Therefore, in order to solve this problem, alternative membrane electrolytes that could operate under low humidity conditions are needed. This paper reported on composite Nafion membranes with ceramic/inorganic fillers such as silica and mesoporous zirconium phosphate (MZP). Silica was impregnated to the Nafion matrix by a unique water hydrolysis sol-gel route and casted as a composite membrane while MZP, a solid-super-acid-proton-conducting medium as well as water absorbing material was synthesized by a co-assembly technique and impregnated to the Nafion matrix to form a composite membrane. The performance of the PEFCs with Nafion membrane and composite membranes was tested with hydrogen/oxygen gas and hydrogen/air feeds at varying relative humidity (RH) values under ambient conditions. It was concluded that under RH value as low as 18 per cent, the PEFC with Nafion membrane delivers a peak-power density of only 130 mW/square centimeter.

  11. Emergency fuels utilization guidebook. Alternative Fuels Utilization Program

    Energy Technology Data Exchange (ETDEWEB)

    1980-08-01

    The basic concept of an emergency fuel is to safely and effectively use blends of specification fuels and hydrocarbon liquids which are free in the sense that they have been commandeered or volunteered from lower priority uses to provide critical transportation services for short-duration emergencies on the order of weeks, or perhaps months. A wide variety of liquid hydrocarbons not normally used as fuels for internal combustion engines have been categorized generically, including limited information on physical characteristics and chemical composition which might prove useful and instructive to fleet operators. Fuels covered are: gasoline and diesel fuel; alcohols; solvents; jet fuels; kerosene; heating oils; residual fuels; crude oils; vegetable oils; gaseous fuels.

  12. Best Available Techniques (BAT) in solid biomass fuel processing, handling, storage and production of pellets from biomass

    Energy Technology Data Exchange (ETDEWEB)

    Lindberg, J.P.; Tana, J. [AaF-Industri Ab, Stockholm (Sweden)

    2012-09-15

    With the increasing use of biomass fuels the varieties of sources for biomass have expanded to almost all possible combustible matter with biological origin. The increasing scale in solid biomass fuel production and utilization at the combustion plants of the wide variety of biomass fuels have contributed to littering, dust, odor and noise emissions of the production chain. The report aims to provide information for operators, environmental consultants and competent environmental authorities on what is considered BAT, as defined in the IPPC directive (2008/1/EC), in biomass processing and handling as well as the production of pellets from biomass. The project gives a brief description of commonly used solid biomass fuels and the processes, handling and storage of these biomasses in the Nordic countries covering processes from production site to the point of use. Environmental emissions, sources of waste and other relevant environmental aspects from commonly used processes, included raw material and energy use, chemical use and emissions to soil are also included in the report. (Author)

  13. FRACTIONATION OF LIGNOCELLULOSIC BIOMASS FOR FUEL-GRADE ETHANOL PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    F.D. Guffey; R.C. Wingerson

    2002-10-01

    PureVision Technology, Inc. (PureVision) of Fort Lupton, Colorado is developing a process for the conversion of lignocellulosic biomass into fuel-grade ethanol and specialty chemicals in order to enhance national energy security, rural economies, and environmental quality. Lignocellulosic-containing plants are those types of biomass that include wood, agricultural residues, and paper wastes. Lignocellulose is composed of the biopolymers cellulose, hemicellulose, and lignin. Cellulose, a polymer of glucose, is the component in lignocellulose that has potential for the production of fuel-grade ethanol by direct fermentation of the glucose. However, enzymatic hydrolysis of lignocellulose and raw cellulose into glucose is hindered by the presence of lignin. The cellulase enzyme, which hydrolyzes cellulose to glucose, becomes irreversibly bound to lignin. This requires using the enzyme in reagent quantities rather than in catalytic concentration. The extensive use of this enzyme is expensive and adversely affects the economics of ethanol production. PureVision has approached this problem by developing a biomass fractionator to pretreat the lignocellulose to yield a highly pure cellulose fraction. The biomass fractionator is based on sequentially treating the biomass with hot water, hot alkaline solutions, and polishing the cellulose fraction with a wet alkaline oxidation step. In September 2001 PureVision and Western Research Institute (WRI) initiated a jointly sponsored research project with the U.S. Department of Energy (DOE) to evaluate their pretreatment technology, develop an understanding of the chemistry, and provide the data required to design and fabricate a one- to two-ton/day pilot-scale unit. The efforts during the first year of this program completed the design, fabrication, and shakedown of a bench-scale reactor system and evaluated the fractionation of corn stover. The results from the evaluation of corn stover have shown that water hydrolysis prior to

  14. Review: Circulation of Inorganic Elements in Combustion of Alternative Fuels in Cement Plants

    DEFF Research Database (Denmark)

    Cortada Mut, Maria del Mar; Nørskov, Linda Kaare; Jappe Frandsen, Flemming;

    2015-01-01

    Cement production is an energy-intensive process, which traditionally has been dependent on fossil fuels. However, the use of alternative fuels, i.e., selected waste, biomass, and byproducts with recoverable calorific value, is constantly increasing. Combustion of these fuels is more challenging......, compared to fossil fuels, because of a lack of experience and different chemical and physical properties. When complete oxidation Of fuels in the calciner and main burner is not achieved, they burn in direct contact with the bed material of the rotary kiln, causing local reducing conditions and increasing...... the internal circulation of S, Cl, Na, and K. Compounds containing these elements, such as alkali salts, evaporate when exposed to high temperatures and subsequently condense in colder parts of the plant. The transformation of the volatile inorganic species at different locations in the cement plant...

  15. Fuel characteristics and trace gases produced through biomass burning

    Directory of Open Access Journals (Sweden)

    BAMBANG HERO SAHARJO

    2010-01-01

    Full Text Available Saharjo BH, Sudo S, Yonemura S, Tsuruta H (2010 Fuel characteristics and trace gases produced through biomass burning. Biodiversitas 11: 40-45. Indonesian 1997/1998 forest fires resulted in forest destruction totally 10 million ha with cost damaged about US$ 10 billion, where more than 1 Gt CO2 has been released during the fire episode and elevating Indonesia to one of the largest polluters of carbon in the world where 22% of world’s carbon dioxide produced. It has been found that 80-90% of the fire comes from estate crops and industrial forest plantation area belongs to the companies which using fire illegally for the land preparation. Because using fire is cheap, easy and quick and also support the companies purpose in achieving yearly planted area target. Forest management and land use practices in Sumatra and Kalimantan have evolved very rapidly over the past three decades. Poor logging practices resulted in large amounts of waste will left in the forest, greatly elevating fire hazard. Failure by the government and concessionaires to protect logged forests and close old logging roads led to and invasion of the forest by agricultural settlers whose land clearances practices increased the risk of fire. Several field experiments had been done in order to know the quality and the quantity of trace produced during biomass burning in peat grass, peat soil and alang-alang grassland located in South Sumatra, Indonesia. Result of research show that different characteristics of fuel burned will have the different level also in trace gasses produced. Peat grass with higher fuel load burned produce more trace gasses compared to alang-alang grassland and peat soil.

  16. Pectin-rich biomass as feedstock for fuel ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Meredith C.; Doran-Peterson, Joy [Georgia Univ., Athens, GA (United States). Dept. of Microbiology

    2012-08-15

    The USA has proposed that 30 % of liquid transportation fuel be produced from renewable resources by 2030 (Perlack and Stokes 2011). It will be impossible to reach this goal using corn kernel-based ethanol alone. Pectin-rich biomass, an under-utilized waste product of the sugar and juice industry, can augment US ethanol supplies by capitalizing on this already established feedstock. Currently, pectin-rich biomass is sold (at low value) as animal feed. This review focuses on the three most studied types of pectin-rich biomass: sugar beet pulp, citrus waste and apple pomace. Fermentations of these materials have been conducted with a variety of ethanologens, including yeasts and bacteria. Escherichia coli can ferment a wide range of sugars including galacturonic acid, the primary component of pectin. However, the mixed acid metabolism of E. coli can produce unwanted side products. Saccharomyces cerevisiae cannot naturally ferment galacturonic acid nor pentose sugars but has a homoethanol pathway. Erwinia chrysanthemi is capable of degrading many of the cell wall components of pectin-rich materials, including pectin. Klebsiella oxytoca can metabolize a diverse array of sugars including cellobiose, one degradation product of cellulose. However, both E. chrysanthemi and K. oxytoca produce side products during fermentation, similar to E. coli. Using pectin-rich residues from industrial processes is beneficial because the material is already collected and partially pretreated to facilitate enzymatic deconstruction of the plant cell walls. Using biomass already produced for other purposes is an attractive practice because fewer greenhouse gases (GHG) will be anticipated from land-use changes. (orig.)

  17. A Low-cost, High-yield Process for the Direct Productin of High Energy Density Liquid Fuel from Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Rakesh

    2014-02-21

    feedstocks were utilized to identify optimized process conditions and selective HDO catalyst for high yield production of hydrocarbons from biomass. In addition to these experimental efforts, in Tasks D and E, we have developed a mathematical optimization framework to identify carbon and energy efficient biomass-to-liquid fuel process designs that integrate the use of different primary energy sources along with biomass (e.g. solar, coal or natural gas) for liquid fuel production. Using this tool, we have identified augmented biomass-to-liquid fuel configurations based on the fast-hydropyrolysis/HDO pathway, which was experimentally studied in this project. The computational approach used for screening alternative process configurations represents a unique contribution to the field of biomass processing for liquid fuel production.

  18. Techno-Economic Basis for Coproduct Manufacturing To Enable Hydrocarbon Fuel Production from Lignocellulosic Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Biddy, Mary J.; Davis, Ryan; Humbird, David; Tao, Ling; Dowe, Nancy; Guarnieri, Michael T.; Linger, Jeffrey G.; Karp, Eric M.; Salvachua, Davinia; Vardon, Derek R.; Beckham, Gregg T.

    2016-06-06

    Biorefinery process development relies on techno-economic analysis (TEA) to identify primary cost drivers, prioritize research directions, and mitigate technical risk for scale-up through development of detailed process designs. Here, we conduct TEA of a model 2000 dry metric ton-per-day lignocellulosic biorefinery that employs a two-step pretreatment and enzymatic hydrolysis to produce biomass-derived sugars, followed by biological lipid production, lipid recovery, and catalytic hydrotreating to produce renewable diesel blendstock (RDB). On the basis of projected near-term technical feasibility of these steps, we predict that RDB could be produced at a minimum fuel selling price (MFSP) of USD $9.55/gasoline-gallon-equivalent (GGE), predicated on the need for improvements in the lipid productivity and yield beyond current benchmark performance. This cost is significant given the limitations in scale and high costs for aerobic cultivation of oleaginous microbes and subsequent lipid extraction/recovery. In light of this predicted cost, we developed an alternative pathway which demonstrates that RDB costs could be substantially reduced in the near term if upgradeable fractions of biomass, in this case hemicellulose-derived sugars, are diverted to coproducts of sufficient value and market size; here, we use succinic acid as an example coproduct. The coproduction model predicts an MFSP of USD $5.28/GGE when leaving conversion and yield parameters unchanged for the fuel production pathway, leading to a change in biorefinery RDB capacity from 24 to 15 MM GGE/year and 0.13 MM tons of succinic acid per year. Additional analysis demonstrates that beyond the near-term projections assumed in the models here, further reductions in the MFSP toward $2-3/GGE (which would be competitive with fossil-based hydrocarbon fuels) are possible with additional transformational improvements in the fuel and coproduct trains, especially in terms of carbon efficiency to both fuels and

  19. Biomass: An Alternative Source of Energy for Eighth or Ninth Grade Science.

    Science.gov (United States)

    Heyward, Lillie; Murff, Marye

    This teaching unit develops the possibility of using biomass as an alternative source of energy. The concept of biomass is explained and the processes associated with its conversion to energy are stated. Suggestions for development of biomass technology in different geographic areas are indicated. Lessons for 6 days are presented for use with…

  20. Status and outlook for biofuels, other alternative fuels and new vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Nylund, N.-O.; Aakko-Saksa, P.; Sipilae, K.

    2008-03-15

    The report presents an outlook for alternative motor fuels and new vehicles. The time period covered extends up to 2030. The International Energy Agency and the U.S. Energy Information Administration predict that the world energy demand will increase by over 50% from now to 2030, if policies remain unchanged. Most of the growth in demand for energy in general, as well as for transport fuels, will take place in non-OECD countries. Gasoline and diesel are projected to remain the dominant automotive fuels until 2030. Vehicle technology and high quality fuels will eventually solve the problem of harmful exhaust emissions. However, the problem with CO{sub 2} still remains, and much attention will be given to increase efficiency. Hybrid technology is one option to reduce fuel consumption. Diesel engines are fuel efficient, but have high emissions compared with advanced gasoline engines. New combustion systems combining the best qualities of gasoline and diesel engines promise low emissions as well as high efficiency. The scenarios for alternative fuels vary a lot. By 2030, alternative fuels could represent a 10- 30% share of transport fuels, depending on policies. Ambitious goals for biofuels in transport have been set. As advanced biofuels are still in their infancy, it seems probable that traditional biofuels will also be used in 2030. Ethanol is the fastest growing biofuel. Currently the sustainability of biofuels is discussed extensively. Synthetic fuels promise excellent end-use properties, reduced emissions, and if produced from biomass, also reduced CO{sub 2} emissions. The report presents an analysis of technology options to meet the requirements for energy security, reduced CO{sub 2} emissions, reduced local emissions as well as sustainability in general in the long run. In the short term, energy savings will be the main measure for CO{sub 2} reductions in transport, fuel switches will have a secondary role. (orig.)

  1. Alternative Fuels and Their Potential Impact on Aviation

    Science.gov (United States)

    Daggett, D.; Hendricks, R.; Walther, R.

    2006-01-01

    With a growing gap between the growth rate of petroleum production and demand, and with mounting environmental needs, the aircraft industry is investigating issues related to fuel availability, candidates for alternative fuels, and improved aircraft fuel efficiency. Bio-derived fuels, methanol, ethanol, liquid natural gas, liquid hydrogen, and synthetic fuels are considered in this study for their potential to replace or supplement conventional jet fuels. Most of these fuels present the airplane designers with safety, logistical, and performance challenges. Synthetic fuel made from coal, natural gas, or other hydrocarbon feedstock shows significant promise as a fuel that could be easily integrated into present and future aircraft with little or no modification to current aircraft designs. Alternatives, such as biofuel, and in the longer term hydrogen, have good potential but presently appear to be better suited for use in ground transportation. With the increased use of these fuels, a greater portion of a barrel of crude oil can be used for producing jet fuel because aircraft are not as fuel-flexible as ground vehicles.

  2. The USAF and Alternative Jet Fuel: How to Fuel the Future of Airpower

    Science.gov (United States)

    2009-02-01

    times that of the second largest consumer, China . 1 There are two fundamental problems with this situation. First, oil is a finite resource. As...biofuels are the most common and include ethanol, biomass fuels and biodiesel. These fuels are developed from any crop with a high sugar or starch content...two biofuels are created by processing the starches or sugars of plants (or plant waste) to create an ethanol-based fuel. In contrast, biofuel from

  3. Linking biomass fuel consumption and improve cooking stove: A study from Bangladesh

    Energy Technology Data Exchange (ETDEWEB)

    Sohel, Md. Shawkat Islam; Rana, Md. Parvez; Akhter, Sayma

    2010-09-15

    The study determines the biomass fuel consumption pattern and environmental consequences of biomass fuel usage in the traditional and improve cooking stove. The introduction of improved cooking stove minimizes people's forest dependence by reducing the amount of fuelwood required to meet their household needs. Firewood was the most frequently used biomass fuel. It has been figured out that the incomplete combustion of biomass in the traditional cooking stove poses severe epidemiological consequences to human health and contributes to global warming. While improve cooking stove help to reduce such consequences.

  4. Gasification Characteristics of Coal/Biomass Mixed Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Reginald

    2013-09-30

    A research project was undertaken that had the overall objective of developing the models needed to accurately predict conversion rates of coal/biomass mixtures to synthesis gas under conditions relevant to a commercially-available coal gasification system configured to co- produce electric power as well as chemicals and liquid fuels. In our efforts to accomplish this goal, experiments were performed in an entrained flow reactor in order to produce coal and biomass chars at high heating rates and temperatures, typical of the heating rates and temperatures fuel particles experience in real systems. Mixed chars derived from coal/biomass mixtures containing up to 50% biomass and the chars of the pure coal and biomass components were subjected to a matrix of reactivity tests in a pressurized thermogravimetric analyzer (TGA) in order to obtain data on mass loss rates as functions of gas temperature, pressure and composition as well as to obtain information on the variations in mass specific surface area during char conversion under kinetically-limited conditions. The experimental data were used as targets when determining the unknown parameters in the chemical reactivity and specific surface area models developed. These parameters included rate coefficients for the reactions in the reaction mechanism, enthalpies of formation and absolute entropies of adsorbed species formed on the carbonaceous surfaces, and pore structure coefficients in the model used to describe how the mass specific surface area of the char varies with conversion. So that the reactivity models can be used at high temperatures when mass transport processes impact char conversion rates, Thiele modulus – effectiveness factor relations were also derived for the reaction mechanisms developed. In addition, the reactivity model and a mode of conversion model were combined in a char-particle gasification model that includes the effects of chemical reaction and diffusion of reactive gases through particle

  5. Clean Cities Guide to Alternative Fuel Commercial Lawn Equipment (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2011-10-01

    Guide explains the different types of alternative fuel commercial mowers and lists the makes and models of the ones available on the market. Turf grass is a fixture of the American landscape and the American economy. It is the nation's largest irrigated crop, covering more than 40 million acres. Legions of lawnmowers care for this expanse during the growing season-up to year-round in the warmest climates. The annual economic impact of the U.S. turf grass industry has been estimated at more than $62 billion. Lawn mowing also contributes to the nation's petroleum consumption and pollutant emissions. Mowers consume 1.2 billion gallons of gasoline annually, about 1% of U.S. motor gasoline consumption. Commercial mowing accounts for about 35% of this total and is the highest-intensity use. Large property owners and mowing companies cut lawns, sports fields, golf courses, parks, roadsides, and other grassy areas for 7 hours per day and consume 900 to 2,000 gallons of fuel annually depending on climate and length of the growing season. In addition to gasoline, commercial mowing consumes more than 100 million gallons of diesel annually. Alternative fuel mowers are one way to reduce the energy and environmental impacts of commercial lawn mowing. They can reduce petroleum use and emissions compared with gasoline- and diesel-fueled mowers. They may also save on fuel and maintenance costs, extend mower life, reduce fuel spillage and fuel theft, and promote a 'green' image. And on ozone alert days, alternative fuel mowers may not be subject to the operational restrictions that gasoline mowers must abide by. To help inform the commercial mowing industry about product options and potential benefits, Clean Cities produced this guide to alternative fuel commercial lawn equipment. Although the guide's focus is on original equipment manufacturer (OEM) mowers, some mowers can be converted to run on alternative fuels. For more information about propane

  6. Experimental Studies of Coal and Biomass Fuel Synthesis and Flame Characterization for Aircraft Engines (Year Two)

    Science.gov (United States)

    2011-03-31

    fuels from traditional, non-renewable resources requires the conversion of biomass , a rich source of partially -oxidized hydrocarbons, into liquids that... Char and unreacted biomass are immediately separated from the pyrolysis vapors within the cyclone and pyrolysis vapors and permanent gases flow out...which in turn increased particle entrainment and decreased premature biomass decomposition and, therefore, eliminated settling and char formation in

  7. Fuel gas production from animal and agricultural residues and biomass

    Energy Technology Data Exchange (ETDEWEB)

    Wise, D. L; Wentworth, R. L

    1978-05-30

    Progress was reported by all contractors. Topics presented include: solid waste to methane gas; pipeline fuel gas from an environmental cattle feed lot; heat treatment of organics for increasing anaerobic biodegradability; promoting faster anaerobic digestion; permselective membrane control of algae and wood digesters for increased production and chemicals recovery; anaerobic fermentation of agricultural residues; pilot plant demonstration of an anaerobic, fixed-film bioreactor for wastewater treatment; enhancement of methane production in the anaerobic diegestion of sewage; evaluation of agitation concepts for biogasification of sewage sludge; operation of a 50,000 gallon anaerobic digester; biological conversion of biomass to methane; dirt feedlot residue experiments; anaerobic fermentation of livestock and crop residues; current research on methanogenesis in Europe; and summary of EPA programs in digestion technology. (DC)

  8. Addressing the Need for Alternative Transportation Fuels: The Joint BioEnergy Institute

    Energy Technology Data Exchange (ETDEWEB)

    Blanch, Harvey; Adams, Paul; Andrews-Cramer, Katherine; Frommer, Wolf; Simmons, Blake; Keasling, Jay

    2008-01-18

    Today, carbon-rich fossil fuels, primarily oil, coal, and natural gas, provide 85% of the energy consumed in the U.S. As world demand increases, oil reserves may become rapidly depleted. Fossil fuel use increases CO{sub 2} emissions and raises the risk of global warming. The high energy content of liquid hydrocarbon fuels makes them the preferred energy source for all modes of transportation. In the U.S. alone, transportation consumes >13.8 million barrels of oil per day and generates 0.5 gigatons of carbon per year. This release of greenhouse gases has spurred research into alternative, nonfossil energy sources. Among the options (nuclear, concentrated solar thermal, geothermal, hydroelectric, wind, solar, and biomass), only biomass has the potential to provide a high-energy-content transportation fuel. Biomass is a renewable resource that can be converted into carbon-neutral transporation fuels. Currently, biofuels such as ethanol are produced largely from grains, but there is a large, untapped resource (estimated at more than a billion tons per year) of plant biomass that could be utilized as a renewable, domestic source of liquid fuels. Well-established processes convert the starch content of the grain into sugars that can be fermented to ethanol. The energy efficiency of starch-based biofuels is however not optimal, while plant cell walls (lignocellulose) represent a huge untapped source of energy. Plant-derived biomass contains cellulose, which is more difficult to convert to sugars; hemicellulose, which contains a diversity of carbohydrates that have to be efficiently degraded by microorganisms to fuels; and lignin, which is recalcitrant to degradation and prevents cost-effective fermentation. The development of cost-effective and energy-efficient processes to transform lignocellulosic biomass into fuels is hampered by significant roadblocks, including the lack of specifically developed energy crops, the difficulty in separating biomass components, low

  9. Impact of torrefaction on the grindability and fuel characteristics of forest biomass.

    Science.gov (United States)

    Phanphanich, Manunya; Mani, Sudhagar

    2011-01-01

    Thermal pretreatment or torrefaction of biomass under anoxic condition can produce an energy dense and consistent quality solid biomass fuel for combustion and co-firing applications. This paper investigates the fuel characteristics and grindability of pine chips and logging residues torrefied at temperatures ranging from 225 °C to 300 °C and 30 min residence time. Grinding performance of torrefied biomass evaluated by determining energy required for grinding, particle size distribution and average particle size were compared with raw biomass and coal. Specific energy required for grinding of torrefied biomass decreased significantly with increase in torrefaction temperatures. The grinding energy of torrefied biomass was reduced to as low as 24 kW h/t at 300 °C torrefaction temperature. The gross calorific value of torrefied chips increased with increase in torrefaction temperature. Torrefaction of biomass clearly showed the improved fuel characteristics and grinding properties closer to coal.

  10. Environmental assessment of gasification technology for biomass conversion to energy in comparison with other alternatives

    DEFF Research Database (Denmark)

    Nguyen, T Lan T; Hermansen, John Erik; Nielsen, Rasmus Glar

    2013-01-01

    on gasification technology appears to be more environmentally friendly than straw direct combustion in all impact categories considered. The comparison with coal results in the same conclusion as that reached in the comparison with straw direct combustion. The comparison with natural gas shows that using straw......This paper assesses the environmental performance of biomass gasification for electricity production based on wheat straw and compares it with that of alternatives such as straw-fired electricity production and fossil fuel-fired electricity production. In the baseline simulation, we assume......Wh of electricity from straw through gasification would lead to a global warming potential of 0.08 kg CO2e, non-renewable energy use of 0.2 MJ primary, acidification of 1.3 g SO2e, respiratory inorganics of 0.08 g PM2.5e and eutrophication potential of -1.9 g NO3e. The production of electricity from straw based...

  11. Successful test for mass production of high-grade fuel from biomass

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ To address the current energy crisis, people are exploring new ways of synthesizing fuels with biomass. As biomass contains nearly 50% of oxygen in addition to hydrogen and carbon in its composition, the key to turning it into high-grade fuel for an internal-combustion engine lies in the technology that could liquefy biomass via deoxidation by making the best use of its contents of hydrogen and carbon without adding additional hydrogen or generating water.

  12. Alternatives to traditional transportation fuels 1994. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    In this report, alternative and replacement fuels are defined in accordance with the EPACT. Section 301 of the EPACT defines alternative fuels as: methanol, denatured ethanol, and other alcohols; mixtures containing 85% or more (or such other percentage, but not less than 70%, as determined by the Secretary of Energy, by rule, to provide for requirements relating to cold start, safety, or vehicle functions) by volume of methanol, denatured ethanol, and other alcohols with gasoline or other fuels; natural gas; liquefied petroleum gas; hydrogen; coal-derived liquid fuels; fuels (other than alcohol) derived from biological materials; electricity (including electricity from solar energy); and any other fuel the Secretary determines, by rule, is substantially not petroleum and would yield substantial energy security benefits and substantial environmental benefits. The EPACT defines replacement fuels as the portion of any motor fuel that is methanol, ethanol, or other alcohols, natural gas, liquefied petroleum gas, hydrogen, coal-derived liquid fuels, fuels (other than alcohol) derived from biological materials, electricity (including electricity from solar energy), ethers, or any other fuel the Secretary of Energy determines, by rule, is substantially not petroleum and would yield substantial energy security benefits and substantial environmental benefits. This report covers only those alternative and replacement fuels cited in the EPACT that are currently commercially available or produced in significant quantities for vehicle demonstration purposes. Information about other fuels, such as hydrogen and biodiesel, will be included in later reports as those fuels become more widely used. Annual data are presented for 1992 to 1996. Data for 1996 are based on plans or projections for 1996.

  13. Relationship between daily exposure to biomass fuel smoke and blood pressure in high-altitude Peru.

    Science.gov (United States)

    Burroughs Peña, Melissa; Romero, Karina M; Velazquez, Eric J; Davila-Roman, Victor G; Gilman, Robert H; Wise, Robert A; Miranda, J Jaime; Checkley, William

    2015-05-01

    Household air pollution from biomass fuel use affects 3 billion people worldwide; however, few studies have examined the relationship between biomass fuel use and blood pressure. We sought to determine if daily biomass fuel use was associated with elevated blood pressure in high altitude Peru and if this relationship was affected by lung function. We analyzed baseline information from a population-based cohort study of adults aged ≥ 35 years in Puno, Peru. Daily biomass fuel use was self-reported. We used multivariable regression models to examine the relationship between daily exposure to biomass fuel smoke and blood pressure outcomes. Interactions with sex and quartiles of forced vital capacity were conducted to evaluate for effect modification. Data from 1004 individuals (mean age, 55.3 years; 51.7% women) were included. We found an association between biomass fuel use with both prehypertension (adjusted relative risk ratio, 5.0; 95% confidence interval, 2.6-9.9) and hypertension (adjusted relative risk ratio, 3.5; 95% confidence interval, 1.7-7.0). Biomass fuel users had a higher systolic blood pressure (7.0 mm Hg; 95% confidence interval, 4.4-9.6) and a higher diastolic blood pressure (5.9 mm Hg; 95% confidence interval, 4.2-7.6) when compared with nonusers. We did not find interaction effects between daily biomass fuel use and sex or percent predicted forced vital capacity for either systolic blood pressure or diastolic blood pressure. Biomass fuel use was associated with a higher likelihood of having hypertension and higher blood pressure in Peru. Reducing exposure to household air pollution from biomass fuel use represents an opportunity for cardiovascular prevention.

  14. Alternative Fuel and Advanced Technology Commercial Lawn Equipment (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2014-10-01

    The U.S. Department of Energy's Clean Cities program produced this guide to help inform the commercial mowing industry about product options and potential benefits. This guide provides information about equipment powered by propane, ethanol, compressed natural gas, biodiesel, and electricity, as well as advanced engine technology. In addition to providing an overview for organizations considering alternative fuel lawn equipment, this guide may also be helpful for organizations that want to consider using additional alternative fueled equipment.

  15. Alternative Fuel and Advanced Technology Commercial Lawn Equipment

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-10-10

    The U.S. Department of Energy's Clean Cities program produced this guide to help inform the commercial mowing industry about product options and potential benefits. This guide provides information about equipment powered by propane, ethanol, compressed natural gas, biodiesel, and electricity, as well as advanced engine technology. In addition to providing an overview for organizations considering alternative fuel lawn equipment, this guide may also be helpful for organizations that want to consider using additional alternative fueled equipment.

  16. Non-Gasoline Alternative Fueling Stations

    Data.gov (United States)

    Department of Homeland Security — Through a nationwide network of local coalitions, Clean Citiesprovides project assistance to help stakeholders in the public and private sectors deploy alternative...

  17. Use of MRF residue as alternative fuel in cement production.

    Science.gov (United States)

    Fyffe, John R; Breckel, Alex C; Townsend, Aaron K; Webber, Michael E

    2016-01-01

    Single-stream recycling has helped divert millions of metric tons of waste from landfills in the U.S., where recycling rates for municipal solid waste are currently over 30%. However, material recovery facilities (MRFs) that sort the municipal recycled streams do not recover 100% of the incoming material. Consequently, they landfill between 5% and 15% of total processed material as residue. This residue is primarily composed of high-energy-content non-recycled plastics and fiber. One possible end-of-life solution for these energy-dense materials is to process the residue into Solid Recovered Fuel (SRF) that can be used as an alternative energy resource capable of replacing or supplementing fuel resources such as coal, natural gas, petroleum coke, or biomass in many industrial and power production processes. This report addresses the energetic and environmental benefits and trade-offs of converting non-recycled post-consumer plastics and fiber derived from MRF residue streams into SRF for use in a cement kiln. An experimental test burn of 118 Mg of SRF in the precalciner portion of the cement kiln was conducted. The SRF was a blend of 60% MRF residue and 40% post-industrial waste products producing an estimated 60% plastic and 40% fibrous material mixture. The SRF was fed into the kiln at 0.9 Mg/h for 24h and then 1.8 Mg/h for the following 48 h. The emissions data recorded in the experimental test burn were used to perform the life-cycle analysis portion of this study. The analysis included the following steps: transportation, landfill, processing and fuel combustion at the cement kiln. The energy use and emissions at each step is tracked for the two cases: (1) The Reference Case, where MRF residue is disposed of in a landfill and the cement kiln uses coal as its fuel source, and (2) The SRF Case, in which MRF residue is processed into SRF and used to offset some portion of coal use at the cement kiln. The experimental test burn and accompanying analysis indicate

  18. Engine Materials Compatibility with Alternate Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Thomson, Jeffery K [ORNL; Pawel, Steven J [ORNL; Wilson, Dane F [ORNL

    2013-05-01

    The compatibility of aluminum and aluminum alloys with synthetic fuel blends comprised of ethanol and reference fuel C (a 50/50 mix of toluene and iso-octane) was examined as a function of water content and temperature. Commercially pure wrought aluminum and several cast aluminum alloys were observed to be similarly susceptible to substantial corrosion in dry (< 50 ppm water) ethanol. Corrosion rates of all the aluminum materials examined were accelerated by increased temperature and ethanol content in the fuel mixture, but inhibited by increased water content. Pretreatments designed to stabilize passive films on aluminum increased the incubation time for onset of corrosion, suggesting film stability is a significant factor in the mechanism of corrosion.

  19. Engine Materials Compatability with Alternative Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Pawel, Steve [Oak Ridge National Laboratory; Moore, D. [USCAR

    2013-04-05

    The compatibility of aluminum and aluminum alloys with synthetic fuel blends comprised of ethanol and reference fuel C (a 50/50 mix of toluene and iso-octane) was examined as a function of water content and temperature. Commercially pure wrought aluminum and several cast aluminum alloys were observed to be similarly susceptible to substantial corrosion in dry (< 50 ppm water) ethanol. Corrosion rates of all the aluminum materials examined were accelerated by increased temperature and ethanol content in the fuel mixture, but inhibited by increased water content. Pretreatments designed to stabilize passive films on aluminum increased the incubation time for onset of corrosion, suggesting film stability is a significant factor in the mechanism of corrosion.

  20. The coprocessing of fossil fuels and biomass for CO{sub 2} emission reduction in the transportation sector

    Energy Technology Data Exchange (ETDEWEB)

    Steinberg, M. [Brookhaven National Lab., Upton, NY (United States); Dong, Yuanji [Hydrocarb Corp., New York, NY (United States); Borgwardt, R.H. [Environmental Protection Agency, Research Triangle Park, NC (United States)

    1993-10-01

    Research is underway to evaluate the Hydrocarb process for conversion of carbonaceous raw material to clean carbon and methanol products. These products are valuable in the market either as fuel or as chemical commodities. As fuel, methanol and carbon can be used economically, either independently or in slurry form, in efficient heat energies (turbines and internal combustion engines) for both mobile and stationary single and combined cycle power plants. When considering CO{sub 2} emission control in the utilization of fossil fuels, the copressing of those fossil fuels with biomass (which may include, wood, municipal solid waste and sewage sludge) is a viable mitigation approach. By coprocessing both types of feedstock to produce methanol and carbon while sequestering all or part of the carbon, a significant net CO{sub 2} reduction is achieved if the methanol is substituted for petroleum fuels in the transportation sector. The Hydrocarb process has the potential, if the R&D objectives are achieved, to produce alternative transportation fuel from indigenous resources at lower cost than any other biomass conversion process. These comparisons suggest the resulting fuel can significantly displace gasoline at a competitive price while mitigating CO{sub 2} emissions and reducing ozone and other toxics in urban atmospheres.

  1. Atmospheric emissions modeling of energetic biomass alternatives using system dynamics approach

    Energy Technology Data Exchange (ETDEWEB)

    Szarka, N. [University of Leoben (Austria). Chair of System Analysis and Environmental Engineering; University of Concepcion (Chile). Environmental Sciences Center; Kakucs, O.; Wolfbauer, J. [University of Leoben (Austria). Chair of System Analysis and Environmental Engineering; Bezama, A. [University of Concepcion (Chile). Environmental Sciences Center

    2008-01-15

    To simulate the quantitative effects of regional biomass alternatives for energetic purpose (BfE) on air pollutant emissions, a system dynamics model was developed and applied for the EuRegion Austrian-Hungarian cross-border area. The dynamic simulation program Vensim{sup R} was used to build an overall regional model with economic, social and environmental sectors. Within this model, the here-introduced regional air pollution sub-model (RegAir) includes the important human-made emissions of 10 pollutants resulting from all relevant source sectors within the region investigated. Emissions from activities related to biomass production, transport, conversion and final energy consumption were built in detail. After building and calibrating the RegAir model, seven quantitative test scenarios were defined and implemented into the world. Through the scenarios simulation, effects on air emissions were followed and compared over time. The results of these simulations show a significant reduction of CO{sub 2} emission, especially in cases where fossil fuel displacement in heating devices is achieved on the largest scale. On the contrary, traditional air pollutants increase by most BfE options. The results of the RegAir model simulations of BfE alternatives over two decades provide useful quantifications of various air emissions and identify the less pollutant BfE alternatives in the dynamic context of the relevant air pollution sources of the region. After minor structural modification and appropriate calibration, RegAir can be applied to other regions as well. However, it is stated that, to finally decide on the overall most-appropriate options at a regional level, other environmental as well as economic and social effects must be taken into consideration, being the latter the goal of the mentioned overall regional model which serves as a model frame to the RegAir tool. (author)

  2. Domestic use of biomass fuel in the rural Meghna floodplain areas of Bangladesh

    Directory of Open Access Journals (Sweden)

    Akther S

    2010-09-01

    Full Text Available Rural households in the developing countries constitute the largest share of the biomass fuel consumption. It is also a major source of energy in the low income country. However, this energy consumption pattern varies from region to region. Different case studies on the biomass fuel consumption will certainly contribute to the understanding on the energy uses of a nation. The present study was conducted in the rural areas of the Meghna floodplain zone in Bangladesh, with a total of 80 sampled households, using the stratified random sampling technique through the semi-structured questionnaires from November 2008 through February 2009. Firewood, cowdung, leaves and twigs, branches, rice straw and rice husk were used as the biomass fuels mainly for the cooking purpose. Leaves and twigs were found as the dominant biomass fuel as 187 ± 25.69 (SE kg month-1 household-1. The major source of biomass fuel collection was identified as the own homestead and agricultural lands, 74%. The households spent 14.56 ± 8.94 US$ month-1 household-1 for biomass fuels. The ratio of the total energy expenditure to the total income of the household was around 11%. But, the ratio of the biomass expenditure to the total energy expenditure of the households was 68%. Monthly income, land ownership and family size were found significantly influencing to the biomass energy expenditure. The study will be useful for the policy makers in the renewable energy, forestry and agriculture sector in Bangladesh.

  3. Describing current and potential markets for alternative-fuel vehicles

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-26

    Motor vehicles are a major source of greenhouse gases, and the rising numbers of motor vehicles and miles driven could lead to more harmful emissions that may ultimately affect the world`s climate. One approach to curtailing such emissions is to use, instead of gasoline, alternative fuels: LPG, compressed natural gas, or alcohol fuels. In addition to the greenhouse gases, pollutants can be harmful to human health: ozone, CO. The Clean Air Act Amendments of 1990 authorized EPA to set National Ambient Air Quality Standards to control this. The Energy Policy Act of 1992 (EPACT) was the first new law to emphasize strengthened energy security and decreased reliance on foreign oil since the oil shortages of the 1970`s. EPACT emphasized increasing the number of alternative-fuel vehicles (AFV`s) by mandating their incremental increase of use by Federal, state, and alternative fuel provider fleets over the new few years. Its goals are far from being met; alternative fuels` share remains trivial, about 0.3%, despite gains. This report describes current and potential markets for AFV`s; it begins by assessing the total vehicle stock, and then it focuses on current use of AFV`s in alternative fuel provider fleets and the potential for use of AFV`s in US households.

  4. Additive Effectiveness Investigations in Alternative Fuels

    Science.gov (United States)

    2014-05-01

    coupon, in a tube in shell heat exchanger. The fuel flows in the annulus and deposit forms on the outside. When a test temperature is specified, 275 °C...has a small filter made from materials similar to those found in aviation filter separators. The rating is a form of turbidity measurement with 100

  5. Quantification of fuel moisture effects on biomass consumed derived from fire radiative energy retrievals

    Science.gov (United States)

    Smith, Alistair M. S.; Tinkham, Wade T.; Roy, David P.; Boschetti, Luigi; Kremens, Robert L.; Kumar, Sanath S.; Sparks, Aaron M.; Falkowski, Michael J.

    2013-12-01

    Satellite based fire radiant energy retrievals are widely applied to assess biomass consumed and emissions at regional to global scales. A known potential source of uncertainty in biomass burning estimates arises from fuel moisture but this impact has not been quantified in previous studies. Controlled fire laboratory experiments are used in this study to examine the biomass consumed and the radiant energy release (Fire Radiative Energy, FRE, (MJ)) for western white pine needle fuels burned with water content (WC, unitless) from 0.01 to 0.14. Results indicate a significant relationship: FRE per kilogram of fuel consumed = -5.32 WC + 3.025 (r2 = 0.83, n = 24, P FRE and fuel consumed can lead to systematic biases. A methodological framework to derive a revised formula that enables the estimation of biomass consumed from FRE, which explicitly takes into account fuel water content, is presented.

  6. Alcohol-fueled vehicles: An alternative fuels vehicle, emissions, and refueling infrastructure technology assessment

    Energy Technology Data Exchange (ETDEWEB)

    McCoy, G.A.; Kerstetter, J.; Lyons, J.K. [and others

    1993-06-01

    Interest in alternative motor vehicle fuels has grown tremendously over the last few years. The 1990 Clean Air Act Amendments, the National Energy Policy Act of 1992 and the California Clean Air Act are primarily responsible for this resurgence and have spurred both the motor fuels and vehicle manufacturing industries into action. For the first time, all three U.S. auto manufacturers are offering alternative fuel vehicles to the motoring public. At the same time, a small but growing alternative fuels refueling infrastructure is beginning to develop across the country. Although the recent growth in alternative motor fuels use is impressive, their market niche is still being defined. Environmental regulations, a key driver behind alternative fuel use, is forcing both car makers and the petroleum industry to clean up their products. As a result, alternative fuels no longer have a lock on the clean air market and will have to compete with conventional vehicles in meeting stringent future vehicle emission standards. The development of cleaner burning gasoline powered vehicles has signaled a shift in the marketing of alternative fuels. While they will continue to play a major part in the clean vehicle market, alternative fuels are increasingly recognized as a means to reduce oil imports. This new role is clearly defined in the National Energy Policy Act of 1992. The Act identifies alternative fuels as a key strategy for reducing imports of foreign oil and mandates their use for federal and state fleets, while reserving the right to require private and municipal fleet use as well.

  7. CO-FIRING COAL, FEEDLOT, AND LITTER BIOMASS (CFB AND LFB) FUELS IN PULVERIZED FUEL AND FIXED BED BURNERS

    Energy Technology Data Exchange (ETDEWEB)

    Kalyan Annamalai; John Sweeten; Saqib Mukhtar; Ben Thien; Gengsheng Wei; Soyuz Priyadarsan

    2002-01-15

    Intensive animal feeding operations create large amounts of animal waste that must be safely disposed of in order to avoid environmental degradation. Cattle feedlots and chicken houses are two examples. In feedlots, cattle are confined to small pens and fed a high calorie grain diet in preparation for slaughter. In chicken houses, thousands of chickens are kept in close proximity. In both of these operations, millions of tons of manure are produced every year. In this project a co-firing technology is proposed which would use manure that cannot be used for fertilizer, for power generation. Since the animal manure has economic uses as both a fertilizer and as a fuel, it is properly referred to as feedlot biomass (FB) for cow manure, or litter biomass (LB) for chicken manure. The biomass will be used a as a fuel by mixing it with coal in a 90:10 blend and firing it in existing coal fired combustion devices. This technique is known as co-firing, and the high temperatures produced by the coal will allow the biomass to be completely combusted. Therefore, it is the goal of the current research to develop an animal biomass cofiring technology. A cofiring technology is being developed by performing: (1) studies on fundamental fuel characteristics, (2) small scale boiler burner experiments, (3) gasifier experiments, (4) computer simulations, and (5) an economic analysis. The fundamental fuel studies reveal that biomass is not as high a quality fuel as coal. The biomass fuels are higher in ash, higher in moisture, higher in nitrogen and sulfur (which can cause air pollution), and lower in heat content than coal. Additionally, experiments indicate that the biomass fuels have higher gas content, release gases more readily than coal, and less homogeneous. Small-scale boiler experiments revealed that the biomass blends can be successfully fired, and NO{sub x} pollutant emissions produced will be similar to or lower than pollutant emissions when firing coal. This is a surprising

  8. The causes and effects of the Alternative Motor Fuels Act

    Science.gov (United States)

    Liu, Yimin

    The corporate average fuel economy (CAFE) standard is the major policy tool to improve the fleet average miles per gallon of automobile manufacturers in the U.S. The Alternative Motor Fuels Act (AMFA) provides special treatment in calculating the fuel economy of alternative fuel vehicles to give manufacturers CAFE incentives to produce more alternative fuel vehicles. AMFA has as its goals an increase in the production of alternative fuel vehicles and a decrease in gasoline consumption and greenhouse gas emissions. This dissertation examines theoretically the effects of the program set up under AMFA. It finds that, under some conditions, this program may actually increase gasoline consumption and greenhouse gas emissions. The dissertation also uses hedonic techniques to examine whether the Alternative Motor Fuels Act (AMFA) has a significant effect on the implicit price of fuel economy and whether the marginal value of vehicle fuel efficiency changes over time. It estimates the change of implicit price in miles per gallon after the production of alternative fuel vehicles (AFVs). Results indicate that every year consumers may evaluate vehicle fuel economy differently, and that since AFVs came to the market, the marginal value of fuel economy from specific companies producing AFVs has decreased. This finding suggests that since the AMFA provides extra Corporate Average Fuel Economy (CAFE) credit for those automakers producing AFVs, the automakers can take advantage of the incentive to produce more profitable conventional vehicles and meet CAFE standards without improving the fleet fuel economy. In this way, manufacturers who produce AFVs are willing to offer a lower price for the fuel economy under the AMFA. Additionally, this paper suggests that the flexible fuel vehicles (FFVs) on the market are not significantly more expensive than comparable conventional vehicles, even if FFVs are also able to run on an alternative fuel and may cost more than conventional vehicles

  9. 78 FR 23832 - Labeling Requirements for Alternative Fuels and Alternative Fueled Vehicles

    Science.gov (United States)

    2013-04-23

    ... that run on liquid and non-liquid fuels, such as ethanol and other alcohols, including E85 ethanol... vehicle's estimated driving range (i.e., the travel distance on a single charge or tank of fuel), general... liquid fuels, or fuels (other than alcohol) derived from biological materials. See 76 FR 39478 (July...

  10. 76 FR 31513 - Labeling Requirements for Alternative Fuels and Alternative Fueled Vehicles

    Science.gov (United States)

    2011-06-01

    ... AFVs that run on liquid and non-liquid fuels, such as ethanol and other alcohols including E85 ethanol... vehicle's estimated cruising range (i.e., the travel distance on a single charge or tank of fuel), general... by liquefied petroleum gas, hydrogen, coal-derived liquid fuels, or fuels (other than...

  11. Comparison of thermal conversion methods of different biomass types into gaseous fuel

    Science.gov (United States)

    Larina, O. M.; Sinelshchikov, V. A.; Sytchev, G. A.

    2016-11-01

    Thermal conversion methods of different biomass types into gaseous fuel are considered. The comparison of the gas mixtures characteristics (volume yield, composition and calorific value) that can be produced from the main biomass types by gasification and pyrolysis is presented. The merits and demerits of these methods are discussed. It is shown that the two-stage pyrolysis technology, which consists of the biomass pyrolysis and the consequent high-temperature conversion of pyrolysis gases and vapors into synthesis gas by filtration through a porous carbon medium, allows to achieve both a high degree of biomass conversion into gaseous fuel and a high energy efficiency.

  12. Influence of physical properties of solid biomass fuels on the design and cost of storage installations.

    Science.gov (United States)

    García Fernández, Roberto; Pizarro García, Consuelo; Gutiérrez Lavín, Antonio; Bueno de Las Heras, Julio L; Pis, José Juan

    2013-05-01

    The aim of this work consists on determining biomass fuels properties and studying their relation with fixed and variable costs of stores and handling systems. To do that, dimensions (length and diameter), bulk density, particle density and durability of several brands and batches of wood pellets and briquettes were tested, according to international standards. Obtained results were compared with those in literature. Bulk density tests were applied for several other biomass fuels too, and later used to determinate which ones of all the biomass-fuels tested are economically more profitable for a typical transport/store system made of a screw conveyor and a concrete bunker silo.

  13. Future Fossil Fuel Alternative; DME (A review)

    OpenAIRE

    Erdener, Hülya; Arinan, Ayca; Orman, Sultan

    2016-01-01

    The world energy consumption is steadily growing with the industrial improvements of the developing countries and the readily available fossil fuel reserves lack in fulfilling this energy requirement. The depletion of the easily achievable reserves; gives rise to the concept of oil production from oil shale and tar sands. However, the high cost and the operational difficulties stand as the major drawbacks in front of these technologies. Along with these circumstances, and the environmental co...

  14. Total sugars in atmospheric aerosols: An alternative tracer for biomass burning

    Science.gov (United States)

    Scaramboni, C.; Urban, R. C.; Lima-Souza, M.; Nogueira, R. F. P.; Cardoso, A. A.; Allen, A. G.; Campos, M. L. A. M.

    2015-01-01

    Ambient aerosols were collected in an agro-industrial region of São Paulo State (Brazil) between May 2010 and February 2012 (n = 87). The atmosphere of the study region is highly affected by the emissions of gases and particles from sugar and fuel ethanol production, because part of the area planted with sugarcane is still burned before manual harvesting. This work proposes the quantification of total sugars as an alternative chemical tracer of biomass burning, instead of levoglucosan. The quantification of total sugars requires a small area of a filter sample and a simple spectrophotometer, in contrast to the determination of levoglucosan, which is much more complex and time-consuming. Total sugars concentrations in the aerosol ranged from 0.28 to 12.5 μg m-3, and (similarly to levoglucosan) the emissions were significantly higher at night and during the sugarcane harvest period, when most agricultural fires occur. The linear correlation between levoglucosan and total sugars (r = 0.612) was stronger than between levoglucosan and potassium (r = 0.379), which has previously been used as a biomass burning tracer. In the study region, potassium is used in fertilizers, and this, together with substantial soil dust resuspension, makes potassium unsuitable for use as a tracer. On average, ca. 40% of the total sugars was found in particles smaller than 0.49 μm. By including data from previous work, it was possible to identify from 35 to 42% of the total sugars, with biomass burning making the largest contribution. The high solubility in water of these sugars means that determination of their concentrations could also provide important information concerning the hydrophilic properties of atmospheric aerosols.

  15. From biomass to fuels : hydrotreating of oxygen-containing feeds on a CoMo/Al2O3 hydrodesulfurization catalyst

    OpenAIRE

    Viljava, Tuula-Riitta

    2001-01-01

    Biomass is a renewable alternative to fossil raw materials in the production of liquid fuels and chemicals. Liquefied biomass contains an abundance of oxygen-containing molecules that need to be removed to improve the stability of the liquids. A hydrotreating process, hydrodeoxygenation (HDO), is used for the purpose. Hydrodeoxygenation is similar to the hydrodesulfurization (HDS) process used in oil refining, relying upon a presulfided CoMo/γ-Al2O3 catalyst. The stability of the sulfided cat...

  16. Process Improvements to Biomass Pretreatment of Fuels and Chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Teymouri, Farzaneh [Michigan Biotechnology Inst., Lansing, MI (United States)

    2015-05-30

    MBI, a 501c(3) company focusing on de-risking and scaling up bio-based technologies, has teamed with Michigan State University and the Idaho National Laboratory to develop and demonstrate process improvements to the ammonia fiber expansion (AFEX) pretreatment process. The logistical hurdles of biomass handling are well known, and the regional depot concept - in which small, distributed bioprocessing operations collect, preprocess, and densify biomass before shipping to a centralized refinery - is a promising alternative to centralized collection. AFEXTM (AFEX is a trademark of MBI) has unique features among pretreatments that would make it desirable as a pretreatment prior to densification at the depot scale. MBI has developed a novel design, using a packed bed reactor for the AFEX process that can be scaled down economically to the depot scale at a lower capital cost as compared to the traditional design (Pandia type reactor). Thus, the purpose of this project was to develop, scale-up, demonstrate, and improve this novel design The key challenges are the recovery of ammonia, consistent and complete pretreatment performance, and the overall throughput of the reactor. In this project an engineering scale packed bed AFEX system with 1-ton per day capacity was installed at MBI’s building. The system has been operational since mid-2013. During that time, MBI has demonstrated the robustness, reliability, and consistency of the process. To date, nearly 500 runs have been performed in the reactors. There have been no incidences of plugging (i.e., inability to remove ammonia from biomass after the treatment), nor has there been any instance of a major ammonia release into the atmosphere. Likewise, the sugar released via enzyme hydrolysis has remained consistent throughout these runs. Our economic model shows a 46% reduction in AFEX capital cost at the 100 ton/day scale compared to the traditional design of AFEX (Pandia type reactor). The key performance factors were

  17. Alternate Fuel Cell Membranes for Energy Independence

    Energy Technology Data Exchange (ETDEWEB)

    Storey, Robson, F.; Mauritz, Kenneth, A.; Patton, Derek, L.; Savin, Daniel, A.

    2012-12-18

    The overall objective of this project was the development and evaluation of novel hydrocarbon fuel cell (FC) membranes that possess high temperature performance and long term chemical/mechanical durability in proton exchange membrane (PEM) fuel cells (FC). The major research theme was synthesis of aromatic hydrocarbon polymers of the poly(arylene ether sulfone) (PAES) type containing sulfonic acid groups tethered to the backbone via perfluorinated alkylene linkages and in some cases also directly attached to the phenylene groups along the backbone. Other research themes were the use of nitrogen-based heterocyclics instead of acid groups for proton conduction, which provides high temperature, low relative humidity membranes with high mechanical/thermal/chemical stability and pendant moieties that exhibit high proton conductivities in the absence of water, and synthesis of block copolymers consisting of a proton conducting block coupled to poly(perfluorinated propylene oxide) (PFPO) blocks. Accomplishments of the project were as follows: 1) establishment of a vertically integrated program of synthesis, characterization, and evaluation of FC membranes, 2) establishment of benchmark membrane performance data based on Nafion for comparison to experimental membrane performance, 3) development of a new perfluoroalkyl sulfonate monomer, N,N-diisopropylethylammonium 2,2-bis(p-hydroxyphenyl) pentafluoropropanesulfonate (HPPS), 4) synthesis of random and block copolymer membranes from HPPS, 5) synthesis of block copolymer membranes containing high-acid-concentration hydrophilic blocks consisting of HPPS and 3,3'-disulfonate-4,4'-dichlorodiphenylsulfone (sDCDPS), 6) development of synthetic routes to aromatic polymer backbones containing pendent 1H-1,2,3-triazole moieties, 7) development of coupling strategies to create phase-separated block copolymers between hydrophilic sulfonated prepolymers and commodity polymers such as PFPO, 8) establishment of basic

  18. EPAct Alternative Fuel Transportation Program: State and Alternative Fuel Provider Fleet Compliance Annual Report; Fleet Compliance Results for MY 2013/FY 2014

    Energy Technology Data Exchange (ETDEWEB)

    2015-09-01

    Compliance rates for covered state government and alternative fuel provider fleets under the Alternative Fuel Transportation Program (pursuant to the Energy Policy Act or EPAct) are reported for MY 2013/FY 2014 in this publication.

  19. 77 FR 36423 - Labeling Requirements for Alternative Fuels and Alternative Fueled Vehicles

    Science.gov (United States)

    2012-06-19

    ..., coal-derived liquid fuels, fuels derived from biological materials (e.g., 100% biodiesel), and... requirements appear unnecessary.\\18\\ \\17\\ 42 U.S.C. 13211(3)(B). According to the legislative history,...

  20. Primer on Motor Fuel Excise Taxes and the Role of Alternative Fuels and Energy Efficient Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Alex [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-08-26

    Motor fuel taxes were established to finance our nation’s transportation infrastructure, yet evolving economic, political, and technological influences are constraining this ability. At the federal level, the Highway Trust Fund (HTF), which is primarily funded by motor fuel taxes, has become increasingly dependent on general fund contributions and short-term reauthorizations to prevent insolvency. As a result, there are discussions at both the federal and state levels in which stakeholders are examining the future of motor fuel excise taxes as well as the role of electric and alternative fuel vehicles in that future. On July 1, 2015, six states increased their motor fuel tax rates.

  1. Socio-environmental Impacts Associated with Burning Alternative Fuels in Clinker Kilns

    Directory of Open Access Journals (Sweden)

    F. B. Mainier

    2013-08-01

    Full Text Available The pollutants found in emissions from cement plants depend on the processes used and the operation of the clinker kilns. Another crucial aspect concerns the characteristics of raw materials and fuels. The intensive use of fuels in rotary kilns of cement plants and the increasing fuel diversification, including fuels derived from coal and oil, from a multitude of industrial waste and from biomass, charcoal and agricultural waste (sugarcane bagasse, rice husk, is increasing the possibilities of combinations or mixtures of different fuels, known as blends. Thus, there are socio-environmental impacts associated with the burning of alternative fuels in clinker kilns. In view of the growing trend of entrepreneurs who want to target the waste produced in their unit and of the owners of the cement plants who want to reduce their production costs by burning a waste with lower cost than conventional fuels, it is necessary to warn that a minimum level of environmental care should be followed regarding these decisions. It is necessary to monitor the points of emission from cement kilns and in the wider area influenced by the plant, in order to improve environmental quality. Laboratory studies of burning vulcanised rubber contaminated with arsenic simulate the burning of used tyres in cement clinker kilns producing SO2 and As2O3.

  2. Evaluation of yeast strains for production of fuel ethanol from biomass hydrolysates

    Science.gov (United States)

    Robust industrial yeast strains are needed for profitable production of fuel ethanol from mixed biomass waste. USDA, ARS, NCAUR, RPT has been evaluating ethanol-producing yeasts, including Saccharomyces cerevisiae, engineered GMAX Saccharomyces cerevisiae, irradiated Kluyveromyces marxianus, and Pi...

  3. Decentralized combined heat and power production by two-stage biomass gasification and solid oxide fuel cells

    DEFF Research Database (Denmark)

    Bang-Møller, Christian; Rokni, Masoud; Elmegaard, Brian

    2013-01-01

    To investigate options for increasing the electrical efficiency of decentralized combined heat and power (CHP) plants fuelled with biomass compared to conventional technology, this research explored the performance of an alternative plant design based on thermal biomass gasification and solid oxide...... fuel cells (SOFC). Based on experimental data from a demonstrated 0.6 MWth two-stage gasifier, a model of the gasifier plant was developed and calibrated. Similarly, an SOFC model was developed using published experimental data. Simulation of a 3 MWth plant combining two-stage biomass gasification......, carbon conversion factor in the gasifier and the efficiency of the DC/AC inverter were the most influential parameters in the model. Thus, a detailed study of the practical values of these parameters was conducted to determine the performance of the plant with the lowest possible uncertainty. The SOFC...

  4. Evaluation of pulmonary changes due to biomass fuels using high-resolution computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kara, Mustafa; Tas, Fikret [Department of Radiology, Cumhuriyet University, 58140, Sivas (Turkey); Faculty of Medicine, Cumhuriyet University, 58140, Sivas (Turkey); Bulut, Sema [Department of Radiology, Cumhuriyet University, 58140, Sivas (Turkey); Akkurt, Ibrahim; Seyfikli, Zehra [Faculty of Medicine, Cumhuriyet University, 58140, Sivas (Turkey); Department of Respiratory Disease, Cumhuriyet University, 58140, Sivas (Turkey)

    2003-10-01

    Biomass fuels are frequently used in rural areas of the world for cooking and heating frequently. It has been reported that the use of these fuels causes hazardous effects on the lungs. In this study, we evaluated the pulmonary changes due to the use of biomass fuels in a female population that lives in our territory by high-resolution computed tomography (HRCT). The study analyzed three groups of women. The first group comprised those subjects who were exposed to biomass without respiratory symptoms (group 1; n=32). The second group comprised those individuals that were exposed to biomass and showed respiratory symptoms, such as cough, sputum production, and dyspnea (group 2; n=30). The third group was composed of women who were not exposed to biomass and also had no respiratory symptoms (group 3; n=30). Women with a history of concomitant pulmonary diseases were excluded from the study. All groups were examined with HRCT. Groups 1 and 2 (individuals exposed to biomass fuels) had more pathologic findings than group 3 (not exposed to biomass fuels). Ground-glass appearance was seen in 71.9% in group 1, 23.3% in group 2, and 3.3% in group 3. The difference between the groups was statistically significant (p<0.05). Fibrotic bands were seen 50% in group 1, 63.3% in group 2, and only 6.7% in group 3 (p<0.001). Exposure to biomass fuels was the cause or predisposing factor for many pulmonary diseases, ranging from chronic bronchitis to diffuse lung diseases. We believe that these pathological changes due to biomass fuels can be detected earlier by HRCT and the diseases might be prevented or treated earlier. (orig.)

  5. Alternative fuels and chemicals from synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    1998-12-01

    A DOE/PETC funded study was conducted to examine the use of a liquid phase mixed alcohol synthesis (LPMAS) plant to produce gasoline blending ethers. The LPMAS plant was integrated into three utilization scenarios: a coal fed IGCC power plant, a petroleum refinery using coke as a gasification feedstock, and a standalone natural gas fed partial oxidation plant. The objective of the study was to establish targets for the development of catalysts for the LPMAS reaction. In the IGCC scenario, syngas conversions need only be moderate because unconverted syngas is utilized by the combined cycle system. A once through LPMAS plant achieving syngas conversions in the range of 38--49% was found to be suitable. At a gas hourly space velocity of 5,000 sL/Kg-hr and a methanol:isobutanol selectivity ratio of 1.03, the target catalyst productivity ranges from 370 to 460 g iBuOH/Kg-hr. In the petroleum refinery scenario, high conversions ({approximately}95%) are required to avoid overloading the refinery fuel system with low Btu content unconverted syngas. To achieve these high conversions with the low H{sub 2}/CO ratio syngas, a recycle system was required (because of the limit imposed by methanol equilibrium), steam was injected into the LPMAS reactor, and CO{sub 2} was removed from the recycle loop. At the most economical recycle ratio, the target catalyst productivity is 265 g iBuOH/Kg-hr. In the standalone LPMAS scenario, essentially complete conversions are required to achieve a fuel balanced plant. At the most economical recycle ratio, the target catalyst productivity is 285 g iBuOH/Kg-hr. The economics of this scenario are highly dependent on the cost of the natural gas feedstock and the location of the plant. For all three case scenarios, the economics of a LPMAS plant is marginal at current ether market prices. Large improvements over demonstrated catalyst productivity and alcohol selectivity are required.

  6. Processes for converting biomass-derived feedstocks to chemicals and liquid fuels

    Science.gov (United States)

    Held, Andrew; Woods, Elizabeth; Cortright, Randy; Gray, Matthew

    2016-07-05

    The present invention provides processes, methods, and systems for converting biomass-derived feedstocks to liquid fuels and chemicals. The method generally includes the reaction of a hydrolysate from a biomass deconstruction process with hydrogen and a catalyst to produce a reaction product comprising one of more oxygenated compounds. The process also includes reacting the reaction product with a condensation catalyst to produce C.sub.4+ compounds useful as fuels and chemicals.

  7. Subtask 3.11 - Production of CBTL-Based Jet Fuels from Biomass-Based Feedstocks and Montana Coal

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Ramesh

    2014-06-01

    The Energy & Environmental Research Center (EERC), in partnership with the U.S. Department of Energy (DOE) and Accelergy Corporation, an advanced fuels developer with technologies exclusively licensed from Exxon Mobil, undertook Subtask 3.11 to use a recently installed bench-scale direct coal liquefaction (DCL) system capable of converting 45 pounds/hour of pulverized, dried coal to a liquid suitable for upgrading to fuels and/or chemicals. The process involves liquefaction of Rosebud mine coal (Montana coal) coupled with an upgrading scheme to produce a naphthenic fuel. The upgrading comprises catalytic hydrotreating and saturation to produce naphthenic fuel. A synthetic jet fuel was prepared by blending equal volumes of naphthenic fuel with similar aliphatic fuel derived from biomass and 11 volume % of aromatic hydrocarbons. The synthetic fuel was tested using standard ASTM International techniques to determine compliance with JP-8 fuel. The composite fuel thus produced not only meets but exceeds the military aviation fuel-screening criteria. A 500-milliliter synthetic jet fuel sample which met internal screening criteria was submitted to the Air Force Research Laboratory (AFRL) at Wright–Patterson Air Force Base, Dayton, Ohio, for evaluation. The sample was confirmed by AFRL to be in compliance with U.S. Air Force-prescribed alternative aviation fuel initial screening criteria. The results show that this fuel meets or exceeds the key specification parameters for JP-8, a petroleum-based jet fuel widely used by the U.S. military. JP-8 specifications include parameters such as freeze point, density, flash point, and others; all of which were met by the EERC fuel sample. The fuel also exceeds the thermal stability specification of JP-8 fuel as determined by the quartz crystalline microbalance (QCM) test also performed at an independent laboratory as well as AFRL. This means that the EERC fuel looks and acts identically to petroleum-derived jet fuel and can be used

  8. Utilization of waste tires as alternative fuel in cement plant

    OpenAIRE

    2016-01-01

    Cement industry is regulated by legislation in which various measures are specified for prevention and reduction of air pollution as well as protection of human health, due to atmospheric emissions, which occur during cement production. Legislation also holds emission limit values for co-incineration of wastes i.e. alternative fuels. Waste tires as an alternative fuel can be co-incinerated i.e. co-processed in cement plants, where the high calorific value of the rubber is used to substitute f...

  9. BIOMASS AS AN ALTERNATIVE SOURCE OF ENERGY IN INDIA

    OpenAIRE

    2010-01-01

    The fossil fuel is a main source of energy for generation of electricity in India. Overall, about 80% of greenhouse gas (GHS) emissions are related to the production and use of energy, and particularly, burning of fossils fuels. The environmental problems are associated with the generation of conventional sources of energy.The Kyoto protocol has established flexible mechanisms for developing countries to meet there GHG reduction commitment. Therefore, renewable source of energy is an alternat...

  10. A survey of Opportunities for Microbial Conversion of Biomass to Hydrocarbon Compatible Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Jovanovic, Iva; Jones, Susanne B.; Santosa, Daniel M.; Dai, Ziyu; Ramasamy, Karthikeyan K.; Zhu, Yunhua

    2010-09-01

    Biomass is uniquely able to supply renewable and sustainable liquid transportation fuels. In the near term, the Biomass program has a 2012 goal of cost competitive cellulosic ethanol. However, beyond 2012, there will be an increasing need to provide liquid transportation fuels that are more compatible with the existing infrastructure and can supply fuel into all transportation sectors, including aviation and heavy road transport. Microbial organisms are capable of producing a wide variety of fuel and fuel precursors such as higher alcohols, ethers, esters, fatty acids, alkenes and alkanes. This report surveys liquid fuels and fuel precurors that can be produced from microbial processes, but are not yet ready for commercialization using cellulosic feedstocks. Organisms, current research and commercial activities, and economics are addressed. Significant improvements to yields and process intensification are needed to make these routes economic. Specifically, high productivity, titer and efficient conversion are the key factors for success.

  11. Chlorella protothecoides Microalgae as an Alternative Fuel for Tractor Diesel Engines

    Directory of Open Access Journals (Sweden)

    Saddam H. Al-lwayzy

    2013-02-01

    Full Text Available Biodiesel has attracted a great deal attention recently as an alternative fuel due to increasing fuel prices and the imperative to reduce emissions. Among a wide range of biodiesel resources, microalgae are a promising alternative fuel source because of the high biomass, lipid productivity and environmentally friendliness. Microalgae is also a non-edible food, therefore, there will be no impact on the human food supply chain. In this work, petroleum diesel (PD and biodiesel from the microalgae Chlorella protothecoides (MCP-B20 blend have been used to examine the performance and the emission of a 25.8 kW agriculture tractor engine. Two engine speeds at maximum power take off (PTO power and torque have been selected for analysis using analysis of variance (ANOVA. The results showed that there is no significant difference between the engine performance when microalgae biodiesel blend (MCP-B20 and PD were used. However, a significant reduction in CO, CO2 and NO emissions was found when MCP-B20 was used. These outcomes give strong indication that microalgae can be successfully used in tractors as alternative fuel.

  12. High-performance liquid-catalyst fuel cell for direct biomass-into-electricity conversion.

    Science.gov (United States)

    Liu, Wei; Mu, Wei; Deng, Yulin

    2014-12-01

    Herein, we report high-performance fuel cells that are catalyzed solely by polyoxometalate (POM) solution without any solid metal or metal oxide. The novel design of the liquid-catalyst fuel cells (LCFC) changes the traditional gas-solid-surface heterogeneous reactions to liquid-catalysis reactions. With this design, raw biomasses, such as cellulose, starch, and even grass or wood powders can be directly converted into electricity. The power densities of the fuel cell with switchgrass (dry powder) and bush allamanda (freshly collected) are 44 mW cm(-2) and 51 mW cm(-2) respectively. For the cellulose-based biomass fuel cell, the power density is almost 3000 times higher than that of cellulose-based microbial fuel cells. Unlike noble-metal catalysts, POMs are tolerant to most organic and inorganic contaminants. Therefore, almost any raw biomass can be used directly to produce electricity without prior purification.

  13. Plant Performance of Solid Oxide Fuel Cell Systems Fed by Alternative Fuels

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2016-01-01

    Different plant design for several fuel types such as natural gas, methanol, ethanol, DME, ammonia and pure hydrogen are presented and analysed. Anode recirculation which is an important issue in SOFC plants are also explored and studied. It is shown that depending on type of the fuel whether fuel...... recirculation is needed or not and if so then what would be the effect of anode recycling on plant efficiency. A single study with similar conditions and prerequisites will thus reveal the importance of fuel recirculation on plant performance with alternative fuels. It is also shown that increasing anode...... recycle increases plant efficiency only if fuel utilization factor is low. Other important issues such as why plant efficiency is lower when it is fed with hydrogen or biogas compared to when it is fed by other fuels such as methanol, ethanol, DME and ammonia will also be discussed and explained...

  14. Liquid Fuel Production from Biomass via High Temperature Steam Electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Grant L. Hawkes; Michael G. McKellar

    2009-11-01

    A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Hydrogen from electrolysis allows a high utilization of the biomass carbon for syngas production. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-fed biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K. Parametric studies of system pressure, biomass moisture content and low temperature alkaline electrolysis are also presented.

  15. Examination of alternative catalysts for biomass direct liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Tran, A.D.; Rogers, D.Z.

    1985-08-01

    We have now completed a survey study of several water-soluble salts of transition metals that are deemed likely to have utility as catalysts for direct biomass liquefaction in a carbon monoxide steam process. Certain salts of molybdenum and nickel are the most effective catalysts, and are the only species for which some catalytic activity independent of the ligand can be shown. The most effective forms of the nickel and molybdenum are cyanide and oxyanion complexes. 30 refs., 5 figs., 4 tabs.

  16. Annual Report FY2014 Alternative Fuels DISI Engine Research

    Energy Technology Data Exchange (ETDEWEB)

    Sjoberg, Carl-Magnus G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-01-01

    Due to concerns about future petroleum supply and accelerating climate change, increased engine efficiency and alternative fuels are of interest. This project contributes to the science-base needed by industry to develop highly efficient DISI engines that also beneficially exploit the different properties of alternative fuels. Lean operation is studied since it can provide higher efficiencies than traditional non-dilute stoichiometric operation. Since lean operation can lead to issues with ignition stability, slow flame propagation and low combustion efficiency, focus is on techniques that can overcome these challenges. Specifically, fuel stratification can be used to ensure ignition and completeness of combustion, but may lead to soot and NOx emissions challenges. Advanced ignition system and intake air preheating both promote ignition stability. Controlled end-gas autoignition can be used maintain high combustion efficiency for ultra-lean well-mixed conditions. However, the response of both combustion and exhaust emission to these techniques depends on the fuel properties. Therefore, to achieve optimal fuel-economy gains, the combustion-control strategies of the engine must adopt to the fuel being utilized.

  17. Arizona Public Service - Alternative Fuel (Hydrogen) Pilot Plant Design Report

    Energy Technology Data Exchange (ETDEWEB)

    James E. Francfort

    2003-12-01

    Hydrogen has promise to be the fuel of the future. Its use as a chemical reagent and as a rocket propellant has grown to over eight million metric tons per year in the United States. Although use of hydrogen is abundant, it has not been used extensively as a transportation fuel. To assess the viability of hydrogen as a transportation fuel and the viability of producing hydrogen using off-peak electric energy, Pinnacle West Capital Corporation (PNW) and its electric utility subsidiary, Arizona Public Service (APS) designed, constructed, and operates a hydrogen and compressed natural gas fueling station—the APS Alternative Fuel Pilot Plant. This report summarizes the design of the APS Alternative Fuel Pilot Plant and presents lessons learned from its design and construction. Electric Transportation Applications prepared this report under contract to the U.S. Department of Energy’s Advanced Vehicle Testing Activity. The Idaho National Engineering and Environmental Laboratory manages these activities for the Advanced Vehicle Testing Activity.

  18. Valuation of flexible solutions with alternative fuel cell energy sources

    Energy Technology Data Exchange (ETDEWEB)

    Haahtela, T.; Surakka, T.; Malinen, P. [Helsinki Univ. of Technology, Espoo (Finland). BIT Research Centre

    2009-07-01

    Fuel cells are an emerging technology with high potential, but also with significant market uncertainty. Fuel cells are currently in the transition from field trials to commercial introduction, and firms need to consider whether the technology fulfils the reliability and cost requirements of their current and upcoming products. This paper presented a framework to assist managers in finding the suitable valuation method for comparing different alternatives with emerging fuel cell technology. The dynamic valuation approaches of decision tree analysis, real options and system dynamics were discussed as they help in choosing the optimal timing and product structure over a long time period. Three examples of applications with fuel cells were briefly presented. The paper also addressed how the suggested valuation methods could be applied to them. These applications included maritime buoys; removable crisis management energy source container; and electrification of public transportation. It was concluded that the fuel cell technology has already become economically feasible in certain application areas. Improving technical reliability and cost reductions will make fuel cells even more competitive alternatives in new application areas. 9 refs., 1 tab., 1 fig.

  19. FY2015 Annual Report for Alternative Fuels DISI Engine Research.

    Energy Technology Data Exchange (ETDEWEB)

    Sjöberg, Carl-Magnus G. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2016-01-01

    Climate change and the need to secure energy supplies are two reasons for a growing interest in engine efficiency and alternative fuels. This project contributes to the science-base needed by industry to develop highly efficient DISI engines that also beneficially exploit the different properties of alternative fuels. Our emphasis is on lean operation, which can provide higher efficiencies than traditional non-dilute stoichiometric operation. Since lean operation can lead to issues with ignition stability, slow flame propagation and low combustion efficiency, we focus on techniques that can overcome these challenges. Specifically, fuel stratification is used to ensure ignition and completeness of combustion but has soot- and NOx- emissions challenges. For ultralean well-mixed operation, turbulent deflagration can be combined with controlled end-gas auto-ignition to render mixed-mode combustion that facilitates high combustion efficiency. However, the response of both combustion and exhaust emissions to these techniques depends on the fuel properties. Therefore, to achieve optimal fuel-economy gains, the engine combustion-control strategies must be adapted to the fuel being utilized.

  20. 76 FR 19829 - Clean Alternative Fuel Vehicle and Engine Conversions

    Science.gov (United States)

    2011-04-08

    ... software. Furthermore, manufacturers often change components and strategies between model years as...). ACTION: Final rule. SUMMARY: EPA is streamlining the process by which manufacturers of clean alternative... Engineering Judgment C. Vehicle/Engine Groupings and Emission Data Vehicle/Engine Selection D. Mixed-Fuel...

  1. Other Alternative Diesel Fuels from Vegetable Oils and Animal Fats

    Science.gov (United States)

    The energy crises of the 1970’s and early 1980’s provided impetus for developing alternative diesel fuels from vegetable oils and animal fats. Other driving forces may be derived from the Clean Air Act and its amendments and farmers desire to develop new uses for surplus agricultural commodities. ...

  2. Annex 34 : task 1 : analysis of biodiesel options : biomass-derived diesel fuels : final report

    Energy Technology Data Exchange (ETDEWEB)

    McGill, R. [Oak Ridge National Laboratory, TN (United States); Aakko-Saksa, P.; Nylund, N.O. [TransEnergy Consulting Ltd., Helsinki (Finland)

    2009-06-15

    Biofuels are derived from woody biomass, non-woody biomass, and organic wastes. The properties of vegetable oil feedstocks can have profound effects on the properties of the finished biodiesel product. However, all biodiesel fuels have beneficial effects on engine emissions. This report discussed the use of biodiesel fuels as replacements for part of the diesel fuel consumed throughout the world. Biodiesel fuels currently being produced from fatty acid esters today were reviewed, as well as some of the more advanced diesel replacement fuels. The report was produced as part of the International Energy Agency (IEA) Advanced Motor Fuels (AMF) Implementing Agreement Annex 34, and was divided into 14 sections: (1) an introduction, (2) biodiesel and biomass, (3) an explanation of biodiesel, (4) properties of finished biodiesel fuels, (5) exhaust emissions of finished biodiesel fuels and blends, (6) life-cycle emissions and energy, (7) international biodiesel (FAME) technical standards and specifications, (8) growth in production and use of biodiesel fuels, (9) biofuel refineries, (10) process technology, (11) development and status of biorefineries, (12) comparison of options to produce biobased diesel fuels, (13) barriers and gaps in knowledge, and (14) references. 113 refs., 37 tabs., 74 figs.

  3. Digestion of algal biomass for electricity generation in microbial fuel cells.

    Science.gov (United States)

    Nishio, Koichi; Hashimoto, Kazuhito; Watanabe, Kazuya

    2013-01-01

    Algal biomass serves as a fuel for electricity generation in microbial fuel cells. This study constructed a model consortium comprised of an alga-digesting Lactobacillus and an iron-reducing Geobacter for electricity generation from photo-grown Clamydomonas cells. Total power-conversion efficiency (from Light to electricity) was estimated to be 0.47%.

  4. 76 FR 67287 - Alternative Fuel Transportation Program; Alternative Fueled Vehicle Credit Program (Subpart F...

    Science.gov (United States)

    2011-10-31

    ... subject to these respective acquisition mandates turns on the size and location criteria set forth in the... meets the criteria for a dual fueled automobile, as that term is defined in section 513(h)(1)(C) of the... definition would read as follows: (1) An automobile that meets the criteria for a dual fueled automobile...

  5. Air quality effects of alternative fuels. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Guthrie, P.; Ligocki, M.; Looker, R.; Cohen, J.

    1997-11-01

    To support the Alternative Fuels Utilization Program, a comparison of potential air quality effects of alternative transportation fuels is being performed. This report presents the results of Phase 1 of this program, focusing on reformulated gasoline (RFG), methanol blended with 15 percent gasoline (M85), and compressed natural gas (CNG). The fuels are compared in terms of effects on simulated future concentrations of ozone and mobile source air toxics in a photochemical grid model. The fuel comparisons were carried out for the future year 2020 and assumed complete replacement of gasoline in the projected light-duty gasoline fleet by each of the candidate fuels. The model simulations were carried out for the areas surrounding Los Angeles and Baltimore/DC, and other (non-mobile) sources of atmospheric emissions were projected according to published estimates of economic and population growth, and planned emission control measures specific to each modeling domain. The future-year results are compared to a future-year run with all gasoline vehicle emissions removed. The results of the comparison indicate that the use of M85 is likely to produce similar ozone and air toxics levels as those projected from the use of RFG. Substitution of CNG is projected to produce significantly lower levels of ozone and the mobile source air toxics than those projected for RFG or M85. The relative benefits of CNG substitution are consistent in both modeling domains. The projection methodologies used for the comparison are subject to a large uncertainty, and modeled concentration distributions depend on meteorological conditions. The quantitative comparison of fuel effects is thus likely to be sensitive to alternative assumptions. The consistency of the results for two very different modeling domains, using very different base assumptions, lends credibility to the qualitative differentiation among these fuels. 32 refs., 42 figs., 47 tabs.

  6. Combustion of solid alternative fuels in the cement kiln burner

    OpenAIRE

    Nørskov, Linda Kaare; Dam-Johansen, Kim; Glarborg, Peter; Jensen, Peter Arendt; Larsen, Morten Boberg

    2012-01-01

    I cementindustrien er der en øget miljømœssig og økonomisk motivation for at erstatte konventionelle fossile brœndsler med alternative brœndsler; biomasse og affald. Indførelsen af alternative brœndsler kan dog påvirke emissioner, cementproduktkvalitet, processtabilitet og -effektivitet. I kalcinatoren er substitutionen med alternative brœndsler nået tœt på 100% på mange cementanlœg, og for at øge anvendelsen af alternative brœndsler yderligere må substitutionen i roterovnen øges. Der er begr...

  7. Use of Biomass as a Sustainable and Green Fuel with Alkali-Resistant DeNOx Catalysts based on Sulfated or Tungstated Zirconia

    DEFF Research Database (Denmark)

    Due-Hansen, Johannes; Fehrmann, Rasmus; Christensen, Claus H.

    Use of biomass as an alternative to fossil fuels has achieved increasing interest since it does not contribute to CO2 accumulation in the atmosphere. Over the past 10-15 years, heat and electricity production from biomass has increased to almost 7% of all energy supply in the European Union...... and is expected to increase further. The by far most efficient use of solid bio-resources in energy production is combustion in combined biomass and coal or oil-fired power plants. However, in such applications nitrogen oxides are inevitably present in the flue gases. Selective catalytic reduction (SCR......) of NO with ammonia as reductant is the most common method to eliminate NOx from flue gases in stationary sources. Even though biofuels are considered as environmentally benign fuels, the reactions occurring inside the boilers during biomass combustion tend to be more “dirty”. Indeed, traditional V2O5-WO3-TiO2 SCR...

  8. EVALUATION OF A PROCESS TO CONVERT BIOMASS TO METHANOL FUEL

    Science.gov (United States)

    The report gives results of a review of the design of a reactor capable of gasifying approximately 50 lb/hr of biomass for a pilot-scale facility to develop, demonstrate, and evaluate the Hynol Process, a high-temperature, high-pressure method for converting biomass into methanol...

  9. Solar Program Assessment: Environmental Factors - Fuels from Biomass.

    Science.gov (United States)

    Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.

    The purpose of this report is to present and prioritize the major environmental issues associated with the further development of biomass production and biomass conversion systems. To provide a background for this environmental analysis, the basic concepts of the technology are reviewed, as are resource requirements. The potential effects of this…

  10. OxyFuel combustion of Coal and Biomass

    DEFF Research Database (Denmark)

    Toftegaard, Maja Bøg

    investigations on the combustion of coal, biomass (straw), and blends of coal and straw in air and O2/CO2 mixtures. The experiments have been performed in semi-technical scale in a once-through 30 kWth swirl-stabilized flame. The work has focused on improving the fundamental knowledge on oxyfuel combustion...... the important aspects of ash and deposit formation during co-firing of coal and biomass and combustion of pure biomass in oxyfuel atmospheres in semi-technical scale. The presented work has lead to the identification of reference operating conditions which enables a direct comparison of combustion in air...... and oxyfuel atmospheres. Apart from slightly improved burnout and reduced emissions of NO during oxyfuel combustion these operating conditions yield similar combustion characteristics in both environments. Co-firing coal and biomass or combustion of pure biomass in an oxyfuel power plant could yield...

  11. Coconut Oil Based Hybrid Fuels as Alternative Fuel for Diesel Engines

    Directory of Open Access Journals (Sweden)

    Pranil Singh

    2010-01-01

    Full Text Available Problem statement: The use of vegetable oils as a fuel in diesel engines causes some problems due to their high viscosity compared with diesel. Various techniques and methods are used to solve the problems resulting from high viscosity. Approach: One of the techniques is the preparation of a microemulsion fuel, called a hybrid fuel. In this study, hybrid fuels consisting of coconut oil, ethanol and octan-1-ol were prepared with an aim to test their suitability as a fuel for diesel engines. Density, viscosity and gross calorific values of these fuels were determined and the fuels were used to run a direct injection diesel engine. The engine performance and exhaust emissions were investigated and compared with that of diesel and coconut oil. Results: The experimental results show that the engine efficiency of the hybrid fuels is comparable to that of diesel. As the percentage of ethanol and/or octan-1-ol increased, the viscosity of the hybrid fuels decreased and the engine efficiency increased. The exhaust emissions were lower than those for diesel, except carbon monoxide, which increased. Conclusion/Recommendations: Hence, it is concluded that these hybrid fuels can be used successfully as an alternative fuel in diesel engines without any modifications. Their completely renewable nature ensures that they are environmentally friendly.

  12. Determination of alternative fuels combustion products: Phase 3 report

    Energy Technology Data Exchange (ETDEWEB)

    Whitney, K.A. [Southwest Research Inst., San Antonio, TX (United States)

    1997-12-01

    This report describes the laboratory efforts to characterize particulate and gaseous exhaust emissions from a passenger vehicle operating on alternative fuels. Tests were conducted at room temperature (nominally 72 F) and 20 F utilizing the chassis dynamometer portion of the FTP for light-duty vehicles. Fuels evaluated include Federal RFG, LPG meeting HD-5 specifications, a national average blend of CNG, E85, and M85. Exhaust particulate generated at room temperature was further characterized to determine polynuclear aromatic content, trace element content, and trace organic constituents. For all fuels except M85, the room temperature particulate emission rate from this vehicle was about 2 to 3 mg/mile. On M85, the particulate emission rate was more than 6 mg/mile. In addition, elemental analysis of particulate revealed an order of magnitude more sulfur and calcium from M85 than any other fuel. The sulfur and calcium indicate that these higher emissions might be due to engine lubricating oil in the exhaust. For RFG, particulate emissions at 20 F were more than six times higher than at room temperature. For alcohol fuels, particulate emissions at 20 F were two to three times higher than at room temperature. For CNG and LPG, particulate emissions were virtually the same at 72 F and 20 F. However, PAH emissions from CNG and LPG were higher than expected. Both gaseous fuels had larger amounts of pyrene, 1-nitropyrene, and benzo(g,h,i)perylene in their emissions than the other fuels.

  13. Global combustion: the connection between fossil fuel and biomass burning emissions (1997-2010).

    Science.gov (United States)

    Balch, Jennifer K; Nagy, R Chelsea; Archibald, Sally; Bowman, David M J S; Moritz, Max A; Roos, Christopher I; Scott, Andrew C; Williamson, Grant J

    2016-06-05

    Humans use combustion for heating and cooking, managing lands, and, more recently, for fuelling the industrial economy. As a shift to fossil-fuel-based energy occurs, we expect that anthropogenic biomass burning in open landscapes will decline as it becomes less fundamental to energy acquisition and livelihoods. Using global data on both fossil fuel and biomass burning emissions, we tested this relationship over a 14 year period (1997-2010). The global average annual carbon emissions from biomass burning during this time were 2.2 Pg C per year (±0.3 s.d.), approximately one-third of fossil fuel emissions over the same period (7.3 Pg C, ±0.8 s.d.). There was a significant inverse relationship between average annual fossil fuel and biomass burning emissions. Fossil fuel emissions explained 8% of the variation in biomass burning emissions at a global scale, but this varied substantially by land cover. For example, fossil fuel burning explained 31% of the variation in biomass burning in woody savannas, but was a non-significant predictor for evergreen needleleaf forests. In the land covers most dominated by human use, croplands and urban areas, fossil fuel emissions were more than 30- and 500-fold greater than biomass burning emissions. This relationship suggests that combustion practices may be shifting from open landscape burning to contained combustion for industrial purposes, and highlights the need to take into account how humans appropriate combustion in global modelling of contemporary fire. Industrialized combustion is not only an important driver of atmospheric change, but also an important driver of landscape change through companion declines in human-started fires.This article is part of the themed issue 'The interaction of fire and mankind'.

  14. Diffusion-driven proton exchange membrane fuel cell for converting fermenting biomass to electricity.

    Science.gov (United States)

    Malati, P; Mehrotra, P; Minoofar, P; Mackie, D M; Sumner, J J; Ganguli, R

    2015-10-01

    A membrane-integrated proton exchange membrane fuel cell that enables in situ fermentation of sugar to ethanol, diffusion-driven separation of ethanol, and its catalytic oxidation in a single continuous process is reported. The fuel cell consists of a fermentation chamber coupled to a direct ethanol fuel cell. The anode and fermentation chambers are separated by a reverse osmosis (RO) membrane. Ethanol generated from fermented biomass in the fermentation chamber diffuses through the RO membrane into a glucose solution contained in the DEFC anode chamber. The glucose solution is osmotically neutral to the biomass solution in the fermentation chamber preventing the anode chamber from drying out. The fuel cell sustains >1.3 mW cm(-2) at 47°C with high discharge capacity. No separate purification or dilution is necessary, resulting in an efficient and portable system for direct conversion of fermenting biomass to electricity.

  15. Pressurised combustion of biomass-derived, low calorific value, fuel gas

    Energy Technology Data Exchange (ETDEWEB)

    Andries, J.; Hoppesteyn, P.D.J.; Hein, K.R.G. [Lab. for Thermal Power Engineering, Dept. of Mechanical Engineering and Marine Technology, Delft Univ. of Technology (Netherlands)

    1996-12-31

    The Laboratory for Thermal Power Engineering of the Delft University of Technology is participating in an EU-funded, international R + D project which is designed to aid European industry in addressing issues regarding pressurised combustion of biomass-derived, low calorific flue fuel gas. The objects of the project are: To design, manufacture and test a pressurised, high temperature gas turbine combustor for biomass derived LCV fuel gas; to develop a steady-state and dynamic model describing a combustor using biomass-derived, low calorific value fuel gases; to gather reliable experimental data on the steady-state and dynamic characteristics of the combustor; to study the steady-state and dynamic plant behaviour using a plant layout wich incorporates a model of a gas turbine suitable for operation on low calorific value fuel gas. (orig)

  16. State of the Art on Alternative Fuels in Aviation. SWAFEA. Sustainable Way for Alternative Fuels and Energy in Aviation.

    NARCIS (Netherlands)

    Blakey, S.; Novelli, P.; Costes, P.; Bringtown, S.; Christensen, D.; Sakintuna, B.; Peineke, C.; Jongschaap, R.E.E.; Conijn, J.G.; Rutgers, B.; Valot, L.; Joubert, E.; Perelgritz, J.F.; Filogonio, A.; Roetger, T.; Prieur, A.; Starck, L.; Jeuland, N.; Bogers, P.; Midgley, R.; Bauldreay, J.; Rollin, G.; Rye, L.; Wilson, C.

    2010-01-01

    Currently, the aviation sector uses petroleum derived liquid fuels as the energy carrier of choice for flight. In light the present environmental, economical and political concerns as to the sustainability of this energy source, the question of which alternatives the aviation sector should pursue in

  17. Development of alternative fuels from coal-derived syngas

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D.M.

    1992-05-19

    The overall objectives of this program are to investigate potential technologies for the conversion of coal-derived synthesis gas to oxygenated fuels, hydrocarbon fuels, fuel intermediates, and octane enhancers; and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). BASF continues to have difficulties in scaling-up the new isobutanol synthesis catalyst developed in Air Products' laboratories. Investigations are proceeding, but the proposed operation at LaPorte in April is now postponed. DOE has accepted a proposal to demonstrate Liquid Phase Shift (LPS) chemistry at LaPorte as an alternative to isobutanol. There are two principal reasons for carrying out this run. First, following the extensive modifications at the site, operation on a relatively benign'' system is needed before we start on Fischer-Tropsch technology in July. Second, use of shift catalyst in a slurry reactor will enable DOE's program on coal-based Fischer-Tropsch to encompass commercially available cobalt catalysts-up to now they have been limited to iron-based catalysts which have varying degrees of shift activity. In addition, DOE is supportive of continued fuel testing of LaPorte methanol-tests of MIOO at Detroit Diesel have been going particularly well. LPS offers the opportunity to produce methanol as the catalyst, in the absence of steam, is active for methanol synthesis.

  18. Alternative use of grassland biomass for biorefinery in Ireland: a scoping study

    NARCIS (Netherlands)

    O'Keeffe, S.

    2010-01-01

    The need to reduce greenhouse gas emissions and dependency on fossil fuels has been one of the main driving forces to use renewable resources for energy and chemicals. The integrated use of grassland biomass for the production of chemicals and energy, also known as Green Biorefinery (GBR), has recei

  19. The California Multimedia Risk Assessment Protocol for Alternative Fuels

    Science.gov (United States)

    Hatch, T.; Ginn, T. R.; McKone, T. E.; Rice, D. W.

    2013-12-01

    Any new fuel in California requires approval by the state agencies overseeing human and environmental health. In order to provide a systematic evaluation of new fuel impacts, California now requires a multimedia risk assessment (MMRA) for fuel approval. The fuel MMRA involves all relevant state agencies including: the California Air Resources Board (CARB), the State Water Resources Control Board (SWRCB), the Office of Environmental Health Hazards Assessment (OEHHA), and the Department of Toxic Substances Control (DTSC) overseen by the California Environmental Protection Agency (CalEPA). The lead agency for MMRAs is the CARB. The original law requiring a multimedia assessment is California Health and Safety Code 43830.8. In addition, the low carbon fuel standard (LCFS), the Global Warming Solutions Act (AB32), and the Verified Diesel Emission Control Strategy (VDECS) have provisions that can require a multimedia assessment. In this presentation, I give an overview of the California multimedia risk assessment (MMRA) for new fuels that has been recently developed and applied to several alternative fuels. The objective of the California MMRA is to assess risk of potential impacts of new fuels to multiple environmental media including: air, water, and soil. Attainment of this objective involves many challenges, including varying levels of uncertainty, relative comparison of incommensurate risk factors, and differing levels of priority assigned to risk factors. The MMRA is based on a strategy of relative risk assessment and flexible accommodation of distinct and diverse fuel formulations. The approach is tiered by design, in order to allow for sequentially more sophisticated investigations as knowledge gaps are identified and re-prioritized by the ongoing research. The assessment also involves peer review in order to provide coupling between risk assessment and stakeholder investment, as well as constructive or confrontational feedback. The multimedia assessment

  20. Dimethyl ether as alternative fuel for CI engine and vehicle

    Institute of Scientific and Technical Information of China (English)

    Zhen HUANG; Xinqi QIAO; Wugao ZHANG; Junhua WU; Junjun ZHANG

    2009-01-01

    As a developing and the most populous country in the world, China faces major challenges in energy supply and environmental protection. It is of great importance to develop clean and alternative fuels for internal combustion engines. On the basis of researches on DME engine and vehicle at Shanghai Jiaotong University in the last twelve years, fuel injection, combustion, performance and exhaust emissions of DME engine and DME vehicle are introduced in this paper. The results indicate that DME engines can achieve high thermal efficiency and ultra low emissions, and will play a significant role in meeting the energy demand while minimizing environmental impact in China.

  1. Greenfield Alternative Study LEU-Mo Fuel Fabrication Facility

    Energy Technology Data Exchange (ETDEWEB)

    Washington Division of URS

    2008-07-01

    This report provides the initial “first look” of the design of the Greenfield Alternative of the Fuel Fabrication Capability (FFC); a facility to be built at a Greenfield DOE National Laboratory site. The FFC is designed to fabricate LEU-Mo monolithic fuel for the 5 US High Performance Research Reactors (HPRRs). This report provides a pre-conceptual design of the site, facility, process and equipment systems of the FFC; along with a preliminary hazards evaluation, risk assessment as well as the ROM cost and schedule estimate.

  2. Determination of alternative fuels combustion products: Phase 1 report

    Energy Technology Data Exchange (ETDEWEB)

    Whitney, K.A. [Southwest Research Inst., San Antonio, TX (United States)

    1997-09-01

    This report describes the laboratory effort to identify and quantify organic exhaust species generated from alternative-fueled light-duty vehicles operating over the Federal Test Procedure on compressed natural gas, liquefied petroleum gas, methanol, ethanol, and reformulated gasoline. The exhaust species from these vehicles were identified and quantified for fuel/air equivalence ratios of 0.8, 1.0, and 1.2, nominally, and were analyzed with and without a vehicle catalyst in place to determine the influence of a catalytic converter on species formation.

  3. Sweet Sorghum Alternative Fuel and Feed Pilot Project

    Energy Technology Data Exchange (ETDEWEB)

    Slack, Donald C. [Univ. of Arizona, Tucson, AZ (United States). Agricultural and Biosystems Engineering Dept.; Kaltenbach, C. Colin [Univ. of Arizona, Tucson, AZ (United States)

    2013-07-30

    The University of Arizona undertook a “pilot” project to grow sweet sorghum on a field scale (rather than a plot scale), produce juice from the sweet sorghum, deliver the juice to a bio-refinery and process it to fuel-grade ethanol. We also evaluated the bagasse for suitability as a livestock feed and as a fuel. In addition to these objectives we evaluated methods of juice preservation, ligno-cellulosic conversion of the bagasse to fermentable sugars and alternative methods of juice extraction.

  4. Analysis of magma-thermal conversion of biomass to gaseous fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gerlach, T.M.

    1982-02-01

    A wide range of magma types and pluton geometries believed to occur within the upper 10 km of the crust provide suitable sources of thermal energy for conversion of water-biomass mixtures to higher quality gaseous fuel. Gaseous fuel can be generated within a magma body, within the hot subsolidus margins of a magma body, or within surface reaction vessels heated by thermal energy derived from a magma body. The composition, amount, and energy content of the fuel gases generated from water-biomass mixtures are not sensitive to the type, age, depth, or temperature of a magma body thermal source. The amount and energy content of the generated fuel is almost entirely a function of the proportion of biomass in the starting mixture. CH/sub 4/ is the main gas that can be generated in important quantities by magma thermal energy under most circumstances. CO is never an important fuel product, and H/sub 2/ generation is very limited. The rates at which gaseous fuels can be generated are strongly dependent on magma type. Fuel generation rates for basaltic magmas are at least 2 to 3 times those for andesitic magmas and 5 to 6 times those for rhyolitic magmas. The highest fuel generation rates, for any particular magma body, will be achieved at the lowest possible reaction vessel operating temperature that does not cause graphite deposition from the water-biomass starting mixture. The energy content of the biomass-derived fuels is considerably greater than that consumed in the generation and refinement process.

  5. Air Quality and Acute Respiratory Illness in Biomass Fuel using homes in Bagamoyo, Tanzania

    Directory of Open Access Journals (Sweden)

    Satoshi Nakai

    2007-03-01

    Full Text Available Respiratory Diseases are public health concern worldwide. The diseases have been associated with air pollution especially indoor air pollution from biomass fuel burning in developing countries. However, researches on pollution levels and on association of respiratory diseases with biomass fuel pollution are limited. A study was therefore undertaken to characterize the levels of pollutants in biomass fuel using homes and examine the association between biomass fuel smoke exposure and Acute Respiratory Infection (ARI disease in Nianjema village in Bagamoyo, Tanzania. Pollution was assessed by measuring PM10, NO2, and CO concentrations in kitchen, living room and outdoors. ARI prevalence was assessed by use of questionnaire which gathered health information for all family members under the study. Results showed that PM10, NO2, and CO concentrations were highest in the kitchen and lowest outdoors. Kitchen concentrations were highest in the kitchen located in the living room for all pollutants except CO. Family size didn’t have effect on the levels measured in kitchens. Overall ARI prevalence for cooks and children under age 5 making up the exposed group was 54.67% with odds ratio (OR of 5.5; 95% CI 3.6 to 8.5 when compared with unexposed men and non-regular women cooks. Results of this study suggest an association between respiratory diseases and exposure to domestic biomass fuel smoke, but further studies with improved design are needed to confirm the association.

  6. LIFE CYCLE ASSESSMENT OF ELECTRICITY GENERATION ALTERNATIVES

    Science.gov (United States)

    This presentation summarizes various electricity and electricity/steam cogeneration alternatives. Among these alternatives, are fossil fuel and biomass power generation plants. These plants have different designs due to the need in fossil fuel (coal) plants to include process u...

  7. Pyrolysis decomposition of tamarind seed for alternative fuel.

    Science.gov (United States)

    Kader, M A; Islam, M R; Parveen, M; Haniu, H; Takai, K

    2013-12-01

    The conversion of tamarind seed into bio-oil by pyrolysis has been taken into consideration in the present work. The major components of the system were fixed bed fire-tube heating reactor, liquid condenser and collector. The crushed tamarind seed in particle form was pyrolyzed in an electrically heated fixed bed reactor. The products were liquid, char and gasses. The parameters varied were reactor temperature, running time, gas flow rate and feed particle size. The maximum liquid yield was 45 wt% at 400°C for a feed size of 3200 μm diameter at a gas flow rate of 6l/min with a running time of 30 min. The obtained pyrolysis liquid at these optimum process conditions were analyzed for physical and chemical properties to be used as an alternative fuel. The results show the potential of tamarind seed as an important source of alternative fuel and chemicals as well.

  8. Low Floor Americans with Disabilities Compliant Alternate Fuel Vehicle Project

    Energy Technology Data Exchange (ETDEWEB)

    James Bartel

    2004-11-26

    This project developed a low emission, cost effective, fuel efficient, medium-duty community/transit shuttle bus that meets American's with Disabilities Act (ADA) requirements and meets National Energy Policy Act requirements (uses alternative fuel). The Low Profile chassis, which is the basis of this vehicle is configured to be fuel neutral to accommodate various alternative fuels. Demonstration of the vehicle in Yellowstone Park in summer (wheeled operation) and winter (track operation) demonstrated the feasibility and flexibility for this vehicle to provide year around operation throughout the Parks system as well as normal transit operation. The unique configuration of the chassis which provides ADA access with a simple ramp and a flat floor throughout the passenger compartment, provides maximum access for all passengers as well as maximum flexibility to configure the vehicle for each application. Because this product is derived from an existing medium duty truck chassis, the completed bus is 40-50% less expensive than existing low floor transit buses, with the reliability and durability of OEM a medium duty truck.

  9. Investment appraisal for small CHP technology in biomass-fuel power plant

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    The paper is essentially an investment appraisal for small CHP (combined heat and power) technology in biomass-fuel power plant and discusses and presents data on the combustion/steam cycle technologies to demonstrate the economic viability of CHP projects using established market costs for technology and employing energy crops as biomass fuel. The data is based on the UK, where electricity prices are low, but the overseas market (where prices are higher and there is potential for UK exports) is also discussed. The report aims to synthesise up-to-date technical and economic information on biomass-fuel CHP projects of small scale and focuses on technical and financial information on equipment, capital, construction and operating costs, and revenue streams.

  10. Converting Biomass and Waste Plastic to Solid Fuel Briquettes

    Directory of Open Access Journals (Sweden)

    F. Zannikos

    2013-01-01

    Full Text Available This work examines the production of briquettes for household use from biomass in combination with plastic materials from different sources. Additionally, the combustion characteristics of the briquettes in a common open fireplace were studied. It is clear that the geometry of the briquettes has no influence on the smoke emissions. When the briquettes have a small amount of polyethylene terephthalate (PET, the behavior in the combustion is steadier because of the increase of oxygen supply. The smoke levels are between the 3rd and 4th grades of the smoke number scale. Measuring the carbon monoxide emission, it was observed that the burning of the plastic in the mixture with biomass increases the carbon monoxide emissions from 10% to 30% as compared to carbon monoxide emission from sawdust biomass emissions which was used as a reference.

  11. Power and temperature control of fluctuating biomass gas fueled solid oxide fuel cell and micro gas turbine hybrid system

    Science.gov (United States)

    Kaneko, T.; Brouwer, J.; Samuelsen, G. S.

    This paper addresses how the power and temperature are controlled in a biomass gas fueled solid oxide fuel cell (SOFC) and micro gas turbine (MGT) hybrid system. A SOFC and MGT dynamic model are developed and used to simulate the hybrid system performance operating on biomass gas. The transient behavior of both the SOFC and MGT are discussed in detail. An unstable power output is observed when the system is fed biomass gas. This instability is due to the fluctuation of gas composition in the fuel. A specially designed fuel controller succeeded not only in allowing the hybrid system to follow a step change of power demand from 32 to 35 kW, but also stably maintained the system power output at 35 kW. In addition to power control, fuel cell temperature is controlled by introduction and use of a bypass valve around the recuperator. By releasing excess heat to the exhaust, the bypass valve provided the control means to avoid the self-exciting behavior of system temperature and stabilized the temperature of SOFC at 850 °C.

  12. Alternative Measuring Approaches in Gamma Scanning on Spent Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Sihm Kvenangen, Karen

    2007-06-15

    In the future, the demand for energy is predicted to grow and more countries plan to utilize nuclear energy as their source of electric energy. This gives rise to many important issues connected to nuclear energy, such as finding methods that can verify that the spent nuclear fuel has been handled safely and used in ordinary power producing cycles as stated by the operators. Gamma ray spectroscopy is one method used for identification and verification of spent nuclear fuel. In the specific gamma ray spectroscopy method called gamma scanning the gamma radiation from the fission products Cs-137, Cs-134 and Eu-154 are measured in a spent fuel assembly. From the results, conclusions can be drawn about the fuels characteristics. This degree project examines the possibilities of using alternative measuring approaches when using the gamma scanning method. The focus is on examining how to increase the quality of the measured data. How to decrease the measuring time as compared with the present measuring strategy, has also been investigated. The main part of the study comprises computer simulations of gamma scanning measurements. The simulations have been validated with actual measurements on spent nuclear fuel at the central interim storage, Clab. The results show that concerning the quality of the measuring data the conventional strategy is preferable, but with other starting positions and with a more optimized equipment. When focusing on the time aspect, the helical measuring strategy can be an option, but this needs further investigation.

  13. Thermodynamic simulation of biomass gas steam reforming for a solid oxide fuel cell (SOFC system

    Directory of Open Access Journals (Sweden)

    A. Sordi

    2009-12-01

    Full Text Available This paper presents a methodology to simulate a small-scale fuel cell system for power generation using biomass gas as fuel. The methodology encompasses the thermodynamic and electrochemical aspects of a solid oxide fuel cell (SOFC, as well as solves the problem of chemical equilibrium in complex systems. In this case the complex system is the internal reforming of biomass gas to produce hydrogen. The fuel cell input variables are: operational voltage, cell power output, composition of the biomass gas reforming, thermodynamic efficiency, electrochemical efficiency, practical efficiency, the First and Second law efficiencies for the whole system. The chemical compositions, molar flows and temperatures are presented to each point of the system as well as the exergetic efficiency. For a molar water/carbon ratio of 2, the thermodynamic simulation of the biomass gas reforming indicates the maximum hydrogen production at a temperature of 1070 K, which can vary as a function of the biomass gas composition. The comparison with the efficiency of simple gas turbine cycle and regenerative gas turbine cycle shows the superiority of SOFC for the considered electrical power range.

  14. Waste biomass toward hydrogen fuel supply chain management for electricity: Malaysia perspective

    Science.gov (United States)

    Zakaria, Izatul Husna; Ibrahim, Jafni Azhan; Othman, Abdul Aziz

    2016-08-01

    Green energy is becoming an important aspect of every country in the world toward energy security by reducing dependence on fossil fuel import and enhancing better life quality by living in the healthy environment. This conceptual paper is an approach toward determining physical flow's characteristic of waste wood biomass in high scale plantation toward producing gas fuel for electricity using gasification technique. The scope of this study is supply chain management of syngas fuel from wood waste biomass using direct gasification conversion technology. Literature review on energy security, Malaysia's energy mix, Biomass SCM and technology. This paper uses the theoretical framework of a model of transportation (Lumsden, 2006) and the function of the terminal (Hulten, 1997) for research purpose. To incorporate biomass unique properties, Biomass Element Life Cycle Analysis (BELCA) which is a novel technique develop to understand the behaviour of biomass supply. Theoretical framework used to answer the research questions are Supply Chain Operations Reference (SCOR) framework and Sustainable strategy development in supply chain management framework

  15. Sustainable Transportation Fuels from Natural Gas (H{sub 2}), Coal and Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, Gerald

    2012-12-31

    This research program is focused primarily on the conversion of coal, natural gas (i.e., methane), and biomass to liquid fuels by Fischer-Tropsch synthesis (FTS), with minimum production of carbon dioxide. A complementary topic also under investigation is the development of novel processes for the production of hydrogen with very low to zero production of CO{sub 2}. This is in response to the nation's urgent need for a secure and environmentally friendly domestic source of liquid fuels. The carbon neutrality of biomass is beneficial in meeting this goal. Several additional novel approaches to limiting carbon dioxide emissions are also being explored.

  16. Feasibility of Producing and Using Biomass-Based Diesel and Jet Fuel in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Milbrandt, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kinchin, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); McCormick, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-12-01

    The study summarizes the best available public data on the production, capacity, cost, market demand, and feedstock availability for the production of biomass-based diesel and jet fuel. It includes an overview of the current conversion processes and current state-of-development for the production of biomass-based jet and diesel fuel, as well as the key companies pursuing this effort. Thediscussion analyzes all this information in the context of meeting the RFS mandate, highlights uncertainties for the future industry development, and key business opportunities.

  17. 10 CFR 490.203 - Light Duty Alternative Fueled Vehicle Plan.

    Science.gov (United States)

    2010-01-01

    ... Section 490.203 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet Program § 490.203 Light Duty Alternative Fueled Vehicle Plan. (a) General Provisions... fleets, a State may follow a Light Duty Alternative Fueled Vehicle Plan that has been approved by...

  18. Combustion of biomass-derived, low caloric value, fuel gas in a gasturbine combustor

    Energy Technology Data Exchange (ETDEWEB)

    Andries, J.; Hoppesteyn, P.D.J.; Hein, K.R.G. [Technische Univ. Delf (Netherlands)

    1998-09-01

    The use of biomass and biomass/coal mixtures to produce electricity and heat reduces the net emissions of CO{sub 2}, contributes to the restructuring of the agricultural sector, helps to reduce the waste problem and saves finite fossil fuel reserves. Pressurised fluidised bed gasification followed by an adequate gas cleaning system, a gas turbine and a steam turbine, is a potential attractive way to convert biomass and biomass/coal mixtures. To develop and validate mathematical models, which can be used to design and operate Biomass-fired Integrated Gasification Combined Cycle (BIGCC) systems, a Process Development Unit (PPDU) with a maximum thermal capacity of 1.5 MW{sub th}, located at the Laboratory for Thermal Power Engineering of the Delft University of Technology in The Netherlands is being used. The combustor forms an integral part of this facility. Recirculated flue gas is used to cool the wall of the combustor. (orig.)

  19. Fuel pellets from biomass - Processing, bonding, raw materials

    Energy Technology Data Exchange (ETDEWEB)

    Stelte, W.

    2011-12-15

    The present study investigates several important aspects of biomass pelletization. Seven individual studies have been conducted and linked together, in order to push forward the research frontier of biomass pelletization processes. The first study was to investigate influence of the different processing parameters on the pressure built up in the press channel of a pellet mill. It showed that the major factor was the press channel length as well as temperature, moisture content, particle size and extractive content. Furthermore, extractive migration to the pellet surface at an elevated temperature played an important role. The second study presented a method of how key processing parameters can be estimated, based on a pellet model and a small number of fast and simple laboratory trials using a single pellet press. The third study investigated the bonding mechanisms within a biomass pellet, which indicate that different mechanisms are involved depending on biomass type and pelletizing conditions. Interpenetration of polymer chains and close intermolecular distance resulting in better secondary bonding were assumed to be the key factors for high mechanical properties of the formed pellets. The outcome of this study resulted in study four and five investigating the role of lignin glass transition for biomass pelletization. It was demonstrated that the softening temperature of lignin was dependent on species and moisture content. In typical processing conditions and at 8% (wt) moisture content, transitions were identified to be at approximately 53-63 deg. C for wheat straw and about 91 deg. C for spruce lignin. Furthermore, the effects of wheat straw extractives on the pelletizing properties and pellet stability were investigated. The sixth and seventh study applied the developed methodology to test the pelletizing properties of thermally pre-treated (torrefied) biomass from spruce and wheat straw. The results indicated that high torrefaction temperatures above 275 deg

  20. Thermal use of challenging biomass fuels; Thermische Nutzung von anspruchsvollen Biomassebrennstoffen. Versuche Herbst 2006

    Energy Technology Data Exchange (ETDEWEB)

    Buehler, R. [Umwelt und Energie, Maschwanden (Switzerland); Hersener, J.-L. [Ingenieurbuero Hersener, Wiesendangen (Switzerland); Jenni, A. [Ardens GmbH, Liestal (Switzerland); Klippel, N. [Verenum, Zuerich (Switzerland)

    2007-10-15

    This final report for the Swiss Federal Office of Energy (SFOE) reports on experiments made in autumn 2006 on the thermal use of biomass fuels such as agricultural wastes. As a continuation of the tests performed in 2005, further tests were planned for 2006. The authors quote that for various reasons, only part of the planned test program could be carried out. Tests made with the fuel mixtures sedge and chipped wood as well as horse manure, sedge and chipped wood are reported on. The tests showed that, under optimal conditions, these fuel mixtures can be used as biomass fuel, leading to low emissions. Stable combustion conditions were, however, very difficult to achieve. Details on the tests performed and their results are presented and knowledge gained is discussed.

  1. The cost of ethanol production from lignocellulosic biomass -- A comparison of selected alternative processes. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Grethlein, H.E.; Dill, T.

    1993-04-30

    The purpose of this report is to compare the cost of selected alternative processes for the conversion of lignocellulosic biomass to ethanol. In turn, this information will be used by the ARS/USDA to guide the management of research and development programs in biomass conversion. The report will identify where the cost leverages are for the selected alternatives and what performance parameters need to be achieved to improve the economics. The process alternatives considered here are not exhaustive, but are selected on the basis of having a reasonable potential in improving the economics of producing ethanol from biomass. When other alternatives come under consideration, they should be evaluated by the same methodology used in this report to give fair comparisons of opportunities. A generic plant design is developed for an annual production of 25 million gallons of anhydrous ethanol using corn stover as the model substrate at $30/dry ton. Standard chemical engineering techniques are used to give first order estimates of the capital and operating costs. Following the format of the corn to ethanol plant, there are nine sections to the plant; feed preparation, pretreatment, hydrolysis, fermentation, distillation and dehydration, stillage evaporation, storage and denaturation, utilities, and enzyme production. There are three pretreatment alternatives considered: the AFEX process, the modified AFEX process (which is abbreviated as MAFEX), and the STAKETECH process. These all use enzymatic hydrolysis and so an enzyme production section is included in the plant. The STAKETECH is the only commercially available process among the alternative processes.

  2. State and Alternative Fuel Provider Fleets Alternative Compliance; U.S. Department of Energy (DOE), Energy Efficiency & Renewable Energy (EERE)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-08-01

    The final rule of the Energy Policy Act of 2005 and its associated regulations enable covered state and alternative fuel provider fleets to obtain waivers from the alternative fuel vehicle (AFV)-acquisition requirements of Standard Compliance. Under Alternative Compliance, covered fleets instead meet a petroleum-use reduction requirement. This guidance document is designed to help fleets better understand the Alternative Compliance option and successfully complete the waiver application process.

  3. Highly selective condensation of biomass-derived methyl ketones as a source of aviation fuel.

    Science.gov (United States)

    Sacia, Eric R; Balakrishnan, Madhesan; Deaner, Matthew H; Goulas, Konstantinos A; Toste, F Dean; Bell, Alexis T

    2015-05-22

    Aviation fuel (i.e., jet fuel) requires a mixture of C9 -C16 hydrocarbons having both a high energy density and a low freezing point. While jet fuel is currently produced from petroleum, increasing concern with the release of CO2 into the atmosphere from the combustion of petroleum-based fuels has led to policy changes mandating the inclusion of biomass-based fuels into the fuel pool. Here we report a novel way to produce a mixture of branched cyclohexane derivatives in very high yield (>94 %) that match or exceed many required properties of jet fuel. As starting materials, we use a mixture of n-alkyl methyl ketones and their derivatives obtained from biomass. These synthons are condensed into trimers via base-catalyzed aldol condensation and Michael addition. Hydrodeoxygenation of these products yields mixtures of C12 -C21 branched, cyclic alkanes. Using models for predicting the carbon number distribution obtained from a mixture of n-alkyl methyl ketones and for predicting the boiling point distribution of the final mixture of cyclic alkanes, we show that it is possible to define the mixture of synthons that will closely reproduce the distillation curve of traditional jet fuel.

  4. Analysis of Indirectly Fired Gas Turbine for Wet Biomass Fuels Based on commercial micro gas turbine data

    DEFF Research Database (Denmark)

    Elmegaard, Brian; Qvale, Einar Bjørn

    2002-01-01

    fueled by dry biomass assuming negligible pressure loss in the heat exchanger and the combustion chamber, the IFGT fueled with wet biomass (Wet IFGT) assuming no pressure losses, and finally both the Simple and the Wet IFGT incorporating typical data for pressure losses of commercially available micro......The results of a study of a novel gas turbine configuration is being presented. In this power plant, an Indirectly Fired Gas Turbine (IFGT), is being fueled with very wet biomass. The exhaust gas is being used to dry the biomass, but instead of striving to recover as much as possible of the thermal...

  5. Converting Biomass and Waste Plastic to Solid Fuel Briquettes

    OpenAIRE

    Zannikos, F.; Kalligeros, S.; Anastopoulos, G.; Lois, E.

    2013-01-01

    This work examines the production of briquettes for household use from biomass in combination with plastic materials from different sources. Additionally, the combustion characteristics of the briquettes in a common open fireplace were studied. It is clear that the geometry of the briquettes has no influence on the smoke emissions. When the briquettes have a small amount of polyethylene terephthalate (PET), the behavior in the combustion is steadier because of the increase of oxygen supply. T...

  6. An atlas of thermal data for biomass and other fuels

    Energy Technology Data Exchange (ETDEWEB)

    Gaur, S.; Reed, T.B. [Colorado School of Mines, Golden, CO (United States)

    1995-06-01

    Biomass is recognized as a major source of renewable energy. In order to convert biomass energy to more useful forms, it is necessary to have accurate scientific data on the thermal properties of biomass. This Atlas has been written to supply a uniform source of that information. In the last few decades Thermal analysis (TA) tools such as thermogravimetry, differential thermal analysis, thermo mechanical analysis, etc. have become more important. The data obtained from these techniques can provide useful information in terms of reaction mechanism, kinetic parameters, thermal stability, phase transformation, heat of reaction, etc. for gas-solid and gas-liquid systems. Unfortunately, there are no ASTM standards set for the collection of these types of data using TA techniques and therefore, different investigators use different conditions which suit their requirements for measuring this thermal data. As a result, the information obtained from different laboratories is not comparable. This Atlas provides the ability to compare new laboratory results with a wide variety of related data available in the literature and helps ensure consistency in using these data.

  7. Life cycle assessment of biomass-to-liquid fuels - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jungbluth, N.; Buesser, S.; Frischknecht, R.; Tuchschmid, M.

    2008-02-15

    This study elaborates a life cycle assessment of using of BTL-fuels (biomass-to-liquid). This type of fuel is produced in synthesis process from e.g. wood, straw or other biomass. The life cycle inventory data of the fuel provision with different types of conversion concepts are based on the detailed life cycle assessment compiled and published within a European research project. The inventory of the fuel use emissions is based on information published by automobile manufacturers on reductions due to the use of BTL-fuels. Passenger cars fulfilling the EURO3 emission standards are the basis for the comparison. The life cycle inventories of the use of BTL-fuels for driving in passenger cars are investigated from cradle to grave. The full life cycle is investigated with the transportation of one person over one kilometre (pkm) as a functional unit. This includes all stages of the life cycle of a fuel (biomass and fuel production, distribution, combustion) and the necessary infrastructure (e.g. tractors, conversion plant, cars and streets). The use of biofuels is mainly promoted for the reason of reducing the climate change impact and the use of scarce non-renewable resources e.g. crude oil. The possible implementation of BTL-fuel production processes would potentially help to achieve this goal. The emissions of greenhouse gases due to transport services could be reduced by 28% to 69% with the BTL-processes using straw, forest wood or short-rotation wood as a biomass input. The reduction potential concerning non-renewable energy resources varies between 37% und 61%. A previous study showed that many biofuels cause higher environmental impacts than fossil fuels if several types of ecological problems are considered. The study uses two single score impact assessment methods for the evaluation of the overall environmental impacts, namely the Eco-indicator 99 (H,A) and the Swiss ecological scarcity 2006 method. The transportation with the best BTL-fuel from short

  8. Renewable liquid fuels from biomass containing lignocellulose; Regenerative Fluessigkraftstoffe aus Lignocellulose haltiger Biomasse

    Energy Technology Data Exchange (ETDEWEB)

    Schieder, D.; Witzelsperger, J. [TU Muenchen (Germany). Lehrstuhl fuer Technologie Biogener Rohstoffe; Prechtl, S. [ATZ Entwicklungszentrum, Sulzbach-Rosenberg (Germany)

    2005-07-01

    The authors review the production processes of liquid fuels from lignocellulose, current research programs and developments. The two principal routes to biofuels are thermochemical processes, like pyrolysis and gasification, and fermentation. One produces pyrolytic oils and gases, the other bio-ethanol. Since energy efficiency of large-scale plants is not yet good enough, small-scale dispersed fuel production in the agricultural areas can be profitable. (uke)

  9. Advanced materials for alternative fuel capable directly fired heat engines

    Energy Technology Data Exchange (ETDEWEB)

    Fairbanks, J.W.; Stringer, J. (eds.)

    1979-12-01

    The first conference on advanced materials for alternative fuel capable directly fired heat engines was held at the Maine Maritime Academy, Castine, Maine. It was sponsored by the US Department of Energy, (Assistant Secretary for Fossil Energy) and the Electric Power Research Institute, (Division of Fossil Fuel and Advanced Systems). Forty-four papers from the proceedings have been entered into EDB and ERA and one also into EAPA; three had been entered previously from other sources. The papers are concerned with US DOE research programs in this area, coal gasification, coal liquefaction, gas turbines, fluidized-bed combustion and the materials used in these processes or equipments. The materials papers involve alloys, ceramics, coatings, cladding, etc., and the fabrication and materials listing of such materials and studies involving corrosion, erosion, deposition, etc. (LTN)

  10. Physical characterization of biomass fuels prepared for suspension firing in utility boilers for CFD modelling

    DEFF Research Database (Denmark)

    Rosendahl, Lasse; Yin, Chungen; Kær, Søren Knudsen

    2007-01-01

    shapes. The sample is subdivided by straw type, and coherent size, type and mass distribution parameters are reported for the entire sample. This type of data is necessary in order to use CFD reliably as a design and retrofit tool for co-firing biomass with fossil fuels, as the combustion processes...

  11. Field test corrosion experiments in Denmark with biomass fuels Part I Straw firing

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Karlsson, A; Larsen, OH

    2002-01-01

    In Denmark, straw and other types of biomass are used for generating energy in power plants. Straw has the advantage that it is a "carbon dioxide neutral fuel" and therefore environmentally acceptable. Straw combustion is associated with corrosion problems which are not encountered in coal...

  12. Nitrogen compounds in pressurised fluidised bed gasification of biomass and fossil fuels

    NARCIS (Netherlands)

    De Jong, W.

    2005-01-01

    Fossil fuels still dominate the energy supply in modern societies. The resources, however, are depleting. Therefore, other energy sources are to be exploited further within this century. Biomass is one of the practically CO2 neutral, renewable contributors to the future energy production. Nowadays m

  13. High temperature solid oxide fuel cell integrated with novel allothermal biomass gasification. Part II: Exergy analysis

    Science.gov (United States)

    Panopoulos, K. D.; Fryda, L.; Karl, J.; Poulou, S.; Kakaras, E.

    Biomass gasification derived gas is a renewable fuel, which can be used for SOFC applications. This work investigates the integration of a near atmospheric solid oxide fuel cell (SOFC) with a novel allothermal biomass steam gasification process into a combined heat and power (CHP) system of less than MW e range. Heat for steam gasification is supplied from SOFC depleted fuel in a fluidised bed (FB) combustor via high temperature sodium heat pipes. In the first paper, the integrated system was modelled in Aspen Plus™ and critical aspects for its feasibility were identified. The aim of this second part is the evaluation of the integrated system in exergy terms. Satisfying allothermal gasification heat demand is illustrated by examining each sub-process involved separately as well as combined. For a relatively low STBR = 0.6, the SOFC fuel utilisation for which the system operates under optimum conditions is U f = 0.7. Above that value additional biomass has to be used in the FB combustor to provide gasification heat with considerable exergy losses. For SOFC operation at current density 2500 A m -2, the system uses 90 kg h -1 biomass, operates with electrical exergetic efficiency 32% producing 140 kW e, while the combined electrical and thermal exergetic efficiency is 35%.

  14. One-Pot Catalytic Conversion of Cellulose and of Woody Biomass Solids to Liquid Fuels

    NARCIS (Netherlands)

    Matson, Theodore D.; Barta, Katalin; Iretskii, Alexei V.; Ford, Peter C.

    2011-01-01

    Efficient methodologies for converting biomass solids to liquid fuels have the potential to reduce dependence on imported petroleum while easing the atmospheric carbon dioxide burden. Here, we report quantitative catalytic conversions of wood and cellulosic solids to liquid and gaseous products in a

  15. Allocation of Energy Use in the Biomass-based Fuel Ethanol System and Its Use in Decision Making

    Institute of Scientific and Technical Information of China (English)

    LENG Ru-bo; YU Sui-ran; FANG Fang; DAI Du; WANG Cheng-tao

    2005-01-01

    The Chinese government is developing biomass ethanol as one of its automobile fuels for energy security and environmental improvement reasons. The energy efficiency of the biomass-based fuel ethanol is critical issue. To investigate the energy use in the three biomass-base ethanol fuel systems, energy content approach, Market value approach and Product displacement approach methods were used to allocate the energy use based on life cycle energy assessment. The results shows that the net energy of corn based, wheat based, and cassava-based ethanol fuel are 12543MJ, 10299MJ and 13112MJ when get one ton biomassbased ethanol, respectively, and they do produce positive net energy.

  16. Impact of alternate fuels on industrial refractories and refractory insulation applications. An Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Wei, G.C.; Tennery, V.J.

    1976-09-01

    The effects of use of alternate fuels such as distillate oils, residual oils, coal, producer gas, and electricity on refractory insulation are evaluated. Sections are included on alternate fuels for 1976 to 1980, assessment by industry of fuel conversion impact on industrial refractories in the period 1976 to 1980, interactions of alternate fuel combustion products with refractories and refractory insulation, and analysis of degradation mechanisms in refractories and refractory materials. (JRD)

  17. Reformers for the production of hydrogen from methanol and alternative fuels for fuel cell powered vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, R.; Ahmed, S.; Krumpelt, M.; Myles, K.M.

    1992-08-01

    The objective of this study was (i) to assess the present state of technology of reformers that convert methanol (or other alternative fuels) to a hydrogen-rich gas mixture for use in a fuel cell, and (ii) to identify the R&D needs for developing reformers for transportation applications. Steam reforming and partial oxidation are the two basic types of fuel reforming processes. The former is endothermic while the latter is exothermic. Reformers are therefore typically designed as heat exchange systems, and the variety of designs used includes shell-and-tube, packed bed, annular, plate, and cyclic bed types. Catalysts used include noble metals and oxides of Cu, Zn, Cr, Al, Ni, and La. For transportation applications a reformer must be compact, lightweight, and rugged. It must also be capable of rapid start-up and good dynamic performance responsive to fluctuating loads. A partial oxidation reformer is likely to be better than a steam reformer based on these considerations, although its fuel conversion efficiency is expected to be lower than that of a steam reformer. A steam reformer better lends itself to thermal integration with the fuel cell system; however, the thermal independence of the reformer from the fuel cell stack is likely to yield much better dynamic performance of the reformer and the fuel cell propulsion power system. For both steam reforming and partial oxidation reforming, research is needed to develop compact, fast start-up, and dynamically responsive reformers. For transportation applications, steam reformers are likely to prove best for fuel cell/battery hybrid power systems, and partial oxidation reformers are likely to be the choice for stand-alone fuel cell power systems.

  18. Reformers for the production of hydrogen from methanol and alternative fuels for fuel cell powered vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, R.; Ahmed, S.; Krumpelt, M.; Myles, K.M.

    1992-08-01

    The objective of this study was (i) to assess the present state of technology of reformers that convert methanol (or other alternative fuels) to a hydrogen-rich gas mixture for use in a fuel cell, and (ii) to identify the R D needs for developing reformers for transportation applications. Steam reforming and partial oxidation are the two basic types of fuel reforming processes. The former is endothermic while the latter is exothermic. Reformers are therefore typically designed as heat exchange systems, and the variety of designs used includes shell-and-tube, packed bed, annular, plate, and cyclic bed types. Catalysts used include noble metals and oxides of Cu, Zn, Cr, Al, Ni, and La. For transportation applications a reformer must be compact, lightweight, and rugged. It must also be capable of rapid start-up and good dynamic performance responsive to fluctuating loads. A partial oxidation reformer is likely to be better than a steam reformer based on these considerations, although its fuel conversion efficiency is expected to be lower than that of a steam reformer. A steam reformer better lends itself to thermal integration with the fuel cell system; however, the thermal independence of the reformer from the fuel cell stack is likely to yield much better dynamic performance of the reformer and the fuel cell propulsion power system. For both steam reforming and partial oxidation reforming, research is needed to develop compact, fast start-up, and dynamically responsive reformers. For transportation applications, steam reformers are likely to prove best for fuel cell/battery hybrid power systems, and partial oxidation reformers are likely to be the choice for stand-alone fuel cell power systems.

  19. Kinetics study on biomass pyrolysis for fuel gas production

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Kinetic knowledge is of great importance in achieving good control of the pyrolysis and gasification process and optimising system design. An overall kinetic pyrolysis scheme is therefore addressed here. The kinetic modelling incorporates the following basic steps: the degradation of the virgin biomass materials into primary products (tar, gas and semi-char), the decomposition of primary tar into secondary products and the continuous interaction between primary gas and char. The last step is disregarded completely by models in the literature. Analysis and comparison of predicted results from different kinetic schemes and experimental data on our fixed bed pyrolyser yielded very positive evidence to support our kinetic scheme.

  20. Kinetics study on biomass pyrolysis for fuel gas production

    Institute of Scientific and Technical Information of China (English)

    陈冠益; 方梦祥; ANDRIES,J.; 骆仲泱; SPLIETHOFF,H.; 岑可法

    2003-01-01

    Kinetic knowledge is of great importance in achieving good control of the pyrolysis and gasification process and optimising system design. An overall kinetic pyrolysis scheme is therefore addressed here. The ki-netic modelling incorporates the following basic steps: the degradation of the virgin biomass materials into pri-mary products ( tar, gas and semi-char), the decomposition of primary tar into secondary products and the continuous interaction between primary gas and char. The last step is disregarded completely by models in the literature. Analysis and comparison of predicted results from different kinetic schemes and experimental data on our fixed bed pyrolyser yielded very positive evidence to support our kinetic scheme.

  1. Clean and economical gasification of combined coal and biomass pelletized fuels by industries worldwide

    Energy Technology Data Exchange (ETDEWEB)

    Carlo Amorino; Alberto Pettinau; Rolf E. Maurer; Evan Hughes; Filippo Larceri; Francesco Repetto; Phil Wellhausen; Peter Lange [Sotacarbo S.p.A. (Italy)

    2007-07-01

    Industrial clean coal utilization is enhanced when gasifying low cost high ash coals combined with locally available biomass and/or biowaste from agricultural and/or industrial operations. The cost of the biowaste is near zero if there is a cost associated with the removal of the biowaste from the industrial site. The clean gas and liquids generated for industrial usage are in the range of 0.12 to 0.15 euro/nM{sup 3} displacing much costlier petroleum or gaseous fuels. Sotacarbo S.P.A. and Ansaldo Ricerche S.r.l. with collaboration of Hamilton Maurer International, Inc. (HMI) have designed, installed and commissioned an advanced single stage fixed-bed gasifier in Sotacarbo's R&D facility in April 2007. Clean coal utilization is enhanced when coal is combined with a biomass or biowaste feedstock. Ansaldo Ricerche and HMI, Inc. designed a single-stage fixed bed biomass gasifier, installed and successfully commissioned in 2001 at ARI's research facility in Genova, Italy. This presentation highlights the simplicity and high efficiency (82 to 87%) of the coal and coal/biomass gasification process. CPM both in the US and Europe has extensive experience with coal fuels preparation (pelletization). The economics and ability to combine coals with biomass to generate an economical and viable gasification fuel pellets are reviewed. This paper presents the ability to utilize coal cleanly with biomass (Bio-coal) to lower fuel costs while enhancing the availability and reliability of industrial energy and reducing CO{sub 2} emissions provides a quantum jump forward for both industries and the environment. 21 refs., 4 figs.

  2. Reduction of fuel side costs due to biomass co-combustion.

    Science.gov (United States)

    Wils, Andrea; Calmano, Wolfgang; Dettmann, Peter; Kaltschmitt, Martin; Ecke, Holger

    2012-03-15

    The feasibility and influence of co-combustion of woody biomass on the fuel side costs is discussed for three hard coal power plants located in Berlin, Germany. Fuel side costs are defined as the costs resulting from flue gas cleaning and by-products. To have reliable data, co-firing tests were conducted in two power plants (i.e., slag tap furnace and circulating fluidising bed combustion). The amount of wood which was co-fired varied at levels below 11% of the fuel heat input. Wood chips originating from landscape management were used. The analyses show that co-combustion of woody biomass can lower the fuel side costs and that the co-combustion at a level below 10% of the thermal capacity is technically feasible without major problems. Furthermore, a flexible spreadsheet tool was developed for the calculation of fuel side costs and suggestions for operational improvements were made. For example, the adaptation of the Ca/S ratio (mass ratio of calcium in limestone to sulphur in the fuel) in one plant could reduce the fuel side costs up to 135 k€ yr(-1) (0.09 €M Wh(-1)).

  3. EPAct Alternative Fuel Transportation Program: State and Alternative Fuel Provider Fleet Compliance Annual Report, Fleet Compliance Results for MY 2014/ FY 2015

    Energy Technology Data Exchange (ETDEWEB)

    2016-04-01

    This annual report of the Alternative Fuel Transportation Program, which ensures compliance with DOE regulations covering state government and alternative fuel provider fleets pursuant to the Energy Policy Act of 1992 (EPAct), as amended, provides fleet compliance results for manufacturing year 2014 / fiscal year 2015.

  4. H2CAP - Hydrogen assisted catalytic biomass pyrolysis for green fuels

    DEFF Research Database (Denmark)

    Arndal, Trine Marie Hartmann; Høj, Martin; Jensen, Peter Arendt

    2014-01-01

    that can be used to upgrade the crude bio-oil to fuel-grade oil. The development of the HDO process is challenged by rapid catalyst deactivation, instability of the pyrolysis oil, poorly investigated reaction conditions and a high complexity and variability of the input oil composition. However, continuous...... catalytic hydropyrolysis coupled with downstream HDO of the pyrolysis vapors before condensation shows promise (Figure 1). A bench scale experimental setup will be constructed for the continuous conversion of solid biomass (100g /h) to low oxygen, fuel-grade bio-oil. The aim is to provide a proof......-of-concept for the proposed process(Figure 1), to understand the reaction mechanisms of HDO, to develop highly active and durable catalysts for hydropyrolysis and HDO and to optimize the operating conditions; all in order to develop a sustainable production of green transportation fuels from biomass.To support the process...

  5. Potential high temperature corrosion problems due to co-firing of biomass and fossil fuels

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Vilhelmsen, T.; Jensen, S.A.

    2007-01-01

    Over the past years, considerable high temperature corrosion problems have been encountered when firing biomass in power plants due to the high content of potassium chloride in the deposits. Therefore to combat chloride corrosion problems co-firing of biomass with a fossil fuel has been undertaken...... appear such as sulphidation and hot corrosion due to sulphate deposits. At Studstrup power plant Unit 4, based on trials with exposure times of 3000 hours using 0-20% straw co-firing with coal, the plant now runs with a fuel of 10% straw + coal. After three years exposure in this environment......, the internal sulphidation is much more significant than that revealed in the demonstration project. Avedøre 2 main boiler is fuelled with wood pellets + heavy fuel oil + gas. Some reaction products due to the presence of vanadium compounds in the heavy oil were detected, i.e. iron vanadates. However, the most...

  6. Potential high temperature corrosion problems due to co-firing of biomass and fossil fuels

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Vilhelmsen, T.; Jensen, S.A.

    2008-01-01

    Over the past few years, considerable high temperature corrosion problems have been encountered when firing biomass in power plants due to the high content of potassium chloride in the deposits. Therefore, to combat chloride corrosion problems cofiring of biomass with a fossil fuel has been...... corrosion mechanisms appear such as sulphidation and hot corrosion due to sulphate deposits. At Studstrup power plant Unit 4, based on trials with exposure times of 3000 h using 0–20% straw co-firing with coal, the plant now runs with a fuel mix of 10% strawþcoal. Based on results from a 3 years exposure...... in this environment, the internal sulphidation is much more significant than that revealed in the demonstration project. Avedøre 2 main boiler is fuelled with wood pelletsþheavy fuel oilþgas. Some reaction products resulting from the presence of vanadium compounds in the heavy oil were detected, i.e. iron vanadates...

  7. On-line tracking of pulverized coal and biomass fuels through flame spectrum analysis

    Institute of Scientific and Technical Information of China (English)

    迟天阳; 张宏建

    2007-01-01

    This paper presents a new approach to the on-line tracking of pulverized coal and biomass fuels through flame spectrum analysis. A flame detector containing four photodiodes is used to derive multiple signals covering a wide spectrum of the flame from visible, near-infrared and mid-infrared spectral bands as well as a part of far-infrared band. Different features are extracted in time and frequency domains to identify the dynamic "fingerprints" of the flame. Fuzzy logic inference techniques are employed to combine typical features together and infer the type of fuel being burnt. Four types of pulverized coal and five types of biomass are burnt on a laboratory-scale combustion test rig. Results obtained demonstrate that this approach is capable of tracking the type of fuel under steady combustion conditions.

  8. Physical properties of solid fuel briquettes from bituminous coal waste and biomass

    Institute of Scientific and Technical Information of China (English)

    ZARRINGHALAM-MOGHADDAM A; GHOLIPOUR-ZANJANI N; DOROSTIS; VAEZ M

    2011-01-01

    Biomass and bituminous coal fines from four different coalfields were used to produce fuel briquettes.Two physical properties of briquettes,water resistance index and compressive strength were analyzed.The influence of type and quantity of biomass on physical properties was also studied.The results reveal that depending on the mineral content of the coal,the physical properties of the briquettes differ noticeably.The comparison of briquettes with and without biomass showed that the presence of the beet pulp increased CS in all types of coal samples.Samples containing beet pulp had better physical properties than sawdust.Mezino Ⅱ coal briquettes had highest CS and WRI than the other ones.Calorific value of biomass/Mezino Ⅱ coal briquettes was lessened in comparison with raw coal,but it remained in an acceptable range.

  9. DEVELOPMENT OF ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    Energy Technology Data Exchange (ETDEWEB)

    Peter J. Tijrn

    2003-05-31

    This Final Report for Cooperative Agreement No. DE-FC22-95PC93052, the ''Development of Alternative Fuels and Chemicals from Synthesis Gas,'' was prepared by Air Products and Chemicals, Inc. (Air Products), and covers activities from 29 December 1994 through 31 July 2002. The overall objectives of this program were to investigate potential technologies for the conversion of synthesis gas (syngas), a mixture primarily of hydrogen (H{sub 2}) and carbon monoxide (CO), to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at the LaPorte, Texas Alternative Fuels Development Unit (AFDU). Laboratory work was performed by Air Products and a variety of subcontractors, and focused on the study of the kinetics of production of methanol and dimethyl ether (DME) from syngas, the production of DME using the Liquid Phase Dimethyl Ether (LPDME{trademark}) Process, the conversion of DME to fuels and chemicals, and the production of other higher value products from syngas. Four operating campaigns were performed at the AFDU during the performance period. Tests of the Liquid Phase Methanol (LPMEOH{trademark}) Process and the LPDME{trademark} Process were made to confirm results from the laboratory program and to allow for the study of the hydrodynamics of the slurry bubble column reactor (SBCR) at a significant engineering scale. Two campaigns demonstrated the conversion of syngas to hydrocarbon products via the slurry-phase Fischer-Tropsch (F-T) process. Other topics that were studied within this program include the economics of production of methyl tert-butyl ether (MTBE), the identification of trace components in coal-derived syngas and the means to economically remove these species, and the study of systems for separation of wax from catalyst in the F-T process. The work performed under this Cooperative Agreement has continued to promote the development of technologies that use clean syngas produced

  10. DEVELOPMENT OF ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    Energy Technology Data Exchange (ETDEWEB)

    Peter J. Tijrn

    2003-05-31

    This Final Report for Cooperative Agreement No. DE-FC22-95PC93052, the ''Development of Alternative Fuels and Chemicals from Synthesis Gas,'' was prepared by Air Products and Chemicals, Inc. (Air Products), and covers activities from 29 December 1994 through 31 July 2002. The overall objectives of this program were to investigate potential technologies for the conversion of synthesis gas (syngas), a mixture primarily of hydrogen (H{sub 2}) and carbon monoxide (CO), to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at the LaPorte, Texas Alternative Fuels Development Unit (AFDU). Laboratory work was performed by Air Products and a variety of subcontractors, and focused on the study of the kinetics of production of methanol and dimethyl ether (DME) from syngas, the production of DME using the Liquid Phase Dimethyl Ether (LPDME{trademark}) Process, the conversion of DME to fuels and chemicals, and the production of other higher value products from syngas. Four operating campaigns were performed at the AFDU during the performance period. Tests of the Liquid Phase Methanol (LPMEOH{trademark}) Process and the LPDME{trademark} Process were made to confirm results from the laboratory program and to allow for the study of the hydrodynamics of the slurry bubble column reactor (SBCR) at a significant engineering scale. Two campaigns demonstrated the conversion of syngas to hydrocarbon products via the slurry-phase Fischer-Tropsch (F-T) process. Other topics that were studied within this program include the economics of production of methyl tert-butyl ether (MTBE), the identification of trace components in coal-derived syngas and the means to economically remove these species, and the study of systems for separation of wax from catalyst in the F-T process. The work performed under this Cooperative Agreement has continued to promote the development of technologies that use clean syngas produced

  11. Advisable alternative fuels for Mexico; Combustibles alternativos convenientes para Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar Gonzalez, Jorge Luis [ICA Fluor (Mexico)

    2007-07-15

    The alternative fuels are born with the goal of not damaging the environment; biodiesel, electricity, ethanol, hydrogen, methanol, natural gas, LP gas, are the main alternative fuels. However, the biodiesel and bioetanol are the only completely renewable ones, this makes them ideal to be developed in Mexico, since the agricultural sector could be fortified, the technological independence be favored, improve the conservation of the oil resources and by all means not to affect the environment. On the other hand, also efficient cultivation techniques should be developed to guarantee the economy of the process. [Spanish] Los combustibles alternativos nacen con la meta de no danar el medio ambiente; el biodiesel, electricidad, etanol, hidrogeno, metanol, gas natural, gas LP, son los principales combustibles alternativos. No obstante, el biodiesel y el bioetanol son los unicos completamente renovables, esto los hace ideales para desarrollarse en Mexico, ya que se podria fortalecer el sector agricola, favorecer la independencia tecnologica, mejorar la administracion de los recursos petroleros y por supuesto no afectar al medio ambiente. Por otro lado tambien se tendrian que desarrollar tecnicas de cultivo eficientes para garantizar la economia del proceso.

  12. Alternative Practices to Improve Surface Fleet Fuel Efficiency

    Science.gov (United States)

    2014-09-01

    practices that, if changed, could provide significant fuel savings for fossil fuel ships. Recent and potential future budget cuts give fuel conservation...changed, could provide significant fuel savings for fossil fuel ships. Recent and potential future budget cuts give fuel conservation and efficiency...Figure 1. Navy fossil fuel expenditure for FY 2013 (after Dhoran 2014). .......................1 Figure 2. Fuel curves for a DDG showing GPH burned as

  13. LIQUID NATURAL GAS (LNG): AN ALTERNATIVE FUEL FROM LANDFILL GAS (LFG) AND WASTEWATER DIGESTER GAS

    Energy Technology Data Exchange (ETDEWEB)

    VANDOR,D.

    1999-03-01

    This Research and Development Subcontract sought to find economic, technical and policy links between methane recovery at landfill and wastewater treatment sites in New York and Maryland, and ways to use that methane as an alternative fuel--compressed natural gas (CNG) or liquid natural gas (LNG) -- in centrally fueled Alternative Fueled Vehicles (AFVs).

  14. Alternate-Fueled Combustor-Sector Performance: Part A: Combustor Performance Part B: Combustor Emissions

    Science.gov (United States)

    Shouse, D. T.; Neuroth, C.; Henricks, R. C.; Lynch, A.; Frayne, C.; Stutrud, J. S.; Corporan, E.; Hankins, T.

    2010-01-01

    Alternate aviation fuels for military or commercial use are required to satisfy MIL-DTL-83133F(2008) or ASTM D 7566 (2010) standards, respectively, and are classified as drop-in fuel replacements. To satisfy legacy issues, blends to 50% alternate fuel with petroleum fuels are certified individually on the basis of feedstock. Adherence to alternate fuels and fuel blends requires smart fueling systems or advanced fuel-flexible systems, including combustors and engines without significant sacrifice in performance or emissions requirements. This paper provides preliminary performance (Part A) and emissions and particulates (Part B) combustor sector data for synthetic-parafinic-kerosene- (SPK-) type fuel and blends with JP-8+100 relative to JP-8+100 as baseline fueling.

  15. Traditional Homegardens and Domestic Biomass Fuel Consumption Pattern in the Developing World: The Case of a South-Central Rural Village of Bangladesh

    Energy Technology Data Exchange (ETDEWEB)

    Mukul, S.A. (Dept. of Forestry and Environmental Science, School of Agriculture and Mineral sciences, Shahjalal Univ. of Science and Technology, Sylhet 3114 (Bangladesh)). E-mail: sharif_a_mukul@yahoo.com

    2008-10-15

    Peoples living in most developing countries meet majority of their biomass fuel requirements from the forest. However, this usual practice becomes difficult to maintain as the forest of this region decreases in an alarming rate. In such context, homegardens will have to play the key role in near future where in many forest poor regions it's already playing the vital role. An exploratory study was conducted in a south-central rural village of Bangladesh to realize this potential contribution of homegardens to households domestic biomass fuel supplies, which is as well a virtually forest poor region of the country. Households were grouped into three different land holding categories and a total of thirty respondents, 10 from each category were selected randomly to understand their domestic biomass fuel consumption pattern as well as the role of homegardens to meet this fuel supply. Study suggested that, majority (87%) of the households of the area rely extensively on their homegardens to meet their domestic cooking energy requirements. During the study 47 homestead species were identified having fuel value of which 12 were identified as the most preferred species in the area. The contribution of wood fuel in households domestic energy sharing was reported as 56% followed by dried leaves (21%), dung cake/sticks (14%), crop residues (6%) and others (3%). Study finally concluded for a rich homegarden system in forest near regions to conserve country's remaining forest by providing an alternative source of biomass fuel. A participatory management of governments' fallow and khas lands, public places including road, railway and canal banks for tree farming to benefit rural land-less and marginal people were also recommended

  16. Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates.

    Science.gov (United States)

    Román-Leshkov, Yuriy; Barrett, Christopher J; Liu, Zhen Y; Dumesic, James A

    2007-06-21

    Diminishing fossil fuel reserves and growing concerns about global warming indicate that sustainable sources of energy are needed in the near future. For fuels to be useful in the transportation sector, they must have specific physical properties that allow for efficient distribution, storage and combustion; these properties are currently fulfilled by non-renewable petroleum-derived liquid fuels. Ethanol, the only renewable liquid fuel currently produced in large quantities, suffers from several limitations, including low energy density, high volatility, and contamination by the absorption of water from the atmosphere. Here we present a catalytic strategy for the production of 2,5-dimethylfuran from fructose (a carbohydrate obtained directly from biomass or by the isomerization of glucose) for use as a liquid transportation fuel. Compared to ethanol, 2,5-dimethylfuran has a higher energy density (by 40 per cent), a higher boiling point (by 20 K), and is not soluble in water. This catalytic strategy creates a route for transforming abundant renewable biomass resources into a liquid fuel suitable for the transportation sector, and may diminish our reliance on petroleum.

  17. A Cross-Sectional Study of Household Biomass Fuel Use among a Periurban Population in Malawi

    Science.gov (United States)

    Piddock, Katy C.; Gordon, Stephen B.; Ngwira, Andrew; Msukwa, Malango; Nadeau, Gilbert; Davis, Kourtney J.; Nyirenda, Moffat J.; Mortimer, Kevin

    2016-01-01

    Rationale The Global Burden of Disease Study suggests almost 3.5 million people die as a consequence of household air pollution every year. Respiratory diseases including chronic obstructive pulmonary disease and pneumonia in children are strongly associated with exposure to household air pollution. Smoke from burning biomass fuels for cooking, heating, and lighting is the main contributor to high household air pollution levels in low-income countries like Malawi. A greater understanding of biomass fuel use in Malawi should enable us to address household air pollution–associated communicable and noncommunicable diseases more effectively. Objectives To conduct a cross-sectional analysis of biomass fuel use and population demographics among adults in Blantyre, Malawi. Methods We used global positioning system–enabled personal digital assistants to collect data on location, age, sex, marital status, education, occupation, and fuel use. We describe these data and explore associations between demographics and reported fuel type. Measurements and Main Results A total of 16,079 adults participated (nine households refused); median age was 30 years, there was a similar distribution of men and women, 60% were married, and 62% received secondary school education. The most commonly reported occupation for men and women was “salaried employment” (40.7%) and “petty trader and marketing” (23.5%), respectively. Charcoal (81.5% of households), wood (36.5%), and electricity (29.1%) were the main fuels used at home. Only 3.9% of households used electricity exclusively. Lower educational and occupational attainment was associated with greater use of wood. Conclusions This large cross-sectional study has identified extensive use of biomass fuels in a typical sub-Saharan Africa periurban population in which women and people of lower socioeconomic status are disproportionately affected. Biomass fuel use is likely to be a major driver of existing communicable respiratory

  18. GASEOUS EMISSIONS FROM FOSSIL FUELS AND BIOMASS COMBUSTION IN SMALL HEATING APPLIANCES

    Directory of Open Access Journals (Sweden)

    Daniele Dell'Antonia

    2012-06-01

    Full Text Available The importance of emission control has increased sharply due to the increased need of energy from combustion. However, biomass utilization in energy production is not free from problems because of physical and chemical characteristics which are substantially different from conventional energy sources. In this situation, the quantity and quality of emissions as well as used renewable sources as wood or corn grain are often unknown. To assess this problem the paper addresses the objectives to quantify the amount of greenhouse gases during the combustion of corn as compared to the emissions in fossil combustion (natural gas, LPG and diesel boiler. The test was carried out in Friuli Venezia Giulia in 2006-2008 to determine the air pollution (CO, NO, NO2, NOx, SO2 and CO2 from fuel combustion in family boilers with a power between 20-30 kWt. The flue gas emission was measured with a professional semi-continuous multi-gas analyzer, (Vario plus industrial, MRU air Neckarsulm-Obereisesheim. Data showed a lower emission of fossil fuel compared to corn in family boilers in reference to pollutants in the flue gas (NOx, SO2 and CO. In a particular way the biomass combustion makes a higher concentration of carbon monoxide (for an incomplete combustion because there is not a good mixing between fuel and air and nitrogen oxides (in relation at a higher content of nitrogen in herbaceous biomass in comparison to another fuel.

  19. Carbon deposition in an SOFC fueled by tar-laden biomass gas: a thermodynamic analysis

    Science.gov (United States)

    Singh, Devinder; Hernández-Pacheco, Eduardo; Hutton, Phillip N.; Patel, Nikhil; Mann, Michael D.

    This work presents a thermodynamic analysis of the carbon deposition in a solid oxide fuel cell (SOFC) fueled by a biomass gasifier. Integrated biomass-SOFC units offer considerable benefits in terms of efficiency and fewer emissions. SOFC-based power plants can achieve a system efficiency of 70-80% (including heat utilization) as compared to 30-37% for conventional systems. The fuel from the biomass gasifier can contain considerable amounts of tars depending on the type of gasifier used. These tars can lead to the deposition of carbon at the anode side of SOFCs and affect the performance of the fuel cells. This paper thermodynamically studies the risk of carbon deposition due to the tars present in the feed stream and the effect various parameters like current density, steam, and temperature have on carbon deposition. Since tar is a complex mixture of aromatics, it is represented by a mixture of toluene, naphthalene, phenol, and pyrene. A total of 32 species are considered for the thermodynamic analysis, which is done by the Gibbs energy minimization technique. The carbon deposition is shown to decrease with an increase in current density and becomes zero after a critical current density. Steam in the feed stream also decreases the amount of carbon deposition. With the increase in temperature the amount of carbon first decreases and then increases.

  20. Biomass yield and fuel characteristics of short-rotation coppice (willow, poplar, empress tree)

    Energy Technology Data Exchange (ETDEWEB)

    Maier, J.; Vetter, R. [Institute for Land Management Compatible to Environmental Requirements, Muellheim (Germany)

    2004-07-01

    In two pedo-climatic different regions in the state of Baden-Wuerttemberg three shortrotation coppices willow, poplar and empress tree were tested with regard to their biomass productivity on arable land and to their properties for energetic use. Between 8 and 13 tons of dry matter per hectare and year could be produced under extensive cultivation conditions, over 15 tons with irrigation. Due to their composition, it can be assumed that their use as solid fuel in a biomass combustor is just as unproblematic as with forest timber. (orig.)

  1. Photosynthetic membrane-less microbial fuel cells to enhance microalgal biomass concentration.

    Science.gov (United States)

    Uggetti, Enrica; Puigagut, Jaume

    2016-10-01

    The aim of this study was to quantitatively assess the net increase in microalgal biomass concentration induced by photosynthetic microbial fuel cells (PMFC). The experiment was conducted on six lab-scale PMFC constituted by an anodic chamber simulating an anaerobic digester connected to a cathodic chamber consisting of a mixed algae consortia culture. Three PMFC were operated at closed circuit (PMFC(+)) whereas three PMFC were left unconnected as control (PMFC(-)). PMFC(+) produced a higher amount of carbon dioxide as a product of the organic matter oxidation that resulted in 1.5-3 times higher biomass concentration at the cathode compartment when compared to PMFC(-).

  2. Sustainable Biomass Potentials for Food-Feed-Fuels in the Future

    DEFF Research Database (Denmark)

    Holm-Nielsen, Jens Bo; Kirchovas, Simas

    2012-01-01

    Biomass sources as Woodchips – Wood pellets, Straw – Bio pellets, animal manure, farm-by products and new cropping systems are integrated in our society’s needs. The mindset for shifting from fossil fuels based economies into sustainable energy economies already exist. Bioenergy utilization systems...... has for many years been forming the basis for the change together with wind and solar energy. These resources still contains great potentials for energy supply chains in increasing areas of Europe and the World. Biomass sustainability issues could be solved by developing the international...

  3. Biomass burning fuel consumption dynamics in the tropics and subtropics assessed from satellite

    Science.gov (United States)

    Andela, Niels; van der Werf, Guido R.; Kaiser, Johannes W.; van Leeuwen, Thijs T.; Wooster, Martin J.; Lehmann, Caroline E. R.

    2016-06-01

    Landscape fires occur on a large scale in (sub)tropical savannas and grasslands, affecting ecosystem dynamics, regional air quality and concentrations of atmospheric trace gasses. Fuel consumption per unit of area burned is an important but poorly constrained parameter in fire emission modelling. We combined satellite-derived burned area with fire radiative power (FRP) data to derive fuel consumption estimates for land cover types with low tree cover in South America, Sub-Saharan Africa, and Australia. We developed a new approach to estimate fuel consumption, based on FRP data from the polar-orbiting Moderate Resolution Imaging Spectroradiometer (MODIS) and the geostationary Spinning Enhanced Visible and Infrared Imager (SEVIRI) in combination with MODIS burned-area estimates. The fuel consumption estimates based on the geostationary and polar-orbiting instruments showed good agreement in terms of spatial patterns. We used field measurements of fuel consumption to constrain our results, but the large variation in fuel consumption in both space and time complicated this comparison and absolute fuel consumption estimates remained more uncertain. Spatial patterns in fuel consumption could be partly explained by vegetation productivity and fire return periods. In South America, most fires occurred in savannas with relatively long fire return periods, resulting in comparatively high fuel consumption as opposed to the more frequently burning savannas in Sub-Saharan Africa. Strikingly, we found the infrequently burning interior of Australia to have higher fuel consumption than the more productive but frequently burning savannas in northern Australia. Vegetation type also played an important role in explaining the distribution of fuel consumption, by affecting both fuel build-up rates and fire return periods. Hummock grasslands, which were responsible for a large share of Australian biomass burning, showed larger fuel build-up rates than equally productive grasslands in

  4. Aquatic biomass as a source of fuels and chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, L.P.

    1983-09-01

    The Aquatic Species Program (ASP) addresses the development of technologies that produce and utilize plant biomass species which naturally inhabit wetlands or submerged areas. Processes being developed through this program take advantage of the rapid growth rates, high yields, and extraordinary chemical compositions inherently associated with aquatic species. Emphasis is placed on salt tolerant species for cultivation on poorly utilized, low-value lands, where conventional agriculture is not economic. Candidate species are identified from: (1) microalgae-unicellular plants that are natural factories for converting sunlight into high quality oils; (2) macroalgae-large, chemically unique plants that can be easily fermented to methane gas or alcohols; and (3) emergents-plants that grow rooted in waterways and bogs, but are partially exposed above water. Within the next five years, the conditions and resources necessary for sustained systems operations are to be defined, design parameters examined, and experimental facilities developed. Succeeding years are planned to focus on resolving major technical hurdles in systems operations, integration, and component performance. This paper updates the technical progress in this program, describes several aspects of evolving systems concepts, and attempts to provide some perspectives based on potential economics. 16 references, 4 figures, 4 tables.

  5. Techno-economic Analysis for the Thermochemical Conversion of Biomass to Liquid Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yunhua; Tjokro Rahardjo, Sandra A.; Valkenburt, Corinne; Snowden-Swan, Lesley J.; Jones, Susanne B.; Machinal, Michelle A.

    2011-06-01

    ). This study is part of an ongoing effort within the Department of Energy to meet the renewable energy goals for liquid transportation fuels. The objective of this report is to present a techno-economic evaluation of the performance and cost of various biomass based thermochemical fuel production. This report also documents the economics that were originally developed for the report entitled “Biofuels in Oregon and Washington: A Business Case Analysis of Opportunities and Challenges” (Stiles et al. 2008). Although the resource assessments were specific to the Pacific Northwest, the production economics presented in this report are not regionally limited. This study uses a consistent technical and economic analysis approach and assumptions to gasification and liquefaction based fuel production technologies. The end fuels studied are methanol, ethanol, DME, SNG, gasoline and diesel.

  6. Integrated process for the catalytic conversion of biomass-derived syngas into transportation fuels

    Energy Technology Data Exchange (ETDEWEB)

    Dagle, Vanessa Lebarbier; Smith, Colin; Flake, Matthew; Albrecht, Karl O.; Gray, Michel J.; Ramasamy, Karthikeyan K.; Dagle, Robert A.

    2016-01-01

    Efficient synthesis of renewable fuels that will enable cost competitiveness with petroleum-derived fuels remains a grand challenge for U.S. scientists. In this paper, we report on an integrated catalytic approach for producing transportation fuels from biomass-derived syngas. The composition of the resulting hydrocarbon fuel can be modulated to meet specified requirements. Biomass-derived syngas is first converted over an Rh-based catalyst into a complex aqueous mixture of condensable C2+ oxygenated compounds (predominantly ethanol, acetic acid, acetaldehyde, ethyl acetate). This multi-component aqueous mixture then is fed to a second reactor loaded with a ZnxZryOz mixed oxide catalyst, which has tailored acid-base sites, to produce an olefin mixture rich in isobutene. The olefins then are oligomerized using a solid acid catalyst (e.g., Amberlyst-36) to form condensable olefins with molecular weights that can be targeted for gasoline, jet, and/or diesel fuel applications. The product rich in long-chain olefins (C7+) is finally sent to a fourth reactor that is needed for hydrogenation of the olefins into paraffin fuels. Simulated distillation of the hydrotreated oligomerized liquid product indicates that ~75% of the hydrocarbons present are in the jet-fuel range. Process optimization for the oligomerization step could further improve yield to the jet-fuel range. All of these catalytic steps have been demonstrated in sequence, thus providing proof-of-concept for a new integrated process for the production of drop-in biofuels. This unique and flexible process does not require external hydrogen and also could be applied to non-syngas derived feedstock, such as fermentation products (e.g., ethanol, acetic acid, etc.), other oxygenates, and mixtures thereof containing alcohols, acids, aldehydes and/or esters.

  7. Biological formation of caproate and caprylate from acetate: fuel and chemical production from low grade biomass

    NARCIS (Netherlands)

    Steinbusch, K.J.J.; Hamelers, H.V.M.; Plugge, C.M.; Buisman, C.J.N.

    2011-01-01

    This research introduces an alternative mixed culture fermentation technology for anaerobic digestion to recover valuable products from low grade biomass. In this mixed culture fermentation, organic waste streams are converted to caproate and caprylate as precursors for biodiesel or chemicals. It wa

  8. Using Alcohols as an Alternative Fuel in Internal Combustion Engines

    Directory of Open Access Journals (Sweden)

    Salih ÖZER

    2014-04-01

    Full Text Available This study summarizes the studies on alcohol use in internal combustion engines nature. Nowadays, alcohol is used in internal combustion engines sometimes in order to reduce emissions and sometimes as an alternative fuel. Even vehicle manufacturers are producing and launching vehicles that are running directly with alcohol. Many types of pure alcohol that can be used on vehicles are available on the world. Using all of these types of alcohol led to the formation of engine emissions and power curves. The studies reveal that these changes are because of the physical and chemical characteristics of alcohols. Thıs study tries to explain what kind of conclusions the physical and chemical properties cause

  9. Use of certain alternative fuels in road transport in Poland

    Science.gov (United States)

    Gis, W.; Pielecha, J.; Waśkiewicz, J.; Gis, M.; Menes, M.

    2016-09-01

    The development of biomethane and hydrogen technology in the road transport in the EU countries is recommended, among the others, in the Directive of the European Parliament and of the Council 2014/94/EU of 22 October 2014. Under the provisions of the said Directive, it is recommended to EU countries to use biomethane and progressively ensure accessibility to hydrogen cars on their territories, and above all to ensure the possibility of driving hydrogen vehicles between the member States. The territorial accessibility for biomethane vehicles is determined by the availability of biomethane refuelling infrastructure in the first place in cities and then on the road network distances recommended in this directive. The territorial accessibility for hydrogen vehicles is determined by the availability of hydrogen refuelling infrastructure, in the first place along the TEN-T network. The article presents the possibilities of using these alternative fuels in Poland, presenting some of the results of research and analysis in this area.

  10. Thermodynamic Performance Study of Biomass Gasification, Solid Oxide Fuel Cell and Micro Gas Turbine Hybrid Systems

    DEFF Research Database (Denmark)

    Bang-Møller, Christian; Rokni, Masoud

    2010-01-01

    A system level modelling study of three combined heat and power systems based on biomass gasification is presented. Product gas is converted in a micro gas turbine (MGT) in the first system, in a solid oxide fuel cell (SOFC) in the second system and in a combined SOFC–MGT arrangement in the third...... system. An electrochemical model of the SOFC has been developed and calibrated against published data from Topsoe Fuel Cells A/S and the Risø National Laboratory. The modelled gasifier is based on an up scaled version (~500 kW_th) of the demonstrated low tar gasifier, Viking, situated at the Technical...

  11. Design and Optimization of an Integrated Biomass Gasification and Solid Oxide Fuel Cell System

    DEFF Research Database (Denmark)

    Bang-Møller, Christian

    . The work deals with the coupling of thermal biomass gasification and solid oxide fuel cells (SOFCs), and specific focus is kept on exploring the potential performance of hybrid CHP systems based on the novel two-stage gasification concept and SOFCs. The two-stage gasification concept is developed...... data from Topsoe Fuel Cells A/S. The SOFC component model predicts the SOFC performance at various operating conditions and is suited for implementation in system-level models using the simulation software DNA. Furthermore, it is used for issuing guidelines for optimal SOFC operation. A system......-level modelling study of three conceptual plant designs based on two-stage gasification of wood chips with a thermal biomass input of ~0.5 MWth (LHV) is presented. Product gas is converted in a micro gas turbine (MGT) in the first plant design, in SOFCs in the second, and in a combined SOFC-MGT arrangement...

  12. Utilization of hydrolysate from lignocellulosic biomass pretreatment to generate electricity by enzymatic fuel cell system.

    Science.gov (United States)

    Kim, Sung Bong; Kim, Dong Sup; Yang, Ji Hyun; Lee, Junyoung; Kim, Seung Wook

    2016-04-01

    The waste hydrolysate after dilute acid pretreatment (DAP) of lignocellulosic biomass was utilized to generate electricity using an enzymatic fuel cell (EFC) system. During DAP, the components of biomass containing hemicellulose and other compounds are hydrolyzed, and glucose is solubilized into the dilute acid solution, called as the hydrolysate liquid. Glucose oxidase (GOD) and laccase (Lac) were assembled on the electrode of the anode and cathode, respectively. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were measured, and the maximum power density was found to be 1.254×10(3) μW/cm(2). The results indicate that the hydrolysate from DAP is a reliable electrolyte containing the fuel of EFC. Moreover, the impurities in the hydrolysate such as phenols and furans slightly affected the charge transfer on the surface of the electrode, but did not affect the power generation of the EFC system in principal.

  13. [Progress in electricity generation from biomass using microbial fuel cell MFC)].

    Science.gov (United States)

    Feng, Yu-Jie; Wang, Xin; Li, He; Yang, Qiao; Qu, You-Peng; Shi, Xin-Xin; Liu, Jia; He, Wei-Hua; Xie, Ming-Li

    2010-10-01

    By applying bacteria as anodic catalyst, microbial fuel cell (MFC) can directly convert biomass energy into electrical energy, provided a new way for biomass utilization. Previous studies showed that the substrates and their concentration substantially affected performance of MFC. High power output was obtained when simple organic such as volatile fatty acids (VFA), alcohols or glucose was used as substrate. However, physical, chemical or even biological pretreatment methods were needed when substrate was complex organic. Addition of simple organic as co-substrate was also demonstrated to be an efficient way for refractory compounds degradation in MFC. Using biomass as substrates, MFC will be applied in area such as bioenergy recovery from wastewater, power supply in outfield and biosensors.

  14. Comparative study of thermochemical processes for hydrogen production from biomass fuels.

    Science.gov (United States)

    Biagini, Enrico; Masoni, Lorenzo; Tognotti, Leonardo

    2010-08-01

    Different thermochemical configurations (gasification, combustion, electrolysis and syngas separation) are studied for producing hydrogen from biomass fuels. The aim is to provide data for the production unit and the following optimization of the "hydrogen chain" (from energy source selection to hydrogen utilization) in the frame of the Italian project "Filiera Idrogeno". The project focuses on a regional scale (Tuscany, Italy), renewable energies and automotive hydrogen. Decentred and small production plants are required to solve the logistic problems of biomass supply and meet the limited hydrogen infrastructures. Different options (gasification with air, oxygen or steam/oxygen mixtures, combustion, electrolysis) and conditions (varying the ratios of biomass and gas input) are studied by developing process models with uniform hypothesis to compare the results. Results obtained in this work concern the operating parameters, process efficiencies, material and energetic needs and are fundamental to optimize the entire hydrogen chain.

  15. Preface to the Issue: Transformations of Biomass and its Derivatives to Fuels and Chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Hongfei; Biddinger, Elizabeth J.; Mukarakate, Calvin; Nimlos, Mark; Liu, Haichao

    2016-07-01

    The research activities on biofuels and bio-products have been growing steadily regardless the volatility of the crude oil price in the past decade. The major driver is the imperative need of tackling the challenge of climate change. With the low carbon footprints, fuels and chemicals produced from renewable biomass resources, as the replacement of their petroleum counterparts, can contribute significantly on carbon emission reduction.

  16. Performance, emission and economic assessment of clove stem oil-diesel blended fuels as alternative fuels for diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Mbarawa, Makame [Department of Mechanical Engineering, Tshwane University of Technology, Private Bag X680, Pretoria 0001 (South Africa)

    2008-05-15

    In this study the performance, emission and economic evaluation of using the clove stem oil (CSO)-diesel blended fuels as alternative fuels for diesel engine have been carried out. Experiments were performed to evaluate the impact of the CSO-diesel blended fuels on the engine performance and emissions. The societal life cycle cost (LCC) was chosen as an important indicator for comparing alternative fuel operating modes. The LCC using the pure diesel fuel, 25% CSO and 50% CSO-diesel blended fuels in diesel engine are analysed. These costs include the vehicle first cost, fuel cost and exhaust emissions cost. A complete macroeconomic assessment of the effect of introducing the CSO-diesel blended fuels to the diesel engine is not included in the study. Engine tests show that performance parameters of the CSO-diesel blended fuels do not differ greatly from those of the pure diesel fuel. Slight power losses, combined with an increase in fuel consumption, were experienced with the CSO-diesel blended fuels. This is due to the low heating value of the CSO-diesel blended fuels. Emissions of CO and HC are low for the CSO-diesel blended fuels. NO{sub x} emissions were increased remarkably when the engine was fuelled with the 50% CSO-diesel blended fuel operation mode. A remarkable reduction in the exhaust smoke emissions can be achieved when operating on the CSO-diesel blended fuels. Based on the LCC analysis, the CSO-diesel blended fuels would not be competitive with the pure diesel fuel, even though the environmental impact of emission is valued monetarily. This is due to the high price of the CSO. (author)

  17. Fuel-N Evolution during the Pyrolysis of Industrial Biomass Wastes with High Nitrogen Content

    Directory of Open Access Journals (Sweden)

    Kunio Yoshikawa

    2012-12-01

    Full Text Available In this study, sewage sludge and mycelial waste from antibiotic production were pyrolyzed in a batch scale fixed-bed reactor as examples of two kinds of typical industrial biomass wastes with high nitrogen content. A series of experiments were conducted on the rapid pyrolysis and the slow pyrolysis of these wastes in the temperature range from 500–800 °C to investigate the Fuel-N transformation behavior among pyrolysis products. The results showed that Fuel-N conversion to Char-N intimately depended on the pyrolysis temperature and the yield of Char-N reduced with the increase of the pyrolysis temperature. Under the same pyrolysis conditions, Tar-N production mainly depended on complex properties of the different biomasses, including volatile matter, nitrogen content and biomass functional groups. HCN was the predominant NOx precursor in the rapid pyrolysis of biomass, whereas in the slow pyrolysis of mycelial waste, more NH3 was produced than HCN due to the additional NH3 formation through the hydrogenation reaction of Char-N, HCN and H radicals. At the same time, some part of the char was analyzed by Fourier Transform infrared spectroscopy (FTIR to get more information on the nitrogen functionality changes and the tar was also characterized by Gas Chromatography and Mass Spectrometry (GCMS to identify typical nitrogenous tar compounds. Finally, the whole nitrogen distribution in products was discussed.

  18. Experimental study on air-stream gasification of biomass micron fuel (BMF) in a cyclone gasifier.

    Science.gov (United States)

    Guo, X J; Xiao, B; Zhang, X L; Luo, S Y; He, M Y

    2009-01-01

    Based on biomass micron fuel (BMF) with particle size of less than 250 microm, a cyclone gasifier concept has been considered in our laboratory for biomass gasification. The concept combines and integrates partial oxidation, fast pyrolysis, gasification, and tar cracking, as well as a shift reaction, with the purpose of producing a high quality of gas. In this paper, experiments of BMF air-stream gasification were carried out by the gasifier, with energy for BMF gasification produced by partial combustion of BMF within the gasifier using a hypostoichiometric amount of air. The effects of ER (0.22-0.37) and S/B (0.15-0.59) and biomass particle size on the performances of BMF gasification and the gasification temperature were studied. Under the experimental conditions, the temperature, gas yields, LHV of the gas fuel, carbon conversion efficiency, stream decomposition and gasification efficiency varied in the range of 586-845 degrees C, 1.42-2.21 N m(3)/kg biomass, 3806-4921 kJ/m(3), 54.44%-85.45%, 37.98%-70.72%, and 36.35%-56.55%, respectively. The experimental results showed that the gasification performance was best with ER being 3.7 and S/B being 0.31 and smaller particle, as well as H(2)-content. And the BMF gasification by air and low temperature stream in the cyclone gasifier with the energy self-sufficiency is reliable.

  19. Geography of Existing and Potential Alternative Fuel Markets in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, C.; Hettinger, D.

    2014-11-01

    When deploying alternative fuels, it is paramount to match the right fuel with the right location, in accordance with local market conditions. We used six market indicators to evaluate the existing and potential regional market health for each of the five most commonly deployed alternative fuels: electricity (used by plug-in electric vehicles), biodiesel (blends of B20 and higher), E85 ethanol, compressed natural gas (CNG), and propane. Each market indicator was mapped, combined, and evaluated by industry experts. This process revealed the weight the market indicators should be given, with the proximity of fueling stations being the most important indicator, followed by alternative fuel vehicle density, gasoline prices, state incentives, nearby resources, and finally, environmental benefit. Though markets vary among states, no state received 'weak' potential for all five fuels, indicating that all states have an opportunity to use at least one alternative fuel. California, Illinois, Indiana, Pennsylvania, and Washington appear to have the best potential markets for alternative fuels in general, with each sporting strong markets for four of the fuels. Wyoming showed the least potential, with weak markets for all alternative fuels except for CNG, for which it has a patchy market. Of all the fuels, CNG is promising in the greatest number of states--largely because freight traffic provides potential demand for many far-reaching corridor markets and because the sources of CNG are so widespread geographically.

  20. Thermal conversion of biomass to valuable fuels, chemical feedstocks and chemicals

    Science.gov (United States)

    Peters, William A.; Howard, Jack B.; Modestino, Anthony J.; Vogel, Fredreric; Steffin, Carsten R.

    2009-02-24

    A continuous process for the conversion of biomass to form a chemical feedstock is described. The biomass and an exogenous metal oxide, preferably calcium oxide, or metal oxide precursor are continuously fed into a reaction chamber that is operated at a temperature of at least 1400.degree. C. to form reaction products including metal carbide. The metal oxide or metal oxide precursor is capable of forming a hydrolizable metal carbide. The reaction products are quenched to a temperature of 800.degree. C. or less. The resulting metal carbide is separated from the reaction products or, alternatively, when quenched with water, hydolyzed to provide a recoverable hydrocarbon gas feedstock.

  1. Synergies between bio- and oil refineries for the production of fuels from biomass.

    Science.gov (United States)

    Huber, George W; Corma, Avelino

    2007-01-01

    As petroleum prices continue to increase, it is likely that biofuels will play an ever-increasing role in our energy future. The processing of biomass-derived feedstocks (including cellulosic, starch- and sugar-derived biomass, and vegetable fats) by catalytic cracking and hydrotreating is a promising alternative for the future to produce biofuels, and the existing infrastructure of petroleum refineries is well-suited for the production of biofuels, allowing us to rapidly transition to a more sustainable economy without large capital investments for new reaction equipment. This Review discusses the chemistry, catalysts, and challenges involved in the production of biofuels.

  2. TASK 3.4--IMPACTS OF COFIRING BIOMASS WITH FOSSIL FUELS

    Energy Technology Data Exchange (ETDEWEB)

    Christopher J. Zygarlicke; Donald P. McCollor; Kurt E. Eylands; Melanie D. Hetland; Mark A. Musich; Charlene R. Crocker; Jonas Dahl; Stacie Laducer

    2001-08-01

    With a major worldwide effort now ongoing to reduce greenhouse gas emissions, cofiring of renewable biomass fuels at conventional coal-fired utilities is seen as one of the lower-cost options to achieve such reductions. The Energy & Environmental Research Center has undertaken a fundamental study to address the viability of cofiring biomass with coal in a pulverized coal (pc)-fired boiler for power production. Wheat straw, alfalfa stems, and hybrid poplar were selected as candidate biomass materials for blending at a 20 wt% level with an Illinois bituminous coal and an Absaloka subbituminous coal. The biomass materials were found to be easily processed by shredding and pulverizing to a size suitable for cofiring with pc in a bench-scale downfired furnace. A literature investigation was undertaken on mineral uptake and storage by plants considered for biomass cofiring in order to understand the modes of occurrence of inorganic elements in plant matter. Sixteen essential elements, C, H, O, N, P, K, Ca, Mg, S, Zn, Cu, Fe, Mn, B, Mo, and Cl, are found throughout plants. The predominant inorganic elements are K and Ca, which are essential to the function of all plant cells and will, therefore, be evenly distributed throughout the nonreproductive, aerial portions of herbaceous biomass. Some inorganic constituents, e.g., N, P, Ca, and Cl, are organically associated and incorporated into the structure of the plant. Cell vacuoles are the repository for excess ions in the plant. Minerals deposited in these ubiquitous organelles are expected to be most easily leached from dry material. Other elements may not have specific functions within the plant, but are nevertheless absorbed and fill a need, such as silica. Other elements, such as Na, are nonessential, but are deposited throughout the plant. Their concentration will depend entirely on extrinsic factors regulating their availability in the soil solution, i.e., moisture and soil content. Similarly, Cl content is determined

  3. Are forestation, bio-char and landfilled biomass adequate offsets for the climate effects of burning fossil fuels?

    NARCIS (Netherlands)

    Reijnders, L.

    2009-01-01

    Forestation and landfilling purpose-grown biomass are not adequate offsets for the CO2 emission from burning fossil fuels. Their permanence is insufficiently guaranteed and landfilling purpose-grown biomass may even be counterproductive. As to permanence, bio-char may do better than forests or landf

  4. The study on injection parameters of selected alternative fuels used in diesel engines

    Science.gov (United States)

    Balawender, K.; Kuszewski, H.; Lejda, K.; Lew, K.

    2016-09-01

    The paper presents selected results concerning fuel charging and spraying process for selected alternative fuels, including regular diesel fuel, rape oil, FAME, blends of these fuels in various proportions, and blends of rape oil with diesel fuel. Examination of the process included the fuel charge measurements. To this end, a set-up for examination of Common Rail-type injection systems was used constructed on the basis of Bosch EPS-815 test bench, from which the high-pressure pump drive system was adopted. For tests concerning the spraying process, a visualisation chamber with constant volume was utilised. The fuel spray development was registered with the use of VisioScope (AVL).

  5. Fuel-nitrogen conversion in the combustion of small amines using dimethylamine and ethylamine as biomass-related model fuels

    DEFF Research Database (Denmark)

    Lucassen, Arnas; Zhang, Kuiwen; Warkentin, Julia

    2012-01-01

    Laminar premixed flames of the two smallest isomeric amines, dimethylamine and ethylamine, were investigated under one-dimensional low-pressure (40mbar) conditions with the aim to elucidate pathways that may contribute to fuel-nitrogen conversion in the combustion of biomass. For this, identical...... flames of both fuels diluted with 25% Ar were studied for three different stoichiometries (Φ=0.8, 1.0, and 1.3) using in situ molecular-beam mass spectrometry (MBMS). Quantitative mole fractions of reactants, products and numerous stable and reactive intermediates were determined by electron ionization...... (EI) MBMS with high mass resolution to separate overlapping features from species with different heavy elements by exact mass. Species assignment was assisted by using single-photon vacuum-ultraviolet (VUV) photoionization (PI) MBMS. The results indicate formation of a number of nitrogenated...

  6. A LOW COST AND HIGH QUALITY SOLID FUEL FROM BIOMASS AND COAL FINES

    Energy Technology Data Exchange (ETDEWEB)

    John T. Kelly; George Miller; Mehdi Namazian

    2001-07-01

    Use of biomass wastes as fuels in existing boilers would reduce greenhouse gas emissions, SO2 and NOx emissions, while beneficially utilizing wastes. However, the use of biomass has been limited by its low energy content and density, high moisture content, inconsistent configuration and decay characteristics. If biomass is upgraded by conventional methods, the cost of the fuel becomes prohibitive. Altex has identified a process, called the Altex Fuel Pellet (AFP) process, that utilizes a mixture of biomass wastes, including municipal biosolids, and some coal fines, to produce a strong, high energy content, good burning and weather resistant fuel pellet, that is lower in cost than coal. This cost benefit is primarily derived from fees that are collected for accepting municipal biosolids. Besides low cost, the process is also flexible and can incorporate several biomass materials of interest The work reported on herein showed the technical and economic feasibility of the AFP process. Low-cost sawdust wood waste and light fractions of municipal wastes were selected as key biomass wastes to be combined with biosolids and coal fines to produce AFP pellets. The process combines steps of dewatering, pellet extrusion, drying and weatherizing. Prior to pilot-scale tests, bench-scale test equipment was used to produce limited quantities of pellets for characterization. These tests showed which pellet formulations had a high potential. Pilot-scale tests then showed that extremely robust pellets could be produced that have high energy content, good density and adequate weatherability. It was concluded that these pellets could be handled, stored and transported using equipment similar to that used for coal. Tests showed that AFP pellets have a high combustion rate when burned in a stoker type systems. While NOx emissions under stoker type firing conditions was high, a simple air staging approach reduced emissions to below that for coal. In pulverized-fuel-fired tests it was

  7. Experimental Investigation of Turbine Vane Heat Transfer for Alternative Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Nix, Andrew Carl [West Virginia Univ., Morgantown, WV (United States)

    2015-03-23

    modern turbine engines; and What advancements in film cooling hole geometry and design can increase effectiveness of film cooling in turbines burning high-hydrogen coal syngas due to the higher heat loads and mass flow rates of the core flow? Experimental and numerical investigations of advanced cooling geometries that can improve resistance to surface deposition were performed. The answers to these questions were investigated through experimental measurements of turbine blade surface temperature and coolant coverage (via infrared camera images and thermocouples) and time-varying surface roughness in the NETL high-pressure combustion rig with accelerated, simulated surface deposition and advanced cooling hole concepts, coupled with detailed materials analysis and characterization using conventional methods of Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD), 3-D Surface Topography (using a 3-D stylus profilometer). Detailed surface temperatures and cooling effectiveness could not be measured due to issues with the NETL infrared camera system. In collaboration with faculty startup funding from the principal investigator, experimental and numerical investigations were performed of an advanced film cooling hole geometry, the anti-vortex hole (AVH), focusing on improving cooling effectiveness and decreasing the counter-rotating vortex of conventional cooling holes which can entrain mainstream particulate matter to the surface. The potential benefit of this program is in gaining a fundamental understanding of how the use of alternative fuels will effect the operation of modern gas turbine engines, providing valuable data for more effective cooling designs for future turbine systems utilizing alternative fuels.

  8. Laboratory characterization of PM emissions from combustion of wildland biomass fuels

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, SeyedEhsan; Urbanski, Shawn; Dixit, P.; Qi, L.; Burling, Ian R.; Yokelson, Robert; Johnson, Timothy J.; Shrivastava, ManishKumar B.; Jung, H.; Weise, David; Miller, J. Wayne; Cocker, David R.

    2013-09-09

    Particle emissions from open burning of southwestern (SW) and southeastern (SE) U.S. 17 fuel types during 77 controlled laboratory burns are presented. The fuels include SW 18 vegetation types: ceanothus, chamise/scrub oak, coastal sage scrub, California sagebrush, 19 manzanita, maritime chaparral, masticated mesquite, oak savanna, and oak woodland as 20 well as SE vegetation types: 1-year, 2-year rough, pocosin, chipped understory, 21 understory hardwood, and pine litter. The SW fuels burned at a higher Modified 22 Combustion Efficiency (MCE) than the SE fuels resulting in lower particulate matter 23 (PM) mass emission factor (EF). Particle size distributions for six fuels and particle 24 number emission or all fuels are reported. Excellent mass closure (slope = 1.00, r2=0.94) 25 between ions, metals, and carbon with total weight was obtained. Organic carbon 26 emission factors inversely correlated (= 0.72) with MCE, while elemental carbon (EC) 27 had little correlation with MCE (=0.10). The EC/total carbon (TC) ratio sharply 28 increased with MCE for MCEs exceeding 0.94. The average levoglucosan and total Poly 29 Aromatic Hydrocarbons (PAH) emissions factors ranged from 25-1272 mg/kg fuel and 30 1790-11300 μg/kg fuel, respectively. No correlation between MCE and emissions of 31 PAHs/levoglucosan was found. Additionally, PAH diagnostic ratios were observed to be 32 poor indicators of biomass burning. Large fuel-type and regional dependency was 33 observed in the emission rates of ammonium, nitrate, fluoride, chloride, sodium, and

  9. Thermochemical Conversion of Woody Biomass to Fuels and Chemicals Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Pendse, Hemant P. [Univ. of Maine, Orono, ME (United States)

    2015-09-30

    Maine and its industries identified more efficient utilization of biomass as a critical economic development issue. In Phase I of this implementation project, a research team was assembled, research equipment was implemented and expertise was demonstrated in pyrolysis, hydrodeoxygenation of pyrolysis oils, catalyst synthesis and characterization, and reaction engineering. Phase II built upon the infrastructure to innovate reaction pathways and process engineering, and integrate new approaches for fuels and chemical production within pulp and paper and other industries within the state. This research cluster brought together chemists, engineers, physicists and students from the University of Maine, Bates College, and Bowdoin College. The project developed collaborations with Oak Ridge National Laboratory and Brookhaven National Laboratory. The specific research projects within this proposal were of critical interest to the DoE - in particular the biomass program within EERE and the catalysis/chemical transformations program within BES. Scientific and Technical Merit highlights of this project included: (1) synthesis and physical characterization of novel size-selective catalyst/supports using engineered mesoporous (1-10 nm diameter pores) materials, (2) advances in fundamental knowledge of novel support/ metal catalyst systems tailored for pyrolysis oil upgrading, (3) a microcalorimetric sensing technique, (4) improved methods for pyrolysis oil characterization, (5) production and characterization of woody biomass-derived pyrolysis oils, (6) development of two new patented bio oil pathways: thermal deoxygenation (TDO) and formate assisted pyrolysis (FASP), and (7) technoeconomics of pyrolysis of Maine forest biomass. This research cluster has provided fundamental knowledge to enable and assess pathways to thermally convert biomass to hydrocarbon fuels and chemicals.

  10. Carpet As An Alternative Fuel in Cement Kilns

    Energy Technology Data Exchange (ETDEWEB)

    Matthew J Realff

    2007-02-06

    Approximately 5 billion lbs of carpet will be removed from buildings in the US each year for the foreseeable future. This carpet is potentially a valuable resource because it contains plastic in the face of the carpet that can be re-used. However, there are many different types of carpet, and at least four major different plastics used to make the face. The face is woven through a backing fabric and held in place by a “glue” that is in most cases a latex cross-linked polymer which is heavily loaded with chalk (calcium carbonate). This backing has almost no value as a recycled material. In addition, carpet is a bulky material that is difficult to handle and ship and must be kept dry. It would be of significant benefit to the public if this stream of material could be kept out of landfills and some of its potential value unlocked by having high volume alternatives for recycled carpet use. The research question that this project investigated was whether carpet could be used as a fuel in a cement kiln. If this could be done successfully, there is significant capacity in the US cement industry to absorb carpet and use it as a fuel. Cement kilns could serve as a way to stimulate carpet collection and then side streams be taken for higher value uses. The research demonstrated that carpet was technically a suitable fuel, but was unable to conclude that the overall system could be economically feasible at this time with the constraints placed on the project by using an existing system for feeding the kiln. Collection and transportation were relatively straightforward, using an existing collector who had the capacity to collect high volumes of material. The shredding of the carpet into a suitable form for feeding was more challenging, but these problems were successfully overcome. The feeding of the carpet into the kiln was not successfully carried out reliably. The overall economics were not positive under the prevailing conditions of costs for transportation and size

  11. Alternative fuels for vehicles fleet demonstration program. Final report, volume 2: Appendices

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The Alternative Fuels for Vehicles Fleet Demonstration Program (AFV-FDP) was a multiyear effort to collect technical data for use in determining the costs and benefits of alternative-fuel vehicles (AFVs) in typical applications in New York State. This report, Volume 2, includes 13 appendices to Volume 1 that expand upon issues raised therein. Volume 1 provides: (1) Information about the purpose and scope of the AFV-FDP; (2) A summary of AFV-FDP findings organized on the basis of vehicle type and fuel type; (3) A short review of the status of AFV technology development, including examples of companies in the State that are active in developing AFVs and AFV components; and (4) A brief overview of the status of AFV deployment in the State. Volume 3 provides expanded reporting of AFV-FDP technical details, including the complete texts of the brochure Garage Guidelines for Alternative Fuels and the technical report Fleet Experience Survey Report, plus an extensive glossary of AFV terminology. The appendices cover a wide range of issues including: emissions regulations in New York State; production and health effects of ozone; vehicle emissions and control systems; emissions from heavy-duty engines; reformulated gasoline; greenhouse gases; production and characteristics of alternative fuels; the Energy Policy Act of 1992; the Clean Fuel Fleet Program; garage design guidelines for alternative fuels; surveys of fleet managers using alternative fuels; taxes on conventional and alternative fuels; and zero-emission vehicle technology.

  12. Total soil DNA quantification as an alternative microbial biomass determination approach

    Science.gov (United States)

    Semenov, Mikhail

    2015-04-01

    .87 indicated slight (about 13%) underestimation of microbial biomass-C obtained by the CFE approach. Thus, quantification of microbial dsDNA is an alternative option to determine soil microbial biomass under extreme conditions, e.g., in frozen and alkaline soils. In contrast to approaches based on indirect characteristics (respiration, etc.), the DNA-based approach enables evaluating microbial biomass using the immediate content of basic cell compounds universal to all living organisms. This research was supported by the Russian Science Foundation, Project No 14-14-00625.

  13. Alternative fuel vehicles for the Federal fleet: Results of the 5-year planning process. Executive Order 12759, Section 11

    Energy Technology Data Exchange (ETDEWEB)

    1992-08-01

    This report describes five-year plans for acquisition of alternative fuel vehicles (AFVs) by the Federal agencies. These plans will be used to encourage Original Equipment Manufacturers (OEMs) to expand the variety of AFVs produced, reduce the incremental cost of AFVs, and to encourage fuel suppliers to expand the alternative fuel infrastructure and alternative fuel availability. This effort supplements and extends the demonstration and testing of AFVs established by the Department of Energy under the alternative Motor Fuels Act of 1988.

  14. Energy efficiency analysis: biomass-to-wheel efficiency related with biofuels production, fuel distribution, and powertrain systems.

    Directory of Open Access Journals (Sweden)

    Wei-Dong Huang

    Full Text Available BACKGROUND: Energy efficiency analysis for different biomass-utilization scenarios would help make more informed decisions for developing future biomass-based transportation systems. Diverse biofuels produced from biomass include cellulosic ethanol, butanol, fatty acid ethyl esters, methane, hydrogen, methanol, dimethyether, Fischer-Tropsch diesel, and bioelectricity; the respective powertrain systems include internal combustion engine (ICE vehicles, hybrid electric vehicles based on gasoline or diesel ICEs, hydrogen fuel cell vehicles, sugar fuel cell vehicles (SFCV, and battery electric vehicles (BEV. METHODOLOGY/PRINCIPAL FINDINGS: We conducted a simple, straightforward, and transparent biomass-to-wheel (BTW analysis including three separate conversion elements--biomass-to-fuel conversion, fuel transport and distribution, and respective powertrain systems. BTW efficiency is a ratio of the kinetic energy of an automobile's wheels to the chemical energy of delivered biomass just before entering biorefineries. Up to 13 scenarios were analyzed and compared to a base line case--corn ethanol/ICE. This analysis suggests that BEV, whose electricity is generated from stationary fuel cells, and SFCV, based on a hydrogen fuel cell vehicle with an on-board sugar-to-hydrogen bioreformer, would have the highest BTW efficiencies, nearly four times that of ethanol-ICE. SIGNIFICANCE: In the long term, a small fraction of the annual US biomass (e.g., 7.1%, or 700 million tons of biomass would be sufficient to meet 100% of light-duty passenger vehicle fuel needs (i.e., 150 billion gallons of gasoline/ethanol per year, through up to four-fold enhanced BTW efficiencies by using SFCV or BEV. SFCV would have several advantages over BEV: much higher energy storage densities, faster refilling rates, better safety, and less environmental burdens.

  15. Energy Efficiency Analysis: Biomass-to-Wheel Efficiency Related with Biofuels Production, Fuel Distribution, and Powertrain Systems

    Science.gov (United States)

    Huang, Wei-Dong; Zhang, Y-H Percival

    2011-01-01

    Background Energy efficiency analysis for different biomass-utilization scenarios would help make more informed decisions for developing future biomass-based transportation systems. Diverse biofuels produced from biomass include cellulosic ethanol, butanol, fatty acid ethyl esters, methane, hydrogen, methanol, dimethyether, Fischer-Tropsch diesel, and bioelectricity; the respective powertrain systems include internal combustion engine (ICE) vehicles, hybrid electric vehicles based on gasoline or diesel ICEs, hydrogen fuel cell vehicles, sugar fuel cell vehicles (SFCV), and battery electric vehicles (BEV). Methodology/Principal Findings We conducted a simple, straightforward, and transparent biomass-to-wheel (BTW) analysis including three separate conversion elements -- biomass-to-fuel conversion, fuel transport and distribution, and respective powertrain systems. BTW efficiency is a ratio of the kinetic energy of an automobile's wheels to the chemical energy of delivered biomass just before entering biorefineries. Up to 13 scenarios were analyzed and compared to a base line case – corn ethanol/ICE. This analysis suggests that BEV, whose electricity is generated from stationary fuel cells, and SFCV, based on a hydrogen fuel cell vehicle with an on-board sugar-to-hydrogen bioreformer, would have the highest BTW efficiencies, nearly four times that of ethanol-ICE. Significance In the long term, a small fraction of the annual US biomass (e.g., 7.1%, or 700 million tons of biomass) would be sufficient to meet 100% of light-duty passenger vehicle fuel needs (i.e., 150 billion gallons of gasoline/ethanol per year), through up to four-fold enhanced BTW efficiencies by using SFCV or BEV. SFCV would have several advantages over BEV: much higher energy storage densities, faster refilling rates, better safety, and less environmental burdens. PMID:21765941

  16. THE FUTURE OF MOTOR TRANSPORT – ALTERNATIVE FUEL AND CANCEROGENIC SAFETY

    Directory of Open Access Journals (Sweden)

    Kanilo, P.

    2012-06-01

    Full Text Available Prospects of application of synthetic hydrocarbonic motor fuels and hydrogen as the basic and additional energy carriers are analysed. It is shown that the use of alternative fuels does not only effectively replaces oil fuel, but also provides essential decrease of environmental contamination by supertoxic substancses, namely cancerogenic and mutagen.

  17. 49 CFR 525.11 - Termination of exemption; amendment of alternative average fuel economy standard.

    Science.gov (United States)

    2010-10-01

    ... average fuel economy standard. 525.11 Section 525.11 Transportation Other Regulations Relating to... EXEMPTIONS FROM AVERAGE FUEL ECONOMY STANDARDS § 525.11 Termination of exemption; amendment of alternative average fuel economy standard. (a) Any exemption granted under this part for an affected model year...

  18. Techno-economic assessment of a solar PV, fuel cell, and biomass gasifier hybrid energy system

    Directory of Open Access Journals (Sweden)

    Anand Singh

    2016-11-01

    Full Text Available The interest of power is expanding step by step all through the world. Because of constrained measure of fossil fuel, it is vital to outline some new non-renewable energy frameworks that can diminish the reliance on ordinary energy asset. A hybrid off-grid renewable energy framework might be utilized to reduction reliance on the traditional energy assets. Advancement of crossover framework is a procedure to choose the best mix of part and there cost that can give shabby, solid and successful option energy resource. In this paper sun oriented photovoltaic, fuel cell, biomass gasifier generator set, battery backup and power conditioning unit have been simulated and optimized for educational institute, energy centre, Maulana Azad National Institute of Technology, Bhopal in the Indian state of Madhya Pradesh. The area of the study range on the guide situated of 23°12′N latitude and 77°24′E longitude. In this framework, the essential wellspring of power is sun based solar photovoltaic system and biomass gasifier generator set while fuel cell and batteries are utilized as reinforcement supply. HOMER simulator has been utilized to recreate off the grid and it checks the specialized and financial criteria of this hybrid energy system. The execution of every segment of this framework is dissected lastly delicate examination has been performing to enhance the mixture framework at various conditions. In view of the recreation result, it is found that the cost of energy (COE of a biomass gasifier generator set, solar PV and fuel cell crossover energy system has been found to be 15.064 Rs/kWh and complete net present cost Rs.51,89003. The abundance power in the proposed framework is observed to be 36 kWh/year with zero rates unmet electrical burden.

  19. 10 CFR 490.504 - Use of alternative fueled vehicle credits.

    Science.gov (United States)

    2010-01-01

    ... 490.504 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM... of a fleet or covered person in an annual report under this part, DOE shall treat each credit as the acquisition of an alternative fueled vehicle that the fleet or covered person is required to acquire...

  20. 10 CFR 490.201 - Alternative fueled vehicle acquisition mandate schedule.

    Science.gov (United States)

    2010-01-01

    .... 490.201 Section 490.201 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet Program § 490.201 Alternative fueled vehicle acquisition mandate... annually for State government fleets, including agencies thereof but excluding municipal fleets,...

  1. Pilot Field Demonstration of Alternative Fuels in Force Projection Petroleum and Water Distribution Equipment

    Science.gov (United States)

    2014-09-04

    UNCLASSIFIED UNCLASSIFIED PILOT FIELD DEMONSTRATION OF ALTERNATIVE FUELS IN FORCE PROJECTION PETROLEUM AND WATER DISTRIBUTION EQUIPMENT...Fort Belvoir, Virginia 22060- 6218. Disposition Instructions Destroy this report when no longer needed. Do not return it to the originator ...UNCLASSIFIED UNCLASSIFIED PILOT FIELD DEMONSTRATION OF ALTERNATIVE FUELS IN FORCE PROJECTION PETROLEUM AND WATER DISTRIBUTION EQUIPMENT

  2. Technology assessment of alternative fuels for the transportation sector; Teknologivurdering af altgernative drivmidler til transportsektoren

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-05-15

    The report documents an analysis, which aims at evaluating technologies in connection with alternative fuels for the transportation sector. During the analysis process a method has been developed for consistent evaluation of the alternative transportation fuels with the largest technological and economic potential. (BA)

  3. Electrocatalytic processing of renewable biomass-derived compounds for production of chemicals, fuels and electricity

    Science.gov (United States)

    Xin, Le

    The dual problems of sustaining the fast growth of human society and preserving the environment for future generations urge us to shift our focus from exploiting fossil oils to researching and developing more affordable, reliable and clean energy sources. Human beings had a long history that depended on meeting our energy demands with plant biomass, and the modern biorefinery technologies realize the effective conversion of biomass to production of transportation fuels, bulk and fine chemicals so to alleviate our reliance on fossil fuel resources of declining supply. With the aim of replacing as much non-renewable carbon from fossil oils with renewable carbon from biomass as possible, innovative R&D activities must strive to enhance the current biorefinery process and secure our energy future. Much of my Ph.D. research effort is centered on the study of electrocatalytic conversion of biomass-derived compounds to produce value-added chemicals, biofuels and electrical energy on model electrocatalysts in AEM/PEM-based continuous flow electrolysis cell and fuel cell reactors. High electricity generation performance was obtained when glycerol or crude glycerol was employed as fuels in AEMFCs. The study on selective electrocatalytic oxidation of glycerol shows an electrode potential-regulated product distribution where tartronate and mesoxalate can be selectively produced with electrode potential switch. This finding then led to the development of AEMFCs with selective production of valuable tartronate or mesoxalate with high selectivity and yield and cogeneration of electricity. Reaction mechanisms of electrocatalytic oxidation of ethylene glycol and 1,2-propanediol were further elucidated by means of an on-line sample collection technique and DFT modeling. Besides electro-oxidation of biorenewable alcohols to chemicals and electricity, electrocatalytic reduction of keto acids (e.g. levulinic acid) was also studied for upgrading biomass-based feedstock to biofuels while

  4. Fine grain separation for the production of biomass fuel from mixed municipal solid waste.

    Science.gov (United States)

    Giani, H; Borchers, B; Kaufeld, S; Feil, A; Pretz, T

    2016-01-01

    The main goal of the project MARSS (Material Advanced Sustainable Systems) is to build a demonstration plant in order to recover a renewable biomass fuel suitable for the use in biomass power plants out of mixed municipal solid waste (MMSW). The demonstration plant was constructed in Mertesdorf (Germany), working alongside an existing mechanical-biological treatment plant, where the MMSW is biological dried under aerobe conditions in rotting boxes. The focus of the presented sorting campaign was set on the processing of fine grain particles minor than 11.5mm which have the highest mass content and biogenic energy potential of the utilized grain size fractions. The objective was to produce a biomass fuel with a high calorific value and a low content of fossil (plastic, synthetic) materials while maximizing the mass recovery. Therefore, the biogenic components of the dried MMSW are separated from inert and fossil components through various classification and sifting processes. In three experimental process setups of different processing depths, the grain size fraction 4-11.5mm was sifted by the use of air sifters and air tables.

  5. The Swedish Ash Programme 2002-2008. Biomass, wastes, peat - any solid fuel but coal

    Energy Technology Data Exchange (ETDEWEB)

    Bjurstroem, Henrik; Herbert, Roger

    2009-07-15

    In Sweden, producers of combustion residues have since 2002 implemented a collaborative applied RandD programme aimed at the utilisation of combustion residues (ash). The fuels are biomass, wastes, peat - any solid fuel but coal. In this report, the main lines of the programme are described: Covers for landfills and mine tailings; Civil works, e.g. road-buildings, where both geotechnical and environmental questions have been addressed; Cement and concrete applications; Compensating soils for removing biomass and the mineral nutrients in the biomass. The emphasis of the Programme is on environmental questions, even if technical questions have been treated. The time perspective in this context is much longer than the 3-5 years that are usual in an applied RandD programme, i.e. decades after ash has been placed on a site, e.g. in a road, or spread to forest soil. New test fields have been created in the programme and old test fields have been evaluated in order to gather available information

  6. Effect of biomass blending on coal ignition and burnout during oxy-fuel combustion

    Energy Technology Data Exchange (ETDEWEB)

    B. Arias; C. Pevida; F. Rubiera; J.J. Pis [Instituto Nacional del Carbon, CSIC, Oviedo (Spain)

    2008-09-15

    Oxy-fuel combustion is a GHG abatement technology in which coal is burned using a mixture of oxygen and recycled flue gas, to obtain a rich stream of CO{sub 2} ready for sequestration. An entrained flow reactor was used in this work to study the ignition and burnout of coals and blends with biomass under oxy-fuel conditions. Mixtures of CO{sub 2}/O{sub 2} of different concentrations were used and compared with air as reference. A worsening of the ignition temperature was detected in CO{sub 2}/O{sub 2} mixtures when the oxygen concentration was the same as that of the air. However, at an oxygen concentration of 30% or higher, an improvement in ignition was observed. The blending of biomass clearly improves the ignition properties of coal in air. The burnout of coals and blends with a mixture of 79%CO{sub 2}-21%O{sub 2} is lower than in air, but an improvement is achieved when the oxygen concentration is 30 or 35%. The results of this work indicate that coal burnout can be improved by blending biomass in CO{sub 2}/O{sub 2} mixtures. 26 refs., 7 figs., 1 tab.

  7. Charcoal-Oil Mixture as an Alternative Fuel: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Roila Awang

    2009-01-01

    Full Text Available The fast depletion of fuel oil and continuous increase in the demand for power is a global issue. The world energy consumption is projected to grow at an average of 2.7-3.7% from 1996 to 2010. Therefore search for alternative fuel is highly prioritized. Thus this study presents the results on the characteristic of charcoal-oil mixture as an alternative fuel. The calorific value, ash content and stability of the mixture are determined.

  8. Ignition Delay Properties of Alternative Fuels with Navy-Relevant Diesel Injectors

    Science.gov (United States)

    2014-06-01

    and palm oil , vegetable oil , and animal fats [8]. Of 5 particular interest in the field of HRD production is microalgae [9]. Algae-based fuels are...PROPERTIES OF ALTERNATIVE FUELS WITH NAVY-RELEVANT DIESEL INJECTORS by Andrew J. Rydalch June 2014 Thesis Advisor: Christopher M. Brophy...REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE IGNITION DELAY PROPERTIES OF ALTERNATIVE FUELS WITH NAVY- RELEVANT DIESEL

  9. Certification Report: Army Aviation Alternative Fuels Certification Program

    Science.gov (United States)

    2016-08-01

    fuel purchase for this program was through a qualified Defense Logistics Agency – Energy (DLA-E) vendor utilizing funding provided to the Research...Performance Related Fuel Properties Characteristics) • Hot Surface Ignition Under Turbulent Airflow • Thermal Expansion • Ignition Energy ... Fuel Acquisition The Defense Logistics Agency – Energy (DLA-E) provided a key role in the acquisition of the ATJ fuel required to complete the

  10. Does smoke from biomass fuel contribute to anemia in pregnant women in Nagpur, India? A cross-sectional study.

    Directory of Open Access Journals (Sweden)

    Charlotte M Page

    Full Text Available Anemia affects upwards of 50% of pregnant women in developing countries and is associated with adverse outcomes for mother and child. We hypothesized that exposure to smoke from biomass fuel--which is widely used for household energy needs in resource-limited settings--could exacerbate anemia in pregnancy, possibly as a result of systemic inflammation.To evaluate whether exposure to smoke from biomass fuel (wood, straw, crop residues, or dung as opposed to clean fuel (electricity, liquefied petroleum gas, natural gas, or biogas is an independent risk factor for anemia in pregnancy, classified by severity.A secondary analysis was performed using data collected from a rural pregnancy cohort (N = 12,782 in Nagpur, India in 2011-2013 as part of the NIH-funded Maternal and Newborn Health Registry Study. Multinomial logistic regression was used to estimate the effect of biomass fuel vs. clean fuel use on anemia in pregnancy, controlling for maternal age, body mass index, education level, exposure to household tobacco smoke, parity, trimester when hemoglobin was measured, and receipt of prenatal iron and folate supplements.The prevalence of any anemia (hemoglobin < 11 g/dl was 93% in biomass fuel users and 88% in clean fuel users. Moderate-to-severe anemia (hemoglobin < 10 g/dl occurred in 53% and 40% of the women, respectively. Multinomial logistic regression showed higher relative risks of mild anemia in pregnancy (hemoglobin 10-11 g/dl; RRR = 1.38, 95% CI = 1.19-1.61 and of moderate-to-severe anemia in pregnancy (RRR = 1.79, 95% CI = 1.53-2.09 in biomass fuel vs. clean fuel users, after adjusting for covariates.In our study population, exposure to biomass smoke was associated with higher risks of mild and moderate-to-severe anemia in pregnancy, independent of covariates.ClinicalTrials.gov NCT 01073475.

  11. Liquid transportation fuels via large-scale fluidised-bed gasification of lignocellulosic biomass

    Energy Technology Data Exchange (ETDEWEB)

    Hannula, I.; Kurkela, E.

    2013-04-15

    With the objective of gaining a better understanding of the system design trade-offs and economics that pertain to biomass-to-liquids processes, 20 individual BTL plant designs were evaluated based on their technical and economic performance. The investigation was focused on gasification-based processes that enable the conversion of biomass to methanol, dimethyl ether, Fischer-Tropsch liquids or synthetic gasoline at a large (300 MWth of biomass) scale. The biomass conversion technology was based on pressurised steam/O2-blown fluidised-bed gasification, followed by hot-gas filtration and catalytic conversion of hydrocarbons and tars. This technology has seen extensive development and demonstration activities in Finland during the recent years and newly generated experimental data has also been used in our simulation models. Our study included conceptual design issues, process descriptions, mass and energy balances and production cost estimates. Several studies exist that discuss the overall efficiency and economics of biomass conversion to transportation liquids, but very few studies have presented a detailed comparison between various syntheses using consistent process designs and uniform cost database. In addition, no studies exist that examine and compare BTL plant designs using the same front-end configuration as described in this work. Our analysis shows that it is possible to produce sustainable low-carbon fuels from lignocellulosic biomass with first-law efficiency in the range of 49.6-66.7% depending on the end-product and process conditions. Production cost estimates were calculated assuming Nth plant economics and without public investment support, CO2 credits or tax assumptions. They are 58-65 euro/MWh for methanol, 58-66 euro/MWh for DME, 64-75 euro/MWh for Fischer-Tropsch liquids and 68-78 euro/MWh for synthetic gasoline. (orig.)

  12. Press fluid pre-treatment optimisation of the integrated generation of solid fuel and biogas from biomass (IFBB) process approach.

    Science.gov (United States)

    Corton, John; Toop, Trisha; Walker, Jonathan; Donnison, Iain S; Fraser, Mariecia D

    2014-10-01

    The integrated generation of solid fuel and biogas from biomass (IFBB) system is an innovative approach to maximising energy conversion from low input high diversity (LIHD) biomass. In this system water pre-treated and ensiled LIHD biomass is pressed. The press fluid is anaerobically digested to produce methane that is used to power the process. The fibrous fraction is densified and then sold as a combustion fuel. Two process options designed to concentrate the press fluid were assessed to ascertain their influence on productivity in an IFBB like system: sedimentation and the omission of pre-treatment water. By concentrating press fluid and not adding water during processing, energy production from methane was increased by 75% per unit time and solid fuel productivity increased by 80% per unit of fluid produced. The additional energy requirements for pressing more biomass in order to generate equal volumes of feedstock were accounted for in these calculations.

  13. Thermochemistry: the key to minerals separation from biomass for fuel use in high performance systems

    Energy Technology Data Exchange (ETDEWEB)

    Overend, R.P. [National Renewable Energy Laboratory, Golden, CO (United States)

    1996-12-31

    Biomass use in high efficiency thermal electricity generation is limited not by the properties of the organic component of biomass, but by the behavior of the associated mineral matter at high temperatures. On a moisture and ash free basis biomass, which has an average formula of CH{sub 1.4}O{sub 0.6}N{sub 0.1}, has a relatively low heating value of 18.6 GJ/t. However, this would not limit its use in high efficiency combustion systems because adequate high temperatures could be reached to achieve high carnot cycle efficiencies. These high temperatures cannot be reached because of the fouling and slagging propensities of the minerals in biomass. The mineral composition is a function of soils and the growth habit of the biomass, however, the most important element is potassium, which either alone or in combinating with silica forms the basis of fouling and slagging behaviors. Growing plants selectively concentrate potassium in their cells, which along with nitrogen and phosphorus are the key macronutrients for plant growth. Annual plants tend to have very high potassium contents, although wood biomass exclusive of the living cambial layer (i.e. minus the bark, small branches, and leaves) has minimal potassium content and other nutrients. Under combustion conditions the potassium is mobilized, especially in the presence of chlorine, at relative low temperatures and fouls heat transfer surfaces and corrodes high performance metals used, for example, in the high temperature sections of burners and gas turbines. Recent work has demonstrated the phenomenology of ash fouling, mainly by the potassium component of biomass, as well as identifying the key species such as KOH, KCl, and sulphates that are involved in potassium transport at temperatures <800 deg C. Techniques that separate the mineral matter from the fuel components (carbon and hydrogen) at low temperatures reduce or limit the alkali metal transport phenomena and result in very high efficiency combustion

  14. Systemic inflammatory changes and increased oxidative stress in rural Indian women cooking with biomass fuels

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Anindita, E-mail: anidu14@gmail.com [College of Environmental Sciences and Engineering, Peking University, Beijing (China); Department of Experimental Hematology, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata-700 026 (India); Ray, Manas Ranjan; Banerjee, Anirban [Department of Experimental Hematology, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata-700 026 (India)

    2012-06-15

    The study was undertaken to investigate whether regular cooking with biomass aggravates systemic inflammation and oxidative stress that might result in increase in the risk of developing cardiovascular disease (CVD) in rural Indian women compared to cooking with a cleaner fuel like liquefied petroleum gas (LPG). A total of 635 women (median age 36 years) who cooked with biomass and 452 age-matched control women who cooked with LPG were enrolled. Serum interleukin-6 (IL-6), C-reactive protein (CRP), tumor necrosis factor-alpha (TNF-α) and interleukin-8 (IL-8) were measured by ELISA. Generation of reactive oxygen species (ROS) by leukocytes was measured by flow cytometry, and erythrocytic superoxide dismutase (SOD) was measured by spectrophotometry. Hypertension was diagnosed following the Seventh Report of the Joint Committee. Tachycardia was determined as pulse rate > 100 beats per minute. Particulate matter of diameter less than 10 and 2.5 μm (PM{sub 10} and PM{sub 2.5}, respectively) in cooking areas was measured using real-time aerosol monitor. Compared with control, biomass users had more particulate pollution in indoor air, their serum contained significantly elevated levels of IL-6, IL-8, TNF-α and CRP, and ROS generation was increased by 37% while SOD was depleted by 41.5%, greater prevalence of hypertension and tachycardia compared to their LPG-using neighbors. PM{sub 10} and PM{sub 2.5} levels were positively associated with markers of inflammation, oxidative stress and hypertension. Inflammatory markers correlated with raised blood pressure. Cooking with biomass exacerbates systemic inflammation, oxidative stress, hypertension and tachycardia in poor women cooking with biomass fuel and hence, predisposes them to increased risk of CVD development compared to the controls. Systemic inflammation and oxidative stress may be the mechanistic factors involved in the development of CVD. -- Highlights: ► Effect of chronic biomass smoke exposure on

  15. Liquid fuels production from biomass. Final report, for period ending June 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Levy, P. F.; Sanderson, J. E.; Ashare, E.; Wise, D. L.; Molyneaux, M. S.

    1980-01-01

    The current program to convert biomass into liquid hydrocarbon fuels is an extension of a previous program to ferment marine algae to acetic acid. In that study it was found that marine algae could be converted to higher aliphatic organic acids and that these acids could be readily removed from the fermentation broth by membrane or liquid-liquid extraction. It was then proposed to convert these higher organic acids via Kolbe electrolysis to aliphatic hydrocarbons, which may be used as a diesel fuel. The specific goals for the current program are: (1) establish conditions under which substrates other than marine algae may be converted in good yield to organic acids, here the primary task is methane suppression; (2) modify the current 300-liter fixed packed bed batch fermenter to operate in a continuous mode; (3) change from membrane extraction of organic acids to liquid-liquid extraction; (4) optimize the energy balance of the electrolytic oxidation process, the primary task is to reduce the working potential required for the electrolysis while maintaining an adequate current density; (5) scale the entire process up to match the output of the 300 liter fermenter; and (6) design pilot plant and commercial size plant (1000 tons/day) processes for converting biomass to liquid hydrocarbon fuels and perform an economic analysis for the 1000 ton/day design.

  16. Techno-Economic Analysis of Biomass Fast Pyrolysis to Transportation Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Wright, M. M.; Satrio, J. A.; Brown, R. C.; Daugaard, D. E.; Hsu, D. D.

    2010-11-01

    This study develops techno-economic models for assessment of the conversion of biomass to valuable fuel products via fast pyrolysis and bio-oil upgrading. The upgrading process produces a mixture of naphtha-range (gasoline blend stock) and diesel-range (diesel blend stock) products. This study analyzes the economics of two scenarios: onsite hydrogen production by reforming bio-oil, and hydrogen purchase from an outside source. The study results for an nth plant indicate that petroleum fractions in the naphtha distillation range and in the diesel distillation range are produced from corn stover at a product value of $3.09/gal ($0.82/liter) with onsite hydrogen production or $2.11/gal ($0.56/liter) with hydrogen purchase. These values correspond to a $0.83/gal ($0.21/liter) cost to produce the bio-oil. Based on these nth plant numbers, product value for a pioneer hydrogen-producing plant is about $6.55/gal ($1.73/liter) and for a pioneer hydrogen-purchasing plant is about $3.41/gal ($0.92/liter). Sensitivity analysis identifies fuel yield as a key variable for the hydrogen-production scenario. Biomass cost is important for both scenarios. Changing feedstock cost from $50-$100 per short ton changes the price of fuel in the hydrogen production scenario from $2.57-$3.62/gal ($0.68-$0.96/liter).

  17. Effect of fuel size and process temperature on fuel gas quality from CFB gasification of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Van der Drift, A.; Van Doorn, J. [ECN Biomass, Petten (Netherlands)

    2000-07-01

    A bench-scale circulating fluidized bed (CFB) gasifier with a capacity of max. 500 kWh{sub th} has been used to study the effect of fuel size and process temperature. A higher process temperature (range tested: 750 to 910C) results in more air needed to maintain the desired temperature, a lower heating value of the product gas, a higher carbon conversion and a net increase of cold gas efficiency of the gasifier. A higher process temperature also results in less heavy tars. However, light tars (measured using the solid phase adsorbent (SPA) method) do show an odd behaviour. Some individual components within the group of light tars even increase in concentration when process temperature is raised. The main reason probably is that heavy tars decompose to these relatively stable light tar components. The particle size of the fuel does influence some product gas parameters considerably. The presence of small particles seems to increase the (heavy) tar concentration and decrease the conversion of fuel-nitrogen to ammonia. Small particles can also be responsible for large temperature gradients along the axis of the riser of a CFB-gasifier. This effect can be avoided by either mixing the fuel with larger particles or feed the small particles at the bottom of the reactor. 5 refs.

  18. The domestication of fire: the relationship between biomass fuel, fossil fuel and burns.

    Science.gov (United States)

    Albertyn, R; Rode, H; Millar, A J W; Peck, M D

    2012-09-01

    Primitive man's discovery and use of fire had a tremendous impact on modern development. It changed lifestyles, and brought with it new fuel sources and cooking methods. It also introduced devastation, injury, pain, disfigurement, and loss of life, and the need to continuously develop management, training and prevention programs.

  19. Chemical, microphysical and optical properties of primary particles from the combustion of biomass fuels.

    Science.gov (United States)

    Habib, Gazala; Venkataraman, Chandra; Bond, Tami C; Schauer, James J

    2008-12-01

    Biomass fuel combustion for residential energy significantly influences both emissions and the atmospheric burden of aerosols in world regions, i.e., east and south Asia. This study reports measurements of climate-relevant properties of particles emitted from biomass fuels widely used for cooking in south Asia, in laboratory experiments simulating actual cooking in the region. Fuel burn rates of 1-2 kg h(-1) for wood species, and 1.5-2 kg h(-1) for crop residues and dried cattle dung, influenced PM2.5 emission factors which were 1.7-2 g kg(-1) at low burn rates but 5-9 gkg(-1) at higher burn rates. Total carbon accounted for 45-55% and ions and trace elements for 2-12% of PM2.5 mass. The elemental carbon (EC) content was variable and highest (22-35%) in particles emitted from low burn rate combustion (wood and jute stalks) but significantly lower (2-4%) from high burn rate combustion (dried cattle dung and rice straw). The mass absorption cross-section (MAC, m2 g(-1)) correlated with EC content for strongly absorbing particles. Weakly absorbing particles, from straw and dung combustion, showed absorption that could not be explained by EC content alone. On average, the MAC of biofuel emission particles was significantly higher than reported measurements from forest fires but somewhat lower than those from diesel engines, indicating potential to significantly influence atmospheric absorption. Both for a given fuel and across different fuels, increased burn rates result in higher emission rates of PM2.5, larger organic carbon (OC) content, larger average particle sizes, and lower MAC. Larger mean particle size (0.42-1.31 microm MMAD) and organic carbon content, than in emissions from combustion sources like diesels, have potential implications for hygroscopic growth and cloud nucleation behavior of these aerosols. These measurements can be used to refine regional emission inventories and derive optical parametrizations, for climate modeling, representative of regions

  20. Experimental investigation of solid oxide fuel cells using biomass gasification producer gases

    Energy Technology Data Exchange (ETDEWEB)

    Norheim, Arnstein

    2005-07-01

    The main objective of this thesis is theoretical and experimental investigations related to utilisation of biomass gasification producer gases as fuel for Solid Oxide Fuel Cells (SOFC). Initial fundamental steps towards a future system of combined heat and power production based on biomass gasification and SOFC are performed and include: 1) Theoretical modeling of the composition of biomass gasification producer gases. 2) Experimental investigation of SOFC performance using biomass gasification producer gas as fuel. 3) Experimental investigation of SOFC performance using biomass gasification producer gas containing high sulphur concentration. The modeling of the composition of gasifier producer gas was performed using the program FactSage. The main objective was to investigate the amount and speciation of trace species in the producer gases as several parameters were varied. Thus, the composition at thermodynamic equilibrium of sulphur, chlorine, potassium, sodium and compounds of these were established. This was done for varying content of the trace species in the biomass material at different temperatures and fuel utilisation i.e. varying oxygen content in the producer gas. The temperature interval investigated was in the range of normal SOFC operation. It was found that sulphur is expected to be found as H2S irrespective of temperature and amount of sulphur. Only at very high fuel utilisation some S02 is formed. Important potassium containing compounds in the gas are gaseous KOH and K. When chlorine is present, the amount of KOH and K will decrease due to the formation of KCI. The level of sodium investigated here was low, but some Na, NaOH and NaCl is expected to be formed. Below a certain temperature, condensation of alkali rich carbonates may occur. The temperature at which condensation begins is mainly depending on the amount of potassium present; the condensation temperature increases with increasing potassium content. In the first experimental work

  1. Fly Ash Formation during Suspension-Firing of Biomass. Effects of Residence Time and Fuel-Type

    DEFF Research Database (Denmark)

    Damø, Anne Juul; Jensen, Peter Arendt; Jappe Frandsen, Flemming

    2017-01-01

    The objective of this work was to generate comprehensive data on the formation of residual fly ash during the initial stages of suspension-firing of biomass. Combustion experiments were carried out with pulverized biomass fuels (two straw fuels and two wood fuels), in an entrained flow reactor...... at 1200-1400 °C, simulating full-scale suspension-firing of biomass. By the use of a movable, cooled and quenched gas/particle sampling probe, samples were collected at different positions along the vertical axis in the reactor, corresponding to gas residence times ranging from 0.25 – 2.0s. The collected...... particles were subjected to various analyses, including char burnout level, particle size distribution, elemental composition, and particle morphology and composition. Furthermore, the transient release, i.e. the vaporization of the flame-volatile inorganic elements K, Cl and S, from the burning fuel...

  2. Biomass Fuel and Combustion Conditions Selection in a Fixed Bed Combustor

    Directory of Open Access Journals (Sweden)

    María E. Arce

    2013-11-01

    Full Text Available The biomass market has experienced an increase in development, leading to research and development efforts that are focused on determining optimal biofuel combustion conditions. Biomass combustion is a complex process that involves divergent parameters and thus requires the use of advanced analysis methods. This study proposes combining grey relational analysis (GRA and error propagation theory (EPT to select a biofuel and its optimal combustion conditions. This research will study three biofuels that are currently used in a region of South Europe (Spain, and the most important variables that affect combustion are the ignition front propagation speed and the highest temperature that is reached at the fixed bed combustor. The results demonstrate that a combination of both theories for the analysis of solid-state thermochemical phenomena enables a fast and simple way of choosing the best configuration for each fuel.

  3. H₂-rich syngas production by fluidized bed gasification of biomass and plastic fuel.

    Science.gov (United States)

    Ruoppolo, G; Ammendola, P; Chirone, R; Miccio, F

    2012-04-01

    This paper reports the results of gasification tests using a catalytic fluidized bed gasifier to obtain a H(2)-rich stream by feeding different pellets made of wood, biomass/plastic and olive husks to the gasifier. The effects of both the steam supply and an in-bed catalyst on gasifier performance have been investigated. In general, pelletization was an effective pre-treatment for improving the homogeneity of the fuel and the reliability of the feeding devices. The use of biomass/plastic pellets in a catalyst bed yielded good results in terms of the hydrogen concentration (up to 32%vol.), even if an increase in tar production and in the fine/carbon elutriation rate was observed in comparison with wood pellets.

  4. Process Design and Economics for the Conversion of Algal Biomass to Biofuels: Algal Biomass Fractionation to Lipid- and Carbohydrate-Derived Fuel Products

    Energy Technology Data Exchange (ETDEWEB)

    Davis, R.; Kinchin, C.; Markham, J.; Tan, E.; Laurens, L.; Sexton, D.; Knorr, D.; Schoen, P.; Lukas, J.

    2014-09-01

    Beginning in 2013, NREL began transitioning from the singular focus on ethanol to a broad slate of products and conversion pathways, ultimately to establish similar benchmarking and targeting efforts. One of these pathways is the conversion of algal biomass to fuels via extraction of lipids (and potentially other components), termed the 'algal lipid upgrading' or ALU pathway. This report describes in detail one potential ALU approach based on a biochemical processing strategy to selectively recover and convert select algal biomass components to fuels, namely carbohydrates to ethanol and lipids to a renewable diesel blendstock (RDB) product. The overarching process design converts algal biomass delivered from upstream cultivation and dewatering (outside the present scope) to ethanol, RDB, and minor coproducts, using dilute-acid pretreatment, fermentation, lipid extraction, and hydrotreating.

  5. [Research and workshop on alternative fuels for aviation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-09-01

    stand is an asset which provides an ongoing research capability dedicated to the testing of alternative fuels for aircraft engines. The test stand is now entirely functional with the exception of the electronic ignition unit which still needs adjustments.

  6. Alternative Fuel News: Official Publication of the U.S. Department of Energy's Clean Cities Network and the Alternative Fuels Data Center; Vol. 2, No. 2

    Energy Technology Data Exchange (ETDEWEB)

    1998-05-01

    Official publication of the Clean Cities Network and the Alternative Fuels Data Center featuring alternative fuels activity in every state, the Clean Cities game plan '98, and news from the Automakers.

  7. Thermodynamic Analyses of Biomass Gasification Integrated Externally Fired, Post-Firing and Dual-Fuel Combined Cycles

    Directory of Open Access Journals (Sweden)

    Saeed Soltani

    2015-01-01

    Full Text Available In the present work, the results are reported of the energy and exergy analyses of three biomass-related processes for electricity generation: the biomass gasification integrated externally fired combined cycle, the biomass gasification integrated dual-fuel combined cycle, and the biomass gasification integrated post-firing combined cycle. The energy efficiency for the biomass gasification integrated post-firing combined cycle is 3% to 6% points higher than for the other cycles. Although the efficiency of the externally fired biomass combined cycle is the lowest, it has an advantage in that it only uses biomass. The energy and exergy efficiencies are maximized for the three configurations at particular values of compressor pressure ratios, and increase with gas turbine inlet temperature. As pressure ratio increases, the mass of air per mass of steam decreases for the biomass gasification integrated post-firing combined cycle, but the pressure ratio has little influence on the ratio of mass of air per mass of steam for the other cycles. The gas turbine exergy efficiency is the highest for the three configurations. The combustion chamber for the dual-fuel cycle exhibits the highest exergy efficiency and that for the post-firing cycle the lowest. Another benefit of the biomass gasification integrated externally fired combined cycle is that it exhibits the highest air preheater and heat recovery steam generator exergy efficiencies.

  8. TASK 3.4--IMPACTS OF COFIRING BIOMASS WITH FOSSIL FUELS

    Energy Technology Data Exchange (ETDEWEB)

    Christopher J. Zygarlicke; Donald P. McCollor; Kurt E. Eylands; Melanie D. Hetland; Mark A. Musich; Charlene R. Crocker; Jonas Dahl; Stacie Laducer

    2001-08-01

    With a major worldwide effort now ongoing to reduce greenhouse gas emissions, cofiring of renewable biomass fuels at conventional coal-fired utilities is seen as one of the lower-cost options to achieve such reductions. The Energy & Environmental Research Center has undertaken a fundamental study to address the viability of cofiring biomass with coal in a pulverized coal (pc)-fired boiler for power production. Wheat straw, alfalfa stems, and hybrid poplar were selected as candidate biomass materials for blending at a 20 wt% level with an Illinois bituminous coal and an Absaloka subbituminous coal. The biomass materials were found to be easily processed by shredding and pulverizing to a size suitable for cofiring with pc in a bench-scale downfired furnace. A literature investigation was undertaken on mineral uptake and storage by plants considered for biomass cofiring in order to understand the modes of occurrence of inorganic elements in plant matter. Sixteen essential elements, C, H, O, N, P, K, Ca, Mg, S, Zn, Cu, Fe, Mn, B, Mo, and Cl, are found throughout plants. The predominant inorganic elements are K and Ca, which are essential to the function of all plant cells and will, therefore, be evenly distributed throughout the nonreproductive, aerial portions of herbaceous biomass. Some inorganic constituents, e.g., N, P, Ca, and Cl, are organically associated and incorporated into the structure of the plant. Cell vacuoles are the repository for excess ions in the plant. Minerals deposited in these ubiquitous organelles are expected to be most easily leached from dry material. Other elements may not have specific functions within the plant, but are nevertheless absorbed and fill a need, such as silica. Other elements, such as Na, are nonessential, but are deposited throughout the plant. Their concentration will depend entirely on extrinsic factors regulating their availability in the soil solution, i.e., moisture and soil content. Similarly, Cl content is determined

  9. Using Biomass as Fuel Substitute to Reduce Fuel Cost in Locomotive

    Directory of Open Access Journals (Sweden)

    Gunjan De

    2013-10-01

    Full Text Available The biological waste poses some characteristics which indicate that they have the calorific value up to some extent which can be used as a fuel. Jute sticks, Jute caddies, cow dung dust, Dhaincha stick, wood etc. can be used as a raw material. By application of proper technologies the potential of these materials can be exploited. The study will show that the one ton of any of these bio wastes can easily substitute coal and oil which will also reduce the fuel cost as well. The process implies supply of producer gas from gasifier to engine to generate power in space of diesel engine to run locomotives, in industries, in power generation, etc. This will result in utilization of green energy and cost effective operation.

  10. Continuous-Flow Processes in Heterogeneously Catalyzed Transformations of Biomass Derivatives into Fuels and Chemicals

    Directory of Open Access Journals (Sweden)

    Antonio A. Romero

    2012-07-01

    Full Text Available Continuous flow chemical processes offer several advantages as compared to batch chemistries. These are particularly relevant in the case of heterogeneously catalyzed transformations of biomass-derived platform molecules into valuable chemicals and fuels. This work is aimed to provide an overview of key continuous flow processes developed to date dealing with a series of transformations of platform chemicals including alcohols, furanics, organic acids and polyols using a wide range of heterogeneous catalysts based on supported metals, solid acids and bifunctional (metal + acidic materials.

  11. Technical and economic feasibility of alternative fuel use in process heaters and small boilers

    Energy Technology Data Exchange (ETDEWEB)

    1980-02-01

    The technical and economic feasibility of using alternate fuels - fuels other than oil and natural gas - in combustors not regulated by the Powerplant and Industrial Fuel Use Act of 1978 (FUA) was evaluated. FUA requires coal or alternate fuel use in most large new boilers and in some existing boilers. Section 747 of FUA authorizes a study of the potential for reduced oil and gas use in combustors not subject to the act: small industrial boilers with capacities less than 100 MMBtu/hr, and process heat applications. Alternative fuel use in combustors not regulated by FUA was examined and the impact of several measures to encourage the substitution of alternative fuels in these combustors was analyzed. The primary processes in which significant fuel savings can be achieved are identified. Since feedstock uses of oil and natural gas are considered raw materials, not fuels, feedstock applications are not examined in this analysis. The combustors evaluated in this study comprise approximately 45% of the fuel demand projected in 1990. These uses would account for more than 3.5 million barrels per day equivalent fuel demand in 1990.

  12. Thermal usage of demanding biomass fuels; Thermische Nutzung von anspruchsvollen Biomassebrennstoffen. Verbrennungsversuche Fruehjahr 2005

    Energy Technology Data Exchange (ETDEWEB)

    Buehler, R. [Umwelt und Energie, Maschwanden (Switzerland); Hersener, J.-L. [Ingenieurbuero Hersener, Wiesendangen (Switzerland); Jenni, A. [Ardens GmbH, Liestal (Switzerland)

    2005-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) presents the results of combustion trials made in Spring 2005 using agricultural wastes. Fuels used included mixtures of horse manure and wood, horse manure and cereal wastes, pure cereal wastes and mushroom compost with wood. The results of the tests are presented and discussed. Recommendations are made concerning the optimum proportions of the various fuel mixtures. Also, recommendations are made concerning improvements necessary to the water-cooled combustion grate of the furnace. The suitability of the electrostatic dust precipitator (ESP) used to clean the flue gases is discussed. The report recommends that further tests with other forms of biomass wastes should be made at the plant and that further investigations on the performance of the ESP be made.

  13. One-pot catalytic conversion of cellulose and of woody biomass solids to liquid fuels.

    Science.gov (United States)

    Matson, Theodore D; Barta, Katalin; Iretskii, Alexei V; Ford, Peter C

    2011-09-07

    Efficient methodologies for converting biomass solids to liquid fuels have the potential to reduce dependence on imported petroleum while easing the atmospheric carbon dioxide burden. Here, we report quantitative catalytic conversions of wood and cellulosic solids to liquid and gaseous products in a single stage reactor operating at 300-320 °C and 160-220 bar. Little or no char is formed during this process. The reaction medium is supercritical methanol (sc-MeOH) and the catalyst, a copper-doped porous metal oxide, is composed of earth-abundant materials. The major liquid product is a mixture of C(2)-C(6) aliphatic alcohols and methylated derivatives thereof that are, in principle, suitable for applications as liquid fuels.

  14. Alternative Fuels: Are we Making the Right Choices?

    Science.gov (United States)

    2008-05-01

    diesel at any ratio with little to no modification. (U.S. Environmental Protection Agency, 2002) Homogeneous charge compression ignition ( HCCI ) engines ...have the potential to provide high, diesel-like efficiencies and very low emissions. In an HCCI engine , a dilute, premixed fuel/air charge auto...replacements for fossil fuels in the internal combustion engine . Liquefied petroleum gas (LPG), better known as propane, is a clean-burning fossil fuel

  15. Diesel fuel processor for PEM fuel cells: Two possible alternatives (ATR versus SR)

    Science.gov (United States)

    Cutillo, A.; Specchia, S.; Antonini, M.; Saracco, G.; Specchia, V.

    There are large efforts in exploring the on-board reforming technologies, which would avoid the actual lack of hydrogen infrastructure and related safety issues. From this view point, the present work deals with the comparison between two different 10 kW e fuel processors (FP) systems for the production of hydrogen-rich fuel gas starting from diesel oil, based respectively on autothermal (ATR) and steam-reforming (SR) process and related CO clean-up technologies; the obtained hydrogen rich gas is fed to the PEMFC stack of an auxiliary power unit (APU). Based on a series of simulations with Matlab/Simulink, the two systems were compared in terms of FP and APU efficiency, hydrogen concentration fed to the FC, water balance and process scheme complexity. Notwithstanding a slightly higher process scheme complexity and a slightly more difficult water recovery, the FP based on the SR scheme, as compared to the ATR one, shows higher efficiency and larger hydrogen concentration for the stream fed to the PEMFC anode, which represent key issues for auxiliary power generation based on FCs as compared, e.g. to alternators.

  16. Preliminary analysis of alternative fuel cycles for proliferation evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Steindler, M. J.; Ripfel, H. C.F.; Rainey, R. H.

    1977-01-01

    The ERDA Division of Nuclear Research and Applications proposed 67 nuclear fuel cycles for assessment as to their nonproliferation potential. The object of the assessment was to determine which fuel cycles pose inherently low risk for nuclear weapon proliferation while retaining the major benefits of nuclear energy. This report is a preliminary analysis of these fuel cycles to develop the fuel-recycle data that will complement reactor data, environmental data, and political considerations, which must be included in the overall evaluation. This report presents the preliminary evaluations from ANL, HEDL, ORNL, and SRL and is the basis for a continuing in-depth study. (DLC)

  17. Alternative Fuels Compatibility with Army Equipment Testing - Existent Gum

    Science.gov (United States)

    2012-02-01

    isooctane /toluene blend was proposed as a surrogate to mimic the expected low aromatic content of the 50/50 synthetic/petroleum blends. Table 3...Jet A Solvent Blends (Fuel Surrogates) CL12-3310 Fuel B 70/30 isooctane / toluene CL12-3311 Fuel D 60/40 isooctane / toluene CL12-3312 Fuel XX...90/10 isooctane / toluene proposed surrogate to mimic low aromatic content blends *JP-8 blends: ~1 mg/L Stadis 450, 15 mg/L DCI-4A, 0.15 vol

  18. Particulate emission factors for mobile fossil fuel and biomass combustion sources.

    Science.gov (United States)

    Watson, John G; Chow, Judith C; Chen, L-W Antony; Lowenthal, Douglas H; Fujita, Eric M; Kuhns, Hampden D; Sodeman, David A; Campbell, David E; Moosmüller, Hans; Zhu, Dongzi; Motallebi, Nehzat

    2011-05-15

    PM emission factors (EFs) for gasoline- and diesel-fueled vehicles and biomass combustion were measured in several recent studies. In the Gas/Diesel Split Study (GD-Split), PM(2.5) EFs for heavy-duty diesel vehicles (HDDV) ranged from 0.2 to ~2 g/mile and increased with vehicle age. EFs for HDDV estimated with the U.S. EPA MOBILE 6.2 and California Air Resources Board (ARB) EMFAC2007 models correlated well with measured values. PM(2.5) EFs measured for gasoline vehicles were ~two orders of magnitude lower than those for HDDV and did not correlate with model estimates. In the Kansas City Study, PM(2.5) EFs for gasoline-powered vehicles (e.g., passenger cars and light trucks) were generally fuel, corresponding to 0.3 and 2 g/mile, respectively. These values are comparable to those of on-road HDDV. EFs for biomass burning measured during the Fire Laboratory at Missoula Experiment (FLAME) were compared with EFs from the ARB Emission Estimation System (EES) model. The highest PM(2.5) EFs (76.8±37.5 g/kg) were measured for wet (>50% moisture content) Ponderosa Pine needles. EFs were generally fuels with low moisture content but underestimated measured EFs for fuel with moisture content >40%. Average EFs for dry chamise, rice straw, and dry grass were within a factor of three of values adopted by ARB in California's San Joaquin Valley (SJV). Discrepancies between measured and modeled emission factors suggest that there may be important uncertainties in current PM(2.5) emission inventories.

  19. Use of biomass today; Biomassenutzung heute

    Energy Technology Data Exchange (ETDEWEB)

    Schimpf, H. [Landesanstalt fuer Landwirtschaft und Gartenbau Sachsen-Anhalt/Koordinierungsstelle Nachwachsende Rohstoffe, Bernburg (Germany)

    2005-12-15

    Biomass is a much-mentioned alternative to fossil fuels today. The contribution investigates its current contribution to power supply, and the situation in the state of Sachsen-Anhalt in particular. (orig.)

  20. From lignin to cycloparaffins and aromatics: directional synthesis of jet and diesel fuel range biofuels using biomass.

    Science.gov (United States)

    Bi, Peiyan; Wang, Jicong; Zhang, Yajing; Jiang, Peiwen; Wu, Xiaoping; Liu, Junxu; Xue, He; Wang, Tiejun; Li, Quanxin

    2015-05-01

    The continual growth in commercial aviation fuels and more strict environmental legislations have led to immense interest in developing green aviation fuels from biomass. This paper demonstrated a controllable transformation of lignin into jet and diesel fuel range hydrocarbons, involving directional production of C8-C15 aromatics by the catalytic depolymerization of lignin into C6-C8 low carbon aromatic monomers coupled with the alkylation of aromatics, and the directional production of C8-C15 cycloparaffins by the hydrogenation of aromatics. The key step, the production of the desired C8-C15 aromatics with the selectivity up to 94.3%, was achieved by the low temperature alkylation reactions of the lignin-derived monomers using ionic liquid. The synthetic biofuels basically met the main technical requirements of conventional jet fuels. The transformation potentially provides a useful way for the development of cycloparaffinic and aromatic components in jet fuels using renewable lignocellulose biomass.

  1. Alternative Fuel and Advanced Technology Commercial Lawn Equipment (Spanish version); Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Erik

    2015-06-01

    Powering commercial lawn equipment with alternative fuels or advanced engine technology is an effective way to reduce U.S. dependence on petroleum, reduce harmful emissions, and lessen the environmental impacts of commercial lawn mowing. Numerous alternative fuel and fuel-efficient advanced technology mowers are available. Owners turn to these mowers because they may save on fuel and maintenance costs, extend mower life, reduce fuel spillage and fuel theft, and demonstrate their commitment to sustainability.

  2. Biomass hydrogen production to be used in phosphoric acid fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Ponzano, G.P.; Perego, P.; Palazzi, E.; Ferraiolo, G. [Genoa Univ. (Italy). Inst. of Chem. Engineering Science and Technology

    1995-12-31

    Fuel cells, today, are one of the best and cleanest systems to produce electric energy. Hydrogen is their natural fuel. In this work a bioreactor is adjusted to produce a hydrogen rich biogas from a biomass formed by hydrolysed starch at various concentrations. The study has been based on the use of two types of bacterial cultivation: the first with Escherichia coli, the second one with Enterobacter aerogenes. To produce hydrogen with bacterial cultivation two pathways are possible: photosinthetic or fermentative. In this study the fermentative pathway is utilized because with this method a higher biogas production and an organic waste biodegradation can be obtained. The first scope of the search was concerning the verification of optimal conditions to produce a hydrogen rich biogas in a laboratory batch reactor; the second one was concerning the use of this result for the construction of a packed bed continuous reactor suitable to feed a 5 kW Phosphoric acid fuel cells (PAFC). In the present exposition only the second type is treated because the obtained results have been of the same type but more interesting than those obtained with the first type. This work presents the obtained experimental results and a model of a 5 kW complete plant (reactor-fuel cells) with a technical proposal to realise it. This integrated plant could be utilized to eliminate waste with high BOD generated in big farms and in several industries (food, paper, wood etc.)

  3. Household air pollution from coal and biomass fuels in China: Measurements, health impacts, and interventions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J.J.; Smith, K.R. [University of Medicine & Dentistry New Jersey, Piscataway, NJ (United States). School of Public Health

    2007-06-15

    Nearly all China's rural residents and a shrinking fraction of urban residents use solid fuels (biomass and coal) for household cooking and/or heating. Consequently, global meta-analyses of epidemiologic studies indicate that indoor air pollution from solid fuel use in China is responsible for approximately 420,000 premature deaths annually, more than the approximately 300,000 attributed to urban outdoor air pollution in the country. Our objective in this review was to help elucidate the extent of this indoor air pollution health hazard. We reviewed approximately 200 publications in both Chinese- and English language journals that reported health effects, exposure characteristics, and fuel/stove intervention options. Observed health effects include respiratory illnesses, lung cancer, chronic obstructive pulmonary disease, weakening of the immune system, and reduction in lung function. Arsenic poisoning and fluorosis resulting from the use of 'Poisonous' coal have been observed in certain regions of China. Although attempts have been made in a few studies to identify specific coal smoke constituents responsible for specific adverse health effects, the majority of indoor air measurements include those of only particulate matter, carbon monoxide, sulfur dioxide, and/or nitrogen dioxide. These measurements indicate that pollution levels in households using solid fuel generally exceed China's indoor air quality standards. Intervention technologies ranging from simply adding a chimney to the more complex modernized bioenergy program are available, but they can be viable only with coordinated support from the government and the commercial sector.

  4. Regionalized Techno-Economic Assessment and Policy Analysis for Biomass Molded Fuel in China

    Directory of Open Access Journals (Sweden)

    Jie Xu

    2015-12-01

    Full Text Available As a relatively mature technology, biomass molded fuel (BMF is widely used in distributed and centralized heating in China and has received considerable government attention. Although many BFM incentive policies have been developed, decreased domestic traditional fuel prices in China have caused BMF to lose its economic viability and new policy recommendations are needed to stimulate this industry. The present study built a regionalized net present value (NPV model based on real production process simulation to test the impacts of each policy factor. The calculations showed that BMF production costs vary remarkably between regions, with the cost of agricultural briquette fuel (ABF ranging from 86 US dollar per metric ton (USD/t to 110 (USD/t, while that of woody pellet fuel (WPF varies from 122 USD/t to 154 USD/t. The largest part of BMF’s cost composition is feedstock, which accounts for up 50%–60% of the total; accordingly a feedstock subsidy is the most effective policy factor, but in consideration of policy implementation, it would be better to use a production subsidy. For ABF, the optimal product subsidy varies from 26 USD/t to 57 USD/t among different regions of China, while for WPF, the range is 36 USD/t to 75 USD/t. Based on the data, a regional BMF development strategy is also proposed in this study.

  5. Alternative fuels in cement industry; Alternativa braenslen i cementindustrin

    Energy Technology Data Exchange (ETDEWEB)

    Nyman, K.E.; Ek, R. [Finnsementti Oy, Parainen (Finland); Maekelae, K. [Finreci Oy (Finland)

    1997-10-01

    In this project the cement industry`s possibilities to replace half of the fossil fuels with waste derived fuels are investigated. Bench-scale experiments, pilot plant tests and full scale tests have been done with used tires and plastics wastes

  6. Aircraft emissions of methane and nitrous oxide during the alternative aviation fuel experiment.

    Science.gov (United States)

    Santoni, Gregory W; Lee, Ben H; Wood, Ezra C; Herndon, Scott C; Miake-Lye, Richard C; Wofsy, Steven C; McManus, J Barry; Nelson, David D; Zahniser, Mark S

    2011-08-15

    Given the predicted growth of aviation and the recent developments of alternative aviation fuels, quantifying methane (CH(4)) and nitrous oxide (N(2)O) emission ratios for various aircraft engines and fuels can help constrain projected impacts of aviation on the Earth's radiative balance. Fuel-based emission indices for CH(4) and N(2)O were quantified from CFM56-2C1 engines aboard the NASA DC-8 aircraft during the first Alternative Aviation Fuel Experiment (AAFEX-I) in 2009. The measurements of JP-8 fuel combustion products indicate that at low thrust engine states (idle and taxi, or 4% and 7% maximum rated thrusts, respectively) the engines emit both CH(4) and N(2)O at a mean ± 1σ rate of 170 ± 160 mg CH(4) (kg Fuel)(-1) and 110 ± 50 mg N(2)O (kg Fuel)(-1), respectively. At higher thrust levels corresponding to greater fuel flow and higher engine temperatures, CH(4) concentrations in engine exhaust were lower than ambient concentrations. Average emission indices for JP-8 fuel combusted at engine thrusts between 30% and 100% of maximum rating were -54 ± 33 mg CH(4) (kg Fuel)(-1) and 32 ± 18 mg N(2)O (kg Fuel)(-1), where the negative sign indicates consumption of atmospheric CH(4) in the engine. Emission factors for the synthetic Fischer-Tropsch fuels were statistically indistinguishable from those for JP-8.

  7. Regional refining models for alternative fuels using shale and coal synthetic crudes: identification and evaluation of optimized alternative fuels. Annual report, March 20, 1979-March 19, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Sefer, N.R.; Russell, J.A.

    1980-11-01

    The initial phase has been completed in the project to evaluate alternative fuels for highway transportation from synthetic crudes. Three refinery models were developed for Rocky Mountain, Mid-Continent and Great Lakes regions to make future product volumes and qualities forecast for 1995. Projected quantities of shale oil and coal oil syncrudes were introduced into the raw materials slate. Product slate was then varied from conventional products to evaluate maximum diesel fuel and broadcut fuel in all regions. Gasoline supplement options were evaluated in one region for 10% each of methanol, ethanol, MTBE or synthetic naphtha in the blends along with syncrude components. Compositions and qualities of the fuels were determined for the variation in constraints and conditions established for the study. Effects on raw materials, energy consumption and investment costs were reported. Results provide the basis to formulate fuels for laboratory and engine evaluation in future phases of the project.

  8. STORAGE OF COMMINUTED AND UNCOMMINUTED FOREST BIOMASS AND ITS EFFECT ON FUEL QUALITY

    Directory of Open Access Journals (Sweden)

    Muhammad T. Afzal

    2010-02-01

    Full Text Available White birch was stored in the form of bundles, wood chips, and loose slash for a period of one year to examine the changes in biomass fuel properties. The samples were collected at regular quarterly intervals to measure moisture content, CNS content, ash content, and calorific value. Data loggers were also placed into the stored woody biomass to measure the temperature change inside the piles. After the first quarter of the storage period and continuing into the next three months of storage, the moisture content showed the most significant change. The moisture content of the biomass bundles increased from 29 % to above 80 % (db. The moisture content of the pile of wood chips covered with a tarp decreased from 51% to 26% and showed a continuous decline in moisture content to the end of storage period to an average range of 16.5% (db. However, the moisture content of uncovered wood chip pile was observed to continuously increase throughout the storage period, resulting in more than double in magnitude from 59% to 160% (db. The dry matter loss was higher in wood chip piles (8~27% than in bundles (~3%. Among the other properties, there was slightly higher loss of calorific value in wood chips (~1.6% as compared to bundles (~0.7% at the end of one year.

  9. Biomass production from electricity using ammonia as an electron carrier in a reverse microbial fuel cell.

    Directory of Open Access Journals (Sweden)

    Wendell O Khunjar

    Full Text Available The storage of renewable electrical energy within chemical bonds of biofuels and other chemicals is a route to decreasing petroleum usage. A critical challenge is the efficient transfer of electrons into a biological host that can covert this energy into high energy organic compounds. In this paper, we describe an approach whereby biomass is grown using energy obtained from a soluble mediator that is regenerated electrochemically. The net result is a separate-stage reverse microbial fuel cell (rMFC that fixes CO₂ into biomass using electrical energy. We selected ammonia as a low cost, abundant, safe, and soluble redox mediator that facilitated energy transfer to biomass. Nitrosomonas europaea, a chemolithoautotroph, was used as the biocatalyst due to its inherent capability to utilize ammonia as its sole energy source for growth. An electrochemical reactor was designed for the regeneration of ammonia from nitrite, and current efficiencies of 100% were achieved. Calculations indicated that overall bioproduction efficiency could approach 2.7±0.2% under optimal electrolysis conditions. The application of chemolithoautotrophy for industrial bioproduction has been largely unexplored, and results suggest that this and related rMFC platforms may enable biofuel and related biochemical production.

  10. Progress and challenges in utilization of palm oil biomass as fuel for decentralized electricity generation

    Energy Technology Data Exchange (ETDEWEB)

    Bazmi, Aqeel Ahmed [Process Systems Engineering Centre (PROSPECT), Department of Chemical Engineering, Faculty of Chemical and Natural Resources Engineering, University Technology Malaysia, Skudai 81310, Johor Bahru, JB (Malaysia); Biomass Conversion Research Center (BCRC), Department of Chemical Engineering, COMSATS Institute of Information Technology, Lahore (Pakistan); Zahedi, Gholamreza; Hashim, Haslenda [Process Systems Engineering Centre (PROSPECT), Department of Chemical Engineering, Faculty of Chemical and Natural Resources Engineering, University Technology Malaysia, Skudai 81310, Johor Bahru, JB (Malaysia)

    2011-01-15

    It has been broadly accepted worldwide that global warming, indeed, is the greatest threat of the time to the environment. Renewable energy (RE) is expected as a perfect solution to reduce global warming and to endorse sustainable development. Progressive release of greenhouse gases (GHG) from increasing energy-intensive industries has eventually caused human civilization to suffer. Realizing the exigency of reducing emissions and simultaneously catering to needs of industries, researchers foresee the RE as the perfect entrant to overcome these challenges. RE provides an effective option for the provision of energy services from the technical point of view while biomass, a major source of energy in the world until before industrialization when fossil fuels become dominant, appears an important renewable source of energy and researches have proven from time to time its viability for large-scale production. Being a widely spread source, biomass offers the execution of decentralized electricity generation gaining importance in liberalized electricity markets. The decentralized power is characterized by generation of electricity nearer to the demand centers, meeting the local energy needs. Researchers envisaged an increasing decentralization of power supply, expected to make a particular contribution to climate protection. This article investigates the progress and challenges for decentralized electricity generation by palm oil biomass according to the overall concept of sustainable development. (author)

  11. Poly(3-hydroxypropionate): a promising alternative to fossil fuel-based materials.

    Science.gov (United States)

    Andreessen, Björn; Taylor, Nicolas; Steinbüchel, Alexander

    2014-11-01

    Polyhydroxyalkanoates (PHAs) are storage compounds synthesized by numerous microorganisms and have attracted the interest of industry since they are biobased and biodegradable alternatives to fossil fuel-derived plastics. Among PHAs, poly(3-hydroxypropionate) [poly(3HP)] has outstanding material characteristics and exhibits a large variety of applications. As it is not brittle like, e.g., the best-studied PHA, poly(3-hydroxybutyrate) [poly(3HB)], it can be used as a plasticizer in blends to improve their properties. Furthermore, 3-hydroxypropionic acid (3HP) is considered likely to become one of the new industrial building blocks, and it can be obtained from poly(3HP) by simple hydrolysis. Unfortunately, no natural organism is known to accumulate poly(3HP) so far. Thus, several efforts have been made to engineer genetically modified organisms capable of synthesizing the homopolymer or copolymers containing 3HP. In this review, the achievements made so far in efforts to obtain biomass which has accumulated poly(3HP) or 3HP-containing copolymers, as well as the properties of these polyesters and their applications, are compiled and evaluated.

  12. SO2 Release as a Consequence of Alternative Fuel Combustion in Cement Rotary Kiln Inlets

    DEFF Research Database (Denmark)

    Cortada Mut, Maria del Mar; Nørskov, Linda Kaare; Glarborg, Peter;

    2015-01-01

    The combustion of alternative fuels in direct contact with the bed material of the rotary kiln may cause local reducing conditions and, subsequently, decomposition of sulfates from cement raw materials, increasing the SO2 concentration in the gas phase. The decomposition of sulfates increases......-temperature rotary drum, focusing on the influence of the fuel particle size and volatile content. The SO2 release increased with a decreasing fuel particle size and with an increasing fuel volatile content. Furthermore, CO, H2, and CH4, which are the main reducing gases released during fuel devolatilization, were...

  13. Low Emissions Burner Technology for Metal Processing Industry using Byproducts and Biomass Derived Liquid Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Ajay; Taylor, Robert

    2013-09-30

    path forward to utilize both fossil and alternative liquid fuels in the same combustion system. In particular, experiments show that straight VO can be cleanly combusted without the need for chemical processing or preheating steps, which can result in significant economic and environmental benefits. Next, low-emission combustion of glycerol/methane was achieved by utilizing FB injector to yield fine droplets of highly viscous glycerol. Heat released from methane combustion further improves glycerol pre-vaporization and thus its clean combustion. Methane addition results in an intensified reaction zone with locally high temperatures near the injector exit. Reduction in methane flow rate elongates the reaction zone, which leads to higher CO emissions and lower NOx emissions. Similarly, higher air to liquid (ALR) mass ratio improves atomization and fuel pre-vaporization and shifts the flame closer to the injector exit. In spite of these internal variations, all fuel mixes of glycerol with methane produced similar CO and NOx emissions at the combustor exit. Results show that FB concept provides low emissions with the flexibility to utilize gaseous and highly viscous liquid fuels, straight VO and glycerol, without preheating or preprocessing the fuels. Following these initial experiments in quartz combustor, we demonstrated that glycerol combustion can be stably sustained in a metal combustor. Phase Doppler Particle Analyzer (PDPA) measurements in glycerol/methane flames resulted in flow-weighted Sauter Mean Diameter (SMD) of 35 to 40 μm, depending upon the methane percentage. This study verified that lab-scale dual-fuel burner using FB injector can successfully atomize and combust glycerol and presumably other highly viscous liquid fuels at relatively low HRR (<10 kW). For industrial applications, a scaled-up glycerol burner design thus seemed feasible.

  14. Assessment of costs and benefits of flexible and alternative fuel use in the US transportation sector

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    The DOE is conducting a comprehensive technical analysis of a flexible-fuel transportation system in the United States -- that is, a system that could easily switch between petroleum and another fuel, depending on price and availability. The DOE Alternative Fuels Assessment is aimed directly at questions of energy security and fuel availability, but covers a wide range of issues. This report examines environmental, health, and safety concerns associated with a switch to alternative- and flexible-fuel vehicles. Three potential alternatives to oil-based fuels in the transportation sector are considered: methanol, compressed natural gas (CNG), and electricity. The objective is to describe and discuss qualitatively potential environmental, health, and safety issues that would accompany widespread use of these three fuels. This report presents the results of exhaustive literature reviews; discussions with specialists in the vehicular and fuel-production industries and with Federal, State, and local officials; and recent information from in-use fleet tests. Each chapter deals with the end-use and process emissions of air pollutants, presenting an overview of the potential air pollution contribution of the fuel --relative to that of gasoline and diesel fuel -- in various applications. Carbon monoxide, particulate matter, ozone precursors, and carbon dioxide are emphasized. 67 refs., 6 figs. , 8 tabs.

  15. Integration of heterogeneous and biochemical catalysis for production of fuels and chemicals from biomass.

    Science.gov (United States)

    Wheeldon, Ian; Christopher, Phillip; Blanch, Harvey

    2017-03-30

    The past decade has seen significant government and private investment in fundamental research and process development for the production of biofuels and chemicals from lignocellulosic biomass-derived sugars. This investment has helped create new metabolic engineering and synthetic biology approaches, novel homogeneous and heterogeneous catalysts, and chemical and biological routes that convert sugars, lignin, and waste products such as glycerol into hydrocarbon fuels and valuable chemicals. With the exception of ethanol, economical biofuels processes have yet to be realized. A potentially viable way forward is the integration of biological and chemical catalysis into processes that exploit the inherent advantages of each technology while circumventing their disadvantages. Microbial fermentation excels at converting sugars from low-cost raw materials streams into simple alcohols, acids, and other reactive intermediates that can be condensed into highly reduced, long and branched chain hydrocarbons and other industrially useful compounds. Chemical catalysis most often requires clean feed streams to avoid catalyst deactivation, but the chemical and petroleum industries have developed large scale processes for C-C coupling, hydrogenation, and deoxygenation that are driven by low grade heat and low-cost feeds such as hydrogen derived from natural gas. In this context, we suggest that there is a reasonably clear route to the high yield synthesis of biofuels from biomass- or otherwise derived-fermentable sugars: the microbial production of reactive intermediates that can be extracted or separated into clean feed stream for upgrading by chemical catalysis. When coupled with new metabolic engineering strategies that maximize carbon and energy yields during fermentation, biomass-to-fuels processes may yet be realized.

  16. Characterization of biomass producer gas as fuel for stationary gas engines in combined heat and power production

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper

    2008-01-01

    The aim of this project has been the characterization of biomass producer gas as a fuel for stationary gas engines in heat and power production. More than 3200 hours of gas engine operation, with producer gas as fuel, has been conducted at the biomass gasification combined heat and power (CHP......)demonstration and research plant,named “Viking” at the Technical University of Denmark. The plant and engine have been operated continuously and unmanned. Producer gas properties and contaminations have been investigated. No detectable tar content was observed in the gas that goes to the engine; this was confirmed by three...... from 50% to 90% load. Biomass producer gas is an excellent lean burn engine fuel: Operation of a natural aspirated engine has been achieved for 1.2...

  17. SPUTUM CYTOLOGY CULTURE HAEMATOLOGICAL CHANGES AND AIR QUALITY IN CHRONIC EXPOSURE TO SMOKE FROM BIOMASS FUEL IN RURAL AREA OF SOUTH INDIA

    Directory of Open Access Journals (Sweden)

    Razia Sultana

    2016-08-01

    Full Text Available BACKGROUND Air pollution is generally perceived as an urban problem associated with automobiles and industries. However, half of the world’s population in rural areas of the developing countries is exposed to some of the highest levels of air pollution due to burning of traditional biomass fuels. In view of this, the health impact of biomass fuel use in rural India has been evaluated in this study. OBJECTIVES To analyse the mass concentration in biomass fuel user and LPG user household and to investigate the effects of biomass smoke exposure in a group of rural women who cook regularly with biomass fuels and compare the results obtained from control group women who cook relatively cleaner fuel, liquefied petroleum gas (LPG. METHODS Respiratory health was evaluated from Questionnaire survey, Clinical examination, haematology, sputum cytology culture and serum C-reactive protein (CRP levels are investigated in biomass and control users. RESULTS A total of 150 women were approached, of which only 70 non-smoking women without any history of any major chronic illness in the past were selected for this study. CRP levels differ significantly in biomass exposure than control users. CONCLUSION From our study it is clear that with increasing duration of exposure to biomass fuel combustion. Women who used to cook with traditional biomass fuels had low haemoglobin & Red Blood Cells values, increased neutrophil and allergic manifestations. Sputum cytology of majority biomass users revealed bacterial infections & chronic inflammation.

  18. Liquid fuels production from biomass. Progress report No. 7, January 1-March 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Sanderson, J.E.; Garcia-Martinez, D.V.; George, G.S.; Dillon, J.J.; Wise, D.L.

    1979-01-01

    The current program to convert biomass into liquid hydrocarbon fuels is an extension of the previous program to ferment marine algae to acetic acid. In that study, it was found that marine algae could be converted to higher aliphatic organic acids and that these acids could be readily removed from the fermentation broth by membrane or liquid-liquid extraction. It was then proposed to convert these higher organic acids to aliphatic hydrocarbons via Kolbe Electrolysis, which may be used as a diesel fuel. The specific goals for the current program are: (1) establish conditions under which substrates other than marine algae may be converted in good yield to organic acids. The primary task in this regard is methane suppression; (2) modify the current 300 liter fixed packed bed batch fermenter to operate in a continuous mode; (3) change from membrane extraction of organic acids to liquid-liquid extraction; (4) optimize the energy balance of the electrolytic oxidation process. The primary task in this regard is to reduce the working potential required for the electrolysis while maintaining an adequate current density; (5) scale the entire process up to match the ouput of the 300 liter fermenter. The accomplishments in this program are on schedule. Experimental results have shown that the electrolysis of organic acids produced by fermentation to liquid hydrocarbon fuels is already operating with a favorable energy balance of 6/1 based on the applied potential and over 10/1 based on the working potential. 2-Bromoethanesulfonic acid, a coenzyme M analogue, has been shown to be an effective methane suppressor, and the program is being rapidly expanded to include biomass substrates other than marine algae. In addition, considerable effort has been directed toward refining the process design and economic analysis presented previously.

  19. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen; Workshop Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Melaina, M. W.; McQueen, S.; Brinch, J.

    2008-07-01

    DOE sponsored the Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen workshop to understand how lessons from past experiences can inform future efforts to commercialize hydrogen vehicles. This report contains the proceedings from the workshop.

  20. Atmospheric Photochemistry Studies of Pollutant Emissions from Transportation Vehicles Operating on Alternative Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Jeffries, H.; Sexton, K.; Yu, J.

    1998-07-01

    This project was undertaken with the goal of improving our ability to predict the changes in urban ozone resulting from the widespread use of alternative fuels in automobiles. This report presents the results in detail.

  1. Foliage and Grass as Fuel Pellets–Small Scale Combustion of Washed and Mechanically Leached Biomass

    Directory of Open Access Journals (Sweden)

    Jan Hari Arti Khalsa

    2016-05-01

    Full Text Available The high contents of disadvantageous elements contained in non-woody biomass are known to cause problems during small and large scale combustion, typically resulting in a higher risk of slagging, corrosion, and increased emissions. Mechanically leaching the respective elements from the biomass through a sequence of process steps has proven to be a promising solution.The florafuel process used here is comprised of size reduction followed by washing and subsequent mechanical dewatering of the biomass. Densification of the upgraded biomass into standardized pellets (Ø 6mm enables an application in existing small-scale boilers. The presented combustion trials investigated the performance of pellets made from leached grass, foliage and a mixture of both in two small-scale boilers (<100 kWth with slightly different technology (moving grate versus water-cooled burner tube during a 4-h measurement period. Emissions were in accordance with German emissions standards except for NOx (threshold is 0.50 g/m3 in the case of pure grass pellets (0.51 g/m3 and particulate matter (PM in all but one case (foliage, 13–16 mg/m3. An electrostatic precipitator (ESP unit installed with one of the boilers successfully reduced PM emission of both the grass and mixture fuel below the threshold of 20 mg/m3 (all emission values refer to 13 vol.% O2, at standard temperature and pressure (STP. Bottom ash composition and grate temperature profiles were analyzed and discussed for one of the boilers.

  2. Cellulosic fuel ethanol: alternative fermentation process designs with wild-type and recombinant Zymomonas mobilis.

    Science.gov (United States)

    Lawford, Hugh G; Rousseau, Joyce D

    2003-01-01

    Iogen (Canada) is a major manufacturer of industrial cellulase and hemicellulase enzymes for the textile, pulp and paper, and poultry feed industries. Iogen has recently constructed a 40 t/d biomass-to-ethanol demonstration plant adjacent to its enzyme production facility. The integration of enzyme and ethanol plants results in significant reduction in production costs and offers an alternative use for the sugars generated during biomass conversion. Iogen has partnered with the University of Toronto to test the fermentation performance characteristics of metabolically engineered Zymomonas mobilis created at the National Renewable Energy Laboratory. This study focused on strain AX101, a xylose- and arabinose-fermenting stable genomic integrant that lacks the selection marker gene for antibiotic resistance. The "Iogen Process" for biomass depolymerization consists of a dilute-sulpfuric acid-catalyzed steam explosion, followed by enzymatic hydrolysis. This work examined two process design options for fermentation, first, continuous cofermentation of C5 and C6 sugars by Zm AX101, and second, separate continuous fermentations of prehydrolysate by Zm AX101 and cellulose hydrolysate by either wildtype Z. mobilis ZM4 or an industrial yeast commonly used in the production of fuel ethanol from corn. Iogen uses a proprietary process for conditioning the prehydrolysate to reduce the level of inhibitory acetic acid to at least 2.5 g/L. The pH was controlled at 5.5 and 5.0 for Zymomonas and yeast fermentations, respectively. Neither 2.5 g/L of acetic acid nor the presence of pentose sugars (C6:C5 = 2:1) appreciably affected the high-performance glucose fermentation of wild-type Z. mobilis ZM4. By contrast, 2.5 g/L of acetic acid significantly reduced the rate of pentose fermentation by strain AX101. For single-stage continuous fermentation of pure sugar synthetic cellulose hydrolysate (60 g/L of glucose), wild-type Zymomonas exhibited a four-fold higher volumetric productivity

  3. Alternative Sources of Energy - An Introduction to Fuel Cells

    Science.gov (United States)

    Merewether, E.A.

    2003-01-01

    Fuel cells are important future sources of electrical power and could contribute to a reduction in the amount of petroleum imported by the United States. They are electrochemical devices similar to a battery and consist of a container, an anode, a cathode, catalysts, an intervening electrolyte, and an attached electrical circuit. In most fuel cell systems, hydrogen is supplied to the anode and oxygen to the cathode which results in the production of electricity, water, and heat. Fuel cells are comparatively efficient and reliable, have no moving parts, operate without combustion, and are modular and scale-able. Their size and shape are flexible and adaptable. In operation, they are nearly silent, are relatively safe, and generally do not pollute the environment. During recent years, scientists and engineers have developed and refined technologies relevant to a variety of fuel cells. Types of fuel cells are commonly identified by the composition of their electrolyte, which could be either phosphoric acid, an alkaline solution, a molten carbonate, a solid metal oxide, or a solid polymer membrane. The electrolyte in stationary power plants could be phosphoric acid, molten carbonates, or solid metal oxides. For vehicles and smaller devices, the electrolyte could be an alkaline solution or a solid polymer membrane. For most fuel cell systems, the fuel is hydrogen, which can be extracted by several procedures from many hydrogen-bearing substances, including alcohols, natural gas (mainly methane), gasoline, and water. There are important and perhaps unresolved technical problems associated with using fuel cells to power vehicles. The catalysts required in several systems are expensive metals of the platinum group. Moreover, fuel cells can freeze and not work in cold weather and can be damaged by impacts. Storage tanks for the fuels, particularly hydrogen, must be safe, inexpensive, of a reasonable size, and contain a supply sufficient for a trip of several hundred miles

  4. Potentials of Selected Malaysian Biomasses as Co-Gasification Fuels with Oil Palm Fronds in a Fixed-Bed Downdraft Gasifier

    Directory of Open Access Journals (Sweden)

    Moni Mohamad Nazmi Zaidi

    2014-07-01

    Full Text Available Oil palm frond (OPF has been successfully gasified to produce syngas and has since deemed as a potential source of biomass fuel in Malaysia. However, if OPF is to be utilized as a main fuel for industrial-scale firing/gasification plant, interruption in fuel supply may occur due to numerous reasons, for instance inefficient fuel processing and ineffective transportation. A secondary supporting solid fuel is therefore necessary as a partial component to the main fuel in such cases, where the secondary fuel is combusted with the main fuel to adhere to main fuel shortage. Gasification of two fuels together, known as co-gasification, is practiced worldwide, some in industrial scale. However, current practice utilizes biomass fuel as the secondary fuel to coal in co-gasification. This investigation explores into the feasibility of co-gasifying two biomass fuels together to produce syngas. OPF was chosen as the primary fuel and a selection of Malaysian biomasses were studied to discover their compatibility with OPF in co-gasification. Biomass selection was made using score-and-rank method and their selection criteria are concisely discussed.

  5. Volumetric combustion of torrefied biomass for large percentage biomass co-firing up to 100% fuel switch

    OpenAIRE

    Li, Jun

    2014-01-01

    The co-firing of biomass and coal plays an important role in increasing the biomass power capacity and reducing greenhouse gas (GHG) emissions. The challenges of the large percentage biomass co-firing (over 20% on energy basis) in existing pulverized coal boilers are keeping the same steam parameters and having a high boiler efficiency and a stable operating. The primary goal of this thesis is to develop a combustion concept for coal-fired boilers to enablea large percentage of biomass co-fir...

  6. State of the Art on Alternative Fuels in Aviation. Executive summary

    NARCIS (Netherlands)

    Blakey, S.; Novelli, P.; Costes, P.; Bringtown, S.; Christensen, D.; Sakintuna, B.; Peineke, C.; Jongschaap, R.E.E.; Conijn, J.G.; Rutgers, B.; Valot, L.; Joubert, E.; Perelgritz, J.F.; Filogonio, A.; Roetger, T.; Prieur, A.; Starck, L.; Jeuland, N.; Bogers, P.; Midgley, R.; Bauldreay, J.; Rollin, G.; Rye, L.; Wilson, C.

    2010-01-01

    This paper summarises the findings from the SWAFEA preliminary state of the art study. It covers trends in aspects of future air transport, potential candidate fuels and associated feedstock along with sustainability and economical issues relevant for alternative fuels in aviation..

  7. Natural Gas and Cellulosic Biomass: A Clean Fuel Combination? Determining the Natural Gas Blending Wall in Biofuel Production.

    Science.gov (United States)

    M Wright, Mark; Seifkar, Navid; Green, William H; Román-Leshkov, Yuriy

    2015-07-07

    Natural gas has the potential to increase the biofuel production output by combining gas- and biomass-to-liquids (GBTL) processes followed by naphtha and diesel fuel synthesis via Fischer-Tropsch (FT). This study reflects on the use of commercial-ready configurations of GBTL technologies and the environmental impact of enhancing biofuels with natural gas. The autothermal and steam-methane reforming processes for natural gas conversion and the gasification of biomass for FT fuel synthesis are modeled to estimate system well-to-wheel emissions and compare them to limits established by U.S. renewable fuel mandates. We show that natural gas can enhance FT biofuel production by reducing the need for water-gas shift (WGS) of biomass-derived syngas to achieve appropriate H2/CO ratios. Specifically, fuel yields are increased from less than 60 gallons per ton to over 100 gallons per ton with increasing natural gas input. However, GBTL facilities would need to limit natural gas use to less than 19.1% on a LHV energy basis (7.83 wt %) to avoid exceeding the emissions limits established by the Renewable Fuels Standard (RFS2) for clean, advanced biofuels. This effectively constitutes a blending limit that constrains the use of natural gas for enhancing the biomass-to-liquids (BTL) process.

  8. Low-temperature co-pyrolysis of a low-rank coal and biomass to prepare smokeless fuel briquettes

    Energy Technology Data Exchange (ETDEWEB)

    Blesa, M.J.; Miranda, J.L.; Moliner, R.; Izquierdo, M.T. [Instituto de Carboquimica CSIC, P.O. Box 589, 50080 Zaragoza (Spain); Palacios, J.M. [Instituto de Catalisis y Petroleoquimica CSIC, Cantoblanco, 28049 Madrid (Spain)

    2003-12-01

    Smokeless fuel briquettes have been prepared with low-rank coal and biomass. These raw materials have been mixed in different ratios and have been pyrolysed at 600C with the aim to reduce both the volatile matter and the sulphur content, and to increase the high calorific value (HCV). The co-pyrolysis of coal and biomass has shown a synergetic effect. The biomass favours the release of hydrogen sulphide during the thermal treatment. This fact can be explained in terms of the hydrogen-donor character of the biomass. Moreover, the optimisation of the amount of binder and the influence of different types of biomass in the blend have been studied with respect to the mechanical properties of the briquettes (impact resistance, compression strength and abrasion). Briquettes prepared with sawdust (S) present better mechanical properties than those with olive stones (O) because of its fibrous texture.

  9. Potentials of Selected Malaysian Biomasses as Co-Gasification Fuels with Oil Palm Fronds in a Fixed-Bed Downdraft Gasifier

    OpenAIRE

    Moni Mohamad Nazmi Zaidi; Sulaiman Shaharin Anwar; Hassan Suhaimi

    2014-01-01

    Oil palm frond (OPF) has been successfully gasified to produce syngas and has since deemed as a potential source of biomass fuel in Malaysia. However, if OPF is to be utilized as a main fuel for industrial-scale firing/gasification plant, interruption in fuel supply may occur due to numerous reasons, for instance inefficient fuel processing and ineffective transportation. A secondary supporting solid fuel is therefore necessary as a partial component to the main fuel in such cases, where the ...

  10. Liquid fuels production from biomass. Progress report No. 6, 1 October-31 December 1978

    Energy Technology Data Exchange (ETDEWEB)

    Sanderson, J.E.; Wise, D.L.

    1978-01-01

    The current program to convert biomass into liquid hydrocarbon fuels is an extension of the previous program to ferment marine algae to acetic acid. In that study, it was found that marine algae could be converted to higher aliphatic organic acids and that these acids could be readily removed from the fermentation both by membrane or liquid-liquid extraction. It was then proposed to convert these higher organic acids to aliphatic hydrocarbons via Kolbe Electrolysis, which may be used as a diesel fuel. The specific goals for the current program are: (1) establish conditions under which substrates other than marine algae may be converted in good yield to organic acids. The primary task in this regard is methane suppression; (2) modify the current 300 liter fixed packed bed batch fermenter to operate in a continuous mode; (3) change from membrane extraction of organic acids to liquid-liquid extraction; (4) optimize the energy balance of the electrolytic oxidation process. The primary task in this regard is to reduce the working potential required for the electrolysis while maintaining an adequate current density; and (5) scale the entire process up to match the output of the 300 liter fermenter. The accomplishments in this program are on schedule. Experimental results show that the electrolysis of organic acids produced by fermentation to liquid hydrocarbon fuels already have a favorable energy balance of 6/1 based on the applied potential and over 10/1 based on the working potential.

  11. Scientific bases of biomass processing into basic component of aviation fuel

    Science.gov (United States)

    Kachalov, V. V.; Lavrenov, V. A.; Lishchiner, I. I.; Malova, O. V.; Tarasov, A. L.; Zaichenko, V. M.

    2016-11-01

    A combination of feedstock pyrolysis and the cracking of the volatile pyrolysis products on the charcoal at 1000 °C allows to obtain a tarless synthesis gas which contains 90 vol% or more of carbon monoxide and hydrogen in approximately equal proportions. Basic component of aviation fuel was synthesized in a two-stage process from gas obtained by pyrolytic processing of biomass. Methanol and dimethyl ether can be efficiently produced in a two-layer loading of methanolic catalyst and γ-Al2O3. The total conversion of CO per pass was 38.2% using for the synthesis of oxygenates a synthesis gas with adverse ratio of H2/CO = 0.96. Conversion of CO to CH3OH was 15.3% and the conversion of CO to dimethyl ether was 20.9%. A high yield of basic component per oxygenates mass (44.6%) was obtained during conversion. The high selectivity of the synthesis process for liquid hydrocarbons was observed. An optimal recipe of aviation fuel B-92 based on a synthesized basic component was developed. The prototype of aviation fuel meets the requirements for B-92 when straight fractions of 50-100 °C (up to 35 wt%), isooctane (up to 10 wt%) and ethyl fluid (2.0 g/kg calculated as tetraethyl lead) is added to the basic component.

  12. Investing in Alternative Fuel Infrastructure: Insights for California from Stakeholder Interviews: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Melaina, Marc; Muratori, Matteo; McLaren, Joyce; Schwabe, Paul

    2017-03-13

    Increased interest in the use of alternative transportation fuels, such as natural gas, hydrogen, and electricity, is being driven by heightened concern about the climate impacts of gasoline and diesel emissions and our dependence on finite oil resources. A key barrier to widespread adoption of low- and zero-emission passenger vehicles is the availability of refueling infrastructure. Recalling the 'chicken and egg' conundrum, limited adoption of alternative fuel vehicles increases the perceived risk of investments in refueling infrastructure, while lack of refueling infrastructure inhibits vehicle adoption. In this paper, we present the results of a study of the perceived risks and barriers to investment in alternative fuels infrastructure, based on interviews with industry experts and stakeholders. We cover barriers to infrastructure development for three alternative fuels for passenger vehicles: compressed natural gas, hydrogen, and electricity. As an early-mover in zero emission passenger vehicles, California provides the early market experience necessary to map the alternative fuel infrastructure business space. Results and insights identified in this study can be used to inform investment decisions, formulate incentive programs, and guide deployment plans for alternative fueling infrastructure in the U.S. and elsewhere.

  13. Evaluation of wood residues from Crete as alternative fuels

    Directory of Open Access Journals (Sweden)

    D. Vamvuka, G. Bandelis

    2010-07-01

    Full Text Available Olive and citrus prunings, the main agricultural residues of Crete, are considered to be of premium importance for local energy production, substituting a large part of conventional fuels. The thermal behaviour of these fuels during combustion was studied by thermogravimetry, at non-isothermal heating conditions. Fly ashes were collected from tests in a lab-scale fluidized bed facility. The effect of the inorganic constituents of the fuels on slagging/fouling and agglomeration propensities, as well as environmental pollution was examined. Kinetic models were developed and reaction rates were determined. The agroresidues studied were characterized as good quality fuels, having high volatile and low ash and sulphur contents. Their ash was rich in Ca, Si, K and P minerals. However, fly ashes were poorer in alkali compounds, implying lower deposition and corrosion problems in boilers. The environmental impact of heavy metals is negligible. The thermochemical reactivity of the two fuels in air was very similar. A power low model fitted the experimental results accurately.

  14. Energy, Environmental, and Economic Analyses of Design Concepts for the Co-Production of Fuels and Chemicals with Electricity via Co-Gasification of Coal and Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Eric Larson; Robert Williams; Thomas Kreutz; Ilkka Hannula; Andrea Lanzini; Guangjian Liu

    2012-03-11

    The overall objective of this project was to quantify the energy, environmental, and economic performance of industrial facilities that would coproduce electricity and transportation fuels or chemicals from a mixture of coal and biomass via co-gasification in a single pressurized, oxygen-blown, entrained-flow gasifier, with capture and storage of CO{sub 2} (CCS). The work sought to identify plant designs with promising (Nth plant) economics, superior environmental footprints, and the potential to be deployed at scale as a means for simultaneously achieving enhanced energy security and deep reductions in U.S. GHG emissions in the coming decades. Designs included systems using primarily already-commercialized component technologies, which may have the potential for near-term deployment at scale, as well as systems incorporating some advanced technologies at various stages of R&D. All of the coproduction designs have the common attribute of producing some electricity and also of capturing CO{sub 2} for storage. For each of the co-product pairs detailed process mass and energy simulations (using Aspen Plus software) were developed for a set of alternative process configurations, on the basis of which lifecycle greenhouse gas emissions, Nth plant economic performance, and other characteristics were evaluated for each configuration. In developing each set of process configurations, focused attention was given to understanding the influence of biomass input fraction and electricity output fraction. Self-consistent evaluations were also carried out for gasification-based reference systems producing only electricity from coal, including integrated gasification combined cycle (IGCC) and integrated gasification solid-oxide fuel cell (IGFC) systems. The reason biomass is considered as a co-feed with coal in cases when gasoline or olefins are co-produced with electricity is to help reduce lifecycle greenhouse gas (GHG) emissions for these systems. Storing biomass-derived CO

  15. Fuels production by the thermochemical transformation of the biomass; La production de carburants par transformation thermochimique de la biomasse

    Energy Technology Data Exchange (ETDEWEB)

    Claudet, G. [CEA, 75 - Paris (France)

    2005-07-01

    The biomass is a local and renewable energy source, presenting many advantages. This paper proposes to examine the biomass potential in France, the energy valorization channels (thermochemical chains of thermolysis and gasification) with a special interest for the hydrogen production and the research programs oriented towards the agriculture and the forest. (A.L.B.)

  16. 75 FR 26165 - Regulation of Fuels and Fuel Additives: Alternative Affirmative Defense Requirements for Ultra...

    Science.gov (United States)

    2010-05-11

    ... Strategies Division, Office of Transportation and Air Quality, Office of Air and Radiation, Environmental... production, importation, distribution, marketing, or retailing of diesel fuel and production of gasoline... Marketers and Distributors. Industry 484220 4212 Diesel Fuel Carriers. \\a\\ North American...

  17. Use of hazelnut kernel oil methyl ester and its blends as alternative fuels in diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Guemues, M.; Atmaca, M. [Marmara Univ., Istanbul (Turkey). Mechanical Department

    2008-09-30

    Interest in vegetable oil as an alternative to diesel fuel in diesel engines has increased during the last few decades because reserves of petroleum fuel and its derivatives are diminishing rapidly, and because they have harmful effects on the environment. Numerous vegetable oil esters have been tried as alternatives to diesel fuel. Many researchers have reported that with the use of vegetable oil ester as a fuel in diesel engiens there is a decrease in harmful exhaust emissions and engine performance that is the equivalent of diesel fuel. Several studies have found that biodiesel emits far less of the most regulated pollutants than standard diesel fuel. Decreasing carbon dioxide (CO{sub 2}) emissions by using biodiesel contributes to reducing the greenhouse effect. Furthermore, diminishing carbon monoxide (CO), hydrocarbons (HC), nitrogen oxides (NO{sub x}), and smoke density improves air quality. Essential oils that have been tested in diesel engines are soybean, sunflower, corn, safflower, cottonseed, and rapeseed, which are categorized as edible oils; however, some edible oils, such as neat hazelnut kernel oil, have not been comprehensively tested as alternative fuel in diesel engines. In this study, hazelnut (Corylus avellana L.) kernel oil was evaluated as an alternative fuel in diesel engines. Firstly, the optimum transesteri.cation reaction conditions for hazelnut kernel oil, with respect to reaction temperature, volumetric ratio of reactants, and catalyst, were investigated. Secondly, an experimental investigation was carried out to examine performance and emissions of a direct injection diesel engine running on hazelnut kernel oil methyl ester and its blends with diesel fuel. Results showed that hazelnut kernel oil methyl ester and its blends with diesel fuel are generally comparable to diesel fuel, according to engine performance and emissions.

  18. Industrial Base Assessment of Alternative Fuels for Military Use

    Science.gov (United States)

    2010-06-07

    methanol , DME , and water is then converted to light olefins (C2 – C4). A final reaction step leads to a mixture of higher olefins, n/iso-paraffins...gas reforming, coal gasification, or biomass conversion. The methanol is first dehydrated to dimethylether ( DME ). The equilibrium mixture of...MTG – Methanol to Gasoline ................................................................................. 34  3.1.6  DCL – Direct Coal Liquefaction

  19. Photoactivated Fuel Cells (PhotoFuelCells. An alternative source of renewable energy with environmental benefits

    Directory of Open Access Journals (Sweden)

    Stavroula Sfaelou

    2016-03-01

    Full Text Available This work is a short review of Photoactivated Fuel Cells, that is, photoelectrochemical cells which consume an organic or inorganic fuel to produce renewable electricity or hydrogen. The work presents the basic features of photoactivated fuel cells, their modes of operation, the materials, which are frequently used for their construction and some ideas of cell design both for electricity and solar hydrogen production. Water splitting is treated as a special case of photoactivated fuel cell operation.

  20. ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS. FINAL QUARTERLY STATUS REPORT NO. 10

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-11-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  1. Alternative-fueled truck demonstration natural gas program: Caterpillar G3406LE development and demonstration

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    In 1990, the California Energy Commission, the South Coast Air Quality Management District, and the Southern California Gas Company joined together to sponsor the development and demonstration of compressed natural gas engines for Class 8 heavy-duty line-haul trucking applications. This program became part of an overall Alternative-Fueled Truck Demonstration Program, with the goal of advancing the technological development of alternative-fueled engines. The demonstration showed natural gas to be a technically viable fuel for Class 8 truck engines.

  2. Alternative fuels and chemicals from synthesis gas. Fourth quarterly report, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE`s LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  3. ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS. FINAL QUARTERLY STATUS REPORT

    Energy Technology Data Exchange (ETDEWEB)

    None

    1999-04-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  4. High temperature solid oxide fuel cell integrated with novel allothermal biomass gasification. Part I: Modelling and feasibility study

    Science.gov (United States)

    Panopoulos, K. D.; Fryda, L. E.; Karl, J.; Poulou, S.; Kakaras, E.

    Biomass gasification derived fuel gas is a renewable fuel that can be used by high temperature fuel cells. In this two-part work an attempt is made to investigate the integration of a near atmospheric pressure solid oxide fuel cell (SOFC) with a novel allothermal biomass steam gasification process into a combined heat and power (CHP) system of less than MW e nominal output range. Heat for steam gasification is supplied from SOFC depleted fuel into a fluidised bed combustor via high temperature sodium heat pipes. The integrated system model was built in Aspen Plus™ simulation software and is described in detail. Part I investigates the feasibility and critical aspects of the system based on modelling results. A low gasification steam to biomass ratio (STBR = 0.6) is used to avoid excess heat demands and to allow effective H 2S high temperature removal. Water vapour is added prior to the anode to avoid carbon deposition. The SOFC off gases adequately provide gasification heat when fuel utilisation factors are f = 0.7 and current density 2500 A m -2 the electrical efficiency is estimated at 36% while thermal efficiency at 14%. An exergy analysis is presented in Part II.

  5. 77 FR 59458 - Regulation of Fuels and Fuel Additives: 2013 Biomass-Based Diesel Renewable Fuel Volume

    Science.gov (United States)

    2012-09-27

    ... Soybean oil 600 624 Canola oil 0 68 Palm oil 0 7 Other 0 185 Total 1,280 1,340 As some comments pointed... fraction of alternative feedstock sources such as cottonseed oil. However, as discussed in Section IV.A.8... of Feedstocks To Produce 1.28 Billion Gallons of Biodiesel 1. Grease and Rendered Fats 2. Corn Oil...

  6. Fuel composition and secondary organic aerosol formation: gas-turbine exhaust and alternative aviation fuels.

    Science.gov (United States)

    Miracolo, Marissa A; Drozd, Greg T; Jathar, Shantanu H; Presto, Albert A; Lipsky, Eric M; Corporan, Edwin; Robinson, Allen L

    2012-08-07

    A series of smog chamber experiments were performed to investigate the effects of fuel composition on secondary particulate matter (PM) formation from dilute exhaust from a T63 gas-turbine engine. Tests were performed at idle and cruise loads with the engine fueled on conventional military jet fuel (JP-8), Fischer-Tropsch synthetic jet fuel (FT), and a 50/50 blend of the two fuels. Emissions were sampled into a portable smog chamber and exposed to sunlight or artificial UV light to initiate photo-oxidation. Similar to previous studies, neat FT fuel and a 50/50 FT/JP-8 blend reduced the primary particulate matter emissions compared to neat JP-8. After only one hour of photo-oxidation at typical atmospheric OH levels, the secondary PM production in dilute exhaust exceeded primary PM emissions, except when operating the engine at high load on FT fuel. Therefore, accounting for secondary PM production should be considered when assessing the contribution of gas-turbine engine emissions to ambient PM levels. FT fuel substantially reduced secondary PM formation in dilute exhaust compared to neat JP-8 at both idle and cruise loads. At idle load, the secondary PM formation was reduced by a factor of 20 with the use of neat FT fuel, and a factor of 2 with the use of the blend fuel. At cruise load, the use of FT fuel resulted in no measured formation of secondary PM. In every experiment, the secondary PM was dominated by organics with minor contributions from sulfate when the engine was operated on JP-8 fuel. At both loads, FT fuel produces less secondary organic aerosol than JP-8 because of differences in the composition of the fuels and the resultant emissions. This work indicates that fuel reformulation may be a viable strategy to reduce the contribution of emissions from combustion systems to secondary organic aerosol production and ultimately ambient PM levels.

  7. TG-FTIR characterization of coal and biomass single fuels and blends under slow heating rate conditions: Partitioning of the fuel-bound nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Di Nola, G.; de Jong, W.; Spliethoff, H. [Energy Technology Section, Process and Energy Department, Faculty 3me, Delft University of Technology, Leeghwaterstraat 44, 2628 CA Delft (Netherlands)

    2010-01-15

    The devolatilization behavior of a bituminous coal and different biomass fuels currently applied in the Dutch power sector for co-firing was experimentally investigated. The volatile composition during single fuel pyrolysis as well as during co-pyrolysis was studied using TG-FTIR characterization with the focus on the release patterns and quantitative analysis of the gaseous bound nitrogen species. It was shown that all investigated biomass fuels present more or less similar pyrolysis behavior, with a maximum weight loss between 300 and 380 C. Woody and agricultural biomass materials show higher devolatilization rates than animal waste. When comparing different fuels, the percentage of fuel-bound nitrogen converted to volatile bound-N species (NH{sub 3}, HCN, HNCO) does not correlate with the initial fuel-N content. Biomass pyrolysis resulted in higher volatile-N yields than coal, which potentially indicates that NO{sub x} control during co-firing might be favored. No significant interactions occurred during the pyrolysis of coal/biomass blends at conditions typical of TG analysis (slow heating rate). Evolved gas analysis of volatile species confirmed the absence of mutual interactions during woody biomass co-pyrolysis. However, non-additive behavior of selected gas species was found during slaughter and poultry litter co-pyrolysis. Higher CH{sub 4} yields between 450 and 750 C and higher ammonia and CO yields between 550 and 900 C were measured. Such a result is likely to be attributed to catalytic effects of alkali and alkaline earth metals present in high quantity in animal waste ash. The fact that the co-pyrolysis of woody and agricultural biomass is well modeled by simple addition of the individual behavior of its components permits to predict the mixture's behavior based on experimental data available for single fuels. On the other hand, animal waste co-pyrolysis presented in some cases synergistic effects in gas products although additive behavior

  8. Thermal Aspects of Using Alternative Nuclear Fuels in Supercritical Water-Cooled Reactors

    Science.gov (United States)

    Grande, Lisa Christine

    A SuperCritical Water-cooled Nuclear Reactor (SCWR) is a Generation IV concept currently being developed worldwide. Unique to this reactor type is the use of light-water coolant above its critical point. The current research presents a thermal-hydraulic analysis of a single fuel channel within a Pressure Tube (PT)-type SCWR with a single-reheat cycle. Since this reactor is in its early design phase many fuel-channel components are being investigated in various combinations. Analysis inputs are: steam cycle, Axial Heat Flux Profile (AHFP), fuel-bundle geometry, and thermophysical properties of reactor coolant, fuel sheath and fuel. Uniform and non-uniform AHFPs for average channel power were applied to a variety of alternative fuels (mixed oxide, thorium dioxide, uranium dicarbide, uranium nitride and uranium carbide) enclosed in an Inconel-600 43-element bundle. The results depict bulk-fluid, outer-sheath and fuel-centreline temperature profiles together with the Heat Transfer Coefficient (HTC) profiles along the heated length of fuel channel. The objective is to identify the best options in terms of fuel, sheath material and AHFPS in which the outer-sheath and fuel-centreline temperatures will be below the accepted temperature limits of 850°C and 1850°C respectively. The 43-element Inconel-600 fuel bundle is suitable for SCWR use as the sheath-temperature design limit of 850°C was maintained for all analyzed cases at average channel power. Thoria, UC2, UN and UC fuels for all AHFPs are acceptable since the maximum fuel-centreline temperature does not exceed the industry accepted limit of 1850°C. Conversely, the fuel-centreline temperature limit was exceeded for MOX at all AHFPs, and UO2 for both cosine and downstream-skewed cosine AHFPs. Therefore, fuel-bundle modifications are required for UO2 and MOX to be feasible nuclear fuels for SCWRs.

  9. Feasibility of Technologies to Produce Coal-Based Fuels with Equal or Lower Greenhouse Gas Emissions than Petroleum Fuels

    Science.gov (United States)

    2014-12-22

    Figure 6. Costs of alternative liquid fuels produced from coal, biomass , or coal and biomass with zero carbon price [reproduced from [6...Terms bpd Barrels per day BTL Biomass -to-liquids CBTL Coal-and- Biomass -to-Liquids CCS Carbon capture and storage CCUS Carbon capture... carbon footprint”) of a CTL process— partially narrowing the gap in well (or mine)-to-tank GHG emissions between CTL fuels and petroleum fuels

  10. Emissions from small-scale combustion of biomass fuels - extensive quantification and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Boman, Christoffer; Nordin, Anders; Oehman, Marcus; Bostroem, Dan [Umeaa Univ. (Sweden). Energy Technology and Thermal Process Chemistry; Westerholm, Roger [Stockholm Univ., Arrhenius Laboratory (Sweden). Analytical Chemistry

    2005-02-01

    This work was a part of the Swedish national research program concerning emissions and air quality with the sub-programme concerning biomass, health and environment - BHM. The main objective of the work was to systematically determine the quantities and characteristics of gaseous and particulate emissions from combustion in residential wood log and biomass fuel pellet appliances and report emission factors for the most important emission components. The specific focus was on present commercial wood and pellet stoves as well as to illustrate the potentials for future technology development. The work was divided in different subprojects; 1) a literature review of health effects of ambient wood smoke, 2) design and evaluation of an emission dilution sampling set-up, 3) a study of the effects of combustion conditions on the emission formation and characteristics and illustrate the potential for emission minimization during pellets combustion, 4) a study of the inorganic characteristics of particulate matter during combustion of different pelletized woody raw materials and finally 5) an extensive experimental characterization and quantification of gaseous and particulate emissions from residential wood log and pellet stoves. From the initial literature search, nine relevant health studies were identified, all focused on effects of short-term exposure. Substantial quantitative information was only found for acute asthma in relation to PM10. In comparison with the general estimations for ambient PM and adverse health effects, the relative risks were even stronger in the studies where residential wood combustion was considered as a major PM source. However, the importance of other particle properties than mass concentration, like chemical composition, particle size and number concentration remain to be elucidated. A whole flow dilution sampling set-up for residential biomass fired appliances was designed, constructed and evaluated concerning the effects of sampling

  11. Final Technical Report for Alternative Fuel Source Study-An Energy Efficient and Environmentally Friendly Approach

    Energy Technology Data Exchange (ETDEWEB)

    Zee, Ralph [Auburn University, AL (United States); Schindler, Anton [Auburn University, AL (United States); Duke, Steve [Auburn University, AL (United States); Burch, Thom [Auburn University, AL (United States); Bransby, David [Auburn University, AL (United States); Stafford, Don [Lafarge North America, Inc., Alpharetta, GA (United States)

    2010-08-31

    The objective of this project is to conduct research to determine the feasibility of using alternate fuel sources for the production of cement. Successful completion of this project will also be beneficial to other commercial processes that are highly energy intensive. During this report period, we have completed all the subtasks in the preliminary survey. Literature searches focused on the types of alternative fuels currently used in the cement industry around the world. Information was obtained on the effects of particular alternative fuels on the clinker/cement product and on cement plant emissions. Federal regulations involving use of waste fuels were examined. Information was also obtained about the trace elements likely to be found in alternative fuels, coal, and raw feeds, as well as the effects of various trace elements introduced into system at the feed or fuel stage on the kiln process, the clinker/cement product, and concrete made from the cement. The experimental part of this project involves the feasibility of a variety of alternative materials mainly commercial wastes to substitute for coal in an industrial cement kiln in Lafarge NA and validation of the experimental results with energy conversion consideration.

  12. Alternative anode materials for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Goodenough, John B.; Huang, Yun-Hui [Texas Materials Institute, ETC 9.102, 1 University Station, C2200, The University of Texas at Austin, Austin, TX 78712 (United States)

    2007-11-08

    The electrolyte of a solid oxide fuel cell (SOFC) is an O{sup 2-}-ion conductor. The anode must oxidize the fuel with O{sup 2-} ions received from the electrolyte and it must deliver electrons of the fuel chemisorption reaction to a current collector. Cells operating on H{sub 2} and CO generally use a porous Ni/electrolyte cermet that supports a thin, dense electrolyte. Ni acts as both the electronic conductor and the catalyst for splitting the H{sub 2} bond; the oxidation of H{sub 2} to H{sub 2}O occurs at the Ni/electrolyte/H{sub 2} triple-phase boundary (TPB). The CO is oxidized at the oxide component of the cermet, which may be the electrolyte, yttria-stabilized zirconia, or a mixed oxide-ion/electron conductor (MIEC). The MIEC is commonly a Gd-doped ceria. The design and fabrication of these anodes are evaluated. Use of natural gas as the fuel requires another strategy, and MIECs are being explored for this application. The several constraints on these MIECs are outlined, and preliminary results of this on-going investigation are reviewed. (author)

  13. The life cycle assessment of alternative fuel chains for urban buses and trolleybuses.

    Science.gov (United States)

    Kliucininkas, L; Matulevicius, J; Martuzevicius, D

    2012-05-30

    This paper describes a comparative analysis of public transport alternatives in the city of Kaunas, Lithuania. An LCA (Life Cycle Assessment) inventory analysis of fuel chains was undertaken using the midi urban bus and a similar type of trolleybus. The inventory analysis of fuel chains followed the guidelines provided by the ISO 14040 and ISO 14044 standards. The ReCiPe Life Cycle Impact Assessment (LCIA) methodology was used to quantify weighted damage originating from five alternative fuel chains. The compressed biogas fuel chain had the lowest weighted damage value, namely 45.7 mPt/km, whereas weighted damage values of the fuel chains based on electricity generation for trolleybuses were 60.6 mPt/km (for natural gas) and 78.9 mPt/km (for heavy fuel oil). The diesel and compressed natural gas fuel chains exhibited considerably higher damage values of 114.2 mPt/km and 132.6 mPt/km, respectively. The comparative life cycle assessment of fuel chains suggested that biogas-powered buses and electric trolleybuses can be considered as the best alternatives to use when modernizing the public transport fleet in Kaunas.

  14. Thermodynamic Analysis of Alternative Marine Fuels for Marine Gas Turbine Power Plants

    Institute of Scientific and Technical Information of China (English)

    Mohamed M El Gohary; Nader R Ammar

    2016-01-01

    The marine shipping industry faces challenges to reduce engine exhaust emissions and greenhouse gases (GHGs) from ships, and in particular, carbon dioxide. International regulatory bodies such as the International Maritime Organization and National Environmental Agencies of many countries have issued rules and regulations to drastically reduce GHG and emissions emanating from marine sources. This study investigates the possibility of using natural gas and hydrogen as alternative fuels to diesel oil for marine gas turbines and uses a mathematical model to assess the effect of these alternative fuels on gas turbine thermodynamic performance. Results show that since natural gas is categorized as a hydrocarbon fuel, the thermodynamic performance of the gas turbine cycle using natural gas was close to that of the diesel case. However, the gas turbine thermal efficiency was found to be slightly lower for natural gas and hydrogen fuels compared to diesel fuel.

  15. Thermodynamic analysis of alternative marine fuels for marine gas turbine power plants

    Science.gov (United States)

    El Gohary, Mohamed M.; Ammar, Nader R.

    2016-03-01

    The marine shipping industry faces challenges to reduce engine exhaust emissions and greenhouse gases (GHGs) from ships, and in particular, carbon dioxide. International regulatory bodies such as the International Maritime Organization and National Environmental Agencies of many countries have issued rules and regulations to drastically reduce GHG and emissions emanating from marine sources. This study investigates the possibility of using natural gas and hydrogen as alternative fuels to diesel oil for marine gas turbines and uses a mathematical model to assess the effect of these alternative fuels on gas turbine thermodynamic performance. Results show that since natural gas is categorized as a hydrocarbon fuel, the thermodynamic performance of the gas turbine cycle using natural gas was close to that of the diesel case. However, the gas turbine thermal efficiency was found to be slightly lower for natural gas and hydrogen fuels compared to diesel fuel.

  16. Findings and Recommendations from the NIST Workshop on Alternative Fuels and Materials: Biocorrosion.

    Science.gov (United States)

    Mansfield, Elisabeth; Sowards, Jeffrey W; Crookes-Goodson, Wendy J

    2015-01-01

    In 2013, the Applied Chemicals and Materials Division of the National Institute of Standards and Technology (NIST) hosted a workshop to identify and prioritize research needs in the area of biocorrosion. Materials used to store and distribute alternative fuels have experienced an increase in corrosion due to the unique conditions caused by the presence of microbes and the chemistry of biofuels and biofuel precursors. Participants in this workshop, including experts from the microbiological, fuel, and materials communities, delved into the unique materials and chemical challenges that occur with production, transport, and storage of alternative fuels. Discussions focused on specific problems including: a) the changing composition of "drop-in" fuels and the impact of that composition on materials; b) the influence of microbial populations on corrosion and fuel quality; and c) state-of-the-art measurement technologies for monitoring material degradation and biofilm formation.

  17. Fossil fuel savings, carbon emission reduction and economic attractiveness of medium-scale integrated biomass gasification combined cycle cogeneration plants

    Directory of Open Access Journals (Sweden)

    Kalina Jacek

    2012-01-01

    Full Text Available The paper theoretically investigates the system made up of fluidized bed gasifier, SGT-100 gas turbine and bottoming steam cycle. Different configurations of the combined cycle plant are examined. A comparison is made between systems with producer gas (PG and natural gas (NG fired turbine. Supplementary firing of the PG in a heat recovery steam generator is also taken into account. The performance of the gas turbine is investigated using in-house built Engineering Equation Solver model. Steam cycle is modeled using GateCycleTM simulation software. The results are compared in terms of electric energy generation efficiency, CO2 emission and fossil fuel energy savings. Finally there is performed an economic analysis of a sample project. The results show relatively good performance in the both alternative configurations at different rates of supplementary firing. Furthermore, positive values of economic indices were obtained. [Acknowledgements. This work was carried out within the frame of research project no. N N513 004036, titled: Analysis and optimization of distributed energy conversion plants integrated with gasification of biomass. The project is financed by the Polish Ministry of Science.

  18. Bioaugmentation for Electricity Generation from Corn Stover Biomass Using Microbial Fuel Cells

    KAUST Repository

    Wang, Xin

    2009-08-01

    Corn stover is usually treated by an energy-intensive or expensive process to extract sugars for bioenergy production. However, it is possible to directly generate electricity from corn stover in microbial fuel cells (MFCs) through the addition of microbial consortia specifically acclimated for biomass breakdown. A mixed culture that was developed to have a high saccharification rate with corn stover was added to singlechamber, air-cathode MFCs acclimated for power production using glucose. The MFC produced a maximum power of 331 mW/ m 2 with the bioaugmented mixed culture and corn stover, compared to 510 mW/m2 using glucose. Denaturing gradient gel electrophoresis (DGGE) showed the communities continued to evolve on both the anode and corn stover biomass over 60 days, with several bacteria identified including Rhodopseudomonas palustris. The use of residual solids from the steam exploded corn stover produced 8% more power (406 mW/m2) than the raw corn stover. These results show that it is possible to directly generate electricity from waste corn stover in MFCs through bioaugmentation using naturally occurring bacteria. © 2009 American Chemical Society.

  19. Bioaugmentation for electricity generation from corn stover biomass using microbial fuel cells.

    Science.gov (United States)

    Wang, Xin; Feng, Yujie; Wang, Heming; Qu, Youpeng; Yu, Yanling; Ren, Nanqi; Li, Nan; Wang, Elle; Lee, He; Logan, Bruce E

    2009-08-01

    Corn stover is usually treated by an energy-intensive or expensive process to extract sugars for bioenergy production. However, it is possible to directly generate electricity from corn stover in microbial fuel cells (MFCs) through the addition of microbial consortia specifically acclimated for biomass breakdown. A mixed culture that was developed to have a high saccharification rate with corn stover was added to single-chamber, air-cathode MFCs acclimated for power production using glucose. The MFC produced a maximum power of 331 mW/m2 with the bioaugmented mixed culture and corn stover, compared to 510 mW/m2 using glucose. Denaturing gradient gel electrophoresis (DGGE) showed the communities continued to evolve on both the anode and corn stover biomass over 60 days, with several bacteria identified including Rhodopseudomonas palustris. The use of residual solids from the steam exploded corn stover produced 8% more power (406 mW/m2) than the raw corn stover. These results show that it is possible to directly generate electricity from waste corn stover in MFCs through bioaugmentation using naturally occurring bacteria.

  20. TECHNOLOGY ASSESSMENT IN ENGINEERING PRACTICE. THE CASE OF BIOLIQ® – FUEL PRODUCTION FROM BIOMASS

    Directory of Open Access Journals (Sweden)

    Armin GRUNWALD

    2013-04-01

    Full Text Available This paper includes a brief overview of the basic motivations and objectives of TA, followed by a description of the three main operating fields of TA: providing scientific advice for decision‐making in the political system, contributing to public debate, and enriching technology development and engineering practice. These issues will then be considered in more detail by referring to various approaches to the relationship between TA and technology development and by presenting a specific case study of an accompanying TA process over various development stages of the bioliq® process for converting dry biomass into fuel (Biomass to Liquid and chemicals. The accompanying TA work on the bioliq® process can, as a result of more than ten years of experience, be considered a successful technology assessment as it has opened up a new research field with a highly precautionary aspect on the one hand, and helped to win over technology‐oriented research institutes to reorienting their research work, on the other. The results of the TA studies allowed to assess e.g. the competitiveness of the bioliq® process at a very early stage. The mutual trust built up in the course of the historical development between the parties involved has always been essential for this ongoing accompanying TA process. TA has been proven, in this way, a useful tool to uncover new chances for engineering research and development, and to accompany the research process.

  1. Renewing Rock-Tenn: A Biomass Fuels Assessment for Rock-Tenn's St. Paul Recycled Paper Mill.

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Carl

    2007-03-31

    In the summer of 2006 the Green Institute started the study for the RockTenn paper mill that would evaluate the economics and supply chain reliability of wood waste and other clean biomass as a fuel for the facility. The Green Institute obtained sponsorship from a broad coalition representing the community and the project team included other consultants and university researchers specializing in biomass issues. The final product from the project was a report to: 1) assess the availability of clean biomass fuel for use at the Rock-Tenn site; 2) roughly estimate costs at various annual usage quantities; and 3) develop the building blocks for a supply chain procurement plan. The initial report was completed and public presentations on the results were completed in spring of 2007.

  2. The Thermochemical Degradation of Hot Section Materials for Gas Turbine Engines in Alternative-Fuel Combustion Environments

    Science.gov (United States)

    Montalbano, Timothy

    Gas turbine engines remain an integral part of providing the world's propulsion and power generation needs. The continued use of gas turbines requires increased temperature operation to reach higher efficiencies and the implementation of alternative fuels for a lower net-carbon footprint. This necessitates evaluation of the material coatings used to shield the hot section components of gas turbines in these new extreme environments in order to understand how material degradation mechanisms change. Recently, the US Navy has sought to reduce its use of fossil fuels by implementing a blended hydroprocessed renewable diesel (HRD) derived from algae in its fleet. To evaluate the material degradation in this alternative environment, metal alloys are exposed in a simulated combustion environment using this blended fuel or the traditional diesel-like fuel. Evaluation of the metal alloys showed the development of thick, porous scales with a large depletion of aluminum for the blend fuel test. A mechanism linking an increased solubility of the scale to the blend fuel test environment will be discussed. For power generation applications, Integrated Gasification Combined Cycle (IGCC) power plants can provide electricity with 45% efficiency and full carbon capture by using a synthetic gas (syngas) derived from coal, biomass, or another carbon feedstock. However, the combustion of syngas is known to cause high water vapor content levels in the exhaust stream with unknown material consequences. To evaluate the effect of increased humidity, air-plasma sprayed (APS), yttria-stabilized zirconia (YSZ) is thermally aged in an environment with and without humidity. An enhanced destabilization of the parent phase by humid aging is revealed by x-ray diffraction (XRD) and Raman spectroscopy. Microstructural analysis by transmission electron microscopy (TEM) and scanning-TEM (STEM) indicate an enhanced coarsening of the domain structure of the YSZ in the humid environment. The enhanced

  3. Testing and preformance measurement of straight vegetable oils as an alternative fuel for diesel engines

    Science.gov (United States)

    Lakshminarayanan, Arunachalam

    Rising fuel prices, growing energy demand, concerns over domestic energy security and global warming from greenhouse gas emissions have triggered the global interest in bio-energy and bio-fuel crop development. Backlash from these concerns can result in supply shocks of traditional fossil fuels and create immense economic pressure. It is thus widely argued that bio-fuels would particularly benefit developing countries by off-setting their dependencies on imported petroleum. Domestically, the transportation sector accounts for almost 40% of liquid fuel consumption, while on-farm application like tractors and combines for agricultural purposes uses close to an additional 18%. It is estimated that 40% of the farm budget can be attributed to the fuel costs. With the cost of diesel continuously rising, farmers are now looking at using Straight Vegetable Oil (SVO) as an alternative fuel by producing their own fuel crops. This study evaluates conventional diesel compared to the use of SVO like Camelina, Canola and Juncea grown on local farms in Colorado for their performance and emissions on a John Deere 4045 Tier-II engine. Additionally, physical properties like density and viscosity, metal/mineral content, and cold flow properties like CFPP and CP of these oils were measured using ASTM standards and compared to diesel. It was found that SVOs did not show significant differences compared to diesel fuel with regards to engine emissions, but did show an increase in thermal efficiency. Therefore, this study supports the continued development of SVO production as a viable alternative to diesel fuels, particularly for on-farm applications. The need for providing and developing a sustainable, economic and environmental friendly fuel alternative has taken an aggressive push which will require a strong multidisciplinary education in the field of bio-energy. Commercial bio-energy development has the potential to not only alleviate the energy concerns, but also to give renewed

  4. 40 CFR 1054.645 - What special provisions apply for converting an engine to use an alternate fuel?

    Science.gov (United States)

    2010-07-01

    ... conformity. (b) Converting a certified engine that is not new to run on a different fuel type violates 40 CFR... converting an engine to use an alternate fuel? 1054.645 Section 1054.645 Protection of Environment... apply for converting an engine to use an alternate fuel? A certificate of conformity is no longer...

  5. 40 CFR 1045.645 - What special provisions apply for converting an engine to use an alternate fuel?

    Science.gov (United States)

    2010-07-01

    ...) Converting a certified engine that is not new to run on a different fuel type violates 40 CFR 1068.101(b)(1... converting an engine to use an alternate fuel? 1045.645 Section 1045.645 Protection of Environment... for converting an engine to use an alternate fuel? A certificate of conformity is no longer valid...

  6. Evaluation of oxygen-enrichment system for alternative fuel vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Poola, R.B.; Sekar, R.R.; Ng, H.K.

    1995-12-01

    This report presents results on the reduction in exhaust emissions achieved by using oxygen-enriched intake air on a flexible fuel vehicle (FFV) that used Indolene and M85 as test fuels. The standard federal test procedure (FTP) and the US Environmental Protection Agency`s (EPA`s) off-cycle (REP05) test were followed. The report also provides a review of literature on the oxygen membrane device and design considerations. It presents information on the sources and contributions of cold-phase emissions to the overall exhaust emissions from light-duty vehicles (LDVs) and on the various emission standards and present-day control technologies under consideration. The effects of oxygen-enriched intake air on FTP and off-cycle emissions are discussed on the basis of test results. Conclusions are drawn from the results and discussion, and different approaches for the practical application of this technology in LDVs are recommended.

  7. Alternative Observers for SI Engine Air/Fuel Ratio Control

    DEFF Research Database (Denmark)

    Hendricks, Elbert; Poulsen, Jannik; Olsen, Mads Bruun

    1996-01-01

    In earlier work it has been shown that a nonlinear observer based on the use of the manifold pressure state equation and a nonlinear fuel film compensator can maintain accurate A/F ratio control during both steady state and transient operation. This observer may be called a manifold absolute pres...... engine control system designer with a variety of robust control systems which can easily be made redundant in order to satisfy newer engine emissions and diagnosis requirements and legislation...

  8. Effective conversion of biomass tar into fuel gases in a microwave reactor

    Science.gov (United States)

    Anis, Samsudin; Zainal, Z. A.

    2016-06-01

    This work deals with conversion of naphthalene (C10H8) as a biomass tar model compound by means of thermal and catalytic treatments. A modified microwave oven with a maximum output power of 700 W was used as the experimental reactor. Experiments were performed in a wide temperature range of 450-1200°C at a predetermined residence time of 0.24-0.5 s. Dolomite and Y-zeolite were applied to convert naphthalene catalytically into useful gases. Experimental results on naphthalene conversion showed that conversion efficiency and yield of gases increased significantly with the increase of temperature. More than 90% naphthalene conversion efficiency was achieved by thermal treatment at 1200°C and 0.5 s. Nevertheless, this treatment was unfavorable for fuel gases production. The main product of this treatment was soot. Catalytic treatment provided different results with that of thermal treatment in which fuel gases formation was found to be the important product of naphthalene conversion. At a high temperature of 900°C, dolomite had better conversion activity where almost 40 wt.% of naphthalene could be converted into hydrogen, methane and other hydrocarbon gases.

  9. Alternative fuels for vehicles fleet demonstration program final report. Volume 1: Summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The Alternative Fuels for Vehicles Fleet Demonstration Program (AFV-FDP) was a multiyear effort to collect technical data for use in determining the costs and benefits of alternative-fuel vehicles in typical applications in New York State. During 3 years of collecting data, 7.3 million miles of driving were accumulated, 1,003 chassis-dynamometer emissions tests were performed, 862,000 gallons of conventional fuel were saved, and unique information was developed about garage safety recommendations, vehicle performance, and other topics. Findings are organized by vehicle and fuel type. For light-duty compressed natural gas (CNG) vehicles, technology has evolved rapidly and closed-loop, electronically-controlled fuel systems provide performance and emissions advantages over open-loop, mechanical systems. The best CNG technology produces consistently low tailpipe emissions versus gasoline, and can eliminate evaporative emissions. Reduced driving range remains the largest physical drawback. Fuel cost is low ($/Btu) but capital costs are high, indicating that economics are best with vehicles that are used intensively. Propane produces impacts similar to CNG and is less expensive to implement, but fuel cost is higher than gasoline and safety codes limit use in urban areas. Light-duty methanol/ethanol vehicles provide performance and emissions benefits over gasoline with little impact on capital costs, but fuel costs are high. Heavy-duty CNG engines are evolving rapidly and provide large reductions in emissions versus diesel. Capital costs are high for CNG buses and fuel efficiency is reduced, but the fuel is less expensive and overall operating costs are about equal to those of diesel buses. Methanol buses provide performance and emissions benefits versus diesel, but fuel costs are high. Other emerging technologies were also evaluated, including electric vehicles, hybrid-electric vehicles, and fuel cells.

  10. Impact of aviation non-CO₂ combustion effects on the environmental feasibility of alternative jet fuels.

    Science.gov (United States)

    Stratton, Russell W; Wolfe, Philip J; Hileman, James I

    2011-12-15

    Alternative fuels represent a potential option for reducing the climate impacts of the aviation sector. The climate impacts of alternatives fuel are traditionally considered as a ratio of life cycle greenhouse gas (GHG) emissions to those of the displaced petroleum product; however, this ignores the climate impacts of the non-CO(2) combustion effects from aircraft in the upper atmosphere. The results of this study show that including non-CO(2) combustion emissions and effects in the life cycle of a Synthetic Paraffinic Kerosene (SPK) fuel can lead to a decrease in the relative merit of the SPK fuel relative to conventional jet fuel. For example, an SPK fuel option with zero life cycle GHG emissions would offer a 100% reduction in GHG emissions but only a 48% reduction in actual climate impact using a 100-year time window and the nominal climate modeling assumption set outlined herein. Therefore, climate change mitigation policies for aviation that rely exclusively on relative well-to-wake life cycle GHG emissions as a proxy for aviation climate impact may overestimate the benefit of alternative fuel use on the global climate system.

  11. Using Checklists to Assess Your Transition to Alternative Fuels: A Technical Reference

    Energy Technology Data Exchange (ETDEWEB)

    Risch, C. E. [Argonne National Lab. (ANL), Argonne, IL (United States); Santini, D. J. [Argonne National Lab. (ANL), Argonne, IL (United States); Johnson, L. R. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-12-01

    The Checklist for Transition to New Alternative Fuel(s) was published in September 2011 by Chuck Risch and Dan Santini. Many improvements, described below, have been incorporated into this current document, Checklists for Assessing the Transitions to New Highway Fuels.2 Further, the original authors and Larry Johnson, co-author of the current report, identified a need for a succinct version of the full report and prepared a brochure based on it to aid busy decisionmakers: Check It Out: Using Checklists to Assess Your Transition to Alternative Fuels.2 These checklists are tools for those stakeholders charged with determining a feasible alternative fuel or fuels for highway transportation systems of the future. The original had four major players whose needs had to be satisfied for a successful transition. The term “activist,” intended to encompass environmental and other special interests, was included in the “customers” category. Activists are customers of the government in the sense that they organize citizens to exert political pressure to regulate the design of vehicles, fuel infrastructure, and roadway networks. Many who evaluate alternative fuels view activists, particularly environmental activists, as a separate category. Further, “activist” has become a pejorative term to many people. Therefore, we have used the word “advocate” or “activist/advocate” instead. Thus, in this update we recognize that environmental and other activists/advocates have been--and will continue to be--a powerful force promoting change in the nature of the fuels that are used in transportation.

  12. Liquid fuels production from biomass. Progress report No. 5, July 1-September 30, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Sanderson, J.E.; Wise, D.L.

    1978-01-01

    The current program to convert biomass into liquid hydrocarbon fuels is an extension of the previous program to ferment marine algae to acetic acid. In that study, it was found that marine algae could be converted to higher aliphatic organic acids and that these acids could be readily removed from the fermentation both by membrane or liquid-liquid extraction. It was then proposed to convert these higher organic acids to aliphatic hydrocarbons via Kolbe Electrolysis, which may be used as a diesel fuel. The specific goals for the current program are: (1) Establish conditions under which substrates other than marine algae may be converted in good yield to organic acids. The primary task in this regard is methane suppression. (2) Modify the current 300 liter fixed packed bed batch fermenter to operate in a continuous mode. (3) Change from membrane extraction of organic acids to liquid-liquid extraction. (4) Optimize the energy balance of the electrolytic oxidation process. The primary task in this regard is to reduce the working potential required for the electrolysis while maintaining an adequate current density. (5) Scale the entire process up to match the output of the 300 liter fermenter. The accomplishments in this program are on schedule. Substantial progress has been made on the problem of methane suppression through the use of sulfide addition and the identification of bromoethane-sulfonic acid as a specific inhibitor of methanogenesis. A conceptual design of a continuously fed fixed packed bed fermenter is presented. Experimental results show that the electrolysis of organic acids produced by fermentation to liquid hydrocarbon fuels already have a favorable energy balance of 6/1 based on the applied potential and over 10/1 based on the working potential.

  13. Solutions for biomass fuel market barriers and raw material availability. WP2 - Biomass fuel trade in Europe – Country report: The Netherlands

    NARCIS (Netherlands)

    Junginger, H.M.

    2009-01-01

    The aims of this country report are: (1) To identify new industries in the Netherlands where biomass is used as an energy carrier, or has the potential to be used in the future, and to describe which drivers, bottlenecks and opportunities these sectors see for the (increased) use of biomass; (2) To

  14. N-butanol and isobutanol as alternatives to gasoline: Comparison of port fuel injector characteristics

    Science.gov (United States)

    Fenkl, Michael; Pechout, Martin; Vojtisek, Michal

    2016-03-01

    The paper reports on an experimental investigation of the relationship between the pulse width of a gasoline engine port fuel injector and the quantity of the fuel injected when butanol is used as a fuel. Two isomers of butanol, n-butanol and isobutanol, are considered as potential candidates for renewable, locally produced fuels capable of serving as a drop-in replacement fuel for gasoline, as an alternative to ethanol which poses material compatibility and other drawbacks. While the injected quantity of fuel is typically a linear function of the time the injector coil is energized, the flow through the port fuel injector is complex, non ideal, and not necessarily laminar, and considering that butanol has much higher viscosity than gasoline, an experimental investigation was conducted. A production injector, coupled to a production fueling system, and driven by a pulse width generator was operated at various pulse lengths and frequencies, covering the range of engine rpm and loads on a car engine. The results suggest that at least at room temperature, the fueling rate remains to be a linear function of the pulse width for both n-butanol and isobutanol, and the volumes of fuel injected are comparable for gasoline and both butanol isomers.

  15. N-butanol and isobutanol as alternatives to gasoline: Comparison of port fuel injector characteristics

    Directory of Open Access Journals (Sweden)

    Fenkl Michael

    2016-01-01

    Full Text Available The paper reports on an experimental investigation of the relationship between the pulse width of a gasoline engine port fuel injector and the quantity of the fuel injected when butanol is used as a fuel. Two isomers of butanol, n-butanol and isobutanol, are considered as potential candidates for renewable, locally produced fuels capable of serving as a drop-in replacement fuel for gasoline, as an alternative to ethanol which poses material compatibility and other drawbacks. While the injected quantity of fuel is typically a linear function of the time the injector coil is energized, the flow through the port fuel injector is complex, non ideal, and not necessarily laminar, and considering that butanol has much higher viscosity than gasoline, an experimental investigation was conducted. A production injector, coupled to a production fueling system, and driven by a pulse width generator was operated at various pulse lengths and frequencies, covering the range of engine rpm and loads on a car engine. The results suggest that at least at room temperature, the fueling rate remains to be a linear function of the pulse width for both n-butanol and isobutanol, and the volumes of fuel injected are comparable for gasoline and both butanol isomers.

  16. Thermochemical behavior of pretreated biomass

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Amit Kumar

    2011-07-01

    Mankind has to provide a sustainable alternative to its energy related problems. Bioenergy is considered as one of the potential renewable energy resources and as a result bioenergy market is also expected to grow dramatically in future. However, logistic issues are of serious concern while considering biomass as an alternative to fossil fuel. It can be improved by introducing pretreated wood pellet. The main objective of this thesis is to address thermochemical behaviour of steam exploded pretreated biomass. Additionally, process aspects of torrefaction were also considered in this thesis. Steam explosion (SE) was performed in a laboratory scale reactor using Salix wood chips. Afterwards, fuel and thermochemical aspects of SE residue were investigated. It was found that Steam explosion pretreatment improved both fuel and pellet quality. Pyrolysis of SE residue reveals that alerted biomass composition significantly affects its pyrolysis behaviour. Contribution from depolymerized components (hemicellulose, cellulose and lignin) of biomass was observed explicitly during pyrolysis. When devolatilization experiment was performed on pellet produced from SE residue, effect of those altered components was observed. In summary, pretreated biomass fuel characteristics is significantly different in comparison with untreated biomass. On the other hand, Process efficiency of torrefaction was found to be governed by the choice of appropriate operating conditions and the type of biomass.

  17. Does habitual behavior affect the choice of alternative fuel vehicles?

    DEFF Research Database (Denmark)

    Valeri, Eva; Cherchi, Elisabetta

    2016-01-01

    significant latent habitual effect on choices of type of car engine. This effect is important only for some of the car alternatives considered in the study. In particular, habitual car users prefer to buy a new car with liquefied petroleum gas and compressed natural gas types of engine technology instead...... of liquefied petroleum gas car....

  18. Alternatives for managing wastes from reactors and post-fission operations in the LWR fuel cycle. Volume 3. Alternatives for interim storage and transportation

    Energy Technology Data Exchange (ETDEWEB)

    1976-05-01

    Volume III of the five-volume report contains information on alternatives for interim storage and transportation. Section titles are: interim storage of spent fuel elements; interim storage of chop-leach fuel bundle residues; tank storage of high-level liquid waste; interim storage of solid non-high-level wastes; interim storage of solidified high-level waste; and, transportation alternatives. (JGB)

  19. Emissions from small-scale combustion of biomass fuels - extensive quantification and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Boman, Christoffer; Nordin, Anders; Oehman, Marcus; Bostroem, Dan [Umeaa Univ. (Sweden). Energy Technology and Thermal Process Chemistry; Westerholm, Roger [Stockholm Univ., Arrhenius Laboratory (Sweden). Analytical Chemistry

    2005-02-01

    This work was a part of the Swedish national research program concerning emissions and air quality with the sub-programme concerning biomass, health and environment - BHM. The main objective of the work was to systematically determine the quantities and characteristics of gaseous and particulate emissions from combustion in residential wood log and biomass fuel pellet appliances and report emission factors for the most important emission components. The specific focus was on present commercial wood and pellet stoves as well as to illustrate the potentials for future technology development. The work was divided in different subprojects; 1) a literature review of health effects of ambient wood smoke, 2) design and evaluation of an emission dilution sampling set-up, 3) a study of the effects of combustion conditions on the emission formation and characteristics and illustrate the potential for emission minimization during pellets combustion, 4) a study of the inorganic characteristics of particulate matter during combustion of different pelletized woody raw materials and finally 5) an extensive experimental characterization and quantification of gaseous and particulate emissions from residential wood log and pellet stoves. From the initial literature search, nine relevant health studies were identified, all focused on effects of short-term exposure. Substantial quantitative information was only found for acute asthma in relation to PM10. In comparison with the general estimations for ambient PM and adverse health effects, the relative risks were even stronger in the studies where residential wood combustion was considered as a major PM source. However, the importance of other particle properties than mass concentration, like chemical composition, particle size and number concentration remain to be elucidated. A whole flow dilution sampling set-up for residential biomass fired appliances was designed, constructed and evaluated concerning the effects of sampling

  20. Physical Simulation of Burning Process of Alternative Engine Fuels

    Directory of Open Access Journals (Sweden)

    M. S. Assad

    2008-01-01

    Full Text Available Visualization of burning process in the closed vessel has been fulfilled with the help of method high-speed photography through a transparent glass. This method as an efficient means for investigation of fast processes permits to obtain a visual, convenient visual perception insight about the development of the burning process and understand peculiarities of the development of flame in the closed vessels.The paper contains a description of an experimental stand and methodology for execution of an experiment on visualization of the flame development and measurement of main parameters of the burning process in a closed vessel that is in the simulating combustion chamber.According to the obtained photos an analysis of form, structure and dynamics of flame front development has been carried out; some peculiarities and differences of flames of various fuel-air mixtures have been established and the paper proves an occurrence of the secondary glow during burning in the closed vessel.Body of data obtained with the help of the visualization of burning process makes it possible to determine main parameters of the burning process. In particular, relation of the pressure developed in the chamber with the mass of burnt-out mixture has been investigated and dependence has been obtained that shows the law of fuel burning-out in the graphic form.