WorldWideScience

Sample records for biomarkers pharmacogenomics pharmacogenetics

  1. Pharmacogenetics and pharmacogenomics as tools in cancer therapy.

    Science.gov (United States)

    Rodríguez-Vicente, Ana E; Lumbreras, Eva; Hernández, Jesus M; Martín, Miguel; Calles, Antonio; Otín, Carlos López; Algarra, Salvador Martín; Páez, David; Taron, Miquel

    2016-03-01

    Pharmacogenetics and pharmacogenomics (PGx) are rapidly growing fields that aim to elucidate the genetic basis for the interindividual differences in drug response. PGx approaches have been applied to many anticancer drugs in an effort to identify relevant inherited or acquired genetic variations that may predict patient response to chemotherapy and targeted therapies. In this article, we discuss the advances in the field of cancer pharmacogenetics and pharmacogenomics, driven by the recent technological advances and new revolutionary massive sequencing technologies and their application to elucidate the genetic bases for interindividual drug response and the development of biomarkers able to personalize drug treatments. Specifically, we present recent progress in breast cancer molecular classifiers, cell-free circulating DNA as a prognostic and predictive biomarker in cancer, patient-derived tumor xenograft models, chronic lymphocytic leukemia genomic landscape, and current pharmacogenetic advances in colorectal cancer. This review is based on the lectures presented by the speakers of the symposium "Pharmacogenetics and Pharmacogenomics as Tools in Cancer Therapy" from the VII Conference of the Spanish Pharmacogenetics and Pharmacogenomics Society (SEFF), held in Madrid (Spain) on April 21, 2015.

  2. A European Spectrum of Pharmacogenomic Biomarkers: Implications for Clinical Pharmacogenomics.

    Directory of Open Access Journals (Sweden)

    Clint Mizzi

    Full Text Available Pharmacogenomics aims to correlate inter-individual differences of drug efficacy and/or toxicity with the underlying genetic composition, particularly in genes encoding for protein factors and enzymes involved in drug metabolism and transport. In several European populations, particularly in countries with lower income, information related to the prevalence of pharmacogenomic biomarkers is incomplete or lacking. Here, we have implemented the microattribution approach to assess the pharmacogenomic biomarkers allelic spectrum in 18 European populations, mostly from developing European countries, by analyzing 1,931 pharmacogenomics biomarkers in 231 genes. Our data show significant inter-population pharmacogenomic biomarker allele frequency differences, particularly in 7 clinically actionable pharmacogenomic biomarkers in 7 European populations, affecting drug efficacy and/or toxicity of 51 medication treatment modalities. These data also reflect on the differences observed in the prevalence of high-risk genotypes in these populations, as far as common markers in the CYP2C9, CYP2C19, CYP3A5, VKORC1, SLCO1B1 and TPMT pharmacogenes are concerned. Also, our data demonstrate notable differences in predicted genotype-based warfarin dosing among these populations. Our findings can be exploited not only to develop guidelines for medical prioritization, but most importantly to facilitate integration of pharmacogenomics and to support pre-emptive pharmacogenomic testing. This may subsequently contribute towards significant cost-savings in the overall healthcare expenditure in the participating countries, where pharmacogenomics implementation proves to be cost-effective.

  3. Pharmacogenetics, pharmacogenomics, and cardiovascular therapeutics: the way forward.

    Science.gov (United States)

    Terra, Steven G; Johnson, Julie A

    2002-01-01

    The completion of sequencing of the human genome will be the vanguard for numerous advances in medicine. The first discernible application is likely to occur in pharmacogenomics, a field focused on the influence of genetic differences on the variability in patients' response to medications. While an inherited basis for drug response has been recognized for some time, it is the confluence of molecular biology, high-throughput genotyping, and bioinformatics that has made it practical to study the genetic basis of variability to medications on a large scale. Pharmacogenomics may enable clinicians to prospectively identify patients most likely to derive benefit from a drug, with minimal likelihood of adverse events. This DNA-based approach to predicting clinical drug efficacy and toxicity would shift the current prescribing paradigm from its empirical nature to a more patient-specific model, ushering in a new era of personalized medicine. Polymorphisms in drug metabolizing enzymes, drug targets, and disease pathogenesis genes are associated with therapeutic effect to cardiovascular pharmacotherapy. Moreover, pharmacogenomics and functional genomics are expected to have a profound impact on the process of drug discovery and development. Finally, pharmacogenomics is likely to transform the way clinical trials are conducted by allowing for the selection of a more homogeneous study population, thereby reducing the size and cost of clinical investigation.

  4. Economic Evaluations of Pharmacogenetic and Pharmacogenomic Screening Tests: A Systematic Review. Second Update of the Literature.

    Directory of Open Access Journals (Sweden)

    Elizabeth J J Berm

    Full Text Available Due to extended application of pharmacogenetic and pharmacogenomic screening (PGx tests it is important to assess whether they provide good value for money. This review provides an update of the literature.A literature search was performed in PubMed and papers published between August 2010 and September 2014, investigating the cost-effectiveness of PGx screening tests, were included. Papers from 2000 until July 2010 were included via two previous systematic reviews. Studies' overall quality was assessed with the Quality of Health Economic Studies (QHES instrument.We found 38 studies, which combined with the previous 42 studies resulted in a total of 80 included studies. An average QHES score of 76 was found. Since 2010, more studies were funded by pharmaceutical companies. Most recent studies performed cost-utility analysis, univariate and probabilistic sensitivity analyses, and discussed limitations of their economic evaluations. Most studies indicated favorable cost-effectiveness. Majority of evaluations did not provide information regarding the intrinsic value of the PGx test. There were considerable differences in the costs for PGx testing. Reporting of the direction and magnitude of bias on the cost-effectiveness estimates as well as motivation for the chosen economic model and perspective were frequently missing.Application of PGx tests was mostly found to be a cost-effective or cost-saving strategy. We found that only the minority of recent pharmacoeconomic evaluations assessed the intrinsic value of the PGx tests. There was an increase in the number of studies and in the reporting of quality associated characteristics. To improve future evaluations, scenario analysis including a broad range of PGx tests costs and equal costs of comparator drugs to assess the intrinsic value of the PGx tests, are recommended. In addition, robust clinical evidence regarding PGx tests' efficacy remains of utmost importance.

  5. Evidence used in model-based economic evaluations for evaluating pharmacogenetic and pharmacogenomic tests: a systematic review protocol.

    Science.gov (United States)

    Peters, Jaime L; Cooper, Chris; Buchanan, James

    2015-11-11

    Decision models can be used to conduct economic evaluations of new pharmacogenetic and pharmacogenomic tests to ensure they offer value for money to healthcare systems. These models require a great deal of evidence, yet research suggests the evidence used is diverse and of uncertain quality. By conducting a systematic review, we aim to investigate the test-related evidence used to inform decision models developed for the economic evaluation of genetic tests. We will search electronic databases including MEDLINE, EMBASE and NHS EEDs to identify model-based economic evaluations of pharmacogenetic and pharmacogenomic tests. The search will not be limited by language or date. Title and abstract screening will be conducted independently by 2 reviewers, with screening of full texts and data extraction conducted by 1 reviewer, and checked by another. Characteristics of the decision problem, the decision model and the test evidence used to inform the model will be extracted. Specifically, we will identify the reported evidence sources for the test-related evidence used, describe the study design and how the evidence was identified. A checklist developed specifically for decision analytic models will be used to critically appraise the models described in these studies. Variations in the test evidence used in the decision models will be explored across the included studies, and we will identify gaps in the evidence in terms of both quantity and quality. The findings of this work will be disseminated via a peer-reviewed journal publication and at national and international conferences. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  6. The concept of gene is in crisis. Does it affect pharmacogenetics and pharmacogenomics?

    Directory of Open Access Journals (Sweden)

    Miriam Falkenberg

    2006-09-01

    Full Text Available It is well known that the efficacy of certain drugs varies from individual to individual, depending in part on variation in the genes that encode drug metabolizing enzymes or target proteins. Like many other branches of the biomedical sciences, pharmacogenetics has been invigorated by recent advances in genomics, which has led to expectations that the safety and efficacy of medicines will soon be notably improved by personalization of therapeutics based on genetic data. Here we discuss how the crisis of the molecular gene concept affects the premise traced by pharmacogenetics and how the sprouting of new paradigms in molecular and developmental biology points out the impossibility of reducing biological complexity to a DNA strand and single nucleotide polymorphism, affecting the main aim of pharmacotherapy which is to provide the right drug for the right patient at the right dose.

  7. Pharmacogenetic Biomarkers to Predict Treatment Response in Multiple Sclerosis: Current and Future Perspectives

    Directory of Open Access Journals (Sweden)

    Patricia K. Coyle

    2017-01-01

    Full Text Available Disease-modifying therapies (DMTs have significantly advanced the treatment of relapsing multiple sclerosis (MS, decreasing the frequency of relapses, disability, and magnetic resonance imaging lesion formation. However, patients’ responses to and tolerability of DMTs vary considerably, creating an unmet need for biomarkers to identify likely responders and/or those who may have treatment-limiting adverse reactions. Most studies in MS have focused on the identification of pharmacogenetic markers, using either the candidate-gene approach, which requires prior knowledge of the genetic marker and its role in the target disease, or genome-wide association, which examines multiple genetic variants, typically single nucleotide polymorphisms (SNPs. Both approaches have implicated numerous alleles and SNPs in response to selected MS DMTs. None have been validated for use in clinical practice. This review covers pharmacogenetic markers in clinical practice in other diseases and then reviews the current status of MS DMT markers (interferon β, glatiramer acetate, and mitoxantrone. For a complex disease such as MS, multiple biomarkers may need to be evaluated simultaneously to identify potential responders. Efforts to identify relevant biomarkers are underway and will need to be expanded to all MS DMTs. These will require extensive validation in large patient groups before they can be used in clinical practice.

  8. Use of Pharmacogenomics and Biomarkers in the Development of New Drugs for Alzheimer Disease in Japan.

    Science.gov (United States)

    Otsubo, Yasuto

    2015-08-01

    Pharmacogenomics (PGx) and biomarkers have been utilized for improving the benefit/risk ratios of drugs and the efficiency of drug development. In the development of drugs for Alzheimer disease (AD), a number of clinical trials have failed to demonstrate clinical efficacy. To overcome this circumstance, the importance of using PGx/biomarkers for enhancing recruitment into clinical trials and for evaluating the efficacy of treatments has been increasingly recognized. In this article, the current status and examples of the use of PGx/biomarkers in Japan for drug development are explained. Guidelines, notifications, and administrative notices related to PGx/biomarkers were downloaded from the Web sites of the Pharmaceuticals and Medical Devices Agency (PMDA), the US Food and Drug Administration, and the European Medicines Agency. Data from clinical studies of AD drugs were obtained from the review reports of the PMDA. To analyze the current status of the use of PGx/biomarkers in Japan, "Issues to Consider in the Clinical Evaluation and Development of Drugs for Alzheimer's Disease (Interim Summary)" was also downloaded from PMDA Web site. There are 2 major measures of utilizing PGx/biomarkers for drug development: (1) biomarker qualification and (2) companion diagnostics. Recently, the PMDA issued a number of guidelines and notifications for their practical use. Although examples of qualified PGx/biomarkers and approved companion diagnostics are limited at present, it is expected that the use of PGx/biomarkers for the development of drugs against AD would increase. For promoting the use of PGx/biomarkers in the development of drugs against AD, PGx/biomarkers should be qualified as early as possible. To that end, accumulating data on PGx/biomarkers from nonclinical or clinical trials and the concurrent development of reliable diagnostics in the early stage of the development process are indispensable. It is important to strengthen collaboration among the academia

  9. Pharmacogenomic Testing

    Science.gov (United States)

    ... you want to learn. Search form Search Pharmacogenomic testing You are here Home Testing & Services Testing for ... to fit your genetic makeup What Is Pharmacogenomic Testing? Pharmacogenomic testing is done before your healthcare provider ...

  10. Glycine and a glycine dehydrogenase (GLDC) SNP as citalopram/escitalopram response biomarkers in depression: pharmacometabolomics-informed pharmacogenomics.

    Science.gov (United States)

    Ji, Y; Hebbring, S; Zhu, H; Jenkins, G D; Biernacka, J; Snyder, K; Drews, M; Fiehn, O; Zeng, Z; Schaid, D; Mrazek, D A; Kaddurah-Daouk, R; Weinshilboum, R M

    2011-01-01

    Major depressive disorder (MDD) is a common psychiatric disease. Selective serotonin reuptake inhibitors (SSRIs) are an important class of drugs used in the treatment of MDD. However, many patients do not respond adequately to SSRI therapy. We used a pharmacometabolomics-informed pharmacogenomic research strategy to identify citalopram/escitalopram treatment outcome biomarkers. Metabolomic assay of plasma samples from 20 escitalopram remitters and 20 nonremitters showed that glycine was negatively associated with treatment outcome (P = 0.0054). This observation was pursued by genotyping tag single-nucleotide polymorphisms (SNPs) for genes encoding glycine synthesis and degradation enzymes, using 529 DNA samples from SSRI-treated MDD patients. The rs10975641 SNP in the glycine dehydrogenase (GLDC) gene was associated with treatment outcome phenotypes. Genotyping for rs10975641 was carried out in 1,245 MDD patients in the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) study, and its presence was significant (P = 0.02) in DNA taken from these patients. These results highlight a possible role for glycine in SSRI response and illustrate the use of pharmacometabolomics to "inform" pharmacogenomics.

  11. Pharmacogenomics in diabetes mellitus

    DEFF Research Database (Denmark)

    Zhou, Kaixin; Pedersen, Helle Krogh; Dawed, Adem Y.

    2016-01-01

    Genomic studies have greatly advanced our understanding of the multifactorial aetiology of type 2 diabetes mellitus (T2DM) as well as the multiple subtypes of monogenic diabetes mellitus. In this Review, we discuss the existing pharmacogenetic evidence in both monogenic diabetes mellitus and T2DM...... future pharmacogenomic findings could provide insights into treatment response in diabetes mellitus that, in addition to other areas of human genetics, facilitates drug discovery and drug development for T2DM.......Genomic studies have greatly advanced our understanding of the multifactorial aetiology of type 2 diabetes mellitus (T2DM) as well as the multiple subtypes of monogenic diabetes mellitus. In this Review, we discuss the existing pharmacogenetic evidence in both monogenic diabetes mellitus and T2DM....... We highlight mechanistic insights from the study of adverse effects and the efficacy of antidiabetic drugs. The identification of extreme sulfonylurea sensitivity in patients with diabetes mellitus owing to heterozygous mutations in HNF1A represents a clear example of how pharmacogenetics can direct...

  12. Pharmacogenomic Variants May Influence the Urinary Excretion of Novel Kidney Injury Biomarkers in Patients Receiving Cisplatin.

    Science.gov (United States)

    Chang, Cara; Hu, Yichun; Hogan, Susan L; Mercke, Nickie; Gomez, Madeleine; O'Bryant, Cindy; Bowles, Daniel W; George, Blessy; Wen, Xia; Aleksunes, Lauren M; Joy, Melanie S

    2017-06-22

    Nephrotoxicity is a dose limiting side effect associated with the use of cisplatin in the treatment of solid tumors. The degree of nephrotoxicity is dictated by the selective accumulation of cisplatin in renal tubule cells due to: (1) uptake by organic cation transporter 2 (OCT2) and copper transporter 1 (CTR1); (2) metabolism by glutathione S-transferases (GSTs) and γ-glutamyltransferase 1 (GGT1); and (3) efflux by multidrug resistance-associated protein 2 (MRP2) and multidrug and toxin extrusion protein 1 (MATE1). The purpose of this study was to determine the significance of single nucleotide polymorphisms that regulate the expression and function of transporters and metabolism genes implicated in development of acute kidney injury (AKI) in cisplatin treated patients. Changes in the kidney function were assessed using novel urinary protein biomarkers and traditional markers. Genotyping was conducted by the QuantStudio 12K Flex Real-Time PCR System using a custom open array chip with metabolism, transport, and transcription factor polymorphisms of interest to cisplatin disposition and toxicity. Traditional and novel biomarker assays for kidney toxicity were assessed for differences according to genotype by ANOVA. Allele and genotype frequencies were determined based on Caucasian population frequencies. The polymorphisms rs596881 ( SLC22A2 /OCT2), and rs12686377 and rs7851395 ( SLC31A1 /CTR1) were associated with renoprotection and maintenance of estimated glomerular filtration rate (eGFR). Polymorphisms in SLC22A2 /OCT2, SLC31A1 /CTRI, SLC47A1 /MATE1, ABCC2 /MRP2, and GSTP1 were significantly associated with increases in the urinary excretion of novel AKI biomarkers: KIM-1, TFF3, MCP1, NGAL, clusterin, cystatin C, and calbindin. Knowledge concerning which genotypes in drug transporters are associated with cisplatin-induced nephrotoxicity may help to identify at-risk patients and initiate strategies, such as using lower or fractionated cisplatin doses or avoiding

  13. Pharmacogenomics training using an instructional software system.

    Science.gov (United States)

    Springer, John A; Iannotti, Nicholas V; Kane, Michael D; Haynes, Kevin; Sprague, Jon E

    2011-03-10

    To implement an elective course in pharmacogenomics designed to teach pharmacy students about the fundamentals of pharmacogenomics and the anticipated changes it will bring to the profession. The 8 sessions of the course covered the basics of pharmacogenomics, genomic biotechnology, implementation of pharmacogenetics in pharmacy, information security and privacy, ethical issues related to the use of genomic data, pharmacoepidemiology, and use and promotion of GeneScription, a software program designed to mimic the professional pharmacy environment. Student grades were based on completion of a patient education pamphlet, a 2-page paper on pharmacogenomics, and precourse and postcourse survey instruments. In the postcourse survey, all students strongly agreed that genomic data could be used to determine the optimal dose of a drug and genomic data for metabolizing enzymes could be stored in a safe place. Students also were more willing to submit deoxyribonucleic acid (DNA) data for genetic profiling and better understood how DNA analysis is performed after completing the course. An elective course in pharmacogenomics equipped pharmacy students with the basic knowledge necessary to make clinical decisions based on pharmacogenomic data and to teach other healthcare professionals and patients about pharmacogenomics. For personalized medicine to become a reality, all pharmacists and pharmacy students must learn this knowledge and these skills.

  14. Pharmacogenomic Variants May Influence the Urinary Excretion of Novel Kidney Injury Biomarkers in Patients Receiving Cisplatin

    Directory of Open Access Journals (Sweden)

    Cara Chang

    2017-06-01

    Full Text Available Nephrotoxicity is a dose limiting side effect associated with the use of cisplatin in the treatment of solid tumors. The degree of nephrotoxicity is dictated by the selective accumulation of cisplatin in renal tubule cells due to: (1 uptake by organic cation transporter 2 (OCT2 and copper transporter 1 (CTR1; (2 metabolism by glutathione S-transferases (GSTs and γ-glutamyltransferase 1 (GGT1; and (3 efflux by multidrug resistance-associated protein 2 (MRP2 and multidrug and toxin extrusion protein 1 (MATE1. The purpose of this study was to determine the significance of single nucleotide polymorphisms that regulate the expression and function of transporters and metabolism genes implicated in development of acute kidney injury (AKI in cisplatin treated patients. Changes in the kidney function were assessed using novel urinary protein biomarkers and traditional markers. Genotyping was conducted by the QuantStudio 12K Flex Real-Time PCR System using a custom open array chip with metabolism, transport, and transcription factor polymorphisms of interest to cisplatin disposition and toxicity. Traditional and novel biomarker assays for kidney toxicity were assessed for differences according to genotype by ANOVA. Allele and genotype frequencies were determined based on Caucasian population frequencies. The polymorphisms rs596881 (SLC22A2/OCT2, and rs12686377 and rs7851395 (SLC31A1/CTR1 were associated with renoprotection and maintenance of estimated glomerular filtration rate (eGFR. Polymorphisms in SLC22A2/OCT2, SLC31A1/CTRI, SLC47A1/MATE1, ABCC2/MRP2, and GSTP1 were significantly associated with increases in the urinary excretion of novel AKI biomarkers: KIM-1, TFF3, MCP1, NGAL, clusterin, cystatin C, and calbindin. Knowledge concerning which genotypes in drug transporters are associated with cisplatin-induced nephrotoxicity may help to identify at-risk patients and initiate strategies, such as using lower or fractionated cisplatin doses or avoiding

  15. Pharmacogenomic Variants May Influence the Urinary Excretion of Novel Kidney Injury Biomarkers in Patients Receiving Cisplatin

    Science.gov (United States)

    Chang, Cara; Hu, Yichun; Hogan, Susan L.; Mercke, Nickie; Gomez, Madeleine; O’Bryant, Cindy; Bowles, Daniel W.; George, Blessy; Wen, Xia; Aleksunes, Lauren M.; Joy, Melanie S.

    2017-01-01

    Nephrotoxicity is a dose limiting side effect associated with the use of cisplatin in the treatment of solid tumors. The degree of nephrotoxicity is dictated by the selective accumulation of cisplatin in renal tubule cells due to: (1) uptake by organic cation transporter 2 (OCT2) and copper transporter 1 (CTR1); (2) metabolism by glutathione S-transferases (GSTs) and γ-glutamyltransferase 1 (GGT1); and (3) efflux by multidrug resistance-associated protein 2 (MRP2) and multidrug and toxin extrusion protein 1 (MATE1). The purpose of this study was to determine the significance of single nucleotide polymorphisms that regulate the expression and function of transporters and metabolism genes implicated in development of acute kidney injury (AKI) in cisplatin treated patients. Changes in the kidney function were assessed using novel urinary protein biomarkers and traditional markers. Genotyping was conducted by the QuantStudio 12K Flex Real-Time PCR System using a custom open array chip with metabolism, transport, and transcription factor polymorphisms of interest to cisplatin disposition and toxicity. Traditional and novel biomarker assays for kidney toxicity were assessed for differences according to genotype by ANOVA. Allele and genotype frequencies were determined based on Caucasian population frequencies. The polymorphisms rs596881 (SLC22A2/OCT2), and rs12686377 and rs7851395 (SLC31A1/CTR1) were associated with renoprotection and maintenance of estimated glomerular filtration rate (eGFR). Polymorphisms in SLC22A2/OCT2, SLC31A1/CTRI, SLC47A1/MATE1, ABCC2/MRP2, and GSTP1 were significantly associated with increases in the urinary excretion of novel AKI biomarkers: KIM-1, TFF3, MCP1, NGAL, clusterin, cystatin C, and calbindin. Knowledge concerning which genotypes in drug transporters are associated with cisplatin-induced nephrotoxicity may help to identify at-risk patients and initiate strategies, such as using lower or fractionated cisplatin doses or avoiding

  16. Pharmacogenomics and adverse drug reactions in diagnostic and clinical practice.

    Science.gov (United States)

    Manolopoulos, Vangelis G

    2007-01-01

    Pharmacogenetics and pharmacogenomics deal with genetically determined variations in how individuals respond to drugs. They hold the potential to revolutionize drug therapy. The clinical need for novel approaches to improve pharmacotherapy stems from the high rate of adverse reactions to drugs and their lack of effectiveness in many individuals. Despite the accumulation of research findings showing the potential for clinical benefit for several drug-metabolizing enzymes and some receptors that constitute drug targets, the translation of these findings into tangible clinical applications occurs very slowly. The main steps for clinical implementation of pharmacogenomics include: a) education of clinicians and all other parties involved in the use and benefits of pharmacogenomics; b) execution of large prospective clinical and pharmacoeconomic studies showing the benefit of pharmacogenomic genotyping; c) provision of incentives to develop tests; d) development of specific clinical guidelines; and e) creation of a solid regulatory and ethical framework. Furthermore, the potential should be explored to use existing therapeutic drug monitoring laboratories to introduce pharmacogenomic testing into hospitals. Overall, our thesis is that pharmacogenomics is already a reality in clinical practice and is bound to continue gaining acceptance by clinicians in the coming years.

  17. Pharmacogenetics/genomics and personalized medicine.

    Science.gov (United States)

    Sadée, Wolfgang; Dai, Zunyan

    2005-10-15

    Despite the marked advances in drug therapy, some patients do not respond favorably or suffer severe adverse drug effects. Pharmacogenetic studies have shown that polymorphisms of drug metabolizing enzymes, transporters and receptors contribute to variable drug response. Owing to the complexity of drug actions, a broader genomics approach aims at finding new drug targets and optimizing therapy for the individual patient. However, pharmacogenomics has made only a few inroads into clinical practice to date. This review evaluates obstacles that need to be overcome. These include the complexity of mechanisms underlying drug response, given singly or in combination, uncertainty about the genetic underpinnings of complex diseases, such as cancer, diabetes, cardiovascular and mental disorders and a lack of quantitative understanding of the scope of genetic variations, even for well-studied genes. By resolving these hurdles, pharmacogenomics will yield significant, but incremental, therapeutic advances paving the way towards personalized health care.

  18. Biomarkers: Delivering on the expectation of molecularly driven, quantitative health.

    Science.gov (United States)

    Wilson, Jennifer L; Altman, Russ B

    2018-02-01

    Biomarkers are the pillars of precision medicine and are delivering on expectations of molecular, quantitative health. These features have made clinical decisions more precise and personalized, but require a high bar for validation. Biomarkers have improved health outcomes in a few areas such as cancer, pharmacogenetics, and safety. Burgeoning big data research infrastructure, the internet of things, and increased patient participation will accelerate discovery in the many areas that have not yet realized the full potential of biomarkers for precision health. Here we review themes of biomarker discovery, current implementations of biomarkers for precision health, and future opportunities and challenges for biomarker discovery. Impact statement Precision medicine evolved because of the understanding that human disease is molecularly driven and is highly variable across patients. This understanding has made biomarkers, a diverse class of biological measurements, more relevant for disease diagnosis, monitoring, and selection of treatment strategy. Biomarkers' impact on precision medicine can be seen in cancer, pharmacogenomics, and safety. The successes in these cases suggest many more applications for biomarkers and a greater impact for precision medicine across the spectrum of human disease. The authors assess the status of biomarker-guided medical practice by analyzing themes for biomarker discovery, reviewing the impact of these markers in the clinic, and highlight future and ongoing challenges for biomarker discovery. This work is timely and relevant, as the molecular, quantitative approach of precision medicine is spreading to many disease indications.

  19. Pharmacogenetics of psychotropic drugs

    National Research Council Canada - National Science Library

    Lerer, Bernard

    2002-01-01

    ... of pharmacogenetics with substance dependence and brain imaging, and consider the impact of pharmacogenetics on the biotechnology and pharmaceutical industries. This book defines the young field of pharmacogenetics as it applies to psychotropic drugs and is, therefore, an essential reference for all clinicians and researchers working in this findings field. Bernard ...

  20. Pharmacogenomics in osteoporosis: Steps toward personalized medicine

    Directory of Open Access Journals (Sweden)

    Robert Greene

    2009-09-01

    Full Text Available Robert Greene1, Shaymaa S Mousa, Mohamed Ardawi2, Mohamed Qari2, Shaker A Mousa11The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY, USA; 2Center of Excellence in Osteoporosis Research, King Abdul Aziz University, Jeddah, Saudi ArabiaAbstract: Osteoporosis is a complicated and preventable disease with major morbidity complications that affects millions of people. In the last 15 years, there have been numerous studies and research in the new fields of pharmacogenetics and pharmacogenomics related to osteoporosis. Numerous “candidate genes” have been identified and have been found to be associated with osteoporosis as well as the treatment of osteoporosis. Many studies have found conflicting results on different polymorphisms and whether or not they are related to bone mineral density and osteoporosis. There is a need for larger and better designed pharmacogenomic studies related to osteoporosis incorporating a greater variety of candidate genes. The evaluation of osteoporosis and fracture risk is moving from a risk stratification approach to a more individualized approach, in which an individual’s absolute risk of fracture is evaluable as a constellation of the individual’s environmental exposure and genetic makeup. Therefore, the identification of gene variants associated with osteoporosis phenotypes or response to therapy might help individualize the prognosis, treatment, and prevention of fracture. This review focuses on major candidate genes and what needs to be done to take the genetics of osteoporosis and incorporate them into the pharmacogenomics of the management of osteoporosis.Keywords: pharmacogenomics, osteoporosis, VDR, ER-alpha, CYP19 Gene, LRP5, COLIA1, polymorphisms, genetics

  1. Clinical Trial Designs to Support Clinical Utility of Pharmacogenomic Testing.

    Science.gov (United States)

    Drozda, Katarzyna; Pacanowski, Michael A

    2017-09-01

    Advancing the use of biomarkers and pharmacogenomics has been a key priority area for the U.S. Food and Drug Administration (FDA). The FDA offers prescribing recommendations to manage ~100 gene-drug interactions, and multiple institutions around the United States and abroad have incorporated genomic testing into patient care. However, the penetration of pharmacogenomic testing remains incomplete. In this perspective, we summarize the evidence streams to support the clinical utility of pharmacogenomic testing and its transition into clinical practice. © 2017 Pharmacotherapy Publications, Inc.

  2. Institutional profile of pharmacogenetics within University of Michigan College of Pharmacy.

    Science.gov (United States)

    Hertz, Daniel L; Luzum, Jasmine A; Pasternak, Amy L; Ward, Kristen M; Zhu, Hao-Jie; Rae, James M; Ellingrod, Vicki L

    2017-07-26

    The University of Michigan College of Pharmacy has made substantial investment in the area of pharmacogenomics to further bolster its activity in pharmacogenomics research, implementation and education. Four tenure-track faculty members have active research programs that focus primarily on the discovery of functional polymorphisms (HJ Zhu), and genetic associations with treatment outcomes in patients with cancer (DL Hertz), cardiovascular disease (JA Luzum) and psychiatric conditions (VL Ellingrod). Recent investments from the University and the College have accelerated the implementation of pharmacogenetics broadly across the institution and in targeted therapeutic areas. Students within the PharmD and other health science professions receive substantial instruction in pharmacogenomics, in preparation for careers in biomedical health in which they can contribute to the generation, dissemination and utilization of pharmacogenomics knowledge to improve patient care.

  3. Recent advances of pharmacogenomics in severe cutaneous adverse reactions: immune and nonimmune mechanisms

    Science.gov (United States)

    Dao, Ro-Lan; Su, Shih-Chi

    2015-01-01

    Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN), and drug reaction with eosinophilia and systemic symptoms (DRESS) are severe cutaneous adverse reactions (SCAR) which are majorly caused by drugs. Though the incidence rate is low, SCAR sometimes can be life-threatening and leads to lifelong sequelae. Many pharmacogenomic associations in immune and nonimmune related genes with the development of SCAR have been discovered recently and the pharmacogenetic tests have been applied to prevent specific drug-induced SCAR. In this review, we discuss the recent advances of pharmacogenomics in SCAR. PMID:25938070

  4. Frequently Asked Questions about Pharmacogenomics

    Science.gov (United States)

    ... at NHGRI About About the Institute Budget and Financial Information Divisions Director's Page How to Contact Us Institute ... will need Adobe Reader. What is pharmacogenomics? Pharmacogenomics uses information about a person's genetic makeup, or genome, to ...

  5. Pharmacogenomically actionable medications in a safety net health care system

    Directory of Open Access Journals (Sweden)

    Janet S Carpenter

    2016-01-01

    Full Text Available Objective: Prior to implementing a trial to evaluate the economic costs and clinical outcomes of pharmacogenetic testing in a large safety net health care system, we determined the number of patients taking targeted medications and their clinical care encounter sites. Methods: Using 1-year electronic medical record data, we evaluated the number of patients who had started one or more of 30 known pharmacogenomically actionable medications and the number of care encounter sites the patients had visited. Results: Results showed 7039 unique patients who started one or more of the target medications within a 12-month period with visits to 73 care sites within the system. Conclusion: Findings suggest that the type of large-scale, multi-drug, multi-gene approach to pharmacogenetic testing we are planning is widely relevant, and successful implementation will require wide-scale education of prescribers and other personnel involved in medication dispensing and handling.

  6. Pharmacogenomics and cardiovascular disease

    DEFF Research Database (Denmark)

    Weeke, Peter; Roden, Dan M

    2013-01-01

    Variability in drug responsiveness is a sine qua non of modern therapeutics, and the contribution of genomic variation is increasingly recognized. Investigating the genomic basis for variable responses to cardiovascular therapies has been a model for pharmacogenomics in general and has established...... resulted in changes to the product labels but also have led to development of initial clinical guidelines that consider how to facilitate incorporating genetic information to the bedside. This review summarizes the state of knowledge in cardiovascular pharmacogenomics and considers how variants described...

  7. Pharmacogenomics and migraine

    DEFF Research Database (Denmark)

    Tfelt-Hansen, Peer; Brøsen, Kim

    2008-01-01

    cases pharmacodynamic variability we mention possible implications for the acute and preventive treatment of migraine. Pharmacogenomics will most likely in the future be one part of our therapeutic armamentarium and will provide a stronger scientific basis for optimizing drug therapy on the basis...

  8. Pharmacogenomics of heart failure.

    Science.gov (United States)

    Lymperopoulos, Anastasios; French, Faren

    2014-01-01

    The combination of angiotensin-converting enzyme (ACE) inhibitors and β-adrenergic receptor (βAR) blockers remains the essential component of heart failure (HF) pharmacotherapy. However, individual patient responses to these pharmacotherapies vary widely. The variability in response cannot be explained entirely by clinical characteristics, and genetic variation may play a role. The purpose of this chapter is to examine the current knowledge in the field of beta-blocker and ACE inhibitor pharmacogenetics in HF. β-blocker and ACE inhibitor pharmacogenetic studies performed in patients with HF were identified from the PubMed database from 1966 to July 2011. Thirty beta-blocker and 10 ACE inhibitor pharmacogenetic studies in patients with HF were identified.The ACE deletion variant was associated with greater survival benefit from ACE inhibitors and beta-blockers compared with the ACE insertion. Ser49 in the β1AR, the insertion in the α2CAR, and Gln41 in G protein-coupled receptor (GPCR) kinase (GRK)-5 are associated with greater survival benefit from β-blockers, compared with Gly49, the deletion, and Leu41, respectively. However, many of these associations have not been validated. The HF pharmacogenetic literature is still in its very early stages, but there are promising candidate genetic variants that may identify which HF patients are most likely to benefit from beta-blockers and ACE inhibitors and patients that may require additional therapies.

  9. Pharmacogenetic & pharmacokinetic biomarker for efavirenz based ARV and rifampicin based anti-TB drug induced liver injury in TB-HIV infected patients.

    Directory of Open Access Journals (Sweden)

    Getnet Yimer

    Full Text Available BACKGROUND: Implication of pharmacogenetic variations and efavirenz pharmacokinetics in concomitant efavirenz based antiviral therapy and anti-tubercular drug induced liver injury (DILI has not been yet studied. We performed a prospective case-control association study to identify the incidence, pharmacogenetic, pharmacokinetic and biochemical predictors for anti-tubercular and antiretroviral drugs induced liver injury (DILI in HIV and tuberculosis (TB co-infected patients. METHODS AND FINDINGS: Newly diagnosed treatment naïve TB-HIV co-infected patients (n = 353 were enrolled to receive efavirenz based ART and rifampicin based anti-TB therapy, and assessed clinically and biochemically for DILI up to 56 weeks. Quantification of plasma efavirenz and 8-hydroxyefaviernz levels and genotyping for NAT2, CYP2B6, CYP3A5, ABCB1, UGT2B7 and SLCO1B1 genes were done. The incidence of DILI and identification of predictors was evaluated using survival analysis and the Cox Proportional Hazards Model. The incidence of DILI was 30.0%, or 14.5 per 1000 person-week, and that of severe was 18.4%, or 7.49 per 1000 person-week. A statistically significant association of DILI with being of the female sex (p = 0.001, higher plasma efavirenz level (p = 0.009, efavirenz/8-hydroxyefavirenz ratio (p = 0.036, baseline AST (p = 0.022, ALT (p = 0.014, lower hemoglobin (p = 0.008, and serum albumin (p = 0.007, NAT2 slow-acetylator genotype (p = 0.039 and ABCB1 3435TT genotype (p = 0.001. CONCLUSION: We report high incidence of anti-tubercular and antiretroviral DILI in Ethiopian patients. Between patient variability in systemic efavirenz exposure and pharmacogenetic variations in NAT2, CYP2B6 and ABCB1 genes determines susceptibility to DILI in TB-HIV co-infected patients. Close monitoring of plasma efavirenz level and liver enzymes during early therapy and/or genotyping practice in HIV clinics is recommended for early identification

  10. Pharmacogenomics-guided policy in opioid use disorder (OUD) management: An ethnically-diverse case-based approach.

    Science.gov (United States)

    Ettienne, Earl B; Chapman, Edwin; Maneno, Mary; Ofoegbu, Adaku; Wilson, Bradford; Settles-Reaves, Beverlyn; Clarke, Melissa; Dunston, Georgia; Rosenblatt, Kevin

    2017-12-01

    Opioid use disorder (OUD) is characterized by a problematic pattern of opioid use leading to clinically-significant impairment or distress. Opioid agonist treatment is an integral component of OUD management, and buprenorphine is often utilized in OUD management due to strong clinical evidence for efficacy. However, interindividual genetic differences in buprenorphine metabolism may result in variable treatment response, leaving some patients undertreated and at increased risk for relapse. Clinical pharmacogenomics studies the effect that inherited genetic variations have on drug response. Our objective is to demonstrate the impact of pharmacogenetic testing on OUD management outcomes. We analyzed a patient who reported discomfort at daily buprenorphine dose of 24 mg, which was a mandated daily maximum by the pharmacy benefits manager. Regular urine screenings were conducted to detect the presence of unauthorized substances, and pharmacogenetic testing was used to determine the appropriate dose of buprenorphine for OUD management. At the 24 mg buprenorphine daily dose, the patient had multiple relapses with unauthorized substances. Pharmacogenetic testing revealed that the patient exhibited a cytochrome P450 3A4 ultrarapid metabolizer phenotype, which necessitated a higher than recommended daily dose of buprenorphine (32 mg) for adequate OUD management. The patient exhibited a reduction in the number of relapses on the pharmacogenetic-based dose recommendation compared to standard dosing. Pharmacogenomic testing as clinical decision support helped to individualize OUD management. Collaboration by key stakeholders is essential to establishing pharmacogenetic testing as standard of care in OUD management.

  11. Pharmacogenomics: Current State-of-the-Art

    Directory of Open Access Journals (Sweden)

    Daniel F. Carr

    2014-05-01

    Full Text Available The completion of the human genome project 10 years ago was met with great optimism for improving drug therapy through personalized medicine approaches, with the anticipation that an era of genotype-guided patient prescribing was imminent. To some extent this has come to pass and a number of key pharmacogenomics markers of inter-individual drug response, for both safety and efficacy, have been identified and subsequently been adopted in clinical practice as pre-treatment genetic tests. However, the universal application of genetics in treatment guidance is still a long way off. This review will highlight important pharmacogenomic discoveries which have been facilitated by the human genome project and other milestone projects such as the International HapMap and 1000 genomes, and by the continued development of genotyping and sequencing technologies, including rapid point of care pre-treatment genetic testing. However, there are still many challenges to implementation for the many other reported biomarkers which continue to languish within the discovery phase. As technology advances over the next 10 years, and the costs fall, the field will see larger genetic data sets, including affordable whole genome sequences, which will, it is hoped, improve patient outcomes through better diagnostic, prognostic and predictive biomarkers.

  12. Pharmacogenomics-guided policy in opioid use disorder (OUD management: An ethnically-diverse case-based approach

    Directory of Open Access Journals (Sweden)

    Earl B. Ettienne

    2017-12-01

    Full Text Available Introduction: Opioid use disorder (OUD is characterized by a problematic pattern of opioid use leading to clinically-significant impairment or distress. Opioid agonist treatment is an integral component of OUD management, and buprenorphine is often utilized in OUD management due to strong clinical evidence for efficacy. However, interindividual genetic differences in buprenorphine metabolism may result in variable treatment response, leaving some patients undertreated and at increased risk for relapse. Clinical pharmacogenomics studies the effect that inherited genetic variations have on drug response. Our objective is to demonstrate the impact of pharmacogenetic testing on OUD management outcomes. Methods: We analyzed a patient who reported discomfort at daily buprenorphine dose of 24mg, which was a mandated daily maximum by the pharmacy benefits manager. Regular urine screenings were conducted to detect the presence of unauthorized substances, and pharmacogenetic testing was used to determine the appropriate dose of buprenorphine for OUD management. Results: At the 24mg buprenorphine daily dose, the patient had multiple relapses with unauthorized substances. Pharmacogenetic testing revealed that the patient exhibited a cytochrome P450 3A4 ultrarapid metabolizer phenotype, which necessitated a higher than recommended daily dose of buprenorphine (32mg for adequate OUD management. The patient exhibited a reduction in the number of relapses on the pharmacogenetic-based dose recommendation compared to standard dosing. Conclusion: Pharmacogenomic testing as clinical decision support helped to individualize OUD management. Collaboration by key stakeholders is essential to establishing pharmacogenetic testing as standard of care in OUD management. Keywords: Opioid use disorder, Opioid agonist treatment, Buprenorphine, Pharmacogenomics, Policy

  13. The limits of genome-wide methods for pharmacogenomic testing.

    Science.gov (United States)

    Gamazon, Eric R; Skol, Andrew D; Perera, Minoli A

    2012-04-01

    The goal of pharmacogenomics is the translation of genomic discoveries into individualized patient care. Recent advances in the means to survey human genetic variation are fundamentally transforming our understanding of the genetic basis of interindividual variation in therapeutic response. The goal of this study was to systematically evaluate high-throughput genotyping technologies for their ability to assay variation in pharmacogenetically important genes (pharmacogenes). These platforms are either being proposed for or are already being widely used for clinical implementation; therefore, knowledge of coverage of pharmacogenes on these platforms would serve to better evaluate current or proposed pharmacogenetic association studies. Among the genes included in our study are drug-metabolizing enzymes, transporters, receptors, and drug targets, of interest to the entire pharmacogenetic community. We considered absolute and linkage disequilibrium (LD)-informed coverage, minor allele frequency spectrum, and functional annotation for a Caucasian population. We also examined the effect of LD, effect size, and cohort size on the power to detect single nucleotide polymorphism associations. In our analysis of 253 pharmacogenes, we found that no platform showed more than 85% coverage of these genes (after accounting for LD). Furthermore, the lack of coverage showed a marked increase at minor allele frequencies of less than 20%. Even after accounting for LD, only 30% of the missense polymorphisms (which are enriched for low-frequency alleles) were covered by HapMap, with still lower coverage on the other platforms. We have conducted the first systematic evaluation of the Axiom Genomic Database, Omni 2.5 M, and the Drug Metabolizing Enzymes and Transporters chip. This study is the first to utilize the 1000 Genomes Project to present a comprehensive evaluative framework. Our results provide a much-needed assessment of microarray-based genotyping and next-generation sequencing

  14. Pharmacogenomics in epilepsy.

    Science.gov (United States)

    Balestrini, Simona; Sisodiya, Sanjay M

    2018-02-22

    There is high variability in the response to antiepileptic treatment across people with epilepsy. Genetic factors significantly contribute to such variability. Recent advances in the genetics and neurobiology of the epilepsies are establishing the basis for a new era in the treatment of epilepsy, focused on each individual and their specific epilepsy. Variation in response to antiepileptic drug treatment may arise from genetic variation in a range of gene categories, including genes affecting drug pharmacokinetics, and drug pharmacodynamics, but also genes held to actually cause the epilepsy itself. From a purely pharmacogenetic perspective, there are few robust genetic findings with established evidence in epilepsy. Many findings are still controversial with anecdotal or less secure evidence and need further validation, e.g. variation in genes for transporter systems and antiepileptic drug targets. The increasing use of genetic sequencing and the results of large-scale collaborative projects may soon expand the established evidence. Precision medicine treatments represent a growing area of interest, focussing on reversing or circumventing the pathophysiological effects of specific gene mutations. This could lead to a dramatic improvement of the effectiveness and safety of epilepsy treatments, by targeting the biological mechanisms responsible for epilepsy in each specific individual. Whilst much has been written about epilepsy pharmacogenetics, there does now seem to be building momentum that promises to deliver results of use in clinic. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Sleep Pharmacogenetics: Personalized Sleep-Wake Therapy.

    Science.gov (United States)

    Holst, Sebastian C; Valomon, Amandine; Landolt, Hans-Peter

    2016-01-01

    Research spanning (genetically engineered) animal models, healthy volunteers, and sleep-disordered patients has identified the neurotransmitters and neuromodulators dopamine, serotonin, norepinephrine, histamine, hypocretin, melatonin, glutamate, acetylcholine, γ-amino-butyric acid, and adenosine as important players in the regulation and maintenance of sleep-wake-dependent changes in neuronal activity and the sleep-wake continuum. Dysregulation of these neurochemical systems leads to sleep-wake disorders. Most currently available pharmacological treatments are symptomatic rather than causal, and their beneficial and adverse effects are often variable and in part genetically determined. To evaluate opportunities for evidence-based personalized medicine with present and future sleep-wake therapeutics, we review here the impact of known genetic variants affecting exposure of and sensitivity to drugs targeting the neurochemistry of sleep-wake regulation and the pathophysiology of sleep-wake disturbances. Many functional polymorphisms modify drug response phenotypes relevant for sleep. To corroborate the importance of these and newly identified variants for personalized sleep-wake therapy, human sleep pharmacogenetics should be complemented with pharmacogenomic investigations, research about sleep-wake-dependent pharmacological actions, and studies in mice lacking specific genes. These strategies, together with future knowledge about epigenetic mechanisms affecting sleep-wake physiology and treatment outcomes, may lead to potent and safe novel therapies for the increasing number of sleep-disordered patients (e.g., in aged populations).

  16. Pharmacogenetics approach to therapeutics.

    Science.gov (United States)

    Koo, Seok Hwee; Lee, Edmund Jon Deoon

    2006-01-01

    1. Pharmacogenetics refers to the study of genetically controlled variations in drug response. Functional variants caused by single nucleotide polymorphisms (SNPs) in genes encoding drug-metabolising enzymes, transporters, ion channels and drug receptors have been known to be associated with interindividual and interethnic variation in drug response. Genetic variations in these genes play a role in influencing the efficacy and toxicity of medications. 2. Rapid, precise and cost-effective high-throughput technological platforms are essential for performing large-scale mutational analysis of genetic markers involved in the aetiology of variable responses to drug therapy. 3. The application of a pharmacogenetics approach to therapeutics in general clinical practice is still far from being achieved today owing to various constraints, such as limited accessibility of technology, inadequate knowledge, ambiguity of the role of variants and ethical concerns. 4. Drug actions are determined by the interplay of several genes encoding different proteins involved in various biochemical pathways. With rapidly emerging SNP discovery technological platforms and widespread knowledge on the role of SNPs in disease susceptibility and variability in drug response, the pharmacogenetics approach to therapeutics is anticipated to take off in the not-too-distant future. This will present profound clinical, economic and social implications for health care.

  17. The role of the gene SERPINH1 as a pharmacogenetic biomarker for choroidal neovascularization (CNV) responses to anti vascular endothelial growth factor (VEGF) treatment in clinical practice

    OpenAIRE

    Pierce, Charles

    2015-01-01

    Age related macular degeneration is the commonest cause of blindness in the western world and current treatment regimens represent a significant output for national health services. The disease process is multifactorial in origin and has a variable progression and response to current methods of treatment. A targeted approach with individualized therapy based on recognized biomarkers to predict disease outcome would be the ideal treatment modality.We plan to investigate the role of genes known...

  18. Knowledge of Pharmacogenetics among Healthcare Professionals ...

    African Journals Online (AJOL)

    Background: Pharmacogenetics has a potential for optimizing drug response and identifying risk of toxicity for patients. Pharmacogenetics knowledge of healthcare professionals and the unmet need for pharmacogenetics education in health training institutions are some of the challenges of integrating pharmacogenetics ...

  19. Data science approaches to pharmacogenetics.

    Science.gov (United States)

    Penrod, N M; Moore, J H

    2014-01-01

    Pharmacogenetic studies rely on applied statistics to evaluate genetic data describing natural variation in response to pharmacotherapeutics such as drugs and vaccines. In the beginning, these studies were based on candidate gene approaches that specifically focused on efficacy or adverse events correlated with variants of single genes. This hypothesis driven method required the researcher to have a priori knowledge of which genes or gene sets to investigate. According to rational design, the focus of these studies has been on drug metabolizing enzymes, drug transporters, and drug targets. As technology has progressed, these studies have transitioned to hypothesis-free explorations where markers across the entire genome can be measured in large scale, population based, genome-wide association studies (GWAS). This enables identification of novel genetic biomarkers, therapeutic targets, and analysis of gene-gene interactions, which may reveal molecular mechanisms of drug activities. Ultimately, the challenge is to utilize gene-drug associations to create dosing algorithms based individual genotypes, which will guide physicians and ensure they prescribe the correct dose of the correct drug the first time eliminating trial-and-error and adverse events. We review here basic concepts and applications of data science to the genetic analysis of pharmacologic outcomes.

  20. Pharmacogenetics of Cannabinoids.

    Science.gov (United States)

    Hryhorowicz, Szymon; Walczak, Michal; Zakerska-Banaszak, Oliwia; Słomski, Ryszard; Skrzypczak-Zielińska, Marzena

    2018-02-01

    Although the application of medical marijuana and cannabinoid drugs is controversial, it is a part of modern-day medicine. The list of diseases in which cannabinoids are promoted as a treatment is constantly expanding. Cases of significant improvement in patients with a very poor prognosis of glioma or epilepsy have already been described. However, the occurrence of side effects is still difficult to estimate, and the current knowledge of the therapeutic effects of cannabinoids is still insufficient. In our opinion, the answers to many questions and concerns regarding the medical use of cannabis can be provided by pharmacogenetics. Knowledge based on proteins and molecules involved in the transport, action, and metabolism of cannabinoids in the human organism leads us to predict candidate genes which variations are responsible for the presence of the therapeutic and side effects of medical marijuana and cannabinoid-based drugs. We can divide them into: receptor genes-CNR1, CNR2, TRPV1, and GPR55, transporters-ABCB1, ABCG2, SLC6A, biotransformation, biosynthesis, and bioactivation proteins encoded by CYP3A4, CYP2C19, CYP2C9, CYP2A6, CYP1A1, COMT, FAAH, COX2, ABHD6, ABHD12 genes, and also MAPK14. This review organizes the current knowledge in the context of cannabinoids pharmacogenetics according to individualized medicine and cannabinoid drugs therapy.

  1. A Novel Admixture-Based Pharmacogenetic Approach to Refine Warfarin Dosing in Caribbean Hispanics.

    Directory of Open Access Journals (Sweden)

    Jorge Duconge

    Full Text Available This study is aimed at developing a novel admixture-adjusted pharmacogenomic approach to individually refine warfarin dosing in Caribbean Hispanic patients.A multiple linear regression analysis of effective warfarin doses versus relevant genotypes, admixture, clinical and demographic factors was performed in 255 patients and further validated externally in another cohort of 55 individuals.The admixture-adjusted, genotype-guided warfarin dosing refinement algorithm developed in Caribbean Hispanics showed better predictability (R2 = 0.70, MAE = 0.72mg/day than a clinical algorithm that excluded genotypes and admixture (R2 = 0.60, MAE = 0.99mg/day, and outperformed two prior pharmacogenetic algorithms in predicting effective dose in this population. For patients at the highest risk of adverse events, 45.5% of the dose predictions using the developed pharmacogenetic model resulted in ideal dose as compared with only 29% when using the clinical non-genetic algorithm (p<0.001. The admixture-driven pharmacogenetic algorithm predicted 58% of warfarin dose variance when externally validated in 55 individuals from an independent validation cohort (MAE = 0.89 mg/day, 24% mean bias.Results supported our rationale to incorporate individual's genotypes and unique admixture metrics into pharmacogenetic refinement models in order to increase predictability when expanding them to admixed populations like Caribbean Hispanics.ClinicalTrials.gov NCT01318057.

  2. Pharmacogenomics in Heart Failure: Where Are We Now and How Can We Reach Clinical Application

    Science.gov (United States)

    Oni-Orisan, Akinyemi

    2015-01-01

    Heart failure is becoming increasingly prevalent in the United States and is a significant cause of morbidity and mortality. Several therapies are currently available to treat this chronic illness; however, clinical response to these treatment options exhibit significant interpatient variation. It is now clearly understood that genetics is a key contributor to diversity in therapeutic response, and evidence that genetic polymorphisms alter the pharmacokinetics, pharmacodynamics, and clinical response of heart failure drugs continues to accumulate. This suggests that pharmacogenomics has the potential to help clinicians improve the management of heart failure by choosing the safest and most effective medications and doses. Unfortunately, despite much supportive data, pharmacogenetic optimization of heart failure treatment regimens is not yet a reality. In order to attenuate the rising burden of heart failure, particularly in the context of the recent paucity of new effective interventions, there is an urgent need to extend pharmacogenetic knowledge and leverage these associations in order to enhance the effectiveness of existing heart failure therapies. The present review focuses on the current state of pharmacogenomics in heart failure and provides a glimpse of the aforementioned future needs. PMID:25093738

  3. Trans-NCI Pharmacogenomics and Pharmacoepidemiology Working Group (PPWG)

    Science.gov (United States)

    NCI established the Trans-NCI Pharmacogenomics and Pharmacoepidemiology Working Group to support development of a comprehensive and interdisciplinary pharmacoepidemiology and pharmacogenomics cancer research program.

  4. Pharmacogenomics: Principles and Relevance to Oncology Nursing
.

    Science.gov (United States)

    Dodson, Crystal H

    2017-12-01

    Pharmacogenomics is the fastest growing field in precision medicine. Based on current use, oncology encompasses the largest share of the precision medicine market, necessitating that oncology nurses understand the principles of pharmacogenomics and how it affects clinical practice.
. This article will define precision medicine and pharmacogenomics and will provide examples of pharmacogenomic tests, including those associated with tumor markers, and nursing implications.
. Educational and clinical resources are supplied for oncology nurses to expand their pharmacogenomics expertise.
. The knowledge surrounding precision medicine and pharmacogenomics will position oncology nurses to engage in current research, improve practice, and educate patients. As the focus of health care remains on reducing costs and improving morbidity and mortality, the reduction in adverse drug reactions will continue to be highlighted. Tailoring medications based on individual responses will not only help improve patient outcomes but also potentially affect the cost of health care as these genetic tests become a standard of care.

  5. [Epilepsy pharmacogenetics : science or fiction?].

    Science.gov (United States)

    Depondt, Chantal

    2013-02-01

    Pharmacogenetics (PGX) is the study of how genetic variants influence individual responses to drugs. Although numerous candidate gene studies in epilepsy PGX have been published, to date only two validated associations exist: the association of the *2 and *3 alleles of CYP2C9 with phenytoin metabolism and the association of HLA-B*1502 with serious hypersensitivity reactions to carbamazepine. The advent of novel technologies such as genomewide association studies and next generation sequencing will likely lead to the identification of additional genetic biomarkers. The potential benefits of epilepsy PGX are multiple: epilepsy treatment in individual patients would become more rationalized, clinical trials could be stratified according to patients' genetic profiles and novel therapeutic pathways may be uncovered. Ultimately, it is hoped that PGX will improve the quality of life for people suffering from epilepsy worldwide. © 2013 médecine/sciences – Inserm / SRMS.

  6. Pharmacogenomics of warfarin: uncovering a piece of the warfarin mystery.

    Science.gov (United States)

    Gulseth, Michael P; Grice, Gloria R; Dager, William E

    2009-01-15

    The literature on the pharmacogenomics of warfarin and the use of genetic testing to optimize initial and maintenance warfarin dosing is reviewed. Warfarin tablets contain a racemic mixture of R- and S-isomers. The S-isomer is responsible for about 70% of warfarin's anticoagulant effect. Cytochrome P-450 isoenzyme 2C9 (CYP2C9) metabolizes S-warfarin into two inactive metabolites. Genetic variations to the gene encoding CYP2C9 (CYP2C9 ) are known to affect warfarin clearance. Single nucleotide polymorphisms (SNPs) have been identified that clearly influence warfarin metabolism and sensitivity, including SNP variants of CYP2C9 and SNPs in vitamin K epoxide reductase complex subunit 1 (VKORC1), which influence an individual's sensitivity to a given dose. Retrospective studies have evaluated potential factors influencing warfarin metabolism, maintenance dosing, and variability. Several dosing models used to predict warfarin dosing (initial or refinement) have been retrospectively evaluated in diverse patient populations. There are several arguments to support incorporating its use in current clinical practice; however, many expert clinicians in anticoagulation have expressed concern that the push for genotyping patients for CYP2C9 and VKORC1 is premature and not based on good, prospective evidence. Large, randomized controlled trials, in multiple patient populations, comparing clinical dosing to genetic-guided dosing are needed to fully determine the benefits of pharmacogenetic warfarin dosing. The increased understanding of pharmacogenomics may improve patient safety during initial dosing of warfarin. At this time, it is unknown if genotype-based dosing will become the standard of care for patients receiving the drug.

  7. Pharmacogenomics of anti-platelet therapy: how much evidence is enough for clinical implementation?

    Science.gov (United States)

    Perry, Christina G; Shuldiner, Alan R

    2013-06-01

    Pharmacogenomics, the study of the genomics of drug response and adverse effects, holds great promise for more effective individualized (personalized) medicine. Recent evidence supports a role of loss-of-function (LOF) variants in the cytochrome P450 enzyme CYP2C19 as a determinant of clopidogrel response. Patients given clopidogrel after percutaneous coronary intervention who carry LOF variants do not metabolize clopidogrel, a prodrug, into its active form resulting in decreased inhibition of platelet function and a higher likelihood of recurrent cardiovascular events. Despite a large body of evidence supporting clinical utility, adoption of anti-platelet pharmacogenetics into clinical practice has been slow. In this review, we summarize the pharmacokinetic, pharmacodynamic and clinical evidence, identify gaps in knowledge and other barriers that appear to be slowing adoption, and describe CYP2C19 pharmacogenetics implementation projects currently underway. Only when we surmount these barriers will clinicians be able to use pharmacogenetic information in conjunction with the history, physical examination and other medical tests and information to choose the most efficacious anti-platelet therapy for each individual patient.

  8. PHARMACOGENETIC TESTING OPPORTUNITIES IN CARDIOLOGY BASED ON EXOME SEQUENCING

    Directory of Open Access Journals (Sweden)

    N. V. Shcherbakova

    2014-01-01

    Full Text Available Aim. To study what cardiac drugs currently have any comments on biomarkers and what information can be obtained by pharmacogenetic testing using data exome sequencing in patients with cardiac diseases.Material and methods. Exome sequencing in random participant of the ATEROGEN IVANOVO study and bioinformatics analysis of the data were performed. Point mutations were annotated using ANNOVAR program, as well as comparison with a number of specialized databases was done on the basis of user protocols.Results. 11 cardiac drugs and 7 genes which variants can influence cardiac drug metabolism were analyzed. According to exome sequencing of the participant we did not reveal allelic variants that require dose regime correction and careful efficacy control.Conclusion. The exome sequencing application is the next step to a wide range of personalized therapy. Future opportunities for improvement of the risk-benefit ratio in each patient are the main purpose of the collection and analysis of pharmacogenetic data.

  9. Does Pharmacogenomic Testing Improve Clinical Outcomes for Major Depressive Disorder? A Systematic Review of Clinical Trials and Cost-Effectiveness Studies.

    Science.gov (United States)

    Rosenblat, Joshua D; Lee, Yena; McIntyre, Roger S

    2017-06-01

    Pharmacogenomic testing has become scalable and available to the general public. Pharmacogenomics has shown promise for predicting antidepressant response and tolerability in the treatment of major depressive disorder (MDD). In theory, pharmacogenomics can improve clinical outcomes by guiding antidepressant selection and dosing. The current systematic review examines the extant literature to determine the impact of pharmacogenomic testing on clinical outcomes in MDD and assesses its cost-effectiveness. The MEDLINE/PubMed and Google Scholar databases were systematically searched for relevant articles published prior to October 2015. Search terms included various combinations of the following: major depressive disorder (MDD), depression, mental illness, mood disorder, antidepressant, response, remission, outcome, pharmacogenetic, pharmacogenomics, pharmacodynamics, pharmacokinetic, genetic testing, genome wide association study (GWAS), CYP450, personalized medicine, cost-effectiveness, and pharmacoeconomics. Of the 66 records identified from the initial search, relevant clinical studies, written in English, assessing the cost-effectiveness and/or efficacy of pharmacogenomic testing for MDD were included. Each publication was critically examined for relevant data. Two nonrandomized, open-label, 8-week, prospective studies reported overall greater improvement in depressive symptom severity in the group of MDD subjects receiving psychiatric care guided by results of combinatorial pharmacogenomic testing (GeneSight) when compared to the unguided group. One industry-sponsored, randomized, double-blind, 10-week prospective study reported a trend for improved outcomes for the GeneSight-guided group; however, the trend did not reach statistical significance. Another industry-sponsored, randomized, double-blind, 12-week prospective study reported a 2.5-fold increase in remission rates in the CNSDose-guided group (P < .0001). One naturalistic, unblinded, industry

  10. Pharmacogenomics: the search for individualized therapies

    National Research Council Canada - National Science Library

    Licinio, J; Wong, Ma-Li

    2002-01-01

    .... PrefaceVII Preface In this book leading experts provide the state-of-the-art in the emerging and exciting field of pharmacogenomics. The multitude of ways that pharmacogenomics can be approached and applied reflects the possibilities brought about by the wealth of data generated by the Human Genome Project, in conjunction with parall...

  11. [Pharmacogenetics and tailored drug therapy

    DEFF Research Database (Denmark)

    Nielsen, F.C.; Borregaard, N.

    2009-01-01

    Pharmacogenetics traditionally designates the study of genetically determined variation in metabolism of drugs and toxins from the environment. The concept of phamacogenetics has been widened to encompass how essential genetic alterations central to the development of diseases may by used to target...

  12. Pharmacogenetics of adverse reactions to antiepileptic drugs.

    Science.gov (United States)

    Fricke-Galindo, I; Jung-Cook, H; LLerena, A; López-López, M

    2018-04-01

    Adverse drug reactions (ADRs) are a major public health concern and a leading cause of morbidity and mortality in the world. In the case of antiepileptic drugs (AEDs), ADRs constitute a barrier to successful treatment since they decrease treatment adherence and impact patients' quality of life of patients. Pharmacogenetics aims to identify genetic polymorphisms associated with drug safety. This article presents a review of genes coding for drug metabolising enzymes and drug transporters, and HLA system genes that have been linked to AED-induced ADRs. To date, several genetic variations associated with drug safety have been reported: CYP2C9*2 and *3 alleles, which code for enzymes with decreased activity, have been linked to phenytoin (PHT)-induced neurotoxicity; GSTM1 null alleles with hepatotoxicity induced by carbamazepine (CBZ) and valproic acid (VPA); EPHX1 polymorphisms with teratogenesis; ABCC2 genetic variations with CBZ- and VPA-induced neurological ADRs; and HLA alleles (e.g. HLA-B*15:02, -A*31:01, -B*15:11, -C*08:01) with cutaneous ADRs. Published findings show that there are ADRs with a pharmacogenetic basis and a high interethnic variability, which indicates a need for future studies in different populations to gather more useful results for larger number of patients. The search for biomarkers that would allow predicting ADRs to AEDs could improve pharmacotherapy for epilepsy. Copyright © 2014 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  13. Economic evaluations of pharmacogenetic approaches in infectious diseases: a review of current approaches and evaluation of critical aspects affecting their quality

    Directory of Open Access Journals (Sweden)

    Paolo Meoni

    2013-11-01

    Full Text Available Pharmacogenetics holds great potential for improving the effectiveness of treatment modalities in infectious diseases by taking into account the genetic determinants of both the host and infectious agents’ individuality. Better utilization of resources and improved therapeutic efficiency are the expected outcomes of personalized medicine using pharmacogenetic and pharmacogenomics information made available by technological advances. However, there has been growing concern in the clinical community regarding the evaluation of the true benefits of these approaches. This perception is partly due to the limited number and perceived poor quality of economic evaluations in this field, and initiatives aimed at harmonizing and communicating strategies improving the quality of these studies and their acceptance by the clinical community are greatly needed. This paper reviews current literature of economic evaluations of pharmacogenetics interventions guiding pharmacotherapy in infectious diseases. PubMed and the NHS Centre for Reviews and Dissemination databases were searched using a combination of five broad research terms related to pharmacogenetic approaches, and papers relative to economic evaluations of pharmacogenetic interventions in infectious diseases retained for further analysis. Using these criteria, a total of 14 papers were included in this review. The area of economic evaluation of pharmacogenetic interventions in infectious diseases remains understudied and would benefit from greater harmonization. The main weaknesses of evaluations reviewed in this paper seem to be represented by poor evidence of pharmacogenetic marker validation, inconsistencies in the selection of costs and utility included in the economic models and the choice of sensitivity analysis. All these factors limit the overall transparency of the studies, greater acceptance of their results and applicability to diverse and possibly resourcelimited environments where these

  14. Pharmacogenomics of endocrine therapy in breast cancer

    OpenAIRE

    Ingle, James N

    2013-01-01

    The most important modality of treatment in the two-thirds of patients with an estrogen receptor (ER)-positive early breast cancer is endocrine therapy. In postmenopausal women, options include the selective ER modulators (SERMs), tamoxifen and raloxifene, and the ‘third-generation’ aromatase inhibitors (AIs), anastrozole, exemestane and letrozole. Under the auspices of the National Institutes of Health Global Alliance for Pharmacogenomics, Japan, the Mayo Clinic Pharmacogenomics Research Net...

  15. Clinicians' perceptions of pharmacogenomics use in psychiatry.

    Science.gov (United States)

    Chan, Christopher Yi Wen; Chua, Boon Yiang; Subramaniam, Mythily; Suen, Emily Liew Kai; Lee, Jimmy

    2017-04-01

    This study aims to assess the attitudes and opinions of clinicians practicing in psychiatry toward pharmacogenomic testing, and in so doing elicits possible barriers and risks to employ this technology in patient care. Doctors and pharmacists presently practicing in psychiatry were invited to participate in an anonymous web-based survey. Besides information on participant characteristics and experience in psychiatry, specific themes on pharmacogenomics including self-assessed competency, perceived usefulness in clinical situations, perceived risks and preferred mode of education were evaluated. A total of 81% of respondents believed that pharmacogenomic testing would be useful for identifying suitable treatments and 71% believed that pharmacogenomic testing would be useful for medication intolerance. However, only 46.4% felt competent to order these tests. There were significant differences in responses for gender, doctors versus pharmacists and seniority in position. A total of 94.3% of respondents were concerned about costs and 84.5% were concerned about the lack of clear guidelines on its use. A total of 98.5% of respondents were keen on learning more about the applicability of pharmacogenomics, and the most preferred format of education was a lecture (44.5%). Most clinicians acknowledge the potential of pharmacogenomic testing in clinical practice. However, concerns with regard to its cost-effectiveness and the lack of clear guidelines are possible barriers to its clinical implementation.

  16. The Daniel K. Inouye College of Pharmacy Scripts: Precision Medicine Through the Use of Pharmacogenomics: Current Status and Barriers to Implementation.

    Science.gov (United States)

    Ciarleglio, Anita E; Ma, Carolyn

    2017-09-01

    The precision medicine initiative brought forth by President Barack Obama in 2015 is an important step on the journey to truly personalized medicine. A broad knowledge and understanding of the implications of the pharmacogenomic literature will be critical to the achievement of this goal. While a great amount of data has been published in the areas of pharmacogenomics and pharmacogenetics, there are still relatively few instances in which the need for clinical intervention can be stated without doubt, and which are widely accepted and practiced by the medical community. As our knowledge base rapidly expands, issues such as insurance reimbursement for genetic testing and education of the health care workforce will be paramount to achieving the goal of precision medicine for all patients.

  17. The role of genetics in pre-eclampsia and potential pharmacogenomic interventions

    Directory of Open Access Journals (Sweden)

    Williams PJ

    2012-01-01

    Full Text Available Paula Juliet Williams, Linda MorganHuman Genetics Research Group, University of Nottingham, Nottingham, UKAbstract: The pregnancy-specific condition pre-eclampsia not only affects the health of mother and baby during pregnancy but also has long-term consequences, increasing the chances of cardiovascular disease in later life. It is accepted that pre-eclampsia has a placental origin, but the pathogenic mechanisms leading to the systemic endothelial dysfunction characteristic of the disorder remain to be determined. In this review we discuss some key factors regarded as important in the development of pre-eclampsia, including immune maladaptation, inadequate placentation, oxidative stress, and thrombosis. Genetic factors influence all of these proposed pathophysiological mechanisms. The inherited nature of pre-eclampsia has been known for many years, and extensive genetic studies have been undertaken in this area. Genetic research offers an attractive strategy for studying the pathogenesis of pre-eclampsia as it avoids the ethical and practical difficulties of conducting basic science research during the preclinical phase of pre-eclampsia when the underlying pathological changes occur. Although pharmacogenomic studies have not yet been conducted in pre-eclampsia, a number of studies investigating treatment for essential hypertension are of relevance to therapies used in pre-eclampsia. The pharmacogenomics of antiplatelet agents, alpha and beta blockers, calcium channel blockers, and magnesium sulfate are discussed in relation to the treatment and prevention of pre-eclampsia. Pharmacogenomics offers the prospect of individualized patient treatment, ensuring swift introduction of optimal treatment whilst minimizing the use of inappropriate or ineffective drugs, thereby reducing the risk of harmful effects to both mother and baby.Keywords: pre-eclampsia, pharmacogenetics, placenta, trophoblast, genetics

  18. Role of pharmacogenetics in public health and clinical health care: a SWOT analysis

    Science.gov (United States)

    Kapoor, Ritika; Tan-Koi, Wei Chuen; Teo, Yik-Ying

    2016-01-01

    Pharmacogenomics has been lauded as an important innovation in clinical medicine as a result of advances in genomic science. As one of the cornerstones in precision medicine, the vision to determine the right medication in the right dosage for the right treatment with the use of genetic information has not exactly materialised, and few genetic tests have been implemented as the standard of care in health systems worldwide. Here we review the findings from a SWOT analysis to examine the strengths, weaknesses, opportunities and threats around the role of pharmacogenetics in public health and clinical health care, at the micro, meso and macro levels corresponding to the perspectives of the individuals (scientists, patients and physicians), the health-care institutions and the health systems, respectively. PMID:27577547

  19. Role of pharmacogenetics in public health and clinical health care: a SWOT analysis.

    Science.gov (United States)

    Kapoor, Ritika; Tan-Koi, Wei Chuen; Teo, Yik-Ying

    2016-12-01

    Pharmacogenomics has been lauded as an important innovation in clinical medicine as a result of advances in genomic science. As one of the cornerstones in precision medicine, the vision to determine the right medication in the right dosage for the right treatment with the use of genetic information has not exactly materialised, and few genetic tests have been implemented as the standard of care in health systems worldwide. Here we review the findings from a SWOT analysis to examine the strengths, weaknesses, opportunities and threats around the role of pharmacogenetics in public health and clinical health care, at the micro, meso and macro levels corresponding to the perspectives of the individuals (scientists, patients and physicians), the health-care institutions and the health systems, respectively.

  20. Examining perceptions of the usefulness and usability of a mobile-based system for pharmacogenomics clinical decision support: a mixed methods study

    Directory of Open Access Journals (Sweden)

    Kathrin Blagec

    2016-02-01

    Full Text Available Background. Pharmacogenomic testing has the potential to improve the safety and efficacy of pharmacotherapy, but clinical application of pharmacogenetic knowledge has remained uncommon. Clinical Decision Support (CDS systems could help overcome some of the barriers to clinical implementation. The aim of this study was to evaluate the perception and usability of a web- and mobile-enabled CDS system for pharmacogenetics-guided drug therapy–the Medication Safety Code (MSC system–among potential users (i.e., physicians and pharmacists. Furthermore, this study sought to collect data on the practicability and comprehensibility of potential layouts of a proposed personalized pocket card that is intended to not only contain the machine-readable data for use with the MSC system but also human-readable data on the patient’s pharmacogenomic profile. Methods. We deployed an emergent mixed methods design encompassing (1 qualitative interviews with pharmacists and pharmacy students, (2 a survey among pharmacogenomics experts that included both qualitative and quantitative elements and (3 a quantitative survey among physicians and pharmacists. The interviews followed a semi-structured guide including a hypothetical patient scenario that had to be solved by using the MSC system. The survey among pharmacogenomics experts focused on what information should be printed on the card and how this information should be arranged. Furthermore, the MSC system was evaluated based on two hypothetical patient scenarios and four follow-up questions on the perceived usability. The second survey assessed physicians’ and pharmacists’ attitude towards the MSC system. Results. In total, 101 physicians, pharmacists and PGx experts coming from various relevant fields evaluated the MSC system. Overall, the reaction to the MSC system was positive across all investigated parameters and among all user groups. The majority of participants were able to solve the patient

  1. Genetic polymorphisms of pharmacogenomic VIP variants in the Yi population from China.

    Science.gov (United States)

    Yan, Mengdan; Li, Dianzhen; Zhao, Guige; Li, Jing; Niu, Fanglin; Li, Bin; Chen, Peng; Jin, Tianbo

    2018-03-30

    Drug response and target therapeutic dosage are different among individuals. The variability is largely genetically determined. With the development of pharmacogenetics and pharmacogenomics, widespread research have provided us a wealth of information on drug-related genetic polymorphisms, and the very important pharmacogenetic (VIP) variants have been identified for the major populations around the world whereas less is known regarding minorities in China, including the Yi ethnic group. Our research aims to screen the potential genetic variants in Yi population on pharmacogenomics and provide a theoretical basis for future medication guidance. In the present study, 80 VIP variants (selected from the PharmGKB database) were genotyped in 100 unrelated and healthy Yi adults recruited for our research. Through statistical analysis, we made a comparison between the Yi and other 11 populations listed in the HapMap database for significant SNPs detection. Two specific SNPs were subsequently enrolled in an observation on global allele distribution with the frequencies downloaded from ALlele FREquency Database. Moreover, F-statistics (Fst), genetic structure and phylogenetic tree analyses were conducted for determination of genetic similarity between the 12 ethnic groups. Using the χ2 tests, rs1128503 (ABCB1), rs7294 (VKORC1), rs9934438 (VKORC1), rs1540339 (VDR) and rs689466 (PTGS2) were identified as the significantly different loci for further analysis. The global allele distribution revealed that the allele "A" of rs1540339 and rs9934438 were more frequent in Yi people, which was consistent with the most populations in East Asia. F-statistics (Fst), genetic structure and phylogenetic tree analyses demonstrated that the Yi and CHD shared a closest relationship on their genetic backgrounds. Additionally, Yi was considered similar to the Han people from Shaanxi province among the domestic ethnic populations in China. Our results demonstrated significant differences on

  2. The Current Landscape of Marijuana and Pharmacogenetics.

    Science.gov (United States)

    Rambaran, Kerry Anne; Chu, Michael; Johnson, Tyler B; Alzghari, Saeed K

    2017-07-30

    The treatment of medical conditions with cannabis and cannabinoid compounds is advancing. Although there are numerous reports related to the genetic variations of the cannabinoid receptor, a lack of studies that examine the relationship between other pharmacogenetic markers and health outcomes currently exists. Herein, we advocate for the legalization of marijuana in the United States in order to perform more randomized controlled trials to help elucidate the role of other pharmacogenetic targets and cannabis for use in clinical practice.

  3. The Current Landscape of Marijuana and Pharmacogenetics

    OpenAIRE

    Rambaran, Kerry Anne; Chu, Michael; Johnson, Tyler B; Alzghari, Saeed K

    2017-01-01

    The treatment of medical conditions with cannabis and cannabinoid compounds is advancing. Although there are numerous reports related to the genetic variations of the cannabinoid receptor, a lack of studies that examine the relationship between other pharmacogenetic markers and health outcomes currently exists. Herein, we advocate for the legalization of marijuana in the United States in order to perform more randomized controlled trials to help elucidate the role of other pharmacogenetic tar...

  4. Whole transcriptome analysis of human erythropoietic cells during ontogenesis suggests a role of VEGFA gene as modulator of fetal hemoglobin and pharmacogenomic biomarker of treatment response to hydroxyurea in β-type hemoglobinopathy patients

    DEFF Research Database (Denmark)

    Chondrou, Vasiliki; Kolovos, Petros; Sgourou, Argyro

    2017-01-01

    -transfusion-dependent β-thalassemia patients, β-thalassemia major patients, compound heterozygous sickle cell disease/β-thalassemia patients receiving hydroxyurea as fetal hemoglobin augmentation treatment, and non-thalassemic individuals indicated that VEGFA genomic variants were associated with disease severity in β-thalassemia...... patients and hydroxyurea treatment efficacy in SCD/β-thalassemia compound heterozygous patients. Conclusions: Our findings suggest that VEGFA may act as a modifier gene of human globin gene expression and, at the same time, serve as a genomic biomarker in β-type hemoglobinopathy disease severity...

  5. Pharmacogenetics in the Brazilian population

    Directory of Open Access Journals (Sweden)

    Guilherme eSuarez-Kurtz

    2010-10-01

    Full Text Available Brazil is the 5th largest country in the world and its present population, in excess of 190 million, is highly heterogeneous, as a result of centuries of admixture between Amerindians, Europeans and Sub-Saharan Africans. The estimated individual proportions of biogeographical ancestry vary widely and continuously among Brazilians, most individuals - irrespective of self-identification as White, Brown or Black, the major categories of the Brazilian Census race/color system - having significant degrees of European and African ancestry, while a sizeable number display also Amerindian ancestry. These features have important pharmacogenetic (PGx implications: first, extrapolation of PGx data from relatively well-defined ethnic groups is clearly not applicable to the majority of Brazilians; second, the frequency distribution of polymorphisms in pharmacogenes (e.g. CYP3A5, CYP2C9, GSTM1, ABCB1, GSTM3, VKORC, etc varies continuously among Brazilians and is not captured by race/color self-identification; third, the intrinsic heterogeneity of the Brazilian population must be acknowledged in the design and interpretation of PGx studies in order to avoid spurious conclusions based on improper matching of study cohorts. The peculiarities of PGx in Brazilians are illustrated with data for different therapeutic groups, such as anticoagulants, HIV-protease inhibitors and nonsteroidal antinflammatory drugs, and the challenges and advantages created by population admixture for the study and implementation of PGx are discussed. PGx data for Amerindian groups and Brazilian-born, first generation Japanese are presented to illustrate the rich diversity of the Brazilian population. Finally, I introduce the reader to the Brazilian Pharmacogenetic Network or Refargen (www.refargen.org.br, a nationwide consortium of research groups, with the mission to provide leadership in PGx research and education in Brazil, with a population health impact.

  6. Pharmacogenetics in the brazilian population.

    Science.gov (United States)

    Suarez-Kurtz, Guilherme

    2010-01-01

    Brazil is the fifth largest country in the world and its present population, in excess of 190;million, is highly heterogeneous, as a result of centuries of admixture between Amerindians, Europeans, and Sub-Saharan Africans. The estimated individual proportions of biogeographical ancestry vary widely and continuously among Brazilians: most individuals, irrespective of self-identification as White, Brown or Black - the major categories of the Brazilian Census "race/color" system - have significant degrees of European and African ancestry, while a sizeable number display also Amerindian ancestry. These features have important pharmacogenetic (PGx) implications: first, extrapolation of PGx data from relatively well-defined ethnic groups is clearly not applicable to the majority of Brazilians; second, the frequency distribution of polymorphisms in pharmacogenes (e.g., CYP3A5, CYP2C9, GSTM1, ABCB1, GSTM3, VKORC, etc) varies continuously among Brazilians and is not captured by race/color self-identification; third, the intrinsic heterogeneity of the Brazilian population must be acknowledged in the design and interpretation of PGx studies in order to avoid spurious conclusions based on improper matching of study cohorts. The peculiarities of PGx in Brazilians are illustrated with data for different therapeutic groups, such as anticoagulants, HIV protease inhibitors and non-steroidal antinflammatory drugs, and the challenges and advantages created by population admixture for the study and implementation of PGx are discussed. PGx data for Amerindian groups and Brazilian-born, first-generation Japanese are presented to illustrate the rich diversity of the Brazilian population. Finally, I introduce the reader to the Brazilian Pharmacogenetic Network or Refargen, a nation-wide consortium of research groups, with the mission to provide leadership in PGx research and education in Brazil, with a population health impact.

  7. Design and anticipated outcomes of the eMERGE-PGx project: a multicenter pilot for preemptive pharmacogenomics in electronic health record systems.

    Science.gov (United States)

    Rasmussen-Torvik, L J; Stallings, S C; Gordon, A S; Almoguera, B; Basford, M A; Bielinski, S J; Brautbar, A; Brilliant, M H; Carrell, D S; Connolly, J J; Crosslin, D R; Doheny, K F; Gallego, C J; Gottesman, O; Kim, D S; Leppig, K A; Li, R; Lin, S; Manzi, S; Mejia, A R; Pacheco, J A; Pan, V; Pathak, J; Perry, C L; Peterson, J F; Prows, C A; Ralston, J; Rasmussen, L V; Ritchie, M D; Sadhasivam, S; Scott, S A; Smith, M; Vega, A; Vinks, A A; Volpi, S; Wolf, W A; Bottinger, E; Chisholm, R L; Chute, C G; Haines, J L; Harley, J B; Keating, B; Holm, I A; Kullo, I J; Jarvik, G P; Larson, E B; Manolio, T; McCarty, C A; Nickerson, D A; Scherer, S E; Williams, M S; Roden, D M; Denny, J C

    2014-10-01

    We describe here the design and initial implementation of the eMERGE-PGx project. eMERGE-PGx, a partnership of the Electronic Medical Records and Genomics Network and the Pharmacogenomics Research Network, has three objectives: (i) to deploy PGRNseq, a next-generation sequencing platform assessing sequence variation in 84 proposed pharmacogenes, in nearly 9,000 patients likely to be prescribed drugs of interest in a 1- to 3-year time frame across several clinical sites; (ii) to integrate well-established clinically validated pharmacogenetic genotypes into the electronic health record with associated clinical decision support and to assess process and clinical outcomes of implementation; and (iii) to develop a repository of pharmacogenetic variants of unknown significance linked to a repository of electronic health record-based clinical phenotype data for ongoing pharmacogenomics discovery. We describe site-specific project implementation and anticipated products, including genetic variant and phenotype data repositories, novel variant association studies, clinical decision support modules, clinical and process outcomes, approaches to managing incidental findings, and patient and clinician education methods.

  8. Genome-environment interactions and prospective technology assessment: evolution from pharmacogenomics to nutrigenomics and ecogenomics.

    Science.gov (United States)

    Ozdemir, Vural; Motulsky, Arno G; Kolker, Eugene; Godard, Béatrice

    2009-02-01

    The relationships between food, nutrition science, and health outcomes have been mapped over the past century. Genomic variation among individuals and populations is a new factor that enriches and challenges our understanding of these complex relationships. Hence, the confluence of nutritional science and genomics-nutrigenomics--was the focus of the OMICS: A Journal of Integrative Biology in December 2008 (Part 1). The 2009 Special Issue (Part 2) concludes the analysis of nutrigenomics research and innovations. Together, these two issues expand the scope and depth of critical scholarship in nutrigenomics, in keeping with an integrated multidisciplinary analysis across the bioscience, omics technology, social, ethical, intellectual property and policy dimensions. Historically, the field of pharmacogenetics provided the first examples of specifically identifiable gene variants predisposing to unexpected responses to drugs since the 1950s. Brewer coined the term ecogenetics in 1971 to broaden the concept of gene-environment interactions from drugs and nutrition to include environmental agents in general. In the mid-1990s, introduction of high-throughput technologies led to the terms pharmacogenomics, nutrigenomics and ecogenomics to describe, respectively, the contribution of genomic variability to differential responses to drugs, food, and environment defined in the broadest sense. The distinctions, if any, between these newer fields (e.g., nutrigenomics) and their predecessors (e.g., nutrigenetics) remain to be delineated. For nutrigenomics, its reliance on genome-wide analyses may lead to detection of new biological mechanisms governing host response to food. Recognizing "genome-environment interactions" as the conceptual thread that connects and runs through pharmacogenomics, nutrigenomics, and ecogenomics may contribute toward anticipatory governance and prospective real-time analysis of these omics fields. Such real-time analysis of omics technologies and

  9. The emerging science of precision medicine and pharmacogenomics for Parkinson's disease.

    Science.gov (United States)

    Payami, Haydeh

    2017-08-01

    Current therapies for Parkinson's disease are problematic because they are symptomatic and have adverse effects. New drugs have failed in clinical trials because of inadequate efficacy. At the core of the problem is trying to make one drug work for all Parkinson's disease patients, when we know this premise is wrong because (1) Parkinson's disease is not a single disease, and (2) no two individuals have the same biological makeup. Precision medicine is the goal to strive for, but we are only at the beginning stages of building the infrastructure for one of the most complex projects in the history of science, and it will be a long time before Parkinson's disease reaps the benefits. Pharmacogenomics, a cornerstone of precision medicine, has already proven successful for many conditions and could also propel drug discovery and improve treatment for Parkinson's disease. To make progress in the pharmacogenomics of Parkinson's disease, we need to change course from small inconclusive candidate gene studies to large-scale rigorously planned genome-wide studies that capture the nuclear genome and the microbiome. Pharmacogenomic studies must use homogenous subtypes of Parkinson's disease or apply the brute force of statistical power to overcome heterogeneity, which will require large sample sizes achievable only via internet-based methods and electronic databases. Large-scale pharmacogenomic studies, together with biomarker discovery efforts, will yield the knowledge necessary to design clinical trials with precision to alleviate confounding by disease heterogeneity and interindividual variability in drug response, two of the major impediments to successful drug discovery and effective treatment. © 2017 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.

  10. The applications of pharmacogenomics to neurological disorders.

    Science.gov (United States)

    Gilman, C; McSweeney, C; Mao, Y

    2014-01-01

    The most common neurological disorders, including neurodegenerative diseases and psychiatric disorders, have received recent attention with regards to pharmacogenomics and personalized medicine. Here, we will focus on a neglected neurodegenerative disorder, cerebral ischemic stroke (CIS), and highlight recent advances in two disorders, Parkinson's disease (PD) and Alzheimer's diseases (AD), that possess both similar and distinct mechanisms in regards to potential therapeutic targets. In the first part of this review, we will focus primarily on mechanisms that are somewhat specific to each disorder which are involved in neurodegeneration (i.e., protease pathways, calcium homeostasis, reactive oxygen species regulation, DNA repair mechanisms, neurogenesis regulation, mitochondrial function, etc.). In the second part of this review, we will discuss the applications of the genome-wide technology on pharmacogenomics of mental illnesses including schizophrenia (SCZ), autism spectrum disorders (ASD), attention deficit hyperactivity disorder (ADHD), and obsessive compulsive disorder (OCD).

  11. Systems for the management of pharmacogenomic information.

    Science.gov (United States)

    Sturn, Alexander; Maurer, Michael; Molidor, Robert; Trajanoski, Zlatko

    2005-01-01

    Recent breakthroughs in biological research have been made possible by remarkable advances in high-performance computing and the establishment of a highly sophisticated information technology infrastructure. This chapter gives an overview of the main and most important technologies needed for the management of pharmacogenomic information, namely database management systems and software and hardware architectures. Because pharmacogenomics deals with a great many of public and/or proprietary data, the most prominent ways for easy storage, retrieval, analysis, and exchange are presented. Processing these data requires the use of sophisticated software architectures. Several most recent practices useful for a pharmacogenomic environment are explained. Multitiered application design and web services are discussed and described independent of the major enterprise development platforms. Because life sciences are becoming increasingly quantitative and because state-of-the-art software architectures use many system resources, this chapter presents the most recent and powerful systems for parallel data processing and data storage. Finally, shared and distributed memory systems and combinations of them as well as different storage architectures such as directly attached storage, network-attached storage, and storage-area network are explained in detail.

  12. Pharmacogenetics of drug-induced arrhythmias

    DEFF Research Database (Denmark)

    De Bruin, Marie L; van Puijenbroek, Eugene P; Bracke, Madelon

    2006-01-01

    PURPOSE: The bottleneck in pharmacogenetic research on rare adverse drug reactions (ADR) is retrieval of patients. Spontaneous reports of ADRs may form a useful source of patients. We investigated the feasibility of a pharmacogenetic study, in which cases were selected from the database of a spon......PURPOSE: The bottleneck in pharmacogenetic research on rare adverse drug reactions (ADR) is retrieval of patients. Spontaneous reports of ADRs may form a useful source of patients. We investigated the feasibility of a pharmacogenetic study, in which cases were selected from the database...... of a spontaneous reporting system for ADRs, using drug-induced arrhythmias as an example. METHODS: Reports of drug-induced arrhythmias to proarrhythmic drugs were selected from the database of the Netherlands Pharmacovigilance Centre (1996-2003). Information on the patient's general practitioner (GP) was obtained...... from the original report, or from another health care provider who reported the event. GPs were contacted and asked to recruit the patient as well as two age, gender and drug matched controls. Patients were asked to fill a questionnaire and provide a buccal swab DNA sample through the mail. DNA samples...

  13. Pharmacogenetics of antidepressant response: An update

    Directory of Open Access Journals (Sweden)

    Drago Antonio

    2009-04-01

    Full Text Available Abstract The past few decades have witnessed much progress in the field of pharmacogenetics. The identification of the genetic background that regulates the antidepressant response has benefited from these advances. This review focuses on the pharmacogenetics of the antidepressant response through the analysis and discussion of the most compelling evidence in this line of research. Online databases (Medline and PsycINFO have been searched and the most replicated association findings relating to the genetics of the antidepressant response have been reported and discussed. Some replicated findings in the literature have suggested the serotonin transporter promoter (5-HTTLPR, serotonin receptor 1A (HTR1A, serotonin receptor 2A (HTR2A, brain derived neurotrophic factor (BDNF, corticotropin releasing hormone receptor 1 (CRHR1 and FK506 binding protein 5 (FKBP5 as putative regulators of the antidepressant response. A high rate of failure of replication has also been reported. Pharmacogenetics will hopefully provide the basis for personalised antidepressant treatment that is able to maximise the probability of a good response and to minimise side effects; however, this goal is not achievable at the moment. The extent of the validity of the replicated findings and the reasons for the poor results obtained from studies of the pharmacogenetics of the antidepressant response are discussed.

  14. Future of Pharmacogenetics in Cardiovascular Diseases

    NARCIS (Netherlands)

    R.F.M. van Schie (Rianne); T.I. Verhoef (Talitha); A-H. Maitland-van der Zee (Anke-Hilse); A.C. de Boer (Anthonius); F.J.M. van der Meer (Felix); W.K. Redekop (Ken); R. Thariani (Rahber)

    2012-01-01

    textabstractIntroduction: Pharmacogenetics is the study of variations in DNA sequence as related to drug response (European Medicines Agency [EMA], 2007). Several gene-drug interactions have been discovered in the field of cardiovascular diseases (CVDs). These gene-drug interactions can help to

  15. Pharmacogenetics of asthma : toward precision medicine

    NARCIS (Netherlands)

    Kersten, Elin T. G.; Koppelman, Gerard H.

    PURPOSE OF REVIEW: Although currently available drugs to treat asthma are effective in most patients, a proportion of patients do not respond or experience side-effects; which is partly genetically determined. Pharmacogenetics is the study of how genetic variations influence drug response. In this

  16. Acute pharmacogenetic activation of medial prefrontal cortex ...

    Indian Academy of Sciences (India)

    Sthitapranjya Pati

    2018-01-24

    Jan 24, 2018 ... like behaviour in a task-specific fashion accompanied by enhanced c-Fos expression in the mPFC and multiple target circuits implicated in the ..... but exhibited a strong trend (figure 2I, two-way ANOVA: Figure 1. Selective ..... keeping with the former interpretation of pharmacogenetic silencing of SST ...

  17. Development and evaluation of a pharmacogenomics educational program for pharmacists.

    Science.gov (United States)

    Formea, Christine M; Nicholson, Wayne T; McCullough, Kristen B; Berg, Kevin D; Berg, Melody L; Cunningham, Julie L; Merten, Julianna A; Ou, Narith N; Stollings, Joanna L

    2013-02-12

    Objectives. To evaluate hospital and outpatient pharmacists' pharmacogenomics knowledge before and 2 months after participating in a targeted, case-based pharmacogenomics continuing education program.Design. As part of a continuing education program accredited by the Accreditation Council for Pharmacy Education (ACPE), pharmacists were provided with a fundamental pharmacogenomics education program.Evaluation. An 11-question, multiple-choice, electronic survey instrument was distributed to 272 eligible pharmacists at a single campus of a large, academic healthcare system. Pharmacists improved their pharmacogenomics test scores by 0.7 questions (pretest average 46%; posttest average 53%, p=0.0003).Conclusions. Although pharmacists demonstrated improvement, overall retention of educational goals and objectives was marginal. These results suggest that the complex topic of pharmacogenomics requires a large educational effort in order to increase pharmacists' knowledge and comfort level with this emerging therapeutic opportunity.

  18. Pharmacogenomics and its potential impact on drug and formulation development.

    Science.gov (United States)

    Regnstrom, Karin; Burgess, Diane J

    2005-01-01

    Recent advances in genomic research have provided the basis for new insights into the importance of genetic and genomic markers during the different stages of drug development. A new field of research, pharmacogenomics, which studies the relationship between drug effects and the genome, has emerged. Structural pharmacogenomics maps the complete DNA sequences of whole genomes (genotypes) including individual variations, and functional pharmacogenomics assesses the expression levels of thousands of genes in one single experiment. Together, these two areas of pharmacogenomics have generated massive databases, which have become a challenge for the research field of informatics and have fostered a new branch of research, bioinformatics. If skillfully used, the databases generated by pharmacogenomics together with data mining on the Web promise to improve the drug development process in a variety of areas: identification of drug targets, evaluation of toxicity, classification of diseases, evaluation of formulations, assessment of drug response and treatment, post-marketing applications, and development of personalized medicines.

  19. G protein-coupled receptor accessory proteins and signaling: pharmacogenomic insights.

    Science.gov (United States)

    Thompson, Miles D; Cole, David E C; Jose, Pedro A; Chidiac, Peter

    2014-01-01

    The identification and characterization of the genes encoding G protein-coupled receptors (GPCRs) and the proteins necessary for the processes of ligand binding, GPCR activation, inactivation, and receptor trafficking to the membrane are discussed in the context of human genetic disease. In addition to functional GPCR variants, the identification of genetic disruptions affecting proteins necessary to GPCR functions have provided insights into the function of these pathways. Gsα and Gβ subunit polymorphisms have been found to result in complex phenotypes. Disruptions in accessory proteins that normally modify or organize heterotrimeric G-protein coupling may also result in disease states. These include the contribution of variants of the regulator of G protein signaling (RGS) protein to hypertension; the role variants of the activator of G protein signaling (AGS) proteins to phenotypes (such as the type III AGS8 variant to hypoxia); the contribution of G protein-coupled receptor kinase (GRK) proteins, such as GRK4, in disorders such as hypertension. The role of accessory proteins in GPCR structure and function is discussed in the context of genetic disorders associated with disruption of the genes that encode them. An understanding of the pharmacogenomics of GPCR and accessory protein signaling provides the basis for examining both GPCR pharmacogenetics and the genetics of monogenic disorders that result from disruption of given receptor systems.

  20. Progress towards the integration of pharmacogenomics in practice.

    Science.gov (United States)

    Mooney, Sean D

    2015-05-01

    Understanding the role genes and genetic variants play in clinical treatment response continues to be an active area of research with the goal of common clinical use. This goal has developed into today's industry of pharmacogenomics, where new drug-gene relationships are discovered and further characterized, published and then curated into national and international resources for use by researchers and clinicians. These efforts have given us insight into what a pharmacogenomic variant is, and how it differs from human disease variants and common polymorphisms. While publications continue to reveal pharmacogenomic relationships between genes and specific classes of drugs, many challenges remain toward the goal of widespread use clinically. First, the clinical guidelines for pharmacogenomic testing are still in their infancy. Second, sequencing technologies are changing rapidly making it somewhat unclear what genetic data will be available to the clinician at the time of care. Finally, what and when to return data to a patient is an area under constant debate. New innovations such as PheWAS approaches and whole genome sequencing studies are enabling a tsunami of new findings. In this review, pharmacogenomic variants, pharmacogenomic resources, interpretation clinical guidelines and challenges, such as WGS approaches, and the impact of pharmacogenomics on drug development and regulatory approval are reviewed.

  1. Progress of pharmacogenomic research related to minerals and trace elements.

    Science.gov (United States)

    Zeng, Mei-Zi; Tang, Jie; Liu, Zhao-Qian; Zhou, Hong-Hao; Zhang, Wei

    2015-10-01

    Pharmacogenomics explores the variations in both the benefits and the adverse effects of a drug among patients in a target population by analyzing genomic profiles of individual patients. Minerals and trace elements, which can be found in human tissues and maintain normal physiological functions, are also in the focus of pharmacogenomic research. Single-nucleotide polymorphisms (SNPs) affect the metabolism, disposition and efficacy of minerals and trace elements in humans, resulting in changes of body function. This review describes some of the recent progress in pharmacogenomic research related to minerals and trace elements.

  2. Pharmacogenetics in Ghana: Reviewing the evidence | Kudzi ...

    African Journals Online (AJOL)

    A number of genes including Cytochrome P450 (CYP) 2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, MDR1 and TPMT have been genotyped in the Ghanaian population since the completion of the Human genome project. There is however, an urgent need to increase pharmacogenetic research in Ghana to ...

  3. Some aspects of genetics and pharmacogenetics understanding by ...

    African Journals Online (AJOL)

    O.V. Filiptsova

    Available online 18 November 2014. KEYWORDS. Pharmacogenetics;. Genetics; ... 39.5% cases adverse reactions appeared as a result of genetic factors, and the necessity of genetic expertise was initiated ..... ducting pharmacogenetic tests to potential customers, but only a small number of respondents (7.7%) had the ...

  4. Pharmacometabolomics-aided Pharmacogenomics in Autoimmune Disease

    Directory of Open Access Journals (Sweden)

    Theodora Katsila

    2016-03-01

    Full Text Available Inter-individual variability has been a major hurdle to optimize disease management. Precision medicine holds promise for improving health and healthcare via tailor-made therapeutic strategies. Herein, we outline the paradigm of “pharmacometabolomics-aided pharmacogenomics” in autoimmune diseases. We envisage merging pharmacometabolomic and pharmacogenomic data (to address the interplay of genomic and environmental influences with information technologies to facilitate data analysis as well as sense- and decision-making on the basis of synergy between artificial and human intelligence. Humans can detect patterns, which computer algorithms may fail to do so, whereas data-intensive and cognitively complex settings and processes limit human ability. We propose that better-informed, rapid and cost-effective omics studies need the implementation of holistic and multidisciplinary approaches.

  5. Intravenous immunoglobulin, pharmacogenomics, and Kawasaki disease.

    Science.gov (United States)

    Kuo, Ho-Chang; Hsu, Yu-Wen; Wu, Mei-Shin; Chien, Shu-Chen; Liu, Shih-Feng; Chang, Wei-Chiao

    2016-02-01

    Kawasaki disease (KD) is a systemic vasculitis of unknown etiology and it is therefore worth examining the multifactorial interaction of genes and environmental factors. Targeted genetic association and genome-wide association studies have helped to provide a better understanding of KD from infection to the immune-related response. Findings in the past decade have contributed to a major breakthrough in the genetics of KD, with the identification of several genomic regions linked to the pathogenesis of KD, including ITPKC, CD40, BLK, and FCGR2A. This review focuses on the factors associated with the genetic polymorphisms of KD and the pharmacogenomics of the response to treatment in patients with intravenous immunoglobulin resistance. Copyright © 2014. Published by Elsevier B.V.

  6. Pharmacogenomics and epilepsy: the road ahead.

    LENUS (Irish Health Repository)

    Cavalleri, Gianpiero L

    2011-10-01

    Epilepsy is one of the most common, serious neurological disorders, affecting an estimated 50 million people worldwide. The condition is typically treated using antiepileptic drugs of which there are 16 in widespread use. However, there are many different syndrome and seizure types within epilepsy and information guiding clinicians on the most effective drug and dose for individual patients is lacking. Further, all of the antiepileptic drugs have associated adverse reactions, some of which are severe and life-threatening. Here, we review the pharmacogenomic work to date in the context of these issues and comment on key aspects of study design that are required to speed up the identification of clinically relevant genetic factors.

  7. Current clinical evidence on pioglitazone pharmacogenomics

    Directory of Open Access Journals (Sweden)

    Marina eKawaguchi-Suzuki

    2013-11-01

    Full Text Available Pioglitazone is the most widely used thiazolidinedione and acts as an insulin-sensitizer through activation of the Peroxisome Proliferator-Activated Receptor-γ (PPARγ. Pioglitazone is approved for use in the management of type 2 diabetes mellitus, but its use in other therapeutic areas is increasing due to pleiotropic effects. In this hypothesis article, the current clinical evidence on pioglitazone pharmacogenomics is summarized and related to variability in pioglitazone response. How genetic variation in the human genome affects the pharmacokinetics and pharmacodynamics of pioglitazone was examined. For pharmacodynamic effects, hypoglycemic and anti-atherosclerotic effects, risks of fracture or edema, and the increase in body mass index in response to pioglitazone based on genotype were examined. The genes CYP2C8 and PPARG are the most extensively studied to date and selected polymorphisms contribute to respective variability in pioglitazone pharmacokinetics and pharmacodynamics. We hypothesized that genetic variation in pioglitazone pathway genes contributes meaningfully to the clinically observed variability in drug response. To test the hypothesis that genetic variation in PPARG associates with variability in pioglitazone response, we conducted a meta-analysis to synthesize the currently available data on the PPARG p.Pro12Ala polymorphism. The results showed that PPARG 12Ala carriers had a more favorable change in fasting blood glucose from baseline as compared to patients with the wild-type Pro12Pro genotype (p=0.018. Unfortunately, findings for many other genes lack replication in independent cohorts to confirm association; further studies are needed. Also, the biological functionality of these polymorphisms is unknown. Based on current evidence, we propose that pharmacogenomics may provide an important tool to individualize pioglitazone therapy and better optimize therapy in patients with T2DM or other conditions for which pioglitazone

  8. Analytical strategies for discovery and replication of genetic effects in pharmacogenomic studies

    Directory of Open Access Journals (Sweden)

    Kohler JR

    2014-08-01

    Full Text Available Jared R Kohler, Tobias Guennel, Scott L MarshallBioStat Solutions, Inc., Frederick, MD, USAAbstract: In the past decade, the pharmaceutical industry and biomedical research sector have devoted considerable resources to pharmacogenomics (PGx with the hope that understanding genetic variation in patients would deliver on the promise of personalized medicine. With the advent of new technologies and the improved collection of DNA samples, the roadblock to advancements in PGx discovery is no longer the lack of high-density genetic information captured on patient populations, but rather the development, adaptation, and tailoring of analytical strategies to effectively harness this wealth of information. The current analytical paradigm in PGx considers the single-nucleotide polymorphism (SNP as the genomic feature of interest and performs single SNP association tests to discover PGx effects – ie, genetic effects impacting drug response. While it can be straightforward to process single SNP results and to consider how this information may be extended for use in downstream patient stratification, the rate of replication for single SNP associations has been low and the desired success of producing clinically and commercially viable biomarkers has not been realized. This may be due to the fact that single SNP association testing is suboptimal given the complexities of PGx discovery in the clinical trial setting, including: 1 relatively small sample sizes; 2 diverse clinical cohorts within and across trials due to genetic ancestry (potentially impacting the ability to replicate findings; and 3 the potential polygenic nature of a drug response. Subsequently, a shift in the current paradigm is proposed: to consider the gene as the genomic feature of interest in PGx discovery. The proof-of-concept study presented in this manuscript demonstrates that genomic region-based association testing has the potential to improve the power of detecting single SNP or

  9. Rationale and design of the multiethnic Pharmacogenomics in Childhood Asthma consortium

    DEFF Research Database (Denmark)

    Farzan, Niloufar; Vijverberg, Susanne J; Andiappan, Anand K

    2017-01-01

    corticosteroid users. Among patients from 13 studies with available data on asthma exacerbations, a third reported exacerbations despite inhaled corticosteroid use. In the future pharmacogenomics studies within the consortium, the pharmacogenomics analyses will be performed separately in each center...

  10. Transitioning pharmacogenomics into the clinical setting: training future pharmacists

    Directory of Open Access Journals (Sweden)

    Amber Frick

    2016-08-01

    Full Text Available Pharmacogenomics, once hailed as a futuristic approach to pharmacotherapy, has transitioned to clinical implementation. Although logistic and economic limitations to clinical pharmacogenomics are being superseded by external measures such as preemptive genotyping, implementation by clinicians has met resistance, partly due to a lack of education. Pharmacists, with extensive training in pharmacology and pharmacotherapy and accessibility to patients, are ideally suited to champion clinical pharmacogenomics. This study aimed to analyze the outcomes of an innovative pharmacogenomic teaching approach.Second-year student pharmacists enrolled in a required, 15-week pharmaceutical care lab course in 2015 completed educational activities including lectures and small group work focusing on practical pharmacogenomics. Reflecting the current landscape of direct-to-consumer genomic testing, students were offered 23andMe genotyping. Students completed surveys regarding their attitudes and confidence on pharmacogenomics prior to and following the educational intervention. Paired pre- and post-intervention responses were analyzed with McNemar’s test for binary comparisons and the Wilcoxon signed-rank test for Likert items. Responses between genotyped and non-genotyped students were analyzed with Fisher’s exact test for binary comparisons and the Mann-Whitney U-test for Likert items.Responses were analyzed for all student pharmacists who voluntarily completed the pre-intervention survey (N=121, 83% response and for student pharmacists who completed both pre- and post-intervention surveys (N=39, 27% response. Of those who completed both pre- and post-intervention surveys, 59% obtained genotyping. Student pharmacists demonstrated a significant increase in their knowledge of pharmacogenomic resources (17.9% vs. 56.4%, p<0.0001 and confidence in applying pharmacogenomic information to manage patients’ drug therapy (28.2% vs. 48.7%, p=0.01, particularly if the

  11. Pharmacogenomic diversity among Brazilians: Influence of ancestry, self-reported Color and geographical origin

    Directory of Open Access Journals (Sweden)

    Guilherme eSuarez-Kurtz

    2012-11-01

    Full Text Available By virtue of being the product of the genetic admixture of three ancestral roots: Europeans, Africans and Amerindians, the present day Brazilian population displays very high levels of genomic diversity, which have important pharmacogenetic/-genomic (PGx implications. Recognition of this fact has prompted the creation of the Brazilian Pharmacogenomics Network (Refargen, a nationwide consortium of research groups, with the mission to provide leadership in PGx research and education in Brazil, with a population heath impact. Here, we present original data and review published results from a Refargen comprehensive study of the distribution of PGx polymorphisms in a representative cohort of the Brazilian people, comprising 1,034 healthy, unrelated adults, self-identified as white, brown or black, according to the Color categories adopted by the Brazilian Census. Multinomial log-linear regression analysis was applied to infer the statistical association between allele, genotype and haplotype distributions among Brazilians (response variables and self-reported Color, geographical region and biogeographical ancestry (explanatory variables, whereas Wright´s FST statistics was used to assess the extent of PGx divergence among different strata of the Brazilian population. Major PGx implications of these findings are: first, extrapolation of data from relatively well-defined ethnic groups is clearly not applicable to the majority of Brazilians; second, the frequency distribution of polymorphisms in several pharmacogenes of clinical relevance (e.g. ABCB1, CYP3A5, CYP2C9, VKORC varies continuously among Brazilians and is not captured by race/Color self-identification; third, the intrinsic heterogeneity of the Brazilian population must be acknowledged in the design and interpretation of PGx studies in order to avoid spurious conclusions based on improper matching of study cohorts.

  12. [Pharmacogenetics II. Research molecular methods, bioinformatics and ethical concerns].

    Science.gov (United States)

    Daudén, E

    2007-01-01

    Pharmacogenetics refers to the study of the individual pharmacological response based on the genotype. Its objective is to optimize treatment in an individual basis, thereby creating a more efficient and safe personalized therapy. In the second part of this review, the molecular methods of study in pharmacogenetics, including microarray technology or DNA chips, are discussed. Among them we highlight the microarrays used to determine the gene expression that detect specific RNA sequences, and the microarrays employed to determine the genotype that detect specific DNA sequences, including polymorphisms, particularly single nucleotide polymorphisms (SNPs). The relationship between pharmacogenetics, bioinformatics and ethical concerns is reviewed.

  13. A Case for Pharmacogenomics in Management of Cardiac Arrhythmias

    Directory of Open Access Journals (Sweden)

    Gaurav Kandoi

    2012-03-01

    Full Text Available Disorders of the cardiac rhythm are quite prevalent in clinical practice. Though the variability in drug response between individuals has been extensively studied, this information has not been widely used in clinical practice. Rapid advances in the field of pharmacogenomics have provided us with crucial insights on inter-individual genetic variability and its impact on drug metabolism and action. Technologies for faster and cheaper genetic testing and even personal genome sequencing would enable clinicians to optimize prescription based on the genetic makeup of the individual, which would open up new avenues in the area of personalized medicine. We have systematically looked at literature evidence on pharmacogenomics markers for anti-arrhythmic agents from the OpenPGx consortium collection and reason the applicability of genetics in the management of arrhythmia. We also discuss potential issues that need to be resolved before personalized pharmacogenomics becomes a reality in regular clinical practice.

  14. Pharmacogenomics genes show varying perceptibility to microRNA regulation

    DEFF Research Database (Denmark)

    Rukov, Jakob Lewin; Vinther, Jeppe; Shomron, Noam

    2011-01-01

    The aim of pharmacogenomics is to identify individual differences in genome and transcriptome composition and their effect on drug efficacy. MicroRNAs (miRNAs) are short noncoding RNAs that negatively regulate expression of the majority of animal genes, including many genes involved in drug...... efficacy. Consequently, differences in the miRNA expression among individuals could be an important factor contributing to differential drug response. Pharmacogenomics genes can be divided into drug target genes termed as pharmacodynamics genes (PD) and genes involved in drug transport and metabolism...

  15. Pharmacogenomic technologies: a necessary "luxury" for better global public health?

    Science.gov (United States)

    Olivier, Catherine; Williams-Jones, Bryn

    2011-08-24

    Pharmacogenomic technologies aim to redirect drug development to increase safety and efficacy of individual care. There is much hope that their implementation in the drug development process will help respond to population health needs, particularly in developing countries. However, there is also fear that novel pharmacogenomic drugs will remain too costly, be designed for the needs of the wealthy nations, and so constitute an unnecessary "luxury" for most populations. In this paper, we analyse the promise that pharmacogenomic technologies hold for improving global public health and identify strategies and challenges associated with their implementation. This paper evaluates the capacity of pharmacogenomic technologies to meet six criteria described by the University of Toronto Joint Centre for Bioethics group: 1) impact of the technology, 2) technology appropriateness, 3) capacity to address local burdens, 4) feasibility to be implemented in reasonable time, 5) capacity to reduce the knowledge gap, and 6) capacity for indirect benefits. We argue that the implementation of pharmacogenomic technologies in the drug development process can positively impact population health. However, this positive impact depends on how and for which purposes the technologies are used. We discuss the potential of these technologies to stimulate drug discovery in the case of rare (orphan diseases) or neglected diseases, but also to reduce acute adverse drug reactions in infectious disease treatment and prevention, which promises to improve global public health. The implementation of pharmacogenomic technologies may lead to the development of drugs that appear to be a "luxury" for populations in need of numerous interventions that are known to have a demonstrable impact on population health (e.g., secure access to potable water, reduction of social inequities, health education). However, our analysis shows that pharmacogenomic technologies do have the potential to redirect drug

  16. Pharmacogenetic study of deferasirox, an iron chelating agent.

    Directory of Open Access Journals (Sweden)

    Ji Won Lee

    Full Text Available Transfusion-associated iron overload induces systemic toxicity. Deferasirox, a convenient long acting oral agent, has recently been introduced in clinical practice with a promising efficacy. But there are some patients who experience drug-related toxicities and cannot tolerate it. To investigate effect of genetic variations on the toxicities and find optimal target population, we analyzed the genetic polymorphisms of UDP-glucuronosyltransferase 1A (UGT1A subfamily, multi-drug resistance-associated protein 2 (MRP2 and breast cancer resistance protein (BCRP. A total of 20 functional genetic polymorphisms were analyzed in 98 patients who received deferasirox to reduce transfusion-induced iron overload. We retrospectively reviewed the medical records to find out the drug-related toxicities. Fifteen (15.3% patients developed hepatotoxicity. Patients without wild-type allele carrying two MRP2 haplotypes containing -1774 del and/or -24T were at increased risk of developing hepatotoxicity compared to patients with the wild-type allele on multivariate analysis (OR = 7.17, 95% CI = 1.79-28.67, P = 0.005. Creatinine elevation was observed in 9 patients (9.2%. Body weight ≥40 kg and homozygosity for UGT1A1*6 were risk factors of creatinine elevation (OR = 8.48, 95% CI = 1.7-43.57, P = 0.010 and OR = 14.17, 95% CI = 1.34-150.35, P = 0.028. Our results indicate that functional genetic variants of enzymes to metabolize and transport deferasirox are associated with drug-related toxicities. Further studies are warranted to confirm the results as the pharmacogenetic biomarkers of deferasirox.

  17. Pharmacogenetics of healthy volunteers in Puerto Rico

    Science.gov (United States)

    Claudio-Campos, Karla; Orengo-Mercado, Carmelo; Renta, Jessicca Y.; Peguero, Muriel; García, Ricardo; Hernández, Gabriel; Corey, Susan; Cadilla, Carmen L.; Duconge, Jorge

    2016-01-01

    Puerto Ricans are a unique Hispanic population with European, Native American (Taino), and higher West African ancestral contributions than other non-Caribbean Hispanics. In admixed populations, such as Puerto Ricans, genetic variants can be found at different frequencies when compared to parental populations and uniquely combined and distributed. Therefore, in this review, we aimed to collect data from studies conducted in healthy Puerto Ricans and to report the frequencies of genetic polymorphisms with major relevance in drug response. Filtering for healthy volunteers or individuals, we performed a search of pharmacogenetic studies in academic literature databases without limiting the period of the results. The search was limited to Puerto Ricans living in the island, excluding those studies performed in mainland (United States). We found that the genetic markers impacting pharmacological therapy in the areas of cardiovascular, oncology, and neurology are the most frequently investigated. Coincidently, the top causes of mortality in the island are cardiovascular diseases, cancer, diabetes, Alzheimer’s disease, and stroke. In addition, polymorphisms in genes that encode for members of the CYP450 family (CYP2C9, CYP2C19, and CYP2D6) are also available due to their relevance in the metabolism of drugs. The complex genetic background of Puerto Ricans is responsible for the divergence in the reported allele frequencies when compared to parental populations (Africans, East Asians, and Europeans). The importance of reporting the findings of pharmacogenetic studies conducted in Puerto Ricans is to identify genetic variants with potential utility among this genetically complex population and eventually move forward the adoption of personalized medicine in the island. PMID:26501165

  18. Biotechnology, nanotechnology, and pharmacogenomics and pharmaceutical compounding, Part 1.

    Science.gov (United States)

    Allen, Loyd V

    2015-01-01

    The world of pharmaceuticals is changing rapidly as biotechnology continues to grow and nanotechnology appears on the horizon. Biotechnology is gaining in importance in extemporaneous pharmaceutical compounding, and nanotechnology and pharmacogenomics could drastically change the practice of pharmacy. This article discusses biotechnology and the factors to consider when compounding biotechnology drugs.

  19. Generating Genome-Scale Candidate Gene Lists for Pharmacogenomics

    DEFF Research Database (Denmark)

    Hansen, Niclas Tue; Brunak, Søren; Altman, R. B.

    2009-01-01

    A critical task in pharmacogenomics is identifying genes that may be important modulators of drug response. High-throughput experimental methods are often plagued by false positives and do not take advantage of existing knowledge. Candidate gene lists can usefully summarize existing knowledge...

  20. Ethiopian health care professionals’ knowledge, attitude, and interests toward pharmacogenomics

    Directory of Open Access Journals (Sweden)

    Abdela OA

    2017-12-01

    Full Text Available Ousman Abubeker Abdela, Akshaya Srikanth Bhagavathula, Eyob Alemayehu Gebreyohannes, Henok Getachew Tegegn Department of Clinical Pharmacy, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia Background: Pharmacogenomics is a field of science which studies the impact of inheritance on individual variation in medication therapy response.Aim: We assessed healthcare professionals’ knowledge, attitude, and interest toward pharmacogenomics.Methods: A cross-sectional survey was conducted using a 32-item questionnaire among physicians, nurses, and pharmacists who were working at the University of Gondar Referral and Teaching Hospital in northwest Ethiopia. Descriptive statistics was applied, and the categorical variables were summarized as frequency and percentages. An analysis of variance (ANOVA test was performed to compare mean scores among health professionals. A p-value of <0.05 was considered as statistically significant.Results: Of 292 health professionals who responded, the majority were male (60% and the mean age of study participants was 27.00 (±4.85 SD years. The mean knowledge scores of all participants, pharmacists, physicians, and nurses were 2.343±1.109, 2.671±1.059, 2.375±1.093, and 2.173±1.110, respectively. Based on the ANOVA test, a statistically significant difference was noted in mean knowledge score between pharmacists and nurses (p=0.002. More than two-thirds (67.33% of nurses, 42.86% of pharmacists, and 40.27% of physicians who participated did not know that genetic variations can account for as much as 95% of the variability in drug disposition and effects. The ability to accurately apply their knowledge to drug therapy selection, dosing, or monitoring parameter was reported by 35.3% of the participants. More than two-thirds (69.2% of participants thought that pharmacogenomic testing will allow the identification of the right drug with less side effects. Most of the

  1. Implementation of a pharmacogenomics service in a community pharmacy.

    Science.gov (United States)

    Ferreri, Stefanie P; Greco, Angelo J; Michaels, Natasha M; O'Connor, Shanna K; Chater, Rebecca W; Viera, Anthony J; Faruki, Hawazin; McLeod, Howard L; Roederer, Mary W

    2014-01-01

    OBJECTIVE To determine the feasibility of implementing a pharmacogenomics service in a community pharmacy. SETTING A single community pharmacy that is part of a regional chain known for offering innovative pharmacy services. PRACTICE DESCRIPTION Community pharmacists at the project site routinely provide clinical pharmacy services, including medication therapy management, immunizations, point-of-care testing, blood pressure monitoring, and diabetes education. PRACTICE INNOVATION The implementation of a pharmacogenomic testing and interpretation service for the liver isoenzyme cytochrome P450 2C19. PARTICIPANTS 18 patients taking clopidogrel, a drug metabolized by CYP2C19. MAIN OUTCOME MEASURES Rate of patient participation, rate of prescriber acceptance of pharmacist recommendation, time to perform genetic testing service, and number of claims submitted to and paid by insurance. RESULTS Of 41 patients taking clopidogrel and meeting project criteria, 18 (43.9%) enrolled and completed testing and interpretation of pharmacogenomic results. The mean time pharmacists spent completing all stages of the project with each participant was 76.6 minutes. The mean time to complete participation in the project (time between person's first and second visit) was 30.1 days. Nine patients had wild-type alleles, and pharmacists recommended continuation of therapy as ordered. Genetic variants were found in the other nine patients, and all pharmacist recommendations for modifications in therapy were ultimately accepted by prescribers. Overall, 17 patients consented to filing of reimbursement claims with their insurers. Five were not able to be billed due to submission difficulties. Of the remaining 12, none was paid. CONCLUSION A pharmacogenomics service can be an extension of medication therapy management services in a community pharmacy. Prescribers are receptive to having community pharmacists conduct pharmacogenomics testing, but reimbursement is a challenge.

  2. Diabetes-related neurological implications and pharmacogenomics.

    Science.gov (United States)

    Andrés, Rojas Carranza Camilo; Helena, Bustos Cruz Rosa; Juliana, Pino Pinzón Carmen; Viviana, Ariza Marquez Yeimy; Margarita, Gómez Bello Rosa; Marisa, Cañadas Garre

    2017-03-17

    improve cognition in patients suffering mild cognitive impairment (MCI) and dementia [1, 2]. While it is still unclear whether diabetes management will reduce MCI and Alzheimer's disease (AD), incidence, emerging evidence suggests that diabetes therapies may improve cognitive function. This review focuses three aspects: the clinical manifestation of diabetes regarding glial and neuronal cells, the association between neurodegeneration and diabetes and summarises some of the pharmacogenomic data obtained from studies of T2DM treatment, focusing on polymorphisms in genes affecting pharmacokinetics, pharmacodynamics and treatment outcome of the most commonly-prescribed oral anti-diabetic drugs (OADs). Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. The Potential Utility of Pharmacogenetic Testing in Psychiatry

    Directory of Open Access Journals (Sweden)

    Kathryn R. Gardner

    2014-01-01

    Full Text Available Over the last decade, pharmacogenetics has become increasingly significant to clinical practice. Psychiatric patients, in particular, may benefit from pharmacogenetic testing as many of the psychotropic medications prescribed in practice lead to varied response rates and a wide range of side effects. The use of pharmacogenetic testing can help tailor psychotropic treatment and inform personalized treatment plans with the highest likelihood of success. Recently, many studies have been published demonstrating improved patient outcomes and decreased healthcare costs for psychiatric patients who utilize genetic testing. This review will describe evidence supporting the clinical utility of genetic testing in psychiatry, present several case studies to demonstrate use in everyday practice, and explore current patient and clinician opinions of genetic testing.

  4. Pharmacogenetic tests for antipsychotic medications: clinical implications and considerations

    Science.gov (United States)

    Eum, Seenae; Lee, Adam M.; Bishop, Jeffrey R.

    2016-01-01

    Optimizing antipsychotic pharmacotherapy is often challenging due to significant variability in effectiveness and tolerability. Genetic factors influencing pharmacokinetics and pharmacodynamics may contribute to some of this variability. Research studies have characterized these pharmacogenetic relationships, and some genetic markers are now available as clinical tests. These advances in pharmacogenetics research and test availability have great potential to improve clinical outcomes and quality of life in psychiatric patients. For clinicians considering using pharmacogenetics, it is important to understand the clinical implications and also the limitations of markers included in currently available tests. This review focuses on pharmacokinetic and pharmacodynamic gene variants that are currently available in commercial genetic testing panels. Associations of these variants with clinical efficacy and adverse effects, as well as other clinical implications, in antipsychotic pharmacotherapy are discussed. PMID:27757066

  5. The diffusion of innovation: factors influencing the uptake of pharmacogenetics

    DEFF Research Database (Denmark)

    Nielsen, Louise Fuks; Møldrup, Claus

    2007-01-01

    is to identify factors affecting the adoption pattern of pharmacogenetics in the public. METHOD: The paper is based on an Internet-based questionnaire survey conducted in March 2005. A total of 3,000 representative Danes aged 18-70 years were included in the survey, representing a response rate of 58.9%. RESULTS......BACKGROUND: Inspired by diffusion research, this paper examines how perceived need, health status, experiences with medicine and testing, consumption of mass media and sociodemography influence the public's familiarity, knowledge, attitudes and intentions regarding pharmacogenetics. The objective...

  6. Some aspects of genetics and pharmacogenetics understanding by ...

    African Journals Online (AJOL)

    The aim of the present work is to analyze students' awareness about pharmacogenetics in the National University of Pharmacy (NUPh) since its development is delayed in Ukraine. Methods: Field investigations have been used in this work. The material analysis based on questioning 637 students of the 1st–4th year ...

  7. Pharmacogenetics as a tool in the therapy of schizophrenia

    NARCIS (Netherlands)

    Wilffert, Bob; Zaal, Rianne; Brouwers, Jacobus R.B.J.

    Aim: This review summarises the present knowledge of associations between pharmacogenetics and therapeutic efficacy and side effects of antipsychotics to enable pharmacists to judge the applicability for a more tailor made therapy in patients with schizophrenia. Polymorphisms of Cytochrome P450

  8. Physicians' pharmacogenomics information needs and seeking behavior: a study with case vignettes.

    Science.gov (United States)

    Heale, Bret S E; Khalifa, Aly; Stone, Bryan L; Nelson, Scott; Del Fiol, Guilherme

    2017-08-01

    Genetic testing, especially in pharmacogenomics, can have a major impact on patient care. However, most physicians do not feel that they have sufficient knowledge to apply pharmacogenomics to patient care. Online information resources can help address this gap. We investigated physicians' pharmacogenomics information needs and information-seeking behavior, in order to guide the design of pharmacogenomics information resources that effectively meet clinical information needs. We performed a formative, mixed-method assessment of physicians' information-seeking process in three pharmacogenomics case vignettes. Interactions of 6 physicians' with online pharmacogenomics resources were recorded, transcribed, and analyzed for prominent themes. Quantitative data included information-seeking duration, page navigations, and number of searches entered. We found that participants searched an average of 8 min per case vignette, spent less than 30 s reviewing specific content, and rarely refined search terms. Participants' information needs included a need for clinically meaningful descriptions of test interpretations, a molecular basis for the clinical effect of drug variation, information on the logistics of carrying out a genetic test (including questions related to cost, availability, test turn-around time, insurance coverage, and accessibility of expert support).Also, participants sought alternative therapies that would not require genetic testing. This study of pharmacogenomics information-seeking behavior indicates that content to support their information needs is dispersed and hard to find. Our results reveal a set of themes that information resources can use to help physicians find and apply pharmacogenomics information to the care of their patients.

  9. Clinical practice guidelines for translating pharmacogenomic knowledge to bedside. Focus on anticancer drugs.

    Directory of Open Access Journals (Sweden)

    José A G Agúndez

    2014-08-01

    Full Text Available The development of clinical practice recommendations or guidelines for the clinical use of pharmacogenomics data is an essential issue for improving drug therapy, particularly for drugs with high toxicity and/or narrow therapeutic index such as anticancer drugs. Although pharmacogenomic-based recommendations have been formulated for over 40 anticancer drugs, the number of clinical practice guidelines available is very low. The guidelines already published indicate that pharmacogenomic testing is useful for patient selection, but final dosing adjustment should be carried out on the basis of clinical or analytical parameters rather than on pharmacogenomic information.Patient selection may seem a modest objective, but it constitutes a crucial improvement with regard to the pre-pharmacogenomics situation and it saves patients’ lives. However we should not overstate the current power of pharmacogenomics. At present the pharmacogenomics of anticancer drugs is not sufficiently developed for dose adjustments based on pharmacogenomics only, and no current guidelines recommend such adjustments without considering clinical and/or analytical parameters.

  10. Fast and frugal trees: translating population-based pharmacogenomics to medication prioritization

    NARCIS (Netherlands)

    Rooij, T. van; Roederer, M.; Wareham, H.T.; Rooij, I.J.E.I. van; McLeod, H.L.; Marsh, S.

    2015-01-01

    Aim: Fast and frugal decision trees (FFTs) can simplify clinical decision making by providing a heuristic approach to contextual guidance. We wanted to use FFTs for pharmacogenomic knowledge translation at point-of-care. Materials & Methods: The Pharmacogenomics for Every Nation Initiative (PGENI),

  11. Progress and Promise of Attention-Deficit Hyperactivity Disorder Pharmacogenetics

    Science.gov (United States)

    Froehlich, Tanya E.; McGough, James J.; Stein, Mark A.

    2010-01-01

    One strategy for understanding variability in attention-deficit hyperactivity disorder (ADHD) medication response, and therefore redressing the current trial-and-error approach to ADHD medication management, is to identify genetic moderators of treatment. This article summarizes ADHD pharmacogenetic investigative efforts to date, which have primarily focused on short-term response to methylphenidate and largely been limited by modest sample sizes. The most well studied genes include the dopamine transporter and dopamine D4 receptor, with additional genes that have been significantly associated with stimulant medication response including the adrenergic α2A-receptor, catechol-O-methyltransferase, D5 receptor, noradrenaline (norepinephrine) transporter protein 1 and synaptosomal-associated protein 25 kDa. Unfortunately, results of current ADHD pharmacogenetic studies have not been entirely consistent, possibly due to differences in study design, medication dosing regimens and outcome measures. Future directions for ADHD pharmacogenetics investigations may include examination of drug-metabolizing enzymes and a wider range of stimulant and non-stimulant medications. In addition, researchers are increasingly interested in going beyond the individual candidate gene approach to investigate gene-gene interactions or pathways, effect modification by additional environmental exposures and whole genome approaches. Advancements in ADHD pharmacogenetics will be facilitated by multi-site collaborations to obtain larger sample sizes using standardized protocols. Although ADHD pharmacogenetic efforts are still in a relatively early stage, their potential clinical applications may include the development of treatment efficacy and adverse effect prediction algorithms that incorporate the interplay of genetic and environmental factors, as well as the development of novel ADHD treatments. PMID:20088618

  12. Golden Helix Institute of Biomedical Research: Interdisciplinary research and educational activities in pharmacogenomics and personalized medicine

    Science.gov (United States)

    Mitropoulos, Konstantinos; Innocenti, Federico; van Schaik, Ron H.; Lezhava, Alexander; Tzimas, Giannis; Kollia, Panagoula; Macek, Milan; Fortina, Paolo; Patrinos, George P.

    2013-01-01

    The Golden Helix Institute of Biomedical Research is an international non-profit scientific organization with interdisciplinary research and educational activities in the field of genome medicine in Europe, Asia and Latin America. These activities are supervised by an international scientific advisory council, consisting of world leaders in the field of genomics and translational medicine. Research activities include the regional coordination of the Pharmacogenomics for Every Nation Initiative in Europe, in an effort to integrate pharmacogenomics in developing countries, the development of several National/Ethnic Genetic databases and related web services and the critical assessment of the impact of genetics and genomic medicine to society in various countries. Also, educational activities include the organization of the Golden Helix Symposia®, which are high profile scientific research symposia in the field of personalized medicine, and the Golden Helix Pharmacogenomics Days, an international educational activity focused on pharmacogenomics, as part of its international pharmacogenomics education and outreach efforts. PMID:22379996

  13. Pharmacogenetics in cardiovascular disorders: an update on the principal drugs.

    Science.gov (United States)

    Predazzi, Irene M; Mango, Ruggiero; Norata, Giuseppe D; Di Daniele, Nicola; Sergi, Domenico; Romeo, Francesco; Novelli, Giuseppe

    2013-04-01

    In the coming years, genomics will impact clinical practice in multiple ways. However, one of the most important applications will be in the determination of the best treatments in personalized medicine. This is, in fact, one of the fields in which genetic variants have already been most successful and useful to clinicians. Here, we briefly review the current state of the art on pharmacogenomics and its applications to modern cardiovascular medicine.

  14. Implementation of a multidisciplinary pharmacogenomics clinic in a community health system.

    Science.gov (United States)

    Dunnenberger, Henry M; Biszewski, Matthew; Bell, Gillian C; Sereika, Annette; May, Holley; Johnson, Samuel G; Hulick, Peter J; Khandekar, Janardan

    2016-12-01

    The development and implementation of a multidisciplinary pharmacogenomics clinic within the framework of an established community-based medical genetics program are described. Pharmacogenomics is an important component of precision medicine that holds considerable promise for pharmacotherapy optimization. As part of the development of a health system-wide integrated pharmacogenomics program, in early 2015 Northshore University Health-System established a pharmacogenomics clinic run by a multidisciplinary team including a medical geneticist, a pharmacist, a nurse practitioner, and genetic counselors. The team identified five key program elements: (1) a billable-service provider, (2) a process for documentation of relevant medication and family histories, (3) personnel with the knowledge required to interpret pharmacogenomic results, (4) personnel to discuss risks, benefits, and limitations of pharmacogenomic testing, and (5) a mechanism for reporting results. The most important program component is expert interpretation of genetic test results to provide clinically useful information; pharmacists are well positioned to provide that expertise. At the Northshore University HealthSystem pharmacogenomics clinic, patient encounters typically entail two one-hour visits and follow a standardized workflow. At the first visit, pharmacogenomics-focused medication and family histories are obtained, risks and benefits of genetic testing are explained, and a test sample is collected; at the second visit, test results are provided along with evidence-based pharmacotherapy recommendations. A multidisciplinary clinic providing genotyping and related services can facilitate the integration of pharmacogenomics into clinical care and meet the needs of early adopters of precision medicine. Copyright © 2016 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  15. Economics of Pharmacogenetic-Guided Treatments: Underwhelming or Overstated?

    Science.gov (United States)

    Hughes, Dyfrig A

    2018-05-01

    Economic evaluations have dispelled a perception that precision medicine, achieved through pharmacogenetic testing, reduces healthcare costs. For many tests aimed at preventing adverse drug reactions, cost-effectiveness analyses predict modest improvements in health benefits and increases in total costs. While there are many uncertainties in estimating the value of testing, factors that influence cost-effectiveness include the rarity of the outcome, the effectiveness of alternative treatments, and the scope and perspective of analysis. © 2018 ASCPT.

  16. Pharmacogenetic studies of epilepsy drugs: are we there yet?

    Science.gov (United States)

    Spurr, Nigel K

    2006-05-01

    One of the mantras of scientists working in the field of pharmacogenetics is 'the right dose for the right patient'. A recent article has gone someway towards demonstrating that this goal can be achieved using genetic approaches. It is one of the first reports to show that a specific polymorphism can predict the maximum tolerated dose of two anti-epileptic drugs. However, further studies are necessary to validate these observations.

  17. Healthcare provider education to support integration of pharmacogenomics in practice: the eMERGE Network experience.

    Science.gov (United States)

    Rohrer Vitek, Carolyn R; Abul-Husn, Noura S; Connolly, John J; Hartzler, Andrea L; Kitchner, Terrie; Peterson, Josh F; Rasmussen, Luke V; Smith, Maureen E; Stallings, Sarah; Williams, Marc S; Wolf, Wendy A; Prows, Cynthia A

    2017-07-01

    Ten organizations within the Electronic Medical Records and Genomics Network developed programs to implement pharmacogenomic sequencing and clinical decision support into clinical settings. Recognizing the importance of informed prescribers, a variety of strategies were used to incorporate provider education to support implementation. Education experiences with pharmacogenomics are described within the context of each organization's prior involvement, including the scope and scale of implementation specific to their Electronic Medical Records and Genomics projects. We describe common and distinct education strategies, provide exemplars and share challenges. Lessons learned inform future perspectives. Future pharmacogenomics clinical implementation initiatives need to include funding toward implementing provider education and evaluating outcomes.

  18. Analysis of pharmacogenetic traits in two distinct South African populations

    Directory of Open Access Journals (Sweden)

    Ikediobi Ogechi

    2011-05-01

    Full Text Available Abstract Our knowledge of pharmacogenetic variability in diverse populations is scarce, especially in sub-Saharan Africa. To bridge this gap in knowledge, we characterised population frequencies of clinically relevant pharmacogenetic traits in two distinct South African population groups. We genotyped 211 tagging single nucleotide polymorphisms (tagSNPs in 12 genes that influence antiretroviral drug disposition, in 176 South African individuals belonging to two distinct population groups residing in the Western Cape: the Xhosa (n = 109 and Cape Mixed Ancestry (CMA (n = 67 groups. The minor allele frequencies (MAFs of eight tagSNPs in six genes (those encoding the ATP binding cassette sub-family B, member 1 [ABCB1], four members of the cytochrome P450 family [CYP2A7P1, CYP2C18, CYP3A4, CYP3A5] and UDP-glucuronosyltransferase 1 [UGT1A1] were significantly different between the Xhosa and CMA populations (Bonferroni p CYP2C18, CYP3A4, the gene encoding solute carrier family 22 member 6 [SLC22A6] and UGT1A1 between the two South African populations. Characterising the Xhosa and CMA population frequencies of variant alleles important for drug transport and metabolism can help to establish the clinical relevance of pharmacogenetic testing in these populations.

  19. Analysis of pharmacogenetic traits in two distinct South African populations

    Science.gov (United States)

    2011-01-01

    Our knowledge of pharmacogenetic variability in diverse populations is scarce, especially in sub-Saharan Africa. To bridge this gap in knowledge, we characterised population frequencies of clinically relevant pharmacogenetic traits in two distinct South African population groups. We genotyped 211 tagging single nucleotide polymorphisms (tagSNPs) in 12 genes that influence antiretroviral drug disposition, in 176 South African individuals belonging to two distinct population groups residing in the Western Cape: the Xhosa (n = 109) and Cape Mixed Ancestry (CMA) (n = 67) groups. The minor allele frequencies (MAFs) of eight tagSNPs in six genes (those encoding the ATP binding cassette sub-family B, member 1 [ABCB1], four members of the cytochrome P450 family [CYP2A7P1, CYP2C18, CYP3A4, CYP3A5] and UDP-glucuronosyltransferase 1 [UGT1A1]) were significantly different between the Xhosa and CMA populations (Bonferroni p Xhosa and CMA population frequencies of variant alleles important for drug transport and metabolism can help to establish the clinical relevance of pharmacogenetic testing in these populations. PMID:21712189

  20. Advances in biomarkers of major depressive disorder.

    Science.gov (United States)

    Huang, Tiao-Lai; Lin, Chin-Chuen

    2015-01-01

    Major depressive disorder (MDD) is characterized by mood, vegetative, cognitive, and even psychotic symptoms and signs that can cause substantial impairments in quality of life and functioning. Biomarkers are measurable indicators that could help diagnosing MDD or predicting treatment response. In this chapter, lipid profiles, immune/inflammation, and neurotrophic factor pathways that have long been implicated in the pathogenesis of MDD are discussed. Then, pharmacogenetics and epigenetics of serotonin transport and its metabolism pathway, brain-derived neurotrophic factor, and abnormality of hypothalamo-pituitary-adrenocortical axis also revealed new biomarkers. Lastly, new techniques, such as proteomics and metabolomics, which allow researchers to approach the studying of MDD with new directions and make new discoveries are addressed. In the future, more data are needed regarding pathophysiology of MDD, including protein levels, single nucleotide polymorphism, epigenetic regulation, and clinical data in order to better identify reliable and consistent biomarkers for diagnosis, treatment choice, and outcome prediction. © 2015 Elsevier Inc. All rights reserved.

  1. Strategies for implementation of an effective pharmacogenomics program in pharmacy education.

    Science.gov (United States)

    Rao, U Subrahmanyeswara; Mayhew, Susan L; Rao, Prema S

    2015-07-01

    Sequencing of the human genome and the evidence correlating specific genetic variations to diseases have opened up the potential of genomics to more effective and less harmful interventions of human diseases. A wealth of pharmacogenomics knowledge is in place for the practice of precision medicine. However, this knowledge is not fully realized in clinical practice. One reason for this impasse is the lack of in-depth understanding of the potential of pharmacogenomics among the healthcare professionals. Pharmacists are the point-of-care providers and are expected to advise clinicians on matters relating to the implementation of pharmacogenomics in patient care. However, current pharmacogenomics instruction in pharmacy schools fails to produce pharmacists with the required knowledge or practical training in this discipline. In this perspective, we provide several strategies to overcome limitations faced by pharmacy schools. Once implemented, pharmacy schools will produce precision medicine-ready pharmacists.

  2. Strengths and weaknesses of pharmacogenetic studies of antipsychotic drugs: the potential value of the PEPs study.

    Science.gov (United States)

    Mas, Sergi; Llerena, Adrián; Saíz, Jerónimo; Bernardo, Miquel; Lafuente, Amalia

    2012-11-01

    The successful application of pharmacogenetics in routine clinical practice is still a long way from becoming a reality. In order to favor the transfer of pharmacogenetic results to clinical practice, especially in psychiatry, these studies must be optimized. This article reviews the strengths and weaknesses that characterize pharmacogenetic studies in psychiatry and condition their implementation in clinical practice. We also include recommendations for improving the design of pharmacogenetic studies, which may convert their limitations into strengths and facilitate the implementation of their results into clinical practice. Finally, we discuss the potential value of naturalistic, prospective, multicenter and coordinated projects such as the 'Phenotype-genotype and environmental interaction. Application of a predictive model in first psychotic episodes' (known as the PEPs study, from the Spanish abbreviation) in pharmacogenetic studies.

  3. What is needed to incorporate clinical pharmacogenetic tests into the practice of psychopharmacotherapy?

    Science.gov (United States)

    de Leon, Jose; Spina, Edoardo

    2016-01-01

    This editorial considers two questions in psychopharmacotherapy: 1) What is needed to market pharmacogenetic tests in the US, since the US appears to lead other countries? and 2) What is needed for US-marketed pharmacogenetic tests to be incorporated by prescribers into long-term practice? US marketing of pharmacogenetic tests requires 1) understanding the pharmacological complexity of drug response, 2) modifying the oversight of non-FDA regulatory agencies, 3) clarifying the FDA's role and 4) promoting innovative marketing. The incorporation of pharmacogenetic tests into long-term practice requires 1) not jeopardizing pharmacogenetic testing by short-sighted marketing of non-validated tests, 2) educating prescribers about benefits, 3) educating patients about limitations and 4) considering the differences between isolated testing and generalized testing incorporating big data.

  4. Benefits of and Barriers to Pharmacogenomics-Guided Treatment for Major Depressive Disorder.

    Science.gov (United States)

    Ahmed, Ahmed T; Weinshilboum, Richard; Frye, Mark A

    2018-02-01

    Antidepressants have reduced the symptom burden for many Major Depressive Disorder (MDD) patients, but drug-related side effects and treatment resistance continue to present major challenges. Pharmacogenomics represents one approach to enhance antidepressant efficacy and avoid adverse reactions, but concerns remain with regard to the overall "value equation," and several barriers must be overcome to achieve the full potential of MDD pharmacogenomics. © 2018 American Society for Clinical Pharmacology and Therapeutics.

  5. Cardiovascular pharmacogenetics: a promise for genomically-guided therapy and personalized medicine.

    Science.gov (United States)

    Zaiou, M; El Amri, H

    2017-03-01

    Cardiovascular disease (CVD) is the leading cause of death worldwide. The basic causes of CVD are not fully understood yet. Substantial evidence suggests that genetic predisposition plays a vital role in the physiopathology of this complex disease. Hence, identification of genetic contributors to CVD will likely add diagnostic accuracy and better prediction of an individual's risk. With high-throughput genetics and genomics technology and newer genome-wide study approaches, a number of genetic variations across the human genome were uncovered. Evidence suggests that genetic defects could influence CVD development and inter-individual responses to widely used cardiovascular drugs like clopidogrel, aspirin, warfarin, and statins, and therefore, they may be integrated into clinical practice. If clinically validated, better understanding of these genetic variations may provide new opportunities for personalized diagnostic, pharmacogenetic-based drug selection and best treatment in personalized medicine. However, numerous gaps remain unsolved due to the lack of underlying pathological mechanisms for how genetic predisposition could contribute to CVD. This review provides an overview of the extraordinary scientific progress in our understanding of genetic and genomic basis of CVD as well as the development of relevant genetic biomarkers for this disease. Some of the actual limitations to the promise of these markers and their translation for the benefit of patients will be discussed. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Pharmacogenomics Bias - Systematic distortion of study results by genetic heterogeneity

    Directory of Open Access Journals (Sweden)

    Zietemann, Vera

    2008-04-01

    Full Text Available Background: Decision analyses of drug treatments in chronic diseases require modeling the progression of disease and treatment response beyond the time horizon of clinical or epidemiological studies. In many such models, progression and drug effect have been applied uniformly to all patients; heterogeneity in progression, including pharmacogenomic effects, has been ignored. Objective: We sought to systematically evaluate the existence, direction and relative magnitude of a pharmacogenomics bias (PGX-Bias resulting from failure to adjust for genetic heterogeneity in both treatment response (HT and heterogeneity in progression of disease (HP in decision-analytic studies based on clinical study data. Methods: We performed a systematic literature search in electronic databases for studies regarding the effect of genetic heterogeneity on the validity of study results. Included studies have been summarized in evidence tables. In the case of lacking evidence from published studies we sought to perform our own simulation considering both HT and HP. We constructed two simple Markov models with three basic health states (early-stage disease, late-stage disease, dead, one adjusting and the other not adjusting for genetic heterogeneity. Adjustment was done by creating different disease states for presence (G+ and absence (G- of a dichotomous genetic factor. We compared the life expectancy gains attributable to treatment resulting from both models and defined pharmacogenomics bias as percent deviation of treatment-related life expectancy gains in the unadjusted model from those in the adjusted model. We calculated the bias as a function of underlying model parameters to create generic results. We then applied our model to lipid-lowering therapy with pravastatin in patients with coronary atherosclerosis, incorporating the influence of two TaqIB polymorphism variants (B1 and B2 on progression and drug efficacy as reported in the DNA substudy of the REGRESS

  7. Pharmacogenomics Implementation at the National Institutes of Health Clinical Center.

    Science.gov (United States)

    Sissung, Tristan M; McKeeby, Jon W; Patel, Jharana; Lertora, Juan J; Kumar, Parag; Flegel, Willy A; Adams, Sharon D; Eckes, Ellen J; Mickey, Frank; Plona, Teri M; Mellot, Stephanie D; Baugher, Ryan N; Wu, Xiaolin; Soppet, Daniel R; Barcus, Mary E; Datta, Vivekananda; Pike, Kristen M; DiPatrizio, Gary; Figg, William D; Goldspiel, Barry R

    2017-10-01

    The National Institutes of Health Clinical Center (NIH CC) is the largest hospital in the United States devoted entirely to clinical research, with a highly diverse spectrum of patients. Patient safety and clinical quality are major goals of the hospital, and therapy is often complicated by multiple cotherapies and comorbidities. To this end, we implemented a pharmacogenomics program in 2 phases. In the first phase, we implemented genotyping for HLA-A and HLA-B gene variations with clinical decision support (CDS) for abacavir, carbamazepine, and allopurinol. In the second phase, we implemented genotyping for drug-metabolizing enzymes and transporters: SLCO1B1 for CDS of simvastatin and TPMT for CDS of mercaptopurine, azathioprine, and thioguanine. The purpose of this review is to describe the implementation process, which involves clinical, laboratory, informatics, and policy decisions pertinent to the NIH CC. © 2017, The American College of Clinical Pharmacology.

  8. Personalized medicine, genomics, and pharmacogenomics: a primer for nurses.

    Science.gov (United States)

    Blix, Andrew

    2014-08-01

    Personalized medicine is the study of patients' unique environmental influences as well as the totality of their genetic code-their genome-to tailor personalized risk assessments, diagnoses, prognoses, and treatments. The study of how patients' genomes affect responses to medications, or pharmacogenomics, is a related field. Personalized medicine and genomics are particularly relevant in oncology because of the genetic basis of cancer. Nurses need to understand related issues such as the role of genetic and genomic counseling, the ethical and legal questions surrounding genomics, and the growing direct-to-consumer genomics industry. As genomics research is incorporated into health care, nurses need to understand the technology to provide advocacy and education for patients and their families.

  9. Pharmacogenetics of Ketamine-Induced Emergence Phenomena: A Pilot Study.

    Science.gov (United States)

    Aroke, Edwin N; Crawford, Sybil L; Dungan, Jennifer R

    Up to 55% of patients who are administered ketamine experience an emergence phenomena (EP) that closely mimics schizophrenia and increases their risk of injury; however, to date, no studies have investigated genetic association of ketamine-induced EP in healthy patients. The aim of the study was to investigate the feasibility and sample sizes required to explore the relationship between CYP2B6*6 and GRIN2B single-nucleotide polymorphisms and ketamine-induced EP. This cross-sectional, pharmacogenetic candidate, gene pilot study recruited 75 patients having minor elective outpatient surgeries. EP was measured with the Clinician Administered Dissociative State Scale. Genetic association of CYP2B6*6 and GRIN2B (rs1019385 and rs1806191) single-nucleotide polymorphisms and ketamine-induced EP occurrence and severity were tested using logistic and linear regression. Forty-seven patients (63%) received ketamine and were genotyped, and 40% of them experienced EP. Occurrence and severity of EP were not associated with CYP2B6*6 or GRIN2B (p > .10). Exploratory analysis of nongenotype models containing age, ketamine dose, duration of anesthesia, and time from ketamine administration to assessment for EP significantly predicted EP occurrence (p = .001) and severity (p = .007). This pilot study demonstrates feasibility for implementing a pharmacogenetic study in a clinical setting, and we estimate that between 380 and 570 cases will be needed to adequately power future genetic association studies. Younger age, higher dose, and longer duration of anesthesia significantly predicted EP occurrence and severity among our pilot sample. Although the small sample size limited our ability to demonstrate significant genotype differences, we generated effect sizes, sample size estimates, and nongenetic covariates information in order to support future pharmacogenetic study design for evaluating this adverse event.

  10. Attention-deficit hyperactivity disorder in adults: A systematic review and meta-analysis of genetic, pharmacogenetic and biochemical studies

    Science.gov (United States)

    Bonvicini, C; Faraone, S V; Scassellati, C

    2016-01-01

    The adult form of attention-deficit/hyperactivity disorder has a prevalence of up to 5% and is the most severe long-term outcome of this common disorder. Family studies in clinical samples as well as twin studies suggest a familial liability and consequently different genes were investigated in association studies. Pharmacotherapy with methylphenidate (MPH) seems to be the first-line treatment of choice in adults with attention-deficit hyperactive disorder (ADHD) and some studies were conducted on the genes influencing the response to this drug. Finally some peripheral biomarkers were identified in ADHD adult patients. We believe this work is the first systematic review and meta-analysis of candidate gene association studies, pharmacogenetic and biochemical (metabolomics) studies performed in adults with ADHD to identify potential genetic, predictive and peripheral markers linked specifically to ADHD in adults. After screening 5129 records, we selected 87 studies of which 61 were available for candidate gene association studies, 5 for pharmacogenetics and 21 for biochemical studies. Of these, 15 genetic, 2 pharmacogenetic and 6 biochemical studies were included in the meta-analyses. We obtained an association between adult ADHD and the gene BAIAP2 (brain-specific angiogenesis inhibitor 1-associated protein 2), even after Bonferroni correction, with any heterogeneity in effect size and no publication bias. If we did not apply the Bonferroni correction, a trend was found for the carriers allele 9R of dopamine transporter SLC6A3 40 bp variable tandem repeat polymorphism (VNTR) and for 6/6 homozygotes of SLC6A3 30 bp VNTR. Negative results were obtained for the 9-6 haplotype, the dopamine receptor DRD4 48 bp VNTR, and the enzyme COMT SNP rs4680. Concerning pharmacogenetic studies, no association was found for the SLC6A3 40 bp and response to MPH with only two studies selected. For the metabolomics studies, no differences between ADHD adults and controls were

  11. Clinical Pharmacogenetics of Cytochrome P450-Associated Drugs in Children

    Directory of Open Access Journals (Sweden)

    Ida Aka

    2017-11-01

    Full Text Available Cytochrome P450 (CYP enzymes are commonly involved in drug metabolism, and genetic variation in the genes encoding CYPs are associated with variable drug response. While genotype-guided therapy has been clinically implemented in adults, these associations are less well established for pediatric patients. In order to understand the frequency of pediatric exposures to drugs with known CYP interactions, we compiled all actionable drug–CYP interactions with a high level of evidence using Clinical Pharmacogenomic Implementation Consortium (CPIC data and surveyed 10 years of electronic health records (EHR data for the number of children exposed to CYP-associated drugs. Subsequently, we performed a focused literature review for drugs commonly used in pediatrics, defined as more than 5000 pediatric patients exposed in the decade-long EHR cohort. There were 48 drug–CYP interactions with a high level of evidence in the CPIC database. Of those, only 10 drugs were commonly used in children (ondansetron, oxycodone, codeine, omeprazole, lansoprazole, sertraline, amitriptyline, citalopram, escitalopram, and risperidone. For these drugs, reports of the drug–CYP interaction in cohorts including children were sparse. There are adequate data for implementation of genotype-guided therapy for children for three of the 10 commonly used drugs (codeine, omeprazole and lansoprazole. For the majority of commonly used drugs with known CYP interactions, more data are required to support pharmacogenomic implementation in children.

  12. Pharmacogenetic approaches to the prediction of drug response

    International Nuclear Information System (INIS)

    Vesell, E.S.

    1986-01-01

    The following review of pharmacogenetic progress and methodology is offered to stimulate and suggest analogous studies on drugs of abuse. It is readily acknowledged that formidable methodological problems are posed by adapting to drugs of abuse these pharmacogenetic approaches based on the administration of single safe doses of various prescription drugs to normal subjects under carefully controlled environmental conditions. Results of similarly designed studies on drugs of abuse in addicts might be uninterpretable because of confounding by numerous environmental perturbations, including the smoking of cigarettes and/or marijuana, nutritional variations, and intake of other drugs such as ethanol. Ethical considerations render objectionable the administration to unaddicted subjects of drugs at dosage levels usually ingested by drug abusers. Other approaches would have to be taken in such normal subjects. Possibilities include administration of tracer doses of /sup 14/C- or /sup 13/C- labeled drugs or growth of normal cells in culture to investigate their pharmacokinetic and/or pharmacodynamic responses to various drugs of abuse

  13. Use of combinatorial pharmacogenomic testing in two cases from community psychiatry

    Directory of Open Access Journals (Sweden)

    Fields ES

    2016-08-01

    Full Text Available Eve S Fields,1 Raymond A Lorenz,2 Joel G Winner2 1Northwest Center for Community Mental Health, Reston, VA, USA; 2Assurex Health, Mason, OH, USA Abstract: This report describes two cases in which pharmacogenomic testing was utilized to guide medication selection for difficult to treat patients. The first patient is a 29-year old male with bipolar disorder who had severe akathisia due to his long acting injectable antipsychotic. The second patient is a 59-year old female with major depressive disorder who was not ­responding to her medication. In both cases, a proprietary combinatorial pharmacogenomic test was used to inform medication changes and improve patient outcomes. The first patient was switched to a long acting injectable that was not affected by his genetic profile and his adverse effects abated. The second patient had her medications discontinued due to the results of the genetic testing and more intense psychotherapy initiated. While pharmacogenomic testing may be ­helpful in cases such as these presented here, it should never serve as a proxy for a comprehensive biopsychosocial approach. The pharmacogenomic information may be selectively added to this comprehensive approach to support medication treatment. Keywords: pharmacogenomics, adverse effects, risperidone, nortriptyline, paliperidone

  14. From evidence based medicine to mechanism based medicine : Reviewing the role of pharmacogenetics

    NARCIS (Netherlands)

    Wilffert, Bob; Swen, Jesse; Mulder, Hans; Touw, Daan; Maitland-Van Der Zee, Anke-Hilse; Deneer, Vera

    Aim of the review The translation of evidence based medicine to a specific patient presents a considerable challenge. We present by means of the examples nortriptyline, tramadol, clopidogrel, coumarins, abacavir and antipsychotics the discrepancy between available pharmacogenetic information and its

  15. From evidence based medicine to mechanism based medicine. Reviewing the role of pharmacogenetics

    NARCIS (Netherlands)

    Wilffert, Bob; Swen, Jesse; Mulder, Hans; Touw, Daan; Maitland-Van der Zee, Anke-Hilse; Deneer, Vera

    Aim of the review The translation of evidence based medicine to a specific patient presents a considerable challenge. We present by means of the examples nortriptyline, tramadol, clopidogrel, coumarins, abacavir and antipsychotics the discrepancy between available pharmacogenetic information and its

  16. Pharmacogenetics of drug-induced birth defects : What is known so far?

    NARCIS (Netherlands)

    Wilffert, Bob; Altena, Judith; Tijink, Laurien; van Gelder, Marleen M. H. J.; de Jong-van den Berg, Lolkje T. W.

    A literature review was performed to collect information on the role of pharmacogenetics in six proposed teratogenic mechanisms associated with drug use during pregnancy: folate antagonism, oxidative stress, angiotensin-converting enzyme inhibition and angiotensin II receptor antagonism,

  17. Mechanisms and pharmacogenetic signals underlying thiazide diuretics blood pressure response.

    Science.gov (United States)

    Shahin, Mohamed H; Johnson, Julie A

    2016-04-01

    Thiazide (TZD) diuretics are among the most commonly prescribed antihypertensives globally; however their chronic blood pressure (BP) lowering mechanism remains unclear. Herein we discuss the current evidence regarding specific mechanisms regulating the antihypertensive effects of TZDs, suggesting that TZDs act via multiple complex and interacting mechanisms, including natriuresis with short term use and direct vasodilatory effects chronically. Additionally, we review pharmacogenomics signals that have been associated with TZDs BP-response in several cohorts (i.e. NEDD4L, PRKCA, EDNRA-GNAS, and YEATS4) and discuss how these genes might be related to TZD BP-response mechanism. Understanding the association between these genes and TZD BP mechanism might facilitate the development of new drugs and therapeutic approaches based on a deeper understanding of the determinants of BP-response. Copyright © 2016. Published by Elsevier Ltd.

  18. Partnership with the Confederated Salish and Kootenai Tribes: Establishing an Advisory Committee for Pharmacogenetic Research.

    Science.gov (United States)

    Morales, Chelsea T; Muzquiz, LeeAnna I; Howlett, Kevin; Azure, Bernie; Bodnar, Brenda; Finley, Vernon; Incashola, Tony; Mathias, Cheryl; Laukes, Cindi; Beatty, Patrick; Burke, Wylie; Pershouse, Mark A; Putnam, Elizabeth A; Trinidad, Susan Brown; James, Rosalina; Woodahl, Erica L

    2016-01-01

    Inclusion of American Indian and Alaska Native (AI/AN) populations in pharmacogenetic research is key if the benefits of pharmacogenetic testing are to reach these communities. Community-based participatory research (CBPR) offers a model to engage these communities in pharmacogenetics. An academic-community partnership between the University of Montana (UM) and the Confederated Salish and Kootenai Tribes (CSKT) was established to engage the community as partners and advisors in pharmacogenetic research. A community advisory committee, the Community Pharmacogenetics Advisory Council (CPAC), was established to ensure community involvement in the research process. To promote bidirectional learning, researchers gave workshops and presentations about pharmacogenetic research to increase research capacity and CPAC members trained researchers in cultural competencies. As part of our commitment to a sustainable relationship, we conducted a self-assessment of the partnership, which included surveys and interviews with CPAC members and researchers. Academic and community participants agree that the partnership has promoted a bidirectional exchange of knowledge. Interviews showed positive feedback from the perspectives of both the CPAC and researchers. CPAC members discussed their trust in and support of the partnership, as well as having learned more about research processes and pharmacogenetics. Researchers discussed their appreciation of CPAC involvement in the project and guidance the group provided in understanding the CSKT community and culture. We have created an academic-community partnership to ensure CSKT community input and to share decision making about pharmacogenetic research. Our CBPR approach may be a model for engaging AI/AN people, and other underserved populations, in genetic research.

  19. Pharmacogenomics of alcohol addiction: Personalizing pharmacologic treatment of alcohol dependence

    Directory of Open Access Journals (Sweden)

    Ragia Georgia

    2014-01-01

    Full Text Available Alcohol dependence is a serious psychiatric disorder with harmful physical, mental and social consequences, and a high probability of a chronic relapsing course. The field of pharmacologic treatment of alcohol dependence and craving is expanding rapidly; the drugs that have been found to reduce relapse rates or drinking in alcohol-dependent patients and are approved for treatment of alcohol dependence are naltrexone, acamprosate and disulfiram, whereas also topiramate appears as a promising therapy. For many patients, however, these treatments are not effective. Evidence from a number of different studies suggests that genetic variation is a significant contributor to interindividual variation of clinical presentation of alcohol problems and response to a given treatment. The aim of the present review is to summarize and discuss the findings on the association between gene polymorphisms and the response to alcohol dependence treatment medications. It is anticipated that future implementation of pharmacogenomics in clinical practice will help personalize alcohol dependence drug treatment, and development personalized hospital pharmacology.

  20. Evaluation of the use of clinical decision support and online resources for pharmacogenomics education.

    Science.gov (United States)

    Rohrer Vitek, Carolyn R; Nicholson, Wayne T; Schultz, Cloann; Caraballo, Pedro J

    2015-01-01

    To assess impact and value of using clinical decision support (CDS) to drive providers toward online pharmacogenomics education. CDS was used to target prescribers of codeine/tramadol, send an educational email, display alert/inbox and provide links to an online resource. Providers were surveyed to assess impact. Of the methods used to target providers, educational email was more effective (7.2%). Survey response rate was 29.2% (n = 528/1817). Of respondents, 57.4% reported opening the email and 27.1% accessed the online resource. Of those accessing the resource, 89% found it useful and learned something new about pharmacogenomics. The impact of using CDS to target pharmacogenomics education was limited. However, providers accessing the online resource found it useful and educational.

  1. Institutional profile: translational pharmacogenomics at the Icahn School of Medicine at Mount Sinai.

    Science.gov (United States)

    Scott, Stuart A; Owusu Obeng, Aniwaa; Botton, Mariana R; Yang, Yao; Scott, Erick R; Ellis, Stephen B; Wallsten, Richard; Kaszemacher, Tom; Zhou, Xiang; Chen, Rong; Nicoletti, Paola; Naik, Hetanshi; Kenny, Eimear E; Vega, Aida; Waite, Eva; Diaz, George A; Dudley, Joel; Halperin, Jonathan L; Edelmann, Lisa; Kasarskis, Andrew; Hulot, Jean-Sébastien; Peter, Inga; Bottinger, Erwin P; Hirschhorn, Kurt; Sklar, Pamela; Cho, Judy H; Desnick, Robert J; Schadt, Eric E

    2017-10-01

    For almost 50 years, the Icahn School of Medicine at Mount Sinai has continually invested in genetics and genomics, facilitating a healthy ecosystem that provides widespread support for the ongoing programs in translational pharmacogenomics. These programs can be broadly cataloged into discovery, education, clinical implementation and testing, which are collaboratively accomplished by multiple departments, institutes, laboratories, companies and colleagues. Focus areas have included drug response association studies and allele discovery, multiethnic pharmacogenomics, personalized genotyping and survey-based education programs, pre-emptive clinical testing implementation and novel assay development. This overview summarizes the current state of translational pharmacogenomics at Mount Sinai, including a future outlook on the forthcoming expansions in overall support, research and clinical programs, genomic technology infrastructure and the participating faculty.

  2. Public attitudes toward ancillary information revealed by pharmacogenetic testing under limited information conditions.

    Science.gov (United States)

    Haga, Susanne B; O'Daniel, Julianne M; Tindall, Genevieve M; Lipkus, Isaac R; Agans, Robert

    2011-08-01

    Pharmacogenetic testing can inform drug dosing and selection by aiding in estimating a patient's genetic risk of adverse response and/or failure to respond. Some pharmacogenetic tests may generate ancillary clinical information unrelated to the drug treatment question for which testing is done-an informational "side effect." We aimed to assess public interest and concerns about pharmacogenetic tests and ancillary information. We conducted a random-digit-dial phone survey of a sample of the US public. We achieved an overall response rate of 42% (n = 1139). When the potential for ancillary information was presented, 85% (±2.82%) of respondents expressed interest in pharmacogenetic testing, compared with 82% (±3.02%) before discussion of ancillary information. Most respondents (89% ± 2.27%) indicated that physicians should inform patients that a pharmacogenetic test may reveal ancillary risk information before testing is ordered. Respondents' interest in actually learning of the ancillary risk finding significantly differed based on disease severity, availability of an intervention, and test validity, even after adjusting for age, gender, education, and race. Under the limited information conditions presented in the survey, the potential of ancillary information does not negatively impact public interest in pharmacogenetic testing. Interest in learning ancillary information is well aligned with the public's desire to be informed about potential benefits and risks before testing, promoting patient autonomy.

  3. Clinical pharmacogenetics of immunosuppressive drugs in organ transplantation.

    Science.gov (United States)

    Szekeres, Thomas; Haushofer, Alexander

    2005-03-01

    Organ transplantation has become an important additional option for patients with organ failure. Immunosuppressive drugs showing a very narrow therapeutic window have to be administered. Different transporters and metabolic pathways are responsible for absorption and metabolism of these drugs; for instance, the P-glycoprotein (P-gp) pump regulates the absorption of a drug, and its metabolism is catalyzed by cytochrome P450s (CYPs). As the phenotypes of P-gp or the CYPs are predetermined by their genotypes, genetic testing prior to drug therapy may help to predict the drug doses required. This review describes polymorphisms of the genes coding for P-gp and CYPs, and focuses on the compounds cyclosporin and tacrolimus. It is hoped that this information might help to judge the value of pharmacogenetic testing prior to immunosuppressive therapy in solid organ transplantation.

  4. Pharmacokinetic, Pharmacogenetic, and Other Factors Influencing CNS Penetration of Antiretrovirals

    Directory of Open Access Journals (Sweden)

    Jacinta Nwamaka Nwogu

    2016-01-01

    Full Text Available Neurological complications associated with the human immunodeficiency virus (HIV are a matter of great concern. While antiretroviral (ARV drugs are the cornerstone of HIV treatment and typically produce neurological benefit, some ARV drugs have limited CNS penetration while others have been associated with neurotoxicity. CNS penetration is a function of several factors including sieving role of blood-brain and blood-CSF barriers and activity of innate drug transporters. Other factors are related to pharmacokinetics and pharmacogenetics of the specific ARV agent or mediated by drug interactions, local inflammation, and blood flow. In this review, we provide an overview of the various factors influencing CNS penetration of ARV drugs with an emphasis on those commonly used in sub-Saharan Africa. We also summarize some key associations between ARV drug penetration, CNS efficacy, and neurotoxicity.

  5. Routine pharmacogenetic testing in clinical practice: dream or reality?

    Science.gov (United States)

    Grossman, Iris

    2007-10-01

    Pharmacogenetics (PGx) has become progressively popular in recent years, thanks to growing anticipation among scientists, healthcare providers and the general public for the incorporation of genetic tests into the diagnostic arsenal at the physician's disposal. Indeed, much research has been dedicated to elucidation of genetic determinants underlying interindividual variability in pharmacokinetic parameters, as well as drug safety and efficacy. However, few PGx applications have thus far been realized in healthcare management. This review uses examples from PGx research of psychiatric drugs to illustrate why the current published findings are inadequate and insufficient for utilization as routine clinical predictors of treatment safety, efficacy or dosing. I therefore suggest the necessary steps to demonstrate the validity, utility and cost-effectiveness of PGx. These recommendations include a whole range of aspects, starting from standardization of criteria and assessment of the technical quality of genotyping assays, up to design of prospective PGx studies, providing the basis for reimbursement programs to be recognized in routine clinical practice.

  6. Comparison of Nine Statistical Model Based Warfarin Pharmacogenetic Dosing Algorithms Using the Racially Diverse International Warfarin Pharmacogenetic Consortium Cohort Database.

    Directory of Open Access Journals (Sweden)

    Rong Liu

    Full Text Available Multiple linear regression (MLR and machine learning techniques in pharmacogenetic algorithm-based warfarin dosing have been reported. However, performances of these algorithms in racially diverse group have never been objectively evaluated and compared. In this literature-based study, we compared the performances of eight machine learning techniques with those of MLR in a large, racially-diverse cohort.MLR, artificial neural network (ANN, regression tree (RT, multivariate adaptive regression splines (MARS, boosted regression tree (BRT, support vector regression (SVR, random forest regression (RFR, lasso regression (LAR and Bayesian additive regression trees (BART were applied in warfarin dose algorithms in a cohort from the International Warfarin Pharmacogenetics Consortium database. Covariates obtained by stepwise regression from 80% of randomly selected patients were used to develop algorithms. To compare the performances of these algorithms, the mean percentage of patients whose predicted dose fell within 20% of the actual dose (mean percentage within 20% and the mean absolute error (MAE were calculated in the remaining 20% of patients. The performances of these techniques in different races, as well as the dose ranges of therapeutic warfarin were compared. Robust results were obtained after 100 rounds of resampling.BART, MARS and SVR were statistically indistinguishable and significantly out performed all the other approaches in the whole cohort (MAE: 8.84-8.96 mg/week, mean percentage within 20%: 45.88%-46.35%. In the White population, MARS and BART showed higher mean percentage within 20% and lower mean MAE than those of MLR (all p values < 0.05. In the Asian population, SVR, BART, MARS and LAR performed the same as MLR. MLR and LAR optimally performed among the Black population. When patients were grouped in terms of warfarin dose range, all machine learning techniques except ANN and LAR showed significantly higher mean percentage within

  7. Farmacogenética: medicina personalizada Pharmacogenetics: personalized medicine

    Directory of Open Access Journals (Sweden)

    Reinaldo Gutiérrez Gutiérrez

    2004-12-01

    Full Text Available La farmacogenética es la ciencia que permite identificar las bases genéticas de las diferencias interindividuales en la respuesta a drogas. Este artículo de revisión utiliza un número de ejemplos publicados de diferencias heredadas en enzimas metabolizadoras de drogas, para ilustrar la importancia de la herencia en la determinación de la eficacia y la toxicidad de medicamentos en humanos. Aunque tienen un desarrollo incipiente, ya existen pruebas para el diagnóstico molecular mediante las cuales médicos y farmacéuticos pueden seleccionar los fármacos y las dosis para cada paciente de forma individual. El desarrollo de la farmacogenética, provee de, al menos, una vía para hacer prescripciones médicas sin el empirismo corriente e ir hacia una terapia más personalizada.Pharmacogenetics is a science that allows to identify the genetic bases of the interindividual differences in the response to drugs. This review article uses a number of published examples of differences inherited in drug-metabolizing enzimes to illustrate the importance of inheritance in the determination of the efficiency and toxicity of drugs in human beings. Although their development is incipient, there are already tests for the mollecular diagnosis by which the physicians and pharmacists may select the drugs and the dosing for each patient in an individual way. The development of pharmacogenetics provides at least one way to prescribe medicines without the usual empirism and to advance towards a more personalized therapy.

  8. Pharmacogenetics in cardiovascular diseases: State of the art and implementation-recommendations of the French National Network of Pharmacogenetics (RNPGx).

    Science.gov (United States)

    Lamoureux, Fabien; Duflot, Thomas

    2017-04-01

    The use of genomic markers to predict drug response and effectiveness has the potential to improve healthcare by increasing drug efficacy and minimizing adverse effects. Polymorphisms associated with inter-individual variability in drug metabolism, transport, or pharmacodynamics of major cardiovascular drugs have been identified. These include single nucleotide polymorphisms (SNP) affecting clinical outcomes in patients receiving antiplatelet agents, oral anticoagulants and statins. Based on clinical evidence supporting genetic testing in the management of cardiovascular diseases using these drug classes, this short review presents clinical guidance regarding current pharmacogenetics implementation in routine medical practice. Copyright © 2017 Société française de pharmacologie et de thérapeutique. Published by Elsevier Masson SAS. All rights reserved.

  9. Pharmacogenomic knowledge representation, reasoning and genome-based clinical decision support based on OWL 2 DL ontologies.

    Science.gov (United States)

    Samwald, Matthias; Miñarro Giménez, Jose Antonio; Boyce, Richard D; Freimuth, Robert R; Adlassnig, Klaus-Peter; Dumontier, Michel

    2015-02-22

    Every year, hundreds of thousands of patients experience treatment failure or adverse drug reactions (ADRs), many of which could be prevented by pharmacogenomic testing. However, the primary knowledge needed for clinical pharmacogenomics is currently dispersed over disparate data structures and captured in unstructured or semi-structured formalizations. This is a source of potential ambiguity and complexity, making it difficult to create reliable information technology systems for enabling clinical pharmacogenomics. We developed Web Ontology Language (OWL) ontologies and automated reasoning methodologies to meet the following goals: 1) provide a simple and concise formalism for representing pharmacogenomic knowledge, 2) finde errors and insufficient definitions in pharmacogenomic knowledge bases, 3) automatically assign alleles and phenotypes to patients, 4) match patients to clinically appropriate pharmacogenomic guidelines and clinical decision support messages and 5) facilitate the detection of inconsistencies and overlaps between pharmacogenomic treatment guidelines from different sources. We evaluated different reasoning systems and test our approach with a large collection of publicly available genetic profiles. Our methodology proved to be a novel and useful choice for representing, analyzing and using pharmacogenomic data. The Genomic Clinical Decision Support (Genomic CDS) ontology represents 336 SNPs with 707 variants; 665 haplotypes related to 43 genes; 22 rules related to drug-response phenotypes; and 308 clinical decision support rules. OWL reasoning identified CDS rules with overlapping target populations but differing treatment recommendations. Only a modest number of clinical decision support rules were triggered for a collection of 943 public genetic profiles. We found significant performance differences across available OWL reasoners. The ontology-based framework we developed can be used to represent, organize and reason over the growing wealth of

  10. Parkinson’s Disease: From Pathogenesis to Pharmacogenomics

    Directory of Open Access Journals (Sweden)

    Ramón Cacabelos

    2017-03-01

    addition to enhancing dopaminergic neurotransmission. Since biochemical changes and therapeutic outcomes are highly dependent upon the genomic profiles of PD patients, personalized treatments should rely on pharmacogenetic procedures to optimize therapeutics.

  11. Challenges and opportunities in pharmacogenomics : studies in cardiovascular disease and asthma

    NARCIS (Netherlands)

    Leusink, M.|info:eu-repo/dai/nl/357581164

    2015-01-01

    A drug that is effective in one group of patients may have a reduced or no effect in other patients. Similarly, the risk for side effects differs between patients. The discipline of pharmacogenomics studies how genetic variation in the population can influence this drug response. In this thesis, we

  12. Pharmacogenomics and Efficacy of Risperidone Long-Term Treatment in Thai Autistic Children and Adolescents

    NARCIS (Netherlands)

    Nuntamool, Nopphadol; Ngamsamut, Nattawat; Vanwong, Natchaya; Puangpetch, Apichaya; Chamnanphon, Monpat; Hongkaew, Yaowaluck; Limsila, Penkhae; Suthisisang, Chuthamanee; Wilffert, Bob; Sukasem, Chonlaphat

    2017-01-01

    The purpose of this study was to evaluate the association of pharmacogenomic factors and clinical outcome in autistic children and adolescents who were treated with risperidone for long periods. Eighty-two autistic subjects diagnosed with DSM-IV and who were treated with risperidone for more than

  13. A lay prescription for tailor-made drugs--focus group reflections on pharmacogenomics

    DEFF Research Database (Denmark)

    Almarsdóttir, Anna Birna; Björnsdóttir, Ingunn; Traulsen, Janine Morgall

    2005-01-01

    the consequences of the Human Genome Project over the next 40 years, and asked to give advice to politicians and the pharmaceutical industry. A dominating theme in the focus groups was the expectation that drugs developed based on pharmacogenomics will be more expensive than conventional mass produced drugs...

  14. Pharmacogenomics in type II diabetes mellitus management: Steps toward personalized medicine

    Directory of Open Access Journals (Sweden)

    Peter Avery

    2009-09-01

    Full Text Available Peter Avery, Shaymaa S Mousa, Shaker A MousaThe Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY, USAAbstract: Advances in genotype technology in the last decade have put the pharmacogenomics revolution at the forefront of future medicine in clinical practice. Discovery of novel gene variations in drug transporters, drug targets, effector proteins and metabolizing enzymes in the form of single-nucleotide polymorphisms (SNPs continue to provide insight into the biological phenomena that govern drug efficacy and toxicity. To date, novel gene discoveries extracted from genome-wide association scans and candidate gene studies in at least four antidiabetic drug classes have helped illuminate possible causes of interindividual variability in response. Inadequate protocol guidelines for pharmacogenomics studies often leads to poorly designed studies, making it hard to formulate a definitive conclusion regarding the clinical relevance of the information at hand. These issues, along with the ethical, social, political, legislative, technological, and economic challenges associated with pharmacogenomics have only delayed its entry to mainstream clinical practice. On the other hand, these issues are being actively pursued and rapid progress is being made in each area which assures the possibility of gaining widespread acceptance in clinical practice.Keywords: pharmacogenomics, genetics, pharmacokinetics, pharmacodynamics, personalized medicine, type 2 diabetes, pharmacotherapy, antidiabetic drugs, efficacy, and safety

  15. Pharmacogenomic Impact of CYP2C19 Variation on Clopidogrel Therapy in Precision Cardiovascular Medicine

    Science.gov (United States)

    Pereira, Naveen

    2018-01-01

    Variability in response to antiplatelet therapy can be explained in part by pharmacogenomics, particularly of the CYP450 enzyme encoded by CYP2C19. Loss-of-function and gain-of-function variants help explain these interindividual differences. Individuals may carry multiple variants, with linkage disequilibrium noted among some alleles. In the current pharmacogenomics era, genomic variation in CYP2C19 has led to the definition of pharmacokinetic phenotypes for response to antiplatelet therapy, in particular, clopidogrel. Individuals may be classified as poor, intermediate, extensive, or ultrarapid metabolizers, based on whether they carry wild type or polymorphic CYP2C19 alleles. Variant alleles differentially impact platelet reactivity, concentration of plasma clopidogrel metabolites, and clinical outcomes. Interestingly, response to clopidogrel appears to be modulated by additional factors, such as sociodemographic characteristics, risk factors for ischemic heart disease, and drug-drug interactions. Furthermore, systems medicine studies suggest that a broader approach may be required to adequately assess, predict, preempt, and manage variation in antiplatelet response. Transcriptomics, epigenomics, exposomics, miRNAomics, proteomics, metabolomics, microbiomics, and mathematical, computational, and molecular modeling should be integrated with pharmacogenomics for enhanced prediction and individualized care. In this review of pharmacogenomic variation of CYP450, a systems medicine approach is described for tailoring antiplatelet therapy in clinical practice of precision cardiovascular medicine. PMID:29385765

  16. Early health technology assessments in pharmacogenomics: a case example in cardiovascular drugs

    NARCIS (Netherlands)

    Geenen, Joost W.; Baranova, Ekaterina V.; Asselbergs, Folkert W.; de Boer, Anthonius; Vreman, Rick A.; Palmer, Colin Na; Maitland-van der Zee, Anke H.; Hövels, Anke M.

    2017-01-01

    Aim: To assess the required characteristics (cost, sensitivity and specificity) of a pharmacogenomic test for being a cost-effective prevention of angiotensin-converting enzyme inhibitors induced angioedema. Furthermore, we assessed the influence of only testing high-risk populations. Materials &

  17. The inflammatory cytokines: molecular biomarkers for major depressive disorder?

    Science.gov (United States)

    Martin, Charlotte; Tansey, Katherine E; Schalkwyk, Leonard C; Powell, Timothy R

    2015-01-01

    Cytokines are pleotropic cell signaling proteins that, in addition to their role as inflammatory mediators, also affect neurotransmitter systems, brain functionality and mood. Here we explore the potential utility of cytokine biomarkers for major depressive disorder. Specifically, we explore how genetic, transcriptomic and proteomic information relating to the cytokines might act as biomarkers, aiding clinical diagnosis and treatment selection processes. We advise future studies to investigate whether cytokine biomarkers might differentiate major depressive disorder patients from other patient groups with overlapping clinical characteristics. Furthermore, we invite future pharmacogenetic studies to investigate whether early antidepressant-induced changes to cytokine mRNA or protein levels precede behavioral changes and act as longer-term predictors of clinical antidepressant response.

  18. Iterative Development and Evaluation of a Pharmacogenomic-Guided Clinical Decision Support System for Warfarin Dosing.

    Science.gov (United States)

    Melton, Brittany L; Zillich, Alan J; Saleem, Jason; Russ, Alissa L; Tisdale, James E; Overholser, Brian R

    2016-11-23

    Pharmacogenomic-guided dosing has the potential to improve patient outcomes but its implementation has been met with clinical challenges. Our objective was to develop and evaluate a clinical decision support system (CDSS) for pharmacogenomic-guided warfarin dosing designed for physicians and pharmacists. Twelve physicians and pharmacists completed 6 prescribing tasks using simulated patient scenarios in two iterations (development and validation phases) of a newly developed pharmacogenomic-driven CDSS prototype. For each scenario, usability was measured via efficiency, recorded as time to task completion, and participants' perceived satisfaction which were compared using Kruskal-Wallis and Mann Whitney U tests, respectively. Debrief interviews were conducted and qualitatively analyzed. Usability findings from the first (i.e. development) iteration were incorporated into the CDSS design for the second (i.e. validation) iteration. During the CDSS validation iteration, participants took more time to complete tasks with a median (IQR) of 183 (124-247) seconds versus 101 (73.5-197) seconds in the development iteration (p=0.01). This increase in time on task was due to the increase in time spent in the CDSS corresponding to several design changes. Efficiency differences that were observed between pharmacists and physicians in the development iteration were eliminated in the validation iteration. The increased use of the CDSS corresponded to a greater acceptance of CDSS recommended doses in the validation iteration (4% in the first iteration vs. 37.5% in the second iteration, piterations but the qualitative analysis revealed greater trust in the second prototype. A pharmacogenomic-guided CDSS has been developed using warfarin as the test drug. The final CDSS prototype was trusted by prescribers and significantly increased the time using the tool and acceptance of the recommended doses. This study is an important step toward incorporating pharmacogenomics into CDSS design

  19. Pharmacogenetics: implications of race and ethnicity on defining genetic profiles for personalized medicine.

    Science.gov (United States)

    Ortega, Victor E; Meyers, Deborah A

    2014-01-01

    Pharmacogenetics is being used to develop personalized therapies specific to subjects from different ethnic or racial groups. To date, pharmacogenetic studies have been primarily performed in trial cohorts consisting of non-Hispanic white subjects of European descent. A "bottleneck" or collapse of genetic diversity associated with the first human colonization of Europe during the Upper Paleolithic period, followed by the recent mixing of African, European, and Native American ancestries, has resulted in different ethnic groups with varying degrees of genetic diversity. Differences in genetic ancestry might introduce genetic variation, which has the potential to alter the therapeutic efficacy of commonly used asthma therapies, such as β2-adrenergic receptor agonists (β-agonists). Pharmacogenetic studies of admixed ethnic groups have been limited to small candidate gene association studies, of which the best example is the gene coding for the receptor target of β-agonist therapy, the β2-adrenergic receptor (ADRB2). Large consortium-based sequencing studies are using next-generation whole-genome sequencing to provide a diverse genome map of different admixed populations, which can be used for future pharmacogenetic studies. These studies will include candidate gene studies, genome-wide association studies, and whole-genome admixture-based approaches that account for ancestral genetic structure, complex haplotypes, gene-gene interactions, and rare variants to detect and replicate novel pharmacogenetic loci. Copyright © 2013 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  20. Genetics of Psoriasis and Pharmacogenetics of Biological Drugs

    Directory of Open Access Journals (Sweden)

    Rocío Prieto-Pérez

    2013-01-01

    Full Text Available Psoriasis is a chronic inflammatory disease of the skin. The causes of psoriasis are unknown, although family and twin studies have shown genetic factors to play a key role in its development. The many genes associated with psoriasis and the immune response include TNFα, IL23, and IL12. Advances in knowledge of the pathogenesis of psoriasis have enabled the development of new drugs that target cytokines (e.g., etanercept, adalimumab, and infliximab, which target TNFα, and ustekinumab, which targets the p40 subunit of IL23 and IL12. These drugs have improved the safety and efficacy of treatment in comparison with previous therapies. However, not all patients respond equally to treatment, possibly owing to interindividual genetic variability. In this review, we describe the genes associated with psoriasis and the immune response, the biological drugs used to treat chronic severe plaque psoriasis, new drugs in phase II and III trials, and current knowledge on the implications of pharmacogenomics in predicting response to these treatments.

  1. Analysis of pharmacogenomic variants associated with population differentiation.

    Science.gov (United States)

    Yeon, Bora; Ahn, Eunyong; Kim, Kyung-Im; Kim, In-Wha; Oh, Jung Mi; Park, Taesung

    2015-01-01

    In the present study, we systematically investigated population differentiation of drug-related (DR) genes in order to identify common genetic features underlying population-specific responses to drugs. To do so, we used the International HapMap project release 27 Data and Pharmacogenomics Knowledge Base (PharmGKB) database. First, we compared four measures for assessing population differentiation: the chi-square test, the analysis of variance (ANOVA) F-test, Fst, and Nearest Shrunken Centroid Method (NSCM). Fst showed high sensitivity with stable specificity among varying sample sizes; thus, we selected Fst for determining population differentiation. Second, we divided DR genes from PharmGKB into two groups based on the degree of population differentiation as assessed by Fst: genes with a high level of differentiation (HD gene group) and genes with a low level of differentiation (LD gene group). Last, we conducted a gene ontology (GO) analysis and pathway analysis. Using all genes in the human genome as the background, the GO analysis and pathway analysis of the HD genes identified terms related to cell communication. "Cell communication" and "cell-cell signaling" had the lowest Benjamini-Hochberg's q-values (0.0002 and 0.0006, respectively), and "drug binding" was highly enriched (16.51) despite its relatively high q-value (0.0142). Among the 17 genes related to cell communication identified in the HD gene group, five genes (STX4, PPARD, DCK, GRIK4, and DRD3) contained single nucleotide polymorphisms with Fst values greater than 0.5. Specifically, the Fst values for rs10871454, rs6922548, rs3775289, rs1954787, and rs167771 were 0.682, 0.620, 0.573, 0.531, and 0.510, respectively. In the analysis using DR genes as the background, the HD gene group contained six significant terms. Five were related to reproduction, and one was "Wnt signaling pathway," which has been implicated in cancer. Our analysis suggests that the HD gene group from PharmGKB is associated with

  2. Analysis of pharmacogenomic variants associated with population differentiation.

    Directory of Open Access Journals (Sweden)

    Bora Yeon

    Full Text Available In the present study, we systematically investigated population differentiation of drug-related (DR genes in order to identify common genetic features underlying population-specific responses to drugs. To do so, we used the International HapMap project release 27 Data and Pharmacogenomics Knowledge Base (PharmGKB database. First, we compared four measures for assessing population differentiation: the chi-square test, the analysis of variance (ANOVA F-test, Fst, and Nearest Shrunken Centroid Method (NSCM. Fst showed high sensitivity with stable specificity among varying sample sizes; thus, we selected Fst for determining population differentiation. Second, we divided DR genes from PharmGKB into two groups based on the degree of population differentiation as assessed by Fst: genes with a high level of differentiation (HD gene group and genes with a low level of differentiation (LD gene group. Last, we conducted a gene ontology (GO analysis and pathway analysis. Using all genes in the human genome as the background, the GO analysis and pathway analysis of the HD genes identified terms related to cell communication. "Cell communication" and "cell-cell signaling" had the lowest Benjamini-Hochberg's q-values (0.0002 and 0.0006, respectively, and "drug binding" was highly enriched (16.51 despite its relatively high q-value (0.0142. Among the 17 genes related to cell communication identified in the HD gene group, five genes (STX4, PPARD, DCK, GRIK4, and DRD3 contained single nucleotide polymorphisms with Fst values greater than 0.5. Specifically, the Fst values for rs10871454, rs6922548, rs3775289, rs1954787, and rs167771 were 0.682, 0.620, 0.573, 0.531, and 0.510, respectively. In the analysis using DR genes as the background, the HD gene group contained six significant terms. Five were related to reproduction, and one was "Wnt signaling pathway," which has been implicated in cancer. Our analysis suggests that the HD gene group from PharmGKB is

  3. Institutional Profile: University of California San Diego Pharmacogenomics Education Program (PharmGenEd™): bridging the gap between science and practice.

    Science.gov (United States)

    Kuo, Grace M; Ma, Joseph D; Lee, Kelly C; Halpert, James R; Bourne, Philip E; Ganiats, Theodore G; Taylor, Palmer

    2011-02-01

    Clinical application of evidence-based pharmacogenomics information has the potential to help healthcare professionals provide safe and effective medication management to patients. However, there is a gap between the advances of pharmacogenomics discovery and the health professionals' knowledge regarding pharmacogenomics testing and therapeutic uses. Furthermore, pharmacogenomics education materials for healthcare professionals have not been readily available or accessible. Pharmacogenomics Education Program (PharmGenEd™) is an evidence-based pharmacogenomics education program developed at the University of California San Diego Skaggs School of Pharmacy and Pharmaceutical Sciences and the School of Medicine (CA, USA), with funding support from the Centers for Disease Control and Prevention. Program components include continuing education modules, train-the-trainer materials and shared curriculum modules based on therapeutic topics, and virtual communities with online resources.

  4. Pharmacogenetics: has the time come for pharmacists to embrace and implement the science?

    Science.gov (United States)

    Beier, Manju T; Panchapagesan, Madhumitha; Carman, Ladd E

    2013-11-01

    Pharmacogenetics--the study of interindividual differences in medication response as a result of genetic variations--has emerged as a potentially useful tool for individualizing medication regimens for patients. Genetic variations can affect drug disposition inseveral ways, from modifying receptor sensitivities to impacting drug metabolism. Over the last several years, the Food and Drug Administration has been steadily including pharmacogenetic information in drug labeling for several commonly prescribed drugs. Several organizations are attempting to provide evidence-based guidelines for widespread implementation and interpretation. Pharmacists, armed with knowledge of drug metabolism pathways and drug-gene interactions, are uniquely positioned to play an active role in the education, provision, and clinical implementation of pharmacogenetics.

  5. Cholinesterase inhibitors in Alzheimer's disease and Lewy body spectrum disorders: the emerging pharmacogenetic story

    Directory of Open Access Journals (Sweden)

    Lam Benjamin

    2009-12-01

    Full Text Available Abstract This review provides an update on the current state of pharmacogenetic research in the treatment of Alzheimer's disease (AD and Lewy body disease (LBD as it pertains to the use of cholinesterase inhibitors (ChEI. AD and LBD are first reviewed from clinical and pathophysiological perspectives. This is followed by a discussion of ChEIs used in the symptomatic treatment of these conditions, focusing on their unique and overlapping pharmacokinetic and pharmacodynamic profiles, which can be used to identify candidate genes for pharmacogenetics studies. The literature published to date is then reviewed and limitations are discussed. This is followed by a discussion of potential endophenotypes which may help to refine future pharmacogenetic studies of response and adverse effects to ChEIs.

  6. An ontology-based, mobile-optimized system for pharmacogenomic decision support at the point-of-care.

    Directory of Open Access Journals (Sweden)

    Jose Antonio Miñarro-Giménez

    Full Text Available The development of genotyping and genetic sequencing techniques and their evolution towards low costs and quick turnaround have encouraged a wide range of applications. One of the most promising applications is pharmacogenomics, where genetic profiles are used to predict the most suitable drugs and drug dosages for the individual patient. This approach aims to ensure appropriate medical treatment and avoid, or properly manage, undesired side effects.We developed the Medicine Safety Code (MSC service, a novel pharmacogenomics decision support system, to provide physicians and patients with the ability to represent pharmacogenomic data in computable form and to provide pharmacogenomic guidance at the point-of-care. Pharmacogenomic data of individual patients are encoded as Quick Response (QR codes and can be decoded and interpreted with common mobile devices without requiring a centralized repository for storing genetic patient data. In this paper, we present the first fully functional release of this system and describe its architecture, which utilizes Web Ontology Language 2 (OWL 2 ontologies to formalize pharmacogenomic knowledge and to provide clinical decision support functionalities.The MSC system provides a novel approach for enabling the implementation of personalized medicine in clinical routine.

  7. A train-the-trainer approach to a shared pharmacogenomics curriculum for US colleges and schools of pharmacy.

    Science.gov (United States)

    Lee, Kelly C; Ma, Joseph D; Hudmon, Karen Suchanek; Kuo, Grace M

    2012-12-12

    To assess pharmacy faculty trainers' perceptions of a Web-based train-the-trainer program for PharmGenEd, a shared pharmacogenomics curriculum for health professional students and licensed clinicians. Pharmacy faculty trainers (n=58, representing 39 colleges and schools of pharmacy in the United States and 1 school from Canada) participated in a train-the-trainer program consisting of up to 9 pharmacogenomics topics. Posttraining survey instruments assessed faculty trainers' perceptions toward the training program and the likelihood of their adopting the educational materials as part of their institution's curriculum. Fifty-five percent of faculty trainers reported no prior formal training in pharmacogenomics. There was a significant increase (ptrain licensed health professionals, and 95% indicated that they would recommend the program to other pharmacy faculty members. As a result of participating in the train-the-trainer program in pharmacogenomics, faculty member participants gained confidence in teaching pharmacogenomics to their students, and the majority of participants indicated a high likelihood of adopting the program at their institution. A Web-based train-the-trainer model appears to be a feasible strategy for training pharmacy faculty in pharmacogenomics.

  8. Integrative clinico-biological, pharmacogenetic, neuroimagistic, neuroendocrinological and psychological correlations in depressive and anxiety disorders.

    Science.gov (United States)

    Hogea, Lavinia Maria; Nussbaum, Laura Alexandra; Chiriac, Daniela Veronica; Ageu, LuminiŢa Ştefania; Andreescu, Nicoleta Ioana; Grigoraş, Mirela Loredana; Folescu, Roxana; Bredicean, Ana Cristina; Puiu, Maria; Roşca, Elena Cecilia Ildikó; Simu, Mihaela Adriana; Levai, Codrina Mihaela

    2017-01-01

    We approach the theme of modern treatment strategies, based on clinico-biological, pharmacogenetic, neuroimagistic, neuroendocrinological and psychological integrative correlations in the management of depressive and comorbid anxiety disorders. We target to evaluate the efficacy of the pharmacogenetic testing and the evolution, functioning of patients in correlation with specific neurobiological, neuroimagistic and neuroendocrinological markers. Our research was conducted between 2010-2016 on 80 children and adolescents with depressive and comorbid anxiety disorders - 40 children (G1 group), who benefited in choosing the pharmacotherapy from pharmacogenetic testing and 40 children without testing (G2 group). Also, the patients were evaluated through magnetic resonance (MR) spectroscopy at baseline and after pharmacotherapy. The efficacy of the chosen therapy in correlation with the pharmacogenetic testing was evaluated through the mean change in the CDRS (Children's Depression Rating Scale) total scores, in the CGI-S÷I (Clinical Global Impression - Severity÷Improvement), CGAS (Children's Global Assessment Scale) and through the change of the relevant neurobiological markers and MR spectroscopy metabolites. We evaluated the side effects through the PAERS (Pediatric Adverse Events Rating Scale)-Clinician. Our results show statistically significant differences of the clinical scores between the studied groups: for those subjects who benefited of pharmacogenetic testing, the CDRS, the global functioning scores prove a higher clinical improvement, a better compliance and lower PAERS side effects scores and also improvement concerning the MR spectroscopy dosed metabolites values. Our research was a proof sustaining the use of the pharmacogenetic testing in clinical practice and the value of investigating relevant neurobiological, neuroimagistic and neuroendocrinological markers for a personalized therapy in depressive disorders.

  9. OX1 and OX2 orexin/hypocretin receptor pharmacogenetics

    Directory of Open Access Journals (Sweden)

    Miles Douglas Thompson

    2014-05-01

    Full Text Available Orexin/hypocretin peptide mutations are rare in humans. Even though human narcolepsy is associated with orexin deficiency, this is only extremely rarely due to mutations in the gene coding prepro-orexin, the precursor for both orexin peptides. In contrast, coding and non-coding variants of the OX1 and OX2 orexin receptors have been identified in many human populations; sometimes, these have been associated with disease phenotype, although most confer a relatively low risk. In most cases, these studies have been based on a candidate gene hypothesis that predicts involvement of orexins in the relevant pathophysiological processes. In the current review, the known human OX1/HCRTR1 and OX2/HCRTR2 genetic variants/polymorphisms as well as studies concerning their involvement in disorders such as narcolepsy, excessive daytime sleepiness, cluster headache, polydipsia-hyponatremia in schizophrenia, and affective disorders are presented. In most cases, the functional cellular or pharmacological correlates of orexin variants have not been investigated  with the exception of the possible impact of an amino acid 10 Pro/Ser variant of OX2 on orexin potency  leaving conclusions on the nature of the receptor variant effects speculative. Nevertheless, we present perspectives that could shape the basis for further studies. The pharmacology and other properties of the orexin receptor variants are discussed in the context of GPCR signaling. Since orexinergic therapeutics are emerging, the impact of receptor variants on the affinity or potency of ligands deserves consideration. This perspective (pharmacogenetics is also discussed in the review.

  10. Pharmacogenomic and clinical data link non-pharmacokinetic metabolic dysregulation to drug side effect pathogenesis

    DEFF Research Database (Denmark)

    Zielinski, Daniel C.; Filipp, F. V.; Bordbar, A.

    2015-01-01

    Drug side effects cause a significant clinical and economic burden. However, mechanisms of drug action underlying side effect pathogenesis remain largely unknown. Here, we integrate pharmacogenomic and clinical data with a human metabolic network and find that non-pharmacokinetic metabolic pathways...... the relationships between the cellular response to drugs, genetic variation of patients and cell metabolism may help managing side effects by personalizing drug prescriptions and nutritional intervention strategies....

  11. Pharmacogenomics in the treatment of mood disorders: Strategies and Opportunities for personalized psychiatry

    OpenAIRE

    Amare, Azmeraw T.; Schubert, Klaus Oliver; Baune, Bernhard T.

    2017-01-01

    Personalized medicine (personalized psychiatry in a specific setting) is a new model towards individualized care, in which knowledge from genomics and other omic pillars (microbiome, epigenomes, proteome, and metabolome) will be combined with clinical data to guide efforts to new drug development and targeted prescription of the existing treatment options. In this review, we summarize pharmacogenomic studies in mood disorders that may lay the foundation towards personalized psychiatry. In add...

  12. Neoliberal technocracy: explaining how and why the US Food and Drug Administration has championed pharmacogenomics.

    Science.gov (United States)

    Hogarth, Stuart

    2015-04-01

    By 2004 the FDA had emerged as a champion of pharmacogenomics as an exemplar for novel approaches to drug development. This was made clear in 2004 when the agency released a wide-ranging report which positioned pharmacogenomics at the heart of a broader regulatory reform agenda. The Critical Path initiative addressed declining productivity of drug development by suggesting that the problem was a mismatch between the rapid pace of discovery in post-genomic biomedicine and the antiquated development process for new drugs. Framing their work in this context, FDA officials reconceptualised their role in the innovation process, in what was the first programmatic statement of a shift from a strictly gate-keeping role to a more collaborative or facilitative role as enablers of innovation. This paper situates the FDA's emergence as a champion of pharmacogenomics in the broader politics of pharmaceutical regulation in the USA. In making a contribution to the pharmaceuticalisation literature this paper will draw on the work of John Abraham who has argued that one of the primary drivers of pharmaceuticalisation has been "deregulatory state policies" and on Williams and colleagues who have argued that the changing relationship between regulatory agencies and the pharmaceutical industry is an important dimension of pharmaceuticalisation. This paper links this to the promotion of pharmaceutical futures such as pharmacogenomics and explores how this shift is also closely related to the trend towards a risk management approach to pharmaceutical regulation. The role of Bush appointees in the development and promotion of the Critical Path agenda is also examined. Copyright © 2015. Published by Elsevier Ltd.

  13. Pharmacogenomics of Anti-platelet Therapy: How much evidence is enough for clinical implementation?

    OpenAIRE

    Perry, Christina G.; Shuldiner, Alan R.

    2013-01-01

    Pharmacogenomics, the study of the genomics of drug response and adverse effects, holds great promise for more effective individualized (personalized) medicine. Recent evidence supports a role of loss-of-function variants in the cytochrome P450 enzyme CYP2C19 as a determinant of clopidogrel response. Those who carry loss-of-function variants do not metabolize clopidogrel, a prodrug, into its active form resulting in decreased inhibition of platelet function and a higher likelihood of recurren...

  14. Prenatal exposure to serotonin reuptake inhibitors and congenital heart anomalies : An exploratory pharmacogenetics study

    NARCIS (Netherlands)

    Daud, Aizati N A; Bergman, Jorieke E H; Kerstjens-Frederikse, Wilhelmina S; van der Vlies, Pieter; Hak, Eelko; Berger, Rolf M F; Groen, Henk; Wilffert, Bob

    2017-01-01

    Aim: To explore the role of pharmacogenetics in determining the risk of congenital heart anomalies (CHA) with prenatal use of serotonin reuptake inhibitors.  Methods: We included 33 case-mother dyads and 2 mother-only (child deceased) cases of CHA in a case-only study. Ten genes important in

  15. Pharmacogenetics in primary care: the promise of personalized medicine and the reality of racial profiling.

    Science.gov (United States)

    Hunt, Linda M; Kreiner, Meta J

    2013-03-01

    Many anticipate that expanding knowledge of genetic variations associated with disease risk and medication response will revolutionize clinical medicine, making possible genetically based Personalized Medicine where health care can be tailored to individuals, based on their genome scans. Pharmacogenetics has received especially strong interest, with many pharmaceutical developers avidly working to identify genetic variations associated with individual differences in drug response. While clinical applications of emerging genetic knowledge are becoming increasingly available, genetic tests for drug selection are not as yet widely accessible, and many primary care clinicians are unprepared to interpret genetic information. We conducted interviews with 58 primary care clinicians, exploring how they integrate emerging pharmacogenetic concepts into their practices. We found that in their current practices, pharmacogenetic innovations have not led to individually tailored treatment, but instead have encouraged use of essentialized racial/ethnic identity as a proxy for genetic heritage. Current manifestations of Personalized Medicine appear to be reinforcing entrenched notions of inherent biological differences between racial groups, and promoting the belief that racial profiling in health care is supported by cutting-edge scientific authority. Our findings raise concern for how pharmacogenetic innovations will actually affect diverse populations, and how unbiased treatment can be assured.

  16. Clinical effects of proton pump inhibitors: Focus on pharmacogenetics, kinetics and dynamics

    NARCIS (Netherlands)

    N.G.M. Hunfeld (Nicole)

    2010-01-01

    textabstractThis thesis describes the clinical effects of proton pump inhibitors, with focus on pharmacogenetics, kinetics and dynamics. The aims were to investigate the occurence of Rebound Acid Hypersecretion and to investigate the speed of onset, the duration of effect and the difference in

  17. Development and Initial Assessment of a Patient Education Video about Pharmacogenetics.

    Science.gov (United States)

    Mills, Rachel; Ensinger, Megan; Callanan, Nancy; Haga, Susanne B

    2017-05-25

    As few patient-friendly resources about pharmacogenetics are currently available, we aimed to create and assess a patient educational video on pharmacogenetic testing. A primary literature and resources review was conducted to inform the content and the format of the video. The educational video was then created using a commercially available animation program and pilot tested in focus groups of the general public and by an online survey of pharmacists. Emerging themes from the focus groups and survey indicate a desire for appropriate risk contextualization and specific examples when pharmacogenetic testing may be beneficial. Focus group participants also expressed a preference for a video with live action, and more text to reinforce concepts. Pharmacists generally felt that the video was understandable for patients and relevant for decision-making regarding testing. Using this initial feedback and the identification of important concepts to include in pharmacogenetics educational tools, we plan to revise the video, perform additional evaluations, and publish the video for public use in the future.

  18. Analgesia and Opioids: A Pharmacogenetics Shortlist for Implementation in Clinical Practice

    NARCIS (Netherlands)

    Matic, M.; Wildt, S.N. de; Tibboel, D.; Schaik, R.H. van

    2017-01-01

    BACKGROUND: The use of opioids to alleviate pain is complicated by the risk of severe adverse events and the large variability in dose requirements. Pharmacogenetics (PGx) could possibly be used to tailor pain medication based on an individual's genetic background. Many potential genetic markers

  19. Pharmacogenetic meta-analysis of genome-wide association studies of LDL cholesterol response to statins

    NARCIS (Netherlands)

    Postmus, Iris; Trompet, Stella; Deshmukh, Harshal A.; Barnes, Michael R.; Li, Xiaohui; Warren, Helen R.; Chasman, Daniel I.; Zhou, Kaixin; Arsenault, Benoit J.; Donnelly, Louise A.; Wiggins, Kerri L.; Avery, Christy L.; Griffin, Paula; Feng, QiPing; Taylor, Kent D.; Li, Guo; Evans, Daniel S.; Smith, Albert V.; de Keyser, Catherine E.; Johnson, Andrew D.; de Craen, Anton J. M.; Stott, David J.; Buckley, Brendan M.; Ford, Ian; Westendorp, Rudi G. J.; Slagboom, P. Eline; Sattar, Naveed; Munroe, Patricia B.; Sever, Peter; Poulter, Neil; Stanton, Alice; Shields, Denis C.; O'Brien, Eoin; Shaw-Hawkins, Sue; Chen, Y.-D. Ida; Nickerson, Deborah A.; Smith, Joshua D.; Dubé, Marie Pierre; Boekholdt, S. Matthijs; Hovingh, G. Kees; Kastelein, John J. P.; McKeigue, Paul M.; Betteridge, John; Neil, Andrew; Durrington, Paul N.; Doney, Alex; Carr, Fiona; Morris, Andrew; McCarthy, Mark I.; Groop, Leif; Ahlqvist, Emma; Bis, Joshua C.; Rice, Kenneth; Smith, Nicholas L.; Lumley, Thomas; Whitsel, Eric A.; Stürmer, Til; Boerwinkle, Eric; Ngwa, Julius S.; O'Donnell, Christopher J.; Vasan, Ramachandran S.; Wei, Wei-Qi; Wilke, Russell A.; Liu, Ching-Ti; Sun, Fangui; Guo, Xiuqing; Heckbert, Susan R.; Post, Wendy; Sotoodehnia, Nona; Arnold, Alice M.; Stafford, Jeanette M.; Ding, Jingzhong; Herrington, David M.; Kritchevsky, Stephen B.; Eiriksdottir, Gudny; Launer, Leonore J.; Harris, Tamara B.; Chu, Audrey Y.; Giulianini, Franco; Macfadyen, Jean G.; Barratt, Bryan J.; Nyberg, Fredrik; Stricker, Bruno H.; Uitterlinden, André G.; Hofman, Albert; Rivadeneira, Fernando; Emilsson, Valur; Franco, Oscar H.; Ridker, Paul M.; Gudnason, Vilmundur; Liu, Yongmei; Denny, Joshua C.; Ballantyne, Christie M.; Rotter, Jerome I.; Adrienne Cupples, L.; Psaty, Bruce M.; Palmer, Colin N. A.; Tardif, Jean-Claude; Colhoun, Helen M.; Hitman, Graham; Krauss, Ronald M.; Wouter Jukema, J.; Caulfield, Mark J.; Donnelly, Peter; Barroso, Ines; Blackwell, Jenefer M.; Bramon, Elvira; Brown, Matthew A.; Casas, Juan P.; Corvin, Aiden; Deloukas, Panos; Duncanson, Audrey; Jankowski, Janusz; Markus, Hugh S.; Mathew, Christopher G.; Plomin, Robert; Rautanen, Anna; Sawcer, Stephen J.; Trembath, Richard C.; Viswanathan, Ananth C.; Wood, Nicholas W.; Spencer, Chris C. A.; Band, Gavin; Bellenguez, Céline; Freeman, Colin; Hellenthal, Garrett; Giannoulatou, Eleni; Pirinen, Matti; Pearson, Richard; Strange, Amy; Su, Zhan; Vukcevic, Damjan; Langford, Cordelia; Hunt, Sarah E.; Edkins, Sarah; Gwilliam, Rhian; Blackburn, Hannah; Bumpstead, Suzannah J.; Dronov, Serge; Gillman, Matthew; Gray, Emma; Hammond, Naomi; Jayakumar, Alagurevathi; McCann, Owen T.; Liddle, Jennifer; Potter, Simon C.; Ravindrarajah, Radhi; Ricketts, Michelle; Waller, Matthew; Weston, Paul; Widaa, Sara; Whittaker, Pamela

    2014-01-01

    Statins effectively lower LDL cholesterol levels in large studies and the observed interindividual response variability may be partially explained by genetic variation. Here we perform a pharmacogenetic meta-analysis of genome-wide association studies (GWAS) in studies addressing the LDL cholesterol

  20. Asthma pharmacogenetics and the development of genetic profiles for personalized medicine

    Directory of Open Access Journals (Sweden)

    Ortega VE

    2015-01-01

    Full Text Available Victor E Ortega, Deborah A Meyers, Eugene R Bleecker Center for Genomics and Personalized Medicine Research, Pulmonary Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA Abstract: Human genetics research will be critical to the development of genetic profiles for personalized or precision medicine in asthma. Genetic profiles will consist of gene variants that predict individual disease susceptibility and risk for progression, predict which pharmacologic therapies will result in a maximal therapeutic benefit, and predict whether a therapy will result in an adverse response and should be avoided in a given individual. Pharmacogenetic studies of the glucocorticoid, leukotriene, and β2-adrenergic receptor pathways have focused on candidate genes within these pathways and, in addition to a small number of genome-wide association studies, have identified genetic loci associated with therapeutic responsiveness. This review summarizes these pharmacogenetic discoveries and the future of genetic profiles for personalized medicine in asthma. The benefit of a personalized, tailored approach to health care delivery is needed in the development of expensive biologic drugs directed at a specific biologic pathway. Prior pharmacogenetic discoveries, in combination with additional variants identified in future studies, will form the basis for future genetic profiles for personalized tailored approaches to maximize therapeutic benefit for an individual asthmatic while minimizing the risk for adverse events. Keywords: asthma, pharmacogenetics, response heterogeneity, single nucleotide polymorphism, genome-wide association study

  1. Individual variability in clinical effect and tolerability of opioid analgesics - Importance of drug interactions and pharmacogenetics.

    Science.gov (United States)

    Solhaug, Vigdis; Molden, Espen

    2017-10-01

    As pain is often a comorbid condition, many patients use opioid analgesics in combination with several other drugs. This implies a generally increased risk of drug interactions, which along with inherent pharmacogenetic variability and other factors may cause differences in therapeutic response of opioids. To provide an overview of interactions and pharmacogenetic variability of relevance for individual differences in effect and tolerability of opioid analgesics, which physicians and other healthcare professionals should be aware of in clinical practice. The article was based on unsystematic searches in PubMed to identify literature highlighting the clinical impact of drug interactions and pharmacogenetics as sources of variable response of opioid analgesics. Cytochrome P450 (CYP)-mediated metabolism is an important process for both clinically relevant interactions and pharmacogenetic variability of several opioids. Concomitant use of CYP inhibitors (e.g. paroxetine, fluoxetine and bupropion) or inducers (e.g. carbamazepine, phenobarbital and phenytoin) could counteract the clinical effect or trigger side effects of analgesics in the same manner as genetically determined differences in CYP2D6-mediated metabolism of many opioids. Moreover, combination treatment with drugs that inhibit or induce P-glycoprotein (ABCB1), a blood-brain barrier efflux transporter, may alter the amount ('dose') of opioids distributed to the brain. At the pharmacodynamic level, it is crucial to be aware of the potential risk of interaction causing serotonergic syndrome when combining opioids and serotonergic drugs, in particular antidepressants inhibiting serotonin reuptake (SSRIs and SNRIs). Regarding pharmacogenetics at the receptor level of pain treatment, the knowledge is currently scarce, but an allelic variant of the μ1 opioid receptor (OPRM1) gene has been associated with higher dosage requirement to achieve analgesia. Drug interactions and pharmacogenetic differences may lead to

  2. Cost-effectiveness of pharmacogenomics in clinical practice: A case study of thiopurine methyltransferase genotyping in acute lymphoblastic leukemia in Europe

    NARCIS (Netherlands)

    Akker-van Marle, M.E. van den; Gurwitz, D.; Detmar, S.B.; Enzing, C.M.; Hopkins, M.M.; Gutierrez De Mesa, E.; Ibarreta, D.

    2006-01-01

    Only a few studies have addressed the cost-effectiveness of pharmacogenetics interventions in healthcare. Lack of health economics data on aspects of pharmacogenetics is perceived as one of the barriers hindering its implementation for improving drug safety. Thus, a recent Institute for Prospective

  3. Translating Pharmacogenomics Discoveries into Clinical Practice: The Role of Curated Databases

    Science.gov (United States)

    Nadkarni, Prakash M.; Wiepert, Mathieu

    2010-01-01

    Pharmacogenomics-related genotype information is growing at a supra-linear rate, and phenotype-related information, as determined by computer simulations, in vitro experiments and clinical studies, is also growing. Even when phenotypic information is confirmed via clinical research, numerous barriers exist in translating these discoveries into clinical practice. We consider two of them here: the uncertainty regarding the practical relevance of research observations, and translation of significant research findings into clinical practice and research through electronic information access. This form of access is critical because even leading clinical pharmacologists cannot fully retain mentally today’s large volume of drug-related information. PMID:16013993

  4. University of Florida and Shands Hospital Personalized Medicine Program: clinical implementation of pharmacogenetics

    Science.gov (United States)

    Johnson, Julie A; Elsey, Amanda R; Clare-Salzler, Michael J; Nessl, David; Conlon, Michael; Nelson, David R

    2013-01-01

    The University of Florida and Shands Hospital recently launched a genomic medicine program focused on the clinical implementation of pharmacogenetics called the Personalized Medicine Program. We focus on a preemptive, chip-based genotyping approach that is cost effective, while providing experience that will be useful as genomic medicine moves towards genome sequence data for patients becoming available. The Personalized Medicine Program includes a regulatory body that is responsible for ensuring that evidence-based examples are moved to clinical implementation, and relies on clinical decision support tools to provide healthcare providers with guidance on use of the genetic information. The pilot implementation was with CYP2C19-clopidogrel and future plans include expansion to additional pharmacogenetic examples, along with aiding in implementation in other health systems across Florida. PMID:23651020

  5. Population Analysis of Pharmacogenetic Polymorphisms Related to Acute Lymphoblastic Leukemia Drug Treatment

    Directory of Open Access Journals (Sweden)

    Marcela A. Chiabai

    2012-01-01

    Full Text Available This study aimed to evaluate in the Brazilian population, the genotypes and population frequencies of pharmacogenetic polymorphisms involved in the response to drugs used in treatment of acute lymphoblastic leukemia (ALL, and to compare the data with data from the HapMap populations. There was significant differentiation between most population pairs, but few associations between genetic ancestry and SNPs in the Brazilian population were observed. AMOVA analysis comparing the Brazilian population to all other populations retrieved from HapMap pointed to a genetic proximity with the European population. These associations point to preclusion of the use of genetic ancestry as a proxy for predicting drug response. In this way, any study aiming to correlate genotype with drug response in the Brazilian population should be based on pharmacogenetic SNP genotypes.

  6. Pharmacogenetics Informed Decision Making in Adolescent Psychiatric Treatment: A Clinical Case Report

    Directory of Open Access Journals (Sweden)

    Teri Smith

    2015-02-01

    Full Text Available Advances made in genetic testing and tools applied to pharmacogenetics are increasingly being used to inform clinicians in fields such as oncology, hematology, diabetes (endocrinology, cardiology and expanding into psychiatry by examining the influences of genetics on drug efficacy and metabolism. We present a clinical case example of an adolescent male with anxiety, attention deficit hyperactivity disorder (ADHD and autism spectrum disorder who did not tolerate numerous medications and dosages over several years in attempts to manage his symptoms. Pharmacogenetics testing was performed and DNA results on this individual elucidated the potential pitfalls in medication use because of specific pharmacodynamic and pharmacokinetic differences specifically involving polymorphisms of genes in the cytochrome p450 enzyme system. Future studies and reports are needed to further illustrate and determine the type of individualized medicine approach required to treat individuals based on their specific gene patterns. Growing evidence supports this biological approach for standard of care in psychiatry.

  7. Developments in renal pharmacogenomics and applications in chronic kidney disease

    Directory of Open Access Journals (Sweden)

    Padullés A

    2014-08-01

    Full Text Available Ariadna Padullés,1 Inés Rama,2 Inés Llaudó,2 Núria Lloberas2 1Pharmacy Department, 2Nephrology Department, IDIBELL-Hospital Universitari Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain Abstract: Chronic kidney disease (CKD has shown an increasing prevalence in the last century. CKD encompasses a poor prognosis related to a remarkable number of comorbidities, and many patients suffer from this disease progression. Once the factors linked with CKD evolution are distinguished, it will be possible to provide and enhance a more intensive treatment to high-risk patients. In this review, we focus on the emerging markers that might be predictive or related to CKD progression physiopathology as well as those related to a different pattern of response to treatment, such as inhibitors of the renin–angiotensin system (including angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers; the vitamin D receptor agonist; salt sensitivity hypertension; and progressive kidney-disease markers with identified genetic polymorphisms. Candidate-gene association studies and genome-wide association studies have analyzed the genetic basis for common renal diseases, including CKD and related factors such as diabetes and hypertension. This review will, in brief, consider genotype-based pharmacotherapy, risk prediction, drug target recognition, and personalized treatments, and will mainly focus on findings in CKD patients. An improved understanding will smooth the progress of switching from classical clinical medicine to gene-based medicine. Keywords: angiotensin-converting enzyme, diabetes, hypertension, renal treatment, gene polymorphisms, biomarkers

  8. Exploring a Laboratory Model of Pharmacogenetics as Applied to Clinical Decision Making

    Directory of Open Access Journals (Sweden)

    David F. Kisor

    2013-01-01

    Full Text Available Objective: To evaluate a pilot of a laboratory model for relating pharmacogenetics to clinical decision making. Case Study: This pilot was undertaken and evaluated to help determine if a pharmacogenetics laboratory should be included in the core Doctor of Pharmacy curriculum. The placement of the laboratory exercise in the curriculum was determined by identifying the point in the curriculum where the students had been introduced to the chemistry of deoxyribonucleic acid (DNA as well as instructed on the chemistry of genetic variation. The laboratory included cytochrome P450 2C19 genotyping relative to the *2 variant. Twenty-four students served as the pilot group. Students provided buccal swabs as the source of DNA. Students stabilized the samples and were then provided instructions related to sample preparation, polymerase chain reaction, and gel electrophoresis. The results were reported as images of gels. Students used a reference gel image to compare their results to. Students then applied a dosing algorithm to make a "clinical decision" relative to clopidogrel use. Students were offered a post laboratory survey regarding attitudes toward the laboratory. Twenty-four students completed the laboratory with genotyping results being provided for 22 students (91.7%. Sixteen students were wild-type (*1/*1, while six students were heterozygous (*1/*2. Twenty-three students (96% completed the post laboratory survey. All 23 agreed (6, 26.1% or strongly agreed (17, 73.9% that the laboratory "had relevance and value in the pharmacy curriculum" Conclusion: The post pilot study survey exploring a laboratory model for pharmacogenetics related to clinical decision making indicated that such a laboratory would be viewed positively by students. This model may be adopted by colleges to expand pharmacogenetics education.   Type: Case Study

  9. Trick or treat: The effect of placebo on the power of pharmacogenetic association studies

    Directory of Open Access Journals (Sweden)

    Singer Clara

    2005-03-01

    Full Text Available Abstract The genetic mapping of drug-response traits is often characterised by a poor signal-to-noise ratio that is placebo related and which distinguishes pharmacogenetic association studies from classical case-control studies for disease susceptibility. The goal of this study was to evaluate the statistical power of candidate gene association studies under different pharmacogenetic scenarios, with special emphasis on the placebo effect. Genotype/phenotype data were simulated, mimicking samples from clinical trials, and response to the drug was modelled as a binary trait. Association was evaluated by a logistic regression model. Statistical power was estimated as a function of the number of single nucleotide polymorphisms (SNPs genotyped, the frequency of the placebo 'response', the genotype relative risk (GRR of the response polymorphism, the strategy for selecting SNPs for genotyping, the number of individuals in the trial and the ratio of placebo-treated to drugtreated patients. We show that: (i the placebo 'response' strongly affects the statistical power of association studies -- even a highly penetrant drug-response allele requires at least a 500-patient trial in order to reach 80 per cent power, several-fold more than the value estimated by standard tools that are not calibrated to pharmacogenetics; (ii the power of a pharmacogenetic association study depends primarily on the penetrance of the response genotype and, when this penetrance is fixed, power decreases for larger placebo effects; (iii power is dramatically increased when adding markers; (iv an optimal study design includes a similar number of placebo- and drugtreated patients; and (v in this setting, straightforward haplotype analysis does not seem to have an advantage over single marker analysis.

  10. Asthma pharmacogenetics and the development of genetic profiles for personalized medicine.

    Science.gov (United States)

    Ortega, Victor E; Meyers, Deborah A; Bleecker, Eugene R

    2015-01-01

    Human genetics research will be critical to the development of genetic profiles for personalized or precision medicine in asthma. Genetic profiles will consist of gene variants that predict individual disease susceptibility and risk for progression, predict which pharmacologic therapies will result in a maximal therapeutic benefit, and predict whether a therapy will result in an adverse response and should be avoided in a given individual. Pharmacogenetic studies of the glucocorticoid, leukotriene, and β2-adrenergic receptor pathways have focused on candidate genes within these pathways and, in addition to a small number of genome-wide association studies, have identified genetic loci associated with therapeutic responsiveness. This review summarizes these pharmacogenetic discoveries and the future of genetic profiles for personalized medicine in asthma. The benefit of a personalized, tailored approach to health care delivery is needed in the development of expensive biologic drugs directed at a specific biologic pathway. Prior pharmacogenetic discoveries, in combination with additional variants identified in future studies, will form the basis for future genetic profiles for personalized tailored approaches to maximize therapeutic benefit for an individual asthmatic while minimizing the risk for adverse events.

  11. Developmental pharmacogenetics of CYP2C19 in neonates and young infants: omeprazole as a probe drug.

    Science.gov (United States)

    Zhao, Wei; Leroux, Stéphanie; Biran, Valérie; Jacqz-Aigrain, Evelyne

    2018-05-01

    Although substantial progress has been made in understanding of ontogeny of drug metabolism, there is still a gap of knowledge in developmental pharmacogenetics in neonates. We hypothesized that both age and pharmacogenetics might explain the developmental pattern of CYP2C19. We conducted a population pharmacokinetic-pharmacogenetic study to quantify the developmental pharmacogenetics of CYP2C19 in neonates and young infants using omeprazole as a probe drug. Pharmacokinetic samples were collected from 51 Caucasian neonates and young infants, who were receiving omeprazole treatment. Population pharmacokinetic-pharmacogenetic analysis of omeprazole and its metabolites was performed using NONMEM. Data fitted a one-compartment parent and metabolite model with first-order absorption and elimination. CYP2C19 and CYP3A4 are predominantly involved in the metabolism of omeprazole despite their relatively low activities compared to adults. The clearance of omeprazole converted to 5-hydroxy-omeprazole (CL OMZ-M1 ) increases with postnatal age. In CYP2C19 poor and intermediate metabolizers, model-predicted CL OMZ-M1 are 12.5% (5-95% percentile: 3-14.9%) and 44.9% (5-95% percentile: 29.9-72.6%) of the value in extensive/ultrarapid metabolizer, respectively. Model-predicted absorption rate constant of omeprazole is 6.93 (5-95% percentile: 3.01-14.61) times higher in ABCB1 homozygous mutant patients, 1.86 (5-95% percentile: 0.86-3.47) times higher in ABCB1 heterozygous patients than that in ABCB1 homozygous wild-type patients. Developmental pharmacogenetics of CYP2C19 was quantitatively described in neonates and young infants using omeprazole as a probe drug. Our findings emphasize the importance of semiphysiological developmental pharmacokinetic modelling approach when evaluating developmental pharmacogenetics of drugs with multiple routes of biotransformation. © 2018 The British Pharmacological Society.

  12. Human estrogen sulfotransferase (SULT1E1) pharmacogenomics: gene resequencing and functional genomics

    OpenAIRE

    Adjei, Araba A; Thomae, Bianca A; Prondzinski, Janel L; Eckloff, Bruce W; Wieben, Eric D; Weinshilboum, Richard M

    2003-01-01

    Estrogens are used as drugs and estrogen exposure is a risk factor for hormone-dependent diseases such as breast cancer. Sulfate conjugation is an important pathway for estrogen metabolism. The sulfotransferase (SULT) enzyme SULT1E1 has the lowest Km values for estrogens and catecholestrogens of the 10 known human SULT isoforms.We previously cloned and characterized the human SULT1E1 cDNA and gene as steps toward pharmacogenetic studies. In the present experiments, we set out to determine whe...

  13. Ethical dimensions of disparities in depression research and treatment in the pharmacogenomic era.

    Science.gov (United States)

    Parker, Lisa S; Satkoske, Valerie B

    2012-01-01

    Disparities in access to, and utilization of, treatment for depression among African-American and Caucasian elderly adults have been well-documented. Less fully explored are the multidimensional factors responsible for these disparities. The intersection of cultural constructs, socioeconomic factors, multiple levels of racism, and stigma attending both mental health issues and older age may help to explain disparities in the treatment of the depressed elderly. Personalized medicine with its promise of developing interventions tailored to an individual's health needs and genetically related response to treatment might seem a promising antidote to the documented underutilization of standard depression treatments by African Americans. However, this paper examines the multidimensional factors associated with disparities in effective treatment of depression among African-American and Caucasian elderly adults and argues the scientific and ethical importance of pursuing various paths to address multiple levels and sources of stigma and mistrust if pharmacogenomics is to help, rather than exacerbate, disparities in depression treatment. Seven recommendations are offered to increase the likelihood that developments in pharmacogenomics will reduce disparities in depression treatment. © 2012 American Society of Law, Medicine & Ethics, Inc.

  14. Pharmacogenomics of primary hypertension--the lessons from the past to look toward the future.

    Science.gov (United States)

    Bianchi, Giuseppe; Staessen, Jan A; Patrizia, Ferrari

    2003-05-01

    A number of recent reviews have addressed the issue of the pharmacogenomics of primary hypertension and related complications by considering the data on the genotype-drug response relationship. Here we mainly discuss the methodological aspects of this issue, trying to integrate 'traditional' clinical and experimental pathophysiology and therapy-pharmacology with the 'new' genetics. Such integration is indispensable to: a). define the appropriate 'context' (genetic background, environment, age, gender, phase of hypertension, previous therapy etc.) in which a given genotype-drug response relationship should be tested (it is indeed likely that many discrepancies among published data originate from context's interference); b). assign the correct clinical meaning to the results obtained by statistics and functional genetics methodologies; c). define a novel clinical entity caused by a disease favoring allele, alone or in combination with other alleles, with a consistent clinical picture, prognosis and responsiveness to the appropriate drug; d). estimate the size of the population target amenable to benefit from a therapeutic intervention developed according to the pharmacogenomics' principles; e). develop a novel drug that selectively interferes with the sequence of events triggered by the genetic mechanism(s) underlying the clinical entity. Peculiar to this strategy is to look for consistency among findings gathered from different 'contexts' after having properly accounted for the context's dependency of the results.

  15. Multifactor dimensionality reduction for detecting gene-gene and gene-environment interactions in pharmacogenomics studies.

    Science.gov (United States)

    Ritchie, Marylyn D; Motsinger, Alison A

    2005-12-01

    In the quest for discovering disease susceptibility genes, the reality of gene-gene and gene-environment interactions creates difficult challenges for many current statistical approaches. In an attempt to overcome limitations with current disease gene detection methods, the multifactor dimensionality reduction (MDR) approach was previously developed. In brief, MDR is a method that reduces the dimensionality of multilocus information to identify polymorphisms associated with an increased risk of disease. This approach takes multilocus genotypes and develops a model for defining disease risk by pooling high-risk genotype combinations into one group and low-risk combinations into another. Cross-validation and permutation testing are used to identify optimal models. While this approach was initially developed for studies of complex disease, it is also directly applicable to pharmacogenomic studies where the outcome variable is drug treatment response/nonresponse or toxicity/no toxicity. MDR is a nonparametric and model-free approach that has been shown to have reasonable power to detect epistasis in both theoretical and empirical studies. This computational technology is described in detail in this review, and its application in pharmacogenomic studies is demonstrated.

  16. Tumor-Derived Cell Lines as Molecular Models of Cancer Pharmacogenomics.

    Science.gov (United States)

    Goodspeed, Andrew; Heiser, Laura M; Gray, Joe W; Costello, James C

    2016-01-01

    Compared with normal cells, tumor cells have undergone an array of genetic and epigenetic alterations. Often, these changes underlie cancer development, progression, and drug resistance, so the utility of model systems rests on their ability to recapitulate the genomic aberrations observed in primary tumors. Tumor-derived cell lines have long been used to study the underlying biologic processes in cancer, as well as screening platforms for discovering and evaluating the efficacy of anticancer therapeutics. Multiple -omic measurements across more than a thousand cancer cell lines have been produced following advances in high-throughput technologies and multigroup collaborative projects. These data complement the large, international cancer genomic sequencing efforts to characterize patient tumors, such as The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC). Given the scope and scale of data that have been generated, researchers are now in a position to evaluate the similarities and differences that exist in genomic features between cell lines and patient samples. As pharmacogenomics models, cell lines offer the advantages of being easily grown, relatively inexpensive, and amenable to high-throughput testing of therapeutic agents. Data generated from cell lines can then be used to link cellular drug response to genomic features, where the ultimate goal is to build predictive signatures of patient outcome. This review highlights the recent work that has compared -omic profiles of cell lines with primary tumors, and discusses the advantages and disadvantages of cancer cell lines as pharmacogenomic models of anticancer therapies. ©2015 American Association for Cancer Research.

  17. Pharmacogenetic evaluation to assess breakthrough psychosis with aripiprazole long-acting injection: a case report.

    Science.gov (United States)

    Eum, Seenae; Schneiderhan, Mark E; Brown, Jacob T; Lee, Adam M; Bishop, Jeffrey R

    2017-07-03

    Given the complex nature of symptom presentation and medication regimens, psychiatric clinics may benefit from additional tools to personalize treatments. Utilizing pharmacogenetic information may be helpful in assessing unique responses to therapy. We report herein a case of wearing-off phenomena during treatment with aripiprazole long-acting injectable (LAI) and a proof of concept strategy of how pharmacogenetic information may be used to assess possible genetic factors and also hypothesize potential mechanisms for further study. A 51-year-old African American male with schizoaffective disorder was referred to a psychiatric clinic for medication management. After unsuccessful trials of multiple antipsychotics, oral aripiprazole was initiated (up to 30 mg/day) and transitioned to aripiprazole LAI with symptom improvement. At a high dose of aripiprazole LAI (400 mg Q3wks), the patient experienced breakthrough symptoms approximately 3 days prior to his next injection. Various considerations were examined to explain his atypical dose requirements, including but not limited to pharmacogenetic influences. Pharmacogenetic testing ruled out genetic influences on drug metabolism but noted a -141C Del variant in the dopamine-D2 receptor (DRD2) gene associated in prior studies of poor-response to antipsychotics. At this time, a new formulation, aripiprazole lauroxil, was explored due to its availability in higher dose options. Transition to the new formulation (882 mg Q4wks) greatly improved and stabilized the patient's symptoms with no breakthrough psychosis. Comparable daily dose equivalents were achieved with two different formulations due to the Q3wks vs Q4wks dosing strategies, although the two agents have some differences in pharmacokinetic profiles. We report a case of a patient experiencing wearing-off symptoms with aripiprazole LAI who benefited from switching to aripiprazole lauroxil. Pharmacogenetic testing revealed normal activity for relevant metabolism

  18. Does Pharmacogenetic Testing for CYP450 2D6 and 2C19 among Patients with Diagnoses within the Schizophrenic Spectrum Reduce Treatment Costs?

    DEFF Research Database (Denmark)

    Herbild, Louise; Andersen, Stig Ejdrup; Werge, Thomas

    2013-01-01

    The effect of pharmacogenetic testing for CYP450 2D6 and 2C19 on treatment costs have not yet been documented. This study used Danish patient registers to calculate health care costs of treating patients with diagnoses within the schizophrenic spectrum for one year with or without pharmacogenetic...

  19. Developmental pharmacogenetics: a general paradigm for application to neonatal pharmacology and toxicology.

    Science.gov (United States)

    Leeder, J S

    2009-12-01

    Therapy in newborn infants presents unique challenges. The consequences of exposure of the fetus to medications and environmental contaminants in utero (following the mother's exposure to these) may present, in the newborn, as congenital malformations or adverse drug reactions or have unknown long-term consequences. Risk is not uniformly distributed across a population. Rather, pharmacogenomic principles assert that an individual's unique clinical, genomic, and environmental information can be used to accurately predict predisposition to risk. The challenge is to identify the specific factors--genetic and nongenetic--that contribute to increased risk.

  20. Pharmacogenomics and Efficacy of Risperidone Long-Term Treatment in Thai Autistic Children and Adolescents.

    Science.gov (United States)

    Nuntamool, Nopphadol; Ngamsamut, Nattawat; Vanwong, Natchaya; Puangpetch, Apichaya; Chamnanphon, Monpat; Hongkaew, Yaowaluck; Limsila, Penkhae; Suthisisang, Chuthamanee; Wilffert, Bob; Sukasem, Chonlaphat

    2017-10-01

    The purpose of this study was to evaluate the association of pharmacogenomic factors and clinical outcome in autistic children and adolescents who were treated with risperidone for long periods. Eighty-two autistic subjects diagnosed with DSM-IV and who were treated with risperidone for more than 1 year were recruited. Pharmacogenomics and clinical outcome (CGI-I, aggressive, overactivity and repetitive score) were evaluated. Almost all patients showed stable symptoms on aggressive behaviour (89.02%), overactivity (71.95%), repetitive (70.89%) behaviour and all clinical symptoms (81.71%). Only 4.48% of patients showed minimally worse CGI-I score. Patients in the non-stable symptom group had DRD2 Taq1A non-wild-type (TT and CT) frequencies higher than the clinically stable group (p = 0.04), whereas other gene polymorphisms showed no significant association. Haplotype ACCTCAT (rs6311, rs1045642, rs1128503, rs1800497, rs4436578, rs1799978, rs6280) showed a significant association with non-stable clinical outcome (χ 2  = 6.642, p = 0.010). Risperidone levels showed no association with any clinical outcome. On the other hand, risperidone dose, 9-OH risperidone levels and prolactin levels were significantly higher in the non-stable compared to the stable symptom group (p = 0.013, p = 0.044, p = 0.030). Increased appetite was the most common adverse drug reaction and associated with higher body-weight, whereas it was not significantly associated with genetic variations and non-genetic information. In conclusion, risperidone showed efficacy to control autism, especially aggressive symptoms in long-term treatment. However, Taq1A T - carrier of dopamine 2 receptor gene - is associated with non-stable response in risperidone-treated patients. This study supports pharmacogenomics testing for personalized therapy with risperidone in autistic children and adolescents. © 2017 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  1. Introducing pharmacogenetic testing with clinical decision support into primary care: a feasibility study.

    Science.gov (United States)

    Dawes, Martin; Aloise, Martin N; Ang, J Sidney; Cullis, Pieter; Dawes, Diana; Fraser, Robert; Liknaitzky, Gideon; Paterson, Andrea; Stanley, Paul; Suarez-Gonzalez, Adriana; Katzov-Eckert, Hagit

    2016-01-01

    Inappropriate prescribing increases patient illness and death owing to adverse drug events. The inclusion of genetic information into primary care medication practices is one solution. Our aim was to assess the ability to obtain and genotype saliva samples and to determine the levels of use of a decision support tool that creates medication options adjusted for patient characteristics, drug-drug interactions and pharmacogenetics. We conducted a cohort study in 6 primary care settings (5 family practices and 1 pharmacy), enrolling 191 adults with at least 1 of 10 common diseases. Saliva samples were obtained in the physician's office or pharmacy and sent to our laboratory, where DNA was extracted and genotyped and reports were generated. The reports were sent directly to the family physician/pharmacist and linked to an evidence-based prescribing decision support system. The primary outcome was ability to obtain and genotype samples. The secondary outcomes were yield and purity of DNA samples, ability to link results to decision support software and use of the decision support software. Genotyping resulted in linking of 189 patients (99%) with pharmacogenetic reports to the decision support program. A total of 96.8% of samples had at least 1 actionable genotype for medications included in the decision support system. The medication support system was used by the physicians and pharmacists 236 times over 3 months. Physicians and pharmacists can collect saliva samples of sufficient quantity and quality for DNA extraction, purification and genotyping. A clinical decision support system with integrated data from pharmacogenetic tests may enable personalized prescribing within primary care. Trial registration: ClinicalTrials.gov, NCT02383290.

  2. Combined approach with therapeutic drug monitoring and pharmacogenomics in renal transplant recipients

    Directory of Open Access Journals (Sweden)

    S Manvizhi

    2013-01-01

    Full Text Available In patients undergoing renal transplantation, dose individualization for tacrolimus is routinely achieved with therapeutic drug monitoring (TDM. The patient started on 5.5 mg/day of tacrolimus had a significantly elevated tacrolimus trough concentration. The tacrolimus dose was regularly reduced following TDM at many time periods in the post transplant period but the tacrolimus concentration was consistently elevated. Genomic analysis done after four years revealed mutations in the genes encoding for CYP3A5 and MDR1 (2677G > T. Pharmacogenomics alongside TDM, will soon emerge as the backbone of dose individualization. But for genomics to be beneficial, it should be advocated in the pre-transplant or early post transplant period.

  3. Fulfilling the promise of personalized medicine? Systematic review and field synopsis of pharmacogenetic studies.

    Directory of Open Access Journals (Sweden)

    Michael V Holmes

    2009-12-01

    Full Text Available Studies of the genetic basis of drug response could help clarify mechanisms of drug action/metabolism, and facilitate development of genotype-based predictive tests of efficacy or toxicity (pharmacogenetics.We conducted a systematic review and field synopsis of pharmacogenetic studies to quantify the scope and quality of available evidence in this field in order to inform future research.Original research articles were identified in Medline, reference lists from 24 meta-analyses/systematic reviews/review articles and U.S. Food and Drug Administration website of approved pharmacogenetic tests. STUDY ELIGIBILITY CRITERIA, PARTICIPANTS, AND INTERVENTION CRITERIA: We included any study in which either intended or adverse response to drug therapy was examined in relation to genetic variation in the germline or cancer cells in humans.Study characteristics and data reported in abstracts were recorded. We further analysed full text from a random 10% subset of articles spanning the different subclasses of study.From 102,264 Medline hits and 1,641 articles from other sources, we identified 1,668 primary research articles (1987 to 2007, inclusive. A high proportion of remaining articles were reviews/commentaries (ratio of reviews to primary research approximately 25 ratio 1. The majority of studies (81.8% were set in Europe and North America focussing on cancer, cardiovascular disease and neurology/psychiatry. There was predominantly a candidate gene approach using common alleles, which despite small sample sizes (median 93 [IQR 40-222] with no trend to an increase over time, generated a high proportion (74.5% of nominally significant (por=4 studies, only 31 meta-analyses were identified. The majority (69.4% of end-points were continuous and likely surrogate rather than hard (binary clinical end-points.The high expectation but limited translation of pharmacogenetic research thus far may be explained by the preponderance of reviews over primary research

  4. Pharmacogenetic Risk Stratification in Angiotensin-Converting Enzyme Inhibitor-Treated Patients with Congestive Heart Failure

    DEFF Research Database (Denmark)

    Nelveg-Kristensen, Karl Emil; Busk Madsen, Majbritt; Torp-Pedersen, Christian

    2015-01-01

    that previously were found to predict ACEI efficacy in patients with ischemic heart disease and hypertension, respectively. Score A combined single nucleotide polymorphisms (SNPs) of the angiotensin II receptor type 1 gene (rs275651 and rs5182) and the bradykinin receptor B1 gene (rs12050217). Score B combined...... SNPs of the angiotensin-converting enzyme gene (rs4343) and ABO blood group genes (rs495828 and rs8176746). METHODS: Danish patients with CHF enrolled in the previously reported Echocardiography and Heart Outcome Study were included. Subjects were genotyped and categorized according to pharmacogenetic...

  5. Fulfilling the promise of personalized medicine? Systematic review and field synopsis of pharmacogenetic studies.

    Science.gov (United States)

    Holmes, Michael V; Shah, Tina; Vickery, Christine; Smeeth, Liam; Hingorani, Aroon D; Casas, Juan P

    2009-12-02

    Studies of the genetic basis of drug response could help clarify mechanisms of drug action/metabolism, and facilitate development of genotype-based predictive tests of efficacy or toxicity (pharmacogenetics). We conducted a systematic review and field synopsis of pharmacogenetic studies to quantify the scope and quality of available evidence in this field in order to inform future research. Original research articles were identified in Medline, reference lists from 24 meta-analyses/systematic reviews/review articles and U.S. Food and Drug Administration website of approved pharmacogenetic tests. STUDY ELIGIBILITY CRITERIA, PARTICIPANTS, AND INTERVENTION CRITERIA: We included any study in which either intended or adverse response to drug therapy was examined in relation to genetic variation in the germline or cancer cells in humans. Study characteristics and data reported in abstracts were recorded. We further analysed full text from a random 10% subset of articles spanning the different subclasses of study. From 102,264 Medline hits and 1,641 articles from other sources, we identified 1,668 primary research articles (1987 to 2007, inclusive). A high proportion of remaining articles were reviews/commentaries (ratio of reviews to primary research approximately 25 ratio 1). The majority of studies (81.8%) were set in Europe and North America focussing on cancer, cardiovascular disease and neurology/psychiatry. There was predominantly a candidate gene approach using common alleles, which despite small sample sizes (median 93 [IQR 40-222]) with no trend to an increase over time, generated a high proportion (74.5%) of nominally significant (por=4 studies, only 31 meta-analyses were identified. The majority (69.4%) of end-points were continuous and likely surrogate rather than hard (binary) clinical end-points. The high expectation but limited translation of pharmacogenetic research thus far may be explained by the preponderance of reviews over primary research, small

  6. Atenolol induced HDL-C change in the pharmacogenomic evaluation of antihypertensive responses (PEAR study.

    Directory of Open Access Journals (Sweden)

    Caitrin W McDonough

    Full Text Available We sought to identify novel pharmacogenomic markers for HDL-C response to atenolol in participants with mild to moderate hypertension. We genotyped 768 hypertensive participants from the Pharmacogenomic Evaluation of Antihypertensive Responses (PEAR study on the Illumina HumanCVD Beadchip. During PEAR, participants were randomized to receive atenolol or hydrochlorothiazide. Blood pressure and cholesterol levels were evaluated at baseline and after treatment. This study focused on participants treated with atenolol monotherapy. Association with atenolol induced HDL-C change was evaluated in 232 whites and 152 African Americans using linear regression. No SNPs achieved a Bonferroni corrected P-value. However, we identified 13 regions with consistent association across whites and African Americans. The most interesting of these regions were seven with prior associations with HDL-C, other metabolic traits, or functional implications in the lipid pathway: GALNT2, FTO, ABCB1, LRP5, STARD3NL, ESR1, and LIPC. Examples are rs2144300 in GALNT2 in whites (P=2.29x10(-4, β=-1.85 mg/dL and rs12595985 in FTO in African Americans (P=2.90x10(-4, β=4.52 mg/dL, both with consistent regional association (P<0.05 in the other race group. Additionally, baseline GALNT2 expression differed by rs2144300 genotype in whites (P=0.0279. In conclusion, we identified multiple gene regions associated with atenolol induced HDL-C change that were consistent across race groups, several with functional implications or prior associations with HDL-C.

  7. Pharmacogenomics of interferon-β in multiple sclerosis: what has been accomplished and how can we ensure future progress?

    Science.gov (United States)

    Carlson, Rebecca J; Doucette, J Ronald; Knox, Katherine; Nazarali, Adil J

    2015-04-01

    Multiple sclerosis (MS) is a progressive disorder of the central nervous system, often resulting in significant disability in early adulthood. The field of pharmacogenomics holds promise in distinguishing responders from non-responders to drug treatment. Most studies on genetic polymorphisms in MS have addressed treatment with interferon-β, yet few findings have been replicated. This review outlines the barriers that currently hinder the validity, reproducibility, and inter-study comparison of pharmacogenomics research as it relates to the use of interferon-β. Notably, statistical power, varying definitions of responder status, varying assay and genotyping methodologies, and anti-interferon-β neutralizing antibodies significantly confound existing data. Future work should focus on addressing these factors in order to optimize interferon-β treatment outcomes in MS. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Integrating pharmacogenetic information and clinical decision support into the electronic health record.

    Science.gov (United States)

    Goldspiel, Barry R; Flegel, Willy A; DiPatrizio, Gary; Sissung, Tristan; Adams, Sharon D; Penzak, Scott R; Biesecker, Leslie G; Fleisher, Thomas A; Patel, Jharana J; Herion, David; Figg, William D; Lertora, Juan J L; McKeeby, Jon W

    2014-01-01

    Pharmacogenetics (PG) examines gene variations for drug disposition, response, or toxicity. At the National Institutes of Health Clinical Center (NIH CC), a multidepartment Pharmacogenetics Testing Implementation Committee (PGTIC) was established to develop clinical decision support (CDS) algorithms for abacavir, carbamazepine, and allopurinol, medications for which human leukocyte antigen (HLA) variants predict severe hypersensitivity reactions. Providing PG CDS in the electronic health record (EHR) during order entry could prevent adverse drug events. Medical Logic Module (MLM) programming was used to implement PG CDS in our EHR. The MLM checks to see if an HLA sequence-based gene test is ordered. A message regarding test status (result present, absent, pending, or test not ordered) is displayed on the order form, and the MLM determines if the prescriber can place the order, place it but require an over-ride reason, or be blocked from placing the order. Since implementation, more than 725 medication orders have been placed for over 230 patients by 154 different prescribers for the three drugs included in our PG program. Prescribers commonly used an over-ride reason when placing the order mainly because patients had been receiving the drug without reaction before implementation of the CDS program. Successful incorporation of PG CDS into the NIH CC EHR required a coordinated, interdisciplinary effort to ensure smooth activation and a positive effect on patient care. Prescribers have adapted to using the CDS and have ordered PG testing as a direct result of the implementation.

  9. Pharmacokinetics, pharmacodynamics, and pharmacogenetics of hydroxyurea treatment for children with sickle cell anemia.

    Science.gov (United States)

    Ware, Russell E; Despotovic, Jenny M; Mortier, Nicole A; Flanagan, Jonathan M; He, Jin; Smeltzer, Matthew P; Kimble, Amy C; Aygun, Banu; Wu, Song; Howard, Thad; Sparreboom, Alex

    2011-11-03

    Hydroxyurea therapy has proven laboratory and clinical efficacies for children with sickle cell anemia (SCA). When administered at maximum tolerated dose (MTD), hydroxyurea increases fetal hemoglobin (HbF) to levels ranging from 10% to 40%. However, interpatient variability of percentage of HbF (%HbF) response is high, MTD itself is variable, and accurate predictors of hydroxyurea responses do not currently exist. HUSTLE (NCT00305175) was designed to provide first-dose pharmacokinetics (PK) data for children with SCA initiating hydroxyurea therapy, to investigate pharmacodynamics (PD) parameters, including HbF response and MTD after standardized dose escalation, and to evaluate pharmacogenetics influences on PK and PD parameters. For 87 children with first-dose PK studies, substantial interpatient variability was observed, plus a novel oral absorption phenotype (rapid or slow) that influenced serum hydroxyurea levels and total hydroxyurea exposure. PD responses in 174 subjects were robust and similar to previous cohorts; %HbF at MTD was best predicted by 5 variables, including baseline %HbF, whereas MTD was best predicted by 5 variables, including serum creatinine. Pharmacogenetics analysis showed single nucleotide polymorphisms influencing baseline %HbF, including 5 within BCL11A, but none influencing MTD %HbF or dose. Accurate prediction of hydroxyurea treatment responses for SCA remains a worthy but elusive goal.

  10. Contribution of Pharmacogenetic Testing to Modeled Medication Change Recommendations in a Long-Term Care Population with Polypharmacy.

    Science.gov (United States)

    Sugarman, Elaine A; Cullors, Ali; Centeno, Joel; Taylor, David

    2016-12-01

    Among long-term care facility residents, polypharmacy is common, and often appropriate, given the need to treat multiple, complex, chronic conditions. Polypharmacy has, however, been associated with increased healthcare costs, adverse drug events, and drug interactions. The current study evaluates the potential medication cost savings of adding personalized pharmacogenetic information to traditional medication management strategies. One hundred and twelve long-term care residents completed pharmacogenetic testing for targeted variants in the following genes: CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP3A4/CYP3A5, HTR2A, HTR2C, SLC6A4, SLC6A2 COMT, OPRM1, SLCO1B1, VKORC1 and MTHFR. Following reporting of the IDgenetix Polypharmacy ® test results, an internal medication management assessment was performed by a licensed clinical pharmacist to identify potential opportunities for regimen optimization through medication changes or discontinuations. The medication cost differences before and after the pharmacogenetic-guided review were assessed. Medication review following pharmacogenetic result reporting identified 54 patients (48.2%) with a total of 132 drug change recommendations (45 reductions; 87 replacements) and an average of 2.4 proposed medication changes (range 1-6) per patient. Medication cost savings related to the identified reduction and replacement opportunities exceeded the cost of testing and are estimated to be US$ 1300 (year 2016 cost) per patient annually assuming full implementation. Compared with traditional medication review, pharmacogenetic testing resulted in a 38% increase in the number of patients with current medication change opportunities and also offered valuable genetic information that could be referenced to personalize future prescribing decisions for all patients.

  11. Asymmetry in scientific method and limits to cross-disciplinary dialogue: toward a shared language and science policy in pharmacogenomics and human disease genetics.

    Science.gov (United States)

    Ozdemir, Vural; Williams-Jones, Bryn; Graham, Janice E; Preskorn, Sheldon H; Gripeos, Dimitrios; Glatt, Stephen J; Friis, Robert H; Reist, Christopher; Szabo, Sandor; Lohr, James B; Someya, Toshiyuki

    2007-04-01

    Pharmacogenomics is a hybrid field of experimental science at the intersection of human disease genetics and clinical pharmacology sharing applications of the new genomic technologies. But this hybrid field is not yet stable or fully integrated, nor is science policy in pharmacogenomics fully equipped to resolve the challenges of this emerging hybrid field. The disciplines of human disease genetics and clinical pharmacology contain significant differences in their scientific practices. Whereas clinical pharmacology originates as an experimental science, human disease genetics is primarily observational in nature. The result is a significant asymmetry in scientific method that can differentially impact the degree to which gene-environment interactions are discerned and, by extension, the study sample size required in each discipline. Because the number of subjects enrolled in observational genetic studies of diseases is characteristically viewed as an important criterion of scientific validity and reliability, failure to recognize discipline-specific requirements for sample size may lead to inappropriate dismissal or silencing of meritorious, although smaller-scale, craft-based pharmacogenomic investigations using an experimental study design. Importantly, the recognition that pharmacogenomics is an experimental science creates an avenue for systematic policy response to the ethical imperative to prospectively pursue genetically customized therapies before regulatory approval of pharmaceuticals. To this end, we discuss the critical role of interdisciplinary engagement between medical sciences, policy, and social science. We emphasize the need for development of shared standards across scientific, methodologic, and socioethical epistemologic divides in the hybrid field of pharmacogenomics to best serve the interests of public health.

  12. Pharmacogenetics of paraoxonase activity: elucidating the role of high-density lipoprotein in disease

    Science.gov (United States)

    Kim, Daniel Seung; Marsillach, Judit; Furlong, Clement E; Jarvik, Gail P

    2014-01-01

    PON1 is a key component of high-density lipoproteins (HDLs) and is at least partially responsible for HDL's antioxidant/atheroprotective properties. PON1 is also associated with numerous human diseases, including cardiovascular disease, Parkinson's disease and cancer. In addition, PON1 metabolizes a broad variety of substrates, including toxic organophosphorous compounds, statin adducts, glucocorticoids, the likely atherogenic l-homocysteine thiolactone and the quorum-sensing factor of Pseudomonas aeruginosa. Numerous cardiovascular and antidiabetic pharmacologic agents, dietary macronutrients, lifestyle factors and antioxidant supplements affect PON1 expression and enzyme activity levels. Owing to the importance of PON1 to HDL function and its individual association with diverse human diseases, pharmacogenomic interactions between PON1 and the various factors that alter its expression and activity may represent an important therapeutic target for future investigation. PMID:24024900

  13. The utility of pharmacogenetic testing to support the treatment of bipolar disorder

    Directory of Open Access Journals (Sweden)

    Ielmini M

    2018-03-01

    Full Text Available Marta Ielmini,1 Nicola Poloni,1 Ivano Caselli,1 Jordi Espadaler,2 Miquel Tuson,2 Alessandro Grecchi,3 Camilla Callegari1 1Department of Medicine and Surgery, Division of Psychiatry, University of Insubria, Varese, Italy; 2AB-BIOTICS S.A, R&D Unit, Sant Cugat del Valles, Barcelona, Spain; 3ASST Santi Paolo e Carlo Borromeo, Division of Psychiatry, Milan, Italy Background: Bipolar disorder (BD is a frequent cause of disability, health care costs, and risk of suicide. Pharmacogenetic tests (PGTs could help clinicians to identify those patients predisposed to the occurrence of adverse events (AEs improving the understanding of the correlation between genetic variants and drug response.Materials and methods: The study evaluated 30 patients affected by BD type I or II (according to Diagnostic and Statistical Manual of Mental Disorders, version 5 who underwent the PGT Neurofarmagen® (AB-BIOTICS SA, Barcelona, Spain between March 2016 and March 2017. The primary aim of this study was to identify if the treatment prescribed by the psychiatrists was consistent with the treatment suggested by the PGT at T0 (corresponding to the test report communication. As a secondary aim, we wanted to assess if clinicians had changed the treatment (in case of discordance at T1 (3-month follow-up visit according to the results of the PGT.Results: At T0, only 4 patients (13% had an optimal therapy in line with the PGT suggestions. At 3-month follow-up, 13 patients (40% had received a change of therapy consistent to the test, showing a significant statistical improvement in the Clinical Global Impression item Severity (CGI-S score over time compared to those not having changes consistent with the test. Regarding AEs, at baseline 9 out of 10 (90% of the patients who received a therapy modification according to the test presented AEs, and a significant within-group reduction was observed after 3 months (p = 0.031.Conclusion: Despite the small sample size, the study shows

  14. [Pharmacogenetics in anesthesia and intensive care medicine : Clinical and legal challenges exemplified by malignant hyperthermia].

    Science.gov (United States)

    Klingler, W; Pfenninger, E

    2016-05-01

    Pharmacotherapy is a key component of anesthesiology and intensive care medicine. The individual genetic profile influences not only the effect of pharmaceuticals but can also completely alter the mode of action. New technologies for genetic screening (e.g. next generation sequencing) and increasing knowledge of molecular pathways foster the disclosure of pharmacogenetic syndromes, which are classified as rare diseases. Taking into account the high genetic variability in humans and over 8000 known rare diseases, up to 20 % of the population may be affected. In summary, rare diseases are not rare. Most pharmacogenetic syndromes lead to a weakening or loss of pharmacological action. In contrast, malignant hyperthermia (MH), which is the most relevant pharmacogenetic syndrome for anesthesia, is characterized by a pharmacologically induced overactivation of calcium metabolism in skeletal muscle. Volatile anesthetic agents and succinylcholine trigger life-threatening hypermetabolic crises. Emergency treatment is based on inhibition of the calcium release channel of the sarcoplasmic reticulum by dantrolene. After an adverse pharmacological event patients must be informed and a clarification consultation must be carried out during which the hereditory character of MH is explained. The patient should be referred to a specialist MH center where a predisposition can be diagnosed by the functional in vitro contracture test from a muscle biopsy. Additional molecular genetic investigations can yield mutations in the genes for calcium-regulating proteins in skeletal muscle, e.g. ryanodine receptor 1 (RyR1) and calcium voltage-gated channel subunit alpha 1S (CACNA1S). Currently, an association to MH has only been shown for 35 mutations out of more than 400 known and probably hundreds of unknown genetic variations. Furthermore, MH predisposition is not excluded by negative mutation screening. For anesthesiological patient safety it is crucial to identify individuals at risk and

  15. Initial assessment of the benefits of implementing pharmacogenetics into the medical management of patients in a long-term care facility

    Directory of Open Access Journals (Sweden)

    Saldivar JS

    2016-01-01

    Full Text Available Juan-Sebastian Saldivar, David Taylor, Elaine A Sugarman, Ali Cullors, Jorge A Garces, Kahuku Oades, Joel Centeno AltheaDx, San Diego, CA, USA Abstract: The health care costs associated with prescription drugs are enormous, particularly in patients with polypharmacy (taking more than five prescription medications, and they continue to grow annually. The evolution of pharmacogenetics has provided clinicians with a valuable tool that allows for a smarter, more fine-tuned approach to treating patients for a number of clinical conditions. Applying a pharmacogenetics approach to the medical management of patients can provide a significant improvement to their care, result in cost savings by reducing the use of ineffective drugs, and decrease overall health care utilization. AltheaDx has begun a study to look at the benefits associated with incorporating pharmacogenetics into the medical management of patients who are on five or more medications. Applying pharmacogenetic guided PharmD recommendations across this patient population resulted in the elimination and/or replacement of one to three drugs, for 50% of the polypharmacy patient population tested, and an estimated US$621 in annual savings per patient. The initial assessment of this study shows that there is a clear opportunity for concrete health care savings solely from prescription drug management when incorporating pharmacogenetic testing.Keywords: personalized medicine, pharmacogenetics, pharmacokinetics, pharmacodynamics, adverse drug reaction, polypharmacy

  16. Role of Pharmacogenetics in Hematopoietic Stem Cell Transplantation Outcome in Children

    Directory of Open Access Journals (Sweden)

    Raffaella Franca

    2015-08-01

    Full Text Available Hematopoietic stem cell transplantation (HSCT is an established therapeutic procedure for several congenital and acquired disorders, both malignant and nonmalignant. Despite the great improvements in HSCT clinical practices over the last few decades, complications, such as graft vs. host disease (GVHD and sinusoidal obstructive syndrome (SOS, are still largely unpredictable and remain the major causes of morbidity and mortality. Both donor and patient genetic background might influence the success of bone marrow transplantation and could at least partially explain the inter-individual variability in HSCT outcome. This review summarizes some of the recent studies on candidate gene polymorphisms in HSCT, with particular reference to pediatric cohorts. The interest is especially focused on pharmacogenetic variants affecting myeloablative and immunosuppressive drugs, although genetic traits involved in SOS susceptibility and transplant-related mortality are also reviewed.

  17. ABCB1 haplotype and OPRM1 118A > G genotype interaction in methadone maintenance treatment pharmacogenetics

    Directory of Open Access Journals (Sweden)

    Barratt DT

    2012-04-01

    Full Text Available Daniel T Barratt1, Janet K Coller1, Richard Hallinan2, Andrew Byrne2, Jason M White1, David JR Foster3, Andrew A Somogyi1,41Discipline of Pharmacology, School of Medical Sciences, University of Adelaide, Adelaide, South Australia; 2The Byrne Surgery, Specialist Drug and Alcohol Practice, Redfern, New South Wales; 3Division of Health Sciences, Sansom Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia; 4Department of Clinical Pharmacology, Royal Adelaide Hospital, Adelaide, South Australia, AustraliaBackground: Genetic variability in ABCB1, encoding the P-glycoprotein efflux transporter, has been linked to altered methadone maintenance treatment dose requirements. However, subsequent studies have indicated that additional environmental or genetic factors may confound ABCB1 pharmacogenetics in different methadone maintenance treatment settings. There is evidence that genetic variability in OPRM1, encoding the mu opioid receptor, and ABCB1 may interact to affect morphine response in opposite ways. This study aimed to examine whether a similar gene-gene interaction occurs for methadone in methadone maintenance treatment.Methods: Opioid-dependent subjects (n = 119 maintained on methadone (15–300 mg/day were genotyped for five single nucleotide polymorphisms of ABCB1 (61A > G; 1199G > A; 1236C > T; 2677G > T; 3435C > T, as well as for the OPRM1 18A > G single nucleotide polymorphism. Subjects’ methadone doses and trough plasma (R-methadone concentrations (Ctrough were compared between ABCB1 haplotypes (with and without controlling for OPRM1 genotype, and between OPRM1 genotypes (with and without controlling for ABCB1 haplotype.Results: Among wild-type OPRM1 subjects, an ABCB1 variant haplotype group (subjects with a wild-type and 61A:1199G:1236C:2677T:3435T haplotype combination, or homozygous for the 61A:1199G:1236C:2677T:3435T haplotype had significantly lower doses (median ± standard

  18. Subjective response as a consideration in the pharmacogenetics of alcoholism treatment.

    Science.gov (United States)

    Roche, Daniel Jo; Ray, Lara A

    2015-01-01

    Currently available pharmacological treatments for alcoholism have modest efficacy and high individual variability in treatment outcomes, both of which have been partially attributed to genetic factors. One path to reducing the variability and improving the efficacy associated with these pharmacotherapies may be to identify overlapping genetic contributions to individual differences in both subjective responses to alcohol and alcoholism pharmacotherapy outcomes. As acute subjective response to alcohol is highly predictive of future alcohol related problems, identifying such shared genetic mechanisms may inform the development of personalized treatments that can effectively target converging pathophysiological mechanisms that convey risk for alcoholism. The focus of this review is to revisit the association between subjective response to alcohol and the etiology of alcoholism while also describing genetic contributions to this relationship, discuss potential pharmacogenetic approaches to target subjective response to alcohol in order to improve the treatment of alcoholism and examine conceptual and methodological issues associated with these topics, and outline future approaches to overcome these challenges.

  19. Mixed effects modeling of proliferation rates in cell-based models: consequence for pharmacogenomics and cancer.

    Directory of Open Access Journals (Sweden)

    Hae Kyung Im

    2012-02-01

    Full Text Available The International HapMap project has made publicly available extensive genotypic data on a number of lymphoblastoid cell lines (LCLs. Building on this resource, many research groups have generated a large amount of phenotypic data on these cell lines to facilitate genetic studies of disease risk or drug response. However, one problem that may reduce the usefulness of these resources is the biological noise inherent to cellular phenotypes. We developed a novel method, termed Mixed Effects Model Averaging (MEM, which pools data from multiple sources and generates an intrinsic cellular growth rate phenotype. This intrinsic growth rate was estimated for each of over 500 HapMap cell lines. We then examined the association of this intrinsic growth rate with gene expression levels and found that almost 30% (2,967 out of 10,748 of the genes tested were significant with FDR less than 10%. We probed further to demonstrate evidence of a genetic effect on intrinsic growth rate by determining a significant enrichment in growth-associated genes among genes targeted by top growth-associated SNPs (as eQTLs. The estimated intrinsic growth rate as well as the strength of the association with genetic variants and gene expression traits are made publicly available through a cell-based pharmacogenomics database, PACdb. This resource should enable researchers to explore the mediating effects of proliferation rate on other phenotypes.

  20. Clinical pharmacogenomics testing in the era of next generation sequencing: challenges and opportunities for precision medicine.

    Science.gov (United States)

    Ji, Yuan; Si, Yue; McMillin, Gwendolyn A; Lyon, Elaine

    2018-04-23

    The rapid development and dramatic decrease in cost of sequencing techniques have ushered the implementation of genomic testing in patient care. Next generation DNA sequencing (NGS) techniques have been used increasingly in clinical laboratories to scan the whole or part of the human genome in order to facilitate diagnosis and/or prognostics of genetic disease. Despite many hurdles and debates, pharmacogenomics (PGx) is believed to be an area of genomic medicine where precision medicine could have immediate impact in the near future. Areas covered: This review focuses on lessons learned through early attempts of clinically implementing PGx testing; the challenges and opportunities that PGx testing brings to precision medicine in the era of NGS. Expert commentary: Replacing targeted analysis approach with NGS for PGx testing is neither technically feasible nor necessary currently due to several technical limitations and uncertainty involved in interpreting variants of uncertain significance for PGx variants. However, reporting PGx variants out of clinical whole exome or whole genome sequencing (WES/WGS) might represent additional benefits for patients who are tested by WES/WGS.

  1. Implementing genomics and pharmacogenomics in the clinic: The National Human Genome Research Institute's genomic medicine portfolio.

    Science.gov (United States)

    Manolio, Teri A

    2016-10-01

    Increasing knowledge about the influence of genetic variation on human health and growing availability of reliable, cost-effective genetic testing have spurred the implementation of genomic medicine in the clinic. As defined by the National Human Genome Research Institute (NHGRI), genomic medicine uses an individual's genetic information in his or her clinical care, and has begun to be applied effectively in areas such as cancer genomics, pharmacogenomics, and rare and undiagnosed diseases. In 2011 NHGRI published its strategic vision for the future of genomic research, including an ambitious research agenda to facilitate and promote the implementation of genomic medicine. To realize this agenda, NHGRI is consulting and facilitating collaborations with the external research community through a series of "Genomic Medicine Meetings," under the guidance and leadership of the National Advisory Council on Human Genome Research. These meetings have identified and begun to address significant obstacles to implementation, such as lack of evidence of efficacy, limited availability of genomics expertise and testing, lack of standards, and difficulties in integrating genomic results into electronic medical records. The six research and dissemination initiatives comprising NHGRI's genomic research portfolio are designed to speed the evaluation and incorporation, where appropriate, of genomic technologies and findings into routine clinical care. Actual adoption of successful approaches in clinical care will depend upon the willingness, interest, and energy of professional societies, practitioners, patients, and payers to promote their responsible use and share their experiences in doing so. Published by Elsevier Ireland Ltd.

  2. Pharmacogenomics Implications of Using Herbal Medicinal Plants on African Populations in Health Transition

    Science.gov (United States)

    Thomford, Nicholas E.; Dzobo, Kevin; Chopera, Denis; Wonkam, Ambroise; Skelton, Michelle; Blackhurst, Dee; Chirikure, Shadreck; Dandara, Collet

    2015-01-01

    The most accessible points of call for most African populations with respect to primary health care are traditional health systems that include spiritual, religious, and herbal medicine. This review focusses only on the use of herbal medicines. Most African people accept herbal medicines as generally safe with no serious adverse effects. However, the overlap between conventional medicine and herbal medicine is a reality among countries in health systems transition. Patients often simultaneously seek treatment from both conventional and traditional health systems for the same condition. Commonly encountered conditions/diseases include malaria, HIV/AIDS, hypertension, tuberculosis, and bleeding disorders. It is therefore imperative to understand the modes of interaction between different drugs from conventional and traditional health care systems when used in treatment combinations. Both conventional and traditional drug entities are metabolized by the same enzyme systems in the human body, resulting in both pharmacokinetics and pharmacodynamics interactions, whose properties remain unknown/unquantified. Thus, it is important that profiles of interaction between different herbal and conventional medicines be evaluated. This review evaluates herbal and conventional drugs in a few African countries and their potential interaction at the pharmacogenomics level. PMID:26402689

  3. Flipping Content to Improve Student Examination Performance in a Pharmacogenomics Course.

    Science.gov (United States)

    Munson, Amanda; Pierce, Richard

    2015-09-25

    Objective. To develop, implement, and evaluate active learning in a flipped class to improve student examination performance in the genetic foundations of pharmacogenomics. Design. The flipped classroom model was adopted in which a guided-inquiry learning activity was developed and conducted to complement recorded, previously viewed didactic lectures. The activity was constructed to focus on critical thinking and application of core principles of genetic crosses and pedigree analysis. A combination of independent work and active discussion with volunteer and guided student response provided student-facilitator interaction. Assessment. Student learning was evaluated by comparing pretest and posttest formative assessment results and by the comparison of prior years' examination performance on a subset of content for which no flipped classroom learning activities occurred. There was no significant difference between examination scores between the flipped classroom and previous approaches. An item-by-item analysis of the content reflected a significant change in performance on questions addressed in the flipped classroom exercise. Conclusion. The flipped class instructional model in this project included active-learning activities and formative assessments that provided students spaced and repetitive curricular engagement. The intervention transformed the classroom interactions of faculty members and students and contributed to improved student examination performance.

  4. The clinical application of UGT1A1 pharmacogenetic testing: Gene-environment interactions

    Directory of Open Access Journals (Sweden)

    Marques Sara

    2010-04-01

    Full Text Available Abstract Over the past decade, the number of pharmacogenetic tests has increased considerably, allowing for the development of our knowledge of their clinical application. The uridine diphosphate glucuronosyltransferase 1A1 gene (UGT1A1 assay is an example of a pharmacogenetic test. Numerous variants have been found in UGT1A1, the main conjugating enzyme of bilirubin and drugs such as the anticancer drug irinotecan. Recently, the US Food and Drug Administration (FDA recommended testing for the presence of UGT1A1*28, an allele correlated with decreased transcriptional activity, to predict patients at risk of irinotecan toxicity. The administration of other drugs -- such as inhibitors of the UGT1A1 enzyme -- can clinically mimic the *28 phenotype, whereas inducers of UGT1A1 can increase the glucuronidation rate of the enzyme. The *28 polymorphism is not present in all ethnicities at a similar frequency, which suggests that it is important to study different populations to determine the clinical relevance of testing for UGT1A1*28 and to identify other clinically relevant UGT1A1 variants. Environmental factors such as lifestyle can also affect UGT1A1 activity. This review is a critical analysis of studies on drugs that can be affected by the presence of UGT1A1*28, the distribution of this polymorphism around the globe, distinct variants that may be clinically significant in African and Asian populations and how lifestyle can affect treatment outcomes that depend on UGT1A1 activity.

  5. Pharmacogenetic polymorphisms contributing to toxicity induced by methotrexate in the southern Spanish population with rheumatoid arthritis.

    Science.gov (United States)

    Plaza-Plaza, José Cristian; Aguilera, Margarita; Cañadas-Garre, Marisa; Chemello, Clarice; González-Utrilla, Alfonso; Faus Dader, María José; Calleja, Miguel Angel

    2012-11-01

    Abstract Rheumatoid arthritis (RA) is a common illness of global significance for public health. Methotrexate (MTX) is the most broadly used disease-modifying antirheumatic drug for the treatment of RA, but it displays marked person-to-person variation in its propensity for toxicity. Several studies have suggested that polymorphisms in methylenetetrahydrofolate reductase (MTHFR) C677T and A1298C, reduced folate carrier (RFC1) G80A, and ABCB1 C3435T, could be related to methotrexate toxicity. This prospective study examined the different frequencies of MTHFR, RFC1, and ABCB1 pharmacogenetic variations between patients who have RA and those without RA. We also sought to assess the association between these polymorphisms and MTX toxicity. Four single-nucleotide polymorphisms (SNPs) were genotyped: C677T and A1298C from MTHFR, G80A from RFC1, and C3435T from ABCB1. The efficacy and toxicity of MTX were evaluated through clinical follow-up during 1 year of treatment. RA patients showed a higher frequency of the T allele at MTHFR C677T than patients without RA (p=0.049). There was a significant association between the presence of both the T allele at MTHFR C677T (p=0.006), and the C allele at ABCB1 C3435T (p=0.046), with toxicity development after 12 months of MTX treatment. However, there was no correlation between MTX toxicity and either the A allele at MTHFR A1298C or the G allele at RFC1 A80G. These data suggest that the presence of the MTHFR C677T and ABCB1 C3435T SNPs contribute to MTX toxicity in patients with RA. These observations contribute to a rapidly-growing knowledge base on the pharmacogenetics of RA and personalized medicine.

  6. [Polymorphism of plasma cholinesterase in Pyrennees populations. Problems in geographic hematology and pharmacogenetics].

    Science.gov (United States)

    Vergnes, H; Sevin, J; Constans, J

    1980-01-01

    Plasma cholenesterase is classified among blood markers whose genetic variation in man was discovered during past years. To look broadly at the characteristics of this system two main fields are now well established: geographical hematology and pharmacogenetics. In the present work the results of the study of that enzyme are reported in 2 400 individuals belonging to distinct Pyrenean communities. On geographical hematology the data obtained show the existence of a genetic polymorphism, the extent of which has a significant variation in the different areas. The E1a gene reaches the highest frequency (7.7%) in the central part of the Pyrénées (Lux Saint-Sauveur Valley): the rate decreases in Toulouse (3%) and in the Basques (2.3%). The E1s allele was found in the Basques with a frequency of 2.13% value which gives a peculiar feature to this group when compared to other Pyrenean populations. The E1f gene was seldom discovered in the samples studied. These data fill a gap in mapping the distribution of blood markers in France. On pharmacogenetics, the gene frequencies observed at the E1 locus were used for the likelihood of findings genotypes with a sensitivity to suxamethonium or other chemicals. Such a sensitivity cannot be underestimated in some groups (central part of Pyrénées, Basques). In medical practice a molecular abnormality of cholinesterase may be detected after apnea due to suxamethonium administration during anesthesia or in some cases of toxic syndromes induced by chemical compounds (agricultural or industrial products), inhibition of Cholinesterase.

  7. CLOPIDOGREL PHARMACOGENETICS

    Directory of Open Access Journals (Sweden)

    A. N. Meshkov

    2010-01-01

    Full Text Available Platelets play an important role in the pathogenesis of atherosclerosis. They are involved in atherosclerosis progression and thrombotic complications. That is why antiplatelet therapy is a necessary element of these complications prevention in patients with coronary heart disease. One of the most commonly used antiplatelet agents all over the world is clopidogrel, R2Y12-receptor blocker. It is shown that clopidogrel has insufficient effect in some patients, ie they are resistant to clopidogrel. Genetic causes of resistance to clopidogrel are considered in this review. It is shown that genetic factors related to the metabolism of clopidogrel play an important role in the resistance development. Allel variants of the gene cytochrome CYP2C19 are the main among them. The role of other genes is less studied.

  8. Biomarkers in Veterinary Medicine.

    Science.gov (United States)

    Myers, Michael J; Smith, Emily R; Turfle, Phillip G

    2017-02-08

    This article summarizes the relevant definitions related to biomarkers; reviews the general processes related to biomarker discovery and ultimate acceptance and use; and finally summarizes and reviews, to the extent possible, examples of the types of biomarkers used in animal species within veterinary clinical practice and human and veterinary drug development. We highlight opportunities for collaboration and coordination of research within the veterinary community and leveraging of resources from human medicine to support biomarker discovery and validation efforts for veterinary medicine.

  9. Combination of biomarkers

    DEFF Research Database (Denmark)

    Thurfjell, Lennart; Lötjönen, Jyrki; Lundqvist, Roger

    2012-01-01

    The New National Institute on Aging-Alzheimer's Association diagnostic guidelines for Alzheimer's disease (AD) incorporate biomarkers in the diagnostic criteria and suggest division of biomarkers into two categories: Aβ accumulation and neuronal degeneration or injury.......The New National Institute on Aging-Alzheimer's Association diagnostic guidelines for Alzheimer's disease (AD) incorporate biomarkers in the diagnostic criteria and suggest division of biomarkers into two categories: Aβ accumulation and neuronal degeneration or injury....

  10. Pharmacogenetic Study in Rectal Cancer Patients Treated With Preoperative Chemoradiotherapy: Polymorphisms in Thymidylate Synthase, Epidermal Growth Factor Receptor, GSTP1, and DNA Repair Genes

    International Nuclear Information System (INIS)

    Páez, David; Salazar, Juliana; Paré, Laia; Pertriz, Lourdes; Targarona, Eduardo; Rio, Elisabeth del; Barnadas, Agusti; Marcuello, Eugenio; Baiget, Montserrat

    2011-01-01

    Purpose: Several studies have been performed to evaluate the usefulness of neoadjuvant treatment using oxaliplatin and fluoropyrimidines for locally advanced rectal cancer. However, preoperative biomarkers of outcome are lacking. We studied the polymorphisms in thymidylate synthase, epidermal growth factor receptor, glutathione S-transferase pi 1 (GSTP1), and several DNA repair genes to evaluate their usefulness as pharmacogenetic markers in a cohort of 128 rectal cancer patients treated with preoperative chemoradiotherapy. Methods and Materials: Blood samples were obtained from 128 patients with Stage II-III rectal cancer. DNA was extracted from the peripheral blood nucleated cells, and the genotypes were analyzed by polymerase chain reaction amplification and automated sequencing techniques or using a 48.48 dynamic array on the BioMark system. The germline polymorphisms studied were thymidylate synthase, (VNTR/5′UTR, 2R G>C single nucleotide polymorphism [SNP], 3R G>C SNP), epidermal growth factor receptor (Arg497Lys), GSTP1 (Ile105val), excision repair cross-complementing 1 (Asn118Asn, 8092C>A, 19716G>C), X-ray repair cross-complementing group 1 (XRCC1) (Arg194Trp, Arg280His, Arg399Gln), and xeroderma pigmentosum group D (Lys751Gln). The pathologic response, pathologic regression, progression-free survival, and overall survival were evaluated according to each genotype. Results: The ∗3/∗3 thymidylate synthase genotype was associated with a greater response rate (pathologic complete remission and microfoci residual tumor, 59% in ∗3/∗3 vs. 35% in ∗2/∗2 and ∗2/∗3; p = .013). For the thymidylate synthase genotype, the median progression-free survival was 103 months for the ∗3/∗3 patients and 84 months for the ∗2/∗2 and ∗2/∗3 patients (p = .039). For XRCC1 Arg399Gln SNP, the median progression-free survival was 101 months for the G/G, 78 months for the G/A, and 31 months for the A/A patients (p = .048). Conclusions: The thymidylate

  11. Pharmacogenetics of response to methylphenidate in adult patients with Attention-Deficit/Hyperactivity Disorder (ADHD): a systematic review.

    Science.gov (United States)

    Contini, Verônica; Rovaris, Diego L; Victor, Marcelo M; Grevet, Eugenio H; Rohde, Luis A; Bau, Claiton H D

    2013-06-01

    Methylphenidate (MPH) is a first line option in the psychopharmacologic treatment of adults with Attention-Deficit/Hyperactivity Disorder (ADHD). However, there is a considerable proportion of adult patients who do not respond to treatment with MPH or discontinue drug therapy. Since effects of genetic variants in the response to MPH treatment might explain these negative outcomes, we conducted an electronic systematic search of MEDLINE-indexed literature looking for articles containing information about pharmacogenetics of ADHD in adults published until January, 2012. The keywords used were 'ADHD', 'Attention-Deficit/Hyperactivity Disorder' and 'gene' in combination with methylphenidate, amphetamine or atomoxetine. Only 5 pharmacogenetic studies on adult ADHD met inclusion criteria. The results evidenced that most findings obtained so far are negative, and all studies focused on MPH response. There is only one positive result, for a polymorphism at the dopamine transporter gene (DAT1) gene. The current state of the art in adult ADHD implies that pharmacogenetic tests are far from routine clinical practice. However, the integration of these studies with neuroimaging and neuropsychological tests may help to understand mechanisms of drug action and the pathophysiology of ADHD. Copyright © 2012 Elsevier B.V. and ECNP. All rights reserved.

  12. New sepsis biomarkers

    Directory of Open Access Journals (Sweden)

    Dolores Limongi

    2016-06-01

    Full Text Available Sepsis remains a leading cause of death in the intensive care units and in all age groups worldwide. Early recognition and diagnosis are key to achieving improved outcomes. Therefore, novel biomarkers that might better inform clinicians treating such patients are surely needed. The main attributes of successful biomarkers would be high sensitivity, specificity, possibility of bedside monitoring and financial accessibility. A panel of sepsis biomarkers along with currently used laboratory tests will facilitate earlier diagnosis, timely treatment and improved outcome may be more effective than single biomarkers. In this review, we summarize the most recent advances on sepsis biomarkers evaluated in clinical and experimental studies.

  13. Japan PGx Data Science Consortium Database: SNPs and HLA genotype data from 2994 Japanese healthy individuals for pharmacogenomics studies.

    Science.gov (United States)

    Kamitsuji, Shigeo; Matsuda, Takashi; Nishimura, Koichi; Endo, Seiko; Wada, Chisa; Watanabe, Kenji; Hasegawa, Koichi; Hishigaki, Haretsugu; Masuda, Masatoshi; Kuwahara, Yusuke; Tsuritani, Katsuki; Sugiura, Kenkichi; Kubota, Tomoko; Miyoshi, Shinji; Okada, Kinya; Nakazono, Kazuyuki; Sugaya, Yuki; Yang, Woosung; Sawamoto, Taiji; Uchida, Wataru; Shinagawa, Akira; Fujiwara, Tsutomu; Yamada, Hisaharu; Suematsu, Koji; Tsutsui, Naohisa; Kamatani, Naoyuki; Liou, Shyh-Yuh

    2015-06-01

    Japan Pharmacogenomics Data Science Consortium (JPDSC) has assembled a database for conducting pharmacogenomics (PGx) studies in Japanese subjects. The database contains the genotypes of 2.5 million single-nucleotide polymorphisms (SNPs) and 5 human leukocyte antigen loci from 2994 Japanese healthy volunteers, as well as 121 kinds of clinical information, including self-reports, physiological data, hematological data and biochemical data. In this article, the reliability of our data was evaluated by principal component analysis (PCA) and association analysis for hematological and biochemical traits by using genome-wide SNP data. PCA of the SNPs showed that all the samples were collected from the Japanese population and that the samples were separated into two major clusters by birthplace, Okinawa and other than Okinawa, as had been previously reported. Among 87 SNPs that have been reported to be associated with 18 hematological and biochemical traits in genome-wide association studies (GWAS), the associations of 56 SNPs were replicated using our data base. Statistical power simulations showed that the sample size of the JPDSC control database is large enough to detect genetic markers having a relatively strong association even when the case sample size is small. The JPDSC database will be useful as control data for conducting PGx studies to explore genetic markers to improve the safety and efficacy of drugs either during clinical development or in post-marketing.

  14. Multifactor dimensionality reduction: An analysis strategy for modelling and detecting gene - gene interactions in human genetics and pharmacogenomics studies

    Directory of Open Access Journals (Sweden)

    Motsinger Alison A

    2006-03-01

    Full Text Available Abstract The detection of gene - gene and gene - environment interactions associated with complex human disease or pharmacogenomic endpoints is a difficult challenge for human geneticists. Unlike rare, Mendelian diseases that are associated with a single gene, most common diseases are caused by the non-linear interaction of numerous genetic and environmental variables. The dimensionality involved in the evaluation of combinations of many such variables quickly diminishes the usefulness of traditional, parametric statistical methods. Multifactor dimensionality reduction (MDR is a novel and powerful statistical tool for detecting and modelling epistasis. MDR is a non-parametric and model-free approach that has been shown to have reasonable power to detect epistasis in both theoretical and empirical studies. MDR has detected interactions in diseases such as sporadic breast cancer, multiple sclerosis and essential hypertension. As this method is more frequently applied, and was gained acceptance in the study of human disease and pharmacogenomics, it is becoming increasingly important that the implementation of the MDR approach is properly understood. As with all statistical methods, MDR is only powerful and useful when implemented correctly. Concerns regarding dataset structure, configuration parameters and the proper execution of permutation testing in reference to a particular dataset and configuration are essential to the method's effectiveness. The detection, characterisation and interpretation of gene - gene and gene - environment interactions are expected to improve the diagnosis, prevention and treatment of common human diseases. MDR can be a powerful tool in reaching these goals when used appropriately.

  15. Multifactor dimensionality reduction: An analysis strategy for modelling and detecting gene - gene interactions in human genetics and pharmacogenomics studies

    Science.gov (United States)

    2006-01-01

    The detection of gene - gene and gene - environment interactions associated with complex human disease or pharmacogenomic endpoints is a difficult challenge for human geneticists. Unlike rare, Mendelian diseases that are associated with a single gene, most common diseases are caused by the non-linear interaction of numerous genetic and environmental variables. The dimensionality involved in the evaluation of combinations of many such variables quickly diminishes the usefulness of traditional, parametric statistical methods. Multifactor dimensionality reduction (MDR) is a novel and powerful statistical tool for detecting and modelling epistasis. MDR is a non-parametric and model-free approach that has been shown to have reasonable power to detect epistasis in both theoretical and empirical studies. MDR has detected interactions in diseases such as sporadic breast cancer, multiple sclerosis and essential hypertension. As this method is more frequently applied, and was gained acceptance in the study of human disease and pharmacogenomics, it is becoming increasingly important that the implementation of the MDR approach is properly understood. As with all statistical methods, MDR is only powerful and useful when implemented correctly. Concerns regarding dataset structure, configuration parameters and the proper execution of permutation testing in reference to a particular dataset and configuration are essential to the method's effectiveness. The detection, characterisation and interpretation of gene - gene and gene - environment interactions are expected to improve the diagnosis, prevention and treatment of common human diseases. MDR can be a powerful tool in reaching these goals when used appropriately. PMID:16595076

  16. Multifactor dimensionality reduction: an analysis strategy for modelling and detecting gene-gene interactions in human genetics and pharmacogenomics studies.

    Science.gov (United States)

    Motsinger, Alison A; Ritchie, Marylyn D

    2006-03-01

    The detection of gene-gene and gene-environment interactions associated with complex human disease or pharmacogenomic endpoints is a difficult challenge for human geneticists. Unlike rare, Mendelian diseases that are associated with a single gene, most common diseases are caused by the non-linear interaction of numerous genetic and environmental variables. The dimensionality involved in the evaluation of combinations of many such variables quickly diminishes the usefulness of traditional, parametric statistical methods. Multifactor dimensionality reduction (MDR) is a novel and powerful statistical tool for detecting and modelling epistasis. MDR is a non-parametric and model-free approach that has been shown to have reasonable power to detect epistasis in both theoretical and empirical studies. MDR has detected interactions in diseases such as sporadic breast cancer, multiple sclerosis and essential hypertension. As this method is more frequently applied, and was gained acceptance in the study of human disease and pharmacogenomics, it is becoming increasingly important that the implementation of the MDR approach is properly understood. As with all statistical methods, MDR is only powerful and useful when implemented correctly. Concerns regarding dataset structure, configuration parameters and the proper execution of permutation testing in reference to a particular dataset and configuration are essential to the method's effectiveness. The detection, characterisation and interpretation of gene-gene and gene-environment interactions are expected to improve the diagnosis, prevention and treatment of common human diseases. MDR can be a powerful tool in reaching these goals when used appropriately.

  17. Genetic polymorphisms in very important pharmacogenomic variants in the Zhuang ethnic group of Southwestern China: A cohort study in the Zhuang population.

    Science.gov (United States)

    Li, Jing; Guo, Chenghao; Yan, Mengdan; Niu, Fanglin; Chen, Peng; Li, Bin; Jin, Tianbo

    2018-04-01

    Pharmacogenomics, the study of the role of genetics in drug response, has recently become a focal point of research. Previous studies showed that genes associated with drug detoxification vary among different populations. However, pharmacogenomic information of the Zhuang ethnic group is scarce. The aim of the present study was to screen members of the Zhuang ethnicity in southwestern China for genotype frequencies of very important pharmacogenomic (VIP) variants and to determine the differences between the Zhuang ethnicity and other human populations.We genotyped 80 variants of VIP genes in 100 unrelated healthy Zhuang adults from the Yunnan province of China. Next, we analyzed the genotyping data with Structure and F-statistics (Fst).We compared our data with those of other populations using the HapMap data set, and observed that the frequency distribution of Zhuang population in Yunnan closely resembles that of JPT. Furthermore, population structure and Fst analysis showed that the Zhuang population is closely related to the Shaanxi Han population with respect to genetic background.Our study supplements existing information on Zhuang population pharmacogenomics and provides an extensive overview for developing personalized medicine.

  18. Pharmacogenetic associations of MMP9 and MMP12 variants with cardiovascular disease in patients with hypertension.

    Directory of Open Access Journals (Sweden)

    Rikki M Tanner

    Full Text Available OBJECTIVES: MMP-9 and -12 function in tissue remodeling and may play roles in cardiovascular disease (CVD. We assessed associations of four MMP polymorphisms and three antihypertensive drugs with cardiovascular outcomes. METHODS: Hypertensives (n = 42,418 from a double-blind, randomized, clinical trial were randomized to chlorthalidone, amlodipine, lisinopril, or doxazosin treatment (mean follow up, 4.9 years. The primary outcome was coronary heart disease (CHD. Secondary outcomes included combined CHD, all CVD outcomes combined, stroke, heart failure (HF, and mortality. Genotype-treatment interactions were tested. RESULTS: There were 38,698 participants genotyped for at least one of the polymorphisms included here. For MMP9 R668Q (rs2274756, lower hazard ratios (HRs were found for AA subjects for most outcomes when treated with chlorthalidone versus amlodipine (eg., CCHD: GG = 1.00, GA = 1.01, AA = 0.64; P = 0.038. For MMP9 R279Q (rs17576, modest pharmacogenetic findings were observed for combined CHD and the composite CVD outcome. For MMP12 N122S (rs652438, lower HRs were observed for CHD in subjects carrying at least one G allele and being treated with chlorthalidone versus lisinopril (CHD: AA = 1.07, AG = 0.80, GG = 0.49; P = 0.005. In the lisinopril-amlodipine comparison, higher HRs were observed for participants having at least one G allele at the MMP12 N122S locus (CHD: AA = 0.94, AG = 1.19, GG = 1.93; P = 0.041. For MMP12 -82A>G (rs2276109, no pharmacogenetic effect was found for the primary outcome, although lower HRs were observed for AA homozygotes in the chlorthalidone-amlodipine comparison for HF (P = 0.015. CONCLUSIONS: We observed interactions between antihypertensive drugs and MMP9 and MMP12 for CHD and composite CVD. The data suggest that these genes may provide useful clinical information with respect to treatment decisions.

  19. Replication of LDL GWAs hits in PROSPER/PHASE as validation for future (pharmacogenetic analyses

    Directory of Open Access Journals (Sweden)

    Stott David J

    2011-10-01

    Full Text Available Abstract Background The PHArmacogenetic study of Statins in the Elderly at risk (PHASE is a genome wide association study in the PROspective Study of Pravastatin in the Elderly at risk for vascular disease (PROSPER that investigates the genetic variation responsible for the individual variation in drug response to pravastatin. Statins lower LDL-cholesterol in general by 30%, however not in all subjects. Moreover, clinical response is highly variable and adverse effects occur in a minority of patients. In this report we first describe the rationale of the PROSPER/PHASE project and second show that the PROSPER/PHASE study can be used to study pharmacogenetics in the elderly. Methods The genome wide association study (GWAS was conducted using the Illumina 660K-Quad beadchips following manufacturer's instructions. After a stringent quality control 557,192 SNPs in 5,244 subjects were available for analysis. To maximize the availability of genetic data and coverage of the genome, imputation up to 2.5 million autosomal CEPH HapMap SNPs was performed with MACH imputation software. The GWAS for LDL-cholesterol is assessed with an additive linear regression model in PROBABEL software, adjusted for age, sex, and country of origin to account for population stratification. Results Forty-two SNPs reached the GWAS significant threshold of p = 5.0e-08 in 5 genomic loci (APOE/APOC1; LDLR; FADS2/FEN1; HMGCR; PSRC1/CELSR5. The top SNP (rs445925, chromosome 19 with a p-value of p = 2.8e-30 is located within the APOC1 gene and near the APOE gene. The second top SNP (rs6511720, chromosome 19 with a p-value of p = 5.22e-15 is located within the LDLR gene. All 5 genomic loci were previously associated with LDL-cholesterol levels, no novel loci were identified. Replication in WOSCOPS and CARE confirmed our results. Conclusion With the GWAS in the PROSPER/PHASE study we confirm the previously found genetic associations with LDL-cholesterol levels. With this proof

  20. Pharmacogenetics of hepatitis C: transition from interferon-based therapies to direct-acting antiviral agents

    Directory of Open Access Journals (Sweden)

    Kamal SM

    2014-06-01

    28B gene and natural clearance of HCV infection or after PEGylated interferon-alpha and ribavirin treatment with and without direct antiviral agents. This paper synthesizes the recent advances in the pharmacogenetics of HCV infection in the era of triple therapies.Keywords: hepatitis C virus, interleukin-28B polymorphisms, PEGylated interferon and ribavirin, direct-acting antiviral agents, pharmacogenetics, rational therapeutics

  1. An Interdisciplinary Experience focused on Pharmacogenetics: Engaging pharmacy and physician assistant students in conversations about antiplatelet therapy with respect to CYP2C19 genotype

    Directory of Open Access Journals (Sweden)

    Diane M Calinski

    2016-02-01

    Full Text Available Objective: The goals of the interdisciplinary laboratory were to educate and engage pharmacy and physician assistant (PA students in a discussion focused on the collection, interpretation, and application of pharmacogenetic data. Design: Interdisciplinary teams participated in a one-hour, case-based discussion and provided a therapeutic recommendation using the Clinical Pharmacogenetics Implementation Consortium guidelines. Assessment: All students were surveyed before and after the laboratory on knowledge and application of pharmacogenetics and working in interdisciplinary teams. The interdisciplinary laboratory successfully enhanced the student’s knowledge about sample collection and interpretation of pharmacogenetic information. Additionally, the laboratory improved student confidence in working in interdisciplinary teams to apply pharmacogenetic information to clinical decision making. Furthermore, the majority of students indicated that the interdisciplinary laboratory is valuable and useful in healthcare curriculums. Conclusion: The laboratory highlighted the differences between pharmacy and PA education regarding PGt, and brought to light several important uncertainties: (1 What is the depth of PGt knowledge that healthcare practitioners need? (2 What are best practices for conveying PGt information?   Type: Case Study

  2. Initial assessment of the benefits of implementing pharmacogenetics into the medical management of patients in a long-term care facility

    Science.gov (United States)

    Saldivar, Juan-Sebastian; Taylor, David; Sugarman, Elaine A; Cullors, Ali; Garces, Jorge A; Oades, Kahuku; Centeno, Joel

    2016-01-01

    The health care costs associated with prescription drugs are enormous, particularly in patients with polypharmacy (taking more than five prescription medications), and they continue to grow annually. The evolution of pharmacogenetics has provided clinicians with a valuable tool that allows for a smarter, more fine-tuned approach to treating patients for a number of clinical conditions. Applying a pharmacogenetics approach to the medical management of patients can provide a significant improvement to their care, result in cost savings by reducing the use of ineffective drugs, and decrease overall health care utilization. AltheaDx has begun a study to look at the benefits associated with incorporating pharmacogenetics into the medical management of patients who are on five or more medications. Applying pharmacogenetic guided PharmD recommendations across this patient population resulted in the elimination and/or replacement of one to three drugs, for 50% of the polypharmacy patient population tested, and an estimated US$621 in annual savings per patient. The initial assessment of this study shows that there is a clear opportunity for concrete health care savings solely from prescription drug management when incorporating pharmacogenetic testing. PMID:26855597

  3. Pharmacogenetics and pathophysiology of CACNA1S mutations in malignant hyperthermia.

    Science.gov (United States)

    Beam, Teresa A; Loudermilk, Emily F; Kisor, David F

    2017-02-01

    A review of the pharmacogenetics (PGt) and pathophysiology of calcium voltage-gated channel subunit alpha1 S (CACNA1S) mutations in malignant hyperthermia susceptibility type 5 (MHS5; MIM #60188) is presented. Malignant hyperthermia (MH) is a life-threatening hypermetabolic state of skeletal muscle usually induced by volatile, halogenated anesthetics and/or the depolarizing neuromuscular blocker succinylcholine. In addition to ryanodine receptor 1 (RYR1) mutations, several CACNA1S mutations are known to be risk factors for increased susceptibility to MH (MHS). However, the presence of these pathogenic CACNA1S gene variations cannot be used to positively predict MH since the condition is genetically heterogeneous with variable expression and incomplete penetrance. At present, one or at most six CACNA1S mutations display significant linkage or association either to clinically diagnosed MH or to MHS as determined by contracture testing. Additional pathogenic variants in CACNA1S, either alone or in combination with genes affecting Ca 2+ homeostasis, are likely to be discovered in association to MH as whole exome sequencing becomes more commonplace. Copyright © 2017 the American Physiological Society.

  4. Psychiatry meets pharmacogenetics for the treatment of revolving door patients with psychiatric disorders.

    Science.gov (United States)

    Panza, Francesco; Lozupone, Madia; Stella, Eleonora; Lofano, Lucia; Gravina, Carolina; Urbano, Maria; Daniele, Antonio; Bellomo, Antonello; Logroscino, Giancarlo; Greco, Antonio; Seripa, Davide

    2016-12-01

    Therapeutic failures (TFs) and adverse drug reactions (ADRs), together with the recurring nature of the clinical course of psychiatric disorders, mainly bipolar disorders (BDs), strongly contributed to the prevalence and frequency of hospital readmissions observed in these patients. This is the revolving door (RD) condition, dramatically rising costs for the management of these patients in psychiatric settings. Areas covered: We searched in the medical literature until May 2016 to review the role of functional variants in the cytochrome P450 (CYP) 2D6 gene on observed ADRs and TFs in RD patients with BDs, conferring a different capacity to metabolize psychotropic drugs. Expert commentary: CYP2D6 functional polymorphisms might directly contributed to the prevalence and frequency of the RD condition, commonly observed in BD patients. Although several environmental and socio-demographic/diagnostic variables such as alcohol/drug abuse, and medication non-compliance accounted for a significant proportion of the ability to predict RD prevalence and frequency, the pharmacogenetics of CYP, particularly CYP2D6, may help to identify BD patients at risk for ADRs and TFs. These patients may be addressed towards alternative treatments, thus improving their quality of life, and reducing RD prevalence and frequency and the overall costs for their management.

  5. Orexin Receptor Multimerization versus Functional Interactions: Neuropharmacological Implications for Opioid and Cannabinoid Signalling and Pharmacogenetics

    Directory of Open Access Journals (Sweden)

    Miles D. Thompson

    2017-10-01

    Full Text Available Orexins/hypocretins are neuropeptides formed by proteolytic cleavage of a precursor peptide, which are produced by neurons found in the lateral hypothalamus. The G protein-coupled receptors (GPCRs for these ligands, the OX1 and OX2 orexin receptors, are more widely expressed throughout the central nervous system. The orexin/hypocretin system has been implicated in many pathways, and its dysregulation is under investigation in a number of diseases. Disorders in which orexinergic mechanisms are being investigated include narcolepsy, idiopathic sleep disorders, cluster headache and migraine. Human narcolepsy has been associated with orexin deficiency; however, it has only rarely been attributed to mutations in the gene encoding the precursor peptide. While gene variations within the canine OX2 gene hcrtr2 have been directly linked with narcolepsy, the majority of human orexin receptor variants are weakly associated with diseases (the idiopathic sleep disorders, cluster headache and polydipsia-hyponatremia in schizophrenia or are of potential pharmacogenetic significance. Evidence for functional and/or heterodimerization between wild-type variant orexin receptors and opioid and cannabinoid receptors is discussed in the context of its relevance to depression and epilepsy.

  6. Challenges of development and implementation of point of care pharmacogenetic testing.

    Science.gov (United States)

    Haga, Susanne B

    2016-09-01

    Just as technology was the underlying driver of the sequencing of the human genome and subsequent generation of volumes of genome sequence data from healthy and affected individuals, animal, plant, and microbial species alike, so too will technology revolutionize diagnostic testing. One area of intense interest is the use of genetic data to inform decisions regarding drug selection and drug dosing, known as pharmacogenetic (PGx) testing, to improve likelihood of successful treatment outcomes with minimal risks. This commentary will provide an overview of implementation research of PGx testing, the benefits of point-of-care (POC) testing and overview of POC testing platforms, available PGx tests, and barriers and facilitators to the development and integration of POC-PGx testing into clinical settings. Sources include the published literature, and databases from the Centers for Medicaid and Medicare Services, Food and Drug Administration. Expert commentary: The utilization of POC PGx testing may enable more routine test use, but the development and implementation of such tests will face some barriers before personalized medicine is available to every patient. In particular, provider training, availability of clinical decision supports, and connectivity will be key areas to facilitate routine use.

  7. Pharmacogenetics in diverse ethnic populations--implications for drug discovery and development.

    Science.gov (United States)

    McCarthy, Linda C; Davies, Kirstie J; Campbell, David A

    2002-07-01

    It is widely acknowledged that the vast quantities of data now publicly available as a result of the human genome initiative have the potential to revolutionize the pharmaceutical industry. More tangibly to the drug development business, the dawn of the pharmacogenetics era has the potential to impact not only the discovery of new medicines but also the safety and efficacy of pharmaceutical agents. Coincident with these scientific advances is the emergence of new markets for pharmaceutical agents. Japan, which represents the world's second biggest market, is a good example. With the ICH E5 agreement in 1998 and a rapid change in the drug registration process in Japan, there are increasing opportunities to improve access to more medicines in all parts of the world. However, it is increasingly clear that significant genetic variation still exists between populations, with a host of data on interethnic variation in drug metabolizing enzyme and drug transporter activity. Evidence suggesting that this genetic variation may play an important role in defining some of the interethnic variation in drug response to currently marketed compounds is reviewed here, and future possibilities of using such information to better streamline the drug development process are discussed.

  8. Cardiac biomarkers in Neonatology

    OpenAIRE

    Vijlbrief, D.C.

    2015-01-01

    In this thesis, the role for cardiac biomarkers in neonatology was investigated. Several clinically relevant results were reported. In term and preterm infants, hypoxia and subsequent adaptation play an important role in cardiac biomarker elevation. The elevated natriuretic peptides are indicative of abnormal function; elevated troponins are suggestive for cardiomyocyte damage. This methodology makes these biomarkers of additional value in the treatment of newborn infants, separate or as a co...

  9. Potential of a Pharmacogenetic-Guided Algorithm to Predict Optimal Warfarin Dosing in a High-Risk Hispanic Patient

    Directory of Open Access Journals (Sweden)

    Dagmar F. Hernandez-Suarez MD

    2016-12-01

    Full Text Available Deep abdominal vein thrombosis is extremely rare among thrombotic events secondary to the use of contraceptives. A case to illustrate the clinical utility of ethno-specific pharmacogenetic testing in warfarin management of a Hispanic patient is reported. A 37-year-old Hispanic Puerto Rican, non-gravid female with past medical history of abnormal uterine bleeding on hormonal contraceptive therapy was evaluated for abdominal pain. Physical exam was remarkable for unspecific diffuse abdominal tenderness, and general initial laboratory results—including coagulation parameters—were unremarkable. A contrast-enhanced computed tomography showed a massive thrombosis of the main portal, splenic, and superior mesenteric veins. On admission the patient was started on oral anticoagulation therapy with warfarin at 5 mg/day and low-molecular-weight heparin. The prediction of an effective warfarin dose of 7.5 mg/day, estimated by using a recently developed pharmacogenetic-guided algorithm for Caribbean Hispanics, coincided with the actual patient’s warfarin dose to reach the international normalized ratio target. We speculate that the slow rise in patient’s international normalized ratio observed on the initiation of warfarin therapy, the resulting high risk for thromboembolic events, and the required warfarin dose of 7.5 mg/day are attributable in some part to the presence of the NQO1*2 (g.559C>T, p.P187S polymorphism, which seems to be significantly associated with resistance to warfarin in Hispanics. By adding genotyping results of this novel variant, the predictive model can inform clinicians better about the optimal warfarin dose in Caribbean Hispanics. The results highlight the potential for pharmacogenetic testing of warfarin to improve patient care.

  10. Potential of a Pharmacogenetic-Guided Algorithm to Predict Optimal Warfarin Dosing in a High-Risk Hispanic Patient

    Directory of Open Access Journals (Sweden)

    Dagmar F. Hernandez-Suarez MD

    2016-12-01

    Full Text Available Deep abdominal vein thrombosis is extremely rare among thrombotic events secondary to the use of contraceptives. A case to illustrate the clinical utility of ethno-specific pharmacogenetic testing in warfarin management of a Hispanic patient is reported. A 37-year-old Hispanic Puerto Rican, non-gravid female with past medical history of abnormal uterine bleeding on hormonal contraceptive therapy was evaluated for abdominal pain. Physical exam was remarkable for unspecific diffuse abdominal tenderness, and general initial laboratory results—including coagulation parameters—were unremarkable. A contrast-enhanced computed tomography showed a massive thrombosis of the main portal, splenic, and superior mesenteric veins. On admission the patient was started on oral anticoagulation therapy with warfarin at 5 mg/day and low-molecular-weight heparin. The prediction of an effective warfarin dose of 7.5 mg/day, estimated by using a recently developed pharmacogenetic-guided algorithm for Caribbean Hispanics, coincided with the actual patient’s warfarin dose to reach the international normalized ratio target. We speculate that the slow rise in patient’s international normalized ratio observed on the initiation of warfarin therapy, the resulting high risk for thromboembolic events, and the required warfarin dose of 7.5 mg/day are attributable in some part to the presence of the NQO1 *2 (g.559C>T, p.P187S polymorphism, which seems to be significantly associated with resistance to warfarin in Hispanics. By adding genotyping results of this novel variant, the predictive model can inform clinicians better about the optimal warfarin dose in Caribbean Hispanics. The results highlight the potential for pharmacogenetic testing of warfarin to improve patient care.

  11. Clinical outcomes and genome-wide association for a brain methylation site in an antidepressant pharmacogenetics study in Mexican Americans.

    Science.gov (United States)

    Wong, Ma-Li; Dong, Chuanhui; Flores, Deborah L; Ehrhart-Bornstein, Monika; Bornstein, Stefan; Arcos-Burgos, Mauricio; Licinio, Julio

    2014-12-01

    The authors compared the effectiveness of fluoxetine and desipramine treatment in a prospective double-blind pharmacogenetics study in first-generation Mexican Americans and examined the role of whole-exome functional gene variations in the patients' antidepressant response. A total of 232 Mexican Americans who met DSM-IV criteria for major depressive disorder were randomly assigned to receive 8 weeks of double-blind treatment with desipramine (50-200 mg/day) or fluoxetine (10-40 mg/day) after a 1-week placebo lead-in period. Outcome measures included the Hamilton Depression Rating Scale (HAM-D), the Hamilton Anxiety Rating Scale, and the Beck Depression Inventory. At week 8, whole-exome genotyping data were obtained for 36 participants who remitted and 29 who did not respond to treatment. Compared with desipramine treatment, fluoxetine treatment was associated with a greater reduction in HAM-D score, higher response and remission rates, shorter time to response and remission, and lower incidences of anticholinergic and cardiovascular side effects. Pharmacogenetics analysis showed that exm-rs1321744 achieved exome-wide significance for treatment remission. This variant is located in a brain methylated DNA immunoprecipitation sequencing site, which suggests that it may be involved in epigenetic regulation of neuronal gene expression. This and two other common gene variants provided a highly accurate cross-validated predictive model for treatment remission of major depression (receiver operating characteristic integral=0.95). Compared with desipramine, fluoxetine treatment showed a more rapid reduction of HAM-D score and a lower incidence of side effects in a population comprising primarily first-generation Mexican Americans with major depression. This study's pharmacogenetics approach strongly implicates the role of functional variants in antidepressant treatment response.

  12. Pharmacogenetic testing prior to carbamazepine treatment of epilepsy: patients' and physicians' preferences for testing and service delivery.

    Science.gov (United States)

    Powell, Graham; Holmes, Emily A F; Plumpton, Catrin O; Ring, Adele; Baker, Gus A; Jacoby, Ann; Pirmohamed, Munir; Marson, Anthony G; Hughes, Dyfrig A

    2015-11-01

    Pharmacogenetic studies have identified the presence of the HLA-A*31:01 allele as a predictor of cutaneous adverse drugs reactions (ADRs) to carbamazepine. This study aimed to ascertain the preferences of patients and clinicians to inform carbamazepine pharmacogenetic testing services. Attributes of importance to people with epilepsy and neurologists were identified through interviews and from published sources. Discrete choice experiments (DCEs) were conducted in 82 people with epilepsy and 83 neurologists. Random-effects logit regression models were used to determine the importance of the attributes and direction of effect. In the patient DCE, all attributes (seizure remission, reduction in seizure frequency, memory problems, skin rash and rare, severe ADRs) were significant. The estimated utility of testing was greater, at 0.52 (95% CI 0.19, 1.00) than not testing at 0.33 (95% CI -0.07, 0.81). In the physician DCE, cost, inclusion in the British National Formulary, coverage, negative predictive value (NPV) and positive predictive value (PPV) were significant. Marginal rates of substitution indicated that neurologists were willing to pay £5.87 for a 1 percentage point increase in NPV and £3.99 for a 1 percentage point increase in PPV. The inclusion of both patients' and clinicians' perspectives represents an important contribution to the understanding of preferences towards pharmacogenetic testing prior to initiating carbamazepine. Both groups identified different attributes but had generally consistent preferences. Patients' acceptance of a decrease in treatment benefit for a reduced chance of severe ADRs adds support for the implementation of HLA-A*31:01 testing in routine practice. © 2015 The British Pharmacological Society.

  13. Facilitating pharmacogenetic studies using electronic health records and natural-language processing: a case study of warfarin.

    Science.gov (United States)

    Xu, Hua; Jiang, Min; Oetjens, Matt; Bowton, Erica A; Ramirez, Andrea H; Jeff, Janina M; Basford, Melissa A; Pulley, Jill M; Cowan, James D; Wang, Xiaoming; Ritchie, Marylyn D; Masys, Daniel R; Roden, Dan M; Crawford, Dana C; Denny, Joshua C

    2011-01-01

    DNA biobanks linked to comprehensive electronic health records systems are potentially powerful resources for pharmacogenetic studies. This study sought to develop natural-language-processing algorithms to extract drug-dose information from clinical text, and to assess the capabilities of such tools to automate the data-extraction process for pharmacogenetic studies. A manually validated warfarin pharmacogenetic study identified a cohort of 1125 patients with a stable warfarin dose, in which 776 patients were managed by Coumadin Clinic physicians, and the remaining 349 patients were managed by their providers. The authors developed two algorithms to extract weekly warfarin doses from both data sets: a regular expression-based program for semistructured Coumadin Clinic notes; and an advanced weekly dose calculator based on an existing medication information extraction system (MedEx) for narrative providers' notes. The authors then conducted an association analysis between an automatically extracted stable weekly dose of warfarin and four genetic variants of VKORC1 and CYP2C9 genes. The performance of the weekly dose-extraction program was evaluated by comparing it with a gold standard containing manually curated weekly doses. Precision, recall, F-measure, and overall accuracy were reported. Associations between known variants in VKORC1 and CYP2C9 and warfarin stable weekly dose were performed with linear regression adjusted for age, gender, and body mass index. The authors' evaluation showed that the MedEx-based system could determine patients' warfarin weekly doses with 99.7% recall, 90.8% precision, and 93.8% accuracy. Using the automatically extracted weekly doses of warfarin, the authors successfully replicated the previous known associations between warfarin stable dose and genetic variants in VKORC1 and CYP2C9.

  14. Comparison of the Performance of the Warfarin Pharmacogenetics Algorithms in Patients with Surgery of Heart Valve Replacement and Heart Valvuloplasty.

    Science.gov (United States)

    Xu, Hang; Su, Shi; Tang, Wuji; Wei, Meng; Wang, Tao; Wang, Dongjin; Ge, Weihong

    2015-09-01

    A large number of warfarin pharmacogenetics algorithms have been published. Our research was aimed to evaluate the performance of the selected pharmacogenetic algorithms in patients with surgery of heart valve replacement and heart valvuloplasty during the phase of initial and stable anticoagulation treatment. 10 pharmacogenetic algorithms were selected by searching PubMed. We compared the performance of the selected algorithms in a cohort of 193 patients during the phase of initial and stable anticoagulation therapy. Predicted dose was compared to therapeutic dose by using a predicted dose percentage that falls within 20% threshold of the actual dose (percentage within 20%) and mean absolute error (MAE). The average warfarin dose for patients was 3.05±1.23mg/day for initial treatment and 3.45±1.18mg/day for stable treatment. The percentages of the predicted dose within 20% of the therapeutic dose were 44.0±8.8% and 44.6±9.7% for the initial and stable phases, respectively. The MAEs of the selected algorithms were 0.85±0.18mg/day and 0.93±0.19mg/day, respectively. All algorithms had better performance in the ideal group than in the low dose and high dose groups. The only exception is the Wadelius et al. algorithm, which had better performance in the high dose group. The algorithms had similar performance except for the Wadelius et al. and Miao et al. algorithms, which had poor accuracy in our study cohort. The Gage et al. algorithm had better performance in both phases of initial and stable treatment. Algorithms had relatively higher accuracy in the >50years group of patients on the stable phase. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Biomarkers of Diabetic Retinopathy.

    Science.gov (United States)

    Ting, Daniel Shu Wei; Tan, Kara-Anne; Phua, Val; Tan, Gavin Siew Wei; Wong, Chee Wai; Wong, Tien Yin

    2016-12-01

    Diabetic retinopathy (DR), a leading cause of acquired vision loss, is a microvascular complication of diabetes. While traditional risk factors for diabetic retinopathy including longer duration of diabetes, poor blood glucose control, and dyslipidemia are helpful in stratifying patient's risk for developing retinopathy, many patients without these traditional risk factors develop DR; furthermore, there are persons with long diabetes duration who do not develop DR. Thus, identifying biomarkers to predict DR or to determine therapeutic response is important. A biomarker can be defined as a characteristic that is objectively measured and evaluated as an indicator of normal biological processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention. Incorporation of biomarkers into risk stratification of persons with diabetes would likely aid in early diagnosis and guide treatment methods for those with DR or with worsening DR. Systemic biomarkers of DR include serum measures including genomic, proteomic, and metabolomics biomarkers. Ocular biomarkers including tears and vitreous and retinal vascular structural changes have also been studied extensively to prognosticate the risk of DR development. The current studies on biomarkers are limited by the need for larger sample sizes, cross-validation in different populations and ethnic groups, and time-efficient and cost-effective analytical techniques. Future research is important to explore novel DR biomarkers that are non-invasive, rapid, economical, and accurate to help reduce the incidence and progression of DR in people with diabetes.

  16. TSPAN5, ERICH3 and selective serotonin reuptake inhibitors in major depressive disorder: pharmacometabolomics-informed pharmacogenomics.

    Science.gov (United States)

    Gupta, M; Neavin, D; Liu, D; Biernacka, J; Hall-Flavin, D; Bobo, W V; Frye, M A; Skime, M; Jenkins, G D; Batzler, A; Kalari, K; Matson, W; Bhasin, S S; Zhu, H; Mushiroda, T; Nakamura, Y; Kubo, M; Wang, L; Kaddurah-Daouk, R; Weinshilboum, R M

    2016-12-01

    Millions of patients suffer from major depressive disorder (MDD), but many do not respond to selective serotonin reuptake inhibitor (SSRI) therapy. We used a pharmacometabolomics-informed pharmacogenomics research strategy to identify genes associated with metabolites that were related to SSRI response. Specifically, 306 MDD patients were treated with citalopram or escitalopram and blood was drawn at baseline, 4 and 8 weeks for blood drug levels, genome-wide single nucleotide polymorphism (SNP) genotyping and metabolomic analyses. SSRI treatment decreased plasma serotonin concentrations (Pserotonin concentration changes were associated with clinical outcomes (Pserotonin concentration changes were used as phenotypes for genome-wide association studies (GWAS). GWAS for baseline plasma serotonin concentrations revealed a genome-wide significant (P=7.84E-09) SNP cluster on chromosome four 5' of TSPAN5 and a cluster across ERICH3 on chromosome one (P=9.28E-08) that were also observed during GWAS for change in serotonin at 4 (P=5.6E-08 and P=7.54E-07, respectively) and 8 weeks (P=1.25E-06 and P=3.99E-07, respectively). The SNPs on chromosome four were expression quantitative trait loci for TSPAN5. Knockdown (KD) and overexpression (OE) of TSPAN5 in a neuroblastoma cell line significantly altered the expression of serotonin pathway genes (TPH1, TPH2, DDC and MAOA). Chromosome one SNPs included two ERICH3 nonsynonymous SNPs that resulted in accelerated proteasome-mediated degradation. In addition, ERICH3 and TSPAN5 KD and OE altered media serotonin concentrations. Application of a pharmacometabolomics-informed pharmacogenomic research strategy, followed by functional validation, indicated that TSPAN5 and ERICH3 are associated with plasma serotonin concentrations and may have a role in SSRI treatment outcomes.

  17. Hepatitis C virus pharmacogenomics in Latin American populations: implications in the era of direct-acting antivirals

    Directory of Open Access Journals (Sweden)

    Trinks J

    2017-03-01

    Full Text Available Julieta Trinks,1,2 Mariela Caputo,2,3 María L Hulaniuk,1 Daniel Corach,2,3 Diego Flichman2,4 1Basic Science and Experimental Medicine Institute (ICBME, University Institute of the Italian Hospital of Buenos Aires, 2Scientific and Technological National Research Council (CONICET, 3Servicio de Huellas Digitales Genéticas, Facultad de Farmacia y Bioquímica, 4Cátedra de Virología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina Abstract: In recent years, great progress has been made in the field of new therapeutic options for hepatitis C virus (HCV infection. The new direct-acting antiviral agents (DAAs represent a great hope for millions of chronically infected individuals because their use may lead to excellent cure rates with fewer side effects. In Latin America, the high prevalence of HCV genotype 1 infection and the significant association of Native American ancestry with risk predictive single-nucleotide polymorphisms (SNPs in IFNL4 and ITPA genes highlight the need to implement new treatment regimens in these populations. However, the universal accessibility to DAAs is still not a reality in the region as their high cost is one of the major, although not the only, limiting factors for their broad implementation. Therefore, under these circumstances, could the assessment of host genetic markers be a useful tool to prioritize DAA treatment until global access to these new drugs can be achieved? This review will summarize the scientific evidences and the potential implications of HCV pharmacogenomics in this rapidly evolving era of anti-HCV drug development. Keywords: hepatitis C virus, pharmacogenomics, PEG-IFN/RBV, DAAs, Latin America

  18. Human immunodeficiency virus type 1 pharmacogenomics in clinical practice: relevance of HIV-1 drug resistance testing (Part 1).

    Science.gov (United States)

    Patarca, Roberto; Isava, Alejandro; Campo, Rafael; Rodriguez, Nelson J; Nunez, Enriqueta; Alter, Michael; Marchette, Margaret; Sanabia, Mirtha M; Mitchell, Charles; Rivera, Delia; Scott, Gwendolyn; Jayaweera, Dushyantha; Moreno, Jose; Boulanger, Catherine; Kolber, Michael; Mask, Cindy W; Sierra, Eduardo Meneses; Vallejo, Ricardo; Page, J Brian; Klimas, Nancy G; Fletcher, Mary Ann

    2003-01-01

    Throughout most of the past century, physicians could offer patients no treatments for infections caused by viruses. The experience with treatment of infection by human immunodeficiency virus (HIV) has changed the way healthcare workers deal with viral infections and has triggered a growing rate of discovery and use of antiviral agents, the first fruits of the expanding genomics revolution. HIV treatment also provides an informative paradigm for pharmacogenomics because control of infection and its consequences is limited by the development of viral drug resistance and by host factors. This report summarizes studies published to date on the significance of testing of HIV-1 resistance to antiretroviral drugs. The only Food and Drug Administration-approved kit for HIV drug resistance testing by genotypic sequencing is commercially available through Visible Genetics, Inc. Genotyping sequencing alone is most likely an adequate test to assist in the therapeutic decision-making process for previous regimen failure, for treatment-naïve patients in areas of high prevalence of transmitted resistant virus, and for pregnant women. However, in exceptional cases of highly complex mutation patterns and extensive cross-resistance, it may be useful to obtain a phenotype test, because that result may more easily identify drugs to which virus is least resistant. There are no published clinical trials results on the usefulness of the so-called virtual phenotype over genotypic sequencing alone. Not only has the paradigm of viral pharmacogenomics in the form of HIV genotypic sequencing been useful in treating other viral diseases, but it is also important to the real-life implementation of the growing discipline ofgenomics or molecular medicine. The application of this paradigm to the thousands of potential therapeutic targets that have become available through the various human genome projects will certainly gradually change the landscape of diagnosis and management of many diseases

  19. Analgesia and Opioids: A Pharmacogenetics Shortlist for Implementation in Clinical Practice.

    Science.gov (United States)

    Matic, Maja; de Wildt, Saskia N; Tibboel, Dick; van Schaik, Ron H N

    2017-07-01

    The use of opioids to alleviate pain is complicated by the risk of severe adverse events and the large variability in dose requirements. Pharmacogenetics (PGx) could possibly be used to tailor pain medication based on an individual's genetic background. Many potential genetic markers have been described, and the importance of genetic predisposition in opioid efficacy and toxicity has been demonstrated in knockout mouse models and human twin studies. Such predictors are especially of value for neonates and young children, in whom the assessment of efficacy or side effects is complicated by the inability of the patient to communicate this properly. The current problem is determining which of the many potential candidates to focus on for clinical implementation. We systematically searched publications on PGx for opioids in 5 databases, aiming to identify PGx markers with sufficient robust data and high enough occurrence for potential clinical application. The initial search yielded 4257 unique citations, eventually resulting in 852 relevant articles covering 24 genes. From these genes, we evaluated the evidence and selected the most promising 10 markers: cytochrome P450 family 2 subfamily D member 6 ( CYP2D6 ), cytochrome P450 family 3 subfamily A member 4 ( CYP3A4 ), cytochrome P450 family 3 subfamily A member 5 ( CYP3A5 ), UDP glucuronosyltransferase family 2 member B7 ( UGT2B7 ), ATP binding cassette subfamily B member 1 ( ABCB1 ), ATP binding cassette subfamily C member 3 ( ABCC3 ), solute carrier family 22 member 1 ( SLC22A1 ), opioid receptor kappa 1 ( OPRM1 ), catechol- O -methyltransferase ( COMT ), and potassium voltage-gated channel subfamily J member 6 ( KCNJ6 ). Treatment guidelines based on genotype are already available only for CYP2D6 . The application of PGx in the management of pain with opioids has the potential to improve therapy. We provide a shortlist of 10 genes that are the most promising markers for clinical use in this context. © 2016

  20. Evaluating predictive pharmacogenetic signatures of adverse events in colorectal cancer patients treated with fluoropyrimidines.

    Directory of Open Access Journals (Sweden)

    Barbara A Jennings

    Full Text Available The potential clinical utility of genetic markers associated with response to fluoropyrimidine treatment in colorectal cancer patients remains controversial despite extensive study. Our aim was to test the clinical validity of both novel and previously identified markers of adverse events in a broad clinical setting. We have conducted an observational pharmacogenetic study of early adverse events in a cohort study of 254 colorectal cancer patients treated with 5-fluorouracil or capecitabine. Sixteen variants of nine key folate (pharmacodynamic and drug metabolising (pharmacokinetic enzymes have been analysed as individual markers and/or signatures of markers. We found a significant association between TYMP S471L (rs11479 and early dose modifications and/or severe adverse events (adjusted OR = 2.02 [1.03; 4.00], p = 0.042, adjusted OR = 2.70 [1.23; 5.92], p = 0.01 respectively. There was also a significant association between these phenotypes and a signature of DPYD mutations (Adjusted OR = 3.96 [1.17; 13.33], p = 0.03, adjusted OR = 6.76 [1.99; 22.96], p = 0.002 respectively. We did not identify any significant associations between the individual candidate pharmacodynamic markers and toxicity. If a predictive test for early adverse events analysed the TYMP and DPYD variants as a signature, the sensitivity would be 45.5 %, with a positive predictive value of just 33.9 % and thus poor clinical validity. Most studies to date have been under-powered to consider multiple pharmacokinetic and pharmacodynamic variants simultaneously but this and similar individualised data sets could be pooled in meta-analyses to resolve uncertainties about the potential clinical utility of these markers.

  1. Ethical, Political and Societal Implications of the Open Access Journal Movement in the Era of Economic Crisis, with Emphasis on Public Health Pharmacogenomics.

    Science.gov (United States)

    Bragazzi, Nicola Luigi

    2013-12-01

    Publication of the research outputs is a vital step of the research processes and a gateway between the laboratory and the global society. Open Access is revolutionizing the dissemination of scientific ideas, particularly in the field of public health pharmacogenomics that examines the ways in which pharmacogenomics impacts health systems and services at a societal level, rather than a narrow bench to bedside model of translation science. This manuscript argues that despite some limitations and drawbacks, open access has profound ethical, political and societal implications especially on underdeveloped and developing countries, and that it provides opportunities for science to grow in these resource-limited countries, particularly in the era of a severe economic and financial crisis that is imposing cuts and restrictions to research.

  2. Biomarkers in Airway Diseases

    Directory of Open Access Journals (Sweden)

    Janice M Leung

    2013-01-01

    Full Text Available The inherent limitations of spirometry and clinical history have prompted clinicians and scientists to search for surrogate markers of airway diseases. Although few biomarkers have been widely accepted into the clinical armamentarium, the authors explore three sources of biomarkers that have shown promise as indicators of disease severity and treatment response. In asthma, exhaled nitric oxide measurements can predict steroid responsiveness and sputum eosinophil counts have been used to titrate anti-inflammatory therapies. In chronic obstructive pulmonary disease, inflammatory plasma biomarkers, such as fibrinogen, club cell secretory protein-16 and surfactant protein D, can denote greater severity and predict the risk of exacerbations. While the multitude of disease phenotypes in respiratory medicine make biomarker development especially challenging, these three may soon play key roles in the diagnosis and management of airway diseases.

  3. amphibian_biomarker_data

    Data.gov (United States)

    U.S. Environmental Protection Agency — Amphibian metabolite data used in Snyder, M.N., Henderson, W.M., Glinski, D.G., Purucker, S. T., 2017. Biomarker analysis of american toad (Anaxyrus americanus) and...

  4. Advancing Alcohol Biomarkers Research

    OpenAIRE

    Bearer, Cynthia F.; Bailey, Shannon M.; Hoek, Jan B.

    2010-01-01

    Biomarkers to detect past alcohol use and identify alcohol-related diseases have long been pursued as important tools for research into alcohol use disorders as well as for clinical and treatment applications and other settings. The National Institute on Alcohol Abuse and Alcoholism (NIAAA) sponsored a workshop titled “Workshop on Biomarkers for Alcohol-Induced Disorders” in June 2008. The intent of this workshop was to review and discuss recent progress in the development and implementation ...

  5. Biomarkers in rare diseases.

    Science.gov (United States)

    Ferlini, A; Scotton, C; Novelli, G

    2013-01-01

    Nowadays 7,000 rare diseases (RDs) have been identified with a prevalence less than 5/10,000. Despite of the enormous effort the European Union (EU) has already invested in this field, still 4,000 RDs remain orphan of genetic diagnosis and causative gene identification. The genetic definition of RDs represents a prerequisite for being diagnosed, for having a robust prevention, for entering in a specific standard of care, and ultimately, for being included in clinical trials, often via personalized medicine. It is well established that biomarkers can offer a way to speed up research by understanding the pathophysiological mechanisms of diseases. In particular, biomarkers will offer an invaluable tool for monitoring disease progression, prognosis and response to drug treatment. In this review, we summarize the different types of biomarkers and their importance as well as their translational applications in RDs. We have reviewed the current knowledge on biomarkers state-of-the-art via literature data, specific websites and EU sources regarding past, pending and current projects. Here we provide a comprehensive scenario of biomarkers research, its applications in clinical practice, with special emphasis on translational research applicable to diagnostic and clinical trials. The experience of the EU project BIO-NMD is also mentioned. Biomarkers represent key features in both diagnostics and research on rare diseases and will encounter wide exploitation in translational and personalized medicine. © 2013 S. Karger AG, Basel

  6. Combinatorial pharmacogenetic interactions of bucindolol and β1, α2C adrenergic receptor polymorphisms.

    Science.gov (United States)

    O'Connor, Christopher M; Fiuzat, Mona; Carson, Peter E; Anand, Inder S; Plehn, Jonathan F; Gottlieb, Stephen S; Silver, Marc A; Lindenfeld, JoAnn; Miller, Alan B; White, Michel; Walsh, Ryan; Nelson, Penny; Medway, Allen; Davis, Gordon; Robertson, Alastair D; Port, J David; Carr, James; Murphy, Guinevere A; Lazzeroni, Laura C; Abraham, William T; Liggett, Stephen B; Bristow, Michael R

    2012-01-01

    Pharmacogenetics involves complex interactions of gene products affecting pharmacodynamics and pharmacokinetics, but there is little information on the interaction of multiple genetic modifiers of drug response. Bucindolol is a β-blocker/sympatholytic agent whose efficacy is modulated by polymorphisms in the primary target (β(1) adrenergic receptor [AR] Arg389 Gly on cardiac myocytes) and a secondary target modifier (α(2C) AR Ins [wild-type (Wt)] 322-325 deletion [Del] on cardiac adrenergic neurons). The major allele homozygotes and minor allele carriers of each polymorphism are respectively associated with efficacy enhancement and loss, creating the possibility for genotype combination interactions that can be measured by clinical trial methodology. In a 1,040 patient substudy of a bucindolol vs. placebo heart failure clinical trial, we tested the hypothesis that combinations of β(1)389 and α(2C)322-325 polymorphisms are additive for both efficacy enhancement and loss. Additionally, norepinephrine (NE) affinity for β(1)389 AR variants was measured in human explanted left ventricles. The combination of β(1)389 Arg+α(2C)322-325 Wt major allele homozygotes (47% of the trial population) was non-additive for efficacy enhancement across six clinical endpoints, with an average efficacy increase of 1.70-fold vs. 2.32-fold in β(1)389 Arg homozygotes+α(2C)322-325 Del minor allele carriers. In contrast, the minor allele carrier combination (13% subset) exhibited additive efficacy loss. These disparate effects are likely due to the higher proportion (42% vs. 8.7%, P = 0.009) of high-affinity NE binding sites in β(1)389 Arg vs. Gly ARs, which converts α(2C)Del minor allele-associated NE lowering from a therapeutic liability to a benefit. On combination, the two sets of AR polymorphisms 1) influenced bucindolol efficacy seemingly unpredictably but consistent with their pharmacologic interactions, and 2) identified subpopulations with enhanced (β(1)389 Arg

  7. Combinatorial pharmacogenetic interactions of bucindolol and β1, α2C adrenergic receptor polymorphisms.

    Directory of Open Access Journals (Sweden)

    Christopher M O'Connor

    Full Text Available Pharmacogenetics involves complex interactions of gene products affecting pharmacodynamics and pharmacokinetics, but there is little information on the interaction of multiple genetic modifiers of drug response. Bucindolol is a β-blocker/sympatholytic agent whose efficacy is modulated by polymorphisms in the primary target (β(1 adrenergic receptor [AR] Arg389 Gly on cardiac myocytes and a secondary target modifier (α(2C AR Ins [wild-type (Wt] 322-325 deletion [Del] on cardiac adrenergic neurons. The major allele homozygotes and minor allele carriers of each polymorphism are respectively associated with efficacy enhancement and loss, creating the possibility for genotype combination interactions that can be measured by clinical trial methodology.In a 1,040 patient substudy of a bucindolol vs. placebo heart failure clinical trial, we tested the hypothesis that combinations of β(1389 and α(2C322-325 polymorphisms are additive for both efficacy enhancement and loss. Additionally, norepinephrine (NE affinity for β(1389 AR variants was measured in human explanted left ventricles.The combination of β(1389 Arg+α(2C322-325 Wt major allele homozygotes (47% of the trial population was non-additive for efficacy enhancement across six clinical endpoints, with an average efficacy increase of 1.70-fold vs. 2.32-fold in β(1389 Arg homozygotes+α(2C322-325 Del minor allele carriers. In contrast, the minor allele carrier combination (13% subset exhibited additive efficacy loss. These disparate effects are likely due to the higher proportion (42% vs. 8.7%, P = 0.009 of high-affinity NE binding sites in β(1389 Arg vs. Gly ARs, which converts α(2CDel minor allele-associated NE lowering from a therapeutic liability to a benefit.On combination, the two sets of AR polymorphisms 1 influenced bucindolol efficacy seemingly unpredictably but consistent with their pharmacologic interactions, and 2 identified subpopulations with enhanced (β(1389 Arg

  8. Methadone pharmacogenetics: CYP2B6 polymorphisms determine plasma concentrations, clearance and metabolism

    Science.gov (United States)

    Kharasch, Evan D.; Regina, Karen J.; Blood, Jane; Friedel, Christina

    2015-01-01

    Background Interindividual variability in methadone disposition remains unexplained, and methadone accidental overdose in pain therapy is a significant public health problem. Cytochrome P4502B6 (CYP2B6) is the principle determinant of clinical methadone elimination. The CYP2B6 gene is highly polymorphic, with several variant alleles. CYP2B6.6, the protein encoded by the CYP2B6*6 polymorphism, deficiently catalyzes methadone metabolism in vitro. This investigation determined the influence of CYP2B6*6, and other allelic variants encountered, on methadone concentrations, clearance, and metabolism. Methods Healthy volunteers in genotype cohorts CYP2B6*1/*1 (n=21), CYP2B6*1/*6 (n=20), and CYP2B6*6/*6 (n=17), and also CYP2B6*1/*4 (n=1), CYP2B6*4/*6 (n=3), CYP2B6*5/*5 (n=2) subjects received single doses of intravenous and oral methadone. Plasma and urine methadone and metabolite concentrations were determined by tandem mass spectrometry. Results Average S-methadone apparent oral clearance was 35 and 45% lower in CYP2B6*1/*6 and CYP2B6*6/*6 genotypes, respectively, compared with CYP2B6*1/*1, and R-methadone apparent oral clearance was 25 and 30% lower. R- and S-methadone apparent oral clearance was 3- and 4-fold greater in CYP2B6*4 carriers. Intravenous and oral R- and S-methadone metabolism was significantly lower in CYP2B6*6 carriers compared with CYP2B6*1 homozygotes, and greater in CYP2B6*4 carriers. Methadone metabolism and clearance were lower in African-Americans due to the CYP2B6*6 genetic polymorphism. Conclusions CYP2B6 polymorphisms influence methadone plasma concentrations, due to altered methadone metabolism and thus clearance. Genetic influence is greater for oral than intravenous, and S- than R-methadone. CYP2B6 pharmacogenetics explains, in part, interindividual variability in methadone elimination. CYP2B6 genetic effects on methadone metabolism and clearance may identify subjects at risk for methadone toxicity and drug interactions. PMID:26389554

  9. Pharmacogenetic Associations of Antipsychotic Drug-Related Weight Gain: A Systematic Review and Meta-analysis

    Science.gov (United States)

    Zhang, Jian-Ping; Lencz, Todd; Zhang, Ryan X.; Nitta, Masahiro; Maayan, Lawrence; John, Majnu; Robinson, Delbert G.; Fleischhacker, W. Wolfgang; Kahn, Rene S.; Ophoff, Roel A.; Kane, John M.; Malhotra, Anil K.; Correll, Christoph U.

    2016-01-01

    Although weight gain is a serious but variable adverse effect of antipsychotics that has genetic underpinnings, a comprehensive meta-analysis of pharmacogenetics of antipsychotic-related weight gain is missing. In this review, random effects meta-analyses were conducted for dominant and recessive models on associations of specific single nucleotide polymorphisms (SNP) with prospectively assessed antipsychotic-related weight or body mass index (BMI) changes (primary outcome), or categorical increases in weight or BMI (≥7%; secondary outcome). Published studies, identified via systematic database search (last search: December 31, 2014), plus 3 additional cohorts, including 222 antipsychotic-naïve youth, and 81 and 141 first-episode schizophrenia adults, each with patient-level data at 3 or 4 months treatment, were meta-analyzed. Altogether, 72 articles reporting on 46 non-duplicated samples (n = 6700, mean follow-up = 25.1wk) with 38 SNPs from 20 genes/genomic regions were meta-analyzed (for each meta-analysis, studies = 2–20, n = 81–2082). Eleven SNPs from 8 genes were significantly associated with weight or BMI change, and 4 SNPs from 2 genes were significantly associated with categorical weight or BMI increase. Combined, 13 SNPs from 9 genes (Adrenoceptor Alpha-2A [ADRA2A], Adrenoceptor Beta 3 [ADRB3], Brain-Derived Neurotrophic Factor [BDNF], Dopamine Receptor D2 [DRD2], Guanine Nucleotide Binding Protein [GNB3], 5-Hydroxytryptamine (Serotonin) Receptor 2C [HTR2C], Insulin-induced gene 2 [INSIG2], Melanocortin-4 Receptor [MC4R], and Synaptosomal-associated protein, 25kDa [SNAP25]) were significantly associated with antipsychotic-related weight gain (P-values antipsychotic exposure (pediatric or first episode patients) and short follow-up (1–2 mo) were associated with larger effect sizes. Individual antipsychotics did not significantly moderate effect sizes. In conclusion, antipsychotic-related weight gain is polygenic and associated with specific genetic

  10. Role of biomarkers in understanding and treating children with asthma: towards personalized care

    Directory of Open Access Journals (Sweden)

    Lang JE

    2013-08-01

    Full Text Available Jason E Lang,1 Kathryn V Blake21Division of Pulmonary and Sleep Medicine, Nemours Children's Hospital, Orlando, FL, USA; 2Center for Pharmacogenomics and Translational Research, Nemours Children's Clinic, Jacksonville, FL, USA Both authors contributed equally to this workAbstract: Asthma is one of the most common chronic diseases affecting children. Despite publicized expert panels on asthma management and the availability of high-potency inhaled corticosteroids, asthma continues to pose an enormous burden on quality of life for children. Research into the genetic and molecular origins of asthma are starting to show how distinct disease entities exist within the syndrome of "asthma". Biomarkers can be used to diagnose underlying molecular mechanisms that can predict the natural course of disease or likely response to drug treatment. The progress of personalized medicine in the care of children with asthma is still in its infancy. We are not yet able to apply stratified asthma treatments based on molecular phenotypes, although that time may be fast approaching. This review discusses some of the recent advances in asthma genetics and the use of current biomarkers that can help guide improved treatment. For example, the fraction of expired nitric oxide and serum Immunoglobulin E (IgE (including allergen-specific IgE, when evaluated in the context of recurrent asthma symptoms, are general predictors of allergic airway inflammation. Biomarker assays for secondhand tobacco smoke exposure and cysteinyl leukotrienes are both promising areas of study that can help personalize management, not just for pharmacologic management, but also education and prevention efforts.Keywords: asthma, biomarkers, children, management

  11. Biomarkers of sepsis

    Science.gov (United States)

    2013-01-01

    Sepsis is an unusual systemic reaction to what is sometimes an otherwise ordinary infection, and it probably represents a pattern of response by the immune system to injury. A hyper-inflammatory response is followed by an immunosuppressive phase during which multiple organ dysfunction is present and the patient is susceptible to nosocomial infection. Biomarkers to diagnose sepsis may allow early intervention which, although primarily supportive, can reduce the risk of death. Although lactate is currently the most commonly used biomarker to identify sepsis, other biomarkers may help to enhance lactate’s effectiveness; these include markers of the hyper-inflammatory phase of sepsis, such as pro-inflammatory cytokines and chemokines; proteins such as C-reactive protein and procalcitonin which are synthesized in response to infection and inflammation; and markers of neutrophil and monocyte activation. Recently, markers of the immunosuppressive phase of sepsis, such as anti-inflammatory cytokines, and alterations of the cell surface markers of monocytes and lymphocytes have been examined. Combinations of pro- and anti-inflammatory biomarkers in a multi-marker panel may help identify patients who are developing severe sepsis before organ dysfunction has advanced too far. Combined with innovative approaches to treatment that target the immunosuppressive phase, these biomarkers may help to reduce the mortality rate associated with severe sepsis which, despite advances in supportive measures, remains high. PMID:23480440

  12. Impact of a personal CYP2D6 testing workshop on physician assistant student attitudes toward pharmacogenetics.

    Science.gov (United States)

    O'Brien, Travis J; LeLacheur, Susan; Ward, Caitlin; Lee, Norman H; Callier, Shawneequa; Harralson, Arthur F

    2016-03-01

    We assessed the impact of personal CYP2D6 testing on physician assistant student competency in, and attitudes toward, pharmacogenetics (PGx). Buccal samples were genotyped for CYP2D6 polymorphisms. Results were discussed during a 3-h PGx workshop. PGx knowledge was assessed by pre- and post-tests. Focus groups assessed the impact of the workshop on attitudes toward the clinical utility of PGx. Both student knowledge of PGx, and its perceived clinical utility, increased immediately following the workshop. However, exposure to PGx on clinical rotations following the workshop seemed to influence student attitudes toward PGx utility. Personal CYP2D6 testing improves both knowledge and comfort with PGx. Continued exposure to PGx concepts is important for transfer of learning.

  13. Mass spectrometry for biomarker development

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Chaochao; Liu, Tao; Baker, Erin Shammel; Rodland, Karin D.; Smith, Richard D.

    2015-06-19

    Biomarkers potentially play a crucial role in early disease diagnosis, prognosis and targeted therapy. In the past decade, mass spectrometry based proteomics has become increasingly important in biomarker development due to large advances in technology and associated methods. This chapter mainly focuses on the application of broad (e.g. shotgun) proteomics in biomarker discovery and the utility of targeted proteomics in biomarker verification and validation. A range of mass spectrometry methodologies are discussed emphasizing their efficacy in the different stages in biomarker development, with a particular emphasis on blood biomarker development.

  14. Pharmacogenetic versus clinical dosing of warfarin in individuals of Chinese and African-American ancestry: assessment using data simulation.

    Science.gov (United States)

    Syn, Nicholas L X; Lee, Soo-Chin; Brunham, Liam R; Goh, Boon-Cher

    2015-10-01

    Clinical trials of genotype-guided dosing of warfarin have yielded mixed results, which may in part reflect ethnic differences among study participants. However, no previous study has compared genotype-guided versus clinically guided or standard-of-care dosing in a Chinese population, whereas those involving African-Americans were underpowered to detect significant differences. We present a preclinical strategy that integrates pharmacogenetics (PG) and pharmacometrics to predict the outcome or guide the design of dosing strategies for drugs that show large interindividual variability. We use the example of warfarin and focus on two underrepresented groups in warfarin research. We identified the parameters required to simulate a patient population and the outcome of dosing strategies. PG and pharmacogenetic plus loading (PG+L) algorithms that take into account a patient's VKORC1 and CYP2C9 genotype status were considered and compared against a clinical (CA) algorithm for a simulated Chinese population using a predictive Monte Carlo and pharmacokinetic-pharmacodynamic framework. We also examined a simulated population of African-American ancestry to assess the robustness of the model in relation to real-world clinical trial data. The simulations replicated similar trends observed with clinical data in African-Americans. They further predict that the PG+L regimen is superior to both the CA and the PG regimen in maximizing percentage time in therapeutic range in a Chinese cohort, whereas the CA regimen poses the highest risk of overanticoagulation during warfarin initiation. The findings supplement the literature with an unbiased comparison of warfarin dosing algorithms and highlights interethnic differences in anticoagulation control.

  15. Importance of pharmacogenetic markers in the methylenetetrahydrofolate reductase gene during methotrexate treatment in pediatric patients with acute lymphoblastic leukemia

    Directory of Open Access Journals (Sweden)

    Lazić Jelena

    2017-01-01

    Full Text Available Despite remarkable progress in survival of children with acute lymphoblastic leukemia (ALL which has reached about 85%, early toxicity and relapse rate remain issues that need to to be resolved. Genetic variants are important factors influencing the metabolism of cytotoxic drugs in ALL treatment. Variants in genes coding for methotrexate (MTX-metabolizing enzymes are under constant scientific interest due to their potential impact on drug toxicity and relapse rate. We investigated methylenetetrahydrofolate reductase (MTHFR c.677C>T and MTHFR c.1298A>C variants as pharmacogenetic markers of MTX toxicity and predictors of relapse. The study enrolled 161 children with ALL, treated according to the current International Berlin-Frankfurt-Munster group (BFM for diagnostics and treatment of leukemia and lymphoma protocols. Genotyping was performed using PCRRFLP and allele-specific PCR assays. Our results revealed similar distributions of MTHFR c.677C>T and MTHFR c.1298A>C genotypes among 104 healthy individuals as compared to pediatric ALL patients. A lower incidence of early MTX toxicity was noted in the MTHFR c.677TT genotype (p=0.017, while MTHFR c.1298A>C genotypes were not associated with MTX toxicity. Carriers of any MTHFR c.677C>T and MTHFR c.1298A>C genotypes did not experience decreased overall survival (OAS or higher relapse rates. Genetic variants in the MTHFR gene are not involved in leukemogenesis in pediatric ALL. The presence of the MTHFR c.677TT genotype was recognized as a predictive factor for decreased MTX toxicity during the intensification phase of therapy. Neither MTHFR c.677C>T nor MTHFR c.1298A>C genotypes correlated with an increased number of toxic deaths or relapse rate. Our study emphasizes the importance of implementing pharmacogenetic markers in order to optimize pediatric ALL therapy. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. III 41004

  16. CYP2D6 gene variants in urban/admixed and Amerindian populations of Venezuela: pharmacogenetics and anthropological implications.

    Science.gov (United States)

    Griman, Pedro; Moran, Yeinmy; Valero, Gabriela; Loreto, Mariana; Borjas, Lisbeth; Chiurillo, Miguel A

    2012-03-01

    Differences in genes encoding enzymes involved in the biotransformation of a large number of compounds, such as CYP2D6, are related to inter-individual and inter-ethnic variability in the metabolism of many drugs, which have also been linked to susceptibility to cancer and other health outcomes. Therefore, populations are likely to benefit from inclusion in pharmacogenetic research studies. To determine the frequency of functionally important allele variants of CYP2D6 gene in a sample of an Urban/admixed and five Amerindian Venezuelan populations. DNA of 328 unrelated volunteers was analysed for the presence of CYP2D6 *2, *3, *4, *5, *6 and *10 variants. The frequency in the Urban/admixed population for *2, *3, *4, *5, *6 and *10 alleles was 37.9%, 0%, 13.4%, 2.0%, 1.2% and 4.0%, respectively. In the Bari population, the prevalence of *4 allele associated with decreased enzyme activity was observed in 42.5%, whereas the poor metabolizer genotype *4/*4 was found in 25%. In the Panare, Pemon, Warao and Wayuu populations the *4 allele was found in 5.4%, 2.5%, 1.7% and 4.2%, respectively. The *10 allele frequency found in Amerindians (0.0-6.3%) was lower than reported for Asians. The results are consistent with the known genetic admixture origin of most Venezuela populations. Nevertheless, the observed significant differences among Amerindians highlight the need for pharmacogenetic studies taking into account biogeographical and anthropological considerations.

  17. Biomarkers for sepsis.

    Science.gov (United States)

    Henriquez-Camacho, Cesar; Losa, Juan

    2014-01-01

    Bloodstream infections are a major concern because of high levels of antibiotic consumption and of the increasing prevalence of antimicrobial resistance. Bacteraemia is identified in a small percentage of patients with signs and symptoms of sepsis. Biomarkers are widely used in clinical practice and they are useful for monitoring the infectious process. Procalcitonin (PCT) and C-reactive protein (CRP) have been most widely used, but even these have limited abilities to distinguish sepsis from other inflammatory conditions or to predict outcome. PCT has been used to guide empirical antibacterial therapy in patients with respiratory infections and help to determine if antibacterial therapy can be stopped. New biomarkers such as those in this review will discuss the major types of biomarkers of bloodstream infections/sepsis, including soluble triggering receptor expressed on myeloid cells-1 (sTREM-1), soluble urokinase-type plasminogen receptor (suPAR), proadrenomedullin (ProADM), and presepsin.

  18. Inflammatory biomarkers and cancer

    DEFF Research Database (Denmark)

    Rasmussen, Line Jee Hartmann; Schultz, Martin; Gaardsting, Anne

    2017-01-01

    In Denmark, patients with serious nonspecific symptoms and signs of cancer (NSSC) are referred to the diagnostic outpatient clinics (DOCs) where an accelerated cancer diagnostic program is initiated. Various immunological and inflammatory biomarkers have been associated with cancer, including...... soluble urokinase plasminogen activator receptor (suPAR) and the pattern recognition receptors (PRRs) pentraxin-3, mannose-binding lectin, ficolin-1, ficolin-2 and ficolin-3. We aimed to evaluate these biomarkers and compare their diagnostic ability to classical biomarkers for diagnosing cancer...... in patients with NSSC. Patients were included from the DOC, Department of Infectious Diseases, Copenhagen University Hospital Hvidovre. Patients were given a final diagnosis based on the combined results from scans, blood work and physical examination. Weight loss, Charlson score and previous cancer were...

  19. Biomarkers of the Dementia

    Directory of Open Access Journals (Sweden)

    Mikio Shoji

    2011-01-01

    Full Text Available Recent advances in biomarker studies on dementia are summarized here. CSF Aβ40, Aβ42, total tau, and phosphorylated tau are the most sensitive biomarkers for diagnosis of Alzheimer's disease (AD and prediction of onset of AD from mild cognitive impairment (MCI. Based on this progress, new diagnostic criteria for AD, MCI, and preclinical AD were proposed by National Institute of Aging (NIA and Alzheimer's Association in August 2010. In these new criteria, progress in biomarker identification and amyloid imaging studies in the past 10 years have added critical information. Huge contributions of basic and clinical studies have established clinical evidence supporting these markers. Based on this progress, essential therapy for cure of AD is urgently expected.

  20. Implementing genomics and pharmacogenomics in the clinic: The National Human Genome Research Institute’s genomic medicine portfolio

    Science.gov (United States)

    Manolio, Teri A.

    2016-01-01

    Increasing knowledge about the influence of genetic variation on human health and growing availability of reliable, cost-effective genetic testing have spurred the implementation of genomic medicine in the clinic. As defined by the National Human Genome Research Institute (NHGRI), genomic medicine uses an individual’s genetic information in his or her clinical care, and has begun to be applied effectively in areas such as cancer genomics, pharmacogenomics, and rare and undiagnosed diseases. In 2011 NHGRI published its strategic vision for the future of genomic research, including an ambitious research agenda to facilitate and promote the implementation of genomic medicine. To realize this agenda, NHGRI is consulting and facilitating collaborations with the external research community through a series of “Genomic Medicine Meetings,” under the guidance and leadership of the National Advisory Council on Human Genome Research. These meetings have identified and begun to address significant obstacles to implementation, such as lack of evidence of efficacy, limited availability of genomics expertise and testing, lack of standards, and diffficulties in integrating genomic results into electronic medical records. The six research and dissemination initiatives comprising NHGRI’s genomic research portfolio are designed to speed the evaluation and incorporation, where appropriate, of genomic technologies and findings into routine clinical care. Actual adoption of successful approaches in clinical care will depend upon the willingness, interest, and energy of professional societies, practitioners, patients, and payers to promote their responsible use and share their experiences in doing so. PMID:27612677

  1. Biomarkers of diseases in medicine

    Indian Academy of Sciences (India)

    phases (phase I, phase II and phase III), research on biomarkers has largely been guided by intui- tion and experience. In 2002, the National Can- cer Institute's 'Early Detection Research Network' developed a five-phase approach to systematic dis- covery and evaluation of biomarkers. In general, biomarker development ...

  2. Validation of New Cancer Biomarkers

    DEFF Research Database (Denmark)

    Duffy, Michael J; Sturgeon, Catherine M; Söletormos, Georg

    2015-01-01

    BACKGROUND: Biomarkers are playing increasingly important roles in the detection and management of patients with cancer. Despite an enormous number of publications on cancer biomarkers, few of these biomarkers are in widespread clinical use. CONTENT: In this review, we discuss the key steps in ad...

  3. Biomarkers for anorexia nervosa

    DEFF Research Database (Denmark)

    Sjøgren, Jan Magnus

    2017-01-01

    Biomarkers for anorexia nervosa (AN) which reflect the pathophysiology and relate to the aetiology of the disease, are warranted and could bring us one step closer to targeted treatment of AN. Some leads may be found in the biochemistry which often is found disturbed in AN, although normalization...

  4. Emerging Biomarkers in Glioblastoma

    Energy Technology Data Exchange (ETDEWEB)

    McNamara, Mairéad G.; Sahebjam, Solmaz; Mason, Warren P., E-mail: warren.mason@uhn.ca [Pencer Brain Tumor Centre, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, Ontario M5G 2M9 (Canada)

    2013-08-22

    Glioblastoma, the most common primary brain tumor, has few available therapies providing significant improvement in survival. Molecular signatures associated with tumor aggressiveness as well as with disease progression and their relation to differences in signaling pathways implicated in gliomagenesis have recently been described. A number of biomarkers which have potential in diagnosis, prognosis and prediction of response to therapy have been identified and along with imaging modalities could contribute to the clinical management of GBM. Molecular biomarkers including O(6)-methlyguanine-DNA-methyltransferase (MGMT) promoter and deoxyribonucleic acid (DNA) methylation, loss of heterozygosity (LOH) of chromosomes 1p and 19q, loss of heterozygosity 10q, isocitrate dehydrogenase (IDH) mutations, epidermal growth factor receptor (EGFR), epidermal growth factor, latrophilin, and 7 transmembrane domain-containing protein 1 on chromosome 1 (ELTD1), vascular endothelial growth factor (VEGF), tumor suppressor protein p53, phosphatase and tensin homolog (PTEN), p16INK4a gene, cytochrome c oxidase (CcO), phospholipid metabolites, telomerase messenger expression (hTERT messenger ribonucleic acid [mRNA]), microRNAs (miRNAs), cancer stem cell markers and imaging modalities as potential biomarkers are discussed. Inclusion of emerging biomarkers in prospective clinical trials is warranted in an effort for more effective personalized therapy in the future.

  5. Biomarkers of cell senescence

    Science.gov (United States)

    Dirmi, Goberdhan P.; Campisi, Judith; Peacocke, Monica

    1996-01-01

    The present invention provides a biomarker system for the in vivo and in vitro assessment of cell senescence. In the method of the present invention, .beta.-galactosidase activity is utilized as a means by which cell senescence may be assessed either in in vitro cell cultures or in vivo.

  6. Biomarkers in atopic dermatitis

    NARCIS (Netherlands)

    Thijs, J.L.

    2017-01-01

    Main findings of this thesis · A meta-analysis including 222 studies showed that serum TARC level is the best biomarker for disease severity currently available (chapter 2). · Immunoglobulin free light chains have been shown to correlate with disease severity in paediatric AD. However, they do not

  7. Emerging Biomarkers in Glioblastoma

    Directory of Open Access Journals (Sweden)

    Warren P. Mason

    2013-08-01

    Full Text Available Glioblastoma, the most common primary brain tumor, has few available therapies providing significant improvement in survival. Molecular signatures associated with tumor aggressiveness as well as with disease progression and their relation to differences in signaling pathways implicated in gliomagenesis have recently been described. A number of biomarkers which have potential in diagnosis, prognosis and prediction of response to therapy have been identified and along with imaging modalities could contribute to the clinical management of GBM. Molecular biomarkers including O(6-methlyguanine-DNA-methyltransferase (MGMT promoter and deoxyribonucleic acid (DNA methylation, loss of heterozygosity (LOH of chromosomes 1p and 19q, loss of heterozygosity 10q, isocitrate dehydrogenase (IDH mutations, epidermal growth factor receptor (EGFR, epidermal growth factor, latrophilin, and 7 transmembrane domain-containing protein 1 on chromosome 1 (ELTD1, vascular endothelial growth factor (VEGF, tumor suppressor protein p53, phosphatase and tensin homolog (PTEN, p16INK4a gene, cytochrome c oxidase (CcO, phospholipid metabolites, telomerase messenger expression (hTERT messenger ribonucleic acid [mRNA], microRNAs (miRNAs, cancer stem cell markers and imaging modalities as potential biomarkers are discussed. Inclusion of emerging biomarkers in prospective clinical trials is warranted in an effort for more effective personalized therapy in the future.

  8. APPLIED ASPECTS OF SLCO1B1 PHARMACOGENETIC TESTING FOR PREDICTING OF STATIN-INDUCED MYOPATHY AND PERSONALIZATION OF STATINS THERAPY

    Directory of Open Access Journals (Sweden)

    D. A. Sychev

    2015-09-01

    Full Text Available The clinical significance of the SLCO1B1 gene polymorphism (encoding an organic anion transport polipeptide in the development of statin induced myopathy is considered. Possible tactics of statin dose determination on the basis of pharmacogenetic testing is discussed. Indications for the use of this approach in clinical practice that should increase the efficacy and safety of the statin therapy are also considered.

  9. Pharmacogenomics of neuropsychiatric disorders: analysis of genetic variability in 162 identified neuroreceptors using 1000 Genomes Project data.

    Science.gov (United States)

    Kaur, Harpreet; Jajodia, Ajay; Grover, Sandeep; Agarwal, Nidhi; Baghel, Ruchi; Kukreti, Ritushree

    2014-01-01

    Neuroreceptors are considered to be primary drug targets and their abrupt signaling is a notable cause of interindividual drug response variability and treatment failure for complex neuropsychiatric diseases. In view of recent evidence, it is believed that common genetic risk factors mainly highly polymorphic neuroreceptors are being shared among neuropsychiatric disorders. We identified 162 neuroreceptors from the 639 known receptors in Homo sapiens and investigated 231,683 SNPs using 1000 Genomes Project data and evaluated their biological effect using in silico tools including RegulomeDB, SIFT, PolyPhen-2 and CAROL. Furthermore, data from the 1000 Genomes Project was utilized to retrieve minor allele frequency and calculate pairwise logartithm of the odds score among these SNPs for African, American, Asian and European populations separately as well as when combined together using Haploview v4.2. LRTag was used to identify tagSNPs in populations. A total of 52,381 (22.60%) SNPs were predicted as functionally important genetic variations. We identified sets of 603, 495, 450, 453 and 646 informative tagSNPs for African, American, Asian, European and combined populations, respectively. We propose construction of a 'neuroreceptor variants array' with these informative SNPs for future pharmacogenomic studies of neuropsychiatric disorders. Such an approach might improve genotype-phenotype correlation across different populations and lead to identification of reliable genetic markers and novel drug targets. Integration of these SNPs in literature would further provide evidence relevant to underlying mechanisms of genetics based nosology, pathophysiology and development of new drugs for the treatment of neuropsychiatric disorders.

  10. Pharmacokinetics and Pharmacogenomics of Bupropion in Three Different Formulations with Different Release Kinetics in Healthy Human Volunteers.

    Science.gov (United States)

    Connarn, Jamie N; Flowers, Stephanie; Kelly, Marisa; Luo, Ruijuan; Ward, Kristen M; Harrington, Gloria; Moncion, Ila; Kamali, Masoud; McInnis, Melivin; Feng, Meihua R; Ellingrod, Vicki; Babiskin, Andrew; Zhang, Xinyuan; Sun, Duxin

    2017-09-01

    The purpose of this pharmacokinetics (PK) study was to investigate whether different release kinetics from bupropion hydrochloride (HCl) immediate release (IR), sustained release (SR), and extended release (ER) formulations alter its metabolism and to test the hypothesis that the unsuccessful bioequivalence (BE) study of the higher strength (300 mg) of bupropion HCl ER tablets based on the successful BE study of the lower strength (150 mg) was due to metabolic saturation in the gastrointestinal (GI) lumen. A randomized six-way crossover study was conducted in healthy volunteers. During each period, subjects took a single dose of IR (75/100 mg), SR (100/150 mg), or ER (150/300 mg) formulations of bupropion HCl; plasma samples for PK analysis were collected from 0-96 h for all formulations. In addition, each subject's whole blood was collected for the genotyping of various single-nucleotide polymorphisms (SNPs) of bupropion's major metabolic enzymes. The data indicates that the relative bioavailability of the ER formulations was 72.3-78.8% compared with IR 75 mg. No differences were observed for ratio of the area under the curve (AUC) of metabolite to AUC of parent for the three major metabolites. The pharmacogenomics analysis suggested no statistically significant correlation between polymorphisms and PK parameters of the various formulations. Altogether, these data suggested that the different release kinetics of the formulations did not change metabolites-to-parent ratio. Therefore, the differing BE result between the 150 and 300 mg bupropion HCl ER tablets was unlikely due to the metabolic saturation in the GI lumen caused by different release patterns.

  11. Economic Utility: Combinatorial Pharmacogenomics and Medication Cost Savings for Mental Health Care in a Primary Care Setting.

    Science.gov (United States)

    Brown, Lisa C; Lorenz, Raymond A; Li, James; Dechairo, Bryan M

    2017-03-01

    This study was an analysis based on a previously completed prospective study investigating medication costs of patients with mental illness guided by using the GeneSight proprietary combinatorial pharmacogenomic (PGx) test. The primary objective of this study was to determine potential cost savings of combinatorial PGx testing over the course of 1 year in patients with mental illness treated by primary care providers (PCPs) and psychiatrists who had switched or added a new psychiatric medication after patients failed to respond to monotherapy. The current evaluation details cost savings of treatment decisions congruent and incongruent with the combinatorial PGx test recommendations specific to PCPs and psychiatrists. This study was a subanalysis of a 1-year, prospective trial comparing medication costs of 2168 patients undergoing GeneSight testing. Pharmacy claims were provided by a pharmacy benefits manager, comparing medication costs 6 months before combinatorial PGx testing and followed up for 1 year after the testing. This analysis compared congruence and cost savings per patient based on the type of health care provider administering care. Using data from a large pharmacy benefits manager, we found that PCPs treat the majority of mental health patients receiving psychotropic medication prescriptions, including treatment-resistant patients. PCPs congruent with combinatorial PGx testing provided the most medication cost savings for payers and patients at $3988 per member per year (P Health care providers treating patients with mental illness can significantly reduce medication costs by following the combinatorial PGx report recommendations. PCPs, who treat the majority of patients with mental illness, reported a significant reduction in medication costs for both central nervous system and non-central nervous system drugs. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  12. A review of barriers to effective asthma management in Puerto Ricans: cultural, healthcare system and pharmacogenomic issues.

    Science.gov (United States)

    Alicea-Alvarez, Norma; Swanson-Biearman, Brenda; Kelsen, Steven G

    2014-02-01

    , hence, asthma outcomes. Finally, given ethnically based differences in pharmacogenomics, clinical trials targeting the Puerto Rican population may help to better define optimal asthma medication regimens in this ethnic group.

  13. Towards Improved Biomarker Research

    DEFF Research Database (Denmark)

    Kjeldahl, Karin

    This thesis takes a look at the data analytical challenges associated with the search for biomarkers in large-scale biological data such as transcriptomics, proteomics and metabolomics data. These studies aim to identify genes, proteins or metabolites which can be associated with e.g. a diet......, disease (e.g. cancer), drug response or physiological status. The value of these omics studies has to some extent been questioned as it is often observed that the validity of claimed biomarkers has been very difficult to verify in other studies. On the other hand, in many studies it is difficult...... is investigated and followed by some suggestions which can potentially improve the chances of a successful outcome of an omics study. A method widely applied in the analysis of omics studies is Partial Least Squares (PLS) regression which is one of the work horses within the chemometrics tool box; a method which...

  14. Novel biomarkers for sepsis

    DEFF Research Database (Denmark)

    Larsen, Frederik Fruergaard; Petersen, J Asger

    2017-01-01

    BACKGROUND: Sepsis is a prevalent condition among hospitalized patients that carries a high risk of morbidity and mortality. Rapid recognition of sepsis as the cause of deterioration is desirable, so effective treatment can be initiated rapidly. Traditionally, diagnosis was based on presence of two...... or more positive SIRS criteria due to infection. However, recently published sepsis-3 criteria put more emphasis on organ dysfunction caused by infection in the definition of sepsis. Regardless of this, no gold standard for diagnosis exist, and clinicians still rely on a number of traditional and novel...... biomarkers to discriminate between patients with and without infection, as the cause of deterioration. METHOD: Narrative review of current literature. RESULTS: A number of the most promising biomarkers for diagnoses and prognostication of sepsis are presented. CONCLUSION: Procalcitonin, presepsin, CD64, su...

  15. Biomarkers of Selenium Status

    Directory of Open Access Journals (Sweden)

    Gerald F. Combs, Jr.

    2015-03-01

    Full Text Available The essential trace element, selenium (Se, has multiple biological activities, which depend on the level of Se intake. Relatively low Se intakes determine the expression of selenoenzymes in which it serves as an essential constituent. Higher intakes have been shown to have anti-tumorigenic potential; and very high Se intakes can produce adverse effects. This hierarchy of biological activities calls for biomarkers informative at different levels of Se exposure. Some Se-biomarkers, such as the selenoproteins and particularly GPX3 and SEPP1, provide information about function directly and are of value in identifying nutritional Se deficiency and tracking responses of deficient individuals to Se-treatment. They are useful under conditions of Se intake within the range of regulated selenoprotein expression, e.g., for humans <55 μg/day and for animals <20 μg/kg diet. Other Se-biomarkers provide information indirectly through inferences based on Se levels of foods, tissues, urine or feces. They can indicate the likelihood of deficiency or adverse effects, but they do not provide direct evidence of either condition. Their value is in providing information about Se status over a wide range of Se intake, particularly from food forms. There is need for additional Se biomarkers particularly for assessing Se status in non-deficient individuals for whom the prospects of cancer risk reduction and adverse effects risk are the primary health considerations. This would include determining whether supranutritional intakes of Se may be required for maximal selenoprotein expression in immune surveillance cells. It would also include developing methods to determine low molecular weight Se-metabolites, i.e., selenoamino acids and methylated Se-metabolites, which to date have not been detectable in biological specimens. Recent analytical advances using tandem liquid chromatography-mass spectrometry suggest prospects for detecting these metabolites.

  16. Urinary Protein Biomarker Analysis

    Science.gov (United States)

    2017-10-01

    associated protein biomarkers were identified by transcriptomic comparison of cancer cells vs. normal luminal cells; cancer-associated stromal cells vs...analysis; (C) correction with PSA, P = 0.012); (D) ROC curve analysis. 4-1. Use of PSA levels for marker level normalization Other organs along the...Copyright: Shi et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which

  17. Design and Anticipated Outcomes of the eMERGE-PGx Project: A Multi-Center Pilot for Pre-Emptive Pharmacogenomics in Electronic Health Record Systems

    OpenAIRE

    Rasmussen-Torvik, Laura J.; Stallings, Sarah C.; Gordon, Adam S.; Almoguera, Berta; Basford, Melissa A.; Bielinski, Suzette J.; Brautbar, Ariel; Brilliant, Murray; Carrell, David S.; Connolly, John; Crosslin, David R.; Doheny, Kimberly F.; Gallego, Carlos J.; Gottesman, Omri; Kim, Daniel Seung

    2014-01-01

    We describe here the design and initial implementation of the eMERGE-PGx project. eMERGE-PGx, a partnership of the eMERGE and PGRN consortia, has three objectives : 1) Deploy PGRNseq, a next-generation sequencing platform assessing sequence variation in 84 proposed pharmacogenes, in nearly 9,000 patients likely to be prescribed drugs of interest in a 1–3 year timeframe across several clinical sites; 2) Integrate well-established clinically-validated pharmacogenetic genotypes into the electron...

  18. Replication of LDL GWAs hits in PROSPER/PHASE as validation for future (pharmaco)genetic analyses

    LENUS (Irish Health Repository)

    Trompet, Stella

    2011-10-06

    Abstract Background The PHArmacogenetic study of Statins in the Elderly at risk (PHASE) is a genome wide association study in the PROspective Study of Pravastatin in the Elderly at risk for vascular disease (PROSPER) that investigates the genetic variation responsible for the individual variation in drug response to pravastatin. Statins lower LDL-cholesterol in general by 30%, however not in all subjects. Moreover, clinical response is highly variable and adverse effects occur in a minority of patients. In this report we first describe the rationale of the PROSPER\\/PHASE project and second show that the PROSPER\\/PHASE study can be used to study pharmacogenetics in the elderly. Methods The genome wide association study (GWAS) was conducted using the Illumina 660K-Quad beadchips following manufacturer\\'s instructions. After a stringent quality control 557,192 SNPs in 5,244 subjects were available for analysis. To maximize the availability of genetic data and coverage of the genome, imputation up to 2.5 million autosomal CEPH HapMap SNPs was performed with MACH imputation software. The GWAS for LDL-cholesterol is assessed with an additive linear regression model in PROBABEL software, adjusted for age, sex, and country of origin to account for population stratification. Results Forty-two SNPs reached the GWAS significant threshold of p = 5.0e-08 in 5 genomic loci (APOE\\/APOC1; LDLR; FADS2\\/FEN1; HMGCR; PSRC1\\/CELSR5). The top SNP (rs445925, chromosome 19) with a p-value of p = 2.8e-30 is located within the APOC1 gene and near the APOE gene. The second top SNP (rs6511720, chromosome 19) with a p-value of p = 5.22e-15 is located within the LDLR gene. All 5 genomic loci were previously associated with LDL-cholesterol levels, no novel loci were identified. Replication in WOSCOPS and CARE confirmed our results. Conclusion With the GWAS in the PROSPER\\/PHASE study we confirm the previously found genetic associations with LDL-cholesterol levels. With this proof

  19. Biomarkers in Diabetic Retinopathy

    Science.gov (United States)

    Jenkins, Alicia J.; Joglekar, Mugdha V.; Hardikar, Anandwardhan A.; Keech, Anthony C.; O'Neal, David N.; Januszewski, Andrzej S.

    2015-01-01

    There is a global diabetes epidemic correlating with an increase in obesity. This coincidence may lead to a rise in the prevalence of type 2 diabetes. There is also an as yet unexplained increase in the incidence of type 1 diabetes, which is not related to adiposity. Whilst improved diabetes care has substantially improved diabetes outcomes, the disease remains a common cause of working age adult-onset blindness. Diabetic retinopathy is the most frequently occurring complication of diabetes; it is greatly feared by many diabetes patients. There are multiple risk factors and markers for the onset and progression of diabetic retinopathy, yet residual risk remains. Screening for diabetic retinopathy is recommended to facilitate early detection and treatment. Common biomarkers of diabetic retinopathy and its risk in clinical practice today relate to the visualization of the retinal vasculature and measures of glycemia, lipids, blood pressure, body weight, smoking, and pregnancy status. Greater knowledge of novel biomarkers and mediators of diabetic retinopathy, such as those related to inflammation and angiogenesis, has contributed to the development of additional therapeutics, in particular for late-stage retinopathy, including intra-ocular corticosteroids and intravitreal vascular endothelial growth factor inhibitors ('anti-VEGFs') agents. Unfortunately, in spite of a range of treatments (including laser photocoagulation, intraocular steroids, and anti-VEGF agents, and more recently oral fenofibrate, a PPAR-alpha agonist lipid-lowering drug), many patients with diabetic retinopathy do not respond well to current therapeutics. Therefore, more effective treatments for diabetic retinopathy are necessary. New analytical techniques, in particular those related to molecular markers, are accelerating progress in diabetic retinopathy research. Given the increasing incidence and prevalence of diabetes, and the limited capacity of healthcare systems to screen and treat

  20. Predictive Biomarkers for Asthma Therapy.

    Science.gov (United States)

    Medrek, Sarah K; Parulekar, Amit D; Hanania, Nicola A

    2017-09-19

    Asthma is a heterogeneous disease characterized by multiple phenotypes. Treatment of patients with severe disease can be challenging. Predictive biomarkers are measurable characteristics that reflect the underlying pathophysiology of asthma and can identify patients that are likely to respond to a given therapy. This review discusses current knowledge regarding predictive biomarkers in asthma. Recent trials evaluating biologic therapies targeting IgE, IL-5, IL-13, and IL-4 have utilized predictive biomarkers to identify patients who might benefit from treatment. Other work has suggested that using composite biomarkers may offer enhanced predictive capabilities in tailoring asthma therapy. Multiple biomarkers including sputum eosinophil count, blood eosinophil count, fractional concentration of nitric oxide in exhaled breath (FeNO), and serum periostin have been used to identify which patients will respond to targeted asthma medications. Further work is needed to integrate predictive biomarkers into clinical practice.

  1. Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for rasburicase therapy in the context of G6PD deficiency genotype.

    Science.gov (United States)

    Relling, M V; McDonagh, E M; Chang, T; Caudle, K E; McLeod, H L; Haidar, C E; Klein, T; Luzzatto, L

    2014-08-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is associated with development of acute hemolytic anemia (AHA) induced by a number of drugs. We provide guidance as to which G6PD genotypes are associated with G6PD deficiency in males and females. Rasburicase is contraindicated in G6PD-deficient patients due to the risk of AHA and possibly methemoglobinemia. Unless preemptive genotyping has established a positive diagnosis of G6PD deficiency, quantitative enzyme assay remains the mainstay of screening prior to rasburicase use. The purpose of this article is to help interpret the results of clinical G6PD genotype tests so that they can guide the use of rasburicase. Detailed guidelines on other aspects of the use of rasburicase, including analyses of cost-effectiveness, are beyond the scope of this document. Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines are published and updated periodically on https://www.pharmgkb.org/page/cpic to reflect new developments in the field.

  2. Biomarker Identification Using Text Mining

    Directory of Open Access Journals (Sweden)

    Hui Li

    2012-01-01

    Full Text Available Identifying molecular biomarkers has become one of the important tasks for scientists to assess the different phenotypic states of cells or organisms correlated to the genotypes of diseases from large-scale biological data. In this paper, we proposed a text-mining-based method to discover biomarkers from PubMed. First, we construct a database based on a dictionary, and then we used a finite state machine to identify the biomarkers. Our method of text mining provides a highly reliable approach to discover the biomarkers in the PubMed database.

  3. Hepcidin- A Burgeoning Biomarker

    Directory of Open Access Journals (Sweden)

    Hemkant Manikrao Deshmukh

    2017-10-01

    Full Text Available The discovery of hepcidin has triggered a virtual ignition of studies on iron metabolism and related disorders. The peptide hormone hepcidin is a key homeostatic regulator of iron metabolism. The synthesis of hepcidin is induced by systemic iron levels and by inflammatory stimuli. Several human diseases are associated with variations in hepcidin concentrations. The evaluation of hepcidin in biological fluids is therefore a promising device in the diagnosis and management of medical situations in which iron metabolism is affected. Thus, it made us to recapitulate role of hepcidin as biomarker.

  4. [Biomarkers in multiple sclerosis].

    Science.gov (United States)

    Fernández, Óscar; Arroyo-González, Rafael; Rodríguez-Antigüedad, Alfredo; García-Merino, Juan A; Comabella, Manuel; Villar, Luisa M; Izquierdo, Guillermo; Tintoré, Mar; Oreja-Guevara, Celia; Álvarez-Cermeño, José C; Meca-Lallana, José E; Prieto, José M; Ramió-Torrentà, Lluís; Martínez-Yélamos, Sergio; Montalban, Xavier

    2013-04-01

    Multiple sclerosis is the most frequent disabling neurological disease in young adults. Its development includes independent processes of inflammation, demyelination, neurodegeneration, gliosis and repair, which are responsible for the heterogeneity and individual variability in the expression of the disease, its prognosis and response to treatment. As part of personalised medicine, the progress made in the search for new biomarkers has identified promising candidates that may be useful for the early diagnosis of the disease, for detecting prognostic and developmental profiles of the disease, and for monitoring the response to treatment. Unfortunately, few of them have been validated adequately, which prevents them from being applied in clinical practice. In view of the latest findings, the experts recommend orienting research in another direction, not so much towards the discovery of new molecules or imaging techniques, but instead towards a clinical validation of these markers, with the aim of fostering translational research. This review offers an update on the information about the biomarkers in multiple sclerosis that have currently been validated and are thus potential candidates, as well as looking at their value in the diagnosis, prognosis, evaluation of the development of the disability caused by the disease and the response to therapy.

  5. Biomarkers in Vasculitis

    Science.gov (United States)

    Monach, Paul A.

    2014-01-01

    Purpose of review Better biomarkers are needed for guiding management of patients with vasculitis. Large cohorts and technological advances had led to an increase in pre-clinical studies of potential biomarkers. Recent findings The most interesting markers described recently include a gene expression signature in CD8+ T cells that predicts tendency to relapse or remain relapse-free in ANCA-associated vasculitis, and a pair of urinary proteins that are elevated in Kawasaki disease but not other febrile illnesses. Both of these studies used “omics” technologies to generate and then test hypotheses. More conventional hypothesis-based studies have indicated that the following circulating proteins have potential to improve upon clinically available tests: pentraxin-3 in giant cell arteritis and Takayasu’s arteritis; von Willebrand factor antigen in childhood central nervous system vasculitis; eotaxin-3 and other markers related to eosinophils or Th2 immune responses in eosinophilic granulomatosis with polyangiitis (Churg-Strauss syndrome); and MMP-3, TIMP-1, and CXCL13 in ANCA-associated vasculitis. Summary New markers testable in blood and urine have the potential to assist with diagnosis, staging, assessment of current disease activity, and prognosis. However, the standards for clinical usefulness, in particular the demonstration of either very high sensitivity or very high specificity, have yet to be met for clinically relevant outcomes. PMID:24257367

  6. Drug-Gene Interactions of Antihypertensive Medications and Risk of Incident Cardiovascular Disease: A Pharmacogenomics Study from the CHARGE Consortium.

    Directory of Open Access Journals (Sweden)

    Joshua C Bis

    antihypertensive therapy meta-analyses (Pinteraction > 5.0×10-8. Similarly, findings were null for meta-analyses restricted to 66 SNPs with significant main effects on coronary artery disease or blood pressure from large published genome-wide association studies (Pinteraction ≥ 0.01. Our results suggest that there are no major pharmacogenetic influences of common SNPs on the relationship between blood pressure medications and the risk of incident CVD.

  7. Which biomarkers reveal neonatal sepsis?

    Directory of Open Access Journals (Sweden)

    Kun Wang

    Full Text Available We address the identification of optimal biomarkers for the rapid diagnosis of neonatal sepsis. We employ both canonical correlation analysis (CCA and sparse support vector machine (SSVM classifiers to select the best subset of biomarkers from a large hematological data set collected from infants with suspected sepsis from Yale-New Haven Hospital's Neonatal Intensive Care Unit (NICU. CCA is used to select sets of biomarkers of increasing size that are most highly correlated with infection. The effectiveness of these biomarkers is then validated by constructing a sparse support vector machine diagnostic classifier. We find that the following set of five biomarkers capture the essential diagnostic information (in order of importance: Bands, Platelets, neutrophil CD64, White Blood Cells, and Segs. Further, the diagnostic performance of the optimal set of biomarkers is significantly higher than that of isolated individual biomarkers. These results suggest an enhanced sepsis scoring system for neonatal sepsis that includes these five biomarkers. We demonstrate the robustness of our analysis by comparing CCA with the Forward Selection method and SSVM with LASSO Logistic Regression.

  8. Clinical impact of pharmacogenetic profiling with a clinical decision support tool in polypharmacy home health patients: A prospective pilot randomized controlled trial.

    Directory of Open Access Journals (Sweden)

    Lindsay S Elliott

    Full Text Available In polypharmacy patients under home health management, pharmacogenetic testing coupled with guidance from a clinical decision support tool (CDST on reducing drug, gene, and cumulative interaction risk may provide valuable insights in prescription drug treatment, reducing re-hospitalization and emergency department (ED visits. We assessed the clinical impact of pharmacogenetic profiling integrating binary and cumulative drug and gene interaction warnings on home health polypharmacy patients.This prospective, open-label, randomized controlled trial was conducted at one hospital-based home health agency between February 2015 and February 2016. Recruitment came from patient referrals to home health at hospital discharge. Eligible patients were aged 50 years and older and taking or initiating treatment with medications with potential or significant drug-gene-based interactions. Subjects (n = 110 were randomized to pharmacogenetic profiling (n = 57. The study pharmacist reviewed drug-drug, drug-gene, and cumulative drug and/or gene interactions using the YouScript® CDST to provide drug therapy recommendations to clinicians. The control group (n = 53 received treatment as usual including pharmacist guided medication management using a standard drug information resource. The primary outcome measure was the number of re-hospitalizations and ED visits at 30 and 60 days after discharge from the hospital. The mean number of re-hospitalizations per patient in the tested vs. untested group was 0.25 vs. 0.38 at 30 days (relative risk (RR, 0.65; 95% confidence interval (CI, 0.32-1.28; P = 0.21 and 0.33 vs. 0.70 at 60 days following enrollment (RR, 0.48; 95% CI, 0.27-0.82; P = 0.007. The mean number of ED visits per patient in the tested vs. untested group was 0.25 vs. 0.40 at 30 days (RR, 0.62; 95% CI, 0.31-1.21; P = 0.16 and 0.39 vs. 0.66 at 60 days (RR, 0.58; 95% CI, 0.34-0.99; P = 0.045. Differences in composite outcomes at 60 days (exploratory endpoints

  9. Should pharmacogenetics be incorporated in major depression treatment? Economic evaluation in high- and middle-income European countries.

    Science.gov (United States)

    Olgiati, Paolo; Bajo, Emanuele; Bigelli, Marco; De Ronchi, Diana; Serretti, Alessandro

    2012-01-10

    The serotonin transporter 5-HTTLPR polymorphism moderates response to SSRIs and side-effect burden. The aim of this study is to quantify the cost-utility of incorporating 5-HTTLPR genotyping in drug treatment of major depressive disorder (MDD). We previously reported a theoretical model to simulate antidepressant treatment with citalopram or bupropion for 12 weeks. The drugs were alternatively selected according to an 'as usual' algorithm or based on response and tolerability predicted by 5-HTTLPR profile. Here we apply this model to conduct a cost-utility analysis in three European regions with high GDP (Euro A), middle GDP (Euro B) and middle-high GDP (Euro C). In addition we test a verification scenario in which citalopram+bupropion augmentation is administered to individuals with the least favorable 5-HTTLPR genotype. Treatment outcomes are remission and Quality Adjusted-Life Weeks (QALW). Cost data (international $, year 2009) are retrieved from the World Health Organization (WHO) and national official sources. In base-case scenario incremental cost-effectiveness ratio (ICER) values are $1147 (Euro A), $1185 (Euro B) and $1178 (Euro C). From cost-effectiveness acceptability curve (CEAC), the probability of having an ICER value below WHO recommended cost-utility threshold (3 GDP per capita=$1926) is >90% in high-income countries (Euro A). In middle- income regions, these probabilities are <30% (Euro B) and <55% (Euro C) respectively. All estimates are robust against variations in treatment parameters, but if genetic test cost decreases to $100, pharmacogenetic approach becomes cost-effective in middle-income countries (Euro B). This simulation using data from 27 European states suggests that choosing antidepressant treatment from the results of 5-HTTLPR might be a cost-effective solution in high income countries. Its feasibility in middle income countries needs further research. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Pharmacokinetics and pharmacogenetics of the MEK1/2 inhibitor, selumetinib, in Asian and Western healthy subjects: a pooled analysis.

    Science.gov (United States)

    Dymond, Angela W; Elks, Cathy; Martin, Paul; Carlile, David J; Mariani, Gabriella; Lovick, Susan; Huang, Yifan; Lorch, Ulrike; Brown, Helen; So, Karen

    2017-06-01

    Emerging data on selumetinib, a MEK1/2 inhibitor in clinical development, suggest a possible difference in pharmacokinetics (PK) between Japanese and Western patients. This pooled analysis sought to assess the effect of ethnicity on selumetinib exposure in healthy Western and Asian subjects, and to identify any association between genetic variants in the UGT1A1, CYP2C19 and ABCG2 genes and observed differences in selumetinib PK. A pooled analysis of data from ten Phase I studies, one in Asian subjects (encompassing Japanese, non-Japanese Asian and Indian Asian subjects) and nine in Western subjects, was conducted. Key findings were derived from the collective exposure data across doses of 25, 35, 50 and 75 mg selumetinib; primary variables were dose-normalized AUC and C max . PK data from 308 subjects (10 studies) were available for the pooled analysis; genetic data from 87 subjects (3 studies) were available for the pharmacogenetic analysis. Dose-normalized AUC and C max were 35% (95% CI: 25-47%) and 39% (95% CI: 24-56%) higher in the pooled Asian group, respectively, compared with Western subjects. PK exposure parameters were similar between the Japanese, non-Japanese Asian and Indian groups. There was no evidence that the polymorphisms assessed in the genes UGT1A1, CYP2C19 and ABCG2 account for observed PK differences. Selumetinib exposure was higher in healthy Asian subjects compared with Western subjects, and these data provide valuable insight for clinicians to consider when treating patients of Asian ethnicity with selumetinib.

  11. Pharmacogenetics of Statin-Induced Myopathy: A Focused Review of the Clinical Translation of Pharmacokinetic Genetic Variants.

    Science.gov (United States)

    Talameh, Jasmine A; Kitzmiller, Joseph P

    2014-04-23

    Statins are the most commonly prescribed drugs in the United States and are extremely effective in reducing major cardiovascular events in the millions of Americans with hyperlipidemia. However, many patients (up to 25%) cannot tolerate or discontinue statin therapy due to statin-induced myopathy (SIM). Patients will continue to experience SIM at unacceptably high rates or experience unnecessary cardiovascular events (as a result of discontinuing or decreasing their statin therapy) until strategies for predicting or mitigating SIM are identified. A promising strategy for predicting or mitigating SIM is pharmacogenetic testing, particularly of pharmacokinetic genetic variants as SIM is related to statin exposure. Data is emerging on the association between pharmacokinetic genetic variants and SIM. A current, critical evaluation of the literature on pharmacokinetic genetic variants and SIM for potential translation to clinical practice is lacking. This review focuses specifically on pharmacokinetic genetic variants and their association with SIM clinical outcomes. We also discuss future directions, specific to the research on pharmacokinetic genetic variants, which could speed the translation into clinical practice. For simvastatin, we did not find sufficient evidence to support the clinical translation of pharmacokinetic genetic variants other than SLCO1B1 . However, SLCO1B1 may also be clinically relevant for pravastatin- and pitavastatin-induced myopathy, but additional studies assessing SIM clinical outcome are needed. CYP2D6*4 may be clinically relevant for atorvastatin-induced myopathy, but mechanistic studies are needed. Future research efforts need to incorporate statin-specific analyses, multi-variant analyses, and a standard definition of SIM. As the use of statins is extremely common and SIM continues to occur in a significant number of patients, future research investments in pharmacokinetic genetic variants have the potential to make a profound impact on

  12. The pharmacogenetics and pharmacodynamics of clopidogrel response: an analysis from the PRINC (Plavix Response in Coronary Intervention) trial.

    Science.gov (United States)

    Gladding, Patrick; Webster, Mark; Zeng, Irene; Farrell, Helen; Stewart, Jim; Ruygrok, Peter; Ormiston, John; El-Jack, Seif; Armstrong, Guy; Kay, Patrick; Scott, Douglas; Gunes, Arzu; Dahl, Marja-Liisa

    2008-12-01

    This study assessed the effect of pharmacogenetics on the antiplatelet effect of clopidogrel. Variability in clopidogrel response might be influenced by polymorphisms in genes coding for drug metabolism enzymes (cytochrome P450 [CYP] family), transport proteins (P-glycoprotein) and/or target proteins for the drug (adenosine diphosphate-receptor P2Y12). Sixty patients undergoing elective percutaneous coronary intervention in the randomized PRINC (Plavix Response in Coronary Intervention) trial had platelet function measured using the VerifyNow P2Y12 analyzer after a 600-mg or split 1,200-mg loading dose and after a 75- or 150-mg daily maintenance dosage. Polymerase chain reaction-based genotyping evaluated polymorphisms in the CYP2C19, CYP2C9, CYP3A4, CYP3A5, ABCB1, P2Y12, and CES genes. CYP2C19*1*1 carriers had greater platelet inhibition 2 h after a 600-mg dose (median: 23%, range: 0% to 66%), compared with platelet inhibition in CYP2C19*2 or *4 carriers (10%, 0% to 56%, p = 0.029) and CYP2C19*17 carriers (9%, 0% to 98%, p = 0.026). CYP2C19*2 or *4 carriers had greater platelet inhibition with the higher loading dose than with the lower dose at 4 h (37%, 8% to 87% vs. 14%, 0% to 22%, p = 0.002) and responded better with the higher maintenance dose regimen (51%, 15% to 86% vs. 14%, 0% to 67%, p = 0.042). Carriers of the CYP2C19*2 and *4 alleles showed reduced platelet inhibition after a clopidogrel 600-mg loading dose but responded to higher loading and maintenance dose regimens. Genotyping for the relevant gene polymorphisms may help to individualize and optimize clopidogrel treatment. (Australia New Zealand Clinical Trials Registry; ACTRN12606000129583).

  13. Phase 1 Pharmacogenetic and Pharmacodynamic Study of Sorafenib With Concurrent Radiation Therapy and Gemcitabine in Locally Advanced Unresectable Pancreatic Cancer

    International Nuclear Information System (INIS)

    Chiorean, E. Gabriela; Schneider, Bryan P.; Akisik, Fatih M.; Perkins, Susan M.; Anderson, Stephen; Johnson, Cynthia S.; DeWitt, John; Helft, Paul; Clark, Romnee; Johnston, Erica L.; Spittler, A. John; Deluca, Jill; Bu, Guixue; Shahda, Safi; Loehrer, Patrick J.; Sandrasegaran, Kumar; Cardenes, Higinia R.

    2014-01-01

    Purpose: To define the safety, efficacy, and pharmacogenetic and pharmacodynamic effects of sorafenib with gemcitabine-based chemoradiotherapy (CRT) in locally advanced pancreatic cancer. Methods and Materials: Patients received gemcitabine 1000 mg/m 2 intravenously weekly × 3 every 4 weeks per cycle for 1 cycle before CRT and continued for up to 4 cycles after CRT. Weekly gemcitabine 600 mg/m 2 intravenously was given during concurrent intensity modulated radiation therapy of 50 Gy to gross tumor volume in 25 fractions. Sorafenib was dosed orally 400 mg twice daily until progression, except during CRT when it was escalated from 200 mg to 400 mg daily, and 400 mg twice daily. The maximum tolerated dose cohort was expanded to 15 patients. Correlative studies included dynamic contrast-enhanced MRI and angiogenesis genes polymorphisms (VEGF-A and VEGF-R2 single nucleotide polymorphisms). Results: Twenty-seven patients were enrolled. No dose-limiting toxicity occurred during induction gemcitabine/sorafenib followed by concurrent CRT. The most common grade 3/4 toxicities were fatigue, hematologic, and gastrointestinal. The maximum tolerated dose was sorafenib 400 mg twice daily. The median progression-free survival and overall survival for 25 evaluable patients were 10.6 and 12.6 months, respectively. The median overall survival for patients with VEGF-A -2578 AA, -1498 CC, and -1154 AA versus alternate genotypes was 21.6 versus 14.7 months. Dynamic contrast-enhanced MRI demonstrated higher baseline K trans in responding patients. Conclusions: Concurrent sorafenib with CRT had modest clinical activity with increased gastrointestinal toxicity in localized unresectable pancreatic cancer. Select VEGF-A/VEGF-R2 genotypes were associated with favorable survival

  14. A pharmacogenetic study of CD4 recovery in response to HIV antiretroviral therapy in two South African population groups.

    Science.gov (United States)

    Parathyras, John; Gebhardt, Stefan; Hillermann-Rebello, Renate; Grobbelaar, Nelis; Venter, Mauritz; Warnich, Louise

    2009-05-01

    South Africa, like many other Southern African countries, has one of the highest HIV infection rates in the world and many individuals consequently receive antiretroviral therapy (ART). However, knowledge regarding (i) the prevalence of functional single nucleotide polymorphisms (SNPs) in pharmacologically relevant genes, and (ii) variance in pharmacotherapy both within and between different populations and ethnic groups is limited. The aim of this study was to determine whether selected polymorphisms in cytochrome P450 (CYP) genes (CYP2B6 and CYP3A4) and the multidrug-resistance 1 (ABCB1) gene underlie altered antiretroviral (ARV) drug response in two South African populations. DNA samples from 182 HIV-positive individuals of Mixed-Ancestry and Xhosa ethnicity on ART were genotyped for the A-392G SNP in CYP3A4, the G516T and A785G SNPs in CYP2B6, and the T-129C, C1236T, G2677T/A and C3435T SNPs in ABCB1. Univariate two-way analysis of variance (ANOVA) testing revealed no apparent effect of ethnicity on immune recovery (in terms of CD4-cell count) in response to ART. Univariate one-way ANOVA testing revealed a discernible effect of genotype on immune recovery in the cases of the T-129C (P=0.03) and G2677A (P<0.01) polymorphisms in the ABCB1 gene. This study serves as a basis for better understanding and possible prediction of pharmacogenetic risk profiles and drug response in individuals and ethnic groups in South Africa.

  15. [Autoantibodies as biomarkers].

    Science.gov (United States)

    Tron, François

    2014-01-01

    Activation and differentiation of autoreactive B-lymphocytes lead to the production of autoantibodies, which are thus the direct consequence of the autoimmune process. They often constitute biomarkers of autoimmune diseases and are measured by tests displaying various diagnosis sensitivity and specificity. Autoantibody titers can be correlated to the disease activity and certain autoantibody populations associated with particular clinical manifestations or tissue lesions. The demonstration that autoantibodies appear years before the onset of autoimmune diseases indicates that their presence in healthy individuals may be a predictive marker of the occurrence of disease. Certain autoantibodies could also be predictive markers of a therapeutic response to biologics and of the occurrence of side effects as well. Thus, autoantibodies are useful tools in the diagnosis and the management of patients with organ specific or non-organ specific autoimmune diseases at different steps of the autoimmune process. Copyright © 2013. Published by Elsevier Masson SAS.

  16. Biomarkers of adverse drug reactions.

    Science.gov (United States)

    Carr, Daniel F; Pirmohamed, Munir

    2018-02-01

    Adverse drug reactions can be caused by a wide range of therapeutics. Adverse drug reactions affect many bodily organ systems and vary widely in severity. Milder adverse drug reactions often resolve quickly following withdrawal of the casual drug or sometimes after dose reduction. Some adverse drug reactions are severe and lead to significant organ/tissue injury which can be fatal. Adverse drug reactions also represent a financial burden to both healthcare providers and the pharmaceutical industry. Thus, a number of stakeholders would benefit from development of new, robust biomarkers for the prediction, diagnosis, and prognostication of adverse drug reactions. There has been significant recent progress in identifying predictive genomic biomarkers with the potential to be used in clinical settings to reduce the burden of adverse drug reactions. These have included biomarkers that can be used to alter drug dose (for example, Thiopurine methyltransferase (TPMT) and azathioprine dose) and drug choice. The latter have in particular included human leukocyte antigen (HLA) biomarkers which identify susceptibility to immune-mediated injuries to major organs such as skin, liver, and bone marrow from a variety of drugs. This review covers both the current state of the art with regard to genomic adverse drug reaction biomarkers. We also review circulating biomarkers that have the potential to be used for both diagnosis and prognosis, and have the added advantage of providing mechanistic information. In the future, we will not be relying on single biomarkers (genomic/non-genomic), but on multiple biomarker panels, integrated through the application of different omics technologies, which will provide information on predisposition, early diagnosis, prognosis, and mechanisms. Impact statement • Genetic and circulating biomarkers present significant opportunities to personalize patient therapy to minimize the risk of adverse drug reactions. ADRs are a significant heath issue

  17. [Biomarkers in endocrinology].

    Science.gov (United States)

    d'Herbomez, Michèle; Bauters, Catherine; Cortet-Rudelli, Christine; Dewailly, Didier; Docao, Christine; Wémeau, Jean-Louis

    2014-01-01

    TSH assay is the best parameter of the thyroid function. For adults, the normal interval of TSH concentrations range from 0.4 to 4 mUI/L. At the first trimester of pregnancy, TSH levels must be <2.5 mUI/L. Normal TSH levels increase with aging and obesity. The biological diagnosis relies on the identification of excessive secretion of the metanephrines which are more sensitive and specific than those of catecholamines. The concentrations of the free plasmatic metanephrines reflect the ongoing production of tumor. Plasma methoxytyramine is a novel biomarker of metastatic pheochromocytomas and paragangliomas. Serum IGF1 is a reliable measure of integrated GH concentrations in patients with acromegaly. Accurate assessment of IGF1 concentrations requires age and sex-matched control values. IGF1 is a sensitive tool for the diagnosis of acromegaly and efficacy of therapies. Serum AMH assay is more sensitive, more specific and more reproducible that counting of ovarian follicles by ultrasound. AMH level above 5 ng/mL (35 pmol/L) could be chosen as one of the diagnostic criteria for the polycystic ovary syndrome. In early or "incipiens" ovarian failure, the decrease in serum AMH is far ahead of the increase in FSH. Thyroglobulin (TG) and calcitonin (CT) are the sensitive and specific markers of respectively well-differentiated thyroid cancers of follicular origin and of the medullary thyroid cancers. The same tumour marker assay should be used to monitor a given patient. Chromogranin A (CgA) is a highly efficient biomarker for diagnosis and follow-up of various endocrine tumours. Despite the lack of international standardisation, some CgA assays are reliable. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  18. Biomarkers of manganese intoxication.

    Science.gov (United States)

    Zheng, Wei; Fu, Sherleen X; Dydak, Ulrike; Cowan, Dallas M

    2011-01-01

    Manganese (Mn), upon absorption, is primarily sequestered in tissue and intracellular compartments. For this reason, blood Mn concentration does not always accurately reflect Mn concentration in the targeted tissue, particularly in the brain. The discrepancy between Mn concentrations in tissue or intracellular components means that blood Mn is a poor biomarker of Mn exposure or toxicity under many conditions and that other biomarkers must be established. For group comparisons of active workers, blood Mn has some utility for distinguishing exposed from unexposed subjects, although the large variability in mean values renders it insensitive for discriminating one individual from the rest of the study population. Mn exposure is known to alter iron (Fe) homeostasis. The Mn/Fe ratio (MIR) in plasma or erythrocytes reflects not only steady-state concentrations of Mn or Fe in tested individuals, but also a biological response (altered Fe homeostasis) to Mn exposure. Recent human studies support the potential value for using MIR to distinguish individuals with Mn exposure. Additionally, magnetic resonance imaging (MRI), in combination with noninvasive assessment of γ-aminobutyric acid (GABA) by magnetic resonance spectroscopy (MRS), provides convincing evidence of Mn exposure, even without clinical symptoms of Mn intoxication. For subjects with long-term, low-dose Mn exposure or for those exposed in the past but not the present, neither blood Mn nor MRI provides a confident distinction for Mn exposure or intoxication. While plasma or erythrocyte MIR is more likely a sensitive measure, the cut-off values for MIR among the general population need to be further tested and established. Considering the large accumulation of Mn in bone, developing an X-ray fluorescence spectroscopy or neutron-based spectroscopy method may create yet another novel non-invasive tool for assessing Mn exposure and toxicity. Copyright © 2010 Elsevier Inc. All rights reserved.

  19. Biomarkers for Detecting Mitochondrial Disorders

    Directory of Open Access Journals (Sweden)

    Josef Finsterer

    2018-01-01

    Full Text Available (1 Objectives: Mitochondrial disorders (MIDs are a genetically and phenotypically heterogeneous group of slowly or rapidly progressive disorders with onset from birth to senescence. Because of their variegated clinical presentation, MIDs are difficult to diagnose and are frequently missed in their early and late stages. This is why there is a need to provide biomarkers, which can be easily obtained in the case of suspecting a MID to initiate the further diagnostic work-up. (2 Methods: Literature review. (3 Results: Biomarkers for diagnostic purposes are used to confirm a suspected diagnosis and to facilitate and speed up the diagnostic work-up. For diagnosing MIDs, a number of dry and wet biomarkers have been proposed. Dry biomarkers for MIDs include the history and clinical neurological exam and structural and functional imaging studies of the brain, muscle, or myocardium by ultrasound, computed tomography (CT, magnetic resonance imaging (MRI, MR-spectroscopy (MRS, positron emission tomography (PET, or functional MRI. Wet biomarkers from blood, urine, saliva, or cerebrospinal fluid (CSF for diagnosing MIDs include lactate, creatine-kinase, pyruvate, organic acids, amino acids, carnitines, oxidative stress markers, and circulating cytokines. The role of microRNAs, cutaneous respirometry, biopsy, exercise tests, and small molecule reporters as possible biomarkers is unsolved. (4 Conclusions: The disadvantages of most putative biomarkers for MIDs are that they hardly meet the criteria for being acceptable as a biomarker (missing longitudinal studies, not validated, not easily feasible, not cheap, not ubiquitously available and that not all MIDs manifest in the brain, muscle, or myocardium. There is currently a lack of validated biomarkers for diagnosing MIDs.

  20. Biomarker in archaeological soils

    Science.gov (United States)

    Wiedner, Katja; Glaser, Bruno; Schneeweiß, Jens

    2015-04-01

    The use of biomarkers in an archaeological context allow deeper insights into the understanding of anthropogenic (dark) earth formation and from an archaeological point of view, a completely new perspective on cultivation practices in the historic past. During an archaeological excavation of a Slavic settlement (10th/11th C. A.D.) in Brünkendorf (Wendland region in Northern Germany), a thick black soil (Nordic Dark Earth) was discovered that resembled the famous terra preta phenomenon. For the humid tropics, terra preta could act as model for sustainable agricultural practices and as example for long-term CO2-sequestration into terrestrial ecosystems. The question was whether this Nordic Dark Earth had similar properties and genesis as the famous Amazonian Dark Earth in order to find a model for sustainable agricultural practices and long term CO2-sequestration in temperate zones. For this purpose, a multi-analytical approach was used to characterize the sandy-textured Nordic Dark Earth in comparison to less anthropogenically influenced soils in the adjacent area in respect of ecological conditions (e.g. amino sugar), input materials (faeces) and the presence of stable soil organic matter (black carbon). Amino sugar analyses showed that Nordic Dark Earth contained higher amounts of microbial residues being dominated by soil fungi. Faecal biomarkers such as stanols and bile acids indicated animal manure from omnivores and herbivores but also human excrements. Black carbon content of about 30 Mg ha-1 in the Nordic Dark Earth was about four times higher compared to the adjacent soil and in the same order of magnitude compared to terra preta. Our data strongly suggest parallels to anthropogenic soil formation in Amazonia and in Europe by input of organic wastes, faecal material and charred organic matter. An obvious difference was that in terra preta input of human-derived faecal material dominated while in NDE human-derived faecal material played only a minor role

  1. Biomarkers of latent TB infection

    DEFF Research Database (Denmark)

    Ruhwald, Morten; Ravn, Pernille

    2009-01-01

    For the last 100 years, the tuberculin skin test (TST) has been the only diagnostic tool available for latent TB infection (LTBI) and no biomarker per se is available to diagnose the presence of LTBI. With the introduction of M. tuberculosis-specific IFN-gamma release assays (IGRAs), a new area...... of in vitro immunodiagnostic tests for LTBI based on biomarker readout has become a reality. In this review, we discuss existing evidence on the clinical usefulness of IGRAs and the indefinite number of potential new biomarkers that can be used to improve diagnosis of latent TB infection. We also present...... early data suggesting that the monocyte-derived chemokine inducible protein-10 may be useful as a novel biomarker for the immunodiagnosis of latent TB infection....

  2. Emergence of biomarkers in nephropharmacology.

    Science.gov (United States)

    Khan, Enver; Batuman, Vecihi; Lertora, Juan J L

    2010-12-01

    Blood-urea nitrogen, serum creatinine and urine output have long been used as markers of kidney function despite their known limitations. In the past few years, a number of novel biomarkers have been identified in the urine and blood that can detect kidney injury early. Although, to date, none of these biomarkers are in clinical use, many have been validated as reliable and sensitive, allowing detection of kidney injury before serum creatinine levels rise and urine output drops. These markers have been evaluated in great detail in animal models and to a lesser extent in humans in postcardiopulmonary bypass and sepsis. There is relatively scarse data on the use of these biomarkers in the detection of kidney injury associated with the use of pharmacologic agents. The purpose of this article is to summarize these data and highlight the potential utility of these biomarkers in nephropharmacology.

  3. Biomarkers in localized prostate cancer

    Science.gov (United States)

    Ferro, Matteo; Buonerba, Carlo; Terracciano, Daniela; Lucarelli, Giuseppe; Cosimato, Vincenzo; Bottero, Danilo; Deliu, Victor M; Ditonno, Pasquale; Perdonà, Sisto; Autorino, Riccardo; Coman, Ioman; De Placido, Sabino; Di Lorenzo, Giuseppe; De Cobelli, Ottavio

    2016-01-01

    Biomarkers can improve prostate cancer diagnosis and treatment. Accuracy of prostate-specific antigen (PSA) for early diagnosis of prostate cancer is not satisfactory, as it is an organ- but not cancer-specific biomarker, and it can be improved by using models that incorporate PSA along with other test results, such as prostate cancer antigen 3, the molecular forms of PSA (proPSA, benign PSA and intact PSA), as well as kallikreins. Recent reports suggest that new tools may be provided by metabolomic studies as shown by preliminary data on sarcosine. Additional molecular biomarkers have been identified by the use of genomics, proteomics and metabolomics. We review the most relevant biomarkers for early diagnosis and management of localized prostate cancer. PMID:26768791

  4. Urinary Biomarkers of Brain Diseases

    Directory of Open Access Journals (Sweden)

    Manxia An

    2015-12-01

    Full Text Available Biomarkers are the measurable changes associated with a physiological or pathophysiological process. Unlike blood, urine is not subject to homeostatic mechanisms. Therefore, greater fluctuations could occur in urine than in blood, better reflecting the changes in human body. The roadmap of urine biomarker era was proposed. Although urine analysis has been attempted for clinical diagnosis, and urine has been monitored during the progression of many diseases, particularly urinary system diseases, whether urine can reflect brain disease status remains uncertain. As some biomarkers of brain diseases can be detected in the body fluids such as cerebrospinal fluid and blood, there is a possibility that urine also contain biomarkers of brain diseases. This review summarizes the clues of brain diseases reflected in the urine proteome and metabolome.

  5. Procalcitonine als biomarker voor infecties

    NARCIS (Netherlands)

    de Jonge, J C; de Lange, D W; Bij de Vaate, E A; van Leeuwen, H; Arends, J E

    2016-01-01

    - Inappropriate use of antibiotics in patients without bacterial infection contributes significantly to worldwide antibiotic resistance.- The goal of this review is to summarise evidence from randomised trials investigating the value of the biomarker procalcitonin (PCT) in patients with symptoms of

  6. Personalized Medicine and Pharmacogenomics

    Science.gov (United States)

    ... The optimal duration of treatment This kind of treatment information is currently used to improve the selection and dosage of drugs to treat a wide range of conditions, including cardiovascular disease, lung disease, HIV infection, cancer, arthritis, high cholesterol and depression. In ...

  7. Analysis of biomarker data a practical guide

    CERN Document Server

    Looney, Stephen W

    2015-01-01

    A "how to" guide for applying statistical methods to biomarker data analysis Presenting a solid foundation for the statistical methods that are used to analyze biomarker data, Analysis of Biomarker Data: A Practical Guide features preferred techniques for biomarker validation. The authors provide descriptions of select elementary statistical methods that are traditionally used to analyze biomarker data with a focus on the proper application of each method, including necessary assumptions, software recommendations, and proper interpretation of computer output. In addition, the book discusses

  8. Urinary Biomarkers in Lupus Nephritis

    Science.gov (United States)

    Reyes-Thomas, Joyce; Blanco, Irene

    2010-01-01

    Renal involvement in patients with systemic lupus erythematosus in the form of severe lupus nephritis is associated with a significant burden of morbidity and mortality. Conventional laboratory biomarkers in current use have not been very successful in anticipating disease flares, predicting renal histology, or decreasing unwanted outcomes. Since early treatment is associated with improved clinical results, it is thus essential to identify new biomarkers with substantial predictive power to reduce the serious sequelae of this difficult to control lupus manifestation. Indeed, considerable efforts and progress have been made over the last few years in the search for novel biomarkers. Since urinary biomarkers are more easily obtainable with much less risk to the patient than repeat renal biopsies, and these may more accurately discern between renal disease and other organ manifestations than their serum counterparts, there has been tremendous interest in studying new candidate urine biomarkers. Below, we review several promising urinary biomarkers under investigation, including total proteinuria and microalbuminuria, urinary proteomic signatures, and the individual inflammatory mediators interleukin-6, vascular cell adhesion molecule-1, CXCL16, IP-10, and tumor necrosis factor-like weak inducer of apoptosis. PMID:20127204

  9. Clinical biomarkers in metabolic syndrome.

    Science.gov (United States)

    Barazzoni, Rocco; Silva, Veronica; Singer, Pierre

    2014-04-01

    A biomarker can be defined as a measurable variable that may be used as an indicator of a given biological state or condition. Biomarkers have been used in health and disease for diagnostic purposes, as tools to assess effectiveness of nutritional or drug intervention, or as risk markers to predict the development of certain diseases. In nutrition studies, selecting appropriate biomarkers is important to assess compliance, or incidence of a particular dietary component in the biochemistry of the organism, and in the diagnosis and prognosis of nutrition-related diseases. Metabolic syndrome is a cluster of cardiovascular risk factors that occur simultaneously in the same individual, and it is associated with systemic alterations that may involve several organs and tissues. Given its close association with obesity and the increasing prevalence of obesity worldwide, identifying obese individuals at risk for metabolic syndrome is a major clinical priority. Biomarkers for metabolic syndrome are therefore potential important tools to maximize the effectiveness of treatment in subjects who would likely benefit the most. Choice of biomarkers may be challenging due to the complexity of the syndrome, and this article will mainly focus on nutrition biomarkers related to the diagnosis and prognosis of the metabolic syndrome.

  10. Tubulointerstitial Biomarkers for Diabetic Nephropathy

    Directory of Open Access Journals (Sweden)

    Bancha Satirapoj

    2018-01-01

    Full Text Available Patients with diabetic nephropathy have a higher risk of mortality, mostly from cardiovascular complications. Standard biomarkers including serum creatinine, estimated glomerular filtration rate, and albuminuria are imprecise, do not directly measure renal tissue injury, and are relatively insensitive to small changes in renal function. Thus, availability of novel biomarkers that are sensitive, specific, and precise as well as able to detect kidney injury and predict clinically significant outcomes would be widely useful in diabetic nephropathy. Novel biomarkers of the processes that induce tubulointerstitial changes may ultimately prove to better predict renal progression and prognosis in type 2 diabetes. Recently, certain biomarkers, which were initially identified in acute kidney injury, also have been reported to confer value in evaluating patients with chronic kidney disease. Biomarkers such as cystatin C, kidney injury molecule-1 (KIM-1, neutrophil gelatinase-associated lipocalin (NGAL, angiotensinogen, periostin, and monocyte chemoattractant protein-1 (MCP-1 reflect tubular injury. In this article, we focused on the potential applications of these biomarkers in diabetic nephropathy.

  11. Dopamine D2 receptor gene variants and response to rasagiline in early Parkinson's disease: a pharmacogenetic study.

    Science.gov (United States)

    Masellis, Mario; Collinson, Shannon; Freeman, Natalie; Tampakeras, Maria; Levy, Joseph; Tchelet, Amir; Eyal, Eli; Berkovich, Elijahu; Eliaz, Rom E; Abler, Victor; Grossman, Iris; Fitzer-Attas, Cheryl; Tiwari, Arun; Hayden, Michael R; Kennedy, James L; Lang, Anthony E; Knight, Jo

    2016-07-01

    Parkinson symptoms from Weeks 12 to 36 after correction for multiple testing. This is the largest and most comprehensive pharmacogenetics study to date examining clinical response to an anti-parkinsonian drug and the first to be conducted in patients with early stage Parkinson's disease receiving monotherapy. The results indicate a clinically meaningful benefit to rasagiline in terms of the magnitude of improvement in parkinsonian symptoms for those with the favourable response genotypes. Future work is needed to elucidate the specific mechanisms through which these DRD2 variants operate in modulating the function of the nigrostriatal dopaminergic system.media-1vid110.1093/brain/aww109_video_abstractaww109_video_abstract. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Collagen fragment biomarkers as serological biomarkers of lean body mass

    DEFF Research Database (Denmark)

    Nedergaard, A.; Dalgas, U.; Primdahl, H.

    2015-01-01

    ) or change therein in head and neck cancer patients in the Danish Head and Neck Cancer Group(DAHANCA) 25B cohort subjected to resistance training as well as in an age-matched and gender-matched control group. Methods Blood samples and dual X-ray absorptiometry data were measured at baseline, after 12 and 24...... derived from the dual X-ray absorptiometry scans. Results We were not able to show any correlation between biomarkers and LBM or C6M and anabolic response to exercise in recovering head and neck cancer patients. However, we did find that the biomarkers IC6, IC6/C6M, and ProC3 are biomarkers of LBM...... in the control group subjects (R2/P of 0.249/0.035, 0.416/0.007 and 0.178 and P = 0.057, respectively), Conclusion In conclusion, the IC6, ProC3, and IC6/C6M biomarkers are indeed biomarkers of LBM in healthy individuals of both genders, but not in HNSCC patients....

  13. Pharmacogenetics of efficacy and safety of HCV treatment in HCV-HIV coinfected patients: significant associations with IL28B and SOCS3 gene variants.

    Directory of Open Access Journals (Sweden)

    Francesc Vidal

    Full Text Available This was a safety and efficacy pharmacogenetic study of a previously performed randomized trial which compared the effectiveness of treatment of hepatitis C virus infection with pegylated interferon alpha (pegIFNα 2a vs. 2b, both with ribavirin, for 48 weeks, in HCV-HIV coinfected patients.The study groups were made of 99 patients (efficacy pharmacogenetic substudy and of 114 patients (safety pharmacogenetic substudy. Polymorphisms in the following candidate genes IL28B, IL6, IL10, TNFα, IFNγ, CCL5, MxA, OAS1, SOCS3, CTLA4 and ITPA were assessed. Genotyping was carried out using Sequenom iPLEX-Gold, a single-base extension polymerase chain reaction. Efficacy end-points assessed were: rapid, early and sustained virological response (RVR, EVR and SVR, respectively. Safety end-points assessed were: anemia, neutropenia, thrombocytopenia, flu-like syndrome, gastrointestinal disturbances and depression. Chi square test, Student's T test, Mann-Whitney U test and logistic regression were used for statistic analyses.As efficacy is concerned, IL28B and CTLA4 gene polymorphisms were associated with RVR (p<0.05 for both comparisons. Nevertheless, only polymorphism in the IL28B gene was associated with SVR (p = 0.004. In the multivariate analysis, the only gene independently associated with SVR was IL28B (OR 2.61, 95%CI 1.2-5.6, p = 0.01. With respect to safety, there were no significant associations between flu-like syndrome or depression and the genetic variants studied. Gastrointestinal disturbances were associated with ITPA gene polymorphism (p = 0.04. Anemia was associated with OAS1 and CTLA4 gene polymorphisms (p = 0.049 and p = 0.045, respectively, neutropenia and thromobocytopenia were associated with SOCS3 gene polymorphism (p = 0.02 and p = 0.002, respectively. In the multivariate analysis, the associations of the SOCS3 gene polymorphism with neutropenia (OR 0.26, 95%CI 0.09-0.75, p = 0.01 and thrombocytopenia (OR

  14. Hypersaline Microbial Mat Lipid Biomarkers

    Science.gov (United States)

    Jahnke, Linda L.; Embaye, Tsegereda; Turk, Kendra A.; Summons, Roger E.

    2002-01-01

    Lipid biomarkers and compound specific isotopic abundances are powerful tools for studies of contemporary microbial ecosystems. Knowledge of the relationship of biomarkers to microbial physiology and community structure creates important links for understanding the nature of early organisms and paleoenvironments. Our recent work has focused on the hypersaline microbial mats in evaporation ponds at Guerrero Negro, Baja California Sur, Mexico. Specific biomarkers for diatoms, cyanobacteria, archaea, green nonsulfur (GNS), sulfate reducing, sulfur oxidizing and methanotrophic bacteria have been identified. Analyses of the ester-bound fatty acids indicate a highly diverse microbial community, dominated by photosynthetic organisms at the surface. The delta C-13 of cyanobacterial biomarkers such as the monomethylalkanes and hopanoids are consistent with the delta C-13 measured for bulk mat (-10%o), while a GNS biomarker, wax esters (WXE), suggests a more depleted delta C-13 for GNS biomass (-16%o). This isotopic relationship is different than that observed in mats at Octopus Spring, Yellowstone National Park (YSNP) where GNS appear to grow photoheterotrophic ally. WXE abundance, while relatively low, is most pronounced in an anaerobic zone just below the cyanobacterial layer. The WXE isotope composition at GN suggests that these bacteria utilize photoautotrophy incorporating dissolved inorganic carbon (DIC) via the 3-hydroxypropionate pathway using H2S or H2.

  15. Biomarkers in acute heart failure.

    Science.gov (United States)

    Mallick, Aditi; Januzzi, James L

    2015-06-01

    The care of patients with acutely decompensated heart failure is being reshaped by the availability and understanding of several novel and emerging heart failure biomarkers. The gold standard biomarkers in heart failure are B-type natriuretic peptide and N-terminal pro-B-type natriuretic peptide, which play an important role in the diagnosis, prognosis, and management of acute decompensated heart failure. Novel biomarkers that are increasingly involved in the processes of myocardial injury, neurohormonal activation, and ventricular remodeling are showing promise in improving diagnosis and prognosis among patients with acute decompensated heart failure. These include midregional proatrial natriuretic peptide, soluble ST2, galectin-3, highly-sensitive troponin, and midregional proadrenomedullin. There has also been an emergence of biomarkers for evaluation of acute decompensated heart failure that assist in the differential diagnosis of dyspnea, such as procalcitonin (for identification of acute pneumonia), as well as markers that predict complications of acute decompensated heart failure, such as renal injury markers. In this article, we will review the pathophysiology and usefulness of established and emerging biomarkers for the clinical diagnosis, prognosis, and management of acute decompensated heart failure. Copyright © 2015 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  16. Clinical, behavioural and pharmacogenomic factors influencing the response to levothyroxine therapy in patients with primary hypothyroidism-protocol for a systematic review.

    Science.gov (United States)

    Dew, Rosie; Okosieme, Onyebuchi; Dayan, Colin; Eligar, Vinay; Khan, Ishrat; Razvi, Salman; Pearce, Simon; Wilkes, Scott

    2017-03-21

    Suboptimal thyroid hormone therapy including under-replacement and over-replacement is common amongst patients with hypothyroidism. This is a significant health concern as affected patients are at risk of adverse cardiovascular or metabolic consequences. Despite a growing body of evidence on the effects of various factors on thyroid hormone replacement, a systematic appraisal of the evidence is lacking. This review aims to appraise and quantify the extent to which clinical, behavioural and pharmacogenomic factors affect levothyroxine therapy in patients with primary hypothyroidism. The databases Web of Science, Cochrane Library, EMBASE and PubMed will be searched. Patients must be adults over the age of 18 years, suffering from primary hypothyroidism including overt and subclinical hypothyroidism and receiving levothyroxine treatment. Studies in children, pregnant women and patients with secondary or tertiary hypothyroidism will not be included. We will also exclude studies focused on forms of thyroid hormone replacement therapy other than levothyroxine. The primary outcome is to quantify the effect of clinical, behavioural and pharmacogenomic factors on thyroid stimulating hormone (TSH) levels. Secondary outcomes are the effect these factors have on thyroxine (T4) and triiodothyronine (T3) levels, mortality, morbidity, quality of life, treatment complications, adverse effects, physical and social functioning. Studies will be screened through reading the title, abstract and then full text. Two reviewers will independently extract the data and select articles, and a third reviewer will be consulted if there is any disagreement. We will undertake a meta-analysis of studies in which there is a defined intervention or exposure, patients are receiving levothyroxine for hypothyroidism, there is an appropriate control group of levothyroxine treated patients that are not exposed to the intervention, and the primary outcome is determined by serum TSH levels. Studies will

  17. Biomarkers of spontaneous preterm birth

    DEFF Research Database (Denmark)

    Polettini, Jossimara; Cobo, Teresa; Kacerovsky, Marian

    2017-01-01

    predictors of pregnancy outcome. This systematic review was conducted to synthesize the knowledge on PTB biomarkers identified using multiplex analysis. Three electronic databases (PubMed, EMBASE and Web of Science) were searched for studies in any language reporting the use of multiplex assays for maternal......Despite decades of research on risk indicators of spontaneous preterm birth (PTB), reliable biomarkers are still not available to screen or diagnose high-risk pregnancies. Several biomarkers in maternal and fetal compartments have been mechanistically linked to PTB, but none of them are reliable......) followed by MIP-1β, GM-CSF, Eotaxin, and TNF-RI (two studies) were reported more than once in maternal serum. However, results could not be combined due to heterogeneity in type of sample, study population, assay, and analysis methods. By this systematic review, we conclude that multiplex assays...

  18. Biomarkers in inflammatory bowel diseases

    DEFF Research Database (Denmark)

    Bennike, Tue; Birkelund, Svend; Stensballe, Allan

    2014-01-01

    or stool later can be screened for. When considering the protein complexity encountered in intestinal biopsy-samples and the recent development within the field of mass spectrometry driven quantitative proteomics, a more thorough and accurate biomarker discovery endeavor could today be performed than ever......Unambiguous diagnosis of the two main forms of inflammatory bowel diseases (IBD): Ulcerative colitis (UC) and Crohn's disease (CD), represents a challenge in the early stages of the diseases. The diagnosis may be established several years after the debut of symptoms. Hence, protein biomarkers...... for early and accurate diagnostic could help clinicians improve treatment of the individual patients. Moreover, the biomarkers could aid physicians to predict disease courses and in this way, identify patients in need of intensive treatment. Patients with low risk of disease flares may avoid treatment...

  19. Quantitative Imaging Biomarkers of NAFLD

    Science.gov (United States)

    Kinner, Sonja; Reeder, Scott B.

    2016-01-01

    Conventional imaging modalities, including ultrasonography (US), computed tomography (CT), and magnetic resonance (MR), play an important role in the diagnosis and management of patients with nonalcoholic fatty liver disease (NAFLD) by allowing noninvasive diagnosis of hepatic steatosis. However, conventional imaging modalities are limited as biomarkers of NAFLD for various reasons. Multi-parametric quantitative MRI techniques overcome many of the shortcomings of conventional imaging and allow comprehensive and objective evaluation of NAFLD. MRI can provide unconfounded biomarkers of hepatic fat, iron, and fibrosis in a single examination—a virtual biopsy has become a clinical reality. In this article, we will review the utility and limitation of conventional US, CT, and MR imaging for the diagnosis NAFLD. Recent advances in imaging biomarkers of NAFLD are also discussed with an emphasis in multi-parametric quantitative MRI. PMID:26848588

  20. Biomarkers of replicative senescence revisited

    DEFF Research Database (Denmark)

    Nehlin, Jan

    2016-01-01

    Biomarkers of replicative senescence can be defined as those ultrastructural and physiological variations as well as molecules whose changes in expression, activity or function correlate with aging, as a result of the gradual exhaustion of replicative potential and a state of permanent cell cycle...... arrest. The biomarkers that characterize the path to an irreversible state of cell cycle arrest due to proliferative exhaustion may also be shared by other forms of senescence-inducing mechanisms. Validation of senescence markers is crucial in circumstances where quiescence or temporary growth arrest may...... be triggered or is thought to be induced. Pre-senescence biomarkers are also important to consider as their presence indicate that induction of aging processes is taking place. The bona fide pathway leading to replicative senescence that has been extensively characterized is a consequence of gradual reduction...

  1. Imaging Biomarkers for Adult Medulloblastomas

    DEFF Research Database (Denmark)

    Keil, V C; Warmuth-Metz, M; Reh, C

    2017-01-01

    BACKGROUND AND PURPOSE: The occurrence of medulloblastomas in adults is rare; nevertheless, these tumors can be subdivided into genetic and histologic entities each having distinct prognoses. This study aimed to identify MR imaging biomarkers to classify these entities and to uncover differences...... in MR imaging biomarkers identified in pediatric medulloblastomas. MATERIALS AND METHODS: Eligible preoperative MRIs from 28 patients (11 women; 22-53 years of age) of the Multicenter Pilot-study for the Therapy of Medulloblastoma of Adults (NOA-7) cohort were assessed by 3 experienced neuroradiologists......-WNT/non-SHH medulloblastomas (in adults, Group 4), and histologic entities were correlated with the imaging criteria. These MR imaging biomarkers were compared with corresponding data from a pediatric study. RESULTS: There were 19 SHH TP53 wild type (69%), 4 WNT-activated (14%), and 5 Group 4 (17%) medulloblastomas. Six...

  2. Biomarkers for human radiation exposure.

    Science.gov (United States)

    Chaudhry, M Ahmad

    2008-09-01

    There is a concern over the potential use of radioactive isotopes as a weapon of terror. The detonation of a radiation dispersal device, the so-called "dirty bomb" can lead to public panic. In order to estimate risks associated with radiation exposure, it is important to understand the biological effects of radiation exposure. Based on this knowledge, biomarkers to monitor potentially exposed populations after a radiological accident can be developed and would be extremely valuable for emergency response. While the traditional radiation exposure biomarkers based on cytogenetic assays serve as standard, the development of rapid and noninvasive tests for radiation exposure is needed. The genomics based knowledge is providing new avenues for investigation. The examination of gene expression after ionizing radiation exposure could serve as a potential molecular marker for biodosimetry. Microarray based studies are identifying new radiation responsive genes that could potentially be used as biomarkers of human exposure to radiation after an accident.

  3. Exosomes in urine biomarker discovery.

    Science.gov (United States)

    Huebner, Alyssa R; Somparn, Poorichaya; Benjachat, Thitima; Leelahavanichkul, Asada; Avihingsanon, Yingyos; Fenton, Robert A; Pisitkun, Trairak

    2015-01-01

    Nanovesicles present in urine the so-called urinary exosomes have been found to be secreted by every epithelial cell type lining the urinary tract system in human. Urinary exosomes are an appealing source for biomarker discovery as they contain molecular constituents of their cell of origin, including proteins and genetic materials, and they can be isolated in a non-invasive manner. Following the discovery of urinary exosomes in 2004, many studies have been performed using urinary exosomes as a starting material to identify biomarkers in various renal, urogenital, and systemic diseases. Here, we describe the discovery of urinary exosomes and address the issues on the collection, isolation, and normalization of urinary exosomes as well as delineate the systems biology approach to biomarker discovery using urinary exosomes.

  4. The effect of pharmacogenetic profiling with a clinical decision support tool on healthcare resource utilization and estimated costs in the elderly exposed to polypharmacy.

    Science.gov (United States)

    Brixner, D; Biltaji, E; Bress, A; Unni, S; Ye, X; Mamiya, T; Ashcraft, K; Biskupiak, J

    2016-01-01

    To compare healthcare resource utilization (HRU) and clinical decision-making for elderly patients based on cytochrome P450 (CYP) pharmacogenetic testing and the use of a comprehensive medication management clinical decision support tool (CDST), to a cohort of similar non-tested patients. An observational study compared a prospective cohort of patients ≥65 years subjected to pharmacogenetic testing to a propensity score (PS) matched historical cohort of untested patients in a claims database. Patients had a prescribed medication or dose change of at least one of 61 oral drugs or combinations of ≥3 drugs at enrollment. Four-month HRU outcomes examined included hospitalizations, emergency department (ED) and outpatient visits and provider acceptance of test recommendations. Costs were estimated using national data sources. There were 205 tested patients PS matched to 820 untested patients. Hospitalization rate was 9.8% in the tested group vs. 16.1% in the untested group (RR = 0.61, 95% CI = 0.39-0.95, p = 0.027), ED visit rate was 4.4% in the tested group vs. 15.4% in the untested group (RR = 0.29, 95% CI = 0.15-0.55, p = 0.0002) and outpatient visit rate was 71.7% in the tested group vs. 36.5% in the untested group (RR = 1.97, 95% CI = 1.74-2.23, p provider majority (95%) considered the test helpful and 46% followed CDST provided recommendations. Patients CYP DNA tested and treated according to the personalized prescribing system had a significant decrease in hospitalizations and emergency department visits, resulting in potential cost savings. Providers had a high satisfaction rate with the clinical utility of the system and followed recommendations when appropriate.

  5. Could the inter-individual variability in cocaine-induced psychotic effects influence the development of cocaine addiction? Towards a new pharmacogenetic approach to addictions.

    Science.gov (United States)

    Brousse, G; Vorspan, F; Ksouda, K; Bloch, V; Peoc'h, K; Laplanche, J L; Mouly, S; Schmidt, J; Llorca, P M; Lepine, J P

    2010-12-01

    Cocaine addiction is a chronic disease marked by relapses, co-morbidities and the importance of psychosocial consequences. The etiology of cocaine addiction is complex and involves three types of factors: environmental factors, factors linked to the specific effects of cocaine and genetic factors. The latter could explain 40-60% of the risk for developing an addiction. Several studies have looked for a link between cocaine addiction and the genes of the dopaminergic system: the genes DRD2, COMT, SLC6A3 (coding for the dopamine transporter DAT) and DBH (coding for the dopamine beta hydroxylase) but unfortunately very few well established results. Pharmacogenetic approach could be an interesting opportunity for the future. The gene DBH has particularly been linked with the psychotic effects caused by cocaine. This so-called cocaine-induced psychosis (CIP) or cocaine-induced paranoia may influence the development of cocaine addiction. Indeed, these psychotic symptoms during cocaine exposure could cause an aversive effect limiting the development of an addiction. Several functional alterations caused by different mutations of the genes involved in dopaminergic transmission (principally-1021C>T of the gene DBH, but also Val158Met of the gene COMT, TaqI A of the gene DRD2 and VNTR 9 repeat of the DAT) could result in a cocaine-induced psychosis prone phenotype. We are hypothesising that the appearance of CIP during the first contact with cocaine is associated with a lower risk of developing cocaine addiction. This protective effect could be associated with the presence of one or more polymorphisms associated with CIP. A pharmacogenetic approach studying combination of polymorphism could isolate a sub-group of patients at risk for CIPs but more favorably protected from developing an addiction. This theory could enable a better understanding of the protective factors against cocaine addiction and offer new therapeutic or preventive targets in vulnerable sub-groups exposed

  6. Pharmacogenetic determinants of outcomes on triplet hepatic artery infusion and intravenous cetuximab for liver metastases from colorectal cancer (European trial OPTILIV, NCT00852228).

    Science.gov (United States)

    Lévi, Francis; Karaboué, Abdoulaye; Saffroy, Raphaël; Desterke, Christophe; Boige, Valerie; Smith, Denis; Hebbar, Mohamed; Innominato, Pasquale; Taieb, Julien; Carvalho, Carlos; Guimbaud, Rosine; Focan, Christian; Bouchahda, Mohamed; Adam, René; Ducreux, Michel; Milano, Gérard; Lemoine, Antoinette

    2017-09-26

    The hepatic artery infusion (HAI) of irinotecan, oxaliplatin and 5-fluorouracil with intravenous cetuximab achieved outstanding efficacy in previously treated patients with initially unresectable liver metastases from colorectal cancer. This planned study aimed at the identification of pharmacogenetic predictors of outcomes. Circulating mononuclear cells were analysed for 207 single-nucleotide polymorphisms (SNPs) from 34 pharmacology genes. Single-nucleotide polymorphisms passing stringent Hardy-Weinberg equilibrium test were tested for their association with outcomes in 52 patients (male/female, 36/16; WHO PS, 0-1). VKORC1 SNPs (rs9923231 and rs9934438) were associated with early and objective responses, and survival. For rs9923231, T/T achieved more early responses than C/T (50% vs 5%, P=0.029) and greatest 4-year survival (46% vs 0%, P=0.006). N-acetyltransferase-2 (rs1041983 and rs1801280) were associated with up to seven-fold more macroscopically complete hepatectomies. Progression-free survival was largest in ABCB1 rs1045642 T/T (P=0.026) and rs2032582 T/T (P=0.035). Associations were found between toxicities and gene variants (P<0.05), including neutropenia with ABCB1 (rs1045642) and SLC0B3 (rs4149117 and rs7311358); and diarrhoea with CYP2C9 (rs1057910), CYP2C19 (rs3758581), UGT1A6 (rs4124874) and SLC22A1 (rs72552763). VKORC1, NAT2 and ABCB1 variants predicted for HAI efficacy. Pharmacogenetics could guide the personalisation of liver-targeted medico-surgical therapies.

  7. Phase 1a/1b and pharmacogenetic study of docetaxel, oxaliplatin and capecitabine in patients with advanced cancer of the stomach or the gastroesophageal junction.

    Science.gov (United States)

    Deenen, Maarten J; Meulendijks, Didier; Boot, Henk; Legdeur, Marie-Cecile J C; Beijnen, Jos H; Schellens, Jan H M; Cats, Annemieke

    2015-12-01

    The prognosis of gastroesophageal cancer is poor, and current regimens are associated with limited efficacy. The purpose of this study was to explore the safety and preliminary efficacy of docetaxel, oxaliplatin plus capecitabine for advanced cancer of the stomach or the gastroesophageal junction (GEJ). Secondary objectives included pharmacokinetic and pharmacogenetic analyses. Patients were treated in escalating dose levels with docetaxel and oxaliplatin (both on day 1), plus capecitabine b.i.d. on days 1-14 every 3 weeks, to determine the dose-limiting toxicity and maximum tolerated dose (MTD). An expansion cohort was treated at the MTD. A total of ten polymorphisms in pharmacokinetic and pharmacodynamic candidate genes were analyzed and tested for association with treatment outcome. A total of 34 evaluable patients were enrolled. The MTD was docetaxel 50 mg/m(2), oxaliplatin 100 mg/m(2) plus capecitabine 850 mg/m(2) b.i.d. The median number of treatment cycles was 6 (range 2-8). Grade ≥ 3 toxicities included neutropenia (24 %), leukocytopenia (15 %), febrile neutropenia (12 %), fatigue (9 %) and diarrhea (6 %). The overall response rate was 45 %; two patients achieved a complete response. Median progression-free survival and overall survival were 6.5 months (95 % CI 5.4-7.6) and 11.0 months (95 % CI 7.9-14.1), respectively. The polymorphisms ERCC1 354C>T, TYMS 1053C>T and rs2612091 in ENOSF1 were associated with severe toxicity; ERCC1 354C>T and ERCC2 2251A>C were associated with poor progression-free survival. Docetaxel, oxaliplatin plus capecitabine are a well-tolerable, safe and effective treatment regimen for patients with advanced cancer of the stomach or GEJ. Pharmacogenetic markers in pharmacokinetic and pharmacodynamic candidate genes may be predictive for treatment outcome.

  8. Biomarkers in scleroderma: Current status

    Directory of Open Access Journals (Sweden)

    Latika Gupta

    2017-01-01

    Full Text Available Scleroderma is an autoimmune disease characterized by indolent obliterative vasculopathy and widespread fibrosis. The two main morphological manifestations of the disease overlap and may make it difficult to separate activity from damage. Many patients, especially those with the limited subset of the disease, have an indolent course without clear-cut inflammatory manifestations. There is a felt need for validated biomarkers, which can differentiate activity from damage, and yet be sensitive to change with therapy. Multiplex arrays of biomarkers have ushered an era of targeted or personalized medicine based on phenotypic characteristics in an individual.

  9. Biomarkers in Neonatal Posthemorrhagic Hydrocephalus

    Science.gov (United States)

    Merhar, Stephanie

    2011-01-01

    Posthemorrhagic hydrocephalus (PHH) is a rare but serious outcome among premature babies in the NICU, with consequences including mortality and severe neurodevelopmental disabilities. The causes of PHH are still not entirely understood, and its prevention and treatment are controversial. Various cerebrospinal fluid biomarkers have been studied in infants with PHH in order to recognize the causes, diagnose brain injury, and predict neurodevelopmental outcomes. This systematic review summarizes studies on biomarkers of extracellular matrix activity, fibrinolysis/coagulation, hypoxia/cell death, and inflammation in the cerebrospinal fluid of infants with PHH. PMID:21791933

  10. Bias in Peripheral Depression Biomarkers

    DEFF Research Database (Denmark)

    Carvalho, André F; Köhler, Cristiano A; Brunoni, André R

    2016-01-01

    sizes has been conducted. METHODS: Here, we performed a comprehensive review of meta-analyses of peripheral nongenetic biomarkers that could discriminate individuals with MDD from nondepressed controls. PubMed/MEDLINE, EMBASE, and PsycINFO databases were searched through April 10, 2015. RESULTS: From 15...

  11. Biomarkers of satiation and satiety

    NARCIS (Netherlands)

    Graaf, C. de; Blom, W.A.M.; Smeets, P.A.M.; Stafleu, A.; Hendriks, H.F.J.

    2004-01-01

    This review's objective is to give a critical summary of studies that focused on physiologic measures relating to subjectively rated appetite, actual food intake, or both. Biomarkers of satiation and satiety may be used as a tool for assessing the satiating efficiency of foods and for understanding

  12. Electrochemical Genosensing of Circulating Biomarkers

    Science.gov (United States)

    Campuzano, Susana; Yáñez-Sedeño, Paloma; Pingarrón, José Manuel

    2017-01-01

    Management and prognosis of diseases requires the measurement in non- or minimally invasively collected samples of specific circulating biomarkers, consisting of any measurable or observable factors in patients that indicate normal or disease-related biological processes or responses to therapy. Therefore, on-site, fast and accurate determination of these low abundance circulating biomarkers in scarcely treated body fluids is of great interest for health monitoring and biological applications. In this field, electrochemical DNA sensors (or genosensors) have demonstrated to be interesting alternatives to more complex conventional strategies. Currently, electrochemical genosensors are considered very promising analytical tools for this purpose due to their fast response, low cost, high sensitivity, compatibility with microfabrication technology and simple operation mode which makes them compatible with point-of-care (POC) testing. In this review, the relevance and current challenges of the determination of circulating biomarkers related to relevant diseases (cancer, bacterial and viral infections and neurodegenerative diseases) are briefly discussed. An overview of the electrochemical nucleic acid–based strategies developed in the last five years for this purpose is given to show to both familiar and non-expert readers the great potential of these methodologies for circulating biomarker determination. After highlighting the main features of the reported electrochemical genosensing strategies through the critical discussion of selected examples, a conclusions section points out the still existing challenges and future directions in this field. PMID:28420103

  13. Biomarkers of diseases in medicine

    Indian Academy of Sciences (India)

    Biomarkers have gained immense scientific and clinical value and interest in the practise of medicine. .... extent and characteristics of the disease detected ..... marker for cancer. In colon cancer, the tumour suppressor genes CDKN2A, MGMT and MLH1, as well as other genes (e.g., TIMP-3, p14ARF,. APC, MINT31, MINT2 ...

  14. Pharmacogenetics of drug-drug interaction and drug-drug-gene interaction: a systematic review on CYP2C9, CYP2C19 and CYP2D6.

    Science.gov (United States)

    Bahar, Muh Akbar; Setiawan, Didik; Hak, Eelko; Wilffert, Bob

    2017-05-01

    Currently, most guidelines on drug-drug interaction (DDI) neither consider the potential effect of genetic polymorphism in the strength of the interaction nor do they account for the complex interaction caused by the combination of DDI and drug-gene interaction (DGI) where there are multiple biotransformation pathways, which is referred to as drug-drug-gene interaction (DDGI). In this systematic review, we report the impact of pharmacogenetics on DDI and DDGI in which three major drug-metabolizing enzymes - CYP2C9, CYP2C19 and CYP2D6 - are central. We observed that several DDI and DDGI are highly gene-dependent, leading to a different magnitude of interaction. Precision drug therapy should take pharmacogenetics into account when drug interactions in clinical practice are expected.

  15. The Pharmacogenetics of Metformin

    DEFF Research Database (Denmark)

    Christensen, Mette Marie Hougaard

    2015-01-01

    (SLC) transporters seem to determine the distribution of metformin. Hence, the hypothesis of our project was that genotype-dependent SLC expression contributes significantly to the observed inter-individual variability in the response to and the pharmacokinetics of metformin. The thesis contains...

  16. PHARMACOGENETICS OF METFORMIN

    DEFF Research Database (Denmark)

    Hougaard Christensen, Mette Marie; Andersen, Charlotte Brasch; Damkier, Per

    the optimal pharmacological combination of metformin, rosiglitazon and insulin Asp/NPH in a cohort of type 2 diabetics. One hundred and eighty-six patients were allocated to metformin, and repeated measurements of steady state concentrations were collected. The final results will be adjusted for gender, age....... Conclusion: The preliminary results strengthen the thesis that Danish type 2 diabetics have the same allele frequencies in transporter SNP as healthy Caucasian, and it indeed underscores the enormous interindividual variation in metformin steady state concentration....

  17. Pharmacogenetics of Cannabinoids

    OpenAIRE

    Hryhorowicz, Szymon; Walczak, Michal; Zakerska-Banaszak, Oliwia; Słomski, Ryszard; Skrzypczak-Zielińska, Marzena

    2017-01-01

    Although the application of medical marijuana and cannabinoid drugs is controversial, it is a part of modern-day medicine. The list of diseases in which cannabinoids are promoted as a treatment is constantly expanding. Cases of significant improvement in patients with a very poor prognosis of glioma or epilepsy have already been described. However, the occurrence of side effects is still difficult to estimate, and the current knowledge of the therapeutic effects of cannabinoids is still insuf...

  18. Urinary biomarkers in pediatric appendicitis.

    Science.gov (United States)

    Salö, Martin; Roth, Bodil; Stenström, Pernilla; Arnbjörnsson, Einar; Ohlsson, Bodil

    2016-08-01

    The diagnosis of pediatric appendicitis is still a challenge, resulting in perforation and negative appendectomies. The aim of this study was to evaluate novel biomarkers in urine and to use the most promising biomarkers in conjunction with the Pediatric Appendicitis Score (PAS), to see whether this could improve the accuracy of diagnosing appendicitis. A prospective study of children with suspected appendicitis was conducted with assessment of PAS, routine blood tests, and measurements of four novel urinary biomarkers: leucine-rich α-2-glycoprotein (LRG), calprotectin, interleukin 6 (IL-6), and substance P. The biomarkers were blindly determined with commercial ELISAs. Urine creatinine was used to adjust for dehydration. The diagnosis of appendicitis was based on histopathological analysis. Forty-four children with suspected appendicitis were included, of which twenty-two (50 %) had confirmed appendicitis. LRG in urine was elevated in children with appendicitis compared to children without (p appendicitis compared to those with phlegmonous appendicitis (p = 0.003). No statistical significances between groups were found for calprotectin, IL-6 or substance P. LRG had a receiver operating characteristic area under the curve of 0.86 (95 % CI 0.79-0.99), and a better diagnostic performance than all routine blood tests. LRG in conjunction with PAS showed 95 % sensitivity, 90 % specificity, 91 % positive predictive value, and 95 % negative predictive value. LRG, adjusted for dehydration, is a promising novel urinary biomarker for appendicitis in children. LRG in combination with PAS has a high diagnostic performance.

  19. Systems biology and biomarker discovery

    Energy Technology Data Exchange (ETDEWEB)

    Rodland, Karin D.

    2010-12-01

    Medical practitioners have always relied on surrogate markers of inaccessible biological processes to make their diagnosis, whether it was the pallor of shock, the flush of inflammation, or the jaundice of liver failure. Obviously, the current implementation of biomarkers for disease is far more sophisticated, relying on highly reproducible, quantitative measurements of molecules that are often mechanistically associated with the disease in question, as in glycated hemoglobin for the diagnosis of diabetes [1] or the presence of cardiac troponins in the blood for confirmation of myocardial infarcts [2]. In cancer, where the initial symptoms are often subtle and the consequences of delayed diagnosis often drastic for disease management, the impetus to discover readily accessible, reliable, and accurate biomarkers for early detection is compelling. Yet despite years of intense activity, the stable of clinically validated, cost-effective biomarkers for early detection of cancer is pathetically small and still dominated by a handful of markers (CA-125, CEA, PSA) first discovered decades ago. It is time, one could argue, for a fresh approach to the discovery and validation of disease biomarkers, one that takes full advantage of the revolution in genomic technologies and in the development of computational tools for the analysis of large complex datasets. This issue of Disease Markers is dedicated to one such new approach, loosely termed the 'Systems Biology of Biomarkers'. What sets the Systems Biology approach apart from other, more traditional approaches, is both the types of data used, and the tools used for data analysis - and both reflect the revolution in high throughput analytical methods and high throughput computing that has characterized the start of the twenty first century.

  20. A study of HLA-B∗15:02 in a Sri Lankan population: Implications for pharmacogenomic testing.

    Science.gov (United States)

    Gunathilake, K M D; Wettasinghe, K T; Dissanayake, V H W

    2016-05-01

    HLA-B∗15:02 is known as a biomarker for carbamazepine (CBZ) induced Steven-Johnson Syndrome and Toxic Epidermal Necrolysis (SJS/TEN) in some Asian populations. Hence United States Federal Drug Administration (USFDA) recommends HLA-B∗15:02 screening for Asian and other populations with a high prevalence of HLA-B∗15:02, prior to the administration of carbamazepine. This study was conducted to estimate the prevalence of HLA-B∗15:02 in a cohort of Sri Lankans. We observed an overall prevalence of 4.3% (4/93) among 93 Sri Lankans comprising 32 Sinhalese, 30 Sri Lankan Tamils and 31 Moors. The allele was detected in 3 [9.3%; 3/32] Sinhalese, 0 [0%; 0/30] Sri Lankan Tamils and in 1 [3%; 1/31] Moor. The overall prevalence of HLA-B∗15:02 in this population was close to that of other populations where the USFDA has recommended HLA-B∗15:02 screening. A larger study is required to confirm these findings, especially among the Sinhalese where the frequency appears to be high. Copyright © 2016 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  1. Studies on biomarkers in cancer etiology and prevention: a summary and challenge of 20 years of interdisciplinary research.

    Science.gov (United States)

    Bartsch, H

    2000-04-01

    Sensitive, specific methods have been developed that allow quantitative measurements of the metabolites of carcinogen metabolites and of DNA and protein adducts in humans exposed occupationally, environmentally and endogenously to genotoxic agents. The interrelationship between exposure to carcinogens, host risk factors and the responses of biomarkers has been examined in cross-sectional, ecological and case-control studies which provided new insights into the causes of cancer and the mechanisms of carcinogenesis. The identification of hitherto unknown DNA-reactive chemicals formed in the human body from dietary precursors and of carcinogenic components of complex mixtures has increased the possibility of establishing causal relationships in etiology. The identification of individuals and subgroups heavily exposed to carcinogens has led to the development of measures for avoiding or decreasing exposure to carcinogenic risk factors. New, ultrasensitive methods for measuring DNA adducts allow the quantification and structural elucidation of specific DNA damage in humans arising from oxidative stress and lipid peroxidation (LPO), which have been found to be the driving forces in several human malignancies. Background DNA damage in "unexposed" individuals has been shown unequivocally to be due to LPO products, and a significant interindividual variation in adduct levels has been shown in individuals with comparable exposure to carcinogens. Thus, pharmacogenetic variants with higher susceptibility to carcinogenic insults, due to genetic polymorphism in xenobiotic-metabolizing enzymes, have been characterized by a combination of genotyping and measurements of macromolecular adducts. Dosimetry has been used in human studies to evaluate the efficacy of interventions with chemopreventive agents like ascorbic acid, dietary phenols and green tea. Advances in the application of selected biomarkers in human studies are reviewed and illustrated by examples from the author

  2. Implementation of proteomic biomarkers: making it work.

    Science.gov (United States)

    Mischak, Harald; Ioannidis, John P A; Argiles, Angel; Attwood, Teresa K; Bongcam-Rudloff, Erik; Broenstrup, Mark; Charonis, Aristidis; Chrousos, George P; Delles, Christian; Dominiczak, Anna; Dylag, Tomasz; Ehrich, Jochen; Egido, Jesus; Findeisen, Peter; Jankowski, Joachim; Johnson, Robert W; Julien, Bruce A; Lankisch, Tim; Leung, Hing Y; Maahs, David; Magni, Fulvio; Manns, Michael P; Manolis, Efthymios; Mayer, Gert; Navis, Gerjan; Novak, Jan; Ortiz, Alberto; Persson, Frederik; Peter, Karlheinz; Riese, Hans H; Rossing, Peter; Sattar, Naveed; Spasovski, Goce; Thongboonkerd, Visith; Vanholder, Raymond; Schanstra, Joost P; Vlahou, Antonia

    2012-09-01

    While large numbers of proteomic biomarkers have been described, they are generally not implemented in medical practice. We have investigated the reasons for this shortcoming, focusing on hurdles downstream of biomarker verification, and describe major obstacles and possible solutions to ease valid biomarker implementation. Some of the problems lie in suboptimal biomarker discovery and validation, especially lack of validated platforms with well-described performance characteristics to support biomarker qualification. These issues have been acknowledged and are being addressed, raising the hope that valid biomarkers may start accumulating in the foreseeable future. However, successful biomarker discovery and qualification alone does not suffice for successful implementation. Additional challenges include, among others, limited access to appropriate specimens and insufficient funding, the need to validate new biomarker utility in interventional trials, and large communication gaps between the parties involved in implementation. To address this problem, we propose an implementation roadmap. The implementation effort needs to involve a wide variety of stakeholders (clinicians, statisticians, health economists, and representatives of patient groups, health insurance, pharmaceutical companies, biobanks, and regulatory agencies). Knowledgeable panels with adequate representation of all these stakeholders may facilitate biomarker evaluation and guide implementation for the specific context of use. This approach may avoid unwarranted delays or failure to implement potentially useful biomarkers, and may expedite meaningful contributions of the biomarker community to healthcare. © 2012 The Authors. European Journal of Clinical Investigation © 2012 Stichting European Society for Clinical Investigation Journal Foundation.

  3. Meeting Report--NASA Radiation Biomarker Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Straume, Tore; Amundson, Sally A,; Blakely, William F.; Burns, Frederic J.; Chen, Allen; Dainiak, Nicholas; Franklin, Stephen; Leary, Julie A.; Loftus, David J.; Morgan, William F.; Pellmar, Terry C.; Stolc, Viktor; Turteltaub, Kenneth W.; Vaughan, Andrew T.; Vijayakumar, Srinivasan; Wyrobek, Andrew J.

    2008-05-01

    A summary is provided of presentations and discussions from the NASA Radiation Biomarker Workshop held September 27-28, 2007, at NASA Ames Research Center in Mountain View, California. Invited speakers were distinguished scientists representing key sectors of the radiation research community. Speakers addressed recent developments in the biomarker and biotechnology fields that may provide new opportunities for health-related assessment of radiation-exposed individuals, including for long-duration space travel. Topics discussed include the space radiation environment, biomarkers of radiation sensitivity and individual susceptibility, molecular signatures of low-dose responses, multivariate analysis of gene expression, biomarkers in biodefense, biomarkers in radiation oncology, biomarkers and triage following large-scale radiological incidents, integrated and multiple biomarker approaches, advances in whole-genome tiling arrays, advances in mass-spectrometry proteomics, radiation biodosimetry for estimation of cancer risk in a rat skin model, and confounding factors. Summary conclusions are provided at the end of the report.

  4. Chronic Obstructive Pulmonary Disease Biomarkers

    Directory of Open Access Journals (Sweden)

    Tatsiana Beiko

    2016-04-01

    Full Text Available Despite significant decreases in morbidity and mortality of cardiovascular diseases (CVD and cancers, morbidity and cost associated with chronic obstructive pulmonary disease (COPD continue to be increasing. Failure to improve disease outcomes has been related to the paucity of interventions improving survival. Insidious onset and slow progression halter research successes in developing disease-modifying therapies. In part, the difficulty in finding new therapies is because of the extreme heterogeneity within recognized COPD phenotypes. Novel biomarkers are necessary to help understand the natural history and pathogenesis of the different COPD subtypes. A more accurate phenotyping and the ability to assess the therapeutic response to new interventions and pharmaceutical agents may improve the statistical power of longitudinal clinical studies. In this study, we will review known candidate biomarkers for COPD, proposed pathways of pathogenesis, and future directions in the field.

  5. Glycoscience aids in biomarker discovery

    Directory of Open Access Journals (Sweden)

    Serenus Hua1,2 & Hyun Joo An1,2,*

    2012-06-01

    Full Text Available The glycome consists of all glycans (or carbohydrates within abiological system, and modulates a wide range of important biologicalactivities, from protein folding to cellular communications.The mining of the glycome for disease markers representsa new paradigm for biomarker discovery; however, this effortis severely complicated by the vast complexity and structuraldiversity of glycans. This review summarizes recent developmentsin analytical technology and methodology as applied tothe fields of glycomics and glycoproteomics. Mass spectrometricstrategies for glycan compositional profiling are described, as arepotential refinements which allow structure-specific profiling.Analytical methods that can discern protein glycosylation at aspecific site of modification are also discussed in detail.Biomarker discovery applications are shown at each level ofanalysis, highlighting the key role that glycoscience can play inhelping scientists understand disease biology.

  6. Efficiency and effectiveness of the use of an acenocoumarol pharmacogenetic dosing algorithm versus usual care in patients with venous thromboembolic disease initiating oral anticoagulation: study protocol for a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Carcas Antonio J

    2012-12-01

    Full Text Available Abstract Background Hemorrhagic events are frequent in patients on treatment with antivitamin-K oral anticoagulants due to their narrow therapeutic margin. Studies performed with acenocoumarol have shown the relationship between demographic, clinical and genotypic variants and the response to these drugs. Once the influence of these genetic and clinical factors on the dose of acenocoumarol needed to maintain a stable international normalized ratio (INR has been demonstrated, new strategies need to be developed to predict the appropriate doses of this drug. Several pharmacogenetic algorithms have been developed for warfarin, but only three have been developed for acenocoumarol. After the development of a pharmacogenetic algorithm, the obvious next step is to demonstrate its effectiveness and utility by means of a randomized controlled trial. The aim of this study is to evaluate the effectiveness and efficiency of an acenocoumarol dosing algorithm developed by our group which includes demographic, clinical and pharmacogenetic variables (VKORC1, CYP2C9, CYP4F2 and ApoE in patients with venous thromboembolism (VTE. Methods and design This is a multicenter, single blind, randomized controlled clinical trial. The protocol has been approved by La Paz University Hospital Research Ethics Committee and by the Spanish Drug Agency. Two hundred and forty patients with VTE in which oral anticoagulant therapy is indicated will be included. Randomization (case/control 1:1 will be stratified by center. Acenocoumarol dose in the control group will be scheduled and adjusted following common clinical practice; in the experimental arm dosing will be following an individualized algorithm developed and validated by our group. Patients will be followed for three months. The main endpoints are: 1 Percentage of patients with INR within the therapeutic range on day seven after initiation of oral anticoagulant therapy; 2 Time from the start of oral anticoagulant treatment

  7. Efficiency and effectiveness of the use of an acenocoumarol pharmacogenetic dosing algorithm versus usual care in patients with venous thromboembolic disease initiating oral anticoagulation: study protocol for a randomized controlled trial.

    Science.gov (United States)

    Carcas, Antonio J; Borobia, Alberto M; Velasco, Marta; Abad-Santos, Francisco; Díaz, Manuel Quintana; Fernández-Capitán, Carmen; Ruiz-Giménez, Nuria; Madridano, Olga; Sillero, Pilar Llamas

    2012-12-13

    Hemorrhagic events are frequent in patients on treatment with antivitamin-K oral anticoagulants due to their narrow therapeutic margin. Studies performed with acenocoumarol have shown the relationship between demographic, clinical and genotypic variants and the response to these drugs. Once the influence of these genetic and clinical factors on the dose of acenocoumarol needed to maintain a stable international normalized ratio (INR) has been demonstrated, new strategies need to be developed to predict the appropriate doses of this drug. Several pharmacogenetic algorithms have been developed for warfarin, but only three have been developed for acenocoumarol. After the development of a pharmacogenetic algorithm, the obvious next step is to demonstrate its effectiveness and utility by means of a randomized controlled trial. The aim of this study is to evaluate the effectiveness and efficiency of an acenocoumarol dosing algorithm developed by our group which includes demographic, clinical and pharmacogenetic variables (VKORC1, CYP2C9, CYP4F2 and ApoE) in patients with venous thromboembolism (VTE). This is a multicenter, single blind, randomized controlled clinical trial. The protocol has been approved by La Paz University Hospital Research Ethics Committee and by the Spanish Drug Agency. Two hundred and forty patients with VTE in which oral anticoagulant therapy is indicated will be included. Randomization (case/control 1:1) will be stratified by center. Acenocoumarol dose in the control group will be scheduled and adjusted following common clinical practice; in the experimental arm dosing will be following an individualized algorithm developed and validated by our group. Patients will be followed for three months. The main endpoints are: 1) Percentage of patients with INR within the therapeutic range on day seven after initiation of oral anticoagulant therapy; 2) Time from the start of oral anticoagulant treatment to achievement of a stable INR within the therapeutic

  8. Dietary biomarkers: advances, limitations and future directions

    Directory of Open Access Journals (Sweden)

    Hedrick Valisa E

    2012-12-01

    Full Text Available Abstract The subjective nature of self-reported dietary intake assessment methods presents numerous challenges to obtaining accurate dietary intake and nutritional status. This limitation can be overcome by the use of dietary biomarkers, which are able to objectively assess dietary consumption (or exposure without the bias of self-reported dietary intake errors. The need for dietary biomarkers was addressed by the Institute of Medicine, who recognized the lack of nutritional biomarkers as a knowledge gap requiring future research. The purpose of this article is to review existing literature on currently available dietary biomarkers, including novel biomarkers of specific foods and dietary components, and assess the validity, reliability and sensitivity of the markers. This review revealed several biomarkers in need of additional validation research; research is also needed to produce sensitive, specific, cost-effective and noninvasive dietary biomarkers. The emerging field of metabolomics may help to advance the development of food/nutrient biomarkers, yet advances in food metabolome databases are needed. The availability of biomarkers that estimate intake of specific foods and dietary components could greatly enhance nutritional research targeting compliance to national recommendations as well as direct associations with disease outcomes. More research is necessary to refine existing biomarkers by accounting for confounding factors, to establish new indicators of specific food intake, and to develop techniques that are cost-effective, noninvasive, rapid and accurate measures of nutritional status.

  9. Genetic Polymorphisms in the Long Noncoding RNA MIR2052HG Offer a Pharmacogenomic Basis for the Response of Breast Cancer Patients to Aromatase Inhibitor Therapy.

    Science.gov (United States)

    Ingle, James N; Xie, Fang; Ellis, Matthew J; Goss, Paul E; Shepherd, Lois E; Chapman, Judith-Anne W; Chen, Bingshu E; Kubo, Michiaki; Furukawa, Yoichi; Momozawa, Yukihide; Stearns, Vered; Pritchard, Kathleen I; Barman, Poulami; Carlson, Erin E; Goetz, Matthew P; Weinshilboum, Richard M; Kalari, Krishna R; Wang, Liewei

    2016-12-01

    Genetic risks in breast cancer remain only partly understood. Here, we report the results of a genome-wide association study of germline DNA from 4,658 women, including 252 women experiencing a breast cancer recurrence, who were entered on the MA.27 adjuvant trial comparing the aromatase inhibitors (AI) anastrozole and exemestane. Single-nucleotide polymorphisms (SNP) of top significance were identified in the gene encoding MIR2052HG, a long noncoding RNA of unknown function. Heterozygous or homozygous individuals for variant alleles exhibited a ∼40% or ∼63% decrease, respectively, in the hazard of breast cancer recurrence relative to homozygous wild-type individuals. Functional genomic studies in lymphoblastoid cell lines and ERα-positive breast cancer cell lines showed that expression from MIR2052HG and the ESR1 gene encoding estrogen receptor-α (ERα) was induced by estrogen and AI in a SNP-dependent manner. Variant SNP genotypes exhibited increased ERα binding to estrogen response elements, relative to wild-type genotypes, a pattern that was reversed by AI treatment. Further, variant SNPs were associated with lower expression of MIR2052HG and ERα. RNAi-mediated silencing of MIR2052HG in breast cancer cell lines decreased ERα expression, cell proliferation, and anchorage-independent colony formation. Mechanistic investigations revealed that MIR2052HG sustained ERα levels both by promoting AKT/FOXO3-mediated ESR1 transcription and by limiting ubiquitin-mediated, proteasome-dependent degradation of ERα. Taken together, our results define MIR2052HS as a functionally polymorphic gene that affects risks of breast cancer recurrence in women treated with AI. More broadly, our results offer a pharmacogenomic basis to understand differences in the response of breast cancer patients to AI therapy. Cancer Res; 76(23); 7012-23. ©2016 AACR. ©2016 American Association for Cancer Research.

  10. Biomarkers: A Challenging Conundrum in Cardiovascular Disease.

    Science.gov (United States)

    Libby, Peter; King, Kevin

    2015-12-01

    The use of biomarkers has proven utility in cardiovascular medicine and holds great promise for future advances, but their application requires considerable rigor in thinking and methodology. Numerous confounding factors can cloud the clinical and investigative uses of biomarkers. Yet, the thoughtful and critical use of biomarkers can doubtless aid discovery of new pathogenic pathways, identify novel therapeutic targets, and provide a bridge between the laboratory and the clinic. Biomarkers can provide diagnostic and prognostic tools to the practitioner. The careful application of biomarkers can also help design and guide clinical trials required to establish the efficacy of novel interventions to improve patient outcomes. Point of care testing, technological advances, such as microfluidic and wearable devices, and the power of omics approaches all promise to elevate the potential contributions of biomarkers to discovery science, translation, clinical trials, and the practice of cardiovascular medicine. © 2015 American Heart Association, Inc.

  11. Circulating Biomarkers for Duchenne Muscular Dystrophy.

    Science.gov (United States)

    Aartsma-Rus, Annemieke; Spitali, Pietro

    2015-07-22

    Duchenne muscular dystrophy is the most common form of muscular dystrophy. Genetic and biochemical research over the years has characterized the cause, pathophysiology and development of the disease providing several potential therapeutic targets and/or biomarkers. High throughput - omic technologies have provided a comprehensive understanding of the changes occurring in dystrophic muscles. Murine and canine animal models have been a valuable source to profile muscles and body fluids, thus providing candidate biomarkers that can be evaluated in patients. This review will illustrate known circulating biomarkers that could track disease progression and response to therapy in patients affected by Duchenne muscular dystrophy. We present an overview of the transcriptomic, proteomic, metabolomics and lipidomic biomarkers described in literature. We show how studies in muscle tissue have led to the identification of serum and urine biomarkers and we highlight the importance of evaluating biomarkers as possible surrogate endpoints to facilitate regulatory processes for new medicinal products.

  12. Cardiovascular disease biomarkers across autoimmune diseases.

    Science.gov (United States)

    Ahearn, Joseph; Shields, Kelly J; Liu, Chau-Ching; Manzi, Susan

    2015-11-01

    Cardiovascular disease is increasingly recognized as a major cause of premature mortality among those with autoimmune disorders. There is an urgent need to identify those patients with autoimmune disease who are at risk for CVD so as to optimize therapeutic intervention and ultimately prevention. Accurate identification, monitoring and stratification of such patients will depend upon a panel of biomarkers of cardiovascular disease. This review will discuss some of the most recent biomarkers of cardiovascular diseases in autoimmune disease, including lipid oxidation, imaging biomarkers to characterize coronary calcium, plaque, and intima media thickness, biomarkers of inflammation and activated complement, genetic markers, endothelial biomarkers, and antiphospholipid antibodies. Clinical implementation of these biomarkers will not only enhance patient care but also likely accelerate the pharmaceutical pipeline for targeted intervention to reduce or eliminate cardiovascular disease in the setting of autoimmunity. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Phospholipids as Biomarkers for Excessive Alcohol Use

    Science.gov (United States)

    2015-10-01

    2015 2. REPORT TYPE Annual 3. DATES COVERED 15Sept2014 - 14Sep2015 4. TITLE AND SUBTITLE Phospholipids as Biomarkers for Excessive Alcohol Use 5a...of potential biomarkers to monitor abstinence from alcohol abuse . Electrophoresis. 2015 Feb;36(4):556-63. doi: 10.1002/elps.201400319. Epub 2015 Jan...AWARD NUMBER: W81XWH-12-1-0497 TITLE: Phospholipids as Biomarkers for Excessive Alcohol Use PRINCIPAL INVESTIGATOR: Suthat Liangpunsakul

  14. Biomarker qualification via public-private partnerships.

    Science.gov (United States)

    Eck, S L; Paul, S M

    2010-01-01

    Biomarkers linked to patient outcomes (safety and efficacy) have an increasingly important role in drug development. Consequently, validation and qualification of such biomarkers are essential, often requiring large data sets from well-controlled randomized clinical trials. In the December 2009 issue of Clinical Pharmacology & Therapeutics, investigators utilizing data from four pharmaceutical companies and working under the auspices of the Biomarkers Consortium described the utility of adiponectin as an early predictor of glycemic control in diabetic patients taking peroxisome proliferator-activated receptor (PPAR) agonists. This work illustrates the advantages of large public-private partnerships for biomarker qualification.

  15. Common genetic variation and antidepressant efficacy in major depressive disorder: a meta-analysis of three genome-wide pharmacogenetic studies.

    Science.gov (United States)

    2013-02-01

    Indirect evidence suggests that common genetic variation contributes to individual differences in antidepressant efficacy among individuals with major depressive disorder, but previous studies may have been underpowered to detect these effects. A meta-analysis was performed on data from three genome-wide pharmacogenetic studies (the Genome-Based Therapeutic Drugs for Depression [GENDEP] project, the Munich Antidepressant Response Signature [MARS] project, and the Sequenced Treatment Alternatives to Relieve Depression [STAR*D] study), which included 2,256 individuals of Northern European descent with major depressive disorder, and antidepressant treatment outcomes were prospectively collected. After imputation, 1.2 million single-nucleotide polymorphisms were tested, capturing common variation for association with symptomatic improvement and remission after up to 12 weeks of antidepressant treatment. No individual association met a genome-wide threshold for statistical significance in the primary analyses. A polygenic score derived from a meta-analysis of GENDEP and MARS participants accounted for up to approximately 1.2% of the variance in outcomes in STAR*D, suggesting a weakly concordant signal distributed over many polymorphisms. An analysis restricted to 1,354 individuals treated with citalopram (STAR*D) or escitalopram (GENDEP) identified an intergenic region on chromosome 5 associated with early improvement after 2 weeks of treatment. Despite increased statistical power accorded by meta-analysis, the authors identified no reliable predictors of antidepressant treatment outcome, although they did identify modest, direct evidence that common genetic variation contributes to individual differences in antidepressant response.

  16. Pharmacogenetic study of second-generation antipsychotic long-term treatment metabolic side effects (the SLiM Study): rationale, objectives, design and sample description.

    Science.gov (United States)

    Pina-Camacho, Laura; Díaz-Caneja, Covadonga M; Saiz, Pilar A; Bobes, Julio; Corripio, Iluminada; Grasa, Eva; Rodriguez-Jimenez, Roberto; Fernández, Miryam; Sanjuán, Julio; García-López, Aurelio; Tapia-Casellas, Cecilia; Álvarez-Blázquez, María; Fraguas, David; Mitjans, Marina; Arias, Bárbara; Arango, Celso

    2014-01-01

    Weight gain is an important and common side effect of second generation antipsychotics (SGAs). Furthermore, these drugs can induce other side effects associated with higher cardiovascular morbidity and mortality, such as insulin resistance, diabetes or metabolic syndrome. Preliminary studies show that inter-individual genetic differences produce varying degrees of vulnerability to the different SGA-induced side effects. The Second-generation antipsychotic Long-term treatment Metabolic side effects (SLiM) study aims to identify clinical, environmental and genetic factors that explain inter-individual differences in weight gain and metabolic changes in drug-naïve patients after six months of treatment with SGAs. The SLIM study is a multicenter, observational, six-month pharmacogenetic study where a cohort of 307 drug-naïve paediatric and adult patients (age range 8.8-90.1 years) and a cohort of 150 age- and sex- matched healthy controls (7.8-73.2 years) were recruited. This paper describes the rationale, objectives and design of the study and provides a description of the sample at baseline. Results from the SLiM study will provide a better understanding of the clinical, environmental, and genetic factors involved in weight gain and metabolic disturbances associated with SGA treatment. Copyright © 2014 SEP y SEPB. Published by Elsevier España. All rights reserved.

  17. Elucidation of CYP2D6 genetic diversity in a unique African population: implications for the future application of pharmacogenetics in the Xhosa population.

    Science.gov (United States)

    Wright, Galen E B; Niehaus, Dana J H; Drögemöller, Britt I; Koen, Liezl; Gaedigk, Andrea; Warnich, Louise

    2010-07-01

    Genetic variation of the CYP2D6 gene has been associated with altered drug metabolism; however, limited studies have investigated CYP2D6 sequence diversity in African populations. We devised a CYP2D6 genotyping strategy to analyse the South African Xhosa population and genotype a Xhosa schizophrenia cohort, as CYP2D6 metabolises many antipsychotics and antidepressants. The entire CYP2D6 gene locus was sequenced in 15 Xhosa control individuals and the data generated were used to design a comprehensive genotyping strategy. Over 25 CYP2D6 alleles were genotyped in Xhosa controls and Xhosa schizophrenia patients using long-range PCR, DNA sequencing and single nucleotide primer extension analysis. Bioinformatic algorithms were used to predict the functional consequences of relevant mutations and samples were assigned CYP2D6 activity scores. A unique allele distribution was revealed and two rare novel alleles, CYP2D6*73 and CYP2D6*74, were identified. No significant differences in allele frequencies were detected between Xhosa controls and schizophrenia patients. This study provides i) comprehensive data on a poorly characterised population, ii) a valuable CYP2D6 genotyping strategy and iii) due to their unique genetic profile, provides the basis for pharmacogenetic intervention for Xhosa individuals.

  18. Prospective of ischemic stroke biomarkers

    Directory of Open Access Journals (Sweden)

    Szewczak Krzysztof

    2017-06-01

    Full Text Available Methods currently used in brain vascular disorder diagnostics are neither fast enough nor clear-out; thus, there exists a necessity of finding new types of testing which could enlarge and complete the actual panel of diagnostics or be an alternative to current methods. The discovery of sensitive and specific biomarkers of ischemic brain stroke will improve the effects of treatment and will help to assess the progress or complications of the disease. The relevant diagnosis of ischemic stroke (IS within the first 4.5 hours after the initial symptoms allows for the initiation of treatment with recombinant tissue plasminogen activators which limits the magnitude of negative changes in the brain and which enhance the final effectiveness of therapy. The potential biomarkers which are under investigation are substances involved in the processes of coagulation and fibrinolysis, and are of molecules released from damaged vascular endothelial cells and from nerves and cardiac tissue. The analyzed substances are typical of oxidative stress, apoptosis, excitotoxicity and damage of the blood brain barrier.

  19. Imaging biomarker roadmap for cancer studies

    NARCIS (Netherlands)

    O'Connor, James P. B.; Aboagye, Eric O.; Adams, Judith E.; Aerts, Hugo J. W. L.; Barrington, Sally F.; Beer, Ambros J.; Boellaard, Ronald; Bohndiek, Sarah E.; Brady, Michael; Brown, Gina; Buckley, David L.; Chenevert, Thomas L.; Clarke, Laurence P.; Collette, Sandra; Cook, Gary J.; Desouza, Nandita M.; Dickson, John C.; Dive, Caroline; Evelhoch, Jeffrey L.; Faivre-Finn, Corinne; Gallagher, Ferdia A.; Gilbert, Fiona J.; Gillies, Robert J.; Goh, Vicky; Griffiths, J. R.; Groves, Ashley M.; Halligan, Steve; Harris, Adrian L.; Hawkes, David J.; Hoekstra, Otto S.; Huang, Erich P.; Hutton, Brian F.; Jackson, Edward F.; Jayson, Gordon C.; Jones, Andrew; Koh, Dow-Mu; Lacombe, Denis; Lambin, Philippe; Lassau, Nathalie; Leach, Martin O.; Lee, Ting-Yim; Leen, Edward L.; Lewis, Jason S.; Liu, Yan; Lythgoe, Mark F.; Manoharan, Prakash; Maxwell, Ross J.; Miles, Kenneth A.; Morgan, Bruno; Morris, Steve; Ng, Tony; Padhani, Anwar R.; Parker, Geoff J. M.; Partridge, Mike; Pathak, Arvind P.; Peet, Andrew C.; Punwani, Shonit; Reynolds, Andrew R.; Robinson, Simon P.; Shankar, Lalitha K.; Sharma, Ricky A.; Soloviev, Dmitry; Stroobants, Sigrid G.; Sullivan, Daniel C.; Taylor, Stuart A.; Tofts, Paul S.; Tozer, Gillian M.; van Herk, Marcel B.; Walker-Samuel, Simon; Wason, James; Williams, Kaye J.; Workman, Paul; Yankeelov, Thomas E.; Brindle, Kevin M.; McShane, Lisa M.; Jackson, Alan; Waterton, John C.

    Imaging biomarkers (IBs) are integral to the routine management of patients with cancer. IBs used daily in oncology include clinical TNM stage, objective response and left ventricular ejection fraction. Other CT, MRI, PET and ultrasonography biomarkers are used extensively in cancer research and

  20. Proteomic Biomarkers for Spontaneous Preterm Birth

    DEFF Research Database (Denmark)

    Kacerovsky, Marian; Lenco, Juraj; Musilova, Ivana

    2014-01-01

    This review aimed to identify, synthesize, and analyze the findings of studies on proteomic biomarkers for spontaneous preterm birth (PTB). Three electronic databases (Medline, Embase, and Scopus) were searched for studies in any language reporting the use of proteomic biomarkers for PTB published...

  1. Cytokines as Biomarkers in Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    Agata Burska

    2014-01-01

    Full Text Available RA is a complex disease that develops as a series of events often referred to as disease continuum. RA would benefit from novel biomarker development for diagnosis where new biomarkers are still needed (even if progresses have been made with the inclusion of ACPA into the ACR/EULAR 2010 diagnostic criteria and for prognostic notably in at risk of evolution patients with autoantibody-positive arthralgia. Risk biomarkers for rapid evolution or cardiovascular complications are also highly desirable. Monitoring biomarkers would be useful in predicting relapse. Finally, predictive biomarkers for therapy outcome would allow tailoring therapy to the individual. Increasing numbers of cytokines have been involved in RA pathology. Many have the potential as biomarkers in RA especially as their clinical utility is already established in other diseases and could be easily transferable to rheumatology. We will review the current knowledge’s relation to cytokine used as biomarker in RA. However, given the complexity and heterogeneous nature of RA, it is unlikely that a single cytokine may provide sufficient discrimination; therefore multiple biomarker signatures may represent more realistic approach for the future of personalised medicine in RA.

  2. Fluid biomarkers in multiple system atrophy

    DEFF Research Database (Denmark)

    Laurens, Brice; Constantinescu, Radu; Freeman, Roy

    2015-01-01

    Despite growing research efforts, no reliable biomarker currently exists for the diagnosis and prognosis of multiple system atrophy (MSA). Such biomarkers are urgently needed to improve diagnostic accuracy, prognostic guidance and also to serve as efficacy measures or surrogates of target engagem...

  3. DNA Methylation Biomarkers: Cancer and Beyond

    Directory of Open Access Journals (Sweden)

    Thomas Mikeska

    2014-09-01

    Full Text Available Biomarkers are naturally-occurring characteristics by which a particular pathological process or disease can be identified or monitored. They can reflect past environmental exposures, predict disease onset or course, or determine a patient’s response to therapy. Epigenetic changes are such characteristics, with most epigenetic biomarkers discovered to date based on the epigenetic mark of DNA methylation. Many tissue types are suitable for the discovery of DNA methylation biomarkers including cell-based samples such as blood and tumor material and cell-free DNA samples such as plasma. DNA methylation biomarkers with diagnostic, prognostic and predictive power are already in clinical trials or in a clinical setting for cancer. Outside cancer, strong evidence that complex disease originates in early life is opening up exciting new avenues for the detection of DNA methylation biomarkers for adverse early life environment and for estimation of future disease risk. However, there are a number of limitations to overcome before such biomarkers reach the clinic. Nevertheless, DNA methylation biomarkers have great potential to contribute to personalized medicine throughout life. We review the current state of play for DNA methylation biomarkers, discuss the barriers that must be crossed on the way to implementation in a clinical setting, and predict their future use for human disease.

  4. Stable isotopes and biomarkers in microbial ecology

    NARCIS (Netherlands)

    Boschker, H.T.S.; Middelburg, J.J.

    2002-01-01

    The use of biomarkers in combination with stable isotope analysis is a new approach in microbial ecology and a number of papers on a variety of subjects have appeared. We will first discuss the techniques for analysing stable isotopes in biomarkers, primarily gas chromatography-combustion-isotope

  5. Cytokines as Biomarkers in Rheumatoid Arthritis

    Science.gov (United States)

    Burska, Agata; Boissinot, Marjorie; Ponchel, Frederique

    2014-01-01

    RA is a complex disease that develops as a series of events often referred to as disease continuum. RA would benefit from novel biomarker development for diagnosis where new biomarkers are still needed (even if progresses have been made with the inclusion of ACPA into the ACR/EULAR 2010 diagnostic criteria) and for prognostic notably in at risk of evolution patients with autoantibody-positive arthralgia. Risk biomarkers for rapid evolution or cardiovascular complications are also highly desirable. Monitoring biomarkers would be useful in predicting relapse. Finally, predictive biomarkers for therapy outcome would allow tailoring therapy to the individual. Increasing numbers of cytokines have been involved in RA pathology. Many have the potential as biomarkers in RA especially as their clinical utility is already established in other diseases and could be easily transferable to rheumatology. We will review the current knowledge's relation to cytokine used as biomarker in RA. However, given the complexity and heterogeneous nature of RA, it is unlikely that a single cytokine may provide sufficient discrimination; therefore multiple biomarker signatures may represent more realistic approach for the future of personalised medicine in RA. PMID:24733962

  6. Bias in emerging biomarkers for bipolar disorder

    DEFF Research Database (Denmark)

    Carvalho, A F; Köhler, C A; Fernandes, B S

    2016-01-01

    BACKGROUND: To date no comprehensive evaluation has appraised the likelihood of bias or the strength of the evidence of peripheral biomarkers for bipolar disorder (BD). Here we performed an umbrella review of meta-analyses of peripheral non-genetic biomarkers for BD. METHOD: The Pubmed/Medline, E......BACKGROUND: To date no comprehensive evaluation has appraised the likelihood of bias or the strength of the evidence of peripheral biomarkers for bipolar disorder (BD). Here we performed an umbrella review of meta-analyses of peripheral non-genetic biomarkers for BD. METHOD: The Pubmed....../Medline, EMBASE and PsycInfo electronic databases were searched up to May 2015. Two independent authors conducted searches, examined references for eligibility, and extracted data. Meta-analyses in any language examining peripheral non-genetic biomarkers in participants with BD (across different mood states...

  7. Early-Phase Studies of Biomarkers

    DEFF Research Database (Denmark)

    Pepe, Margaret S.; Janes, Holly; Li, Christopher I.

    2016-01-01

    BACKGROUND: Many cancer biomarker research studies seek to develop markers that can accurately detect or predict future onset of disease. To design and evaluate these studies, one must specify the levels of accuracy sought. However, justified target levels are rarely available. METHODS: We describe...... a way to calculate target levels of sensitivity and specificity for a biomarker intended to be applied in a defined clinical context. The calculation requires knowledge of the prevalence or incidence of cases in the clinical population and the ratio of benefit associated with the clinical consequences...... for ovarian cancer. CONCLUSIONS: It is feasible to specify target levels of biomarker performance that enable evaluation of the potential clinical impact of biomarkers in early-phase studies. Nevertheless, biomarkers meeting the criteria should still be tested rigorously in studies that measure the actual...

  8. Diagnostic and prognostic epigenetic biomarkers in cancer.

    Science.gov (United States)

    Costa-Pinheiro, Pedro; Montezuma, Diana; Henrique, Rui; Jerónimo, Carmen

    2015-01-01

    Growing cancer incidence and mortality worldwide demands development of accurate biomarkers to perfect detection, diagnosis, prognostication and monitoring. Urologic (prostate, bladder, kidney), lung, breast and colorectal cancers are the most common and despite major advances in their characterization, this has seldom translated into biomarkers amenable for clinical practice. Epigenetic alterations are innovative cancer biomarkers owing to stability, frequency, reversibility and accessibility in body fluids, entailing great potential of assay development to assist in patient management. Several studies identified putative epigenetic cancer biomarkers, some of which have been commercialized. However, large multicenter validation studies are required to foster translation to the clinics. Herein we review the most promising epigenetic detection, diagnostic, prognostic and predictive biomarkers for the most common cancers.

  9. The Indian Consensus Document on cardiac biomarker

    Directory of Open Access Journals (Sweden)

    I. Satyamurthy

    2014-01-01

    Full Text Available Despite recent advances, the diagnosis and management of heart failure evades the clinicians. The etiology of congestive heart failure (CHF in the Indian scenario comprises of coronary artery disease, diabetes mellitus and hypertension. With better insights into the pathophysiology of CHF, biomarkers have evolved rapidly and received diagnostic and prognostic value. In CHF biomarkers prove as measures of the extent of pathophysiological derangement; examples include biomarkers of myocyte necrosis, myocardial remodeling, neurohormonal activation, etc. In CHF biomarkers act as indicators for the presence, degree of severity and prognosis of the disease, they may be employed in combination with the present conventional clinical assessments. These make the biomarkers feasible options against the present expensive measurements and may provide clinical benefits.

  10. Biomarkers for colitis-associated colorectal cancer

    Science.gov (United States)

    Chen, Ru; Lai, Lisa A; Brentnall, Teresa A; Pan, Sheng

    2016-01-01

    Patients with extensive ulcerative colitis (UC) of more than eight years duration have an increased risk of colorectal cancer. Molecular biomarkers for dysplasia and cancer could have a great clinical value in managing cancer risk in these UC patients. Using a wide range of molecular techniques - including cutting-edge OMICS technologies - recent studies have identified clinically relevant biomarker candidates from a variety of biosamples, including colonic biopsies, blood, stool, and urine. While the challenge remains to validate these candidate biomarkers in multi-center studies and with larger patient cohorts, it is certain that accurate biomarkers of colitis-associated neoplasia would improve clinical management of neoplastic risk in UC patients. This review highlights the ongoing avenues of research in biomarker development for colitis-associated colorectal cancer. PMID:27672285

  11. Biomarkers: in medicine, drug discovery, and environmental health

    National Research Council Canada - National Science Library

    Vaidya, Vishal S; Bonventre, Joseph V

    2010-01-01

    ... Identification Using Mass Spectrometry Sample Preparation Protein Quantitation Examples of Biomarker Discovery and Evaluation Challenges in Proteomic Biomarker Discovery The Road Forward: Targeted ...

  12. Pharmacogenetics Meets Metabolomics: Discovery of Tryptophan as a New Endogenous OCT2 Substrate Related to Metformin Disposition

    Science.gov (United States)

    Shin, Min-Hye; Kim, Hyunmi; Ahn, Yun Gyong; Park, Inmyoung; Kim, Kyoung Heon; Kind, Tobias; Shin, Jae-Gook; Fiehn, Oliver; Liu, Kwang-Hyeon

    2012-01-01

    Genetic polymorphisms of the organic cation transporter 2 (OCT2), encoded by SLC22A2, have been investigated in association with metformin disposition. A functional decrease in transport function has been shown to be associated with the OCT2 variants. Using metabolomics, our study aims at a comprehensive monitoring of primary metabolite changes in order to understand biochemical alteration associated with OCT2 polymorphisms and discovery of potential endogenous metabolites related to the genetic variation of OCT2. Using GC-TOF MS based metabolite profiling, clear clustering of samples was observed in Partial Least Square Discriminant Analysis, showing that metabolic profiles were linked to the genetic variants of OCT2. Tryptophan and uridine presented the most significant alteration in SLC22A2-808TT homozygous and the SLC22A2-808G>T heterozygous variants relative to the reference. Particularly tryptophan showed gene-dose effects of transporter activity according to OCT2 genotypes and the greatest linear association with the pharmacokinetic parameters (Clrenal, Clsec, Cl/F/kg, and Vd/F/kg) of metformin. An inhibition assay demonstrated the inhibitory effect of tryptophan on the uptake of 1-methyl-4-phenyl pyrinidium in a concentration dependent manner and subsequent uptake experiment revealed differential tryptophan-uptake rate in the oocytes expressing OCT2 reference and variant (808G>T). Our results collectively indicate tryptophan can serve as one of the endogenous substrate for the OCT2 as well as a biomarker candidate indicating the variability of the transport activity of OCT2. PMID:22590580

  13. PET Metabolic Biomarkers for Cancer

    Directory of Open Access Journals (Sweden)

    Etienne Croteau

    2016-01-01

    Full Text Available The body's main fuel sources are fats, carbohydrates (glucose, proteins, and ketone bodies. It is well known that an important hallmark of cancer cells is the overconsumption of glucose. Positron emission tomography (PET imaging using the glucose analog 18 F-fluorodeoxyglucose ( 18 F-FDG has been a powerful cancer diagnostic tool for many decades. Apart from surgery, chemotherapy and radiotherapy represent the two main domains for cancer therapy, targeting tumor proliferation, cell division, and DNA replication–-all processes that require a large amount of energy. Currently, in vivo clinical imaging of metabolism is performed almost exclusively using PET radiotracers that assess oxygen consumption and mechanisms of energy substrate consumption. This paper reviews the utility of PET imaging biomarkers for the detection of cancer proliferation, vascularization, metabolism, treatment response, and follow-up after radiation therapy, chemotherapy, and chemotherapy-related side effects.

  14. Farmacogenética de inibidores seletivos de recaptação de serotonina: uma revisão Pharmacogenetics of selective serotonine reuptake inhibitors: a review

    Directory of Open Access Journals (Sweden)

    Diana Klanovicz Silva

    2008-01-01

    candidate genes with response to SSRI, providing an overview on the current knowledge of this subject. The effect of SSRI treatment depends on the variability in genes coding proteins involved with the role of serotonin in the brain. The new data from the Human Genome Project allowed detection of these variations, and several of them proved to have pharmacogenetic importance. Therefore, some of the genes related to SSRI pharmacogenetics are already known. This reinforces the need of larger prospective investigations to determine the real use of this knowledge in clinical practice as to the possibility of determining the right dosage, and the right drug to each patient, a practice that has been called "personalized medicine".

  15. Genomic Biomarkers for Breast Cancer Risk

    Science.gov (United States)

    Walsh, Michael F.; Nathanson, Katherine L.; Couch, Fergus J.

    2016-01-01

    Clinical risk assessment for cancer predisposition includes a three-generation pedigree and physical examination to identify inherited syndromes. Additionally genetic and genomic biomarkers may identify individuals with a constitutional basis for their disease that may not be evident clinically. Genomic biomarker testing may detect molecular variations in single genes, panels of genes, or entire genomes. The strength of evidence for the association of a genomic biomarker with disease risk may be weak or strong. The factors contributing to clinical validity and utility of genomic biomarkers include functional laboratory analyses and genetic epidemiologic evidence. Genomic biomarkers may be further classified as low, moderate or highly penetrant based on the likelihood of disease. Genomic biomarkers for breast cancer are comprised of rare highly penetrant mutations of genes such as BRCA1 or BRCA2, moderately penetrant mutations of genes such as CHEK2, as well as more common genomic variants, including single nucleotide polymorphisms, associated with modest effect sizes. When applied in the context of appropriate counseling and interpretation, identification of genomic biomarkers of inherited risk for breast cancer may decrease morbidity and mortality, allow for definitive prevention through assisted reproduction, and serve as a guide to targeted therapy. PMID:26987529

  16. Predicting Clinical Outcomes Using Molecular Biomarkers

    Directory of Open Access Journals (Sweden)

    Harry B. Burke

    2016-01-01

    Full Text Available Over the past 20 years, there has been an exponential increase in the number of biomarkers. At the last count, there were 768,259 papers indexed in PubMed.gov directly related to biomarkers. Although many of these papers claim to report clinically useful molecular biomarkers, embarrassingly few are currently in clinical use. It is suggested that a failure to properly understand, clinically assess, and utilize molecular biomarkers has prevented their widespread adoption in treatment, in comparative benefit analyses, and their integration into individualized patient outcome predictions for clinical decision-making and therapy. A straightforward, general approach to understanding how to predict clinical outcomes using risk, diagnostic, and prognostic molecular biomarkers is presented. In the future, molecular biomarkers will drive advances in risk, diagnosis, and prognosis, they will be the targets of powerful molecular therapies, and they will individualize and optimize therapy. Furthermore, clinical predictions based on molecular biomarkers will be displayed on the clinician's screen during the physician–patient interaction, they will be an integral part of physician–patient-shared decision-making, and they will improve clinical care and patient outcomes.

  17. The study to understand the genetics of the acute response to metformin and glipizide in humans (SUGAR-MGH: design of a pharmacogenetic resource for type 2 diabetes.

    Directory of Open Access Journals (Sweden)

    Geoffrey A Walford

    Full Text Available Genome-wide association studies have uncovered a large number of genetic variants associated with type 2 diabetes or related phenotypes. In many cases the causal gene or polymorphism has not been identified, and its impact on response to anti-hyperglycemic medications is unknown. The Study to Understand the Genetics of the Acute Response to Metformin and Glipizide in Humans (SUGAR-MGH, NCT01762046 is a novel resource of genetic and biochemical data following glipizide and metformin administration. We describe recruitment, enrollment, and phenotyping procedures and preliminary results for the first 668 of our planned 1,000 participants enriched for individuals at risk of requiring anti-diabetic therapy in the future.All individuals are challenged with 5 mg glipizide × 1; twice daily 500 mg metformin × 2 days; and 75-g oral glucose tolerance test following metformin. Genetic variants associated with glycemic traits and blood glucose, insulin, and other hormones at baseline and following each intervention are measured.Approximately 50% of the cohort is female and 30% belong to an ethnic minority group. Following glipizide administration, peak insulin occurred at 60 minutes and trough glucose at 120 minutes. Thirty percent of participants experienced non-severe symptomatic hypoglycemia and required rescue with oral glucose. Following metformin administration, fasting glucose and insulin were reduced. Common genetic variants were associated with fasting glucose levels.SUGAR-MGH represents a viable pharmacogenetic resource which, when completed, will serve to characterize genetic influences on pharmacological perturbations, and help establish the functional relevance of newly discovered genetic loci to therapy of type 2 diabetes.ClinicalTrials.gov NCT01762046.

  18. Sequence variation and linkage disequilibrium in the GABA transporter-1 gene (SLC6A1 in five populations: implications for pharmacogenetic research

    Directory of Open Access Journals (Sweden)

    Sughondhabirom Atapol

    2007-10-01

    Full Text Available Abstract Background GABA transporter-1 (GAT-1; genetic locus SLC6A1 is emerging as a novel target for treatment of neuropsychiatric disorders. To understand how population differences might influence strategies for pharmacogenetic studies, we identified patterns of genetic variation and linkage disequilibrium (LD in SLC6A1 in five populations representing three continental groups. Results We resequenced 12.4 kb of SLC6A1, including the promoters, exons and flanking intronic regions in African-American, Thai, Hmong, Finnish, and European-American subjects (total n = 40. LD in SLC6A1 was examined by genotyping 16 SNPs in larger samples. Sixty-three variants were identified through resequencing. Common population-specific variants were found in African-Americans, including a novel 21-bp promoter region variable number tandem repeat (VNTR, but no such variants were found in any of the other populations studied. Low levels of LD and the absence of major LD blocks were characteristic of all five populations. African-Americans had the highest genetic diversity. European-Americans and Finns did not differ in genetic diversity or LD patterns. Although the Hmong had the highest level of LD, our results suggest that a strategy based on the use of tag SNPs would not translate to a major improvement in genotyping efficiency. Conclusion Owing to the low level of LD and presence of recombination hotspots, SLC6A1 may be an example of a problematic gene for association and haplotype tagging-based genetic studies. The 21-bp promoter region VNTR polymorphism is a putatively functional candidate allele for studies focusing on variation in GAT-1 function in the African-American population.

  19. Optimizing trial design in pharmacogenetics research: comparing a fixed parallel group, group sequential, and adaptive selection design on sample size requirements.

    Science.gov (United States)

    Boessen, Ruud; van der Baan, Frederieke; Groenwold, Rolf; Egberts, Antoine; Klungel, Olaf; Grobbee, Diederick; Knol, Mirjam; Roes, Kit

    2013-01-01

    Two-stage clinical trial designs may be efficient in pharmacogenetics research when there is some but inconclusive evidence of effect modification by a genomic marker. Two-stage designs allow to stop early for efficacy or futility and can offer the additional opportunity to enrich the study population to a specific patient subgroup after an interim analysis. This study compared sample size requirements for fixed parallel group, group sequential, and adaptive selection designs with equal overall power and control of the family-wise type I error rate. The designs were evaluated across scenarios that defined the effect sizes in the marker positive and marker negative subgroups and the prevalence of marker positive patients in the overall study population. Effect sizes were chosen to reflect realistic planning scenarios, where at least some effect is present in the marker negative subgroup. In addition, scenarios were considered in which the assumed 'true' subgroup effects (i.e., the postulated effects) differed from those hypothesized at the planning stage. As expected, both two-stage designs generally required fewer patients than a fixed parallel group design, and the advantage increased as the difference between subgroups increased. The adaptive selection design added little further reduction in sample size, as compared with the group sequential design, when the postulated effect sizes were equal to those hypothesized at the planning stage. However, when the postulated effects deviated strongly in favor of enrichment, the comparative advantage of the adaptive selection design increased, which precisely reflects the adaptive nature of the design. Copyright © 2013 John Wiley & Sons, Ltd.

  20. Biomarkers in DILI: one more step forward

    Directory of Open Access Journals (Sweden)

    Mercedes Robles-Díaz

    2016-08-01

    Full Text Available Despite being relatively rare, drug-induced liver injury (DILI is a serious condition, both for the individual patient due to the risk of acute liver failure, and for the drug development industry and regulatory agencies due to associations with drug development attritions, black box warnings and postmarketing withdrawals. A major limitation in DILI diagnosis and prediction is the current lack of specific biomarkers. Despite refined usage of traditional liver biomarkers in DILI, reliable disease outcome predictions are still difficult to make. These limitations have driven the growing interest in developing new more sensitive and specific DILI biomarkers, which can improve early DILI prediction, diagnosis and course of action. Several promising DILI biomarker candidates have been discovered to date, including mechanistic-based biomarker candidates such as glutamate dehydrogenase, high-mobility group box 1 protein and keratin-18, which can also provide information on the injury mechanism of different causative agents. Furthermore, microRNAs have received much attention lately as potential non-invasive DILI biomarker candidates, in particular miR-122. Advances in omics technologies offer a new approach for biomarker exploration studies. The ability to screen a large number of molecules (for example metabolites, proteins or DNA simultaneously enables the identification of ‘toxicity signatures’, which may be used to enhance preclinical safety assessments and disease diagnostics. Omics-based studies can also provide information on the underlying mechanisms of distinct forms of DILI that may further facilitate the identification of early diagnostic biomarkers and safer implementation of personalized medicine. In this review we summarize recent advances in the area of DILI biomarker studies.

  1. Cardiac Biomarkers and Cycling Race

    Directory of Open Access Journals (Sweden)

    Caroline Le Goff, Jean-François Kaux, Sébastien Goffaux, Etienne Cavalier

    2015-06-01

    Full Text Available In cycling as in other types of strenuous exercise, there exists a risk of sudden death. It is important both to understand its causes and to see if the behavior of certain biomarkers might highlight athletes at risk. Many reports describe changes in biomarkers after strenuous exercise (Nie et al., 2011, but interpreting these changes, and notably distinguishing normal physiological responses from pathological changes, is not easy. Here we have focused on the kinetics of different cardiac biomarkers: creatin kinase (CK, creating kinase midbrain (CK-MB, myoglobin (MYO, highly sensitive troponin T (hs-TnT and N-terminal brain natriuretic peptide (NT-proBNP. The population studied was a group of young trained cyclists participating in a 177-km cycling race. The group of individuals was selected for maximal homogeneity. Their annual training volume was between 10,000 and 16,000 kilometers. The rhythm of races is comparable and averages 35 km/h, depending on the race’s difficulty. The cardiac frequency was recorded via a heart rate monitor. Three blood tests were taken. The first blood test, T0, was taken approximately 2 hours before the start of the race and was intended to gather values which would act as references for the following tests. The second blood test, T1, was realized within 5 minutes of their arrival. The third and final blood test, T3, was taken 3 hours following their arrival. The CK, CK-MB, MYO, hs-TnT and NT-proBNP were measured on the Roche Diagnostic modular E (Manhein, Germany. For the statistical analysis, an ANOVA and post hoc test of Scheffé were calculated with the Statistica Software version 9.1. We noticed an important significant variation in the cardiac frequency between T0 and T1 (p < 0.0001, T0 and T3 (p < 0.0001, and T1 and T3 (p < 0.01. Table 1 shows the results obtained for the different biomarkers. CK and CK-MB showed significant variation between T0-T1 and T0-T3 (p < 0.0001. Myoglobin increased significantly

  2. Rapid biosensing tools for cancer biomarkers.

    Science.gov (United States)

    Ranjan, Rajeev; Esimbekova, Elena N; Kratasyuk, Valentina A

    2017-01-15

    The present review critically discusses the latest developments in the field of smart diagnostic systems for cancer biomarkers. A wide coverage of recent biosensing approaches involving aptamers, enzymes, DNA probes, fluorescent probes, interacting proteins and antibodies in vicinity to transducers such as electrochemical, optical and piezoelectric is presented. Recent advanced developments in biosensing approaches for cancer biomarker owes much credit to functionalized nanomaterials due to their unique opto-electronic properties and enhanced surface to volume ratio. Biosensing methods for a plenty of cancer biomarkers has been summarized emphasizing the key principles involved. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Biomarkers of Lung Injury in Cardiothoracic Surgery

    Science.gov (United States)

    Engels, Gerwin Erik; van Oeveren, Willem

    2015-01-01

    Diagnosis of pulmonary dysfunction is currently almost entirely based on a vast series of physiological changes, but comprehensive research is focused on determining biomarkers for early diagnosis of pulmonary dysfunction. Here we discuss the use of biomarkers of lung injury in cardiothoracic surgery and their ability to detect subtle pulmonary dysfunction in the perioperative period. Degranulation products of neutrophils are often used as biomarker since they have detrimental effects on the pulmonary tissue by themselves. However, these substances are not lung specific. Lung epithelium specific proteins offer more specificity and slowly find their way into clinical studies. PMID:25866435

  4. Comprehensive Analysis of Cancer-Proteogenome to Identify Biomarkers for the Early Diagnosis and Prognosis of Cancer

    Directory of Open Access Journals (Sweden)

    Hem D. Shukla

    2017-10-01

    , and pharmacogenomics data, are indispensable to glean into the cancer genome and proteome and these approaches have generated multidimensional universal studies of genes and proteins (OMICS data which has the potential to facilitate precision medicine. However, due to slow progress in computational technologies, the translation of big omics data into their clinical aspects have been slow. In this review, attempts have been made to describe the role of high-throughput genomic and proteomic technologies in identifying a panel of biomarkers which could be used for the early diagnosis and prognosis of cancer.

  5. Have biomarkers made their mark? A brief review of dental biomarkers

    Directory of Open Access Journals (Sweden)

    Mohammed Kaleem Sultan

    2014-01-01

    Full Text Available Biomarkers are substances that are released into the human body by tumor cells or by other cells in response to tumor. A high level of a tumor marker is considered a sign of certain cancer, which makes biomarker the subject of many testing methods for the diagnosis of cancers. In recent times, these biomarkers have been successfully isolated to diagnose dental-related tumors, benign and malignant conditions. This article is a brief review of literature for various biomarkers used in the field of dentistry.

  6. Relationship between Testosterone, Oxidative Stress Biomarkers ...

    African Journals Online (AJOL)

    Hypogonadism attributable to males with metabolic syndrome was also observed in automechanics occupationally exposed to mixed chemicals accompanied by oxidative stress (OS). We evaluated associations among testosterone, OS biomarkers, enzymatic and non-enzymatic antioxidants in normal weight ...

  7. The development and applications of biomarkers

    International Nuclear Information System (INIS)

    Normandy, J.; Peeters, J.

    1994-01-01

    This report is a compilation of submitted abstracts of scientific papers presented at the second Department of Energy-supported workshop on the use and applications of biomarkers held in Santa Fe, New Mexico, from April 26--29, 1994. The abstracts present a synopsis of the latest scientific developments in biomarker research and how these developments meet with the practical needs of the occupational physician as well as the industrial hygienist and the health physicist. In addition to considering the practical applications and potential benefits of this promising technology, the potential ethical and legal ramifications of using biomarkers to monitor workers are discussed. The abstracts further present insights on the present benefits that can be derived from using biomarkers as well as a perspective on what further research is required to fully meet the needs of the medical community

  8. The development and applications of biomarkers

    Energy Technology Data Exchange (ETDEWEB)

    Normandy, J.; Peeters, J. [eds.

    1994-04-15

    This report is a compilation of submitted abstracts of scientific papers presented at the second Department of Energy-supported workshop on the use and applications of biomarkers held in Santa Fe, New Mexico, from April 26--29, 1994. The abstracts present a synopsis of the latest scientific developments in biomarker research and how these developments meet with the practical needs of the occupational physician as well as the industrial hygienist and the health physicist. In addition to considering the practical applications and potential benefits of this promising technology, the potential ethical and legal ramifications of using biomarkers to monitor workers are discussed. The abstracts further present insights on the present benefits that can be derived from using biomarkers as well as a perspective on what further research is required to fully meet the needs of the medical community.

  9. Dietary and health biomarkers - time for an update

    DEFF Research Database (Denmark)

    Dragsted, Lars Ove; Gao, Qian; Pratico, Giulia

    2017-01-01

    for these biomarker classes, and no recent systematic review of all proposed biomarkers for food intake. While advanced databases exist for the human and food metabolomes, additional tools are needed to curate and evaluate current data on dietary and health biomarkers. The Food Biomarkers Alliance (FoodBAll) under......In the dietary and health research area, biomarkers are extensively used for multiple purposes. These include biomarkers of dietary intake and nutrient status, biomarkers used to measure the biological effects of specific dietary components, and biomarkers to assess the effects of diet on health....... The implementation of biomarkers in nutritional research will be important to improve measurements of dietary intake, exposure to specific dietary components, and of compliance to dietary interventions. Biomarkers could also help with improved characterization of nutritional status in study volunteers and to provide...

  10. Serum biomarkers in periprosthetic joint infections.

    Science.gov (United States)

    Saleh, A; George, J; Faour, M; Klika, A K; Higuera, C A

    2018-01-01

    The diagnosis of periprosthetic joint infection (PJI) is difficult and requires a battery of tests and clinical findings. The purpose of this review is to summarize all current evidence for common and new serum biomarkers utilized in the diagnosis of PJI. We searched two literature databases, using terms that encompass all hip and knee arthroplasty procedures, as well as PJI and statistical terms reflecting diagnostic parameters. The findings are summarized as a narrative review. Erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) were the two most commonly published serum biomarkers. Most evidence did not identify other serum biomarkers that are clearly superior to ESR and CRP. Other serum biomarkers have not demonstrated superior sensitivity and have failed to replace CRP and ESR as first-line screening tests. D-dimer appears to be a promising biomarker, but more research is necessary. Factors that influence serum biomarkers include temporal trends, stage of revision, and implant-related factors (metallosis). Our review helped to identify factors that can influence serum biomarkers' level changes; the recognition of such factors can help improve their diagnostic utility. As such, we cannot rely on ESR and CRP alone for the diagnosis of PJI prior to second-stage reimplantation, or in metal-on-metal or corrosion cases. The future of serum biomarkers will likely shift towards using genomics and proteomics to identify proteins transcribed via messenger RNA in response to infection and sepsis. Cite this article: Bone Joint Res 2018;7:85-93. © 2018 Saleh et al.

  11. Biomarkers in Multiple Sclerosis: Role of Antibodies

    OpenAIRE

    Berger, Thomas; Reindl, Markus

    2006-01-01

    The first international workshop on “Biomarkers in Multiple Sclerosis” was organized by B. Bielekova, R. Hohlfeld, R. Martin and U. Utz from April 14–16, 2004, in Washington, DC. The workshop intended to discuss the current status and potential applicability of biological markers for the understanding of the pathogenesis, diagnosis, and therapy of multiple sclerosis. The present review summarizes the presentation on the potential role of antibodies as biomarkers for diagnosis, disease activit...

  12. Shotgun Proteomics and Biomarker Discovery

    Directory of Open Access Journals (Sweden)

    W. Hayes McDonald

    2002-01-01

    Full Text Available Coupling large-scale sequencing projects with the amino acid sequence information that can be gleaned from tandem mass spectrometry (MS/MS has made it much easier to analyze complex mixtures of proteins. The limits of this “shotgun” approach, in which the protein mixture is proteolytically digested before separation, can be further expanded by separating the resulting mixture of peptides prior to MS/MS analysis. Both single dimensional high pressure liquid chromatography (LC and multidimensional LC (LC/LC can be directly interfaced with the mass spectrometer to allow for automated collection of tremendous quantities of data. While there is no single technique that addresses all proteomic challenges, the shotgun approaches, especially LC/LC-MS/MS-based techniques such as MudPIT (multidimensional protein identification technology, show advantages over gel-based techniques in speed, sensitivity, scope of analysis, and dynamic range. Advances in the ability to quantitate differences between samples and to detect for an array of post-translational modifications allow for the discovery of classes of protein biomarkers that were previously unassailable.

  13. Quality assurance in biomarker measurement.

    Science.gov (United States)

    Aitio, A; Apostoli, P

    1995-05-01

    Quality assurance (QA) concerns the validity of all the analytical processes (from collection of the samples to interpretation of the results). It is not an abstract concept but must be adapted to the different situations such as the different exposure levels, the different analytical methods, and the context of use (risk assessment procedures, research, routine determinations). The main requirements in QA programmes regard the control of all the known sources of preanalytical and analytical variations, while the instruments with which adequate QA can be implemented are the certified materials and the quality control programmes (quality manual, internal and external quality controls). Another important concept in QA is that measurements must be placed a different metrological levels: at the highest there are the methods (definitive, reference) to be used for assessing accuracy of routine methods. QA programmes should enable a grading of biomarkers (from experimental only to full evaluated) and of the laboratories in order to identify the significance of the test and to assess the level at which a laboratory could operate.

  14. AIDBD: AUTOIMMUNE AND INFLAMMATORY DISEASES BIOMARKER DATABASE

    Directory of Open Access Journals (Sweden)

    Kulwinder Singh

    2016-09-01

    Full Text Available One of the major challenges facing the healthcare industry is how to personalize, or tailor healthcare products and services to individuals’ unique genetic and biomarker make-ups. Biomarkers provide information about normal or patho-physiological processes to detect or define disease progression or to predict or quantify therapeutic responses. Once these footprints have been identified and measured, they can then be used to personalize or tailor treatment plans, products and services to each individual’s unique makeup and background. Autoimmune and Inflammatory Diseases Biomarker Database (AIDBD is one of the first efforts to build an easily accessible and comprehensive literature-derived database covering information on known autoimmune and inflammatory diseases, biomarkers and available medications. It allows users to link autoimmune and inflammatory diseases to protein or gene biomarkers through its user interface. Currently, AIDBD integrates 206 biomarkers for 21 autoimmune and inflammatory diseases and data on 516 launched drugs for the treatment these diseases. The database is freely accessible at http://www.aidbd.in/.

  15. Biomarkers in T cell therapy clinical trials

    Directory of Open Access Journals (Sweden)

    Kalos Michael

    2011-08-01

    Full Text Available Abstract T cell therapy represents an emerging and promising modality for the treatment of both infectious disease and cancer. Data from recent clinical trials have highlighted the potential for this therapeutic modality to effect potent anti-tumor activity. Biomarkers, operationally defined as biological parameters measured from patients that provide information about treatment impact, play a central role in the development of novel therapeutic agents. In the absence of information about primary clinical endpoints, biomarkers can provide critical insights that allow investigators to guide the clinical development of the candidate product. In the context of cell therapy trials, the definition of biomarkers can be extended to include a description of parameters of the cell product that are important for product bioactivity. This review will focus on biomarker studies as they relate to T cell therapy trials, and more specifically: i. An overview and description of categories and classes of biomarkers that are specifically relevant to T cell therapy trials, and ii. Insights into future directions and challenges for the appropriate development of biomarkers to evaluate both product bioactivity and treatment efficacy of T cell therapy trials.

  16. Potential Blood-based Biomarkers for Concussion.

    Science.gov (United States)

    Papa, Linda

    2016-09-01

    Mounting research in the field of sports concussion biomarkers has led to a greater understanding of the effects of brain injury from sports. A recent systematic review of clinical studies examining biomarkers of brain injury following sports-related concussion established that almost all studies have been published either in or after the year 2000. In an effort to prevent chronic traumatic encephalopathy and long-term consequences of concussion, early diagnostic and prognostic tools are becoming increasingly important; particularly in sports and in military personnel, where concussions are common occurrences. Early and tailored management of athletes following a concussion with biomarkers could provide them with the best opportunity to avoid further injury. Should blood-based biomarkers for concussion be validated and become widely available, they could have many roles. For instance, a point-of-care test could be used on the field by trained sport medicine professionals to help detect a concussion. In the clinic or hospital setting, it could be used by clinicians to determine the severity of concussion and be used to screen players for neuroimaging (computed tomography and/or magnetic resonance imaging) and further neuropsychological testing. Furthermore, biomarkers could have a role in monitoring progression of injury and recovery and in managing patients at high risk of repeated injury by being incorporated into guidelines for return to duty, work, or sports activities. There may even be a role for biomarkers as surrogate measures of efficacy in the assessment of new treatments and therapies for concussion.

  17. Allergic asthma biomarkers using systems approaches

    Directory of Open Access Journals (Sweden)

    Gaurab eSircar

    2014-01-01

    Full Text Available Asthma is characterized by lung inflammation caused by complex interaction between the immune system and environmental factors such as allergens and inorganic pollutants. Recent research in this field is focused on discovering new biomarkers associated with asthma pathogenesis. This review illustrates updated research associating biomarkers of allergic asthma and their potential use in systems biology of the disease. We focus on biomolecules with altered expression, which may serve as inflammatory, diagnostic and therapeutic biomarkers of asthma discovered in human or experimental asthma model using genomic, proteomic and epigenomic approaches for gene and protein expression profiling. These include high-throughput technologies such as state of the art microarray and proteomics Mass Spectrometry (MS platforms. Emerging concepts of molecular interactions and pathways may provide new insights in searching potential clinical biomarkers. We summarized certain pathways with significant linkage to asthma pathophysiology by analyzing the compiled biomarkers. Systems approaches with this data can identify the regulating networks, which will eventually identify the key biomarkers to be used for diagnostics and drug discovery.

  18. Single Domain Antibodies as New Biomarker Detectors

    Science.gov (United States)

    Fischer, Katja; Leow, Chiuan Yee; Chuah, Candy; McCarthy, James

    2017-01-01

    Biomarkers are defined as indicators of biological processes, pathogenic processes, or pharmacological responses to a therapeutic intervention. Biomarkers have been widely used for early detection, prediction of response after treatment, and for monitoring the progression of diseases. Antibodies represent promising tools for recognition of biomarkers, and are widely deployed as analytical tools in clinical settings. For immunodiagnostics, antibodies are now exploited as binders for antigens of interest across a range of platforms. More recently, the discovery of antibody surface display and combinatorial chemistry techniques has allowed the exploration of new binders from a range of animals, for instance variable domains of new antigen receptors (VNAR) from shark and variable heavy chain domains (VHH) or nanobodies from camelids. These single domain antibodies (sdAbs) have some advantages over conventional murine immunoglobulin owing to the lack of a light chain, making them the smallest natural biomarker binders thus far identified. In this review, we will discuss several biomarkers used as a means to validate diseases progress. The potential functionality of modern singe domain antigen binders derived from phylogenetically early animals as new biomarker detectors for current diagnostic and research platforms development will be described. PMID:29039819

  19. Single Domain Antibodies as New Biomarker Detectors

    Directory of Open Access Journals (Sweden)

    Chiuan Herng Leow

    2017-10-01

    Full Text Available Biomarkers are defined as indicators of biological processes, pathogenic processes, or pharmacological responses to a therapeutic intervention. Biomarkers have been widely used for early detection, prediction of response after treatment, and for monitoring the progression of diseases. Antibodies represent promising tools for recognition of biomarkers, and are widely deployed as analytical tools in clinical settings. For immunodiagnostics, antibodies are now exploited as binders for antigens of interest across a range of platforms. More recently, the discovery of antibody surface display and combinatorial chemistry techniques has allowed the exploration of new binders from a range of animals, for instance variable domains of new antigen receptors (VNAR from shark and variable heavy chain domains (VHH or nanobodies from camelids. These single domain antibodies (sdAbs have some advantages over conventional murine immunoglobulin owing to the lack of a light chain, making them the smallest natural biomarker binders thus far identified. In this review, we will discuss several biomarkers used as a means to validate diseases progress. The potential functionality of modern singe domain antigen binders derived from phylogenetically early animals as new biomarker detectors for current diagnostic and research platforms development will be described.

  20. Personalized medicine: Striding from genes to medicines.

    Science.gov (United States)

    Nair, Sunita R

    2010-10-01

    Personalized medicine has the potential of revolutionizing patient care. This treatment modality prescribes therapies specific to individual patients based on pharmacogenetic and pharmacogenomic information. The mapping of the human genome has been an important milestone in understanding the interindividual differences in response to therapy. These differences are attributed to genotypic differences, with consequent phenotypic expression. It is important to note that targeted therapies should ideally be accompanied by a diagnostic marker. However, most efforts are being directed toward developing both these separately; the former by pharmaceutical companies and the later by diagnostic companies. Further, this companion strategy will be successful only when the biomarkers assayed are differentiated on a value-based approach rather than a cost-based approach, especially in countries that reimburse disease management costs. The advantages of using personalized therapies are manifold: targeted patient population; avoidance of drug-related toxicities and optimization of costs in nonresponder patients; reduction in drug development costs, and fewer patients to be tested in clinical trials. The success of personalized therapy in future will depend on a better understanding of pharmacogenomics and the extension of these scientific advances to all countries.

  1. Pharmacogenomics of GPCR Drug Targets

    DEFF Research Database (Denmark)

    Hauser, Alexander Sebastian; Chavali, Sreenivas; Masuho, Ikuo

    2018-01-01

    Natural genetic variation in the human genome is a cause of individual differences in responses to medications and is an underappreciated burden on public health. Although 108 G-protein-coupled receptors (GPCRs) are the targets of 475 (∼34%) Food and Drug Administration (FDA)-approved drugs...... and account for a global sales volume of over 180 billion US dollars annually, the prevalence of genetic variation among GPCRs targeted by drugs is unknown. By analyzing data from 68,496 individuals, we find that GPCRs targeted by drugs show genetic variation within functional regions such as drug......- and effector-binding sites in the human population. We experimentally show that certain variants of μ-opioid and Cholecystokinin-A receptors could lead to altered or adverse drug response. By analyzing UK National Health Service drug prescription and sales data, we suggest that characterizing GPCR variants...

  2. CYP2D6 pharmacogenomics

    African Journals Online (AJOL)

    Mohanan Geetha Gopisankar

    2017-04-11

    Apr 11, 2017 ... 2017 Ain Shams University. Production and hosting by Elsevier B.V. This is an open access article under .... ing the life cycle of horse bot fly noticed red pigments in its larvae that feed on a horse. He got ... indicating that P450 is a reducible pigment, and only the reducible form could bind CO. Omura et al.

  3. Solute carrier transporters: Pharmacogenomics research ...

    African Journals Online (AJOL)

    Aghogho

    2010-12-27

    -binding cassette) transporters, which include MDR1, a protein that pumps xenobiotics from cells, and the SLC (solute carrier) trans- porters, which take up neurotransmitters, nutrients, heavy metals, and other substrates into ...

  4. Solute carrier transporters: Pharmacogenomics research ...

    African Journals Online (AJOL)

    This paper reviews the solute carrier transporters and highlights the fact that there is much to be learnt from characterizing human genomic variation in South Africa and sub-Saharan Africa, especially with regards to health applications. Genomic diversity in this region is indeed relatively under-studied despite being home to ...

  5. Impact of Pharmacogenetic Markers of CYP2D6 and DRD2 on Prolactin Response in Risperidone-Treated Thai Children and Adolescents With Autism Spectrum Disorders.

    Science.gov (United States)

    Sukasem, Chonlaphat; Hongkaew, Yaowaluck; Ngamsamut, Nattawat; Puangpetch, Apichaya; Vanwong, Natchaya; Chamnanphon, Montri; Chamkrachchangpada, Bhunnada; Sinrachatanant, Ananya; Limsila, Penkhae

    2016-04-01

    The aim of the study was to identify the impact of pharmacogenetic markers associated with prolactin concentration in risperidone-treated children and adolescents with autism spectrum disorders. One hundred forty-seven children and adolescents with autism, aged 3 to 19 years, received risperidone. The clinical data of patients were recorded from medical records. Prolactin levels were measured by chemiluminescence immunoassay. Three CYP2D6 single nucleotide polymorphisms, CYP2D6*4 (1846G>A), *10 (100C>T), and *41 (2988G>A), 1 gene deletion (*5), and DRD2 Taq1A (rs1800497) polymorphism were genotyped by TaqMan real-time polymerase chain reaction. The 3 common allelic frequencies were CYP2D6*10 (55.10%), *1 (32.65%), and *5 (6.12%), respectively. Patients were grouped according to their CYP2D6 genotypes. There was no significant correlation between the concentrations of prolactin among the CYP2D6 genotypes. In addition, there were no statistical differences in the prolactin response among the CYP2D6-predicted phenotypes of extensive metabolizer and intermediate metabolizer. The DRD2 genotype frequencies were Taq1A A2A2 (38.77%), A1A2 (41.50%), and A1A1 (19.73%), respectively. There were statistically significant differences in prolactin level of patients among the 3 groups (P = 0.033). The median prolactin level in patients with DRD2 Taq1A A2A2 (17.80 ng/mL) was significantly higher than A1A2 (17.10 ng/mL) and A1A1 (12.70 ng/mL). DRD2 Taq1A A2A2 polymorphisms may play a significant role in the hyperprolactinemia- associated with risperidone treatment in children and adolescent with autism spectrum disorder. Many drugs used chronically in psychiatric diseases exert their effects mainly through the dopamine D2 receptor. It is therefore possible that these drugs could alter the expression of any dopamine receptor, thus affecting the pharmacodynamics characteristics and toxicity of drug substrates during pharmacotherapy.

  6. Decreased fracture rate, pharmacogenetics and BMD response in 79 Swedish children with osteogenesis imperfecta types I, III and IV treated with Pamidronate.

    Science.gov (United States)

    Lindahl, K; Kindmark, A; Rubin, C-J; Malmgren, B; Grigelioniene, G; Söderhäll, S; Ljunggren, Ö; Åström, E

    2016-06-01

    Osteogenesis imperfecta (OI) is an inherited heterogeneous bone fragility disorder, usually caused by collagen I mutations. It is well established that bisphosphonate treatment increases lumbar spine (LS) bone mineral density (BMD), as well as improves vertebral geometry in severe OI; however, fracture reduction has been difficult to prove, pharmacogenetic studies are scarce, and it is not known at which age, or severity of disease, treatment should be initiated. COL1A1 and COL1A2 were analyzed in 79 children with OI (type I n=33, type III n=25 and type IV n=21) treated with Pamidronate. Data on LS BMD, height, and radiologically confirmed non-vertebral and vertebral fractures were collected prior to, and at several time points during treatment. An increase in LS BMD Z-score was observed for all types of OI, and a negative correlation to Δ LS BMD was observed for both age and LS BMD Z-score at treatment initiation. Supine height Z-scores were not affected by Pamidronate treatment, The fracture rate was reduced for all OI types at all time points during treatment (overall p4yrs Pamidronate. Twice as many boys as girls with OI type I were treated with Pamidronate, and the fracture rate the year prior treatment was 2.2 times higher for boys (p=0.0236). Greater Δ LS BMD, but smaller Δ fracture numbers were observed on Pamidronate for helical glycine mutations in COL1A1 vs. COL1A2. Vertebral compression fractures did not progress in any individual during treatment; however, they did not improve in 9%, and these individuals were all >11years of age at treatment initiation (p<0.0001). Pamidronate treatment in children with all types of OI increased LS BMD, decreased fracture rate, and improved vertebral compression fractures. Fracture reduction was prompt and maintained during treatment, irrespective of age at treatment initiation and collagen I mutation type. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Pharmacogenetic meta-analysis of baseline risk factors, pharmacodynamic, efficacy and tolerability endpoints from two large global cardiovascular outcomes trials for darapladib.

    Directory of Open Access Journals (Sweden)

    Astrid Yeo

    Full Text Available Darapladib, a lipoprotein-associated phospholipase A2 (Lp-PLA2 inhibitor, failed to demonstrate efficacy for the primary endpoints in two large phase III cardiovascular outcomes trials, one in stable coronary heart disease patients (STABILITY and one in acute coronary syndrome (SOLID-TIMI 52. No major safety signals were observed but tolerability issues of diarrhea and odor were common (up to 13%. We hypothesized that genetic variants associated with Lp-PLA2 activity may influence efficacy and tolerability and therefore performed a comprehensive pharmacogenetic analysis of both trials. We genotyped patients within the STABILITY and SOLID-TIMI 52 trials who provided a DNA sample and consent (n = 13,577 and 10,404 respectively, representing 86% and 82% of the trial participants using genome-wide arrays with exome content and performed imputation using a 1000 Genomes reference panel. We investigated baseline and change from baseline in Lp-PLA2 activity, two efficacy endpoints (major coronary events and myocardial infarction as well as tolerability parameters at genome-wide and candidate gene level using a meta-analytic approach. We replicated associations of published loci on baseline Lp-PLA2 activity (APOE, CELSR2, LPA, PLA2G7, LDLR and SCARB1 and identified three novel loci (TOMM5, FRMD5 and LPL using the GWAS-significance threshold P≤5E-08. Review of the PLA2G7 gene (encoding Lp-PLA2 within these datasets identified V279F null allele carriers as well as three other rare exonic null alleles within various ethnic groups, however none of these variants nor any other loci associated with Lp-PLA2 activity at baseline were associated with any of the drug response endpoints. The analysis of darapladib efficacy endpoints, despite low power, identified six low frequency loci with main genotype effect (though with borderline imputation scores and one common locus (minor allele frequency 0.24 with genotype by treatment interaction effect passing the GWAS

  8. Characterisation of the HLA-DRB1*07:01 biomarker for lapatinib-induced liver toxicity during treatment of early-stage breast cancer patients with lapatinib in combination with trastuzumab and/or taxanes.

    Science.gov (United States)

    Spraggs, C F; Parham, L R; Briley, L P; Warren, L; Williams, L S; Fraser, D J; Jiang, Z; Aziz, Z; Ahmed, S; Demetriou, G; Mehta, A; Jackson, N; Byrne, J; Andersson, M; Toi, M; Harris, L; Gralow, J; Zujewski, J A; Crescenzo, R; Armour, A; Perez, E; Piccart, M

    2017-08-08

    HLA-DRB1*07:01 allele carriage was characterised as a risk biomarker for lapatinib-induced liver injury in a large global study evaluating lapatinib, alone and in combination with trastuzumab and taxanes, as adjuvant therapy for advanced breast cancer (adjuvant lapatinib and/or trastuzumab treatment optimisation). HLA-DRB1*07:01 carriage was associated with serum alanine aminotransferase (ALT) elevations in lapatinib-treated patients (odds ratio 6.5, P=3 × 10 -26 , n=4482) and the risk and severity of ALT elevation for lapatinib-treated patients was higher in homozygous than heterozygous HLA-DRB1*07:01 genotype carriers. A higher ALT case incidence plus weaker HLA association observed during concurrent administration of lapatinib and taxane suggested a subset of liver injury in this combination group that was HLA-DRB1*07:01 independent. Furthermore, the incidence of ALT elevation demonstrated an expected correlation with geographic HLA-DRB1*07:01 carriage frequency. Robust ALT elevation risk estimates for HLA-DRB1*07:01 may support causality discrimination and safety risk management during the use of lapatinib combination therapy for the treatment of metastatic breast cancer.The Pharmacogenomics Journal advance online publication, 8 August 2017; doi:10.1038/tpj.2017.39.

  9. Novel biomarkers for cardiovascular risk prediction.

    Science.gov (United States)

    Wang, Juan; Tan, Guo-Juan; Han, Li-Na; Bai, Yong-Yi; He, Miao; Liu, Hong-Bin

    2017-02-01

    Cardiovascular disease (CVD) is the leading cause of death and disability worldwide. The primary prevention of CVD is dependent upon the ability to identify high-risk individuals long before the development of overt events. This highlights the need for accurate risk stratification. An increasing number of novel biomarkers have been identified to predict cardiovascular events. Biomarkers play a critical role in the definition, prognostication, and decision-making regarding the management of cardiovascular events. This review focuses on a variety of promising biomarkers that provide diagnostic and prognostic information. The myocardial tissue-specific biomarker cardiac troponin, high-sensitivity assays for cardiac troponin, and heart-type fatty acid binding proteinall help diagnose myocardial infarction (MI) in the early hours following symptoms. Inflammatory markers such as growth differentiation factor-15, high-sensitivity C-reactive protein, fibrinogen, and uric acid predict MI and death. Pregnancy-associated plasma protein A, myeloperoxidase, and matrix metalloproteinases predict the risk of acute coronary syndrome. Lipoprotein-associated phospholipase A2 and secretory phospholipase A2 predict incident and recurrent cardiovascular events. Finally, elevated natriuretic peptides, ST2, endothelin-1, mid-regional-pro-adrenomedullin, copeptin, and galectin-3 have all been well validated to predict death and heart failure following a MI and provide risk stratification information for heart failure. Rapidly developing new areas, such as assessment of micro-RNA, are also explored. All the biomarkers reflect different aspects of the development of atherosclerosis.

  10. Biomarkers for wound healing and their evaluation.

    Science.gov (United States)

    Patel, S; Maheshwari, A; Chandra, A

    2016-01-01

    A biological marker (biomarker) is a substance used as an indicator of biological state. Advances in genomics, proteomics and molecular pathology have generated many candidate biomarkers with potential clinical value. Research has identified several cellular events and mediators associated with wound healing that can serve as biomarkers. Macrophages, neutrophils, fibroblasts and platelets release cytokines molecules including TNF-α, interleukins (ILs) and growth factors, of which platelet-derived growth factor (PDGF) holds the greatest importance. As a result, various white cells and connective tissue cells release both matrix metalloproteinases (MMPs) and the tissue inhibitors of metalloproteinases (TIMPs). Studies have demonstrated that IL-1, IL-6, and MMPs, levels above normal, and an abnormally high MMP/TIMP ratio are often present in non-healing wounds. Clinical examination of wounds for these mediators could predict which wounds will heal and which will not, suggesting use of these chemicals as biomarkers of wound healing. There is also evidence that the application of growth factors like PDGF will alleviate the recuperating process of chronic, non-healing wounds. Finding a specific biomarker for wound healing status would be a breakthrough in this field and helping treat impaired wound healing.

  11. [Circulating proteinic biomarkers and breast cancer].

    Science.gov (United States)

    Mathelin, C; Koehl, C; Rio, M-C

    2006-01-01

    Circulating proteinic biomarkers are secreted by tumor cells or by their environmental cells and they have a variable specificity. In case of breast cancer, carcino-embryonic antigen (CEA) was for a long time the only circulating biomarker used. Nowadays, the most useful biomarkers measure circulating levels of fragments of MUC1-polymorphic epithelial mucin (MUC1-PEM): cancer antigen (CA) 15.3, mucin-like carcinoma-associated antigen (MCA), CA 27-29, CA 549... They are useful for general disease follow-up. Other circulating markers belonging to keratins (tissue polypeptide antigen, TPA, TPS or Cyfra 21.1) are correlated with proliferative activity of breast tumors. More recently, the measure of the c-erb B2 circulating part (extra cellular domain, ECD) was proposed as a prognostic biomarker for breast tumors with c-erb B2 overexpression. Moreover, the determination of urinary level of trefoil factor1 (PS2-TFF1) might be useful for the follow-up of hormonodependent breast cancers. The present review describes the clinical interest of these different circulating biomarkers in case of breast cancer, emphasizing their biological characteristics.

  12. Computational Analyses for Transplant Biomarker Discovery

    Directory of Open Access Journals (Sweden)

    Anyou eWang

    2015-09-01

    Full Text Available Translational medicine offers a rich promise for improved diagnostics and drug discovery for biomedical research in the field of transplantation, where continued unmet diagnostic and therapeutic needs persist. Current advent of genomics and proteomics profiling called omics provides new resources to develop novel biomarkers for clinical routine. Establishing such a marker system heavily depends on appropriate applications of computational algorithms and software, which are basically based on mathematical theories and models. Understanding these theories would help to apply appropriate algorithms to ensure biomarker systems successful. Here, we review the key advances in theories and mathematical models relevant to transplant biomarker developments. Advantages and limitations inherent inside these models are discussed. The principles of key computational approaches for selecting efficiently the best subset of biomarkers from high dimensional omics data are highlighted. Prediction models are also introduced and the integration of multi-microarray data is also discussed. Appreciating these key advances would help to accelerate the development of clinically reliable biomarker systems.

  13. Epigenetics as biomarkers in autoimmune diseases.

    Science.gov (United States)

    Wu, Haijing; Liao, Jieyue; Li, Qianwen; Yang, Ming; Zhao, Ming; Lu, Qianjin

    2018-03-21

    Autoimmune diseases are immune system disorders in which immune cells cannot distinguish self-antigens from foreign ones. The current criteria for autoimmune disease diagnosis are based on clinical manifestations and laboratory tests. However, none of these markers shows both high sensitivity and specificity. In addition, some autoimmune diseases, for example, systemic lupus erythematosus (SLE), are highly heterogeneous and often exhibit various manifestations. On the other hand, certain autoimmune diseases, such as Sjogren's syndrome versus SLE, share similar symptoms and autoantibodies, which also causes difficulties in diagnosis. Therefore, biomarkers that have both high sensitivity and high specificity for diagnosis, reflect disease activity and predict drug response are necessary. An increasing number of publications have proposed the abnormal epigenetic modifications as biomarkers of autoimmune diseases. Therefore, this review will comprehensively summarize the epigenetic progress in the pathogenesis of autoimmune disorders and unearth potential biomarkers that might be appropriate for disease diagnosis and prediction. Copyright © 2018. Published by Elsevier Inc.

  14. Chromogranin A as biomarker in diabetes

    DEFF Research Database (Denmark)

    Broedbaek, Kasper; Hilsted, Linda

    2016-01-01

    Chromogranin A (CgA) is an established plasma marker of neuroendocrine tumors and has been suggested to also have a role as biomarker in other diseases. Whether CgA has any role as biomarker in diabetes is, however, unresolved, but its widespread distribution in the secretory granules in endocrine...... tissues including β cells and α cells in pancreas, and the metabolic effects of its peptide fragments suggest that CgA may play a pathophysiological role in diabetes, and thus also be a potential diabetes biomarker. In this review, we summarize the available information on CgA and some of its functional...... post-translational cleavage products in diabetes, followed by a discussion of its potential as a plasma marker in diabetes and the methodological concerns involved....

  15. Using Aptamers for Cancer Biomarker Discovery

    Directory of Open Access Journals (Sweden)

    Yun Min Chang

    2013-01-01

    Full Text Available Aptamers are single-stranded synthetic DNA- or RNA-based oligonucleotides that fold into various shapes to bind to a specific target, which includes proteins, metals, and molecules. Aptamers have high affinity and high specificity that are comparable to that of antibodies. They are obtained using iterative method, called (Systematic Evolution of Ligands by Exponential Enrichment SELEX and cell-based SELEX (cell-SELEX. Aptamers can be paired with recent advances in nanotechnology, microarray, microfluidics, and other technologies for applications in clinical medicine. One particular area that aptamers can shed a light on is biomarker discovery. Biomarkers are important in diagnosis and treatment of cancer. In this paper, we will describe ways in which aptamers can be used to discover biomarkers for cancer diagnosis and therapeutics.

  16. Biomarkers in pancreatic adenocarcinoma: current perspectives.

    Science.gov (United States)

    Swords, Douglas S; Firpo, Matthew A; Scaife, Courtney L; Mulvihill, Sean J

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis, with a 5-year survival rate of 7.7%. Most patients are diagnosed at an advanced stage not amenable to potentially curative resection. A substantial portion of this review is dedicated to reviewing the current literature on carbohydrate antigen (CA 19-9), which is currently the only guideline-recommended biomarker for PDAC. It provides valuable prognostic information, can predict resectability, and is useful in decision making about neoadjuvant therapy. We also discuss carcinoembryonic antigen (CEA), CA 125, serum biomarker panels, circulating tumor cells, and cell-free nucleic acids. Although many biomarkers have now been studied in relation to PDAC, significant work still needs to be done to validate their usefulness in the early detection of PDAC and management of patients with PDAC.

  17. Current early diagnostic biomarkers of prostate cancer

    Directory of Open Access Journals (Sweden)

    Min Qu

    2014-08-01

    Full Text Available Prostate cancer (PCa has become to have the highest incidence and the second mortality rate in western countries, affecting men's health to a large extent. Although prostate-specific antigen (PSA was discovered to help diagnose the cancer in an early stage for decades, its specificity is relative low, resulting in unnecessary biopsy for healthy people and over-treatment for patients. Thus, it is imperative to identify more and more effective biomarkers for early diagnosis of PCa in order to distinguish patients from healthy populations, which helps guide an early treatment to lower disease-related mortality by noninvasive or minimal invasive approaches. This review generally describes the current early diagnostic biomarkers of PCa in addition to PSA and summarizes the advantages and disadvantages of these biomarkers.

  18. Biomarkers for CNS involvement in pediatric lupus

    Science.gov (United States)

    Rubinstein, Tamar B; Putterman, Chaim; Goilav, Beatrice

    2015-01-01

    CNS disease, or central neuropsychiatric lupus erythematosus (cNPSLE), occurs frequently in pediatric lupus, leading to significant morbidity and poor long-term outcomes. Diagnosing cNPSLE is especially difficult in pediatrics; many current diagnostic tools are invasive and/or costly, and there are no current accepted screening mechanisms. The most complicated aspect of diagnosis is differentiating primary disease from other etiologies; research to discover new biomarkers is attempting to address this dilemma. With many mechanisms involved in the pathogenesis of cNPSLE, biomarker profiles across several modalities (molecular, psychometric and neuroimaging) will need to be used. For the care of children with lupus, the challenge will be to develop biomarkers that are accessible by noninvasive measures and reliable in a pediatric population. PMID:26079959

  19. Molecular biomarker analyses using circulating tumor cells.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Punnoose

    2010-09-01

    Full Text Available Evaluation of cancer biomarkers from blood could significantly enable biomarker assessment by providing a relatively non-invasive source of representative tumor material. Circulating Tumor Cells (CTCs isolated from blood of metastatic cancer patients hold significant promise in this regard.Using spiked tumor-cells we evaluated CTC capture on different CTC technology platforms, including CellSearch and two biochip platforms, and used the isolated CTCs to develop and optimize assays for molecular characterization of CTCs. We report similar performance for the various platforms tested in capturing CTCs, and find that capture efficiency is dependent on the level of EpCAM expression. We demonstrate that captured CTCs are amenable to biomarker analyses such as HER2 status, qRT-PCR for breast cancer subtype markers, KRAS mutation detection, and EGFR staining by immunofluorescence (IF. We quantify cell surface expression of EGFR in metastatic lung cancer patient samples. In addition, we determined HER2 status by IF and FISH in CTCs from metastatic breast cancer patients. In the majority of patients (89% we found concordance with HER2 status from patient tumor tissue, though in a subset of patients (11%, HER2 status in CTCs differed from that observed in the primary tumor. Surprisingly, we found CTC counts to be higher in ER+ patients in comparison to HER2+ and triple negative patients, which could be explained by low EpCAM expression and a more mesenchymal phenotype of tumors belonging to the basal-like molecular subtype of breast cancer.Our data suggests that molecular characterization from captured CTCs is possible and can potentially provide real-time information on biomarker status. In this regard, CTCs hold significant promise as a source of tumor material to facilitate clinical biomarker evaluation. However, limitations exist from a purely EpCAM based capture system and addition of antibodies to mesenchymal markers could further improve CTC

  20. Biomarkers of lipid peroxidation in clinical material.

    Science.gov (United States)

    Niki, Etsuo

    2014-02-01

    Free radical-mediated lipid peroxidation has been implicated in a number of human diseases. Diverse methods have been developed and applied to measure lipid peroxidation products as potential biomarkers to assess oxidative stress status in vivo, discover early indication of disease, diagnose progression of disease, and evaluate the effectiveness of drugs and antioxidants for treatment of disease and maintenance of health, respectively. However, standardized methods are not yet established. Characteristics of various lipid peroxidation products as biomarkers are reviewed on the basis of mechanisms and dynamics of their formation and metabolism and also on the methods of measurement, with an emphasis on the advantages and limitations. Lipid hydroxides such as hydroxyoctadecadienoic acids (HODE), hydroxyeicosatetraenoic acids (HETE), and hydroxycholesterols may be recommended as reliable biomarkers. Notably, the four HODEs, 9-cis,trans, 9-trans,trans, 13-cis,trans, and 13-trans,trans-HODE, can be measured separately by LC-MS/MS and the trans,trans-forms are specific marker of free radical mediated lipid peroxidation. Further, isoprostanes and neuroprostanes are useful biomarker of lipid peroxidation. It is important to examine the distribution and temporal change of these biomarkers. Despite the fact that lipid peroxidation products are non-specific biomarkers, they will enable to assess oxidative stress status, disease state, and effects of drugs and antioxidants. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Biomarkers in Multiple Sclerosis: Role of Antibodies

    Directory of Open Access Journals (Sweden)

    Thomas Berger

    2006-01-01

    Full Text Available The first international workshop on “Biomarkers in Multiple Sclerosis” was organized by B. Bielekova, R. Hohlfeld, R. Martin and U. Utz from April 14–16, 2004, in Washington, DC. The workshop intended to discuss the current status and potential applicability of biological markers for the understanding of the pathogenesis, diagnosis, and therapy of multiple sclerosis. The present review summarizes the presentation on the potential role of antibodies as biomarkers for diagnosis, disease activity, classification and prediction of clinical courses in multiple sclerosis.

  2. Biomarkers and Targeted Therapy in Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Fataneh Karandish

    2016-01-01

    Full Text Available Pancreatic ductal adenocarcinoma (PDAC constitutes 90% of pancreatic cancers. PDAC is a complex and devastating disease with only 1%–3% survival rate in five years after the second stage. Treatment of PDAC is complicated due to the tumor microenvironment, changing cell behaviors to the mesenchymal type, altered drug delivery, and drug resistance. Considering that pancreatic cancer shows early invasion and metastasis, critical research is needed to explore different aspects of the disease, such as elaboration of biomarkers, specific signaling pathways, and gene aberration. In this review, we highlight the biomarkers, the fundamental signaling pathways, and their importance in targeted drug delivery for pancreatic cancers.

  3. WONOEP appraisal: Imaging biomarkers in epilepsy.

    Science.gov (United States)

    van Vliet, Erwin A; Dedeurwaerdere, Stefanie; Cole, Andrew J; Friedman, Alon; Koepp, Matthias J; Potschka, Heidrun; Immonen, Riikka; Pitkänen, Asla; Federico, Paolo

    2017-03-01

    Neuroimaging offers a wide range of opportunities to obtain information about neuronal activity, brain inflammation, blood-brain barrier alterations, and various molecular alterations during epileptogenesis or for the prediction of pharmacoresponsiveness as well as postoperative outcome. Imaging biomarkers were examined during the XIII Workshop on Neurobiology of Epilepsy (XIII WONOEP) organized in 2015 by the Neurobiology Commission of the International League Against Epilepsy (ILAE). Here we present an extended summary of the discussed issues and provide an overview of the current state of knowledge regarding the biomarker potential of different neuroimaging approaches for epilepsy. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.

  4. Biomarkers of secondhand smoke exposure in automobiles.

    Science.gov (United States)

    Jones, Ian A; St Helen, Gideon; Meyers, Matthew J; Dempsey, Delia A; Havel, Christopher; Jacob, Peyton; Northcross, Amanda; Hammond, S Katharine; Benowitz, Neal L

    2014-01-01

    The objectives of this study were: (1) to characterise the exposure of non-smokers exposed to secondhand smoke (SHS) in a vehicle using biomarkers, (2) to describe the time course of the biomarkers over 24 h, and (3) to examine the relationship between tobacco biomarkers and airborne concentrations of SHS markers. Eight non-smokers were individually exposed to SHS in cars with fully open front windows and closed back windows over an hour from a smoker who smoked three cigarettes at 20 min intervals. The non-smokers sat in the back seat on the passenger side, while the smoker sat in the driver's seat. Plasma cotinine and urine cotinine, 3-hydroxycotinine (3HC) and 4-(methylnitrosoamino)-(3-pyridyl)-1-butanol (NNAL) were compared in samples taken at baseline (BL) and several time-points after exposure. Nicotine, particulate matter (PM2.5) and carbon monoxide (CO) were measured inside and outside the vehicle and ventilation rates in the cars were measured. Average plasma cotinine and the molar sum of urine cotinine and 3HC (COT+3HC) increased four-fold, urine cotinine increased six-fold and urine NNAL increased ∼27 times compared to BL biomarker levels. Plasma cotinine, urine COT+3HC and NNAL peaked at 4-8 h post-exposure while urine cotinine peaked within 4 h. Plasma cotinine was significantly correlated to PM2.5 (Spearman correlation rs=0.94) and CO (rs=0.76) but not to air nicotine. The correlations between urine biomarkers, cotinine, COT+3HC and NNAL, and air nicotine, PM2.5 and CO were moderate but non-significant (rs range =  0.31-0.60). Brief SHS exposure in cars resulted in substantial increases in levels of tobacco biomarkers in non-smokers. For optimal characterisation of SHS exposure, tobacco biomarkers should be measured within 4-8 h post-exposure. Additional studies are needed to better describe the relationship between tobacco biomarkers and environmental markers of SHS.

  5. (Very) Early technology assessment and translation of predictive biomarkers in breast cancer

    NARCIS (Netherlands)

    Miquel-Cases, Anna; Schouten, Philip C; Steuten, Lotte M G; Retèl, Valesca P; Linn, Sabine C; van Harten, Wim H

    Predictive biomarkers can guide treatment decisions in breast cancer. Many studies are undertaken to discover and translate these biomarkers, yet few biomarkers make it to practice. Before use in clinical decision making, predictive biomarkers need to demonstrate analytical validity, clinical

  6. (Very) Early technology assessment and translation of predictive biomarkers in breast cancer

    NARCIS (Netherlands)

    Miquel-Cases, Anna; Schouten, Philip C.; Steuten, Lotte M.G.; Retèl, Valesca P.; Linn, Sabine C.; van Harten, Wim H.

    2017-01-01

    Predictive biomarkers can guide treatment decisions in breast cancer. Many studies are undertaken to discover and translate these biomarkers, yet few biomarkers make it to practice. Before use in clinical decision making, predictive biomarkers need to demonstrate analytical validity, clinical

  7. De Novo Identification of Biomarker Proteins Using Tandem Mass Spectrometry

    Science.gov (United States)

    Many studies have shown that biological fluids contain an important number of biomarkers associated with various pathologies. For instance, there has been extensive research to identify effective biomarkers as prognostic indicators of breast cancer. An effective approach for biom...

  8. Biomarker Detection using PS2-Thioaptamers, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — AM Biotechnologies (AM) will develop a system to detect and quantify bone demineralization biomarkers as outlined in SBIR Topic "Technologies to Detect Biomarkers"....

  9. Challenging homeostasis to define biomarkers for nutrition related health

    NARCIS (Netherlands)

    Ommen, van B.; Keijer, J.; Heil, S.G.; Kaput, J.

    2009-01-01

    A primary goal of nutrition research is to optimize health and prevent or delay disease. Biomarkers to quantify health optimization are needed since many if not most biomarkers are developed for diseases. Quantifying normal homeostasis and developing validated biomarkers are formidable tasks because

  10. Urinary Biomarkers in the Assessment of Early Diabetic Nephropathy

    Directory of Open Access Journals (Sweden)

    Cristina Gluhovschi

    2016-01-01

    Full Text Available Diabetic nephropathy (DN is a frequent and severe complication of diabetes mellitus (DM. Its diagnosis in incipient stages may allow prompt interventions and an improved prognosis. Towards this aim, biomarkers for detecting early DN can be used. Microalbuminuria has been proven a remarkably useful biomarker, being used for diagnosis of DN, for assessing its associated condition—mainly cardiovascular ones—and for monitoring its progression. New researches are pointing that some of these biomarkers (i.e., glomerular, tubular, inflammation markers, and biomarkers of oxidative stress precede albuminuria in some patients. However, their usefulness is widely debated in the literature and has not yet led to the validation of a new “gold standard” biomarker for the early diagnosis of DN. Currently, microalbuminuria is an important biomarker for both glomerular and tubular injury. Other glomerular biomarkers (transferrin and ceruloplasmin are under evaluation. Tubular biomarkers in DN seem to be of a paramount importance in the early diagnosis of DN since tubular lesions occur early. Additionally, biomarkers of inflammation, oxidative stress, podocyte biomarkers, and vascular biomarkers have been employed for assessing early DN. The purpose of this review is to provide an overview of the current biomarkers used for the diagnosis of early DN.

  11. Discovering Biomarkers within the Genomic Landscape of Renal Cell Carcinoma

    Science.gov (United States)

    A, Sankin

    2016-01-01

    Recent advances in molecular sequencing technology have led to the discovery of numerous biomarkers in renal cell carcinoma (RCC). These biomarkers have the potential to predict clinical outcomes and aid in clinical management decisions. The following commentary is a review of the preliminary data on some of the most promising genetic biomarker candidates. PMID:27104219

  12. Biomarkører for anorexia nervosa

    DEFF Research Database (Denmark)

    Sjögren, Magnus

    2017-01-01

    Biomarkers for anorexia nervosa (AN) which reflect the pathophysiology and relate to the aetiology of the disease, are warranted and could bring us one step closer to targeted treatment of AN. Some leads may be found in the biochemistry which often is found disturbed in AN, although normalization...

  13. Plasma biomarker of dietary phytosterol intake.

    Directory of Open Access Journals (Sweden)

    Xiaobo Lin

    Full Text Available Dietary phytosterols, plant sterols structurally similar to cholesterol, reduce intestinal cholesterol absorption and have many other potentially beneficial biological effects in humans. Due to limited information on phytosterol levels in foods, however, it is difficult to quantify habitual dietary phytosterol intake (DPI. Therefore, we sought to identify a plasma biomarker of DPI.Data were analyzed from two feeding studies with a total of 38 subjects during 94 dietary periods. DPI was carefully controlled at low, intermediate, and high levels. Plasma levels of phytosterols and cholesterol metabolites were assessed at the end of each diet period. Based on simple ordinary least squares regression analysis, the best biomarker for DPI was the ratio of plasma campesterol to the endogenous cholesterol metabolite 5-α-cholestanol (R2 = 0.785, P 0.600; P < 0.01.The ratio of plasma campesterol to the coordinately regulated endogenous cholesterol metabolite 5-α-cholestanol is a biomarker of dietary phytosterol intake. Conversely, plasma phytosterol levels alone are not ideal biomarkers of DPI because they are confounded by large inter-individual variation in absorption and turnover of non-cholesterol sterols. Further work is needed to assess the relation between non-cholesterol sterol metabolism and associated cholesterol transport in the genesis of coronary heart disease.

  14. Statistical Approaches to Candidate Biomarker Panel Selection.

    Science.gov (United States)

    Spratt, Heidi M; Ju, Hyunsu

    2016-01-01

    The statistical analysis of robust biomarker candidates is a complex process, and is involved in several key steps in the overall biomarker development pipeline (see Fig. 22.1, Chap. 19 ). Initially, data visualization (Sect. 22.1, below) is important to determine outliers and to get a feel for the nature of the data and whether there appear to be any differences among the groups being examined. From there, the data must be pre-processed (Sect. 22.2) so that outliers are handled, missing values are dealt with, and normality is assessed. Once the processed data has been cleaned and is ready for downstream analysis, hypothesis tests (Sect. 22.3) are performed, and proteins that are differentially expressed are identified. Since the number of differentially expressed proteins is usually larger than warrants further investigation (50+ proteins versus just a handful that will be considered for a biomarker panel), some sort of feature reduction (Sect. 22.4) should be performed to narrow the list of candidate biomarkers down to a more reasonable number. Once the list of proteins has been reduced to those that are likely most useful for downstream classification purposes, unsupervised or supervised learning is performed (Sects. 22.5 and 22.6, respectively).

  15. Clinical Relevance of Biomarkers of Oxidative Stress

    DEFF Research Database (Denmark)

    Frijhoff, Jeroen; Winyard, Paul G; Zarkovic, Neven

    2015-01-01

    still need to be validated in larger sample sizes and compared with current clinical standards to establish them as clinical diagnostics. It is important to realize that oxidative stress is a nuanced phenomenon that is difficult to characterize, and one biomarker is not necessarily better than others...

  16. Biomarkers of Alpha Particle Radiation Exposure

    Science.gov (United States)

    2014-04-01

    work towards the identification of gene-based biomarkers of alpha-particle radiation exposure. Peripheral blood mononuclear cells (PBMN) isolated from...manipulation et l’exposition au rayonnement ionisant chez les humains . CSSP-2012-CD-1117 and CSSP-2012-CD-1114 iii Table of contents...19 Acknowledgements This work was supported by the Centre for

  17. Biomarker Guided Therapy in Chronic Heart Failure

    Science.gov (United States)

    Bektas, Sema

    2015-01-01

    This review article addresses the question of whether biomarker-guided therapy is ready for clinical implementation in chronic heart failure. The most well-known biomarkers in heart failure are natriuretic peptides, namely B-type natriuretic peptide (BNP) and N-terminal pro-BNP. They are well-established in the diagnostic process of acute heart failure and prediction of disease prognosis. They may also be helpful in screening patients at risk of developing heart failure. Although studied by 11 small- to medium-scale trials resulting in several positive meta-analyses, it is less well-established whether natriuretic peptides are also helpful for guiding chronic heart failure therapy. This uncertainty is expressed by differences in European and American guideline recommendations. In addition to reviewing the evidence surrounding the use of natriuretic peptides to guide chronic heart failure therapy, this article gives an overview of the shortcomings of the trials, how the results may be interpreted and the future directions necessary to fill the current gaps in knowledge. Therapy guidance in chronic heart failure using other biomarkers has not been prospectively tested to date. Emerging biomarkers, such as galectin-3 and soluble ST2, might be useful in this regard, as suggested by several post-hoc analyses. PMID:28785440

  18. Quantitative multiplex detection of pathogen biomarkers

    Science.gov (United States)

    Mukundan, Harshini; Xie, Hongzhi; Swanson, Basil I; Martinez, Jennifer; Grace, Wynne K

    2014-10-14

    The present invention addresses the simultaneous detection and quantitative measurement of multiple biomolecules, e.g., pathogen biomarkers through either a sandwich assay approach or a lipid insertion approach. The invention can further employ a multichannel, structure with multi-sensor elements per channel.

  19. Imaging biomarkers in primary brain tumours

    Energy Technology Data Exchange (ETDEWEB)

    Lopci, Egesta; Chiti, Arturo [Humanitas Clinical and Research Center, Nuclear Medicine Department, Rozzano, MI (Italy); Franzese, Ciro; Navarria, Pierina; Scorsetti, Marta [Humanitas Clinical and Research Center, Radiosurgery and Radiotherapy, Rozzano, MI (Italy); Grimaldi, Marco [Humanitas Clinical and Research Center, Radiology, Rozzano, MI (Italy); Zucali, Paolo Andrea; Simonelli, Matteo [Humanitas Clinical and Research Center, Medical Oncology, Rozzano, MI (Italy); Bello, Lorenzo [Humanitas Clinical and Research Center, Neurosurgery, Rozzano, MI (Italy)

    2015-04-01

    We are getting used to referring to instrumentally detectable biological features in medical language as ''imaging biomarkers''. These two terms combined reflect the evolution of medical imaging during recent decades, and conceptually comprise the principle of noninvasive detection of internal processes that can become targets for supplementary therapeutic strategies. These targets in oncology include those biological pathways that are associated with several tumour features including independence from growth and growth-inhibitory signals, avoidance of apoptosis and immune system control, unlimited potential for replication, self-sufficiency in vascular supply and neoangiogenesis, acquired tissue invasiveness and metastatic diffusion. Concerning brain tumours, there have been major improvements in neurosurgical techniques and radiotherapy planning, and developments of novel target drugs, thus increasing the need for reproducible, noninvasive, quantitative imaging biomarkers. However, in this context, conventional radiological criteria may be inappropriate to determine the best therapeutic option and subsequently to assess response to therapy. Integration of molecular imaging for the evaluation of brain tumours has for this reason become necessary, and an important role in this setting is played by imaging biomarkers in PET and MRI. In the current review, we describe most relevant techniques and biomarkers used for imaging primary brain tumours in clinical practice, and discuss potential future developments from the experimental context. (orig.)

  20. Plasma inflammatory biomarkers response to aerobic versus ...

    African Journals Online (AJOL)

    Plasma inflammatory biomarkers response to aerobic versus resisted exercise training for chronic obstructive pulmonary disease patients. ... Recent studies proved that morbidity and mortality of COPD is related to systemic inflammation as it contributes to the pathogenesis of atherosclerosis and cardiovascular disease.

  1. Identification of Potential Biomarkers for Antimony Susceptibility ...

    Indian Academy of Sciences (India)

    Identification of Potential Biomarkers for Antimony Susceptibility/Resistance in L. donovani Rentala Madhubala School of Life Sciences Jawaharlal Nehru ... tags for relative and absolute quantification (iTRAQ®) allows global analyses of protein expression and quantitative comparison among samples by mass spectrometry.

  2. Cerebrospinal fluid biomarkers for Parkinson's disease

    DEFF Research Database (Denmark)

    Dammann Andersen, Andreas; Binzer, Michael; Stenager, Egon

    2017-01-01

    Diagnosticering af Parkinson's sygdom (PD) er baseret på den kliniske udvikling af sygdommen samt en fysisk undersøgelse af patienten, men fejldiagnosticering sker hyppigt; specielt i tidlige stadier. Biomarkører for PD kan muliggøre en tidligere og mere præcis diagnosticering samt monitorering a...

  3. Deciphering Asthma Biomarkers with Protein Profiling Technology

    Directory of Open Access Journals (Sweden)

    Zhizhou Kuang

    2015-01-01

    Full Text Available Asthma is a chronic inflammatory disease of the airways, resulting in bronchial hyperresponsiveness with every allergen exposure. It is now clear that asthma is not a single disease, but rather a multifaceted syndrome that results from a variety of biologic mechanisms. Asthma is further problematic given that the disease consists of many variants, each with its own etiologic and pathophysiologic factors, including different cellular responses and inflammatory phenotypes. These facets make the rapid and accurate diagnosis (not to mention treatments of asthma extremely difficult. Protein biomarkers can serve as powerful detection tools in both clinical and basic research applications. Recent endeavors from biomedical researchers have developed technical platforms, such as cytokine antibody arrays, that have been employed and used to further the global analysis of asthma biomarker studies. In this review, we discuss potential asthma biomarkers involved in the pathophysiologic process and eventual pathogenesis of asthma, how these biomarkers are being utilized, and how further testing methods might help improve the diagnosis and treatment strain that current asthma patients suffer.

  4. Biomarkers in chronic obstructive pulmonary disease

    DEFF Research Database (Denmark)

    Sin, Don D; Vestbo, Jørgen

    2009-01-01

    Currently, with exception of lung function tests, there are no well validated biomarkers or surrogate endpoints that can be used to establish efficacy of novel drugs for chronic obstructive pulmonary disease (COPD). However, the lung function test is not an ideal surrogate for short-term drug...

  5. Biomarkers of Hypoxic Ischemic Encephalopathy in Newborns

    Directory of Open Access Journals (Sweden)

    Martha V. Douglas-Escobar

    2012-11-01

    Full Text Available As neonatal intensive care has evolved, the focus has shifted from improving mortality alone to an effort to improve both mortality and morbidity. The most frequent source of neonatal brain injury occurs as a result of hypoxic-ischemic injury. Hypoxic-ischemic injury occurs in about 2 of 1,000 full-term infants and severe injured infants will have lifetime disabilities and neurodevelopmental delays. Most recently, remarkable efforts toward neuroprotection have been started with the advent of therapeutic hypothermia and a key step in the evolution of neonatal neuroprotection is the discovery of biomarkers that enable the clinician-scientist to screen infants for brain injury, monitor progression of disease, identify injured brain regions, and assess efficacy of neuroprotective clinical trials. Lastly, biomarkers offer great hope identifying when an injury occurred shedding light on the potential pathophysiology and the most effective therapy. In this article, we will review biomarkers of HIE including S100b, neuron specific enolase, umbilical cord IL-6, CK-BB, GFAP, myelin basic protein, UCHL-1, and pNF-H. We hope to contribute to the awareness, validation and clinical use of established as well as novel neonatal brain injury biomarkers.

  6. Validation of Biomarkers for Prostate Cancer Prognosis

    Science.gov (United States)

    2017-06-01

    principles and strong preliminary data. We have devised and tested a centralized distribution mechanism at Stanford University of collating and shipping...special handling of samples because of endogenous nucleases. These special handling procedures can limit dissemination of biomarker assays because...samples that have been banked from surgeries on individuals with relatively advanced disease. For ex- ample, virtually all of the serous ovarian

  7. BLOOD BIOMARKERS FOR EVALUATION OF PERINATAL ENCEPHALOPATHY

    Directory of Open Access Journals (Sweden)

    Ernest Marshall Graham

    2016-07-01

    Full Text Available Recent research in identification of brain injury after trauma shows many possible blood biomarkers that may help identify the fetus and neonate with encephalopathy. Traumatic brain injury shares many common features with perinatal hypoxic-ischemic encephalopathy. Trauma has a hypoxic component, and one of the 1st physiologic consequences of moderate-severe traumatic brain injury is apnea. Trauma and hypoxia-ischemia initiate an excitotoxic cascade and free radical injury followed by the inflammatory cascade, producing injury in neurons, glial cells and white matter. Increased excitatory amino acids, lipid peroxidation products and alteration in microRNAs and inflammatory markers are common to both traumatic brain injury and perinatal encephalopathy. The blood-brain barrier is disrupted in both leading to egress of substances normally only found in the central nervous system. Brain exosomes may represent ideal biomarker containers, as RNA and protein transported within the vesicles are protected from enzymatic degradation. Evaluation of fetal or neonatal brain derived exosomes that cross the blood-brain barrier and circulate peripherally has been referred to as the liquid brain biopsy. A multiplex of serum biomarkers could improve upon the current imprecise methods of identifying fetal and neonatal brain injury such as fetal heart rate abnormalities, meconium, cord gases at delivery, and Apgar scores. Quantitative biomarker measurements of perinatal brain injury and recovery could lead to operative delivery only in the presence of significant fetal risk, triage to appropriate therapy after birth and measure the effectiveness of treatment.

  8. Biomarkers in pancreatic adenocarcinoma: current perspectives

    Directory of Open Access Journals (Sweden)

    Swords DS

    2016-12-01

    Full Text Available Douglas S Swords, Matthew A Firpo, Courtney L Scaife, Sean J Mulvihill Department of Surgery, University of Utah Health Sciences, Salt Lake City, UT, USA Abstract: Pancreatic ductal adenocarcinoma (PDAC has a poor prognosis, with a 5-year survival rate of 7.7%. Most patients are diagnosed at an advanced stage not amenable to potentially curative resection. A substantial portion of this review is dedicated to reviewing the current literature on carbohydrate antigen (CA 19-9, which is currently the only guideline-recommended biomarker for PDAC. It provides valuable prognostic information, can predict resectability, and is useful in decision making about neoadjuvant therapy. We also discuss carcinoembryonic antigen (CEA, CA 125, serum biomarker panels, circulating tumor cells, and cell-free nucleic acids. Although many biomarkers have now been studied in relation to PDAC, significant work still needs to be done to validate their usefulness in the early detection of PDAC and management of patients with PDAC. Keywords: pancreatic cancer, biomarkers, screening, CA 19-9, CEA

  9. Biomarkers for cardiovascular risk in children.

    Science.gov (United States)

    Canas, Jose A; Sweeten, Shawn; Balagopal, Prabhakaran Babu

    2013-03-01

    The magnitude of lifetime risk of cardiovascular disease (CVD) has radically increased along with the high prevalence of obesity in children. The spotlight is now on dysfunctional adiposity as a precursor for the development of premature CVD. As full-blown CVD is not present in childhood, there is a critical need for surrogate markers to best assess, predict, and treat the children who are vulnerable to developing CVD. Accumulation of excess fat mass can be conceived as a derangement in the balance between energy intake and expenditure. This appears to provoke various structural and metabolic alterations leading to adipocyte dysfunction, with important cardiovascular health consequences. Subclinical inflammation, insulin resistance, oxidative stress, and endothelial dysfunction appear to play important roles early in the clinical course of obesity. Associations between biomarkers and noninvasive measures of early atherosclerosis in children continue to emerge and several biomarkers appear to be promising. At present, there are no explicit data to recommend any of these biomarkers as a routine clinical marker of CVD in children. More work is needed to validate these biomarkers and to improve understanding of their role in CVD risk prediction in the pediatric population.

  10. Cellular biomarker responses of bagrid catfish, Chrysichthys ...

    African Journals Online (AJOL)

    ... 3.46 U/L). The present study shows altered biochemical conditions in fishes sampled in the water body impacted by anthropogenic contaminants and suggest that those parameters could be used as reliable biomarkers of contaminant exposure to fish. Keywords: Biomonitoring, water pollution, oxidative stress, fish health.

  11. Biomarkers of necrotising soft tissue infections

    DEFF Research Database (Denmark)

    Hansen, Marco Bo; Simonsen, Ulf; Garred, Peter

    2015-01-01

    INTRODUCTION: The mortality and amputation rates are still high in patients with necrotising soft tissue infections (NSTIs). It would be ideal to have a set of biomarkers that enables the clinician to identify high-risk patients with NSTI on admission. The objectives of this study are to evaluate...

  12. Biomarkers for Major Depressive Disorder: Economic Considerations.

    Science.gov (United States)

    Bogavac-Stanojevic, Natasa; Lakic, Dragana

    2016-11-01

    Preclinical Research Major depressive disorder (MDD) is a major psychiatric illness and it is predicted to be the second leading cause of disability by 2020 with a lifetime prevalence of about 13%. Selective serotonin reuptake inhibitors (SSRIs) are the most commonly used therapeutic class for MDD. However, response to SSRI treatment varies considerably between patients. Biomarkers of treatment response may enable clinicians to target the appropriate drug for each patient. Biomarkers need to have accuracy in real life, sensitivity, specificity, and relevance to depression. Introduction of MDD biomarkers into the health care system can increase the overall cost of clinical diagnosis of patients. Because of that, decisions to allocate health research funding must be based on drug effectiveness and cost-effectiveness. The assessment of MDD biomarkers should include reliable evidence of associated drug effectiveness, adverse events and consequences (reduced productivity and quality of life, disability) and effectiveness of alternative approaches, other drug classes or behavioral or alternative therapies. In addition, all the variables included in an economic model (probabilities, outcomes, and costs) should be based on reliable evidence gained from the literature-ideally meta-analyses-and the evidence should also be determined by informed and specific expert opinion. Early assessment can guide decisions about whether or not to continue test development, and ideally to optimize the process. Drug Dev Res 77 : 374-378, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Biomarkers and Genetics in Peripheral Artery Disease.

    Science.gov (United States)

    Hazarika, Surovi; Annex, Brian H

    2017-01-01

    Peripheral artery disease (PAD) is highly prevalent and there is considerable diversity in the initial clinical manifestation and disease progression among individuals. Currently, there is no ideal biomarker to screen for PAD, to risk stratify patients with PAD, or to monitor therapeutic response to revascularization procedures. Advances in human genetics have markedly enhanced the ability to develop novel diagnostic and therapeutic approaches across a host of human diseases, but such developments in the field of PAD are lagging. In this article, we will discuss the epidemiology, traditional risk factors for, and clinical presentations of PAD. We will discuss the possible role of genetic factors and gene-environment interactions in the development and/or progression of PAD. We will further explore future avenues through which genetic advances can be used to better our understanding of the pathophysiology of PAD and potentially find newer therapeutic targets. We will discuss the potential role of biomarkers in identifying patients at risk for PAD and for risk stratifying patients with PAD, and novel approaches to identification of reliable biomarkers in PAD. The exponential growth of genetic tools and newer technologies provides opportunities to investigate and identify newer pathways in the development and progression of PAD, and thereby in the identification of newer biomarkers and therapies. © 2016 American Association for Clinical Chemistry.

  14. Multiplexed Electrochemical Immunosensors for Clinical Biomarkers

    Science.gov (United States)

    Yáñez-Sedeño, Paloma; Campuzano, Susana; Pingarrón, José M.

    2017-01-01

    Management and prognosis of disease requires the accurate determination of specific biomarkers indicative of normal or disease-related biological processes or responses to therapy. Moreover since multiple determinations of biomarkers have demonstrated to provide more accurate information than individual determinations to assist the clinician in prognosis and diagnosis, the detection of several clinical biomarkers by using the same analytical device hold enormous potential for early detection and personalized therapy and will simplify the diagnosis providing more information in less time. In this field, electrochemical immunosensors have demonstrated to offer interesting alternatives against conventional strategies due to their simplicity, fast response, low cost, high sensitivity and compatibility with multiplexed determination, microfabrication technology and decentralized determinations, features which made them very attractive for integration in point-of-care (POC) devices. Therefore, in this review, the relevance and current challenges of multiplexed determination of clinical biomarkers are briefly introduced, and an overview of the electrochemical immunosensing platforms developed so far for this purpose is given in order to demonstrate the great potential of these methodologies. After highlighting the main features of the selected examples, the unsolved challenges and future directions in this field are also briefly discussed. PMID:28448466

  15. Plasma inflammatory biomarkers response to aerobic versus ...

    African Journals Online (AJOL)

    Plasma inflammatory biomarkers response to aerobic versus resisted exercise training for chronic obstructive pulmonary ... Department of Physical Therapy, Faculty of Applied Medical Sciences, King Abdulaziz University. 2. Department of Medical ... exercises were proved to improve immune system re- sponse17. Even low ...

  16. Inflammatory Biomarkers During Bacterial Acute Rhinosinusitis.

    Science.gov (United States)

    Autio, Timo J; Koskenkorva, Timo; Koivunen, Petri; Alho, Olli-Pekka

    2018-02-21

    Diagnosis of bacterial acute rhinosinusitis is difficult. Several attempts have been made to clarify the diagnostic criteria. Inflammatory biomarkers are easily obtainable variables that could shed light on both the pathophysiology and diagnosis of bacterial acute rhinosinusitis. The purpose of this review article is to assess literature concerning the course of inflammatory biomarkers during acute rhinosinusitis and the use of inflammatory biomarkers in diagnosing bacterial acute rhinosinusitis. We included C-reactive protein, erythrocyte sedimentation rate, white blood cell counts, procalcitonin, and nasal nitric oxide in this review and found that especially elevated C-reactive protein and erythrocyte sedimentation rate are related to a higher probability of a bacterial cause of acute rhinosinusitis. Still, normal levels of these two biomarkers are quite common as well, or the levels can be heightened even during viral respiratory infection without suspicion of bacterial involvement. Elevated levels of C-reactive protein or erythrocyte sedimentation rate support diagnosis of bacterial acute rhinosinusitis, but due to a lack of sensitivity, they should not be used to screen patients for bacterial acute rhinosinusitis.

  17. Diagenetic and catagenetic transformations of sequestered biomarkers

    NARCIS (Netherlands)

    Koopmans, M.P.

    1997-01-01

    In recent years, it has been established that functionalised precursor lipids can be sequestered in high-molecular-weight organic matter fractions of immature sedimentary rocks by reaction with reduced inorganic sulphur species. On the other hand, biomarkers that originate from these precursors

  18. Diagenetic and catagenetic transformations of sequestered biomarkers

    NARCIS (Netherlands)

    Koopmans, Martin P.

    1997-01-01

    In recent years, it has been established that functionalised precursor lipids can be sequestered in high-molecular-weight organic matter fractions of immature sedimentary rocks by reaction with reduced inorganic sulphur species. On the other hand, biomarkers that originate from these precursors are

  19. Biomarkers and Prognosis in Malignant Lymphomas

    NARCIS (Netherlands)

    Hagenbeek, Anton; Gascoyne, Randy D.; Dreyling, Martin; Kluin, Philip; Engert, Andreas; Salles, Gilles

    2009-01-01

    Approximately 100 hematologists and pathologists from Europe, the United States, and Canada participated in the workshop Biomarkers and Prognosis in Malignant Lymphomas, held in Mandelieu, France,April 11-13, 2008, under the leadership of Anton Hagenbeek, Randy Gascoyne, and Gilles Salles.

  20. The Process Chain for Peptidomic Biomarker Discovery

    Directory of Open Access Journals (Sweden)

    Michael Schrader

    2006-01-01

    Full Text Available Over the last few years the interest in diagnostic markers for specific diseases has increased continuously. It is expected that they not only improve a patient's medical treatment but also contribute to accelerating the process of drug development. This demand for new biomarkers is caused by a lack of specific and sensitive diagnosis in many diseases. Moreover, diseases usually occur in different types or stages which may need different diagnostic and therapeutic measures. Their differentiation has to be considered in clinical studies as well. Therefore, it is important to translate a macroscopic pathological or physiological finding into a microscopic view of molecular processes and vice versa, though it is a difficult and tedious task. Peptides play a central role in many physiological processes and are of importance in several areas of drug research. Exploration of endogenous peptides in biologically relevant sources may directly lead to new drug substances, serve as key information on a new target and can as well result in relevant biomarker candidates. A comprehensive analysis of peptides and small proteins of a biological system corresponding to the respective genomic information (peptidomics®methods was a missing link in proteomics. A new peptidomic technology platform addressing peptides was recently presented, developed by adaptation of the striving proteomic technologies. Here, concepts of using peptidomics technologies for biomarker discovery are presented and illustrated with examples. It is discussed how the biological hypothesis and sample quality determine the result of the study. A detailed study design, appropriate choice and application of technology as well as thorough data interpretation can lead to significant results which have to be interpreted in the context of the underlying disease. The identified biomarker candidates will be characterised in validation studies before use. This approach for discovery of peptide

  1. Reappraisal of hydrocarbon biomarkers in Archean rocks.

    Science.gov (United States)

    French, Katherine L; Hallmann, Christian; Hope, Janet M; Schoon, Petra L; Zumberge, J Alex; Hoshino, Yosuke; Peters, Carl A; George, Simon C; Love, Gordon D; Brocks, Jochen J; Buick, Roger; Summons, Roger E

    2015-05-12

    Hopanes and steranes found in Archean rocks have been presented as key evidence supporting the early rise of oxygenic photosynthesis and eukaryotes, but the syngeneity of these hydrocarbon biomarkers is controversial. To resolve this debate, we performed a multilaboratory study of new cores from the Pilbara Craton, Australia, that were drilled and sampled using unprecedented hydrocarbon-clean protocols. Hopanes and steranes in rock extracts and hydropyrolysates from these new cores were typically at or below our femtogram detection limit, but when they were detectable, they had total hopane (rock) and total sterane (rock) concentrations comparable to those measured in blanks and negative control samples. In contrast, hopanes and steranes measured in the exteriors of conventionally drilled and curated rocks of stratigraphic equivalence reach concentrations of 389.5 pg per gram of rock and 1,039 pg per gram of rock, respectively. Polycyclic aromatic hydrocarbons and diamondoids, which exceed blank concentrations, exhibit individual concentrations up to 80 ng per gram of rock in rock extracts and up to 1,000 ng per gram of rock in hydropyrolysates from the ultraclean cores. These results demonstrate that previously studied Archean samples host mixtures of biomarker contaminants and indigenous overmature hydrocarbons. Therefore, existing lipid biomarker evidence cannot be invoked to support the emergence of oxygenic photosynthesis and eukaryotes by ∼ 2.7 billion years ago. Although suitable Proterozoic rocks exist, no currently known Archean strata lie within the appropriate thermal maturity window for syngenetic hydrocarbon biomarker preservation, so future exploration for Archean biomarkers should screen for rocks with milder thermal histories.

  2. Pharmacogenetic Study on Antidementia Drugs

    OpenAIRE

    Nötzli, M.

    2012-01-01

    Differences in efficacy and safety of drugs among patients are a recognized problem in pharmacotherapy. The reasons are multifactorial and, therefore, the choice of a drug and its dosage for a particular patient based on different clinical and genetic factors is suggested to improve the clinical outcome. Four drugs are currently used for the treatment of Alzheimer's disease: three acetylcholinesterase inhibitors (donepezil, galantamine, rivastigmine) and the N-methyl-D-aspartate-antagonist me...

  3. More Accurate Oral Cancer Screening with Fewer Salivary Biomarkers

    Directory of Open Access Journals (Sweden)

    James Michael Menke

    2017-10-01

    Full Text Available Signal detection and Bayesian inferential tools were applied to salivary biomarkers to improve screening accuracy and efficiency in detecting oral squamous cell carcinoma (OSCC. Potential cancer biomarkers are identified by significant differences in assay concentrations, receiver operating characteristic areas under the curve (AUCs, sensitivity, and specificity. However, the end goal is to report to individual patients their risk of having disease given positive or negative test results. Likelihood ratios (LRs and Bayes factors (BFs estimate evidential support and compile biomarker information to optimize screening accuracy. In total, 26 of 77 biomarkers were mentioned as having been tested at least twice in 137 studies and published in 16 summary papers through 2014. Studies represented 10 212 OSCC and 25 645 healthy patients. The measure of biomarker and panel information value was number of biomarkers needed to approximate 100% positive predictive value (PPV. As few as 5 biomarkers could achieve nearly 100% PPV for a disease prevalence of 0.2% when biomarkers were ordered from highest to lowest LR. When sequentially interpreting biomarker tests, high specificity was more important than test sensitivity in achieving rapid convergence toward a high PPV. Biomarkers ranked from highest to lowest LR were more informative and easier to interpret than AUC or Youden index. The proposed method should be applied to more recently published biomarker data to test its screening value.

  4. Cardiovascular biomarkers in clinical studies of type 2 diabetes

    DEFF Research Database (Denmark)

    Baldassarre, M P A; Andersen, A; Consoli, A

    2018-01-01

    When planning cardiovascular studies in type 2 diabetes, selection of cardiovascular biomarkers is a complex issue. Since the pathophysiology of cardiovascular disease in type 2 diabetes is multifactorial, ideally, the selected cardiovascular biomarkers should cover all aspects of the known...... biomarkers and 3) novel biomarkers (oxidative stress and endothelial dysfunction biomarkers). Within each category we present the currently best validated biomarkers with special focus on the population of interest (type 2 diabetes). For each individual biomarker, the physiological role, the validation...... in the general population and in type 2 diabetes, analytical methodology, the modifying factors, the effects of glucose-lowering drugs, and the interpretation are discussed. This approach will provide clinical researchers with all information necessary for planning, conducting and interpreting results from...

  5. Biomarkers of intermediate endpoints in environmental and occupational health

    DEFF Research Database (Denmark)

    Knudsen, Lisbeth E; Hansen, Ase M

    2007-01-01

    The use of biomarkers in environmental and occupational health is increasing due to increasing demands on information about health risks from unfavourable exposures. Biomarkers provide information about individual loads. Biomarkers of intermediate endpoints benefit in comparison with biomarkers...... of exposure from the fact that they are closer to the adverse outcome in the pathway from exposure to health effects and may provide powerful information for intervention. Some biomarkers are specific, e.g., DNA and protein adducts, while others are unspecific like the cytogenetic biomarkers of chromosomal...... health effect from the result of the measurement has been performed for the cytogenetic biomarkers showing a predictive value of high levels of CA and increased risk of cancer. The use of CA in future studies is, however, limited by the laborious and sensitive procedure of the test and lack of trained...

  6. Aetiological blood biomarkers of ischaemic stroke.

    Science.gov (United States)

    Sonderer, Julian; Katan Kahles, Mira

    2015-01-01

    Each year, over 5 million people die worldwide from stroke, and at least every sixth patient who survives will experience another stroke within five years [1]. We are therefore eager to advance early and rapid diagnosis, prognosis and optimal risk stratification, as well as secondary prevention. In this context, blood biomarkers may improve patient care, as they have already done in other fields in the past, for example, troponin T/I in patients with heart attacks, natriuretic peptides in patients with heart failure or PCT (procalcitonin) [2] in patients with pneumonia. In the setting of acute stroke, a blood biomarker can be any quantifiable entity that reflects the manifestation of a stroke-related process. The most fruitful implementation of stroke biomarkers is in areas where information from traditional clinical sources is limited. There may be markers, for example, to guide risk stratification, reveal stroke aetiology, identify patients who may benefit most from interventions, monitor treatment efficacy, and recognise the risk of short-term complications or unfavourable long-term outcomes. For this review we focus on blood biomarkers that could help distinguish the underlying aetiology of an ischaemic stroke. Stroke tends to be a much more heterogeneous condition than ischaemic heart disease, which is caused by atherosclerosis in the vast majority of cases. Causes of stroke include small and large vessel disease, cardioembolism, dissections, and rare vasculo- and coagulopathies, among others. Because of this heterogeneity among stroke patients, it is clear that a monolithic approach to stroke prevention or secondary prevention is not warranted. Aetiological classification is important specifically because prognosis, risk of recurrence and management options differ greatly between aetiological subtypes. Considering that today up to 30% of stroke patients still cannot be classified into a specific subtype [3], the ability to improve aetiological classification

  7. Biomarkers of selenium status in dogs.

    Science.gov (United States)

    van Zelst, Mariëlle; Hesta, Myriam; Gray, Kerry; Staunton, Ruth; Du Laing, Gijs; Janssens, Geert P J

    2016-01-19

    Inadequate dietary selenium (Se) intake in humans and animals can lead to long term health problems, such as cancer. In view of the owner's desire for healthy longevity of companion animals, the impact of dietary Se provision on long term health effects warrants investigation. Little is currently known regards biomarkers, and rate of change of such biomarkers in relation to dietary selenium intake in dogs. In this study, selected biomarkers were assessed for their suitability to detect changes in dietary Se in adult dogs within eight weeks. Twenty-four dogs were fed a semi-purified diet with an adequate amount of Se (46.1 μg/MJ) over an 8 week period. They were then divided into two groups. The first group remained on the adequate Se diet, the second were offered a semi-purified diet with a low Se concentration (6.5 μg/MJ; 31% of the FEDIAF minimum) for 8 weeks. Weekly urine and blood was collected and hair growth measurements were performed. The urinary Se to creatinine ratio and serum Se concentration were significantly lower in dogs consuming the low Se diet from week 1 onwards, by 84% (adequate 25.3, low 4.1) and 7% (adequate 257 μg/L, low 238 μg/L) respectively. Serum and whole blood glutathione peroxidase were also significantly lower in dogs consuming the low Se diet from weeks 6 and 8 respectively. None of the other biomarkers (mRNA expression and serum copper, creatine kinase, triiodothyronine:thyroxine ratio and hair growth) responded significantly to the low Se diet over the 8 week period. This study demonstrated that urinary Se to creatinine ratio, serum Se and serum and whole blood glutathione peroxidase can be used as biomarkers of selenium status in dogs. Urinary Se to creatinine ratio and serum Se concentrations responded faster to decreased dietary Se than the other parameters. This makes these biomarkers candidates for early screening of long term effects of dietary Se provision on canine health.

  8. Personalized medicine: Striding from genes to medicines

    OpenAIRE

    Sunita R Nair

    2010-01-01

    Personalized medicine has the potential of revolutionizing patient care. This treatment modality prescribes therapies specific to individual patients based on pharmacogenetic and pharmacogenomic information. The mapping of the human genome has been an important milestone in understanding the interindividual differences in response to therapy. These differences are attributed to genotypic differences, with consequent phenotypic expression. It is important to note that targeted therapies should...

  9. Pharmacotherapy for smoking cessation: effects by subgroup defined by genetically informed biomarkers.

    Science.gov (United States)

    Schuit, Ewoud; Panagiotou, Orestis A; Munafò, Marcus R; Bennett, Derrick A; Bergen, Andrew W; David, Sean P

    2017-09-08

    Smoking cessation therapies are not effective for all smokers, and researchers are interested in identifying those subgroups of individuals (e.g. based on genotype) who respond best to specific treatments. To assess whether quit rates vary by genetically informed biomarkers within pharmacotherapy treatment arms and as compared with placebo. To assess the effects of pharmacotherapies for smoking cessation in subgroups of smokers defined by genotype for identified genome-wide significant polymorphisms. We searched the Cochrane Tobacco Addiction Group specialised register, clinical trial registries, and genetics databases for trials of pharmacotherapies for smoking cessation from inception until 16 August 2016. We included randomised controlled trials (RCTs) that recruited adult smokers and reported pharmacogenomic analyses from trials of smoking cessation pharmacotherapies versus controls. Eligible trials included those with data on a priori genome-wide significant (P smoking abstinence at six months after treatment. The secondary outcome was abstinence at end of treatment (EOT). We conducted two types of meta-analyses- one in which we assessed smoking cessation of active treatment versus placebo within genotype groups, and another in which we compared smoking cessation across genotype groups within treatment arms. We carried out analyses separately in non-Hispanic whites (NHWs) and non-Hispanic blacks (NHBs). We assessed heterogeneity between genotype groups using T², I², and Cochrane Q statistics. Analyses included 18 trials including 9017 participants, of whom 6924 were NHW and 2093 NHB participants. Data were available for the following biomarkers: nine SNPs (rs1051730 (CHRNA3); rs16969968, rs588765, and rs2036527 (CHRNA5); rs3733829 and rs7937 (in EGLN2, near CYP2A6); rs1329650 and rs1028936 (LOC100188947); and rs215605 (PDE1C)), two variable number tandem repeats (VNTRs; DRD4 and SLC6A4), and the NMR. Included data produced a total of 40 active versus placebo

  10. Personalized medicine in oncology: where have we come from and where are we going?

    Science.gov (United States)

    André, Fabrice; Ciccolini, Joseph; Spano, Jean-Philippe; Penault-Llorca, Frédérique; Mounier, Nicolas; Freyer, Gilles; Blay, Jean-Yves; Milano, Gérard

    2013-06-01

    Current advances in the biology of cancer and emergence of new tools for genome analysis have opened clinical perspectives in oncology, generally termed as 'personalized medicine'. This broad term must encompass previous well-proven strategies, such as pharmacogenetics- and pharmacokinetics-based dosing, with more recently introduced pharmacogenomics approaches, all applied as a means to tailor treatment to a given patient presenting with a given tumor. Despite outstanding results in lung cancer, colorectal cancer and melanoma, only a few predictive biomarkers are currently justified in routine clinical practice. Overall, there is a persistent gap between the growing number of identified deregulated pathways or genetic mutations, both at the tumor and the constitutional levels, and their actual implementation at the bedside as part of clinical routine. This article underlines these limitations and covers several issues that may explain the discrepancy between the plethora of published data about emerging biomarkers, and the relative scarcity of tests eventually reaching a clinically validated application. The main identified difficulties concern invasive and costly prospective biomarker studies and the issue of tumor heterogeneity. Finally, early trial designs for targeted therapies as well as those for conventional cytotoxics may not necessarily address the right questions by skipping critical end points. Proposed solutions point out the use of liquid biopsies and systems biology approaches, for an easier implementation of personalized medicine at the bedside.

  11. BMI1: A Biomarker of Hematologic Malignancies

    Directory of Open Access Journals (Sweden)

    Anagh A. Sahasrabuddhe

    2016-01-01

    Full Text Available BMI1 oncogene is a catalytic member of epigenetic repressor polycomb group proteins. It plays a critical role in the regulation of gene expression pattern and consequently several cellular processes during development, including cell cycle progression, senescence, aging, apoptosis, angiogenesis, and importantly self-renewal of adult stem cells of several lineages. Preponderance of evidences indicates that deregulated expression of PcG protein BMI1 is associated with several human malignancies, cancer stem cell maintenance, and propagation. Importantly, overexpression of BMI1 correlates with therapy failure in cancer patients and tumor relapse. This review discusses the diverse mode of BMI1 regulation at transcriptional, posttranscriptional, and posttranslational levels as well as at various critical signaling pathways regulated by BMI1 activity. Furthermore, this review highlights the role of BMI1 as a biomarker and therapeutic target for several subtypes of hematologic malignancies and the importance to target this biomarker for therapeutic applications.

  12. Methylated genes as new cancer biomarkers.

    LENUS (Irish Health Repository)

    Duffy, M J

    2012-02-01

    Aberrant hypermethylation of promoter regions in specific genes is a key event in the formation and progression of cancer. In at least some situations, these aberrant alterations occur early in the formation of malignancy and appear to be tumour specific. Multiple reports have suggested that measurement of the methylation status of the promoter regions of specific genes can aid early detection of cancer, determine prognosis and predict therapy responses. Promising DNA methylation biomarkers include the use of methylated GSTP1 for aiding the early diagnosis of prostate cancer, methylated PITX2 for predicting outcome in lymph node-negative breast cancer patients and methylated MGMT in predicting benefit from alkylating agents in patients with glioblastomas. However, prior to clinical utilisation, these findings require validation in prospective clinical studies. Furthermore, assays for measuring gene methylation need to be standardised, simplified and evaluated in external quality assurance programmes. It is concluded that methylated genes have the potential to provide a new generation of cancer biomarkers.

  13. Biomarkers for Lupus Nephritis: A Critical Appraisal

    Directory of Open Access Journals (Sweden)

    Chi Chiu Mok

    2010-01-01

    Full Text Available Kidney disease is one of the most serious manifestations of systemic lupus erythematosus (SLE. Despite the improvement in the medical care of SLE in the past two decades, the prognosis of lupus nephritis remains unsatisfactory. Besides exploring more effective but less toxic treatment modalities that will further improve the remission rate, early detection and treatment of renal activity may spare patients from intensive immunosuppressive therapies and reduce renal damage. Conventional clinical parameters such as creatinine clearance, proteinuria, urine sediments, anti-dsDNA, and complement levels are not sensitive or specific enough for detecting ongoing disease activity in the lupus kidneys and early relapse of nephritis. Thus, novel biomarkers are necessary to enhance the diagnostic accuracy and sensitivity of lupus renal disease, prognostic stratification, monitoring of treatment response, and detection of early renal flares. This paper reviews promising biomarkers that have recently been evaluated in longitudinal studies of lupus nephritis.

  14. Flavonoids as fruit and vegetable intake biomarkers

    DEFF Research Database (Denmark)

    Krogholm, Kirstine Suszkiewicz

    calculation of the bivariate correlation coefficients is the common approach when using only one reference method. Back in 2002, a strictly controlled dietary intervention study indicated that the sum of 7 different flavonoid aglycones excreted in 24h urine samples potentially could be used as a biomarker...... and cohort studies. The Ph.D. thesis contains four scientific papers. Paper I provides evidence that the sum of 7 flavonoids in 24h urine respond in a linear and sensitive manner to moderate increases in the intake of fruits and vegetables, and thus consolidates that the flavonoids are a valid biomarker...... of fruit and vegetable intakes. In Paper I, the urinary recovery of the 7 flavonoids in morning spot urine (i.e. all urine voids from midnight including the first morning void) was also found to respond to moderate increases in the intake of fruits and vegetables. However, the association was somewhat...

  15. Mass Spectrometry-Based Biomarker Discovery.

    Science.gov (United States)

    Zhou, Weidong; Petricoin, Emanuel F; Longo, Caterina

    2017-01-01

    The discovery of candidate biomarkers within the entire proteome is one of the most important and challenging goals in proteomic research. Mass spectrometry-based proteomics is a modern and promising technology for semiquantitative and qualitative assessment of proteins, enabling protein sequencing and identification with exquisite accuracy and sensitivity. For mass spectrometry analysis, protein extractions from tissues or body fluids and subsequent protein fractionation represent an important and unavoidable step in the workflow for biomarker discovery. Following extraction of proteins, the protein mixture must be digested, reduced, alkylated, and cleaned up prior to mass spectrometry. The aim of our chapter is to provide comprehensible and practical lab procedures for sample digestion, protein fractionation, and subsequent mass spectrometry analysis.

  16. Biomarkers for monitoring chemotherapy-induced cardiotoxicity.

    Science.gov (United States)

    Cao, Liyun; Zhu, Wuqiang; Wagar, Elizabeth A; Meng, Qing H

    2017-03-01

    Cardiotoxicity, including acute and late-onset cardiotoxicity, is a well-known adverse effect of many types of antitumor agents. Early identification of patients with cardiotoxicity is important to ensure prompt treatment and minimize toxic effects. The etiology of chemotherapy-induced cardiotoxicity is multifactorial. Traditional methods for assessment of chemotherapy-induced cardiotoxicity typically involve serial measurements of cardiac function via multi-modality imaging techniques. Typically, however, significant left ventricular dysfunction has already occurred when cardiotoxicity is detected by imaging techniques. Biomarkers, most importantly cardiac natriuretic peptides and troponins, are promising markers for identifying patients potentially at risk for clinical heart failure symptoms. This review summarizes the recent progress in clinical utilization of biomarkers for early diagnosis of acute cardiotoxicity and for prediction of late-onset cardiotoxicity. We also discuss the conflicting results of different studies and the association of results with study design.

  17. Computed Tomography Biomarkers of Vulnerable Coronary Plaques

    Directory of Open Access Journals (Sweden)

    Nyulas Tiberiu

    2016-12-01

    Full Text Available An unstable plaque has a high risk of thrombosis and at the same time for a fast progression of the stenosis degree. Also, “high-risk plaque” and “thrombosis-prone plaque” are used as synonym terms for characterization of a vulnerable plaque. The imaging biomarkers for vulnerable coronary plaques are considered to be spotty calcifications, active remodeling, low-density atheroma and the presence of a ring-like attenuation pattern, also known as the napkin-ring sign. Computed cardiac tomography can determine the plaque composition by assessing the plaque density, which is measured in Hounsfield units (HU. The aim of this manuscript was to provide an update about the most frequently used biomarkers of vulnerability in a vulnerable plaque with the help of computed cardiac tomography.

  18. Molecular alterations and biomarkers in colorectal cancer

    Science.gov (United States)

    Grady, William M.; Pritchard, Colin C.

    2013-01-01

    The promise of precision medicine is now a clinical reality. Advances in our understanding of the molecular genetics of colorectal cancer genetics is leading to the development of a variety of biomarkers that are being used as early detection markers, prognostic markers, and markers for predicting treatment responses. This is no more evident than in the recent advances in testing colorectal cancers for specific molecular alterations in order to guide treatment with the monoclonal antibody therapies cetuximab and panitumumab, which target the epidermal growth factor receptor (EGFR). In this review, we update a prior review published in 2010 and describe our current understanding of the molecular pathogenesis of colorectal cancer and how these alterations relate to emerging biomarkers for early detection and risk stratification (diagnostic markers), prognosis (prognostic markers), and the prediction of treatment responses (predictive markers). PMID:24178577

  19. Microparticles as Potential Biomarkers of Cardiovascular Disease

    Energy Technology Data Exchange (ETDEWEB)

    França, Carolina Nunes, E-mail: carolufscar24@gmail.com [Universidade Federal de São Paulo - UNIFESP - UNISA, SP, São Paulo (Brazil); Universidade de Santo Amaro - UNISA, SP, São Paulo (Brazil); Izar, Maria Cristina de Oliveira; Amaral, Jônatas Bussador do; Tegani, Daniela Melo; Fonseca, Francisco Antonio Helfenstein [Universidade Federal de São Paulo - UNIFESP - UNISA, SP, São Paulo (Brazil)

    2015-02-15

    Primary prevention of cardiovascular disease is a choice of great relevance because of its impact on health. Some biomarkers, such as microparticles derived from different cell populations, have been considered useful in the assessment of cardiovascular disease. Microparticles are released by the membrane structures of different cell types upon activation or apoptosis, and are present in the plasma of healthy individuals (in levels considered physiological) and in patients with different pathologies. Many studies have suggested an association between microparticles and different pathological conditions, mainly the relationship with the development of cardiovascular diseases. Moreover, the effects of different lipid-lowering therapies have been described in regard to measurement of microparticles. The studies are still controversial regarding the levels of microparticles that can be considered pathological. In addition, the methodologies used still vary, suggesting the need for standardization of the different protocols applied, aiming at using microparticles as biomarkers in clinical practice.

  20. [Inflammatory biomarkers in ischemic acute coronary syndrome].

    Science.gov (United States)

    Domínguez-Rodríguez, Alberto; Abreu-González, Pedro

    2015-10-01

    Diagnosing acute coronary syndrome (ACS) in the emergency department is often a complex process. Inflammatory markers might be useful for the rapid assessment of a patient's overall risk and might also help predict future episodes. The clinical use of these biomarkers could potentially lower the number of emergency visits and help in the prevention of future adverse events. The aim of this review was to evaluate the clinical utility of markers of cardiovascular inflammation in emergency patients with ACS. Based on a critical analysis of a selection of the literature, we concluded that none of the biomarkers of cardiovascular inflammation would at present be useful for stratifying risk in emergency situations, aiding prognosis, or guiding therapy for patients with ACS.