WorldWideScience

Sample records for biomarkers pharmacogenomics pharmacogenetics

  1. Pharmacogenetics and pharmacogenomics as tools in cancer therapy.

    Science.gov (United States)

    Rodríguez-Vicente, Ana E; Lumbreras, Eva; Hernández, Jesus M; Martín, Miguel; Calles, Antonio; Otín, Carlos López; Algarra, Salvador Martín; Páez, David; Taron, Miquel

    2016-03-01

    Pharmacogenetics and pharmacogenomics (PGx) are rapidly growing fields that aim to elucidate the genetic basis for the interindividual differences in drug response. PGx approaches have been applied to many anticancer drugs in an effort to identify relevant inherited or acquired genetic variations that may predict patient response to chemotherapy and targeted therapies. In this article, we discuss the advances in the field of cancer pharmacogenetics and pharmacogenomics, driven by the recent technological advances and new revolutionary massive sequencing technologies and their application to elucidate the genetic bases for interindividual drug response and the development of biomarkers able to personalize drug treatments. Specifically, we present recent progress in breast cancer molecular classifiers, cell-free circulating DNA as a prognostic and predictive biomarker in cancer, patient-derived tumor xenograft models, chronic lymphocytic leukemia genomic landscape, and current pharmacogenetic advances in colorectal cancer. This review is based on the lectures presented by the speakers of the symposium "Pharmacogenetics and Pharmacogenomics as Tools in Cancer Therapy" from the VII Conference of the Spanish Pharmacogenetics and Pharmacogenomics Society (SEFF), held in Madrid (Spain) on April 21, 2015.

  2. Pharmacogenetics and pharmacogenomics in psoriasis treatment: current challenges and future prospects.

    Science.gov (United States)

    Sutherland, Alison; Power, Rebecca J; Rahman, Proton; O'Rielly, Darren D

    2016-08-01

    Topical, systemic, oral disease modifying, and biologic agents are part of the armamentarium to manage psoriatic disease. The choice of therapy depends upon disease severity, relevant co-morbidities and patient preference. There is great variability in patient response with these agents, and there is still no clear method of selecting the preferred therapeutic agent for efficacy or lack of adverse events. This article will review the pharmacogenetic and pharmacogenomic targets that are currently known with respect to psoriasis vulgaris, and the most frequent co-morbidity of psoriasis, psoriatic arthritis. Presently, no clinically actionable biomarker exists for any therapeutic agent used to treat psoriasis or psoriatic arthritis. The lack of validated outcome measures and conflicting results of open-label studies conducted may be attributed to a multitude of issues that confound discovery. Consequently, studies have been underpowered to identify genes or genetic variants worth translating to clinical practice. In order to achieve a pharmacogenetic/pharmacogenomic signature, improvements in study design of future investigations are required, including carefully designed prospective studies. It is imperative to combine known clinical, serological, and molecular markers with consistent outcomes and an adequate health economic evaluation before they can be adopted widely in clinical practice.

  3. Significance of Pharmacogenetics and Pharmacogenomics Research in Current Medical Practice.

    Science.gov (United States)

    Prakash, Swayam; Agrawal, Suraksha

    2016-01-01

    Human genome sequencing highlights the involvement of genetic variation towards differential risk of human diseases, presence of different phenotypes, and response to pharmacological elements. This brings the field of personalized medicine to forefront in the era of modern health care. Numerous recent approaches have shown that how variation in the genome at single nucleotide level can be used in pharmacological research. The two broad aspects that deal with pharmacological research are pharmacogenetics and pharmacogenomics. This review encompasses how these variations have created the basis of pharmacogenetics and pharmacogenomics research and important milestones accomplished in these two fields in different diseases. It further discusses at length their importance in disease diagnosis, response of drugs, and various treatment modalities on the basis of genetic determinants.

  4. Practical recommendations for pharmacogenomics-based prescription: 2010 ESF-UB Conference on Pharmacogenetics and Pharmacogenomics

    NARCIS (Netherlands)

    Becquemont, Laurent; Alfirevic, Ana; Amstutz, Ursula; Brauch, Hiltrud; Jacqz-Aigrain, Evelyne; Laurent-Puig, Pierre; Molina, Miguel A.; Niemi, Mikko; Schwab, Matthias; Somogyi, Andrew A.; Thervet, Eric; Maitland-van der Zee, Anke-Hilse; van Kuilenburg, André B. P.; van Schaik, Ron H. N.; Verstuyft, Céline; Wadelius, Mia; Daly, Ann K.

    2011-01-01

    The present article summarizes the discussions of the 3rd European Science Foundation University of Barcelona (ESF-UB) Conference in Biomedicine on Pharmacogenetics and Pharmacogenomics, which was held in June 2010 in Spain. It was focused on practical applications in routine medical practice. We

  5. The Pharmacogenomics Research Network Translational Pharmacogenetics Program: Outcomes and Metrics of Pharmacogenetic Implementations Across Diverse Healthcare Systems.

    Science.gov (United States)

    Luzum, J A; Pakyz, R E; Elsey, A R; Haidar, C E; Peterson, J F; Whirl-Carrillo, M; Handelman, S K; Palmer, K; Pulley, J M; Beller, M; Schildcrout, J S; Field, J R; Weitzel, K W; Cooper-DeHoff, R M; Cavallari, L H; O'Donnell, P H; Altman, R B; Pereira, N; Ratain, M J; Roden, D M; Embi, P J; Sadee, W; Klein, T E; Johnson, J A; Relling, M V; Wang, L; Weinshilboum, R M; Shuldiner, A R; Freimuth, R R

    2017-09-01

    Numerous pharmacogenetic clinical guidelines and recommendations have been published, but barriers have hindered the clinical implementation of pharmacogenetics. The Translational Pharmacogenetics Program (TPP) of the National Institutes of Health (NIH) Pharmacogenomics Research Network was established in 2011 to catalog and contribute to the development of pharmacogenetic implementations at eight US healthcare systems, with the goal to disseminate real-world solutions for the barriers to clinical pharmacogenetic implementation. The TPP collected and normalized pharmacogenetic implementation metrics through June 2015, including gene-drug pairs implemented, interpretations of alleles and diplotypes, numbers of tests performed and actionable results, and workflow diagrams. TPP participant institutions developed diverse solutions to overcome many barriers, but the use of Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines provided some consistency among the institutions. The TPP also collected some pharmacogenetic implementation outcomes (scientific, educational, financial, and informatics), which may inform healthcare systems seeking to implement their own pharmacogenetic testing programs. © 2017, The American Society for Clinical Pharmacology and Therapeutics.

  6. The Pharmacogenomics Research Network Translational Pharmacogenetics Program: Overcoming Challenges of Real-World Implementation

    Science.gov (United States)

    Shuldiner, AR; Relling, MV; Peterson, JF; Hicks, JK; Freimuth, RR; Sadee, W; Pereira, NL; Roden, DM; Johnson, JA; Klein, TE

    2013-01-01

    The pace of discovery of potentially actionable pharmacogenetic variants has increased dramatically in recent years. However, the implementation of this new knowledge for individualized patient care has been slow. The Pharmacogenomics Research Network (PGRN) Translational Pharmacogenetics Program seeks to identify barriers and develop real-world solutions to implementation of evidence-based pharmacogenetic tests in diverse health-care settings. Dissemination of the resulting toolbox of “implementation best practices” will prove useful to a broad audience. PMID:23588301

  7. Pharmacogenomics and pharmacogenetics for the intensive care unit: a narrative review.

    Science.gov (United States)

    MacKenzie, Meghan; Hall, Richard

    2017-01-01

    Knowledge of how alterations in pharmacogenomics and pharmacogenetics may affect drug therapy in the intensive care unit (ICU) has received little study. We review the clinically relevant application of pharmacogenetics and pharmacogenomics to drugs and conditions encountered in the ICU. We selected relevant literature to illustrate the important concepts contained within. Two main approaches have been used to identify genetic abnormalities - the candidate gene approach and the genome-wide approach. Genetic variability in response to drugs may occur as a result of alterations of drug-metabolizing (cytochrome P [CYP]) enzymes, receptors, and transport proteins leading to enhancement or delay in the therapeutic response. Of relevance to the ICU, genetic variation in CYP-450 isoenzymes results in altered effects of midazolam, fentanyl, morphine, codeine, phenytoin, clopidogrel, warfarin, carvedilol, metoprolol, HMG-CoA reductase inhibitors, calcineurin inhibitors, non-steroidal anti-inflammatory agents, proton pump inhibitors, and ondansetron. Changes in cholinesterase enzyme function may affect the disposition of succinylcholine, benzylisoquinoline muscle relaxants, remifentanil, and hydralazine. Genetic variation in transport proteins leads to differences in the response to opioids and clopidogrel. Polymorphisms in drug receptors result in altered effects of β-blockers, catecholamines, antipsychotic agents, and opioids. Genetic variation also contributes to the diversity and incidence of diseases and conditions such as sepsis, malignant hyperthermia, drug-induced hypersensitivity reactions, cardiac channelopathies, thromboembolic disease, and congestive heart failure. Application of pharmacogenetics and pharmacogenomics has seen improvements in drug therapy. Ongoing study and incorporation of these concepts into clinical decision making in the ICU has the potential to affect patient outcomes.

  8. Pharmacogenomic Biomarkers

    Directory of Open Access Journals (Sweden)

    Sandra C. Kirkwood

    2002-01-01

    Full Text Available Pharmacogenomic biomarkers hold great promise for the future of medicine and have been touted as a means to personalize prescriptions. Genetic biomarkers for disease susceptibility including both Mendelian and complex disease promise to result in improved understanding of the pathophysiology of disease, identification of new potential therapeutic targets, and improved molecular classification of disease. However essential to fulfilling the promise of individualized therapeutic intervention is the identification of drug activity biomarkers that stratify individuals based on likely response to a particular therapeutic, both positive response, efficacy, and negative response, development of side effect or toxicity. Prior to the widespread clinical application of a genetic biomarker multiple scientific studies must be completed to identify the genetic variants and delineate their functional significance in the pathophysiology of a carefully defined phenotype. The applicability of the genetic biomarker in the human population must then be verified through both retrospective studies utilizing stored or clinical trial samples, and through clinical trials prospectively stratifying patients based on the biomarker. The risk conferred by the polymorphism and the applicability in the general population must be clearly understood. Thus, the development and widespread application of a pharmacogenomic biomarker is an involved process and for most disease states we are just at the beginning of the journey towards individualized therapy and improved clinical outcome.

  9. Clinical implementation of pharmacogenetics.

    Science.gov (United States)

    García-González, Xandra; Cabaleiro, Teresa; Herrero, María José; McLeod, Howard; López-Fernández, Luis A

    2016-03-01

    In the last decade, pharmacogenetic research has been performed in different fields. However, the application of pharmacogenetic findings to clinical practice has not been as fast as desirable. The current situation of clinical implementation of pharmacogenetics is discussed. This review focuses on the advances of pharmacogenomics to individualize cancer treatments, the relationship between pharmacogenetics and pharmacodynamics in the clinical course of transplant patients receiving a combination of immunosuppressive therapy, the needs and barriers facing pharmacogenetic clinical application, and the situation of pharmacogenetic testing in Spain. It is based on lectures presented by speakers of the Clinical Implementation of Pharmacogenetics Symposium at the VII Conference of the Spanish Pharmacogenetics and Pharmacogenomics Society, held in April 20, 2015.

  10. Databases in the Area of Pharmacogenetics

    Science.gov (United States)

    Sim, Sarah C.; Altman, Russ B.; Ingelman-Sundberg, Magnus

    2012-01-01

    In the area of pharmacogenetics and personalized health care it is obvious that databases, providing important information of the occurrence and consequences of variant genes encoding drug metabolizing enzymes, drug transporters, drug targets, and other proteins of importance for drug response or toxicity, are of critical value for scientists, physicians, and industry. The primary outcome of the pharmacogenomic field is the identification of biomarkers that can predict drug toxicity and drug response, thereby individualizing and improving drug treatment of patients. The drug in question and the polymorphic gene exerting the impact are the main issues to be searched for in the databases. Here, we review the databases that provide useful information in this respect, of benefit for the development of the pharmacogenomic field. PMID:21309040

  11. Pharmacogenomics in the newborn

    Directory of Open Access Journals (Sweden)

    Mirta Corsello

    2013-06-01

    Full Text Available Genetic variation is an important determinant affecting the individual response to drugs. Considering the high variability in each individual genotype, the development of individualized therapies, according to the intrinsic features of the single patient, represents one of the most challenging problems in pharmacology. Pharmacogenetics analyzes the relationship between drug response and individual genetic differences, while pharmacogenomics analyzes the effect of genetic variations in patients’ response to different drugs. The aim of these two research fields is to predict either drug response or the potential for the development of drug-related side effects. In particular, an important endpoint of pharmacogenomics should be to identify which group of patients responds positively, which patients are nonresponders and who will develop adverse reactions for the same drug and dose. Nevertheless, the utility of the pharmacogenetic and pharmacogenomic information as predictor of the activity of a specific drug-metabolizing enzyme or transporter should be cautiously limited to those developmental periods in which genotype-phenotype concordance is known. This means that in the perinatal period a special attention on the peculiar pharmacokinetic properties typical of this life period should be guaranteed. This means that effective and safe drug administration during fetal and neonatal life should consider the interindividual genotypic variability leading to different expression and activity of various enzymes. Both pharmacogenetics and pharmacogenomics may have a crucial role in the achievement of an individualized medicine. Prospective clinical trials analyzing the utility, safety, and cost-effectiveness of an individualized medicine based on the individual genotype are required.Proceedings of the 9th International Workshop on Neonatology · Cagliari (Italy · October 23rd-26th, 2013 · Learned lessons, changing practice and cutting-edge research

  12. Pharmacogenomics of inhaled corticosteroids and leukotriene modifiers : a systematic review

    NARCIS (Netherlands)

    Farzan, N.|info:eu-repo/dai/nl/412501929; Vijverberg, S.J.H.|info:eu-repo/dai/nl/325847460; Arets, H.G.M.; Raaijmakers, J.A.M.|info:eu-repo/dai/nl/072763299; van der Zee, A.H.|info:eu-repo/dai/nl/255164688

    BACKGROUND Pharmacogenetics studies of anti-inflammatory medication of asthma have expanded rapidly in recent decades, but the clinical value of their findings remains limited. OBJECTIVE To perform a systematic review of pharmacogenomics and pharmacogenetics of inhaled corticosteroids (ICS) and

  13. Evidence used in model-based economic evaluations for evaluating pharmacogenetic and pharmacogenomic tests: a systematic review protocol.

    Science.gov (United States)

    Peters, Jaime L; Cooper, Chris; Buchanan, James

    2015-11-11

    Decision models can be used to conduct economic evaluations of new pharmacogenetic and pharmacogenomic tests to ensure they offer value for money to healthcare systems. These models require a great deal of evidence, yet research suggests the evidence used is diverse and of uncertain quality. By conducting a systematic review, we aim to investigate the test-related evidence used to inform decision models developed for the economic evaluation of genetic tests. We will search electronic databases including MEDLINE, EMBASE and NHS EEDs to identify model-based economic evaluations of pharmacogenetic and pharmacogenomic tests. The search will not be limited by language or date. Title and abstract screening will be conducted independently by 2 reviewers, with screening of full texts and data extraction conducted by 1 reviewer, and checked by another. Characteristics of the decision problem, the decision model and the test evidence used to inform the model will be extracted. Specifically, we will identify the reported evidence sources for the test-related evidence used, describe the study design and how the evidence was identified. A checklist developed specifically for decision analytic models will be used to critically appraise the models described in these studies. Variations in the test evidence used in the decision models will be explored across the included studies, and we will identify gaps in the evidence in terms of both quantity and quality. The findings of this work will be disseminated via a peer-reviewed journal publication and at national and international conferences. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  14. Population pharmacogenetics of Ibero-Latinoamerican populations (MESTIFAR 2014).

    Science.gov (United States)

    Sosa-Macias, Martha; Moya, Graciela E; LLerena, Adrián; Ramírez, Ronald; Terán, Enrique; Peñas-LLedó, Eva M; Tarazona-Santos, Eduardo; Galaviz-Hernández, Carlos; Céspedes-Garro, Carolina; Acosta, Hildaura

    2015-01-01

    MESTIFAR 2014 28-30 November 2014, Panama City, Panama The CEIBA consortium was created within the Ibero-American network of Pharmacogenetics (RIBEF) to study population pharmacogenetics. The current status of these initiatives and results of the MESTIFAR project were analyzed in Panama, 28-30 November 2014. The MESTIFAR project focused on studying CYPs genetic polymorphisms in populations of different ethnic origin. So far, more than 6000 healthy volunteers have been evaluated, making this one of the largest population pharmacogenomic studies worldwide. Three symposia were organized, 'Pharmacogenetics of indigenous and mestizos populations and its clinical implications', 'Methodological innovation in pharmacogenetics and its application in health', and 'General discussion and concluding remarks', about mechanisms and proposals for training, diffusion of pharmacogenetics for Spanish- and Portuguese-speaking health professionals, and 'bench to bedside' pilot projects.

  15. Pharmacogenomics-guided policy in opioid use disorder (OUD management: An ethnically-diverse case-based approach

    Directory of Open Access Journals (Sweden)

    Earl B. Ettienne

    2017-12-01

    Full Text Available Introduction: Opioid use disorder (OUD is characterized by a problematic pattern of opioid use leading to clinically-significant impairment or distress. Opioid agonist treatment is an integral component of OUD management, and buprenorphine is often utilized in OUD management due to strong clinical evidence for efficacy. However, interindividual genetic differences in buprenorphine metabolism may result in variable treatment response, leaving some patients undertreated and at increased risk for relapse. Clinical pharmacogenomics studies the effect that inherited genetic variations have on drug response. Our objective is to demonstrate the impact of pharmacogenetic testing on OUD management outcomes. Methods: We analyzed a patient who reported discomfort at daily buprenorphine dose of 24mg, which was a mandated daily maximum by the pharmacy benefits manager. Regular urine screenings were conducted to detect the presence of unauthorized substances, and pharmacogenetic testing was used to determine the appropriate dose of buprenorphine for OUD management. Results: At the 24mg buprenorphine daily dose, the patient had multiple relapses with unauthorized substances. Pharmacogenetic testing revealed that the patient exhibited a cytochrome P450 3A4 ultrarapid metabolizer phenotype, which necessitated a higher than recommended daily dose of buprenorphine (32mg for adequate OUD management. The patient exhibited a reduction in the number of relapses on the pharmacogenetic-based dose recommendation compared to standard dosing. Conclusion: Pharmacogenomic testing as clinical decision support helped to individualize OUD management. Collaboration by key stakeholders is essential to establishing pharmacogenetic testing as standard of care in OUD management. Keywords: Opioid use disorder, Opioid agonist treatment, Buprenorphine, Pharmacogenomics, Policy

  16. Progress in pharmacogenetics: consortiums and new strategies.

    Science.gov (United States)

    Maroñas, Olalla; Latorre, Ana; Dopazo, Joaquín; Pirmohamed, Munir; Rodríguez-Antona, Cristina; Siest, Gérard; Carracedo, Ángel; LLerena, Adrián

    2016-03-01

    Pharmacogenetics (PGx), as a field dedicated to achieving the goal of personalized medicine (PM), is devoted to the study of genes involved in inter-individual response to drugs. Due to its nature, PGx requires access to large samples; therefore, in order to progress, the formation of collaborative consortia seems to be crucial. Some examples of this collective effort are the European Society of Pharmacogenomics and personalized Therapy and the Ibero-American network of Pharmacogenetics. As an emerging field, one of the major challenges that PGx faces is translating their discoveries from research bench to bedside. The development of genomic high-throughput technologies is generating a revolution and offers the possibility of producing vast amounts of genome-wide single nucleotide polymorphisms for each patient. Moreover, there is a need of identifying and replicating associations of new biomarkers, and, in addition, a greater effort must be invested in developing regulatory organizations to accomplish a correct standardization. In this review, we outline the current progress in PGx using examples to highlight both the importance of polymorphisms and the research strategies for their detection. These concepts need to be applied together with a proper dissemination of knowledge to improve clinician and patient understanding, in a multidisciplinary team-based approach.

  17. Pharmacogenomics in diabetes mellitus

    DEFF Research Database (Denmark)

    Zhou, Kaixin; Pedersen, Helle Krogh; Dawed, Adem Y.

    2016-01-01

    . We highlight mechanistic insights from the study of adverse effects and the efficacy of antidiabetic drugs. The identification of extreme sulfonylurea sensitivity in patients with diabetes mellitus owing to heterozygous mutations in HNF1A represents a clear example of how pharmacogenetics can direct...... patient care. However, pharmacogenomic studies of response to antidiabetic drugs in T2DM has yet to be translated into clinical practice, although some moderate genetic effects have now been described that merit follow-up in trials in which patients are selected according to genotype. We also discuss how...

  18. Pharmacogenomics-guided policy in opioid use disorder (OUD) management: An ethnically-diverse case-based approach.

    Science.gov (United States)

    Ettienne, Earl B; Chapman, Edwin; Maneno, Mary; Ofoegbu, Adaku; Wilson, Bradford; Settles-Reaves, Beverlyn; Clarke, Melissa; Dunston, Georgia; Rosenblatt, Kevin

    2017-12-01

    Opioid use disorder (OUD) is characterized by a problematic pattern of opioid use leading to clinically-significant impairment or distress. Opioid agonist treatment is an integral component of OUD management, and buprenorphine is often utilized in OUD management due to strong clinical evidence for efficacy. However, interindividual genetic differences in buprenorphine metabolism may result in variable treatment response, leaving some patients undertreated and at increased risk for relapse. Clinical pharmacogenomics studies the effect that inherited genetic variations have on drug response. Our objective is to demonstrate the impact of pharmacogenetic testing on OUD management outcomes. We analyzed a patient who reported discomfort at daily buprenorphine dose of 24 mg, which was a mandated daily maximum by the pharmacy benefits manager. Regular urine screenings were conducted to detect the presence of unauthorized substances, and pharmacogenetic testing was used to determine the appropriate dose of buprenorphine for OUD management. At the 24 mg buprenorphine daily dose, the patient had multiple relapses with unauthorized substances. Pharmacogenetic testing revealed that the patient exhibited a cytochrome P450 3A4 ultrarapid metabolizer phenotype, which necessitated a higher than recommended daily dose of buprenorphine (32 mg) for adequate OUD management. The patient exhibited a reduction in the number of relapses on the pharmacogenetic-based dose recommendation compared to standard dosing. Pharmacogenomic testing as clinical decision support helped to individualize OUD management. Collaboration by key stakeholders is essential to establishing pharmacogenetic testing as standard of care in OUD management.

  19. ECOGENETICS AND PHARMACOGENETICS: THE IMPORTANCE OF GENETIC POLYMORPHISMS IN THE VARIABILITY OF ORGANISMS RESPONSE TO ENVIRONMENTAL FACTORS

    Directory of Open Access Journals (Sweden)

    Cristian Tudose

    2005-08-01

    protect confidentiality and privacy of individual genetic information may make such research infeasible. In the present paper we expose some general considerations about the importance of the borderline disciplines which are studying the cited aspects (ecogenetics, pharmacogenetics and pharmacogenomics, emphasising the importance of human populations genome polymorphisms affecting drug efficiency and producing adverse reactions; eventually we expose the most recent trends in pharmacogenomics related to the subject

  20. Pharmacogenetics and breast cancer management: current status and perspectives.

    Science.gov (United States)

    Ciccolini, Joseph; Fanciullino, Raphaelle; Serdjebi, Cindy; Milano, Gérard

    2015-05-01

    Breast cancer has benefited from a number of innovative therapeutics over the last decade. Cytotoxics, hormone therapy, targeted therapies and biologics can now be given to ensure optimal management of patients. As life expectancy of breast cancer patients has been significantly stretched and that several lines of treatment are now made available, determining the best drug or drug combinations to be primarily given and the best dosing and scheduling for each patient is critical for ensuring an optimal toxicity/efficacy balance. Defining patient's characteristics at the tumor level (pharmacogenomics) and the constitutional level (pharmacogenetics) is a rising trend in oncology. This review covers the latest strategies based upon the search of relevant biomarkers for efficacy, resistance and toxicity to be undertaken at the bedside to shift towards precision medicine in breast cancer patients. In the expanding era of bioguided medicine, identifying relevant and clinically validated biomarkers from the plethora of published material remains an uneasy task. Sorting the variety of genetic and molecular markers that have been investigated over the last decade on their level of evidence and addressing the issue of drug exposure should help to improve the management of breast cancer therapy.

  1. Stakeholder views on pharmacogenomic testing.

    Science.gov (United States)

    Patel, Haridarshan N; Ursan, Iulia D; Zueger, Patrick M; Cavallari, Larisa H; Pickard, A Simon

    2014-02-01

    Pharmacogenomics has an important role in the evolution of personalized medicine, and its widespread uptake may ultimately depend on the interests and perspectives of key players in health care. Our aim was to summarize studies on stakeholder perspectives and attitudes toward pharmacogenomic testing. Thus, we conducted a review of original research studies that reported stakeholder views on pharmacogenomic testing using a structured approach in PubMed, International Pharmaceutical Abstracts, Cumulative Index to Nursing and Allied Health Literature, and EMBASE. A standardized data abstraction form was developed that included stakeholder group of interest-patients, general public, providers, and payers. Stakeholder views regarding barriers to pharmacogenetic implementation were organized into the following themes: ancillary information-related, clinical, economic, educational, ethical or legal, medical mistrust, and practicality. Of 34 studies that met our inclusion criteria, 37 perspectives were reported (15 on providers, 9 on the general public, 9 on patients, and 4 on payers). The most common topics that arose in studies of providers related to clinical usefulness of genetic data (n=11) and educational needs (n=11). Among the general public, the most common concerns were medical mistrust (n=5), insufficient education (n=5), and practicality (n=5). The most prevalent issues from the patient perspective were ethical or legal (n=6) and economic (n=5) issues. Among payers, leading issues were practicality (n=4) and clinical usefulness (n=3). There was overlap in the topics and concerns across stakeholder perspectives, including lack of knowledge about pharmacogenomic testing. Views on issues related to privacy, cost, and test result dissemination varied by stakeholder perspective. Limited research had been conducted in underrepresented groups. Efforts to address the issues raised by stakeholders may facilitate the implementation of pharmacogenomic testing into

  2. Pharmacogenetics in Acute Lymphoblastic Leukemia

    Science.gov (United States)

    Cheok, Meyling H.; Pottier, Nicolas; Kager, Leo

    2009-01-01

    Progress in the treatment of acute leukemia in children has been remarkable, from a disease being lethal four decades ago to current cure rates exceeding 80%. This exemplary progress is largely due to the optimization of existing treatment modalities rather than the discovery of new antileukemic agents. However, despite these high cure rates, the annual number of children whose leukemia relapses after their initial therapy remains greater than that of new cases of most types of childhood cancers. The aim of pharmacogenetics is to develop strategies to personalize treatment and tailor therapy to individual patients, with the goal of optimizing efficacy and safety through better understanding of human genome variability and its influence on drug response. In this review, we summarize recent pharmacogenomic studies related to the treatment of pediatric acute lymphoblastic leukemia. These studies illustrate the promise of pharmacogenomics to further advance the treatment of human cancers, with childhood leukemia serving as a paradigm. PMID:19100367

  3. Warfarin Pharmacogenomics in Diverse Populations.

    Science.gov (United States)

    Kaye, Justin B; Schultz, Lauren E; Steiner, Heidi E; Kittles, Rick A; Cavallari, Larisa H; Karnes, Jason H

    2017-09-01

    Genotype-guided warfarin dosing algorithms are a rational approach to optimize warfarin dosing and potentially reduce adverse drug events. Diverse populations, such as African Americans and Latinos, have greater variability in warfarin dose requirements and are at greater risk for experiencing warfarin-related adverse events compared with individuals of European ancestry. Although these data suggest that patients of diverse populations may benefit from improved warfarin dose estimation, the vast majority of literature on genotype-guided warfarin dosing, including data from prospective randomized trials, is in populations of European ancestry. Despite differing frequencies of variants by race/ethnicity, most evidence in diverse populations evaluates variants that are most common in populations of European ancestry. Algorithms that do not include variants important across race/ethnic groups are unlikely to benefit diverse populations. In some race/ethnic groups, development of race-specific or admixture-based algorithms may facilitate improved genotype-guided warfarin dosing algorithms above and beyond that seen in individuals of European ancestry. These observations should be considered in the interpretation of literature evaluating the clinical utility of genotype-guided warfarin dosing. Careful consideration of race/ethnicity and additional evidence focused on improving warfarin dosing algorithms across race/ethnic groups will be necessary for successful clinical implementation of warfarin pharmacogenomics. The evidence for warfarin pharmacogenomics has a broad significance for pharmacogenomic testing, emphasizing the consideration of race/ethnicity in discovery of gene-drug pairs and development of clinical recommendations for pharmacogenetic testing. © 2017 Pharmacotherapy Publications, Inc.

  4. Pharmacoeconomic evaluations of pharmacogenetic and genomic screening programmes: a systematic review on content and adherence to guidelines.

    Science.gov (United States)

    Vegter, Stefan; Boersma, Cornelis; Rozenbaum, Mark; Wilffert, Bob; Navis, Gerjan; Postma, Maarten J

    2008-01-01

    The fields of pharmacogenetics and pharmacogenomics have become important practical tools to progress goals in medical and pharmaceutical research and development. As more screening tests are being developed, with some already used in clinical practice, consideration of cost-effectiveness implications is important. A systematic review was performed on the content of and adherence to pharmacoeconomic guidelines of recent pharmacoeconomic analyses performed in the field of pharmacogenetics and pharmacogenomics. Economic analyses of screening strategies for genetic variations, which were evidence-based and assumed to be associated with drug efficacy or safety, were included in the review. The 20 papers included cover a variety of healthcare issues, including screening tests on several cytochrome P450 (CYP) enzyme genes, thiopurine S-methyltransferase (TMPT) and angiotensin-converting enzyme (ACE) insertion deletion (ACE I/D) polymorphisms. Most economic analyses reported that genetic screening was cost effective and often even clearly dominated existing non-screening strategies. However, we found a lack of standardization regarding aspects such as the perspective of the analysis, factors included in the sensitivity analysis and the applied discount rates. In particular, an important limitation of several studies related to the failure to provide a sufficient evidence-based rationale for an association between genotype and phenotype. Future economic analyses should be conducted utilizing correct methods, with adherence to guidelines and including extensive sensitivity analyses. Most importantly, genetic screening strategies should be based on good evidence-based rationales. For these goals, we provide a list of recommendations for good pharmacoeconomic practice deemed useful in the fields of pharmacogenetics and pharmacogenomics, regardless of country and origin of the economic analysis.

  5. Biomarkers: Delivering on the expectation of molecularly driven, quantitative health.

    Science.gov (United States)

    Wilson, Jennifer L; Altman, Russ B

    2018-02-01

    Biomarkers are the pillars of precision medicine and are delivering on expectations of molecular, quantitative health. These features have made clinical decisions more precise and personalized, but require a high bar for validation. Biomarkers have improved health outcomes in a few areas such as cancer, pharmacogenetics, and safety. Burgeoning big data research infrastructure, the internet of things, and increased patient participation will accelerate discovery in the many areas that have not yet realized the full potential of biomarkers for precision health. Here we review themes of biomarker discovery, current implementations of biomarkers for precision health, and future opportunities and challenges for biomarker discovery. Impact statement Precision medicine evolved because of the understanding that human disease is molecularly driven and is highly variable across patients. This understanding has made biomarkers, a diverse class of biological measurements, more relevant for disease diagnosis, monitoring, and selection of treatment strategy. Biomarkers' impact on precision medicine can be seen in cancer, pharmacogenomics, and safety. The successes in these cases suggest many more applications for biomarkers and a greater impact for precision medicine across the spectrum of human disease. The authors assess the status of biomarker-guided medical practice by analyzing themes for biomarker discovery, reviewing the impact of these markers in the clinic, and highlight future and ongoing challenges for biomarker discovery. This work is timely and relevant, as the molecular, quantitative approach of precision medicine is spreading to many disease indications.

  6. Pharmacogenetics in Latin American populations: regulatory aspects, application to herbal medicine, cardiovascular and psychiatric disorders.

    Science.gov (United States)

    Rodeiro, Idania; Remírez-Figueredo, Diadelis; García-Mesa, Milagros; Dorado, Pedro; LLerena, Adrián

    2012-01-01

    Meeting report of the "Second Symposium on Pharmacology of Cytochrome P450 and Transporters" organized by the Cuban Society of Pharmacology in collaboration with the European Society of Pharmacogenetics and Theranostics (ESPT) and the Ibero-American Network of Pharmacogenetics and Pharmacogenomics (www.ribef.com). The Symposium covered different topics on pharmacogenetics and its clinical implications, focusing on Latin-American populations. The activities of the ESPT were also presented and discussed. The topics addressed were regulatory aspects, the use of pharmacogenetics in pre-clinical research, herbal medicine, and natural products, ending with a discussion about translation into clinical practice, specifically for cardiovascular disorders and psychiatry. Finally, the implication for population diversity in Latin America was also discussed. The RIBEF initiative represents a promising step towards the inclusion of Latin American populations among those to benefit from the implementation of pharmacogenetics in clinical practice. Among current RIBEF activities, the CEIBA.FP Consortium aims to study the variability of pheno- and genotypes in Hispanics that are relevant to pharmacogenetics. For this purpose, populations from Mexico, Cuba, Nicaragua, Costa Rica, Ecuador, Colombia, Brasil, Perú, Chile, Uruguay, Argentina, Portugal, and Spain are currently being studied. The meeting's main conclusion was that population pharmacogenetic studies as well as academic clinical trials might need to be conducted in the different geographic locations/countries. This is important in order to improve drug safety, dosage recommendations, and pharmacovigilance programs, because environmental and ethnic factors vary across locations.

  7. Glycine and a glycine dehydrogenase (GLDC) SNP as citalopram/escitalopram response biomarkers in depression: pharmacometabolomics-informed pharmacogenomics.

    Science.gov (United States)

    Ji, Y; Hebbring, S; Zhu, H; Jenkins, G D; Biernacka, J; Snyder, K; Drews, M; Fiehn, O; Zeng, Z; Schaid, D; Mrazek, D A; Kaddurah-Daouk, R; Weinshilboum, R M

    2011-01-01

    Major depressive disorder (MDD) is a common psychiatric disease. Selective serotonin reuptake inhibitors (SSRIs) are an important class of drugs used in the treatment of MDD. However, many patients do not respond adequately to SSRI therapy. We used a pharmacometabolomics-informed pharmacogenomic research strategy to identify citalopram/escitalopram treatment outcome biomarkers. Metabolomic assay of plasma samples from 20 escitalopram remitters and 20 nonremitters showed that glycine was negatively associated with treatment outcome (P = 0.0054). This observation was pursued by genotyping tag single-nucleotide polymorphisms (SNPs) for genes encoding glycine synthesis and degradation enzymes, using 529 DNA samples from SSRI-treated MDD patients. The rs10975641 SNP in the glycine dehydrogenase (GLDC) gene was associated with treatment outcome phenotypes. Genotyping for rs10975641 was carried out in 1,245 MDD patients in the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) study, and its presence was significant (P = 0.02) in DNA taken from these patients. These results highlight a possible role for glycine in SSRI response and illustrate the use of pharmacometabolomics to "inform" pharmacogenomics.

  8. Genetic polymorphisms of pharmacogenomic VIP variants in the Yi population from China.

    Science.gov (United States)

    Yan, Mengdan; Li, Dianzhen; Zhao, Guige; Li, Jing; Niu, Fanglin; Li, Bin; Chen, Peng; Jin, Tianbo

    2018-03-30

    Drug response and target therapeutic dosage are different among individuals. The variability is largely genetically determined. With the development of pharmacogenetics and pharmacogenomics, widespread research have provided us a wealth of information on drug-related genetic polymorphisms, and the very important pharmacogenetic (VIP) variants have been identified for the major populations around the world whereas less is known regarding minorities in China, including the Yi ethnic group. Our research aims to screen the potential genetic variants in Yi population on pharmacogenomics and provide a theoretical basis for future medication guidance. In the present study, 80 VIP variants (selected from the PharmGKB database) were genotyped in 100 unrelated and healthy Yi adults recruited for our research. Through statistical analysis, we made a comparison between the Yi and other 11 populations listed in the HapMap database for significant SNPs detection. Two specific SNPs were subsequently enrolled in an observation on global allele distribution with the frequencies downloaded from ALlele FREquency Database. Moreover, F-statistics (Fst), genetic structure and phylogenetic tree analyses were conducted for determination of genetic similarity between the 12 ethnic groups. Using the χ2 tests, rs1128503 (ABCB1), rs7294 (VKORC1), rs9934438 (VKORC1), rs1540339 (VDR) and rs689466 (PTGS2) were identified as the significantly different loci for further analysis. The global allele distribution revealed that the allele "A" of rs1540339 and rs9934438 were more frequent in Yi people, which was consistent with the most populations in East Asia. F-statistics (Fst), genetic structure and phylogenetic tree analyses demonstrated that the Yi and CHD shared a closest relationship on their genetic backgrounds. Additionally, Yi was considered similar to the Han people from Shaanxi province among the domestic ethnic populations in China. Our results demonstrated significant differences on

  9. Economic Evaluations of Pharmacogenetic and Pharmacogenomic Screening Tests: A Systematic Review. Second Update of the Literature.

    Directory of Open Access Journals (Sweden)

    Elizabeth J J Berm

    Full Text Available Due to extended application of pharmacogenetic and pharmacogenomic screening (PGx tests it is important to assess whether they provide good value for money. This review provides an update of the literature.A literature search was performed in PubMed and papers published between August 2010 and September 2014, investigating the cost-effectiveness of PGx screening tests, were included. Papers from 2000 until July 2010 were included via two previous systematic reviews. Studies' overall quality was assessed with the Quality of Health Economic Studies (QHES instrument.We found 38 studies, which combined with the previous 42 studies resulted in a total of 80 included studies. An average QHES score of 76 was found. Since 2010, more studies were funded by pharmaceutical companies. Most recent studies performed cost-utility analysis, univariate and probabilistic sensitivity analyses, and discussed limitations of their economic evaluations. Most studies indicated favorable cost-effectiveness. Majority of evaluations did not provide information regarding the intrinsic value of the PGx test. There were considerable differences in the costs for PGx testing. Reporting of the direction and magnitude of bias on the cost-effectiveness estimates as well as motivation for the chosen economic model and perspective were frequently missing.Application of PGx tests was mostly found to be a cost-effective or cost-saving strategy. We found that only the minority of recent pharmacoeconomic evaluations assessed the intrinsic value of the PGx tests. There was an increase in the number of studies and in the reporting of quality associated characteristics. To improve future evaluations, scenario analysis including a broad range of PGx tests costs and equal costs of comparator drugs to assess the intrinsic value of the PGx tests, are recommended. In addition, robust clinical evidence regarding PGx tests' efficacy remains of utmost importance.

  10. Pharmacogenetics of posttransplant diabetes mellitus.

    Science.gov (United States)

    Lancia, P; Adam de Beaumais, T; Jacqz-Aigrain, E

    2017-06-01

    Many factors (physiological, pathological, environmental or genetic) are associated with variability in drug effect. Most patients respond to a standard treatment but the drug may be ineffective or toxic. In this review, we focused on genetic markers of posttransplant diabetes mellitus (PTDM) after renal transplantation, a frequent complication of immunosuppressive therapy and important risk factor of graft loss and mortality. An initial literature search identified 100 publications and among them 32 association studies were retrieved under 'Pharmacogenetics and PTDM'. Thirty-five variants in 25 genes with an impact on insulin secretion, disposition or effect were significantly associated with PTDM. The population studied, immunosuppressive regimen, follow-up, PTDM diagnostic and genetic variations tested were highly variable between studies. Although pharmacogenetic biomarkers are key tools of great promise for preventing toxicities and improving event-free survival rates, replication studies are required to select validated biomarkers linked to the occurrence of PTDM and select appropriate immusuppressive treatment to improve renal graft and patient outcome.

  11. Examining perceptions of the usefulness and usability of a mobile-based system for pharmacogenomics clinical decision support: a mixed methods study

    Directory of Open Access Journals (Sweden)

    Kathrin Blagec

    2016-02-01

    Full Text Available Background. Pharmacogenomic testing has the potential to improve the safety and efficacy of pharmacotherapy, but clinical application of pharmacogenetic knowledge has remained uncommon. Clinical Decision Support (CDS systems could help overcome some of the barriers to clinical implementation. The aim of this study was to evaluate the perception and usability of a web- and mobile-enabled CDS system for pharmacogenetics-guided drug therapy–the Medication Safety Code (MSC system–among potential users (i.e., physicians and pharmacists. Furthermore, this study sought to collect data on the practicability and comprehensibility of potential layouts of a proposed personalized pocket card that is intended to not only contain the machine-readable data for use with the MSC system but also human-readable data on the patient’s pharmacogenomic profile. Methods. We deployed an emergent mixed methods design encompassing (1 qualitative interviews with pharmacists and pharmacy students, (2 a survey among pharmacogenomics experts that included both qualitative and quantitative elements and (3 a quantitative survey among physicians and pharmacists. The interviews followed a semi-structured guide including a hypothetical patient scenario that had to be solved by using the MSC system. The survey among pharmacogenomics experts focused on what information should be printed on the card and how this information should be arranged. Furthermore, the MSC system was evaluated based on two hypothetical patient scenarios and four follow-up questions on the perceived usability. The second survey assessed physicians’ and pharmacists’ attitude towards the MSC system. Results. In total, 101 physicians, pharmacists and PGx experts coming from various relevant fields evaluated the MSC system. Overall, the reaction to the MSC system was positive across all investigated parameters and among all user groups. The majority of participants were able to solve the patient

  12. Pharmacogenomics to Revive Drug Development in Cardiovascular Disease.

    Science.gov (United States)

    Dubé, Marie-Pierre; de Denus, Simon; Tardif, Jean-Claude

    2016-02-01

    Investment in cardiovascular drug development is on the decline as large cardiovascular outcomes trials require considerable investments in time, efforts and financial resources. Pharmacogenomics has the potential to help revive the cardiovascular drug development pipeline by providing new and better drug targets at an earlier stage and by enabling more efficient outcomes trials. This article will review some of the recent developments highlighting the value of pharmacogenomics for drug development. We discuss how genetic biomarkers can enable the conduct of more efficient clinical outcomes trials by enriching patient populations for good responders to the medication. In addition, we assess past drug development programs which support the added value of selecting drug targets that have established genetic evidence supporting the targeted mechanism of disease. Finally, we discuss how pharmacogenomics can provide valuable evidence linking a drug target to clinically relevant outcomes, enabling novel drug discovery and drug repositioning opportunities.

  13. Statistical Analysis of Big Data on Pharmacogenomics

    Science.gov (United States)

    Fan, Jianqing; Liu, Han

    2013-01-01

    This paper discusses statistical methods for estimating complex correlation structure from large pharmacogenomic datasets. We selectively review several prominent statistical methods for estimating large covariance matrix for understanding correlation structure, inverse covariance matrix for network modeling, large-scale simultaneous tests for selecting significantly differently expressed genes and proteins and genetic markers for complex diseases, and high dimensional variable selection for identifying important molecules for understanding molecule mechanisms in pharmacogenomics. Their applications to gene network estimation and biomarker selection are used to illustrate the methodological power. Several new challenges of Big data analysis, including complex data distribution, missing data, measurement error, spurious correlation, endogeneity, and the need for robust statistical methods, are also discussed. PMID:23602905

  14. A Novel Admixture-Based Pharmacogenetic Approach to Refine Warfarin Dosing in Caribbean Hispanics.

    Directory of Open Access Journals (Sweden)

    Jorge Duconge

    Full Text Available This study is aimed at developing a novel admixture-adjusted pharmacogenomic approach to individually refine warfarin dosing in Caribbean Hispanic patients.A multiple linear regression analysis of effective warfarin doses versus relevant genotypes, admixture, clinical and demographic factors was performed in 255 patients and further validated externally in another cohort of 55 individuals.The admixture-adjusted, genotype-guided warfarin dosing refinement algorithm developed in Caribbean Hispanics showed better predictability (R2 = 0.70, MAE = 0.72mg/day than a clinical algorithm that excluded genotypes and admixture (R2 = 0.60, MAE = 0.99mg/day, and outperformed two prior pharmacogenetic algorithms in predicting effective dose in this population. For patients at the highest risk of adverse events, 45.5% of the dose predictions using the developed pharmacogenetic model resulted in ideal dose as compared with only 29% when using the clinical non-genetic algorithm (p<0.001. The admixture-driven pharmacogenetic algorithm predicted 58% of warfarin dose variance when externally validated in 55 individuals from an independent validation cohort (MAE = 0.89 mg/day, 24% mean bias.Results supported our rationale to incorporate individual's genotypes and unique admixture metrics into pharmacogenetic refinement models in order to increase predictability when expanding them to admixed populations like Caribbean Hispanics.ClinicalTrials.gov NCT01318057.

  15. The Daniel K. Inouye College of Pharmacy Scripts: Precision Medicine Through the Use of Pharmacogenomics: Current Status and Barriers to Implementation.

    Science.gov (United States)

    Ciarleglio, Anita E; Ma, Carolyn

    2017-09-01

    The precision medicine initiative brought forth by President Barack Obama in 2015 is an important step on the journey to truly personalized medicine. A broad knowledge and understanding of the implications of the pharmacogenomic literature will be critical to the achievement of this goal. While a great amount of data has been published in the areas of pharmacogenomics and pharmacogenetics, there are still relatively few instances in which the need for clinical intervention can be stated without doubt, and which are widely accepted and practiced by the medical community. As our knowledge base rapidly expands, issues such as insurance reimbursement for genetic testing and education of the health care workforce will be paramount to achieving the goal of precision medicine for all patients.

  16. Genetic polymorphisms of pharmacogenomic VIP variants in the Kyrgyz population from northwest China.

    Science.gov (United States)

    Yunus, Zulfiya; Liu, Lijun; Wang, Hong; Zhang, Le; Li, Xiaolan; Geng, Tingting; Kang, Longli; Jin, Tianbo; Chen, Chao

    2013-10-15

    Pharmacogenomic variant information is well known for major human populations; however, this information is less commonly studied in minorities. In the present study, we genotyped 85 very important pharmacogenetic (VIP) variants (selected from the PharmGKB database) in the Kyrgyz population and compared our data with other four major human populations including Han Chinese in Beijing, China (CHB), the Japanese in Tokyo, Japan (JPT), a northern and western Europe population (CEU), and the Yoruba in Ibadan, Nigeria (YRI). There were 13, 12 and 16 of the selected VIP variant genotype frequencies in the Kyrgyz which differed from those of the CHB, JPT and CEU, respectively (p<0.005). In the YRI, there were 32 different variants, compared to the Kyrgyz (p<0.005). Genotype frequencies of ADH1B, AHR, CYP3A5, PTGS2, VDR, and VKORC1 in the Kyrgyz differed widely from those in the four populations. Haplotype analyses also showed differences among the Kyrgyz and the other four populations. Our results complement the information provided by the database of pharmacogenomics on Kyrgyz. We provide a theoretical basis for safer drug administration and individualized treatment plans for the Kyrgyz. We also provide a template for the study of pharmacogenomics in various ethnic minority groups in China. © 2013 Elsevier B.V. All rights reserved.

  17. Importance of pharmacogenetics in the treatment of children with attention deficit hyperactive disorder: a case report

    Directory of Open Access Journals (Sweden)

    Tan-kam T

    2013-01-01

    Full Text Available Teerarat Tan-kam,1 Chutamanee Suthisisang,2 Chosita Pavasuthipaisit,1 Penkhae Limsila,1 Apichaya Puangpetch,3 Chonlaphat Sukasem31Yuwaprasart Waithayopathum Child and Adolescent Psychiatric Hospital, Department of Mental Health Services, Ministry of Public Health, 2Department of Pharmacology, Faculty of Pharmacy, Mahidol University, 3Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, ThailandAbstract: This case report highlights the importance of pharmacogenetic testing in the treatment of attention deficit hyperactive disorder (ADHD. A 6-year-old boy diagnosed with ADHD was prescribed methylphenidate 5 mg twice daily (7 am and noon and the family was compliant with administration of this medication. On the first day of treatment, the patient had an adverse reaction, becoming disobedient, more mischievous, erratic, resistant to discipline, would not go to sleep until midnight, and had a poor appetite. The All-In-One PGX (All-In-One Pharmacogenetics for Antipsychotics test for CYP2D6, CYP2C19, and CYP2C9 was performed using microarray-based and real-time polymerase chain reaction techniques. The genotype of our patient was identified to be CYP2D6*2/*10, with isoforms of the enzyme consistent with a predicted cytochrome P450 2D6 intermediate metabolizer phenotype. Consequently, the physician adjusted the methylphenidate dose to 2.5 mg once daily in the morning. At this dosage, the patient had a good response without any further adverse reactions. Pharmacogenetic testing should be included in the management plan for ADHD. In this case, cooperation between the medical team and the patients' relatives was key to successful treatment.Keywords: attention deficit hyperactive disorder, pharmacogenomics, CYP2D6, adverse drug reactions, dose adjustment, intermediate metabolizer

  18. A Novel Admixture-Based Pharmacogenetic Approach to Refine Warfarin Dosing in Caribbean Hispanics

    Science.gov (United States)

    Claudio-Campos, Karla; Rivera-Miranda, Giselle; Bermúdez-Bosch, Luis; Renta, Jessicca Y.; Cadilla, Carmen L.; Cruz, Iadelisse; Feliu, Juan F.; Vergara, Cunegundo; Ruaño, Gualberto

    2016-01-01

    Aim This study is aimed at developing a novel admixture-adjusted pharmacogenomic approach to individually refine warfarin dosing in Caribbean Hispanic patients. Patients & Methods A multiple linear regression analysis of effective warfarin doses versus relevant genotypes, admixture, clinical and demographic factors was performed in 255 patients and further validated externally in another cohort of 55 individuals. Results The admixture-adjusted, genotype-guided warfarin dosing refinement algorithm developed in Caribbean Hispanics showed better predictability (R2 = 0.70, MAE = 0.72mg/day) than a clinical algorithm that excluded genotypes and admixture (R2 = 0.60, MAE = 0.99mg/day), and outperformed two prior pharmacogenetic algorithms in predicting effective dose in this population. For patients at the highest risk of adverse events, 45.5% of the dose predictions using the developed pharmacogenetic model resulted in ideal dose as compared with only 29% when using the clinical non-genetic algorithm (pwarfarin dose variance when externally validated in 55 individuals from an independent validation cohort (MAE = 0.89 mg/day, 24% mean bias). Conclusions Results supported our rationale to incorporate individual’s genotypes and unique admixture metrics into pharmacogenetic refinement models in order to increase predictability when expanding them to admixed populations like Caribbean Hispanics. Trial Registration ClinicalTrials.gov NCT01318057 PMID:26745506

  19. Advances of Drug Resistance Marker of Gemcitabine for Non-small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Baorui LIU

    2011-05-01

    Full Text Available With the development of pharmacogenomics and pharmacogenetics, personal therapy based on genes has become one of the most effective ways to enhance chemotherapeutic effect on non-small cell lung cancer (NSCLC patients. Much attention has been paid to validate the predictive biomarkers of chemotherapy in order to guide chemotherapy and enhance effect in general. Gemcitabine is one of the common agents treating NSCLC recently. This review is mainly about the recent reports on potential biomarkers of Gemcitabine in tailored therapy of NSCLC.

  20. Pharmacogenomics of Hypertension and Preeclampsia: Focus on Gene–Gene Interactions

    Directory of Open Access Journals (Sweden)

    Marcelo R. Luizon

    2018-02-01

    Full Text Available Hypertension is a leading cause of cardiovascular mortality, but only about half of patients on antihypertensive therapy achieve blood pressure control. Preeclampsia is defined as pregnancy-induced hypertension and proteinuria, and is associated with increased maternal and perinatal mortality and morbidity. Similarly, a large number of patients with preeclampsia are non-responsive to antihypertensive therapy. Pharmacogenomics may help to guide the personalized treatment for non-responsive hypertensive patients. There is evidence for the association of genetic variants with variable response to the most commonly used antihypertensive drugs. However, further replication is needed to confirm these associations in different populations. The failure to replicate findings from single-locus association studies has prompted the search for novel statistical methods for data analysis, which are required to detect the complex effects from multiple genes to drug response phenotypes. Notably, gene–gene interaction analyses have been applied to pharmacogenetic studies, including antihypertensive drug response. In this perspective article, we present advances of considering the interactions among genetic polymorphisms of different candidate genes within pathways relevant to antihypertensive drug response, and we highlight recent findings related to gene–gene interactions on pharmacogenetics of hypertension and preeclampsia. Finally, we discuss the future directions that are needed to unravel additional genes and variants involved in the responsiveness to antihypertensive drugs.

  1. Pharmacogenetics and Predictive Testing of Drug Hypersensitivity Reactions.

    Science.gov (United States)

    Böhm, Ruwen; Cascorbi, Ingolf

    2016-01-01

    Adverse drug reactions adverse drug reaction (ADR) occur in approximately 17% of patients. Avoiding ADR is thus mandatory from both an ethical and an economic point of view. Whereas, pharmacogenetics changes of the pharmacokinetics may contribute to the explanation of some type A reactions, strong relationships of genetic markers has also been shown for drug hypersensitivity belonging to type B reactions. We present the classifications of ADR, discuss genetic influences and focus on delayed-onset hypersensitivity reactions, i.e., drug-induced liver injury, drug-induced agranulocytosis, and severe cutaneous ADR. A guidance how to read and interpret the contingency table is provided as well as an algorithm whether and how a test for a pharmacogenetic biomarker should be conducted.

  2. Pharmacogenomics and Global Precision Medicine in the Context of Adverse Drug Reactions: Top 10 Opportunities and Challenges for the Next Decade.

    Science.gov (United States)

    Alessandrini, Marco; Chaudhry, Mamoonah; Dodgen, Tyren M; Pepper, Michael S

    2016-10-01

    In a move indicative of the enthusiastic support of precision medicine, the U.S. President Barack Obama announced the Precision Medicine Initiative in January 2015. The global precision medicine ecosystem is, thus, receiving generous support from the United States ($215 million), and numerous other governments have followed suit. In the context of precision medicine, drug treatment and prediction of its outcomes have been important for nearly six decades in the field of pharmacogenomics. The field offers an elegant solution for minimizing the effects and occurrence of adverse drug reactions (ADRs). The Clinical Pharmacogenetics Implementation Consortium (CPIC) plays an important role in this context, and it aims at specifically guiding the translation of clinically relevant and evidence-based pharmacogenomics research. In this forward-looking analysis, we make particular reference to several of the CPIC guidelines and their role in guiding the treatment of highly relevant diseases, namely cardiovascular disease, major depressive disorder, cancer, and human immunodeficiency virus, with a view to predicting and managing ADRs. In addition, we provide a list of the top 10 crosscutting opportunities and challenges facing the fields of precision medicine and pharmacogenomics, which have broad applicability independent of the drug class involved. Many of these opportunities and challenges pertain to infrastructure, study design, policy, and science culture in the early 21st century. Ultimately, rational pharmacogenomics study design and the acquisition of comprehensive phenotypic data that proportionately match the genomics data should be an imperative as we move forward toward global precision medicine.

  3. Economic evaluations of pharmacogenetic approaches in infectious diseases: a review of current approaches and evaluation of critical aspects affecting their quality

    Directory of Open Access Journals (Sweden)

    Paolo Meoni

    2013-11-01

    Full Text Available Pharmacogenetics holds great potential for improving the effectiveness of treatment modalities in infectious diseases by taking into account the genetic determinants of both the host and infectious agents’ individuality. Better utilization of resources and improved therapeutic efficiency are the expected outcomes of personalized medicine using pharmacogenetic and pharmacogenomics information made available by technological advances. However, there has been growing concern in the clinical community regarding the evaluation of the true benefits of these approaches. This perception is partly due to the limited number and perceived poor quality of economic evaluations in this field, and initiatives aimed at harmonizing and communicating strategies improving the quality of these studies and their acceptance by the clinical community are greatly needed. This paper reviews current literature of economic evaluations of pharmacogenetics interventions guiding pharmacotherapy in infectious diseases. PubMed and the NHS Centre for Reviews and Dissemination databases were searched using a combination of five broad research terms related to pharmacogenetic approaches, and papers relative to economic evaluations of pharmacogenetic interventions in infectious diseases retained for further analysis. Using these criteria, a total of 14 papers were included in this review. The area of economic evaluation of pharmacogenetic interventions in infectious diseases remains understudied and would benefit from greater harmonization. The main weaknesses of evaluations reviewed in this paper seem to be represented by poor evidence of pharmacogenetic marker validation, inconsistencies in the selection of costs and utility included in the economic models and the choice of sensitivity analysis. All these factors limit the overall transparency of the studies, greater acceptance of their results and applicability to diverse and possibly resourcelimited environments where these

  4. Regulatory perspective on remaining challenges for utilization of pharmacogenomics-guided drug developments.

    Science.gov (United States)

    Otsubo, Yasuto; Ishiguro, Akihiro; Uyama, Yoshiaki

    2013-01-01

    Pharmacogenomics-guided drug development has been implemented in practice in the last decade, resulting in increased labeling of drugs with pharmacogenomic information. However, there are still many challenges remaining in utilizing this process. Here, we describe such remaining challenges from the regulatory perspective, specifically focusing on sample collection, biomarker qualification, ethnic factors, codevelopment of companion diagnostics and means to provide drugs for off-target patients. To improve the situation, it is important to strengthen international harmonization and collaboration among academia, industries and regulatory agencies, followed by the establishment of an international guideline on this topic. Communication with a regulatory agency from an early stage of drug development is also a key to success.

  5. Pharmacogenetic guidance: individualized medicine promotes enhanced pain outcomes

    Directory of Open Access Journals (Sweden)

    Dragic LL

    2017-12-01

    Full Text Available Lisa Lynn Dragic,1 Erica L Wegrzyn,2 Michael E Schatman,3–5 Jeffrey Fudin2,6 1Central Arkansas Veterans Healthcare System, Little Rock, AR, USA; 2Department of Pharmacy, Albany Stratton VA Medical Center, Albany, NY, USA; 3Research and Network Development, Boston Pain Care, Waltham, MA, USA; 4Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA, USA; 5Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA, USA; 6Scientific and Clinical Affairs, Remitigate, LLC, Delmar, NY, USA Abstract: The use of pharmacogenomics has become more prevalent over the past several years in treating many disease states. Several cytochrome P450 enzymes play a role in the metabolism of many pain medications including opioids and antidepressants. Noncytochrome P450 enzymes such as methylenetetrahydrofolate reductase (MTHFR and catechol-O-methyl transferase (COMT also play a role in the explanation of opioid dosage requirements as well as in response to certain antidepressants. We present the case of a patient with reduced COMT and MTHFR expression treated with leucovorin 10 mg daily for the management of chronic pain. The use of leucovorin in this patient decreased pain scores, which were clinically significant and increased functionality. This case demonstrates the importance of pharmacogenetics testing in patients, as this can help direct providers to better therapeutic options for their patients. Keywords: pharmacogenetic, depression, pain, MTHFR, COMT, methyl tetrahydrofolate reductase, catechol-O-methyltransferase

  6. Pharmacogenetics in Europe: barriers and opportunities.

    Science.gov (United States)

    Gurwitz, D; Zika, E; Hopkins, M M; Gaisser, S; Ibarreta, D

    2009-01-01

    This paper reviews the current situation in the field of pharmacogenetics/pharmacogenomics (PGx) in Europe. High expectations surrounding the clinical application of PGx remain largely unmet, as only a limited number of such applications have actually reached the market and clinical practice. Thus, the potential impact of PGx-based diagnostics on healthcare and its socio-economic implications are still unclear. With the aim of shedding some light on these uncertainties, the Institute for Prospective Technological Studies (IPTS) of the European Commission's Joint Research Centre (JRC) has conducted a review of the 'state of the art' and a further analysis on the use of pharmacogenetics diagnostics for preventing toxic drug reactions and improving drug efficacy in Europe. The paper presents highlights from the JRC-IPTS studies and discusses possibilities for improving translation of PGx research in Europe by comparing some experiences in the USA. We also illustrate the related barriers for the clinical uptake of PGx in Europe with specific case-studies. Most of the barriers identified extend beyond the European context. This reflects the global problems of scarcity of data demonstrating proven clinical validity or utility and favorable cost-effectiveness studies to support the clinical application of PGx diagnostic tests in the clinical setting. Another key barrier is the lack of incentives for the private sector to invest in the development and licensing of PGx diagnostic tests for improving the safety and efficacy of out-of-patent drugs. It therefore seems that one key aspect where policy can affect the clinical uptake of PGx is via sustaining large-scale industry-academia collaborations for developing and proving the utility of PGx diagnostics. Copyright 2009 S. Karger AG, Basel.

  7. Automating data acquisition into ontologies from pharmacogenetics relational data sources using declarative object definitions and XML.

    Science.gov (United States)

    Rubin, Daniel L; Hewett, Micheal; Oliver, Diane E; Klein, Teri E; Altman, Russ B

    2002-01-01

    Ontologies are useful for organizing large numbers of concepts having complex relationships, such as the breadth of genetic and clinical knowledge in pharmacogenomics. But because ontologies change and knowledge evolves, it is time consuming to maintain stable mappings to external data sources that are in relational format. We propose a method for interfacing ontology models with data acquisition from external relational data sources. This method uses a declarative interface between the ontology and the data source, and this interface is modeled in the ontology and implemented using XML schema. Data is imported from the relational source into the ontology using XML, and data integrity is checked by validating the XML submission with an XML schema. We have implemented this approach in PharmGKB (http://www.pharmgkb.org/), a pharmacogenetics knowledge base. Our goals were to (1) import genetic sequence data, collected in relational format, into the pharmacogenetics ontology, and (2) automate the process of updating the links between the ontology and data acquisition when the ontology changes. We tested our approach by linking PharmGKB with data acquisition from a relational model of genetic sequence information. The ontology subsequently evolved, and we were able to rapidly update our interface with the external data and continue acquiring the data. Similar approaches may be helpful for integrating other heterogeneous information sources in order make the diversity of pharmacogenetics data amenable to computational analysis.

  8. Role of pharmacogenetics in public health and clinical health care: a SWOT analysis.

    Science.gov (United States)

    Kapoor, Ritika; Tan-Koi, Wei Chuen; Teo, Yik-Ying

    2016-12-01

    Pharmacogenomics has been lauded as an important innovation in clinical medicine as a result of advances in genomic science. As one of the cornerstones in precision medicine, the vision to determine the right medication in the right dosage for the right treatment with the use of genetic information has not exactly materialised, and few genetic tests have been implemented as the standard of care in health systems worldwide. Here we review the findings from a SWOT analysis to examine the strengths, weaknesses, opportunities and threats around the role of pharmacogenetics in public health and clinical health care, at the micro, meso and macro levels corresponding to the perspectives of the individuals (scientists, patients and physicians), the health-care institutions and the health systems, respectively.

  9. Pharmacogenetics and forensic toxicology.

    Science.gov (United States)

    Musshoff, Frank; Stamer, Ulrike M; Madea, Burkhard

    2010-12-15

    Large inter-individual variability in drug response and toxicity, as well as in drug concentrations after application of the same dosage, can be of genetic, physiological, pathophysiological, or environmental origin. Absorption, distribution and metabolism of a drug and interactions with its target often are determined by genetic differences. Pharmacokinetic and pharmacodynamic variations can appear at the level of drug metabolizing enzymes (e.g., the cytochrome P450 system), drug transporters, drug targets or other biomarker genes. Pharmacogenetics or toxicogenetics can therefore be relevant in forensic toxicology. This review presents relevant aspects together with some examples from daily routines. Copyright © 2010. Published by Elsevier Ireland Ltd.

  10. An RDF/OWL knowledge base for query answering and decision support in clinical pharmacogenetics.

    Science.gov (United States)

    Samwald, Matthias; Freimuth, Robert; Luciano, Joanne S; Lin, Simon; Powers, Robert L; Marshall, M Scott; Adlassnig, Klaus-Peter; Dumontier, Michel; Boyce, Richard D

    2013-01-01

    Genetic testing for personalizing pharmacotherapy is bound to become an important part of clinical routine. To address associated issues with data management and quality, we are creating a semantic knowledge base for clinical pharmacogenetics. The knowledge base is made up of three components: an expressive ontology formalized in the Web Ontology Language (OWL 2 DL), a Resource Description Framework (RDF) model for capturing detailed results of manual annotation of pharmacogenomic information in drug product labels, and an RDF conversion of relevant biomedical datasets. Our work goes beyond the state of the art in that it makes both automated reasoning as well as query answering as simple as possible, and the reasoning capabilities go beyond the capabilities of previously described ontologies.

  11. Lithium Pharmacogenetics: Where Do We Stand?

    Science.gov (United States)

    Pisanu, Claudia; Melis, Carla; Squassina, Alessio

    2016-11-01

    Preclinical Research Bipolar disorder (BPD) is a chronic and disabling psychiatric disorder with a prevalence of 0.8-1.2% in the general population. Although lithium is considered the first-line treatment, a large percentage of patients do not respond sufficiently. Moreover, lithium can induce severe side effects and has poor tolerance and a narrow therapeutic index. The genetics of lithium response has been largely investigated, but findings have so far failed to identify reliable biomarkers to predict clinical response. This has been largely determined by the highly complex phenotipic and genetic architecture of lithium response. To this regard, collaborative initiatives hold the promise to provide robust and standardized methods to disantenagle this complexity, as well as the capacity to collect large samples of patietnts, a crucial requirement to study the genetics of complex phenotypes. The International Consortium on Lithium Genetics (ConLiGen) has recently published the largest study so far on lithium response reporting significant associations for two long noncoding RNAs (lncRNAs). This result provides relevant insights into the pharmacogenetics of lithium supporting the involvement of the noncoding portion of the genome in modulating clinical response. Although a vast body of research is engaged in dissecting the genetic bases of response to lithium, the several drawbacks of lithium therapy have also stimulated multiple efforts to identify new safer treatments. A drug repurposing approach identified ebselen as a potential lithium mimetic, as it shares with lithium the ability to inhibit inositol monophosphatase. Ebselen, an antioxidant glutathione peroxidase mimetic, represents a valid and promising example of new potential therapeutic interventions for BD, but the paucity of data warrant further investigation to elucidate its potential efficacy and safety in the management of BPD. Nevertheless, findings provided by the growing field of pharmacogenomic

  12. Pharmacogenetics in clinical practice

    NARCIS (Netherlands)

    Derijks, Luc J. J.; Derijks, H. Jeroen; Touw, Daan J.; Conemans, Jean M. H.; Egberts, Antoine C. G.

    2008-01-01

    The availability of data from pharmacogenetic studies is reflected in therapeutic practice, and pharmacogenetics is slowly entering the medical arena. Preconditions for the utilisation of pharmacogenetic knowledge are that: 1) genetic variation and prevalence are known 2) pharmacological

  13. Pharmacogenetics and Imaging-Pharmacogenetics of Antidepressant Response: Towards Translational Strategies.

    Science.gov (United States)

    Lett, Tristram A; Walter, Henrik; Brandl, Eva J

    2016-12-01

    Genetic variation underlies both the response to antidepressant treatment and the occurrence of side effects. Over the past two decades, a number of pharmacogenetic variants, among these the SCL6A4, BDNF, FKBP5, GNB3, GRIK4, and ABCB1 genes, have come to the forefront in this regard. However, small effects sizes, mixed results in independent samples, and conflicting meta-analyses results led to inherent difficulties in the field of pharmacogenetics translating these findings into clinical practice. Nearly all antidepressant pharmacogenetic variants have potentially pleiotropic effects in which they are associated with major depressive disorder, intermediate phenotypes involved in emotional processes, and brain areas affected by antidepressant treatment. The purpose of this article is to provide a comprehensive review of the advances made in the field of pharmacogenetics of antidepressant efficacy and side effects, imaging findings of antidepressant response, and the latest results in the expanding field of imaging-pharmacogenetics studies. We suggest there is mounting evidence that genetic factors exert their impact on treatment response by influencing brain structural and functional changes during antidepressant treatment, and combining neuroimaging and genetic methods may be a more powerful way to detect biological mechanisms of response than either method alone. The most promising imaging-pharmacogenetics findings exist for the SCL6A4 gene, with converging associations with antidepressant response, frontolimbic predictors of affective symptoms, and normalization of frontolimbic activity following antidepressant treatment. More research is required before imaging-pharmacogenetics informed personalized medicine can be applied to antidepressant treatment; nevertheless, inroads have been made towards assessing genetic and neuroanatomical liability and potential clinical application.

  14. 4th Annual Pharmacogenomics and Medicine Lectures.

    Science.gov (United States)

    Oestreicher, P

    2001-08-01

    In the future, pharmacogenomics will play an important role in the treatment of patients by making it possible to predict drug response based on an individual's genetic make-up. Similarly, pharmacogenomics may be used to reduce the probability that adverse effects will occur. The use of a patient's genetic information will lead to greater predictability in clinical outcomes and personalisation of medical care. Pharmacogenomic information can also aid in drug development by helping to select individuals that are likely to respond to a medication for participation in clinical trials. Integration of pharmacogenomics into the healthcare system has a number of potential economic benefits, including reduced costs of healthcare and drug discovery. The FDA has no specific plans to regulate therapy-guiding pharmacogenomic tests, which are different from diagnostic genetic tests. There are a number of ethical issues related to pharmacogenomics, including the credibility of the system for protecting the rights and welfare of human research subjects, general concerns about genetic research, privacy issues and equitable distribution of the technology. To ensure integration of pharmacogenomics into the healthcare system it will be important to obtain public support through education about the benefits and risks of this technology.

  15. Pharmacogenetics of psychotropic drugs

    National Research Council Canada - National Science Library

    Lerer, Bernard

    2002-01-01

    ... of pharmacogenetics with substance dependence and brain imaging, and consider the impact of pharmacogenetics on the biotechnology and pharmaceutical industries. This book defines the young field of pharmacogenetics as it applies to psychotropic drugs and is, therefore, an essential reference for all clinicians and researchers working in this findings field. Bernard ...

  16. The emerging science of precision medicine and pharmacogenomics for Parkinson's disease.

    Science.gov (United States)

    Payami, Haydeh

    2017-08-01

    Current therapies for Parkinson's disease are problematic because they are symptomatic and have adverse effects. New drugs have failed in clinical trials because of inadequate efficacy. At the core of the problem is trying to make one drug work for all Parkinson's disease patients, when we know this premise is wrong because (1) Parkinson's disease is not a single disease, and (2) no two individuals have the same biological makeup. Precision medicine is the goal to strive for, but we are only at the beginning stages of building the infrastructure for one of the most complex projects in the history of science, and it will be a long time before Parkinson's disease reaps the benefits. Pharmacogenomics, a cornerstone of precision medicine, has already proven successful for many conditions and could also propel drug discovery and improve treatment for Parkinson's disease. To make progress in the pharmacogenomics of Parkinson's disease, we need to change course from small inconclusive candidate gene studies to large-scale rigorously planned genome-wide studies that capture the nuclear genome and the microbiome. Pharmacogenomic studies must use homogenous subtypes of Parkinson's disease or apply the brute force of statistical power to overcome heterogeneity, which will require large sample sizes achievable only via internet-based methods and electronic databases. Large-scale pharmacogenomic studies, together with biomarker discovery efforts, will yield the knowledge necessary to design clinical trials with precision to alleviate confounding by disease heterogeneity and interindividual variability in drug response, two of the major impediments to successful drug discovery and effective treatment. © 2017 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.

  17. Knowledge of Pharmacogenetics among Healthcare Professionals ...

    African Journals Online (AJOL)

    Background: Pharmacogenetics has a potential for optimizing drug response and identifying risk of toxicity for patients. Pharmacogenetics knowledge of healthcare professionals and the unmet need for pharmacogenetics education in health training institutions are some of the challenges of integrating pharmacogenetics ...

  18. Personalizing medicine with clinical pharmacogenetics

    Science.gov (United States)

    Scott, Stuart A.

    2012-01-01

    Clinical genetic testing has grown substantially over the past 30 years as the causative mutations for Mendelian diseases have been identified, particularly aided in part by the recent advances in molecular-based technologies. Importantly, the adoption of new tests and testing strategies (e.g., diagnostic confirmation, prenatal testing, and population-based carrier screening) has often been met with caution and careful consideration before clinical implementation, which facilitates the appropriate use of new genetic tests. Although the field of pharmacogenetics was established in the 1950s, clinical testing for constitutional pharmacogenetic variants implicated in interindividual drug response variability has only recently become available to help clinicians guide pharmacotherapy, in part due to US Food and Drug Administration-mediated product insert revisions that include pharmacogenetic information for selected drugs. However, despite pharmacogenetic associations with adverse outcomes, physician uptake of clinical pharmacogenetic testing has been slow. Compared with testing for Mendelian diseases, pharmacogenetic testing for certain indications can have a lower positive predictive value, which is one reason for underutilization. A number of other barriers remain with implementing clinical pharmacogenetics, including clinical utility, professional education, and regulatory and reimbursement issues, among others. This review presents some of the current opportunities and challenges with implementing clinical pharmacogenetic testing. PMID:22095251

  19. Pharmacogenomics education: International Society of Pharmacogenomics recommendations for medical, pharmaceutical, and health schools deans of education

    NARCIS (Netherlands)

    Gurwitz, D.; Lunshof, J.E.; Dedoussis, G.; Flordellis, C.S.; Fuhr, U.; Kirchheiner, J.; Licinio, J.; Llerena, A.; Manolopoulos, V.G.; Sheffield, L.J.; Siest, G.; Torricelli, F.; Vasiliou, V.; Wong, S

    2005-01-01

    Pharmacogenomics would be instrumental for the realization of personalized medicine in coming decades. Efforts are evident to clarify the potential bioethical, societal, and legal implications of key pharmacogenomics-based technologies projected to be soon introduced into the core practice of

  20. PHARMACOGENETIC TESTING OPPORTUNITIES IN CARDIOLOGY BASED ON EXOME SEQUENCING

    Directory of Open Access Journals (Sweden)

    N. V. Shcherbakova

    2014-01-01

    Full Text Available Aim. To study what cardiac drugs currently have any comments on biomarkers and what information can be obtained by pharmacogenetic testing using data exome sequencing in patients with cardiac diseases.Material and methods. Exome sequencing in random participant of the ATEROGEN IVANOVO study and bioinformatics analysis of the data were performed. Point mutations were annotated using ANNOVAR program, as well as comparison with a number of specialized databases was done on the basis of user protocols.Results. 11 cardiac drugs and 7 genes which variants can influence cardiac drug metabolism were analyzed. According to exome sequencing of the participant we did not reveal allelic variants that require dose regime correction and careful efficacy control.Conclusion. The exome sequencing application is the next step to a wide range of personalized therapy. Future opportunities for improvement of the risk-benefit ratio in each patient are the main purpose of the collection and analysis of pharmacogenetic data.

  1. Knowledge and attitude regarding pharmacogenetics among formerly pregnant women in the Netherlands and their interest in pharmacogenetic research.

    Science.gov (United States)

    Daud, Aizati N A; Bergsma, Eefke L; Bergman, Jorieke E H; De Walle, Hermien E K; Kerstjens-Frederikse, Wilhelmina S; Bijker, Bert J; Hak, Eelko; Wilffert, Bob

    2017-04-14

    Pharmacogenetics is an emerging field currently being implemented to improve safety when prescribing drugs. While many women who take drugs during pregnancy would likely benefit from such personalized drug therapy, data is lacking on the awareness towards pharmacogenetics among women. We aim to determine the level of knowledge and acceptance of formerly pregnant women in the Netherlands regarding pharmacogenetics and its implementation, and their interest in pharmacogenetic research. A population-based survey using postal questionnaires was conducted among formerly pregnant women in the Northern parts of the Netherlands. A total of 986 women were invited to participate. Of the 219 women who returned completed questionnaires (22.2% response rate), only 22.8% had heard of pharmacogenetics, although the majority understood the concept (64.8%). Women who had experience with drug side-effects were more likely to know about pharmacogenetics [OR = 2.06, 95% CI 1.16, 3.65]. Of the respondents, 53.9% were positive towards implementing pharmacogenetics in their future drug therapy, while 46.6% would be willing to participate in pharmacogenetic research. Among those who were either not willing or undecided in this regard, their concerns were about the consequences of the pharmacogenetic test, including the privacy and anonymity of their genetic information. The knowledge and attitude regarding the concept of pharmacogenetics among our population of interest is good. Also, their interest in pharmacogenetic research provides opportunities for future research related to drug use during pregnancy and fetal outcome.

  2. Progress towards the integration of pharmacogenomics in practice.

    Science.gov (United States)

    Mooney, Sean D

    2015-05-01

    Understanding the role genes and genetic variants play in clinical treatment response continues to be an active area of research with the goal of common clinical use. This goal has developed into today's industry of pharmacogenomics, where new drug-gene relationships are discovered and further characterized, published and then curated into national and international resources for use by researchers and clinicians. These efforts have given us insight into what a pharmacogenomic variant is, and how it differs from human disease variants and common polymorphisms. While publications continue to reveal pharmacogenomic relationships between genes and specific classes of drugs, many challenges remain toward the goal of widespread use clinically. First, the clinical guidelines for pharmacogenomic testing are still in their infancy. Second, sequencing technologies are changing rapidly making it somewhat unclear what genetic data will be available to the clinician at the time of care. Finally, what and when to return data to a patient is an area under constant debate. New innovations such as PheWAS approaches and whole genome sequencing studies are enabling a tsunami of new findings. In this review, pharmacogenomic variants, pharmacogenomic resources, interpretation clinical guidelines and challenges, such as WGS approaches, and the impact of pharmacogenomics on drug development and regulatory approval are reviewed.

  3. Pharmacogenomics and cardiovascular disease

    DEFF Research Database (Denmark)

    Weeke, Peter; Roden, Dan M

    2013-01-01

    Variability in drug responsiveness is a sine qua non of modern therapeutics, and the contribution of genomic variation is increasingly recognized. Investigating the genomic basis for variable responses to cardiovascular therapies has been a model for pharmacogenomics in general and has established...... resulted in changes to the product labels but also have led to development of initial clinical guidelines that consider how to facilitate incorporating genetic information to the bedside. This review summarizes the state of knowledge in cardiovascular pharmacogenomics and considers how variants described...

  4. Implementation of pharmacogenetics: the University of Maryland Personalized Anti-platelet Pharmacogenetics Program.

    Science.gov (United States)

    Shuldiner, Alan R; Palmer, Kathleen; Pakyz, Ruth E; Alestock, Tameka D; Maloney, Kristin A; O'Neill, Courtney; Bhatty, Shaun; Schub, Jamie; Overby, Casey Lynnette; Horenstein, Richard B; Pollin, Toni I; Kelemen, Mark D; Beitelshees, Amber L; Robinson, Shawn W; Blitzer, Miriam G; McArdle, Patrick F; Brown, Lawrence; Jeng, Linda Jo Bone; Zhao, Richard Y; Ambulos, Nicholas; Vesely, Mark R

    2014-03-01

    Despite a substantial evidence base, implementation of pharmacogenetics into routine patient care has been slow due to a number of non-trivial practical barriers. We implemented a Personalized Anti-platelet Pharmacogenetics Program (PAP3) for cardiac catheterization patients at the University of Maryland Medical Center and the Baltimore Veterans Administration Medical Center Patients' are offered CYP2C19 genetic testing, which is performed in our Clinical Laboratory Improvement Amendment (CLIA)-certified Translational Genomics Laboratory. Results are returned within 5 hr along with clinical decision support that includes interpretation of results and prescribing recommendations for anti-platelet therapy based on the Clinical Pharmacogenetics Implementation Consortium guidelines. Now with a working template for PAP3, implementation of other drug-gene pairs is in process. Lessons learned as described in this article may prove useful to other medical centers as they implement pharmacogenetics into patient care, a critical step in the pathway to personalized and genomic medicine. © 2014 Wiley Periodicals, Inc.

  5. Pharmacogenomics in Oncology Care

    Directory of Open Access Journals (Sweden)

    Kelly K Filipski

    2014-04-01

    Full Text Available Cancer pharmacogenomics have contributed a number of important discoveries to current cancer treatment, changing the paradigm of treatment decisions. Both somatic and germline mutations are utilized to better understand the underlying biology of cancer growth and treatment response. The level of evidence required to fully translate pharmacogenomic discoveries into the clinic has relied heavily on randomized clinical trials. In this review, the use of observational studies, as well as, the use of adaptive trials and next generation sequencing to develop the required level of evidence for clinical implementation are discussed.

  6. Pharmacogenomic knowledge gaps and educational resource needs among physicians in selected specialties

    Directory of Open Access Journals (Sweden)

    Johansen Taber KA

    2014-07-01

    Full Text Available Katherine A Johansen Taber, Barry D Dickinson Department of Science and Biotechnology, American Medical Association, Chicago, IL, USA Background: The use of pharmacogenomic testing in the clinical setting has the potential to improve the safety and effectiveness of drug therapy, yet studies have revealed that physicians lack knowledge about the topic of pharmacogenomics, and are not prepared to implement it in the clinical setting. This study further explores the pharmacogenomic knowledge deficit and educational resource needs among physicians. Materials and methods: Surveys of primary care physicians, cardiologists, and psychiatrists were conducted. Results: Few physicians reported familiarity with the topic of pharmacogenomics, but more reported confidence in their knowledge about the influence of genetics on drug therapy. Only a small minority had undergone formal training in pharmacogenomics, and a majority reported being unsure what type of pharmacogenomic tests were appropriate to order for the clinical situation. Respondents indicated that an ideal pharmacogenomic educational resource should be electronic and include such components as how to interpret pharmacogenomic test results, recommendations for prescribing, population subgroups most likely to be affected, and contact information for laboratories offering pharmacogenomic testing. Conclusion: Physicians continue to demonstrate pharmacogenomic knowledge gaps, and are unsure about how to use pharmacogenomic testing in clinical practice. Educational resources that are clinically oriented and easily accessible are preferred by physicians, and may best support appropriate clinical implementation of pharmacogenomics. Keywords: pharmacogenomics, knowledge gap, drug response, educational resource

  7. Integrating pharmacogenomics into pharmacy practice via medication therapy management.

    Science.gov (United States)

    Reiss, Susan M

    2011-01-01

    To explore the application and integration of pharmacogenomics in pharmacy clinical practice via medication therapy management (MTM) to improve patient care. Department of Health & Human Services (HHS) Personalized Health Care Initiative, Food and Drug Administration (FDA) pharmacogenomics activity, and findings from the Utilizing E-Prescribing Technologies to Integrate Pharmacogenomics into Prescribing and Dispensing Practices Stakeholder Workshop, convened by the American Pharmacists Association (APhA) on March 5, 2009. Participants at the Stakeholder Workshop included diverse representatives from pharmacy, medicine, pathology, health information technology (HIT), standards, science, academia, government, and others with a key interest in the clinical application of pharmacogenomics. In 2006, HHS initiated the Personalized Health Care Initiative with the goal of building the foundation for the delivery of gene-based care, which may prove to be more effective for large patient subpopulations. In the years since the initiative was launched, drug manufacturers and FDA have begun to incorporate pharmacogenomic data and applications of this information into the drug development, labeling, and approval processes. New applications and processes for using this emerging pharmacogenomics data are needed to effectively integrate this information into clinical practice. Building from the findings of a stakeholder workshop convened by APhA and the advancement of the pharmacist's collaborative role in patient care through MTM, emerging roles for pharmacists using pharmacogenomic information to improve patient care are taking hold. Realizing the potential role of the pharmacist in pharmacogenomics through MTM will require connectivity of pharmacists into the electronic health record infrastructure to permit the exchange of pertinent health information among all members of a patient's health care team. Addressing current barriers, concerns, and system limitations and developing

  8. Trends in qualifying biomarkers in drug safety. Consensus of the 2011 meeting of the spanish society of clinical pharmacology.

    Science.gov (United States)

    Agúndez, José A G; Del Barrio, Jaime; Padró, Teresa; Stephens, Camilla; Farré, Magí; Andrade, Raúl J; Badimon, Lina; García-Martín, Elena; Vilahur, Gemma; Lucena, M Isabel

    2012-01-01

    In this paper we discuss the consensus view on the use of qualifying biomarkers in drug safety, raised within the frame of the XXIV meeting of the Spanish Society of Clinical Pharmacology held in Málaga (Spain) in October, 2011. The widespread use of biomarkers as surrogate endpoints is a goal that scientists have long been pursuing. Thirty years ago, when molecular pharmacogenomics evolved, we anticipated that these genetic biomarkers would soon obviate the routine use of drug therapies in a way that patients should adapt to the therapy rather than the opposite. This expected revolution in routine clinical practice never took place as quickly nor with the intensity as initially expected. The concerted action of operating multicenter networks holds great promise for future studies to identify biomarkers related to drug toxicity and to provide better insight into the underlying pathogenesis. Today some pharmacogenomic advances are already widely accepted, but pharmacogenomics still needs further development to elaborate more precise algorithms and many barriers to implementing individualized medicine exist. We briefly discuss our view about these barriers and we provide suggestions and areas of focus to advance in the field.

  9. European Medicines Agency initiatives and perspectives on pharmacogenomics

    Science.gov (United States)

    Ehmann, Falk; Caneva, Laura; Papaluca, Marisa

    2014-01-01

    Pharmacogenomics, the study of variations of DNA and RNA characteristics as related to drug response, has become an integral part of drug development and pharmacovigilance, as reflected by the incorporation of pharmacogenomic data in EU product information. In this short review article, we describe recent European Medicines Agency initiatives intended to support further the implementation of pharmacogenomics in drug development and surveillance so that patients and the public can benefit from advances in genomic science and technology. PMID:24433361

  10. The fallacy of racial pharmacogenomics

    Directory of Open Access Journals (Sweden)

    S.D.J. Pena

    2011-04-01

    Full Text Available Personalized pharmacogenomics aims to use individual genotypes to direct medical treatment. Unfortunately, the loci relevant for the pharmacokinetics and especially the pharmacodynamics of most drugs are still unknown. Moreover, we still do not understand the role that individual genotypes play in modulating the pathogenesis, the clinical course and the susceptibility to drugs of human diseases which, although appearing homogeneous on the surface, may vary from patient to patient. To try to deal with this situation, it has been proposed to use interpopulational variability as a reference for drug development and prescription, leading to the development of "race-targeted drugs". Given the present limitations of genomic knowledge and of the tools needed to fully implement it today, some investigators have proposed to use racial criteria as a palliative measure until personalized pharmacogenomics is fully developed. This was the rationale for the FDA approval of BiDil for treatment of heart failure in African Americans. I will evaluate the efficacy and safety of racial pharmacogenomics here and conclude that it fails on both counts. Next I shall review the perspectives and the predicted rate of development of clinical genomic studies. The conclusion is that "next-generation" genomic sequencing is advancing at a tremendous rate and that true personalized pharmacogenomics, based on individual genotyping, should soon become a clinical reality.

  11. Translating pharmacogenomics: challenges on the road to the clinic.

    Directory of Open Access Journals (Sweden)

    Jesse J Swen

    2007-08-01

    Full Text Available Pharmacogenomics is one of the first clinical applications of the postgenomic era. It promises personalized medicine rather than the established "one size fits all" approach to drugs and dosages. The expected reduction in trial and error should ultimately lead to more efficient and safer drug therapy. In recent years, commercially available pharmacogenomic tests have been approved by the Food and Drug Administration (FDA, but their application in patient care remains very limited. More generally, the implementation of pharmacogenomics in routine clinical practice presents significant challenges. This article presents specific clinical examples of such challenges and discusses how obstacles to implementation of pharmacogenomic testing can be addressed.

  12. Metformin Pharmacogenomics: Current Status and Future Directions

    Science.gov (United States)

    Pawlyk, Aaron C.; Giacomini, Kathleen M.; McKeon, Catherine; Shuldiner, Alan R.

    2014-01-01

    The incidence of type 2 diabetes (T2D) and its costs to the health care system continue to rise. Despite the availability of at least 10 drug classes for the treatment of T2D, metformin remains the most widely used first-line pharmacotherapy for its treatment; however, marked interindividual variability in response and few clinical or biomarker predictors of response reduce its optimal use. As clinical care moves toward precision medicine, a variety of broad discovery-based “omics” approaches will be required. Technical innovation, decreasing sequencing cost, and routine sample storage and processing has made pharmacogenomics the most widely applied discovery-based approach to date. This opens up the opportunity to understand the genetics underlying the interindividual variation in metformin responses in order for clinicians to prescribe specific treatments to given individuals for better efficacy and safety: metformin for those predicted to respond and alternative therapies for those predicted to be nonresponders or who are at increased risk for adverse side effects. Furthermore, understanding of the genetic determinants of metformin response may lead to the identification of novel targets and development of more effective agents for diabetes treatment. The goals of this workshop sponsored by the National Institute of Diabetes and Digestive and Kidney Diseases were to review the state of research on metformin pharmacogenomics, discuss the scientific and clinical hurdles to furthering our knowledge of the variability in patient responses to metformin, and consider how to effectively use this increased understanding to improve patient outcomes. PMID:25060887

  13. Pharmacogenomics and migraine: possible implications

    DEFF Research Database (Denmark)

    Tfelt-Hansen, P.; Brosen, K.

    2008-01-01

    Pharmacogenomics is the science about how inherited factors influence the effects of drugs. Drug response is always a result of mutually interacting genes with important modifications from environmental and constitutional factors. Based on the genetic variability of pharmacokinetic and in some...... cases pharmacodynamic variability we mention possible implications for the acute and preventive treatment of migraine. Pharmacogenomics will most likely in the future be one part of our therapeutic armamentarium and will provide a stronger scientific basis for optimizing drug therapy on the basis...

  14. Pharmacogenetics and rational drug use around the world.

    Science.gov (United States)

    Roederer, Mary W; Sanchez-Giron, Francisco; Kalideen, Kusha; Kudzi, William; McLeod, Howard L; Zhang, Wei

    2011-06-01

    The WHO embraces evidence-based medicine to formulate an essential medicines list (EML) considering disease prevalence, drug efficacy, drug safety and cost-effectiveness. The EML is used by developing countries to build a national formulary. As pharmacogenetics in developed countries evolves, the Pharmacogenetics for Every Nation Initiative (PGENI) convened with representatives from China, Mexico, Ghana and South Africa in August 2009 to evaluate the use of human pharmacogenetics to enhance global drug use policy. The diseases causing mortality, the lack of integration of pharmacovigilance at the national formulary level, the pharmacogenetics research agenda and pharmacogenetics clinician education did not differ greatly among the countries. While there are many unanswered questions, systematically incorporating pharmacogenetics at the national formulary level promises to improve global drug use.

  15. Analytical strategies for discovery and replication of genetic effects in pharmacogenomic studies

    Directory of Open Access Journals (Sweden)

    Kohler JR

    2014-08-01

    Full Text Available Jared R Kohler, Tobias Guennel, Scott L MarshallBioStat Solutions, Inc., Frederick, MD, USAAbstract: In the past decade, the pharmaceutical industry and biomedical research sector have devoted considerable resources to pharmacogenomics (PGx with the hope that understanding genetic variation in patients would deliver on the promise of personalized medicine. With the advent of new technologies and the improved collection of DNA samples, the roadblock to advancements in PGx discovery is no longer the lack of high-density genetic information captured on patient populations, but rather the development, adaptation, and tailoring of analytical strategies to effectively harness this wealth of information. The current analytical paradigm in PGx considers the single-nucleotide polymorphism (SNP as the genomic feature of interest and performs single SNP association tests to discover PGx effects – ie, genetic effects impacting drug response. While it can be straightforward to process single SNP results and to consider how this information may be extended for use in downstream patient stratification, the rate of replication for single SNP associations has been low and the desired success of producing clinically and commercially viable biomarkers has not been realized. This may be due to the fact that single SNP association testing is suboptimal given the complexities of PGx discovery in the clinical trial setting, including: 1 relatively small sample sizes; 2 diverse clinical cohorts within and across trials due to genetic ancestry (potentially impacting the ability to replicate findings; and 3 the potential polygenic nature of a drug response. Subsequently, a shift in the current paradigm is proposed: to consider the gene as the genomic feature of interest in PGx discovery. The proof-of-concept study presented in this manuscript demonstrates that genomic region-based association testing has the potential to improve the power of detecting single SNP or

  16. Rationale and design of the multiethnic Pharmacogenomics in Childhood Asthma consortium

    DEFF Research Database (Denmark)

    Farzan, Niloufar; Vijverberg, Susanne J; Andiappan, Anand K

    2017-01-01

    AIM: International collaboration is needed to enable large-scale pharmacogenomics studies in childhood asthma. Here, we describe the design of the Pharmacogenomics in Childhood Asthma (PiCA) consortium. MATERIALS & METHODS: Investigators of each study participating in PiCA provided data...... corticosteroid users. Among patients from 13 studies with available data on asthma exacerbations, a third reported exacerbations despite inhaled corticosteroid use. In the future pharmacogenomics studies within the consortium, the pharmacogenomics analyses will be performed separately in each center...

  17. Clinical Pharmacogenetics Implementation Consortium Guidelines for CYP2C9 and VKORC1 Genotypes and Warfarin Dosing

    Science.gov (United States)

    Johnson, JA; Gong, L; Whirl-Carrillo, M; Gage, BF; Scott, SA; Stein, CM; Anderson, JL; Kimmel, SE; Lee, MTM; Pirmohamed, M; Wadelius, M; Klein, TE; Altman, RB

    2011-01-01

    Warfarin is a widely used anticoagulant with a narrow therapeutic index and large interpatient variability in the dose required to achieve target anticoagulation. Common genetic variants in the cytochrome P450-2C9 (CYP2C9) and vitamin K–epoxide reductase complex (VKORC1) enzymes, in addition to known nongenetic factors, account for ~50% of warfarin dose variability. The purpose of this article is to assist in the interpretation and use of CYP2C9 and VKORC1 geno-type data for estimating therapeutic warfarin dose to achieve an INR of 2–3, should genotype results be available to the clinician. The Clinical Pharmacogenetics Implementation Consortium (CPIC) of the National Institutes of Health Pharmacogenomics Research Network develops peer-reviewed gene–drug guidelines that are published and updated periodically on http://www.pharmgkb.org based on new developments in the field.1 PMID:21900891

  18. Development and evaluation of a pharmacogenomics educational program for pharmacists.

    Science.gov (United States)

    Formea, Christine M; Nicholson, Wayne T; McCullough, Kristen B; Berg, Kevin D; Berg, Melody L; Cunningham, Julie L; Merten, Julianna A; Ou, Narith N; Stollings, Joanna L

    2013-02-12

    Objectives. To evaluate hospital and outpatient pharmacists' pharmacogenomics knowledge before and 2 months after participating in a targeted, case-based pharmacogenomics continuing education program.Design. As part of a continuing education program accredited by the Accreditation Council for Pharmacy Education (ACPE), pharmacists were provided with a fundamental pharmacogenomics education program.Evaluation. An 11-question, multiple-choice, electronic survey instrument was distributed to 272 eligible pharmacists at a single campus of a large, academic healthcare system. Pharmacists improved their pharmacogenomics test scores by 0.7 questions (pretest average 46%; posttest average 53%, p=0.0003).Conclusions. Although pharmacists demonstrated improvement, overall retention of educational goals and objectives was marginal. These results suggest that the complex topic of pharmacogenomics requires a large educational effort in order to increase pharmacists' knowledge and comfort level with this emerging therapeutic opportunity.

  19. Clinical practice guidelines for translating pharmacogenomic knowledge to bedside. Focus on anticancer drugs.

    Directory of Open Access Journals (Sweden)

    José A G Agúndez

    2014-08-01

    Full Text Available The development of clinical practice recommendations or guidelines for the clinical use of pharmacogenomics data is an essential issue for improving drug therapy, particularly for drugs with high toxicity and/or narrow therapeutic index such as anticancer drugs. Although pharmacogenomic-based recommendations have been formulated for over 40 anticancer drugs, the number of clinical practice guidelines available is very low. The guidelines already published indicate that pharmacogenomic testing is useful for patient selection, but final dosing adjustment should be carried out on the basis of clinical or analytical parameters rather than on pharmacogenomic information.Patient selection may seem a modest objective, but it constitutes a crucial improvement with regard to the pre-pharmacogenomics situation and it saves patients’ lives. However we should not overstate the current power of pharmacogenomics. At present the pharmacogenomics of anticancer drugs is not sufficiently developed for dose adjustments based on pharmacogenomics only, and no current guidelines recommend such adjustments without considering clinical and/or analytical parameters.

  20. Ethiopian health care professionals' knowledge, attitude, and interests toward pharmacogenomics.

    Science.gov (United States)

    Abdela, Ousman Abubeker; Bhagavathula, Akshaya Srikanth; Gebreyohannes, Eyob Alemayehu; Tegegn, Henok Getachew

    2017-01-01

    Pharmacogenomics is a field of science which studies the impact of inheritance on individual variation in medication therapy response. We assessed healthcare professionals' knowledge, attitude, and interest toward pharmacogenomics. A cross-sectional survey was conducted using a 32-item questionnaire among physicians, nurses, and pharmacists who were working at the University of Gondar Referral and Teaching Hospital in northwest Ethiopia. Descriptive statistics was applied, and the categorical variables were summarized as frequency and percentages. An analysis of variance (ANOVA) test was performed to compare mean scores among health professionals. A p -value of much as 95% of the variability in drug disposition and effects. The ability to accurately apply their knowledge to drug therapy selection, dosing, or monitoring parameter was reported by 35.3% of the participants. More than two-thirds (69.2%) of participants thought that pharmacogenomic testing will allow the identification of the right drug with less side effects. Most of the participants (83.2%) also requested to have training on pharmacogenomics. Participants showed limited knowledge, but they had positive attitude toward pharmacogenomics. Educational programs focusing on pharmacogenomic testing and its clinical application need to be emphasized.

  1. Genome-environment interactions and prospective technology assessment: evolution from pharmacogenomics to nutrigenomics and ecogenomics.

    Science.gov (United States)

    Ozdemir, Vural; Motulsky, Arno G; Kolker, Eugene; Godard, Béatrice

    2009-02-01

    The relationships between food, nutrition science, and health outcomes have been mapped over the past century. Genomic variation among individuals and populations is a new factor that enriches and challenges our understanding of these complex relationships. Hence, the confluence of nutritional science and genomics-nutrigenomics--was the focus of the OMICS: A Journal of Integrative Biology in December 2008 (Part 1). The 2009 Special Issue (Part 2) concludes the analysis of nutrigenomics research and innovations. Together, these two issues expand the scope and depth of critical scholarship in nutrigenomics, in keeping with an integrated multidisciplinary analysis across the bioscience, omics technology, social, ethical, intellectual property and policy dimensions. Historically, the field of pharmacogenetics provided the first examples of specifically identifiable gene variants predisposing to unexpected responses to drugs since the 1950s. Brewer coined the term ecogenetics in 1971 to broaden the concept of gene-environment interactions from drugs and nutrition to include environmental agents in general. In the mid-1990s, introduction of high-throughput technologies led to the terms pharmacogenomics, nutrigenomics and ecogenomics to describe, respectively, the contribution of genomic variability to differential responses to drugs, food, and environment defined in the broadest sense. The distinctions, if any, between these newer fields (e.g., nutrigenomics) and their predecessors (e.g., nutrigenetics) remain to be delineated. For nutrigenomics, its reliance on genome-wide analyses may lead to detection of new biological mechanisms governing host response to food. Recognizing "genome-environment interactions" as the conceptual thread that connects and runs through pharmacogenomics, nutrigenomics, and ecogenomics may contribute toward anticipatory governance and prospective real-time analysis of these omics fields. Such real-time analysis of omics technologies and

  2. Clinical application of pharmacogenetics: focusing on practical issues.

    Science.gov (United States)

    Chang, Matthew T; McCarthy, Jeanette J; Shin, Jaekyu

    2015-01-01

    Recent large-scale genetic-based studies have transformed the field of pharmacogenetics to identify, characterize and leverage genetic information to inform patient care. Genetic testing can be used to alter drug selection, optimize drug dosing and prevent unnecessary adverse events. As precision medicine becomes the mainstay in the clinic, it becomes critical for clinicians to utilize pharmacogenetics to guide patient care. One primary challenge is identifying patients where genetic tests that can potentially impact patient care. To address this challenge, our review highlights many practical issues clinicians may encounter: identifying candidate patients and clinical laboratories for pharmacogenetic testing, selecting highly curated resources to help asses test validity, reimbursing costs of pharmacogenetic tests, and interpreting of pharmacogenetic test results.

  3. Fundamentals of Pharmacogenetics in Personalized, Precision Medicine.

    Science.gov (United States)

    Valdes, Roland; Yin, DeLu Tyler

    2016-09-01

    This article introduces fundamental principles of pharmacogenetics as applied to personalized and precision medicine. Pharmacogenetics establishes relationships between pharmacology and genetics by connecting phenotypes and genotypes in predicting the response of therapeutics in individual patients. We describe differences between precision and personalized medicine and relate principles of pharmacokinetics and pharmacodynamics to applications in laboratory medicine. We also review basic principles of pharmacogenetics, including its evolution, how it enables the practice of personalized therapeutics, and the role of the clinical laboratory. These fundamentals are a segue for understanding specific clinical applications of pharmacogenetics described in subsequent articles in this issue. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Pharmacogenomics and its potential impact on drug and formulation development.

    Science.gov (United States)

    Regnstrom, Karin; Burgess, Diane J

    2005-01-01

    Recent advances in genomic research have provided the basis for new insights into the importance of genetic and genomic markers during the different stages of drug development. A new field of research, pharmacogenomics, which studies the relationship between drug effects and the genome, has emerged. Structural pharmacogenomics maps the complete DNA sequences of whole genomes (genotypes) including individual variations, and functional pharmacogenomics assesses the expression levels of thousands of genes in one single experiment. Together, these two areas of pharmacogenomics have generated massive databases, which have become a challenge for the research field of informatics and have fostered a new branch of research, bioinformatics. If skillfully used, the databases generated by pharmacogenomics together with data mining on the Web promise to improve the drug development process in a variety of areas: identification of drug targets, evaluation of toxicity, classification of diseases, evaluation of formulations, assessment of drug response and treatment, post-marketing applications, and development of personalized medicines.

  5. Vascular Smooth Muscle Cells From Hypertensive Patient-Derived Induced Pluripotent Stem Cells to Advance Hypertension Pharmacogenomics.

    Science.gov (United States)

    Biel, Nikolett M; Santostefano, Katherine E; DiVita, Bayli B; El Rouby, Nihal; Carrasquilla, Santiago D; Simmons, Chelsey; Nakanishi, Mahito; Cooper-DeHoff, Rhonda M; Johnson, Julie A; Terada, Naohiro

    2015-12-01

    Studies in hypertension (HTN) pharmacogenomics seek to identify genetic sources of variable antihypertensive drug response. Genetic association studies have detected single-nucleotide polymorphisms (SNPs) that link to drug responses; however, to understand mechanisms underlying how genetic traits alter drug responses, a biological interface is needed. Patient-derived induced pluripotent stem cells (iPSCs) provide a potential source for studying otherwise inaccessible tissues that may be important to antihypertensive drug response. The present study established multiple iPSC lines from an HTN pharmacogenomics cohort. We demonstrated that established HTN iPSCs can robustly and reproducibly differentiate into functional vascular smooth muscle cells (VSMCs), a cell type most relevant to vasculature tone control. Moreover, a sensitive traction force microscopy assay demonstrated that iPSC-derived VSMCs show a quantitative contractile response on physiological stimulus of endothelin-1. Furthermore, the inflammatory chemokine tumor necrosis factor α induced a typical VSMC response in iPSC-derived VSMCs. These studies pave the way for a large research initiative to decode biological significance of identified SNPs in hypertension pharmacogenomics. Treatment of hypertension remains suboptimal, and a pharmacogenomics approach seeks to identify genetic biomarkers that could be used to guide treatment decisions; however, it is important to understand the biological underpinnings of genetic associations. Mouse models do not accurately recapitulate individual patient responses based on their genetics, and hypertension-relevant cells are difficult to obtain from patients. Induced pluripotent stem cell (iPSC) technology provides a great interface to bring patient cells with their genomic data into the laboratory and to study hypertensive responses. As an initial step, the present study established an iPSC bank from patients with primary hypertension and demonstrated an effective

  6. Physicians' pharmacogenomics information needs and seeking behavior: a study with case vignettes.

    Science.gov (United States)

    Heale, Bret S E; Khalifa, Aly; Stone, Bryan L; Nelson, Scott; Del Fiol, Guilherme

    2017-08-01

    Genetic testing, especially in pharmacogenomics, can have a major impact on patient care. However, most physicians do not feel that they have sufficient knowledge to apply pharmacogenomics to patient care. Online information resources can help address this gap. We investigated physicians' pharmacogenomics information needs and information-seeking behavior, in order to guide the design of pharmacogenomics information resources that effectively meet clinical information needs. We performed a formative, mixed-method assessment of physicians' information-seeking process in three pharmacogenomics case vignettes. Interactions of 6 physicians' with online pharmacogenomics resources were recorded, transcribed, and analyzed for prominent themes. Quantitative data included information-seeking duration, page navigations, and number of searches entered. We found that participants searched an average of 8 min per case vignette, spent less than 30 s reviewing specific content, and rarely refined search terms. Participants' information needs included a need for clinically meaningful descriptions of test interpretations, a molecular basis for the clinical effect of drug variation, information on the logistics of carrying out a genetic test (including questions related to cost, availability, test turn-around time, insurance coverage, and accessibility of expert support).Also, participants sought alternative therapies that would not require genetic testing. This study of pharmacogenomics information-seeking behavior indicates that content to support their information needs is dispersed and hard to find. Our results reveal a set of themes that information resources can use to help physicians find and apply pharmacogenomics information to the care of their patients.

  7. Implementation of inpatient models of pharmacogenetics programs.

    Science.gov (United States)

    Cavallari, Larisa H; Lee, Craig R; Duarte, Julio D; Nutescu, Edith A; Weitzel, Kristin W; Stouffer, George A; Johnson, Julie A

    2016-12-01

    The operational elements essential for establishing an inpatient pharmacogenetic service are reviewed, and the role of the pharmacist in the provision of genotype-guided drug therapy in pharmacogenetics programs at three institutions is highlighted. Pharmacists are well positioned to assume important roles in facilitating the clinical use of genetic information to optimize drug therapy given their expertise in clinical pharmacology and therapeutics. Pharmacists have assumed important roles in implementing inpatient pharmacogenetics programs. This includes programs designed to incorporate genetic test results to optimize antiplatelet drug selection after percutaneous coronary intervention and personalize warfarin dosing. Pharmacist involvement occurs on many levels, including championing and leading pharmacogenetics implementation efforts, establishing clinical processes to support genotype-guided therapy, assisting the clinical staff with interpreting genetic test results and applying them to prescribing decisions, and educating other healthcare providers and patients on genomic medicine. The three inpatient pharmacogenetics programs described use reactive versus preemptive genotyping, the most feasible approach under the current third-party payment structure. All three sites also follow Clinical Pharmacogenetics Implementation Consortium guidelines for drug therapy recommendations based on genetic test results. With the clinical emergence of pharmacogenetics into the inpatient setting, it is important that pharmacists caring for hospitalized patients are well prepared to serve as experts in interpreting and applying genetic test results to guide drug therapy decisions. Since genetic test results may not be available until after patient discharge, pharmacists practicing in the ambulatory care setting should also be prepared to assist with genotype-guided drug therapy as part of transitions in care. Copyright © 2016 by the American Society of Health

  8. Pharmacogenetics of β-Blockers

    Science.gov (United States)

    Shin, Jaekyu; Johnson, Julie A.

    2009-01-01

    β-Blockers are an important cardiovascular drug class, recommended as first-line treatment of numerous diseases such as heart failure, hypertension, and angina, as well as treatment after myocardial infarction. However, responses to a β-blocker are variable among patients. Results of numerous studies now suggest that genetic polymorphisms may contribute to variability in responses to β-blockers. This review summarizes the pharmacogenetic data for β-blockers in patients with various diseases and discusses the potential implications of β-blocker pharmacogenetics in clinical practice. PMID:17542770

  9. Pharmacogenetics and personalised medicine: maintain a critical approach.

    Science.gov (United States)

    2013-06-01

    The purpose of pharmacogenetics is to offer"personalised" treatment, in which a drug is only prescribed to patients in whom it is very likely to be effective, or to withhold a drug from patients at increased risk of adverse effects. Pharmacogenetics requires the use of genetic tests which, as with any other diagnostic test, must be evaluated for their discriminatory power (sensitivity, specificity, etc.). These evaluations are sometimes biased. Pharmacogenetics has been heralded as a means of tailoring cancer therapy. However large clinical trials with demanding clinical endpoints are often disappointing, despite initially encouraging results. Pharmacogenetic information is included in many summaries of product characteristics for non-cancer drugs, mainly in order to reduce the frequency of certain serious adverse effects. In summary, pharmacogenetics theoretically represents a step forward but must be evaluated in rigorous clinical trials, as is the case with all other "therapeutic tools".

  10. [Epilepsy pharmacogenetics : science or fiction?].

    Science.gov (United States)

    Depondt, Chantal

    2013-02-01

    Pharmacogenetics (PGX) is the study of how genetic variants influence individual responses to drugs. Although numerous candidate gene studies in epilepsy PGX have been published, to date only two validated associations exist: the association of the *2 and *3 alleles of CYP2C9 with phenytoin metabolism and the association of HLA-B*1502 with serious hypersensitivity reactions to carbamazepine. The advent of novel technologies such as genomewide association studies and next generation sequencing will likely lead to the identification of additional genetic biomarkers. The potential benefits of epilepsy PGX are multiple: epilepsy treatment in individual patients would become more rationalized, clinical trials could be stratified according to patients' genetic profiles and novel therapeutic pathways may be uncovered. Ultimately, it is hoped that PGX will improve the quality of life for people suffering from epilepsy worldwide. © 2013 médecine/sciences – Inserm / SRMS.

  11. Pharmacogenetics of antidepressant drugs: State of the art and clinical implementation - recommendations from the French National Network of Pharmacogenetics.

    Science.gov (United States)

    Quaranta, Sylvie; Dupouey, Julien; Colle, Romain; Verstuyft, Céline

    2017-04-01

    Tailoring antidepressant drug therapy to each individual patient is a complex process because these drugs have adverse effects leading to discontinuation. Pharmacogenetics may provide useful information in routine practice for optimizing antidepressant treatment by helping limit toxic effects while maintaining efficacy. This review presents the usefulness of pharmacogenetic tests for P450 cytochromes CYP2C19 and CYP2D6 in psychiatric patients taking antidepressants. Depending on the level of evidence, the French National Network of Pharmacogenetics (RNPGx) has issued recommendations stating that pharmacogenetic tests for CYP2D6 and CYP2C19 genes are potentially useful in psychiatric patients treated with antidepressant drugs. Copyright © 2017 Société française de pharmacologie et de thérapeutique. Published by Elsevier Masson SAS. All rights reserved.

  12. Development and Implementation of a Pharmacist-Managed Clinical Pharmacogenetics Service

    Science.gov (United States)

    Crews, Kristine R.; Cross, Shane J.; McCormick, John N.; Baker, Donald K.; Molinelli, Alejandro R.; Mullins, Richard; Relling, Mary V.; Hoffman, James M.

    2011-01-01

    Purpose The development and implementation of a pharmacist-managed Clinical Pharmacogenetics service is described. Summary Therapeutic drug monitoring (TDM) is a well-accepted role of the pharmacist. Pharmacogenetics, the study of genetic factors that influence the variability in drug response among patients, is a rapidly evolving discipline that integrates knowledge of pharmacokinetics and pharmacodynamics with modern advances in genetic testing. There is growing evidence for the clinical utility of pharmacogenetics, and pharmacists can play an essential role in the thoughtful application of pharmacogenetics to patient care. A pharmacist-managed Clinical Pharmacogenetics service was designed and implemented. The goal of the service is to provide clinical pharmacogenetic testing for gene products important to the pharmacodynamics of medications used in our patients. The service is modeled after and integrated with an already established Clinical Pharmacokinetics service. All clinical pharmacogenetic test results are first reported to one of the pharmacists, who reviews the result and provides a written consult. The consult includes an interpretation of the result and recommendations for any indicated changes to therapy. In 2009, 136 clinical pharmacogenetic tests were performed, consisting of 66 TPMT tests, 65 CYP2D6 tests, and 5 UGT1A1 tests. Our service has been met with positive clinician feedback. Conclusion Our experience demonstrates the feasibility of the design and function of a pharmacist-managed Clinical Pharmacogenetics service at an academic specialty hospital. The successful implementation of this service highlights the leadership role that pharmacists can take in moving pharmacogenetics from research to patient care, thereby potentially improving patient outcomes. PMID:21200062

  13. Progress of pharmacogenomic research related to minerals and trace elements.

    Science.gov (United States)

    Zeng, Mei-Zi; Tang, Jie; Liu, Zhao-Qian; Zhou, Hong-Hao; Zhang, Wei

    2015-10-01

    Pharmacogenomics explores the variations in both the benefits and the adverse effects of a drug among patients in a target population by analyzing genomic profiles of individual patients. Minerals and trace elements, which can be found in human tissues and maintain normal physiological functions, are also in the focus of pharmacogenomic research. Single-nucleotide polymorphisms (SNPs) affect the metabolism, disposition and efficacy of minerals and trace elements in humans, resulting in changes of body function. This review describes some of the recent progress in pharmacogenomic research related to minerals and trace elements.

  14. Pharmacogenetics in dermatology: a patient-centered update.

    Science.gov (United States)

    Comfere, Nneka I; Ikediobi, Ogechi N; Peters, Margot S; el-Azhary, Rokea A; Gibson, Lawrence E

    2013-08-01

    The term pharmacogenetics is used to describe an evolving field that aims to understand the relationship between individual variations in genetic sequence and differences in the therapeutic and toxic response to medications. The promise of pharmacogenetics is empowerment of clinicians with information that will enable them to personalize drug therapy - to prescribe the right medication at the right dose for each patient, while minimizing adverse effects. Despite dramatic advances, wide application of pharmacogenetics to clinical practice has been slow for a number of reasons, including lack of evidence-based therapeutic guidelines as well as ethical concerns and cost. To illustrate applications to dermatology practice, we present three clinical scenarios that serve as a springboard for discussion of the principles of pharmacogenetics and how they can be used to guide treatment with azathioprine, 5-fluorouracil, and trastuzumab. The therapeutic and toxic effects of a given medication ultimately depend on its combined pharmacokinetic, pharmacodynamic, and pharmacogenetic properties in a given individual. Pharmacodynamic properties of individual medications must be correlated with single nucleotide polymorphisms. Test recommendations and standardization of therapy for specific disorders can then be established. © 2013 The International Society of Dermatology.

  15. Pharmacogenetics of drug-induced arrhythmias

    DEFF Research Database (Denmark)

    De Bruin, Marie L; van Puijenbroek, Eugene P; Bracke, Madelon

    2006-01-01

    PURPOSE: The bottleneck in pharmacogenetic research on rare adverse drug reactions (ADR) is retrieval of patients. Spontaneous reports of ADRs may form a useful source of patients. We investigated the feasibility of a pharmacogenetic study, in which cases were selected from the database...... of a spontaneous reporting system for ADRs, using drug-induced arrhythmias as an example. METHODS: Reports of drug-induced arrhythmias to proarrhythmic drugs were selected from the database of the Netherlands Pharmacovigilance Centre (1996-2003). Information on the patient's general practitioner (GP) was obtained...... be included in the study, giving an overall participation rate of 9% (4/45). The main reason for GPs not being willing to participate was lack of time. Variants were identified in KCNH2, SCN5A and KCNE1. CONCLUSIONS: Spontaneous reporting systems for ADRs may be used for pharmacogenetic research. The methods...

  16. Pharmacogenetics in drug regulation: promise, potential and pitfalls

    Science.gov (United States)

    Shah, Rashmi R

    2005-01-01

    Pharmacogenetic factors operate at pharmacokinetic as well as pharmacodynamic levels—the two components of the dose–response curve of a drug. Polymorphisms in drug metabolizing enzymes, transporters and/or pharmacological targets of drugs may profoundly influence the dose–response relationship between individuals. For some drugs, although retrospective data from case studies suggests that these polymorphisms are frequently associated with adverse drug reactions or failure of efficacy, the clinical utility of such data remains unproven. There is, therefore, an urgent need for prospective data to determine whether pre-treatment genotyping can improve therapy. Various regulatory guidelines already recommend exploration of the role of genetic factors when investigating a drug for its pharmacokinetics, pharmacodynamics, dose–response relationship and drug interaction potential. Arising from the global heterogeneity in the frequency of variant alleles, regulatory guidelines also require the sponsors to provide additional information, usually pharmacogenetic bridging data, to determine whether data from one ethnic population can be extrapolated to another. At present, sponsors explore pharmacogenetic influences in early clinical pharmacokinetic studies but rarely do they carry the findings forward when designing dose–response studies or pivotal studies. When appropriate, regulatory authorities include genotype-specific recommendations in the prescribing information. Sometimes, this may include the need to adjust a dose in some genotypes under specific circumstances. Detailed references to pharmacogenetics in prescribing information and pharmacogenetically based prescribing in routine therapeutics will require robust prospective data from well-designed studies. With greater integration of pharmacogenetics in drug development, regulatory authorities expect to receive more detailed genetic data. This is likely to complicate the drug evaluation process as well as

  17. The Pharmacogenetics of Metformin

    DEFF Research Database (Denmark)

    Christensen, Mette Marie Hougaard

    2015-01-01

    the sum of results from three pharmacogenetic trials conducted to evaluate this specific hypothesis. The objective of the first study was to evaluate the effect of genetic variations in organic cation transporter 1 and 2 (OCT 1 and 2), multidrug and toxin extrusion transporters 1 and 2-K (MATE 1 and 2-K...... with a more robust type 2 diabetic phenotype, some of the variants may end up as relevant covariates that potentially decrease the observed variability in the metformin response. Our results warrant a pharmacogenetic tracer study in type 2 diabetic patients with different numbers of reduced-function alleles...

  18. Pharmacogenetics-based personalized therapy: Levels of evidence and recommendations from the French Network of Pharmacogenetics (RNPGx).

    Science.gov (United States)

    Picard, Nicolas; Boyer, Jean-Christophe; Etienne-Grimaldi, Marie-Christine; Barin-Le Guellec, Chantal; Thomas, Fabienne; Loriot, Marie-Anne

    2017-04-01

    More than 50 laboratories offer pharmacogenetic testing in France. These tests are restricted to a limited number of indications: prevention of serious adverse drug reactions; choice of most appropriate therapeutic option; dose adjustment for a specific drug. A very small proportion of these tests are mentioned in drug information labeling and the data provided (if any) are generally insufficient to ascertain whether a test is required and if it is useful. This article discusses the rationale for evaluating the performance and clinical usefulness of pharmacogenetics and provides, on behalf of the French national network of pharmacogenetics (RNPGx), three levels of recommendation for testing: essential, advisable, and possibly helpful. Copyright © 2017 Société française de pharmacologie et de thérapeutique. Published by Elsevier Masson SAS. All rights reserved.

  19. Pharmacogenetics of Anti-Diabetes Drugs

    Directory of Open Access Journals (Sweden)

    Johanna K. DiStefano

    2010-08-01

    Full Text Available A variety of treatment modalities exist for individuals with type 2 diabetes mellitus (T2D. In addition to dietary and physical activity interventions, T2D is also treated pharmacologically with nine major classes of approved drugs. These medications include insulin and its analogues, sulfonylureas, biguanides, thiazolidinediones (TZDs, meglitinides, α-glucosidase inhibitors, amylin analogues, incretin hormone mimetics, and dipeptidyl peptidase 4 (DPP4 inhibitors. Pharmacological treatment strategies for T2D are typically based on efficacy, yet favorable responses to such therapeutics are oftentimes variable and difficult to predict. Characterization of drug response is expected to substantially enhance our ability to provide patients with the most effective treatment strategy given their individual backgrounds, yet pharmacogenetic study of diabetes medications is still in its infancy. To date, major pharmacogenetic studies have focused on response to sulfonylureas, biguanides, and TZDs. Here, we provide a comprehensive review of pharmacogenetics investigations of these specific anti-diabetes medications. We focus not only on the results of these studies, but also on how experimental design, study sample issues, and definition of ‘response’ can significantly impact our interpretation of findings. Understanding the pharmacogenetics of anti-diabetes medications will provide critical baseline information for the development and implementation of genetic screening into therapeutic decision making, and lay the foundation for “individualized medicine” for patients with T2D.

  20. Some aspects of genetics and pharmacogenetics understanding by ...

    African Journals Online (AJOL)

    O.V. Filiptsova

    2014-11-18

    Nov 18, 2014 ... aspects of pharmacogenetics when training competent up to date specialists in the ..... In Spain, the monitoring protocol of anticonvulsants, including the cor- ... attempts of the economic efficiency of pharmacogenetic testing.

  1. Pharmacogenomics and Patient Treatment Parameters to Opioid Treatment in Chronic Pain: A Focus on Morphine, Oxycodone, Tramadol, and Fentanyl.

    Science.gov (United States)

    Lloyd, Renae A; Hotham, Elizabeth; Hall, Catherine; Williams, Marie; Suppiah, Vijayaprakash

    2017-12-01

    Opioids are one of the most commonly prescribed medicines for chronic pain. However, their use for chronic pain has been controversial. The objective of this literature review was to identify the role of genetic polymorphisms on patient treatment parameters (opioid dose requirements, response, and adverse effects) for opioids used in malignant and nonmalignant chronic pain. The opioids that this review focuses on are codeine, morphine, oxycodone, tramadol, and fentanyl. A literature search of databases Medline and Embase was carried out, and studies up to April 2016 were included in this review. Studies were included based on a combination of key words: chronic pain and related terms, pharmacogenetics and related terms, and opioids and related terms. Among the 1,408 individual papers retrieved from the search in Medline and Embase, 32 original articles were included in this review, with none related to codeine. The 32 papers reported various study designs, opioids, and polymorphisms being studied for associations with treatment outcomes. This literature review reveals that variants in ABCB1, OPRM1, and COMT have been replicated for opioid dosing and variants in ABCB1 have been replicated for both treatment response and adverse effects. Currently, there are few validated studies to form a strong evidence base to support pharmacogenomics testing when initiating opioid therapy. However, the field of pharmacogenomics in chronic pain is likely to expand over the coming years, with the increasing number of treatment options available and larger cohorts being assembled in order to identify true associations. © 2017 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  2. Personalized Medicine: Pharmacogenomics and Drug Development

    Directory of Open Access Journals (Sweden)

    Somayeh Mirsadeghi

    2017-03-01

    Full Text Available Personalized medicine aims is to supply the proper drug to the proper patient within the right dose. Pharmacogenomics (PGx is to recognize genetic variants that may influence drug efficacy and toxicity. All things considered, the fields cover a wide area, including basic drug discovery researches, the genetic origin of pharmacokinetics and pharmacodynamics, novel drug improvement, patient genetic assessment and clinical patient administration. At last, the objective of Pharmacogenomics is to anticipate a patient’s genetic response to a particular drug as a way of presenting the best possible medical treatment. By predicting the drug response of an individual, it will be possible to increase the success of therapies and decrease the incidence of adverse side effect.

  3. Progress and prospects in pharmacogenetics of antidepressant drugs.

    Science.gov (United States)

    Fabbri, Chiara; Crisafulli, Concetta; Calabrò, Marco; Spina, Edoardo; Serretti, Alessandro

    2016-10-01

    Depression is responsible for the most part of the personal and socio-economic burden due to psychiatric disorders. Since antidepressant response clusters in families, pharmacogenetics represents a meaningful tool to provide tailored treatments and improve the prognosis of depression. This review aims to summarize and discuss the pharmacogenetics of antidepressant drugs in major depressive disorder, with a focus on the most replicated genes, genome-wide association studies (GWAS), but also on the findings provided by new and promising analysis methods. In particular, multimarker tests such as pathway analysis and polygenic risk scores increase the power of detecting associations compared to the analysis of individual polymorphisms. Since genetic variants are not necessarily associated with a change in protein level, gene expression studies may provide complementary information to genetic studies. Finally, the pharmacogenetic tests that have been investigated for clinical application are discussed. Despite the lack of widespread clinical applications, preliminary results suggest that pharmacogenetics may be useful to guide antidepressant treatment. The US Food and Drug Administration included pharmacogenetic indications in the labeling of several antidepressants. This represented an important official recognition of the clinical relevance of genetic polymorphisms in antidepressant treatment.

  4. The perceptions of pharmacists in Victoria, Australia on pharmacogenetics and its implications

    Directory of Open Access Journals (Sweden)

    McMahon T

    2011-09-01

    Full Text Available Objectives: This study aimed to explore how well Victorian pharmacists perceived they understood pharmacogenetics, their perceived capacity to counsel a patient about such testing, how they believed pharmacogenetics would impact upon their profession, and to investigate the ways in which Victorian pharmacists would like to be educated about pharmacogenetics.Methods: A cross-sectional survey was dispatched to 800 Victorian pharmacists. The participants were randomly selected and the survey was anonymous. The survey contained questions about where the pharmacists worked, the pharmacists’ perceived knowledge of pharmacogenetics, how well they believed they would be able to counsel patients about pharmacogenetic testing, how they thought pharmacists should be educated on the topic and how they believed pharmacogenetics would impact upon their profession.Results: 291 surveys were returned (36% response rate. Results suggest that Victorian pharmacists generally perceived they had a poor understanding of pharmacogenetics and that those who have more recently graduated from tertiary education had a better perceived understanding than those who have been in the workforce for longer. Most pharmacists indicated that they did not believe that they could counsel a patient adequately about the results of a pharmacogenetic test. Regarding education about pharmacogenetics, participants suggested that this would be best delivered during tertiary studies, and as seminars and workshops forming part of their continuing professional development. Although some pharmacists were unsure how pharmacogenetics would affect their profession, many believed it would have a major impact upon their role as a pharmacist and lead to improved patient care. Some concerns about the implementation of pharmacogenetics were noted, including economic and ethical issues.Conclusion: This study highlights the need for further research across the pharmacy profession in Australia on the

  5. Rationale and design of the multiethnic Pharmacogenomics in Childhood Asthma consortium

    NARCIS (Netherlands)

    Farzan, Niloufar; Vijverberg, Susanne J.; Andiappan, Anand K.; Arianto, Lambang; Berce, Vojko; Blanca-López, Natalia; Bisgaard, Hans; Bønnelykke, Klaus; Burchard, Esteban G.; Campo, Paloma; Canino, Glorisa; Carleton, Bruce; Celedón, Juan C.; Chew, Fook Tim; Chiang, Wen Chin; Cloutier, Michelle M.; Daley, Denis; den Dekker, Herman T.; Dijk, F. Nicole; Duijts, Liesbeth; Flores, Carlos; Forno, Erick; Hawcutt, Daniel B.; Hernandez-Pacheco, Natalia; de Jongste, Johan C.; Kabesch, Michael; Koppelman, Gerard H.; Manolopoulos, Vangelis G.; Melén, Erik; Mukhopadhyay, Somnath; Nilsson, Sara; Palmer, Colin N.; Pino-Yanes, Maria; Pirmohamed, Munir; Potočnik, Uros; Raaijmakers, Jan A.; Repnik, Katja; Schieck, Maximilian; Sio, Yang Yie; Smyth, Rosalind L.; Szalai, Csaba; Tantisira, Kelan G.; Turner, Steve; van der Schee, Marc P.; Verhamme, Katia M.; Maitland-van der Zee, Anke H.

    2017-01-01

    Aim: International collaboration is needed to enable large-scale pharmacogenomics studies in childhood asthma. Here, we describe the design of the Pharmacogenomics in Childhood Asthma (PiCA) consortium. Materials & methods: Investigators of each study participating in PiCA provided data on the study

  6. Rationale and design of the multiethnic Pharmacogenomics in Childhood Asthma consortium

    NARCIS (Netherlands)

    Farzan, Niloufar; Vijverberg, Susanne J.; Andiappan, Anand K.; Arianto, Lambang; Berce, Vojko; Blanca-Lopez, Natalia; Bisgaard, Hans; Bonnelykke, Klaus; Burchard, Esteban G.; Campo, Paloma; Canino, Glorisa; Carleton, Bruce; Celedon, Juan C.; Chew, Fook Tim; Chiang, Wen Chin; Cloutier, Michelle M.; Daley, Denis; Den Dekker, Herman T.; Dijk, Nicole F.; Duijts, Liesbeth; Flores, Carlos; Forno, Erick; Hawcutt, Daniel B.; Hernandez-Pacheco, Natalia; de Jongste, Johan C.; Kabesch, Michael; Koppelman, Gerard H.; Manolopoulos, Vangelis G.; Melen, Erik; Mukhopadhyay, Somnath; Nilsson, Sara; Palmer, Colin N.; Pino-Yanes, Maria; Pirmohamed, Munir; Potocnki, Uros; Raaijmakers, Jan A.; Repnik, Katja; Schieck, Maximilian; Sio, Yang Yie; Smyth, Rosalind L.; Szalai, Csaba; Tantisira, Kelan G.; Turner, Steve; van der Schee, Marc P.; Verhamme, Katia M.; Maitland-van der Zee, Anke H.

    2017-01-01

    Aim: International collaboration is needed to enable large-scale pharmacogenomics studies in childhood asthma. Here, we describe the design of the Pharmacogenomics in Childhood Asthma (PiCA) consortium.  Materials & methods: Investigators of each study participating in PiCA provided data on the

  7. Fast and frugal trees: translating population-based pharmacogenomics to medication prioritization

    NARCIS (Netherlands)

    Rooij, T. van; Roederer, M.; Wareham, H.T.; Rooij, I.J.E.I. van; McLeod, H.L.; Marsh, S.

    2015-01-01

    Aim: Fast and frugal decision trees (FFTs) can simplify clinical decision making by providing a heuristic approach to contextual guidance. We wanted to use FFTs for pharmacogenomic knowledge translation at point-of-care. Materials & Methods: The Pharmacogenomics for Every Nation Initiative (PGENI),

  8. Single nucleotide polymorphism in genome-wide association of ...

    African Journals Online (AJOL)

    Mohd Fareed

    2012-09-25

    Sep 25, 2012 ... Codeine, Tramadol, Acetaminophen. CYP2C9. Celecoxib .... Pharmacogenet- ics of acute azathioprine toxicity: relationship to thiopurine ... Martinez C, Cueto R,. Garcia-Martin E. Pharmacogenomics in drug induced liver.

  9. Inconsistency in large pharmacogenomic studies

    DEFF Research Database (Denmark)

    Haibe-Kains, Benjamin; El-Hachem, Nehme; Birkbak, Nicolai Juul

    2013-01-01

    Two large-scale pharmacogenomic studies were published recently in this journal. Genomic data are well correlated between studies; however, the measured drug response data are highly discordant. Although the source of inconsistencies remains uncertain, it has potential implications for using...

  10. Reprogenetics and pharmacogenetics: in whose best interests?

    Science.gov (United States)

    Mackenzie, Robin

    2005-06-01

    Reprogenetics involves embryonic pre-implantation genetic diagnosis, provoking controversy over the creation of saviour siblings, eugenics and genetic enhancement. It will soon ascertain pharmacogenetic susceptibilities. Pharmacogenetics impacts upon public health initiatives underpinned by resource allocation constraints in that genetic epidemiological studies assist in administering health care resources and public health strategies. Knowing how likely sections of the population are to develop specific medical conditions so that lifestyle and environmental factors influencing these conditions can be targeted has the potential to save public money and improve public health. Aligning population groups with genetic susceptibilities with specific medications would enable cost-effective prescribing. Reprogenetics and pharmacogenetics also possess great commercial potential for nation states and biotechnology companies. Hence ethical legal safeguards for members of the public whose reproductive or genetic tissue is a research or health care resource are essential. Both legal measures such as informed consent and mechanisms for including the public in policy decisions over reprogenetics and pharmacogenetics must be rethought to ensure that they provide protection rather than function as rubber stamps which preclude deeper inquiry into justifications of projects.

  11. Pharmacogenetics of antidepressant response: An update

    Directory of Open Access Journals (Sweden)

    Drago Antonio

    2009-04-01

    Full Text Available Abstract The past few decades have witnessed much progress in the field of pharmacogenetics. The identification of the genetic background that regulates the antidepressant response has benefited from these advances. This review focuses on the pharmacogenetics of the antidepressant response through the analysis and discussion of the most compelling evidence in this line of research. Online databases (Medline and PsycINFO have been searched and the most replicated association findings relating to the genetics of the antidepressant response have been reported and discussed. Some replicated findings in the literature have suggested the serotonin transporter promoter (5-HTTLPR, serotonin receptor 1A (HTR1A, serotonin receptor 2A (HTR2A, brain derived neurotrophic factor (BDNF, corticotropin releasing hormone receptor 1 (CRHR1 and FK506 binding protein 5 (FKBP5 as putative regulators of the antidepressant response. A high rate of failure of replication has also been reported. Pharmacogenetics will hopefully provide the basis for personalised antidepressant treatment that is able to maximise the probability of a good response and to minimise side effects; however, this goal is not achievable at the moment. The extent of the validity of the replicated findings and the reasons for the poor results obtained from studies of the pharmacogenetics of the antidepressant response are discussed.

  12. Ethiopian health care professionals’ knowledge, attitude, and interests toward pharmacogenomics

    Directory of Open Access Journals (Sweden)

    Abdela OA

    2017-12-01

    Full Text Available Ousman Abubeker Abdela, Akshaya Srikanth Bhagavathula, Eyob Alemayehu Gebreyohannes, Henok Getachew Tegegn Department of Clinical Pharmacy, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia Background: Pharmacogenomics is a field of science which studies the impact of inheritance on individual variation in medication therapy response.Aim: We assessed healthcare professionals’ knowledge, attitude, and interest toward pharmacogenomics.Methods: A cross-sectional survey was conducted using a 32-item questionnaire among physicians, nurses, and pharmacists who were working at the University of Gondar Referral and Teaching Hospital in northwest Ethiopia. Descriptive statistics was applied, and the categorical variables were summarized as frequency and percentages. An analysis of variance (ANOVA test was performed to compare mean scores among health professionals. A p-value of <0.05 was considered as statistically significant.Results: Of 292 health professionals who responded, the majority were male (60% and the mean age of study participants was 27.00 (±4.85 SD years. The mean knowledge scores of all participants, pharmacists, physicians, and nurses were 2.343±1.109, 2.671±1.059, 2.375±1.093, and 2.173±1.110, respectively. Based on the ANOVA test, a statistically significant difference was noted in mean knowledge score between pharmacists and nurses (p=0.002. More than two-thirds (67.33% of nurses, 42.86% of pharmacists, and 40.27% of physicians who participated did not know that genetic variations can account for as much as 95% of the variability in drug disposition and effects. The ability to accurately apply their knowledge to drug therapy selection, dosing, or monitoring parameter was reported by 35.3% of the participants. More than two-thirds (69.2% of participants thought that pharmacogenomic testing will allow the identification of the right drug with less side effects. Most of the

  13. Use of combinatorial pharmacogenomic testing in two cases from community psychiatry

    Directory of Open Access Journals (Sweden)

    Fields ES

    2016-08-01

    Full Text Available Eve S Fields,1 Raymond A Lorenz,2 Joel G Winner2 1Northwest Center for Community Mental Health, Reston, VA, USA; 2Assurex Health, Mason, OH, USA Abstract: This report describes two cases in which pharmacogenomic testing was utilized to guide medication selection for difficult to treat patients. The first patient is a 29-year old male with bipolar disorder who had severe akathisia due to his long acting injectable antipsychotic. The second patient is a 59-year old female with major depressive disorder who was not ­responding to her medication. In both cases, a proprietary combinatorial pharmacogenomic test was used to inform medication changes and improve patient outcomes. The first patient was switched to a long acting injectable that was not affected by his genetic profile and his adverse effects abated. The second patient had her medications discontinued due to the results of the genetic testing and more intense psychotherapy initiated. While pharmacogenomic testing may be ­helpful in cases such as these presented here, it should never serve as a proxy for a comprehensive biopsychosocial approach. The pharmacogenomic information may be selectively added to this comprehensive approach to support medication treatment. Keywords: pharmacogenomics, adverse effects, risperidone, nortriptyline, paliperidone

  14. Pharmacogenetics in electroconvulsive therapy and adjunctive medications.

    Science.gov (United States)

    Mirzakhani, Hooman; van Noorden, Martijn S; Swen, Jesse; Nozari, Ala; Guchelaar, Henk-Jan

    2015-01-01

    Electroconvulsive therapy (ECT) has shown apparent efficacy in treatment of patients with depression and other mental illnesses who do not respond to psychotropic medications or need urgent control of their symptoms. Pharmacogenetics contributes to an individual's sensitivity and response to a variety of drugs. Clinical insights into pharmacogenetics of ECT and adjunctive medications not only improves its safety and efficacy in the indicated patients, but can also lead to the identification of novel treatments in psychiatric disorders through understanding of potential molecular and biological mechanisms involved. In this review, we explore the indications of pharmacogenetics role in safety and efficacy of ECT and present the evidence for its role in patients with psychiatric disorders undergoing ECT.

  15. Clinical utility of asthma biomarkers: from bench to bedside

    Directory of Open Access Journals (Sweden)

    Vijverberg SJH

    2013-08-01

    Full Text Available Susanne JH Vijverberg,1,2,* Bart Hilvering,2,* Jan AM Raaijmakers,1 Jan-Willem J Lammers,2 Anke-Hilse Maitland-van der Zee,1,* Leo Koenderman2,* 1Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands; 2Department of Respiratory Medicine, University Medical Centre Utrecht, Utrecht, The Netherlands *These authors contributed equally to this work Abstract: Asthma is a chronic disease characterized by airway inflammation, bronchial hyperresponsiveness, and recurrent episodes of reversible airway obstruction. The disease is very heterogeneous in onset, course, and response to treatment, and seems to encompass a broad collection of heterogeneous disease subtypes with different underlying pathophysiological mechanisms. There is a strong need for easily interpreted clinical biomarkers to assess the nature and severity of the disease. Currently available biomarkers for clinical practice – for example markers in bronchial lavage, bronchial biopsies, sputum, or fraction of exhaled nitric oxide (FeNO – are limited due to invasiveness or lack of specificity. The assessment of markers in peripheral blood might be a good alternative to study airway inflammation more specifically, compared to FeNO, and in a less invasive manner, compared to bronchoalveolar lavage, biopsies, or sputum induction. In addition, promising novel biomarkers are discovered in the field of breath metabolomics (eg, volatile organic compounds and (pharmacogenomics. Biomarker research in asthma is increasingly shifting from the assessment of the value of single biomarkers to multidimensional approaches in which the clinical value of a combination of various markers is studied. This could eventually lead to the development of a clinically applicable algorithm composed of various markers and clinical features to phenotype asthma and improve diagnosis and asthma management

  16. The inflammatory cytokines: molecular biomarkers for major depressive disorder?

    Science.gov (United States)

    Martin, Charlotte; Tansey, Katherine E; Schalkwyk, Leonard C; Powell, Timothy R

    2015-01-01

    Cytokines are pleotropic cell signaling proteins that, in addition to their role as inflammatory mediators, also affect neurotransmitter systems, brain functionality and mood. Here we explore the potential utility of cytokine biomarkers for major depressive disorder. Specifically, we explore how genetic, transcriptomic and proteomic information relating to the cytokines might act as biomarkers, aiding clinical diagnosis and treatment selection processes. We advise future studies to investigate whether cytokine biomarkers might differentiate major depressive disorder patients from other patient groups with overlapping clinical characteristics. Furthermore, we invite future pharmacogenetic studies to investigate whether early antidepressant-induced changes to cytokine mRNA or protein levels precede behavioral changes and act as longer-term predictors of clinical antidepressant response.

  17. Pharmacogenetics of anti-cancer drugs: State of the art and implementation - recommendations of the French National Network of Pharmacogenetics.

    Science.gov (United States)

    Quaranta, Sylvie; Thomas, Fabienne

    2017-04-01

    Individualized treatment is of special importance in oncology because the drugs used for chemotherapy have a very narrow therapeutic index. Pharmacogenetics may contribute substantially to clinical routine for optimizing cancer treatment to limit toxic effects while maintaining efficacy. This review presents the usefulness of pharmacogenetic tests for some key applications: dihydropyrimidine dehydrogenase (DPYD) genotyping for fluoropyrimidine (5-fluorouracil, capecitabine), UDP glucuronosylstransferase (UGT1A1) for irinotecan and thiopurine S-methyltransferase (TPMT) for thiopurine drugs. Depending on the level of evidence, the French National Network of Pharmacogenetics (RNPGx) has issued three levels of recommendations for these pharmacogenetic tests: essential, advisable, and potentially useful. Other applications, for which the level of evidence is still discussed, will be evoked in the final section of this review. Copyright © 2017 Société française de pharmacologie et de thérapeutique. Published by Elsevier Masson SAS. All rights reserved.

  18. Pharmacogenetics approach to therapeutics.

    Science.gov (United States)

    Koo, Seok Hwee; Lee, Edmund Jon Deoon

    2006-01-01

    1. Pharmacogenetics refers to the study of genetically controlled variations in drug response. Functional variants caused by single nucleotide polymorphisms (SNPs) in genes encoding drug-metabolising enzymes, transporters, ion channels and drug receptors have been known to be associated with interindividual and interethnic variation in drug response. Genetic variations in these genes play a role in influencing the efficacy and toxicity of medications. 2. Rapid, precise and cost-effective high-throughput technological platforms are essential for performing large-scale mutational analysis of genetic markers involved in the aetiology of variable responses to drug therapy. 3. The application of a pharmacogenetics approach to therapeutics in general clinical practice is still far from being achieved today owing to various constraints, such as limited accessibility of technology, inadequate knowledge, ambiguity of the role of variants and ethical concerns. 4. Drug actions are determined by the interplay of several genes encoding different proteins involved in various biochemical pathways. With rapidly emerging SNP discovery technological platforms and widespread knowledge on the role of SNPs in disease susceptibility and variability in drug response, the pharmacogenetics approach to therapeutics is anticipated to take off in the not-too-distant future. This will present profound clinical, economic and social implications for health care.

  19. Pharmacogenetic testing, informed consent and the problem of secondary information.

    Science.gov (United States)

    Netzer, Christian; Biller-Andorno, Nikola

    2004-08-01

    Numerous benefits for patients have been predicted if prescribing decisions were routinely accompanied by pharmacogenetic testing. So far, little attention has been paid to the possibility that the routine application of this new technology could result in considerable harm to patients. This article emphasises that pharmacogenetic testing shares both the opportunities and the pitfalls with 'conventional' disease-genetic testing. It demonstrates that performing pharmacogenetic tests as well as interpreting the results are extraordinarily complex issues requiring a high level of expertise. It further argues that pharmacogenetic testing can have a huge impact on clinical decisions and may influence the therapeutic strategy as well as the clinical monitoring of a patient. This view challenges the predominant paradigm that pharmacogenetic testing will predict patients' responses to medicines, but that it will not provide any other significant disease-specific predictive information about the patient or family members. The article also questions published proposals to reduce the consent procedure for pharmacogenetic testing to a simple statement that the physician wishes to test a sample of the patient's DNA to see if a drug will be safe or whether it will work, and presents an alternative model that is better suited to protect patient's interests and to obtain meaningful informed consent. The paper concludes by outlining conditions for the application of pharmacogenetic testing in clinical practice in a way that can make full use of its potential benefits while minimising possible harm to patients and their families.

  20. Implementation of a pharmacogenomics service in a community pharmacy.

    Science.gov (United States)

    Ferreri, Stefanie P; Greco, Angelo J; Michaels, Natasha M; O'Connor, Shanna K; Chater, Rebecca W; Viera, Anthony J; Faruki, Hawazin; McLeod, Howard L; Roederer, Mary W

    2014-01-01

    OBJECTIVE To determine the feasibility of implementing a pharmacogenomics service in a community pharmacy. SETTING A single community pharmacy that is part of a regional chain known for offering innovative pharmacy services. PRACTICE DESCRIPTION Community pharmacists at the project site routinely provide clinical pharmacy services, including medication therapy management, immunizations, point-of-care testing, blood pressure monitoring, and diabetes education. PRACTICE INNOVATION The implementation of a pharmacogenomic testing and interpretation service for the liver isoenzyme cytochrome P450 2C19. PARTICIPANTS 18 patients taking clopidogrel, a drug metabolized by CYP2C19. MAIN OUTCOME MEASURES Rate of patient participation, rate of prescriber acceptance of pharmacist recommendation, time to perform genetic testing service, and number of claims submitted to and paid by insurance. RESULTS Of 41 patients taking clopidogrel and meeting project criteria, 18 (43.9%) enrolled and completed testing and interpretation of pharmacogenomic results. The mean time pharmacists spent completing all stages of the project with each participant was 76.6 minutes. The mean time to complete participation in the project (time between person's first and second visit) was 30.1 days. Nine patients had wild-type alleles, and pharmacists recommended continuation of therapy as ordered. Genetic variants were found in the other nine patients, and all pharmacist recommendations for modifications in therapy were ultimately accepted by prescribers. Overall, 17 patients consented to filing of reimbursement claims with their insurers. Five were not able to be billed due to submission difficulties. Of the remaining 12, none was paid. CONCLUSION A pharmacogenomics service can be an extension of medication therapy management services in a community pharmacy. Prescribers are receptive to having community pharmacists conduct pharmacogenomics testing, but reimbursement is a challenge.

  1. A pharmacogenetics service experience for pharmacy students, residents, and fellows.

    Science.gov (United States)

    Drozda, Katarzyna; Labinov, Yana; Jiang, Ruixuan; Thomas, Margaret R; Wong, Shan S; Patel, Shitalben; Nutescu, Edith A; Cavallari, Larisa H

    2013-10-14

    To utilize a comprehensive, pharmacist-led warfarin pharmacogenetics service to provide pharmacy students, residents, and fellows with clinical and research experiences involving genotype-guided therapy. First-year (P1) through fourth-year (P4) pharmacy students, pharmacy residents, and pharmacy fellows participated in a newly implemented warfarin pharmacogenetics service in a hospital setting. Students, residents, and fellows provided genotype-guided dosing recommendations as part of clinical care, or analyzed samples and data collected from patients on the service for research purposes. Students', residents', and fellows' achievement of learning objectives was assessed using a checklist based on established core competencies in pharmacogenetics. The mean competency score of the students, residents, and fellows who completed a clinical and/or research experience with the service was 97% ±3%. A comprehensive warfarin pharmacogenetics service provided unique experiential and research opportunities for pharmacy students, residents, and fellows and sufficiently addressed a number of core competencies in pharmacogenetics.

  2. Data science approaches to pharmacogenetics.

    Science.gov (United States)

    Penrod, N M; Moore, J H

    2014-01-01

    Pharmacogenetic studies rely on applied statistics to evaluate genetic data describing natural variation in response to pharmacotherapeutics such as drugs and vaccines. In the beginning, these studies were based on candidate gene approaches that specifically focused on efficacy or adverse events correlated with variants of single genes. This hypothesis driven method required the researcher to have a priori knowledge of which genes or gene sets to investigate. According to rational design, the focus of these studies has been on drug metabolizing enzymes, drug transporters, and drug targets. As technology has progressed, these studies have transitioned to hypothesis-free explorations where markers across the entire genome can be measured in large scale, population based, genome-wide association studies (GWAS). This enables identification of novel genetic biomarkers, therapeutic targets, and analysis of gene-gene interactions, which may reveal molecular mechanisms of drug activities. Ultimately, the challenge is to utilize gene-drug associations to create dosing algorithms based individual genotypes, which will guide physicians and ensure they prescribe the correct dose of the correct drug the first time eliminating trial-and-error and adverse events. We review here basic concepts and applications of data science to the genetic analysis of pharmacologic outcomes.

  3. [Pharmacogenetics in primary health care: implementation and future expectations].

    Science.gov (United States)

    Houwink, Elisa J F; Rigter, Tessel; Swen, Jesse J; Cornel, Martina C; Kienhuis, Anne; Rodenburg, Wendy; Weda, Marjolein

    2015-01-01

    Personalised medicine is a targeted approach to the prevention, diagnosis and treatment of disorders on the basis of the specific genetic profile of the patient. Pharmacogenetics research shows that differences in the genetic profile of patients explain the interindividual differences in efficacy and side effects of medicines. Although there are high expectations of personalised medicine and pharmacogenetics in healthcare, both are only used to a limited extent to date. Pharmacogenetics seems particularly important in diseases with a poor prognosis and treatments with potentially serious side effects. Pharmacogenetics testing is reimbursed in the case of serious side effects or unexpected ineffectiveness. 95% of patients in the Netherlands have at least one abnormality in the panel of genes for which guidance is available. The KNMP (Royal Dutch Pharmacists' Association) provides dosing advice based on genotype for 80 medicines, 27 of which are regularly prescribed in primary health care.

  4. Genetics and pharmacogenomics of diffuse gliomas

    NARCIS (Netherlands)

    van Thuijl, H. F.; Ylstra, B.; Würdinger, T.; van Nieuwenhuizen, D.; Heimans, J. J.; Wesseling, P.; Reijneveld, J. C.

    2013-01-01

    Rapidly evolving techniques for analysis of the genome provide new opportunities for cancer therapy. For diffuse gliomas this has resulted in molecular markers with potential for personalized therapy. Some drugs that utilize pharmacogenomics are currently being tested in clinical trials. In

  5. β-Blocker pharmacogenetics in heart failure

    Science.gov (United States)

    Shin, Jaekyu

    2009-01-01

    β-Blockers (metoprolol, bisoprolol, and carvedilol) are a cornerstone of heart failure (HF) treatment. However, it is well recognized that responses to a β-blocker are variable among patients with HF. Numerous studies now suggest that genetic polymorphisms may contribute to variability in responses to a β-blocker, including left ventricular ejection fraction improvement, survival, and hospitalization due to HF exacerbation. This review summarizes the pharmacogenetic data for β-blockers in patients with HF and discusses the potential implications of β-blocker pharmacogenetics for HF patients. PMID:18437562

  6. The Pharmacist's Perspective on Pharmacogenetics Implementation.

    Science.gov (United States)

    Weitendorf, Frederick; Reynolds, Kristen K

    2016-09-01

    The future for pharmacogenetics will continue to expand. Pharmacists can apply and incorporate drug knowledge in collaboration with other health providers using pharmacogenetics. Patients benefit with enhanced therapeutic outcomes that could lead to more streamlined drug approaches, fewer follow-up visits, cost savings, and shorter times to achieve therapeutic outcomes. As more drug-gene pathways are discovered and use of this knowledge increases, the potential for algorithm development for medication use will occur, resulting in better patient outcomes, higher standard of care, and reflect evidence-based medicine. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. An ontology-based, mobile-optimized system for pharmacogenomic decision support at the point-of-care.

    Directory of Open Access Journals (Sweden)

    Jose Antonio Miñarro-Giménez

    Full Text Available The development of genotyping and genetic sequencing techniques and their evolution towards low costs and quick turnaround have encouraged a wide range of applications. One of the most promising applications is pharmacogenomics, where genetic profiles are used to predict the most suitable drugs and drug dosages for the individual patient. This approach aims to ensure appropriate medical treatment and avoid, or properly manage, undesired side effects.We developed the Medicine Safety Code (MSC service, a novel pharmacogenomics decision support system, to provide physicians and patients with the ability to represent pharmacogenomic data in computable form and to provide pharmacogenomic guidance at the point-of-care. Pharmacogenomic data of individual patients are encoded as Quick Response (QR codes and can be decoded and interpreted with common mobile devices without requiring a centralized repository for storing genetic patient data. In this paper, we present the first fully functional release of this system and describe its architecture, which utilizes Web Ontology Language 2 (OWL 2 ontologies to formalize pharmacogenomic knowledge and to provide clinical decision support functionalities.The MSC system provides a novel approach for enabling the implementation of personalized medicine in clinical routine.

  8. [Pharmacogenetics II. Research molecular methods, bioinformatics and ethical concerns].

    Science.gov (United States)

    Daudén, E

    2007-01-01

    Pharmacogenetics refers to the study of the individual pharmacological response based on the genotype. Its objective is to optimize treatment in an individual basis, thereby creating a more efficient and safe personalized therapy. In the second part of this review, the molecular methods of study in pharmacogenetics, including microarray technology or DNA chips, are discussed. Among them we highlight the microarrays used to determine the gene expression that detect specific RNA sequences, and the microarrays employed to determine the genotype that detect specific DNA sequences, including polymorphisms, particularly single nucleotide polymorphisms (SNPs). The relationship between pharmacogenetics, bioinformatics and ethical concerns is reviewed.

  9. Feasibility of implementing a comprehensive warfarin pharmacogenetics service.

    Science.gov (United States)

    Nutescu, Edith A; Drozda, Katarzyna; Bress, Adam P; Galanter, William L; Stevenson, James; Stamos, Thomas D; Desai, Ankit A; Duarte, Julio D; Gordeuk, Victor; Peace, David; Kadkol, Shrihari S; Dodge, Carol; Saraf, Santosh; Garofalo, John; Krishnan, Jerry A; Garcia, Joe G N; Cavallari, Larisa H

    2013-11-01

    To determine the procedural feasibility of a pharmacist-led interdisciplinary service for providing genotype-guided warfarin dosing for hospitalized patients newly starting warfarin. Prospective observational study. A 438-bed tertiary care hospital affiliated with a large academic institution. Eighty patients who started warfarin therapy and were managed by a newly implemented pharmacogenetics service. All patients received routine warfarin genotyping and clinical pharmacogenetics consultation. The primary outcomes were percentage of genotype-guided dose recommendations available prior to the second warfarin dose and adherence of the medical staff to doses recommended by the pharmacogenetics service. Of 436 genotype orders placed during the first 6 months of the service, 190 (44%) were deemed appropriate. For the 80 patients on the service who consented to data collection, 76% of the genotypes were available prior to the second warfarin dose. The median (range) time from genotype order to genotype result was 26 hours (7-80 hrs), and the time to genotype-guided dose recommendation was 30 hours (7-80 hrs). A total of 73% of warfarin doses ordered by the medical staff were within 0.5 mg of the daily dose recommended by the pharmacogenetics consult service. Providing routine genotype-guided warfarin dosing supported by a pharmacogenetics consult service is feasible from a procedural standpoint, with most genotypes available prior to the second warfarin dose and good adherence to genotype-guided dose recommendations by the medical staff. © 2013 Pharmacotherapy Publications, Inc.

  10. Development of a Post-Graduate Year 2 Pharmacy Residency in Clinical Pharmacogenetics

    Science.gov (United States)

    Hoffman, James M.; Gammal, Roseann S.; Relling, Mary V.; Crews, Kristine R.

    2017-01-01

    Purpose The structure and development of an innovative clinical pharmacogenetics post-graduate year 2 (PGY2) ASHP-accredited residency program is described. Summary The advent of the era of genomics has left practitioners wondering how to interpret the data obtained from sequencing and genotyping patients. In order to train the next leaders in the area of implementing pharmacogenetics, St. Jude Children’s Research Hospital established the first accredited residency program in clinical pharmacogenetics. The 12-month long PGY2 residency was created in accordance with the ASHP standards for advanced practice residencies. The resident learns to optimize patient outcomes through the expert provision of evidence-based, patient-centered precision medicine as an integral part of an interdisciplinary team. The resident gains hands-on experience in a dynamic environment regarding all aspects of running a clinical pharmacogenetics service. Since the first resident graduated in 2012, the program has graduated one resident each year. Conclusion To fill a need for pharmacists trained in pharmacogenetics, an innovative PGY2 residency in clinical pharmacogenetics was successfully developed. Upon completion of the program, residents are equipped with the clinical skills and necessary experience to drive precision medicine forward and lead the implementation of pharmacogenetics in various healthcare settings. PMID:28274984

  11. The Potential Utility of Pharmacogenetic Testing in Psychiatry

    Directory of Open Access Journals (Sweden)

    Kathryn R. Gardner

    2014-01-01

    Full Text Available Over the last decade, pharmacogenetics has become increasingly significant to clinical practice. Psychiatric patients, in particular, may benefit from pharmacogenetic testing as many of the psychotropic medications prescribed in practice lead to varied response rates and a wide range of side effects. The use of pharmacogenetic testing can help tailor psychotropic treatment and inform personalized treatment plans with the highest likelihood of success. Recently, many studies have been published demonstrating improved patient outcomes and decreased healthcare costs for psychiatric patients who utilize genetic testing. This review will describe evidence supporting the clinical utility of genetic testing in psychiatry, present several case studies to demonstrate use in everyday practice, and explore current patient and clinician opinions of genetic testing.

  12. Knowledge of Pharmacogenetics among Healthcare Professionals and Faculty Members of Health Training Institutions in Ghana.

    Science.gov (United States)

    Kudzi, W; Addy, B S; Dzudzor, B

    2015-03-01

    Pharmacogenetics has a potential for optimizing drug response and identifying risk of toxicity for patients. Pharmacogenetics knowledge of healthcare professionals and the unmet need for pharmacogenetics education in health training institutions are some of the challenges of integrating pharmacogenetics into routine medical practice. To assess pharmacogenetics knowledge among healthcare professionals and faculty members of health training institutions in Ghana. Semi-structured questionnaires were used to interview healthcare professionals from selected public and private hospitals. Faculty members from health training institutions were also interviewed. The respondents were Medical doctors 42 (46.7%), Pharmacists 29 (32.2%) and Nurses 19 (21.1%). Healthcare professionals rated their knowledge of Pharmacogenetics as Excellent 5 (5.6%), Very Good 10 (11.2%), Good 53 (60%) and Poor 19 (21.4%). Thirty-two faculty members from health training institutions were also interviewed. Faculty members rated their knowledge of pharmacogenetics as Excellent 2 (6.3%), Very Good 3 (9.4%), Good 9 (28.1%), Fair 12 (37.5%) and Poor 6 (18.8%). Thirty seven percent (12) of these faculty members said pharmacogenetics was not part of their institutions' curriculum, 7 (22%) did not know if pharmacogenetics was part of their curriculum and only 13 (40.6%) said it was part of their curriculum. Few healthcare professionals and faculty members of training institutions are aware of the discipline of pharmacogenetics. There is the need for continuous professional education on pharmacogenetics and development of competency standards for all healthcare professionals in Ghana.

  13. The pharmacogenetics of alcohol use disorder.

    Science.gov (United States)

    Jones, Jermaine D; Comer, Sandra D; Kranzler, Henry R

    2015-03-01

    Annually, the use and abuse of alcohol contributes to millions of deaths and billions of dollars in societal costs. To determine the impact of genetic variation on the susceptibility to the disorder and its response to treatment, studies have been conducted to assess the contribution of a variety of candidate genetic variants. These variants, which we review here, were chosen based upon their observed or hypothesized functional relevance to alcohol use disorder (AUD) risk or to the mechanism by which medications used to treat the disorder exert their effects. This qualitative review examines studies in which candidate polymorphisms were tested as moderator variables to identify pharmacogenetic effects on either the subjective response to alcohol or the outcomes of pharmacotherapy. Although findings from these studies provide evidence of a number of clinically relevant pharmacogenetic effects, the literature is limited and there are conflicting findings that require resolution. Pharmacogenetic studies of AUD treatment that use greater methodological rigor and better statistical controls, such as corrections for multiple testing, may help to resolve inconsistent findings. These procedures could also lead to the discovery of more robust and clinically meaningful moderator effects. As the field evolves through methodological standardization and the use of larger study samples, pharmacogenetic research has the potential to inform clinical care by enhancing therapeutic effects and personalizing treatments. These efforts may also provide insights into the mechanisms by which medications reduce heavy drinking or promote abstinence in patients with an AUD. Copyright © 2015 by the Research Society on Alcoholism.

  14. What is needed to incorporate clinical pharmacogenetic tests into the practice of psychopharmacotherapy?

    Science.gov (United States)

    de Leon, Jose; Spina, Edoardo

    2016-01-01

    This editorial considers two questions in psychopharmacotherapy: 1) What is needed to market pharmacogenetic tests in the US, since the US appears to lead other countries? and 2) What is needed for US-marketed pharmacogenetic tests to be incorporated by prescribers into long-term practice? US marketing of pharmacogenetic tests requires 1) understanding the pharmacological complexity of drug response, 2) modifying the oversight of non-FDA regulatory agencies, 3) clarifying the FDA's role and 4) promoting innovative marketing. The incorporation of pharmacogenetic tests into long-term practice requires 1) not jeopardizing pharmacogenetic testing by short-sighted marketing of non-validated tests, 2) educating prescribers about benefits, 3) educating patients about limitations and 4) considering the differences between isolated testing and generalized testing incorporating big data.

  15. A nationwide survey of pharmacists' perception of pharmacogenetics in the context of a clinical decision support system containing pharmacogenetics dosing recommendations.

    Science.gov (United States)

    Bank, Paul Cd; Swen, Jesse J; Guchelaar, Henk-Jan

    2017-02-01

    To benchmark Dutch pharmacists knowledge, experience and attitudes toward pharmacogenetics (PGx) with a specific focus on the effects of awareness of the Dutch Pharmacogenetics Working Group guidelines. A web-based survey containing 41 questions was sent to all certified Dutch pharmacists. A total of 667 pharmacists completed the survey (18.8%). Virtually all responders believed in the concept of PGx (99.7%). However, only 14.7% recently ordered a PGx test (≤6 months), 14.1% felt adequately informed and 88.8% would like to receive additional training on PGx. Being aware of the Dutch Pharmacogenetics Working Group guidelines did not have any significant effect on knowledge or adoption of PGx. Dutch pharmacists are very positive toward PGx. However, test adoption is low and additional training is warranted.

  16. Pharmacogenetics and the print media: what is the public told?

    Science.gov (United States)

    Almomani, Basima; Hawwa, Ahmed F; Goodfellow, Nicola A; Millership, Jeffrey S; McElnay, James C

    2015-05-09

    Pharmacogenetics is a rapidly growing field that aims to identify the genes that influence drug response. This science can be used as a powerful tool to tailor drug treatment to the genetic makeup of individuals. The present study explores the coverage of the topic of pharmacogenetics and its potential benefit in personalised medicine by the UK newsprint media. The LexisNexis database was used to identify and retrieve full text articles from the 10 highest circulation national daily newspapers and their Sunday equivalents in the UK. Content analysis of newspaper articles which referenced pharmacogenetic testing was carried out. A second researcher coded a random sample (21%) of newspaper articles to establish the inter-rater reliability of coding. Of the 256 articles captured by the search terms, 96 articles (with pharmacogenetics as a major component) met the study inclusion criteria. The majority of articles over-stated the benefits of pharmacogenetic testing while paying less attention to the associated risks. Overall beneficial effects were mentioned 5.3 times more frequently than risks (p pharmacogenetically based personalised medicine was discussed were cancer, cardiovascular disease and CNS diseases. Only 13% of newspaper articles that cited a specific scientific study mentioned this link in the article. There was a positive correlation between the size of the article and both the number of benefits and risks stated (P < 0.01). More comprehensive coverage of the area of personalised medicine within the print media is needed to inform public debate on the inclusion of pharmacogentic testing in routine practice.

  17. The contribution of pharmacogenetics to pharmacovigilance.

    Science.gov (United States)

    Bondon-Guitton, Emmanuelle; Despas, Fabien; Becquemont, Laurent

    2016-04-01

    Since the beginning of this century, information on pharmacogenetics appears in the summary of product characteristics (SPC) of drugs. Pharmacogenetic tests particularly concern the enzymes involved in the metabolism of drugs, among which P450 cytochromes. Some patients known as poor metabolisers eliminate some drugs more slowly, causing overdoses and adverse drug reactions (ADRs). The best-known examples are AVK and VKORC1-CYP2C9 or clopidogrel and CYP2C19. In the USA, the tests are recommended before the introduction of these drugs to prevent the occurrence of ADRs. Other tests are also commonly performed to address the toxicity of certain anticancer drugs (DPYD-capecitabine, UGT1A1-irinotecan, TPMT 6-mercaptopurine). Pharmacogenetic testing is also available to identify HLA loci that are very strongly associated with the occurrence of immuno-allergic reactions to a specific drug. The best-known example is HLA-B*5701, strongly associated with hypersensitivity to abacavir, and this test is now always prescribed before the instatement of this drug. Copyright © 2016 Société française de pharmacologie et de thérapeutique. Published by Elsevier Masson SAS. All rights reserved.

  18. Pharmacogenetic testing through the direct-to-consumer genetic testing company 23andMe.

    Science.gov (United States)

    Lu, Mengfei; Lewis, Cathryn M; Traylor, Matthew

    2017-06-19

    Rapid advances in scientific research have led to an increase in public awareness of genetic testing and pharmacogenetics. Direct-to-consumer (DTC) genetic testing companies, such as 23andMe, allow consumers to access their genetic information directly through an online service without the involvement of healthcare professionals. Here, we evaluate the clinical relevance of pharmacogenetic tests reported by 23andMe in their UK tests. The research papers listed under each 23andMe report were evaluated, extracting information on effect size, sample size and ethnicity. A wider literature search was performed to provide a fuller assessment of the pharmacogenetic test and variants were matched to FDA recommendations. Additional evidence from CPIC guidelines, PharmGKB, and Dutch Pharmacogenetics Working Group was reviewed to determine current clinical practice. The value of the tests across ethnic groups was determined, including information on linkage disequilibrium between the tested SNP and causal pharmacogenetic variant, where relevant. 23andMe offers 12 pharmacogenetic tests to their UK customers, some of which are in standard clinical practice, and others which are less widely applied. The clinical validity and clinical utility varies extensively between tests. The variants tested are likely to have different degrees of sensitivity due to different risk allele frequencies and linkage disequilibrium patterns across populations. The clinical relevance depends on the ethnicity of the individual and variability of pharmacogenetic markers. Further research is required to determine causal variants and provide more complete assessment of drug response and side effects. 23andMe reports provide some useful pharmacogenetics information, mirroring clinical tests that are in standard use. Other tests are unspecific, providing limited guidance and may not be useful for patients without professional interpretation. Nevertheless, DTC companies like 23andMe act as a powerful

  19. Pharmacogenetic considerations in the treatment of HIV.

    Science.gov (United States)

    Mattevi, Vanessa S; Tagliari, Carmela Fs

    2017-01-01

    After the introduction of highly active antiretroviral therapy in the 1990s, the perception of the diagnosis of HIV infection gradually shifted from a 'death sentence' to a chronic disease requiring long-term treatment. The host genetic variability has been shown to play a relevant role in both antiretroviral drugs bioavailability and adverse effects susceptibility. Knowledge about pharmacogenetics role in HIV infection treatment has largely increased over the last years, and is reviewed in the present report, as well as future perspectives for the inclusion of pharmacogenetics information in the directing of HIV infection treatment.

  20. Pharmacogenomics in epilepsy.

    Science.gov (United States)

    Balestrini, Simona; Sisodiya, Sanjay M

    2018-02-22

    There is high variability in the response to antiepileptic treatment across people with epilepsy. Genetic factors significantly contribute to such variability. Recent advances in the genetics and neurobiology of the epilepsies are establishing the basis for a new era in the treatment of epilepsy, focused on each individual and their specific epilepsy. Variation in response to antiepileptic drug treatment may arise from genetic variation in a range of gene categories, including genes affecting drug pharmacokinetics, and drug pharmacodynamics, but also genes held to actually cause the epilepsy itself. From a purely pharmacogenetic perspective, there are few robust genetic findings with established evidence in epilepsy. Many findings are still controversial with anecdotal or less secure evidence and need further validation, e.g. variation in genes for transporter systems and antiepileptic drug targets. The increasing use of genetic sequencing and the results of large-scale collaborative projects may soon expand the established evidence. Precision medicine treatments represent a growing area of interest, focussing on reversing or circumventing the pathophysiological effects of specific gene mutations. This could lead to a dramatic improvement of the effectiveness and safety of epilepsy treatments, by targeting the biological mechanisms responsible for epilepsy in each specific individual. Whilst much has been written about epilepsy pharmacogenetics, there does now seem to be building momentum that promises to deliver results of use in clinic. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Institutional Profile: University of California San Diego Pharmacogenomics Education Program (PharmGenEd™): bridging the gap between science and practice.

    Science.gov (United States)

    Kuo, Grace M; Ma, Joseph D; Lee, Kelly C; Halpert, James R; Bourne, Philip E; Ganiats, Theodore G; Taylor, Palmer

    2011-02-01

    Clinical application of evidence-based pharmacogenomics information has the potential to help healthcare professionals provide safe and effective medication management to patients. However, there is a gap between the advances of pharmacogenomics discovery and the health professionals' knowledge regarding pharmacogenomics testing and therapeutic uses. Furthermore, pharmacogenomics education materials for healthcare professionals have not been readily available or accessible. Pharmacogenomics Education Program (PharmGenEd™) is an evidence-based pharmacogenomics education program developed at the University of California San Diego Skaggs School of Pharmacy and Pharmaceutical Sciences and the School of Medicine (CA, USA), with funding support from the Centers for Disease Control and Prevention. Program components include continuing education modules, train-the-trainer materials and shared curriculum modules based on therapeutic topics, and virtual communities with online resources.

  2. One size fits one: pharmacogenetics in gastroenterology.

    Science.gov (United States)

    Porayette, Prashanth; Flockhart, David; Gupta, Sandeep K

    2014-04-01

    Individual variability in response and development of adverse effects to drugs is a major challenge in clinical practice. Pharmacogenomics refers to the aspect of personalized medicine where the patient's genetic information instructs the selection and dosage of therapy while also predicting its adverse effects profile. Sequencing of the entire human genome has given us the opportunity to study commonly used drugs as well as newer therapeutic agents in a new light, opening up opportunities for better drug efficacy and decreased adverse effects. This article highlights developments in pharmacogenomics, relates these to practice of gastroenterology, and outlines roadblocks in translation of this knowledge into clinical practice. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

  3. The applications of pharmacogenomics to neurological disorders.

    Science.gov (United States)

    Gilman, C; McSweeney, C; Mao, Y

    2014-01-01

    The most common neurological disorders, including neurodegenerative diseases and psychiatric disorders, have received recent attention with regards to pharmacogenomics and personalized medicine. Here, we will focus on a neglected neurodegenerative disorder, cerebral ischemic stroke (CIS), and highlight recent advances in two disorders, Parkinson's disease (PD) and Alzheimer's diseases (AD), that possess both similar and distinct mechanisms in regards to potential therapeutic targets. In the first part of this review, we will focus primarily on mechanisms that are somewhat specific to each disorder which are involved in neurodegeneration (i.e., protease pathways, calcium homeostasis, reactive oxygen species regulation, DNA repair mechanisms, neurogenesis regulation, mitochondrial function, etc.). In the second part of this review, we will discuss the applications of the genome-wide technology on pharmacogenomics of mental illnesses including schizophrenia (SCZ), autism spectrum disorders (ASD), attention deficit hyperactivity disorder (ADHD), and obsessive compulsive disorder (OCD).

  4. Benefits of and Barriers to Pharmacogenomics-Guided Treatment for Major Depressive Disorder.

    Science.gov (United States)

    Ahmed, Ahmed T; Weinshilboum, Richard; Frye, Mark A

    2018-05-01

    Antidepressants have reduced the symptom burden for many Major Depressive Disorder (MDD) patients, but drug-related side effects and treatment resistance continue to present major challenges. Pharmacogenomics represents one approach to enhance antidepressant efficacy and avoid adverse reactions, but concerns remain with regard to the overall "value equation," and several barriers must be overcome to achieve the full potential of MDD pharmacogenomics. © 2018 American Society for Clinical Pharmacology and Therapeutics.

  5. Progress and Promise of Attention-Deficit Hyperactivity Disorder Pharmacogenetics

    Science.gov (United States)

    Froehlich, Tanya E.; McGough, James J.; Stein, Mark A.

    2010-01-01

    One strategy for understanding variability in attention-deficit hyperactivity disorder (ADHD) medication response, and therefore redressing the current trial-and-error approach to ADHD medication management, is to identify genetic moderators of treatment. This article summarizes ADHD pharmacogenetic investigative efforts to date, which have primarily focused on short-term response to methylphenidate and largely been limited by modest sample sizes. The most well studied genes include the dopamine transporter and dopamine D4 receptor, with additional genes that have been significantly associated with stimulant medication response including the adrenergic α2A-receptor, catechol-O-methyltransferase, D5 receptor, noradrenaline (norepinephrine) transporter protein 1 and synaptosomal-associated protein 25 kDa. Unfortunately, results of current ADHD pharmacogenetic studies have not been entirely consistent, possibly due to differences in study design, medication dosing regimens and outcome measures. Future directions for ADHD pharmacogenetics investigations may include examination of drug-metabolizing enzymes and a wider range of stimulant and non-stimulant medications. In addition, researchers are increasingly interested in going beyond the individual candidate gene approach to investigate gene-gene interactions or pathways, effect modification by additional environmental exposures and whole genome approaches. Advancements in ADHD pharmacogenetics will be facilitated by multi-site collaborations to obtain larger sample sizes using standardized protocols. Although ADHD pharmacogenetic efforts are still in a relatively early stage, their potential clinical applications may include the development of treatment efficacy and adverse effect prediction algorithms that incorporate the interplay of genetic and environmental factors, as well as the development of novel ADHD treatments. PMID:20088618

  6. Pharmacogenetics of asthma: toward precision medicine.

    Science.gov (United States)

    Kersten, Elin T G; Koppelman, Gerard H

    2017-01-01

    Although currently available drugs to treat asthma are effective in most patients, a proportion of patients do not respond or experience side-effects; which is partly genetically determined. Pharmacogenetics is the study of how genetic variations influence drug response. In this review, we summarize prior results and recent studies in pharmacogenetics to determine if we can use genetic profiles for personalized treatment of asthma. The field of pharmacogenetics has moved from candidate gene studies in single populations toward genome-wide association studies and meta-analysis of multiple studies. New technologies have been used to enrich results, and an expanding number of genetic loci have been associated with therapeutic responses to asthma drugs. Prospective, genotype-stratified treatment studies have been conducted for β2-agonists, showing attenuated response in children carrying the Arg16 variant in the β2-adrenoreceptor gene. Although there has been much progress, many findings have not been replicated and currently known genetic loci only account for a fraction of variability in drug response. More research is necessary to translate into clinical practice. A polygenic predictive approach integrated in complex networks with other 'omics' technologies could aid to achieve this goal. Finally, to change clinical practice, studies that compare precision medicine with traditional medicine are needed.

  7. Systematic evaluation of clinical practice guidelines for pharmacogenomics.

    Science.gov (United States)

    Beckett, Robert D; Kisor, David F; Smith, Thomas; Vonada, Brooke

    2018-06-01

    To systematically assess methodological quality of pharmacogenomics clinical practice guidelines. Guidelines published through 2017 were reviewed by at least three independent reviewers using the AGREE II instrument, which consists of 23 items grouped into 6 domains and 2 items representing an overall assessment. Items were assessed on a seven-point rating scale, and aggregate quality scores were calculated. 31 articles were included. All guidelines were published as peer-reviewed articles and 90% (n = 28) were endorsed by professional organizations. Mean AGREE II domain scores (maximum score 100%) ranged from 46.6 ± 11.5% ('applicability') to 78.9 ± 11.4% ('clarity of presentation'). Median overall quality score was 72.2% (IQR: 61.1-77.8%). Quality of pharmacogenomics guidelines was generally high, but variable, for most AGREE II domains.

  8. Pharmacogenomics in cardiovascular disorders: Steps in approaching personalized medicine in cardiovascular medicine

    Directory of Open Access Journals (Sweden)

    Christopher Barone

    2009-09-01

    Full Text Available Christopher Barone, Shaymaa S Mousa, Shaker A MousaThe Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY, USAAbstract: Some of the most commonly prescribed medications are those for cardiovascular maladies. The beneficial effects of these medications have been well documented. However, there can be substantial variation in response to these medications among patients, which may be due to genetic variation. For this reason pharmacogenomic studies are emerging across all aspects of cardiovascular medicine. The goal of pharmacogenomics is to tailor treatment to an individual’s genetic makeup in order to improve the benefit-to-risk ratio. This review examines the potential pharmacogenomic parameters which may lead to a future of personalized medicine. For example, it has been found that patients with CYP2C9 and VKORC1 gene variations have a different response to warfarin. Other studies looking at β-blockers, ACE inhibitors, ARBs, diuretics and statins have shown some results linking genetic variations to pharmacologic response. However these studies have not impacted clinical use yet, unlike warfarin findings, as the small retrospective studies need to be followed up by larger prospective studies for definitive results.Keywords: cardiovascular, pharmacogenomics, genetics, cardiovascular medicine, personalized medicine, polymorphism

  9. Racializing drug design: implications of pharmacogenomics for health disparities.

    Science.gov (United States)

    Lee, Sandra Soo-Jin

    2005-12-01

    Current practices of using "race" in pharmacogenomics research demands consideration of the ethical and social implications for understandings of group difference and for efforts to eliminate health disparities. This discussion focuses on an "infrastructure of racialization" created by current trajectories of research on genetic differences among racially identified groups, the use of race as a proxy for risk in clinical practice, and increasing interest in new market niches by the pharmaceutical industry. The confluence of these factors has resulted in the conflation of genes, disease, and race. I argue that public investment in pharmacogenomics requires careful consideration of current inequities in health status and social and ethical concerns over reifying race and issues of distributive justice.

  10. Challenges and pitfalls in the introduction of pharmacogenetics for cancer.

    Science.gov (United States)

    Loh, Marie; Soong, Richie

    2011-08-01

    There have been several success stories in the field of pharmacogenetics in recent years, including the analysis of HER2 amplification for trastuzumab selection in breast cancer and VKORC1 genotyping for warfarin dosing in thrombosis. Encouraging results from these studies suggest that genetic factors may indeed be important determinants of drug response and toxicity for at least some drugs. However, to apply pharmacogenetics appropriately, a thorough understanding of the scope and limitations of this field is required. The challenges include an appreciation of biological variability, logistical issues pertaining to the proper management of information, the need for robust methods and adequate sample quality with well-designed workflows. At the same time, the economics of pharmacogenetic testing from the perspective of clinicians, patients, governments, insurance companies and pharmaceutical companies will play an important role in determining its future use. Ethical considerations such as informed consent and patient privacy, as well as the role of regulatory bodies in addressing these issues, must be fully understood. Only once these issues are properly dealt with can the full benefits of pharmacogenetics begin to be realised.

  11. A survey on the awareness and attitude of pharmacists and doctors towards the application of pharmacogenomics and its challenges in Qatar.

    Science.gov (United States)

    Elewa, Hazem; Alkhiyami, Dania; Alsahan, Dima; Abdel-Aziz, Ahmed

    2015-08-01

    Pharmacists are expected to play an important role in applying pharmacogenomics discoveries to patient care. Despite the increased attention to genetic research in Qatar, clinicians' attitudes towards the application of pharmacogenomics are not yet explored. The aim of this study was to assess the awareness and attitude of pharmacists compared with doctors towards pharmacogenomics and its implications by submitting an electronic-based survey to all pharmacists and doctors currently working in a large medical corporation in Qatar. A cross-sectional survey instrument was developed based on literature review. Eligible participants were pharmacists and doctors currently practicing in Hamad Medical Corporation hospitals in Qatar. The survey comprised questions on demographic and professional characteristics. It also evaluated the awareness, attitudes and challenges towards pharmacogenomics and its application. We collected 202 surveys, 108 (53.2%) of which were pharmacists and the remaining 94 (46.5%) were doctors. The overall participants' mean total awareness score percentage was low (39% ± 22) and there were no difference between the mean score achieved by pharmacists and doctors. Pharmacists had significantly more positive attitudes than doctors towards: (i) taking the responsibility of applying pharmacogenomics to drug therapy selection, dosing and monitoring; (ii) perceiving a positive role of pharmacogenomics testing on the control of drug expenditure; and (iii) their willingness to participate in pharmacogenomics-related training sessions. Both pharmacists and doctors perceived lack of knowledge and guidelines as major challenges towards the application of pharmacogenomics in Qatar. Despite doctors' and pharmacists' low level of awareness towards pharmacogenomics, they both have positive attitudes towards the clinical implications of pharmacogenomics. Pharmacists are more motivated to learn about pharmacogenomics and are more willing to take initiatives in

  12. Pharmspresso: a text mining tool for extraction of pharmacogenomic concepts and relationships from full text.

    Science.gov (United States)

    Garten, Yael; Altman, Russ B

    2009-02-05

    Pharmacogenomics studies the relationship between genetic variation and the variation in drug response phenotypes. The field is rapidly gaining importance: it promises drugs targeted to particular subpopulations based on genetic background. The pharmacogenomics literature has expanded rapidly, but is dispersed in many journals. It is challenging, therefore, to identify important associations between drugs and molecular entities--particularly genes and gene variants, and thus these critical connections are often lost. Text mining techniques can allow us to convert the free-style text to a computable, searchable format in which pharmacogenomic concepts (such as genes, drugs, polymorphisms, and diseases) are identified, and important links between these concepts are recorded. Availability of full text articles as input into text mining engines is key, as literature abstracts often do not contain sufficient information to identify these pharmacogenomic associations. Thus, building on a tool called Textpresso, we have created the Pharmspresso tool to assist in identifying important pharmacogenomic facts in full text articles. Pharmspresso parses text to find references to human genes, polymorphisms, drugs and diseases and their relationships. It presents these as a series of marked-up text fragments, in which key concepts are visually highlighted. To evaluate Pharmspresso, we used a gold standard of 45 human-curated articles. Pharmspresso identified 78%, 61%, and 74% of target gene, polymorphism, and drug concepts, respectively. Pharmspresso is a text analysis tool that extracts pharmacogenomic concepts from the literature automatically and thus captures our current understanding of gene-drug interactions in a computable form. We have made Pharmspresso available at http://pharmspresso.stanford.edu.

  13. [Pharmacogenetics and tailored drug therapy

    DEFF Research Database (Denmark)

    Nielsen, F.C.; Borregaard, N.

    2009-01-01

    Pharmacogenetics traditionally designates the study of genetically determined variation in metabolism of drugs and toxins from the environment. The concept of phamacogenetics has been widened to encompass how essential genetic alterations central to the development of diseases may by used to target...

  14. Clinical Application of Pharmacogenetics: Where are We Now?

    Science.gov (United States)

    2014-01-01

    Pharmacogenetic (PGx) testing has the potential to improve drug therapy in an individual by informing appropriate drug dosing or drug selection in order to maximize efficacy and safety. Although multiple studies have illustrated the potential benefits of such testing when applied to specific drugs across a broad range of therapy areas, the uptake of PGx testing in routine clinical practice has been relatively limited. Implementation appears to be hampered by the absence of sufficiently strong evidence linking the results of testing with actionable benefits in terms of clinical outcomes. Meanwhile, there are now adequate data to allow dosing recommendations as have been developed by bodies including the Dutch Pharmacogenetics Working Group (DPWG) and the Clinical Pharmacogenetics Implementation Consortium (CPIC) in several settings, including TPMT/thiopurines, CYP2C19/clopidogrel, CYP2D6/codeine, VKORC1-CYP2C9/warfarin, HLA-B*5701/abacavir, SLCO1B1/simvastatin and HLAB*5801/allopurinol. The International Federation of Clinical Chemistry and Laboratory Medicine (IFCC) and the International Association of Therapeutic Drug Monitoring and Clinical Toxicology (IATDMCT) have also recently initiated surveys in order to better understand the extent of, and the role played by, PGx testing in clinical practice. This should help identify where further training and education may be beneficial. To this end, in collaboration with ESPT, the IFCC Pharmacogenetic Laboratory Network has now been formed, with the aim of improving the uptake and quality of PGx testing. PMID:27683445

  15. Pharmacogenomics in type II diabetes mellitus management: Steps toward personalized medicine

    Directory of Open Access Journals (Sweden)

    Peter Avery

    2009-09-01

    Full Text Available Peter Avery, Shaymaa S Mousa, Shaker A MousaThe Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY, USAAbstract: Advances in genotype technology in the last decade have put the pharmacogenomics revolution at the forefront of future medicine in clinical practice. Discovery of novel gene variations in drug transporters, drug targets, effector proteins and metabolizing enzymes in the form of single-nucleotide polymorphisms (SNPs continue to provide insight into the biological phenomena that govern drug efficacy and toxicity. To date, novel gene discoveries extracted from genome-wide association scans and candidate gene studies in at least four antidiabetic drug classes have helped illuminate possible causes of interindividual variability in response. Inadequate protocol guidelines for pharmacogenomics studies often leads to poorly designed studies, making it hard to formulate a definitive conclusion regarding the clinical relevance of the information at hand. These issues, along with the ethical, social, political, legislative, technological, and economic challenges associated with pharmacogenomics have only delayed its entry to mainstream clinical practice. On the other hand, these issues are being actively pursued and rapid progress is being made in each area which assures the possibility of gaining widespread acceptance in clinical practice.Keywords: pharmacogenomics, genetics, pharmacokinetics, pharmacodynamics, personalized medicine, type 2 diabetes, pharmacotherapy, antidiabetic drugs, efficacy, and safety

  16. Pharmacogenetic Risk Stratification in Angiotensin-Converting Enzyme Inhibitor-Treated Patients with Congestive Heart Failure

    DEFF Research Database (Denmark)

    Nelveg-Kristensen, Karl Emil; Busk Madsen, Majbritt; Torp-Pedersen, Christian

    2015-01-01

    BACKGROUND: Evidence for pharmacogenetic risk stratification of angiotensin-converting enzyme inhibitor (ACEI) treatment is limited. Therefore, in a cohort of ACEI-treated patients with congestive heart failure (CHF), we investigated the predictive value of two pharmacogenetic scores...... SNPs of the angiotensin-converting enzyme gene (rs4343) and ABO blood group genes (rs495828 and rs8176746). METHODS: Danish patients with CHF enrolled in the previously reported Echocardiography and Heart Outcome Study were included. Subjects were genotyped and categorized according to pharmacogenetic.......05 [95% CI 0.79-1.40]), respectively. CONCLUSIONS: We found no association between either of the analyzed pharmacogenetic scores and fatal outcomes in ACEI-treated patients with CHF....

  17. Primary Care Clinicians Attitudes and Knowledge of Pharmacogenetics in a Large, Multi-state, Healthcare System

    Directory of Open Access Journals (Sweden)

    Megan Olander

    2018-04-01

    Full Text Available   Background: Considerable progress has been made in the way of pharmacogenetic research and the development of clinical recommendations; however, its implementation into clinical practice has been slower than anticipated. We sought to better understand its lack of clinical uptake within primary care. Aim: The primary objective of this survey was to ascertain primary care clinicians’ perceptions of pharmacogenetic use and implementation in an integrated health system of metropolitan and rural settings across several states. Methods: Primary care clinicians (including MDs, DOs, NPs, and PAs were invited to participate in a survey via email. Questions about pharmacogenetics knowledge and perceptions were presented to assess current understanding and usage of pharmacogenetics in practice. Results: The rate of response for the survey was 17%. Of the 90 respondents, 58% were female, 69% were MDs/DOs, 20% were NPs, and 11% were PAs. Fifty-eight percent of respondents received their clinical degree in or after 2000. Ninety percent of respondents noted that they were uncomfortable ordering a pharmacogenetics test, with 76% stating they were uncomfortable applying the results of a pharmacogenetic test. Notably, 78% of respondents were interested in having pharmacogenetic testing available through Medication Therapy Management (MTM services, although PAs were significantly less interested as compared to NPs and MD/DOs. Ninety-five percent of respondents were interested in a clinical decision support tool relevant to pharmacogenetic results. Conclusions: As a whole, prescribing clinicians in primary care clinics are uncomfortable in the ordering, interpreting, and applying pharmacogenetic results to individual patients. However, favorable attitudes towards providing pharmacogenetic testing through existing MTM clinics provides the opportunity for pharmacists to advance existing practices. Conflict of Interest: We declare no conflicts of interest or

  18. Pharmacogenetics of tyrosine kinase inhibitors in gastrointestinal stromal tumor and chronic myeloid leukemia.

    Science.gov (United States)

    Ravegnini, Gloria; Sammarini, Giulia; Angelini, Sabrina; Hrelia, Patrizia

    2016-07-01

    Gastrointestinal stromal tumors (GIST) and chronic myeloid leukemia (CML) are two tumor types deeply different from each other. Despite the differences, these disorders share treatment with tyrosine kinase inhibitor imatinib. Despite the success of imatinib, the response rates vary among different individuals and pharmacogenetics may play an important role in the final clinical outcome. In this review, the authors provide an overview of the pharmacogenetic literature analyzing the role of polymorphisms in both GIST and CML treatment efficacy and toxicity. So far, several polymorphisms influencing the pharmacokinetic determinants of imatinib have been identified. However, the data are not yet conclusive enough to translate pharmacogenetic tests in clinical practice. In this context, the major obstacles to pharmacogenetic test validation are represented by the small sample size of most studies, ethnicity and population admixture as confounding source, and uncertainty related to genetic variants analyzed. In conclusion, a combination of different theoretical approaches, experimental model systems and statistical methods is clearly needed, in order to appreciate pharmacogenetics applied to clinical practice in the near future.

  19. From evidence based medicine to mechanism based medicine. Reviewing the role of pharmacogenetics.

    Science.gov (United States)

    Wilffert, Bob; Swen, Jesse; Mulder, Hans; Touw, Daan; Maitland-Van der Zee, Anke-Hilse; Deneer, Vera

    2013-06-01

    The translation of evidence based medicine to a specific patient presents a considerable challenge. We present by means of the examples nortriptyline, tramadol, clopidogrel, coumarins, abacavir and antipsychotics the discrepancy between available pharmacogenetic information and its implementation in daily clinical practice. Literature review. A mechanism based approach may be helpful to personalize medicine for the individual patient to which pharmacogenetics may contribute significantly. The lack of consistency in what we accept in bioequivalence and in pharmacogenetics of drug metabolising enzymes is discussed and illustrated with the example of nortriptyline. The impact of pharmacogenetics on examples like tramadol, clopidogrel, coumarins and abacavir is described. Also the present status of the polymorphisms of 5-HT2A and C receptors in antipsychotic-induced weight gain is presented as a pharmacodynamic example with until now a greater distance to clinical implementation. The contribution of pharmacogenetics to tailor-made pharmacotherapy, which especially might be of value for patients deviating from the average, has not yet reached the position it seems to deserve.

  20. Generating Genome-Scale Candidate Gene Lists for Pharmacogenomics

    DEFF Research Database (Denmark)

    Hansen, Niclas Tue; Brunak, Søren; Altman, R. B.

    2009-01-01

    A critical task in pharmacogenomics is identifying genes that may be important modulators of drug response. High-throughput experimental methods are often plagued by false positives and do not take advantage of existing knowledge. Candidate gene lists can usefully summarize existing knowledge...

  1. Partnership with the Confederated Salish and Kootenai Tribes: Establishing an Advisory Committee for Pharmacogenetic Research.

    Science.gov (United States)

    Morales, Chelsea T; Muzquiz, LeeAnna I; Howlett, Kevin; Azure, Bernie; Bodnar, Brenda; Finley, Vernon; Incashola, Tony; Mathias, Cheryl; Laukes, Cindi; Beatty, Patrick; Burke, Wylie; Pershouse, Mark A; Putnam, Elizabeth A; Trinidad, Susan Brown; James, Rosalina; Woodahl, Erica L

    2016-01-01

    Inclusion of American Indian and Alaska Native (AI/AN) populations in pharmacogenetic research is key if the benefits of pharmacogenetic testing are to reach these communities. Community-based participatory research (CBPR) offers a model to engage these communities in pharmacogenetics. An academic-community partnership between the University of Montana (UM) and the Confederated Salish and Kootenai Tribes (CSKT) was established to engage the community as partners and advisors in pharmacogenetic research. A community advisory committee, the Community Pharmacogenetics Advisory Council (CPAC), was established to ensure community involvement in the research process. To promote bidirectional learning, researchers gave workshops and presentations about pharmacogenetic research to increase research capacity and CPAC members trained researchers in cultural competencies. As part of our commitment to a sustainable relationship, we conducted a self-assessment of the partnership, which included surveys and interviews with CPAC members and researchers. Academic and community participants agree that the partnership has promoted a bidirectional exchange of knowledge. Interviews showed positive feedback from the perspectives of both the CPAC and researchers. CPAC members discussed their trust in and support of the partnership, as well as having learned more about research processes and pharmacogenetics. Researchers discussed their appreciation of CPAC involvement in the project and guidance the group provided in understanding the CSKT community and culture. We have created an academic-community partnership to ensure CSKT community input and to share decision making about pharmacogenetic research. Our CBPR approach may be a model for engaging AI/AN people, and other underserved populations, in genetic research.

  2. Clinical implementation of pharmacogenetics in kidney transplantation: calcineurin inhibitors in the starting blocks.

    Science.gov (United States)

    Elens, Laure; Bouamar, Rachida; Shuker, Nauras; Hesselink, Dennis A; van Gelder, Teun; van Schaik, Ron H N

    2014-04-01

    Pharmacogenetics has generated many expectations for its potential to individualize therapy proactively and improve medical care. However, despite the huge amount of reported genetic associations with either pharmacokinetics or pharmacodynamics of drugs, the translation into patient care is still slow. In fact, strong evidence for a substantial clinical benefit of pharmacogenetic testing is still limited, with a few exceptions. In kidney transplantation, established pharmacogenetic discoveries are being investigated for application in the clinic to improve efficacy and to limit toxicity associated with the use of immunosuppressive drugs, especially the frequently used calcineurin inhibitors (CNIs) tacrolimus and ciclosporin. The purpose of the present review is to picture the current status of CNI pharmacogenetics and to discuss the most promising leads that have been followed so far. © 2013 The British Pharmacological Society.

  3. Genetics and Treatment Response in Parkinson's Disease: An Update on Pharmacogenetic Studies.

    Science.gov (United States)

    Politi, Cristina; Ciccacci, Cinzia; Novelli, Giuseppe; Borgiani, Paola

    2018-03-01

    Parkinson's disease (PD) is a complex neurodegenerative disorder characterized by a progressive loss of dopamine neurons of the central nervous system. The disease determines a significant disability due to a combination of motor symptoms such as bradykinesia, rigidity and rest tremor and non-motor symptoms such as sleep disorders, hallucinations, psychosis and compulsive behaviors. The current therapies consist in combination of drugs acting to control only the symptoms of the illness by the replacement of the dopamine lost. Although patients generally receive benefits from this symptomatic pharmacological management, they also show great variability in drug response in terms of both efficacy and adverse effects. Pharmacogenetic studies highlighted that genetic factors play a relevant influence in this drug response variability. In this review, we tried to give an overview of the recent progresses in the pharmacogenetics of PD, reporting the major genetic factors identified as involved in the response to drugs and highlighting the potential use of some of these genomic variants in the clinical practice. Many genes have been investigated and several associations have been reported especially with adverse drug reactions. However, only polymorphisms in few genes, including DRD2, COMT and SLC6A3, have been confirmed as associated in different populations and in large cohorts. The identification of genomic biomarkers involved in drug response variability represents an important step in PD treatment, opening the prospective of more personalized therapies in order to identify, for each person, the better therapy in terms of efficacy and toxicity and to improve the PD patients' quality of life.

  4. Pharmacogenomics and the challenge of health disparities.

    Science.gov (United States)

    Lee, S S

    2009-01-01

    This paper examines emerging technologies and recent research on population differences in pharmacogenomics and the perspectives of scientists, community advocates, policymakers, and social critics on the use of race as a proxy for genetic variation. The discussion focuses on how recent developments in genomic science impact social understandings of racial difference and the public health goal to eliminate ongoing health disparities among racially identified groups. This paper examines how factors such as governmental policies--requiring the use of racial and ethnic categories in genetic research and increasing interest in identifying untapped racial market niches by the pharmaceutical and biotechnology industries--and weak governmental oversight of race-based therapeutics converge to create an 'infrastructure of racialization' that may alter the vision of personalized medicine that has been so highly anticipated. This paper argues that significant public investment in pharmacogenomics requires careful consideration of the emerging discourse that tethers racial justice to notions of racial biology and discusses the social and ethical implications for the pendulum shift towards a geneticization of race in drug development. Copyright 2009 S. Karger AG, Basel.

  5. Pharmacogenetics in type 2 diabetes: precision medicine or discovery tool?

    Science.gov (United States)

    Florez, Jose C

    2017-05-01

    In recent years, technological and analytical advances have led to an explosion in the discovery of genetic loci associated with type 2 diabetes. However, their ability to improve prediction of disease outcomes beyond standard clinical risk factors has been limited. On the other hand, genetic effects on drug response may be stronger than those commonly seen for disease incidence. Pharmacogenetic findings may aid in identifying new drug targets, elucidate pathophysiology, unravel disease heterogeneity, help prioritise specific genes in regions of genetic association, and contribute to personalised or precision treatment. In diabetes, precedent for the successful application of pharmacogenetic concepts exists in its monogenic subtypes, such as MODY or neonatal diabetes. Whether similar insights will emerge for the much more common entity of type 2 diabetes remains to be seen. As genetic approaches advance, the progressive deployment of candidate gene, large-scale genotyping and genome-wide association studies has begun to produce suggestive results that may transform clinical practice. However, many barriers to the translation of diabetes pharmacogenetic discoveries to the clinic still remain. This perspective offers a contemporary overview of the field with a focus on sulfonylureas and metformin, identifies the major uses of pharmacogenetics, and highlights potential limitations and future directions.

  6. Researchers' perceptions of the ethical implications of pharmacogenomics research with children.

    Science.gov (United States)

    Avard, D; Silverstein, T; Sillon, G; Joly, Y

    2009-01-01

    This paper presents the results of an exploratory qualitative study that assesses Canadian pediatric researchers' perceptions of a pre-selected group of ethical issues raised by pharmacogenomics research with children. As a pilot study, we conducted semi-structured telephone interviews with Canadian pediatric pharmacogenomic researchers. The interviews were guided by the following themes: (1) benefits and risks of inclusion, (2) the consent/assent process, and (3) the return of research results. Issues about assent, consent, risks and benefits, as well as the communication of results were addressed by the respondents. Some issues, such as the unique vulnerability of children, the long term privacy concerns associated with biobanking, additional core elements that need to be discussed and included in the consent/assent forms, as well as the challenges of communicating research results in a pediatric research were not explicitly identified by the respondents. Further consideration should be given to address the ethical challenges of including children in pharmacogenomics research. This exploratory study indicates that further guidance is needed if children are to be protected and yet benefit from such research. Copyright 2009 S. Karger AG, Basel.

  7. Pharmacogenetic & pharmacokinetic biomarker for efavirenz based ARV and rifampicin based anti-TB drug induced liver injury in TB-HIV infected patients.

    Directory of Open Access Journals (Sweden)

    Getnet Yimer

    Full Text Available BACKGROUND: Implication of pharmacogenetic variations and efavirenz pharmacokinetics in concomitant efavirenz based antiviral therapy and anti-tubercular drug induced liver injury (DILI has not been yet studied. We performed a prospective case-control association study to identify the incidence, pharmacogenetic, pharmacokinetic and biochemical predictors for anti-tubercular and antiretroviral drugs induced liver injury (DILI in HIV and tuberculosis (TB co-infected patients. METHODS AND FINDINGS: Newly diagnosed treatment naïve TB-HIV co-infected patients (n = 353 were enrolled to receive efavirenz based ART and rifampicin based anti-TB therapy, and assessed clinically and biochemically for DILI up to 56 weeks. Quantification of plasma efavirenz and 8-hydroxyefaviernz levels and genotyping for NAT2, CYP2B6, CYP3A5, ABCB1, UGT2B7 and SLCO1B1 genes were done. The incidence of DILI and identification of predictors was evaluated using survival analysis and the Cox Proportional Hazards Model. The incidence of DILI was 30.0%, or 14.5 per 1000 person-week, and that of severe was 18.4%, or 7.49 per 1000 person-week. A statistically significant association of DILI with being of the female sex (p = 0.001, higher plasma efavirenz level (p = 0.009, efavirenz/8-hydroxyefavirenz ratio (p = 0.036, baseline AST (p = 0.022, ALT (p = 0.014, lower hemoglobin (p = 0.008, and serum albumin (p = 0.007, NAT2 slow-acetylator genotype (p = 0.039 and ABCB1 3435TT genotype (p = 0.001. CONCLUSION: We report high incidence of anti-tubercular and antiretroviral DILI in Ethiopian patients. Between patient variability in systemic efavirenz exposure and pharmacogenetic variations in NAT2, CYP2B6 and ABCB1 genes determines susceptibility to DILI in TB-HIV co-infected patients. Close monitoring of plasma efavirenz level and liver enzymes during early therapy and/or genotyping practice in HIV clinics is recommended for early identification

  8. Understanding the pharmacogenetics of selective serotonin reuptake inhibitors.

    Science.gov (United States)

    Fabbri, Chiara; Minarini, Alessandro; Niitsu, Tomihisa; Serretti, Alessandro

    2014-08-01

    The genetic background of antidepressant response represents a unique opportunity to identify biological markers of treatment outcome. Encouraging results alternating with inconsistent findings made antidepressant pharmacogenetics a stimulating but often discouraging field that requires careful discussion about cumulative evidence and methodological issues. The present review discusses both known and less replicated genes that have been implicated in selective serotonin reuptake inhibitors (SSRIs) efficacy and side effects. Candidate genes studies and genome-wide association studies (GWAS) were collected through MEDLINE database search (articles published till January 2014). Further, GWAS signals localized in promising genetic regions according to candidate gene studies are reported in order to assess the general comparability of results obtained through these two types of pharmacogenetic studies. Finally, a pathway enrichment approach is applied to the top genes (those harboring SNPs with p pharmacogenetics, the present review discusses the proposal of moving from the analysis of individual polymorphisms to genes and molecular pathways, and from the separation across different methodological approaches to their combination. Efforts in this direction are justified by the recent evidence of a favorable cost-utility of gene-guided antidepressant treatment.

  9. Pharmacogenomics and Nanotechnology Toward Advancing Personalized Medicine

    Science.gov (United States)

    Vizirianakis, Ioannis S.; Amanatiadou, Elsa P.

    The target of personalized medicine to achieve major benefits for all patients in terms of diagnosis and drug delivery can be facilitated by creating a sincere multidisciplinary information-based infrastructure in health care. To this end, nanotechnology, pharmacogenomics, and informatics can advance the utility of personalized medicine, enable clinical translation of genomic knowledge, empower healthcare environment, and finally improve clinical outcomes.

  10. Individualization of antiretroviral therapy

    Directory of Open Access Journals (Sweden)

    Pavlos R

    2011-12-01

    Full Text Available Rebecca Pavlos, Elizabeth J PhillipsInstitute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, AustraliaAbstract: Antiretroviral therapy (ART has evolved considerably over the last three decades. From the early days of monotherapy with high toxicities and pill burdens, through to larger pill burdens and more potent combination therapies, and finally, from 2005 and beyond where we now have the choice of low pill burdens and once-daily therapies. More convenient and less toxic regimens are also becoming available, even in resource-poor settings. An understanding of the individual variation in response to ART, both efficacy and toxicity, has evolved over this time. The strong association of the major histocompatibility class I allele HLA-B*5701 and abacavir hypersensitivity, and its translation and use in routine HIV clinical practice as a predictive marker with 100% negative predictive value, has been a success story and a notable example of the challenges and triumphs in bringing pharmacogenetics to the clinic. In real clinical practice, however, it is going to be the exception rather than the rule that individual biomarkers will definitively guide patient therapy. The need for individualized approaches to ART has been further increased by the importance of non-AIDS comorbidities in HIV clinical practice. In the future, the ideal utilization of the individualized approach to ART will likely consist of a combined approach using a combination of knowledge of drug, virus, and host (pharmacogenetic and pharmacoecologic [factors in the individual's environment that may be dynamic over time] information to guide the truly personalized prescription. This review will focus on our knowledge of the pharmacogenetics of the efficacy and toxicity of currently available antiretroviral agents and the current and potential utility of such information and approaches in present and future HIV clinical care.Keywords: HIV

  11. Pharmacogenetics and outcome with antipsychotic drugs.

    Science.gov (United States)

    Pouget, Jennie G; Shams, Tahireh A; Tiwari, Arun K; Müller, Daniel J

    2014-12-01

    Antipsychotic medications are the gold-standard treatment for schizophrenia, and are often prescribed for other mental conditions. However, the efficacy and side-effect profiles of these drugs are heterogeneous, with large interindividual variability. As a result, treatment selection remains a largely trial-and-error process, with many failed treatment regimens endured before finding a tolerable balance between symptom management and side effects. Much of the interindividual variability in response and side effects is due to genetic factors (heritability, h(2)~ 0.60-0.80). Pharmacogenetics is an emerging field that holds the potential to facilitate the selection of the best medication for a particular patient, based on his or her genetic information. In this review we discuss the most promising genetic markers of antipsychotic treatment outcomes, and present current translational research efforts that aim to bring these pharmacogenetic findings to the clinic in the near future.

  12. Multiomics Data Triangulation for Asthma Candidate Biomarkers and Precision Medicine.

    Science.gov (United States)

    Pecak, Matija; Korošec, Peter; Kunej, Tanja

    2018-06-01

    Asthma is a common complex disorder and has been subject to intensive omics research for disease susceptibility and therapeutic innovation. Candidate biomarkers of asthma and its precision treatment demand that they stand the test of multiomics data triangulation before they can be prioritized for clinical applications. We classified the biomarkers of asthma after a search of the literature and based on whether or not a given biomarker candidate is reported in multiple omics platforms and methodologies, using PubMed and Web of Science, we identified omics studies of asthma conducted on diverse platforms using keywords, such as asthma, genomics, metabolomics, and epigenomics. We extracted data about asthma candidate biomarkers from 73 articles and developed a catalog of 190 potential asthma biomarkers (167 human, 23 animal data), comprising DNA loci, transcripts, proteins, metabolites, epimutations, and noncoding RNAs. The data were sorted according to 13 omics types: genomics, epigenomics, transcriptomics, proteomics, interactomics, metabolomics, ncRNAomics, glycomics, lipidomics, environmental omics, pharmacogenomics, phenomics, and integrative omics. Importantly, we found that 10 candidate biomarkers were apparent in at least two or more omics levels, thus promising potential for further biomarker research and development and precision medicine applications. This multiomics catalog reported herein for the first time contributes to future decision-making on prioritization of biomarkers and validation efforts for precision medicine in asthma. The findings may also facilitate meta-analyses and integrative omics studies in the future.

  13. Preemptive clinical pharmacogenetics implementation: current programs in five US medical centers.

    Science.gov (United States)

    Dunnenberger, Henry M; Crews, Kristine R; Hoffman, James M; Caudle, Kelly E; Broeckel, Ulrich; Howard, Scott C; Hunkler, Robert J; Klein, Teri E; Evans, William E; Relling, Mary V

    2015-01-01

    Although the field of pharmacogenetics has existed for decades, practioners have been slow to implement pharmacogenetic testing in clinical care. Numerous publications describe the barriers to clinical implementation of pharmacogenetics. Recently, several freely available resources have been developed to help address these barriers. In this review, we discuss current programs that use preemptive genotyping to optimize the pharmacotherapy of patients. Array-based preemptive testing includes a large number of relevant pharmacogenes that impact multiple high-risk drugs. Using a preemptive approach allows genotyping results to be available prior to any prescribing decision so that genomic variation may be considered as an inherent patient characteristic in the planning of therapy. This review describes the common elements among programs that have implemented preemptive genotyping and highlights key processes for implementation, including clinical decision support.

  14. Neuroimaging in psychiatric pharmacogenetics research: the promise and pitfalls.

    Science.gov (United States)

    Falcone, Mary; Smith, Ryan M; Chenoweth, Meghan J; Bhattacharjee, Abesh Kumar; Kelsoe, John R; Tyndale, Rachel F; Lerman, Caryn

    2013-11-01

    The integration of research on neuroimaging and pharmacogenetics holds promise for improving treatment for neuropsychiatric conditions. Neuroimaging may provide a more sensitive early measure of treatment response in genetically defined patient groups, and could facilitate development of novel therapies based on an improved understanding of pathogenic mechanisms underlying pharmacogenetic associations. This review summarizes progress in efforts to incorporate neuroimaging into genetics and treatment research on major psychiatric disorders, such as schizophrenia, major depressive disorder, bipolar disorder, attention-deficit/hyperactivity disorder, and addiction. Methodological challenges include: performing genetic analyses in small study populations used in imaging studies; inclusion of patients with psychiatric comorbidities; and the extensive variability across studies in neuroimaging protocols, neurobehavioral task probes, and analytic strategies. Moreover, few studies use pharmacogenetic designs that permit testing of genotype × drug effects. As a result of these limitations, few findings have been fully replicated. Future studies that pre-screen participants for genetic variants selected a priori based on drug metabolism and targets have the greatest potential to advance the science and practice of psychiatric treatment.

  15. Pharmacogenetics of asthma : toward precision medicine

    NARCIS (Netherlands)

    Kersten, Elin T. G.; Koppelman, Gerard H.

    PURPOSE OF REVIEW: Although currently available drugs to treat asthma are effective in most patients, a proportion of patients do not respond or experience side-effects; which is partly genetically determined. Pharmacogenetics is the study of how genetic variations influence drug response. In this

  16. Pharmacogenetics of Antipsychotics

    Science.gov (United States)

    Brandl, Eva J; Kennedy, James L; Müller, Daniel J

    2014-01-01

    Objective: During the past decades, increasing efforts have been invested in studies to unravel the influence of genetic factors on antipsychotic (AP) dosage, treatment response, and occurrence of adverse effects. These studies aimed to improve clinical care by predicting outcome of treatment with APs and thus allowing for individualized treatment strategies. We highlight most important findings obtained through both candidate gene and genome-wide association studies, including pharmacokinetic and pharmacodynamic factors. Methods: We reviewed studies on pharmacogenetics of AP response and adverse effects published on PubMed until early 2012. Owing to the high number of published studies, we focused our review on findings that have been replicated in independent studies or are supported by meta-analyses. Results: Most robust findings were reported for associations between polymorphisms of the cytochrome P450 system, the dopamine and the serotonin transmitter systems, and dosage, treatment response, and adverse effects, such as AP-induced weight gain or tardive dyskinesia. These associations were either detected for specific medications or for classes of APs. Conclusion: First promising and robust results show that pharmacogenetics bear promise for a widespread use in future clinical practice. This will likely be achieved by developing algorithms that will include many genetic variants. However, further investigation is warranted to replicate and validate previous findings, as well as to identify new genetic variants involved in AP response and for replication of existing findings. PMID:24881126

  17. Pharmacogenetics: has the time come for pharmacists to embrace and implement the science?

    Science.gov (United States)

    Beier, Manju T; Panchapagesan, Madhumitha; Carman, Ladd E

    2013-11-01

    Pharmacogenetics--the study of interindividual differences in medication response as a result of genetic variations--has emerged as a potentially useful tool for individualizing medication regimens for patients. Genetic variations can affect drug disposition inseveral ways, from modifying receptor sensitivities to impacting drug metabolism. Over the last several years, the Food and Drug Administration has been steadily including pharmacogenetic information in drug labeling for several commonly prescribed drugs. Several organizations are attempting to provide evidence-based guidelines for widespread implementation and interpretation. Pharmacists, armed with knowledge of drug metabolism pathways and drug-gene interactions, are uniquely positioned to play an active role in the education, provision, and clinical implementation of pharmacogenetics.

  18. Pharmacogenomics genes show varying perceptibility to microRNA regulation

    DEFF Research Database (Denmark)

    Rukov, Jakob Lewin; Vinther, Jeppe; Shomron, Noam

    2011-01-01

    The aim of pharmacogenomics is to identify individual differences in genome and transcriptome composition and their effect on drug efficacy. MicroRNAs (miRNAs) are short noncoding RNAs that negatively regulate expression of the majority of animal genes, including many genes involved in drug...

  19. Translating pharmacogenomics : Challenges on the road to the clinic

    NARCIS (Netherlands)

    Swen, Jesse J.; Huizinga, Tom W.; Gelderblom, Hans; de Vries, Elisabeth G. E.; Assendelft, Willem J. J.; Kirchheiner, Julia; Guchelaar, Henk-Jan

    2007-01-01

    Pharmacogenomics is one of the first clinical applications of the postgenomic era. It promises personalized medicine rather than the established "one size fits all" approach to drugs and dosages. The expected reduction in trial and error should ultimately lead to more efficient and safer drug

  20. Pharmacogenetics of the β2-Adrenergic Receptor Gene

    Science.gov (United States)

    Ortega, Victor E.; Hawkins, Gregory A.; Peters, Stephen P.; Bleecker, Eugene R.

    2009-01-01

    Asthma is a complex genetic disease with multiple genetic and environmental determinants contributing to the observed variability in response to common anti-asthma therapies. Asthma pharmacogenetic research has focused on multiple candidate genes including the β2-adrenergic receptor gene (ADRβ2) and its effect on individual responses to beta agonist therapy. At present, knowledge about the effects of ADRβ2 variation on therapeutic responses is evolving and should not alter current Asthma Guideline approaches consisting of the use of short acting beta agonists for as-needed symptom based therapy and the use of a regular long-acting beta agonist in combination with inhaled corticosteroid therapy for optimal control of asthma symptoms in those asthmatics who are not controlled on inhaled corticosteroid alone. This approach is based upon studies showing a consistent pharmacogenetic response to regular use of short acting beta agonists (SABA) and less consistent findings in studies evaluating long acting beta agonist (LABA). While emerging pharmacogenetic studies are provocative and should lead to functional approaches, conflicting data with responses to LABA therapy may be caused by factors that include small sample sizes of study populations and differences in experimental design that may limit the conclusions that may be drawn from these clinical trials at the present time. PMID:17996583

  1. Pharmacogenetics of immunosuppressants: State of the art and clinical implementation - recommendations from the French National Network of Pharmacogenetics (RNPGx).

    Science.gov (United States)

    Woillard, Jean-Baptiste; Chouchana, Laurent; Picard, Nicolas; Loriot, Marie-Anne

    2017-04-01

    Therapeutic drug monitoring is already widely used for immunosuppressive drugs due to their narrow therapeutic index. This article summarizes evidence reported in the literature regarding the pharmacogenetics of (i) immunosuppressive drugs used in transplantation and (ii) azathioprine used in chronic inflammatory bowel disease. The conditions of use of currently available major pharmacogenetic tests are detailed and recommendations are provided based on a scale established by the RNPGx scoring tests as "essential", "advisable" and "potentially useful". Other applications for which the level of evidence is still debated are also discussed. Copyright © 2017 Société française de pharmacologie et de thérapeutique. Published by Elsevier Masson SAS. All rights reserved.

  2. Pharmacogenomic diversity among Brazilians: Influence of ancestry, self-reported Color and geographical origin

    Directory of Open Access Journals (Sweden)

    Guilherme eSuarez-Kurtz

    2012-11-01

    Full Text Available By virtue of being the product of the genetic admixture of three ancestral roots: Europeans, Africans and Amerindians, the present day Brazilian population displays very high levels of genomic diversity, which have important pharmacogenetic/-genomic (PGx implications. Recognition of this fact has prompted the creation of the Brazilian Pharmacogenomics Network (Refargen, a nationwide consortium of research groups, with the mission to provide leadership in PGx research and education in Brazil, with a population heath impact. Here, we present original data and review published results from a Refargen comprehensive study of the distribution of PGx polymorphisms in a representative cohort of the Brazilian people, comprising 1,034 healthy, unrelated adults, self-identified as white, brown or black, according to the Color categories adopted by the Brazilian Census. Multinomial log-linear regression analysis was applied to infer the statistical association between allele, genotype and haplotype distributions among Brazilians (response variables and self-reported Color, geographical region and biogeographical ancestry (explanatory variables, whereas Wright´s FST statistics was used to assess the extent of PGx divergence among different strata of the Brazilian population. Major PGx implications of these findings are: first, extrapolation of data from relatively well-defined ethnic groups is clearly not applicable to the majority of Brazilians; second, the frequency distribution of polymorphisms in several pharmacogenes of clinical relevance (e.g. ABCB1, CYP3A5, CYP2C9, VKORC varies continuously among Brazilians and is not captured by race/Color self-identification; third, the intrinsic heterogeneity of the Brazilian population must be acknowledged in the design and interpretation of PGx studies in order to avoid spurious conclusions based on improper matching of study cohorts.

  3. The role of pharmacogenetics in the treatment of chronic hepatitis C infection.

    Science.gov (United States)

    Kawaguchi-Suzuki, Marina; Frye, Reginald F

    2014-02-01

    Hepatitis C virus (HCV) chronically infects 170 million people worldwide. Until recently, combination therapy with peginterferon-α (pegIFN) and ribavirin (RBV) has been the standard of care. However, for many patients, especially those infected with the most common HCV genotype 1 (HCV-1), this treatment has resulted in unsatisfactory treatment response rates. Many clinical factors, including pharmacogenetics, influence the treatment response rate. Genetic variation in the interleukin 28B (IL28B) gene is the major determinant of treatment response, a finding that has been replicated in multiple independent cohorts. This review focuses on the association between pharmacogenetics and conventional pegIFN/RBV therapy in patients infected with HCV non-genotype 1; patients reinfected with HCV after liver transplantation; and patients coinfected with HCV and human immunodeficiency virus. We also review the pharmacogenetic data for boceprevir and telaprevir triple therapy in patients with HCV-1 infection, as well as viral genomic polymorphisms and genetic variants that may protect against anemia. Pharmacogenetic information offers a personalized medicine approach to help clinicians and patients make better informed decisions to maximize response and minimize toxicity for the treatment of chronic HCV infection. © 2013 Pharmacotherapy Publications, Inc.

  4. Pharmacogenetics predictive of response and toxicity in acute lymphoblastic leukemia therapy.

    Science.gov (United States)

    Mei, Lin; Ontiveros, Evelena P; Griffiths, Elizabeth A; Thompson, James E; Wang, Eunice S; Wetzler, Meir

    2015-07-01

    Acute lymphoblastic leukemia (ALL) is a relatively rare disease in adults accounting for no more than 20% of all cases of acute leukemia. By contrast with the pediatric population, in whom significant improvements in long term survival and even cure have been achieved over the last 30years, adult ALL remains a significant challenge. Overall survival in this group remains a relatively poor 20-40%. Modern research has focused on improved pharmacokinetics, novel pharmacogenetics and personalized principles to optimize the efficacy of the treatment while reducing toxicity. Here we review the pharmacogenetics of medications used in the management of patients with ALL, including l-asparaginase, glucocorticoids, 6-mercaptopurine, methotrexate, vincristine and tyrosine kinase inhibitors. Incorporating recent pharmacogenetic data, mainly from pediatric ALL, will provide novel perspective of predicting response and toxicity in both pediatric and adult ALL therapies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Implementing pharmacogenomics decision support across seven European countries: The Ubiquitous Pharmacogenomics (U-PGx) project.

    Science.gov (United States)

    Blagec, Kathrin; Koopmann, Rudolf; Crommentuijn-van Rhenen, Mandy; Holsappel, Inge; van der Wouden, Cathelijne H; Konta, Lidija; Xu, Hong; Steinberger, Daniela; Just, Enrico; Swen, Jesse J; Guchelaar, Henk-Jan; Samwald, Matthias

    2018-02-09

    Clinical pharmacogenomics (PGx) has the potential to make pharmacotherapy safer and more effective by utilizing genetic patient data for drug dosing and selection. However, widespread adoption of PGx depends on its successful integration into routine clinical care through clinical decision support tools, which is often hampered by insufficient or fragmented infrastructures. This paper describes the setup and implementation of a unique multimodal, multilingual clinical decision support intervention consisting of digital, paper-, and mobile-based tools that are deployed across implementation sites in seven European countries participating in the Ubiquitous PGx (U-PGx) project. © The Author(s) 2018. Published by Oxford University Press on behalf of the American Medical Informatics Association.

  6. Pharmacogenetics of ribavirin-induced anemia in hepatitis C.

    Science.gov (United States)

    Ampuero, Javier; Romero-Gómez, Manuel

    2016-09-01

    Pharmacogenetics assesses inherited genetic differences in drug metabolic pathways and its role in medicine is growing. Ribavirin (RBV) and peginterferon were the standard of care therapy in hepatitis C virus infection during 15 years, with the addition of first-generation protease inhibitors at the beginning of 2010s. New direct-acting agents are the new standard of care, but RBV remains important in some scenarios. The main adverse effect of RBV is anemia, which requires dose reduction and even stopping treatment in some patients. Pharmacogenetics has identified ITPA and SLC28/29 genes to be closely related to RBV-induced anemia. The routine evaluation of these genes could help to identify those patients at risk of developing anemia during the hepatitis C virus treatment.

  7. Asthma pharmacogenetics and the development of genetic profiles for personalized medicine

    Directory of Open Access Journals (Sweden)

    Ortega VE

    2015-01-01

    Full Text Available Victor E Ortega, Deborah A Meyers, Eugene R Bleecker Center for Genomics and Personalized Medicine Research, Pulmonary Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA Abstract: Human genetics research will be critical to the development of genetic profiles for personalized or precision medicine in asthma. Genetic profiles will consist of gene variants that predict individual disease susceptibility and risk for progression, predict which pharmacologic therapies will result in a maximal therapeutic benefit, and predict whether a therapy will result in an adverse response and should be avoided in a given individual. Pharmacogenetic studies of the glucocorticoid, leukotriene, and β2-adrenergic receptor pathways have focused on candidate genes within these pathways and, in addition to a small number of genome-wide association studies, have identified genetic loci associated with therapeutic responsiveness. This review summarizes these pharmacogenetic discoveries and the future of genetic profiles for personalized medicine in asthma. The benefit of a personalized, tailored approach to health care delivery is needed in the development of expensive biologic drugs directed at a specific biologic pathway. Prior pharmacogenetic discoveries, in combination with additional variants identified in future studies, will form the basis for future genetic profiles for personalized tailored approaches to maximize therapeutic benefit for an individual asthmatic while minimizing the risk for adverse events. Keywords: asthma, pharmacogenetics, response heterogeneity, single nucleotide polymorphism, genome-wide association study

  8. Biotechnology, nanotechnology, and pharmacogenomics and pharmaceutical compounding, Part 1.

    Science.gov (United States)

    Allen, Loyd V

    2015-01-01

    The world of pharmaceuticals is changing rapidly as biotechnology continues to grow and nanotechnology appears on the horizon. Biotechnology is gaining in importance in extemporaneous pharmaceutical compounding, and nanotechnology and pharmacogenomics could drastically change the practice of pharmacy. This article discusses biotechnology and the factors to consider when compounding biotechnology drugs.

  9. Preemptive Clinical Pharmacogenetics Implementation: Current programs in five United States medical centers

    Science.gov (United States)

    Dunnenberger, Henry M.; Crews, Kristine R.; Hoffman, James M.; Caudle, Kelly E.; Broeckel, Ulrich; Howard, Scott C.; Hunkler, Robert J.; Klein, Teri E.; Evans, William E.; Relling, Mary V.

    2015-01-01

    Although the field of pharmacogenetics has existed for decades, the implementation of, pharmacogenetic testing in clinical care has been slow. There are numerous publications, describing the barriers to clinical implementation of pharmacogenetics. Recently, several freely, available resources have been developed to help address these barriers. In this review we, discuss current programs that use preemptive genotyping to optimize the pharmacotherapy of, patients. Array-based preemptive testing includes a large number of relevant pharmacogenes, that impact multiple high-risk drugs. Using a preemptive approach allows genotyping results to, be available prior to any prescribing decision so that genomic variation may be considered as, an inherent patient characteristic in the planning of therapy. This review describes the common, elements among programs that have implemented preemptive genotyping and highlights key, processes for implementation, including clinical decision support. PMID:25292429

  10. P450 Pharmacogenetics in Indigenous North American Populations

    Directory of Open Access Journals (Sweden)

    Lindsay M. Henderson

    2018-02-01

    Full Text Available Indigenous North American populations, including American Indian and Alaska Native peoples in the United States, the First Nations, Métis and Inuit peoples in Canada and Amerindians in Mexico, are historically under-represented in biomedical research, including genomic research on drug disposition and response. Without adequate representation in pharmacogenetic studies establishing genotype-phenotype relationships, Indigenous populations may not benefit fully from new innovations in precision medicine testing to tailor and improve the safety and efficacy of drug treatment, resulting in health care disparities. The purpose of this review is to summarize and evaluate what is currently known about cytochrome P450 genetic variation in Indigenous populations in North America and to highlight the importance of including these groups in future pharmacogenetic studies for implementation of personalized drug therapy.

  11. Pharmacogenetics of drug-induced arrhythmias : a feasibility study using spontaneous adverse drug reactions reporting data

    NARCIS (Netherlands)

    De Bruin, Marie L; van Puijenbroek, Eugene P; Bracke, Madelon; Hoes, Arno W; Leufkens, Hubert G M

    PURPOSE: The bottleneck in pharmacogenetic research on rare adverse drug reactions (ADR) is retrieval of patients. Spontaneous reports of ADRs may form a useful source of patients. We investigated the feasibility of a pharmacogenetic study, in which cases were selected from the database of a

  12. Race, pharmacogenomics, and marketing: putting BiDil in context.

    Science.gov (United States)

    Kahn, Jonathan

    2006-01-01

    This article endeavors to place into context recent developments surrounding the United States Food and Drug Administration recent approval of BiDil (isosorbide dinitrate/hydralazine hydrochloride) (NitroMed, Inc., Lexington, MA) as the first ever race-specific drug--in this case to treat heart failure in African Americans. It focuses in particular on both commercial incentives and statistical manipulation of medical data as framing the drive to bring BiDil to market as a race-specific drug. In current discourse about pharmacogenomics, targeting a racial audience is perceived as necessary because at this point the technology and resources do not exist to scan efficiently every individual's genetic profile. The article argues that medical researchers may say they are using race as a surrogate to target biology in drug development, but corporations are using biology as a surrogate to target race in drug marketing. Pharmacogenomics may hold great promise, but on our way to that Promised Land, it is imperative to review such short cuts with a critical eye.

  13. Pharmacogenetics in Neurodegenerative Diseases: Implications for Clinical Trials.

    Science.gov (United States)

    Tortelli, Rosanna; Seripa, Davide; Panza, Francesco; Solfrizzi, Vincenzo; Logroscino, Giancarlo

    2016-01-01

    Pharmacogenetics has become extremely important over the last 20 years for identifying individuals more likely to be responsive to pharmacological interventions. The role of genetic background as a predictor of drug response is a young and mostly unexplored field in neurodegenerative diseases. Mendelian mutations in neurodegenerative diseases have been used as models for early diagnosis and intervention. On the other hand, genetic polymorphisms or risk factors for late-onset Alzheimer's disease (AD) or other neurodegenerative diseases, probably influencing drug response, are hardly taken into account in randomized clinical trial (RCT) design. The same is true for genetic variants in cytochrome P450 (CYP), the principal enzymes influencing drug metabolism. A better characterization of individual genetic background may optimize clinical trial design and personal drug response. This chapter describes the state of the art about the impact of genetic factors in RCTs on neurodegenerative disease, with AD, frontotemporal dementia, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease as examples. Furthermore, a brief description of the genetic bases of drug response focusing on neurodegenerative diseases will be conducted. The role of pharmacogenetics in RCTs for neurodegenerative diseases is still a young, unexplored, and promising field. Genetic tools allow increased sophistication in patient profiling and treatment optimization. Pharmaceutical companies are aware of the value of collecting genetic data during their RCTs. Pharmacogenetic research is bidirectional with RCTs: efficacy data are correlated with genetic polymorphisms, which in turn define subjects for treatment stratification. © 2016 S. Karger AG, Basel.

  14. Pharmacogenetics of clozapine treatment response and side-effects in schizophrenia: an update.

    Science.gov (United States)

    Sriretnakumar, Venuja; Huang, Eric; Müller, Daniel J

    2015-01-01

    Clozapine (CLZ) is the most effective treatment for treatment-resistant schizophrenia (SCZ) patients, with potential added benefits of reduction in suicide risk and aggression. However, CLZ is also mainly underused due to its high risk for the potentially lethal side-effect of agranulocytosis as well as weight gain and related metabolic dysregulation. Pharmacogenetics promises to enable the prediction of patient treatment response and risk of adverse effects based on patients' genetics, paving the way toward individualized treatment. This article reviews pharmacogenetics studies of CLZ response and side-effects with a focus on articles from January 2012 to February 2015, as an update to the previous reviews. Pharmacokinetic genes explored primarily include CYP1A2, while pharmacodynamic genes consisted of traditional pharmacogenetic targets such as brain-derived neurotrophic factor as well novel mitochondrial genes, NDUFS-1 and translocator protein. Pharmacogenetics is a promising avenue for individualized medication of CLZ in SCZ, with several consistently replicated gene variants predicting CLZ response and side-effects. However, a large proportion of studies have yielded mixed results. Large-scale Genome-wide association studies (e.g., CRESTAR) and targeted gene studies with standardized designs (response measurements, treatment durations, plasma level monitoring) are required for further progress toward clinical translation. Additionally, in order to improve study quality, we recommend accounting for important confounders, including polypharmacy, baseline measurements, treatment duration, gender, and age at onset.

  15. Do guidelines recommending pharmacogenetic testing of psychiatric patients affect treatment costs and the use of healthcare services?

    DEFF Research Database (Denmark)

    Herbild, Louise; Bech, Mickael; Gyrd-Hansen, Dorte

    2011-01-01

    To identify the effects of local recommendations of pharmacogenetic testing in psychiatry with respect to treatment costs.......To identify the effects of local recommendations of pharmacogenetic testing in psychiatry with respect to treatment costs....

  16. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for Pharmacogenetics-Guided Warfarin Dosing: 2017 Update.

    Science.gov (United States)

    Johnson, J A; Caudle, K E; Gong, L; Whirl-Carrillo, M; Stein, C M; Scott, S A; Lee, M T; Gage, B F; Kimmel, S E; Perera, M A; Anderson, J L; Pirmohamed, M; Klein, T E; Limdi, N A; Cavallari, L H; Wadelius, M

    2017-09-01

    This document is an update to the 2011 Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for CYP2C9 and VKORC1 genotypes and warfarin dosing. Evidence from the published literature is presented for CYP2C9, VKORC1, CYP4F2, and rs12777823 genotype-guided warfarin dosing to achieve a target international normalized ratio of 2-3 when clinical genotype results are available. In addition, this updated guideline incorporates recommendations for adult and pediatric patients that are specific to continental ancestry. © 2017 American Society for Clinical Pharmacology and Therapeutics.

  17. Cholinesterase inhibitors in Alzheimer's disease and Lewy body spectrum disorders: the emerging pharmacogenetic story

    Directory of Open Access Journals (Sweden)

    Lam Benjamin

    2009-12-01

    Full Text Available Abstract This review provides an update on the current state of pharmacogenetic research in the treatment of Alzheimer's disease (AD and Lewy body disease (LBD as it pertains to the use of cholinesterase inhibitors (ChEI. AD and LBD are first reviewed from clinical and pathophysiological perspectives. This is followed by a discussion of ChEIs used in the symptomatic treatment of these conditions, focusing on their unique and overlapping pharmacokinetic and pharmacodynamic profiles, which can be used to identify candidate genes for pharmacogenetics studies. The literature published to date is then reviewed and limitations are discussed. This is followed by a discussion of potential endophenotypes which may help to refine future pharmacogenetic studies of response and adverse effects to ChEIs.

  18. Measuring pharmacogenetics in special groups: geriatrics.

    Science.gov (United States)

    Seripa, Davide; Panza, Francesco; Daragjati, Julia; Paroni, Giulia; Pilotto, Alberto

    2015-07-01

    The cytochrome P450 (CYP) enzymes oxidize about 80% of the most commonly used drugs. Older patients form a very interesting clinical group in which an increased prevalence of adverse drug reactions (ADRs) and therapeutic failures (TFs) is observed. Might CYP drug metabolism change with age, and justify the differences in drug response observed in a geriatric setting? A complete overview of the CYP pharmacogenetics with a focus on the epigenetic CYP gene regulation by DNA methylation in the context of advancing age, in which DNA methylation might change. Responder phenotypes consist of a continuum spanning from ADRs to TFs, with the best responders at the midpoint. CYP genetics is the basis of this continuum on which environmental and physiological factors act, modeling the phenotype observed in clinical practice. Physiological age-related changes in DNA methylation, the main epigenetic mechanisms regulating gene expression in humans, results in a physiological decrease in CYP gene expression with advancing age. This may be one of the physiological changes that, together with increased drug use, contributed to the higher prevalence of ADRs and TFs observed in the geriatric setting, thus, making geriatrics a special group for pharmacogenetics.

  19. Pharmacogenetics of Vascular Risk Factors in Alzheimer’s Disease

    Science.gov (United States)

    Cacabelos, Ramón; Meyyazhagan, Arun; Carril, Juan C.; Cacabelos, Pablo; Teijido, Óscar

    2018-01-01

    Alzheimer’s disease (AD) is a polygenic/complex disorder in which genomic, epigenomic, cerebrovascular, metabolic, and environmental factors converge to define a progressive neurodegenerative phenotype. Pharmacogenetics is a major determinant of therapeutic outcome in AD. Different categories of genes are potentially involved in the pharmacogenetic network responsible for drug efficacy and safety, including pathogenic, mechanistic, metabolic, transporter, and pleiotropic genes. However, most drugs exert pleiotropic effects that are promiscuously regulated for different gene products. Only 20% of the Caucasian population are extensive metabolizers for tetragenic haplotypes integrating CYP2D6-CYP2C19-CYP2C9-CYP3A4/5 variants. Patients harboring CYP-related poor (PM) and/or ultra-rapid (UM) geno-phenotypes display more irregular profiles in drug metabolism than extensive (EM) or intermediate (IM) metabolizers. Among 111 pentagenic (APOE-APOB-APOC3-CETP-LPL) haplotypes associated with lipid metabolism, carriers of the H26 haplotype (23-TT-CG-AG-CC) exhibit the lowest cholesterol levels, and patients with the H104 haplotype (44-CC-CC-AA-CC) are severely hypercholesterolemic. Furthermore, APOE, NOS3, ACE, AGT, and CYP variants influence the therapeutic response to hypotensive drugs in AD patients with hypertension. Consequently, the implementation of pharmacogenetic procedures may optimize therapeutics in AD patients under polypharmacy regimes for the treatment of concomitant vascular disorders. PMID:29301387

  20. Pharmacogenetics of Vascular Risk Factors in Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Ramón Cacabelos

    2018-01-01

    Full Text Available Alzheimer’s disease (AD is a polygenic/complex disorder in which genomic, epigenomic, cerebrovascular, metabolic, and environmental factors converge to define a progressive neurodegenerative phenotype. Pharmacogenetics is a major determinant of therapeutic outcome in AD. Different categories of genes are potentially involved in the pharmacogenetic network responsible for drug efficacy and safety, including pathogenic, mechanistic, metabolic, transporter, and pleiotropic genes. However, most drugs exert pleiotropic effects that are promiscuously regulated for different gene products. Only 20% of the Caucasian population are extensive metabolizers for tetragenic haplotypes integrating CYP2D6-CYP2C19-CYP2C9-CYP3A4/5 variants. Patients harboring CYP-related poor (PM and/or ultra-rapid (UM geno-phenotypes display more irregular profiles in drug metabolism than extensive (EM or intermediate (IM metabolizers. Among 111 pentagenic (APOE-APOB-APOC3-CETP-LPL haplotypes associated with lipid metabolism, carriers of the H26 haplotype (23-TT-CG-AG-CC exhibit the lowest cholesterol levels, and patients with the H104 haplotype (44-CC-CC-AA-CC are severely hypercholesterolemic. Furthermore, APOE, NOS3, ACE, AGT, and CYP variants influence the therapeutic response to hypotensive drugs in AD patients with hypertension. Consequently, the implementation of pharmacogenetic procedures may optimize therapeutics in AD patients under polypharmacy regimes for the treatment of concomitant vascular disorders.

  1. Can pharmacogenetics explain efficacy and safety of cisplatin pharmacotherapy?

    Directory of Open Access Journals (Sweden)

    Juan Pablo Cayún Pellizaris

    2014-11-01

    Full Text Available In recent times, several investigations have been seeking an explanation for the great variability in both outcome and toxicity in cisplatin-based therapy through pharmacogenetic studies. These studies have focused on the genetic variability of therapeutic targets that could affect cisplatin response and toxicity in diverse type of cancer including lung, gastric, ovarian, testicular and esophageal cancer. In this review, we seek to update the reader in this area of investigation, focusing primarily on DNA reparation enzymes and cisplatin metabolism through Glutathione S-Transferases (GST genes. Current evidence indicates a potential application of pharmacogenetics in therapeutic schemes where cisplatin is the cornerstone of these treatments. Therefore, a collaborative effort is required to study these molecular characteristics in order to generate a genetic panel with clinic utility.

  2. Attention-deficit hyperactivity disorder in adults: A systematic review and meta-analysis of genetic, pharmacogenetic and biochemical studies

    Science.gov (United States)

    Bonvicini, C; Faraone, S V; Scassellati, C

    2016-01-01

    The adult form of attention-deficit/hyperactivity disorder has a prevalence of up to 5% and is the most severe long-term outcome of this common disorder. Family studies in clinical samples as well as twin studies suggest a familial liability and consequently different genes were investigated in association studies. Pharmacotherapy with methylphenidate (MPH) seems to be the first-line treatment of choice in adults with attention-deficit hyperactive disorder (ADHD) and some studies were conducted on the genes influencing the response to this drug. Finally some peripheral biomarkers were identified in ADHD adult patients. We believe this work is the first systematic review and meta-analysis of candidate gene association studies, pharmacogenetic and biochemical (metabolomics) studies performed in adults with ADHD to identify potential genetic, predictive and peripheral markers linked specifically to ADHD in adults. After screening 5129 records, we selected 87 studies of which 61 were available for candidate gene association studies, 5 for pharmacogenetics and 21 for biochemical studies. Of these, 15 genetic, 2 pharmacogenetic and 6 biochemical studies were included in the meta-analyses. We obtained an association between adult ADHD and the gene BAIAP2 (brain-specific angiogenesis inhibitor 1-associated protein 2), even after Bonferroni correction, with any heterogeneity in effect size and no publication bias. If we did not apply the Bonferroni correction, a trend was found for the carriers allele 9R of dopamine transporter SLC6A3 40 bp variable tandem repeat polymorphism (VNTR) and for 6/6 homozygotes of SLC6A3 30 bp VNTR. Negative results were obtained for the 9-6 haplotype, the dopamine receptor DRD4 48 bp VNTR, and the enzyme COMT SNP rs4680. Concerning pharmacogenetic studies, no association was found for the SLC6A3 40 bp and response to MPH with only two studies selected. For the metabolomics studies, no differences between ADHD adults and controls were

  3. Pharmacogenetic approaches to the prediction of drug response

    International Nuclear Information System (INIS)

    Vesell, E.S.

    1986-01-01

    The following review of pharmacogenetic progress and methodology is offered to stimulate and suggest analogous studies on drugs of abuse. It is readily acknowledged that formidable methodological problems are posed by adapting to drugs of abuse these pharmacogenetic approaches based on the administration of single safe doses of various prescription drugs to normal subjects under carefully controlled environmental conditions. Results of similarly designed studies on drugs of abuse in addicts might be uninterpretable because of confounding by numerous environmental perturbations, including the smoking of cigarettes and/or marijuana, nutritional variations, and intake of other drugs such as ethanol. Ethical considerations render objectionable the administration to unaddicted subjects of drugs at dosage levels usually ingested by drug abusers. Other approaches would have to be taken in such normal subjects. Possibilities include administration of tracer doses of /sup 14/C- or /sup 13/C- labeled drugs or growth of normal cells in culture to investigate their pharmacokinetic and/or pharmacodynamic responses to various drugs of abuse

  4. Early health technology assessments in pharmacogenomics: a case example in cardiovascular drugs

    NARCIS (Netherlands)

    Geenen, Joost W.; Baranova, Ekaterina V.; Asselbergs, Folkert W.; de Boer, Anthonius; Vreman, Rick A.; Palmer, Colin Na; Maitland-van der Zee, Anke H.; Hövels, Anke M.

    2017-01-01

    Aim: To assess the required characteristics (cost, sensitivity and specificity) of a pharmacogenomic test for being a cost-effective prevention of angiotensin-converting enzyme inhibitors induced angioedema. Furthermore, we assessed the influence of only testing high-risk populations. Materials &

  5. The pharmacogenomics of escitalopram in the treatment of neuropathic pain

    DEFF Research Database (Denmark)

    Andersen, Charlotte Brasch; Møller, Malik U; Sindrup, Søren Hein

    and the non-responders, which led to a pharmacogenomic study investigating genetic differences between the two groups for functional variants in genes involved in the signaling pathway for serotonin.  We tested the serotonin receptor subunits 5-HTR2C G68C (rs6318) and 5-HTR2A C1354T (rs6314) both giving rise...

  6. Hot Topics in Pharmacogenetics of Age-Related Macular Degeneration.

    Science.gov (United States)

    Schwartz, Stephen G; Brantley, Milam A; Kovach, Jaclyn L; Grzybowski, Andrzej

    2017-01-01

    Age-related macular degeneration (AMD) is a leading cause of irreversible visual loss and is primarily treated with nutritional supplementation as well as with anti-vascular endothelial growth factor (VEGF) agents for certain patients with neovascular disease. AMD is a complex disease with both genetic and environmental risk factors. In addition, treatment outcomes from nutritional supplementation and anti-VEGF agents vary considerably. Therefore, it is reasonable to suspect that there may be pharmacogenetic influences on these treatments. Many series have reported individual associations with variants in complement factor H (CFH), age-related maculopathy susceptibility 2 (ARMS2), and other loci. However, at this time there are no validated associations. With respect to AMD, pharmacogenetics remains an intriguing area of research but is not helpful for routine clinical management. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Cost-effectiveness of pharmacogenetics-guided warfarin therapy vs. alternative anticoagulation in atrial fibrillation.

    Science.gov (United States)

    Pink, J; Pirmohamed, M; Lane, S; Hughes, D A

    2014-02-01

    Pharmacogenetics-guided warfarin dosing is an alternative to standard clinical algorithms and new oral anticoagulants for patients with nonvalvular atrial fibrillation. However, clinical evidence for pharmacogenetics-guided warfarin dosing is limited to intermediary outcomes, and consequently, there is a lack of information on the cost-effectiveness of anticoagulation treatment options. A clinical trial simulation of S-warfarin was used to predict times within therapeutic range for different dosing algorithms. Relative risks of clinical events, obtained from a meta-analysis of trials linking times within therapeutic range with outcomes, served as inputs to an economic analysis. Neither dabigatran nor rivaroxaban were cost-effective options. Along the cost-effectiveness frontier, in relation to clinically dosed warfarin, pharmacogenetics-guided warfarin and apixaban had incremental cost-effectiveness ratios of £13,226 and £20,671 per quality-adjusted life year gained, respectively. On the basis of our simulations, apixaban appears to be the most cost-effective treatment.

  8. Pharmacogenetics of the Neurodevelopmental Impact of Anticancer Chemotherapy

    Science.gov (United States)

    Robaey, Philippe; Krajinovic, Maja; Marcoux, Sophie; Moghrabi, Albert

    2008-01-01

    Pharmacogenetics holds the promise of minimizing adverse neurodevelopmental outcomes of cancer patients by identifying patients at risk, enabling the individualization of treatment and the planning of close follow-up and early remediation. This review focuses first on methotrexate, a drug often implicated in neurotoxicity, especially when used in…

  9. An XML-based interchange format for genotype-phenotype data.

    Science.gov (United States)

    Whirl-Carrillo, M; Woon, M; Thorn, C F; Klein, T E; Altman, R B

    2008-02-01

    Recent advances in high-throughput genotyping and phenotyping have accelerated the creation of pharmacogenomic data. Consequently, the community requires standard formats to exchange large amounts of diverse information. To facilitate the transfer of pharmacogenomics data between databases and analysis packages, we have created a standard XML (eXtensible Markup Language) schema that describes both genotype and phenotype data as well as associated metadata. The schema accommodates information regarding genes, drugs, diseases, experimental methods, genomic/RNA/protein sequences, subjects, subject groups, and literature. The Pharmacogenetics and Pharmacogenomics Knowledge Base (PharmGKB; www.pharmgkb.org) has used this XML schema for more than 5 years to accept and process submissions containing more than 1,814,139 SNPs on 20,797 subjects using 8,975 assays. Although developed in the context of pharmacogenomics, the schema is of general utility for exchange of genotype and phenotype data. We have written syntactic and semantic validators to check documents using this format. The schema and code for validation is available to the community at http://www.pharmgkb.org/schema/index.html (last accessed: 8 October 2007). (c) 2007 Wiley-Liss, Inc.

  10. Cost-effectiveness of pharmacogenomics in clinical practice: A case study of thiopurine methyltransferase genotyping in acute lymphoblastic leukemia in Europe

    NARCIS (Netherlands)

    Akker-van Marle, M.E. van den; Gurwitz, D.; Detmar, S.B.; Enzing, C.M.; Hopkins, M.M.; Gutierrez De Mesa, E.; Ibarreta, D.

    2006-01-01

    Only a few studies have addressed the cost-effectiveness of pharmacogenetics interventions in healthcare. Lack of health economics data on aspects of pharmacogenetics is perceived as one of the barriers hindering its implementation for improving drug safety. Thus, a recent Institute for Prospective

  11. Characterisation of the HLA-DRB1*07:01 biomarker for lapatinib-induced liver toxicity during treatment of early-stage breast cancer patients with lapatinib in combination with trastuzumab and/or taxanes

    DEFF Research Database (Denmark)

    Spraggs, C F; Parham, L R; Briley, L P

    2018-01-01

    HLA-DRB1*07:01 allele carriage was characterised as a risk biomarker for lapatinib-induced liver injury in a large global study evaluating lapatinib, alone and in combination with trastuzumab and taxanes, as adjuvant therapy for advanced breast cancer (adjuvant lapatinib and/or trastuzumab treatm.......The Pharmacogenomics Journal advance online publication, 8 August 2017; doi:10.1038/tpj.2017.39....

  12. Characterisation of the HLA-DRB1*07:01 biomarker for lapatinib-induced liver toxicity during treatment of early-stage breast cancer patients with lapatinib in combination with trastuzumab and/or taxanes

    DEFF Research Database (Denmark)

    Spraggs, C F; Parham, L R; Briley, L P

    2017-01-01

    HLA-DRB1*07:01 allele carriage was characterised as a risk biomarker for lapatinib-induced liver injury in a large global study evaluating lapatinib, alone and in combination with trastuzumab and taxanes, as adjuvant therapy for advanced breast cancer (adjuvant lapatinib and/or trastuzumab treatm.......The Pharmacogenomics Journal advance online publication, 8 August 2017; doi:10.1038/tpj.2017.39....

  13. Serotonin Reuptake Inhibitors in Pregnancy: Can Genes Help Us in Predicting Neonatal Adverse Outcome?

    Directory of Open Access Journals (Sweden)

    Valentina Giudici

    2014-01-01

    Full Text Available Lots has been written on use of SSRI during pregnancy and possible short and long term negative outcomes on neonates. the literature so far has described a various field of peripartum illness related to SSRI exposure during foetal life, such as increased incidence of low birth weight, respiratory distress, persistent pulmonary hypertension, poor feeding, and neurobehavioural disease. We know that different degrees of outcomes are possible, and not all the newborns exposed to SSRIs during pregnancy definitely will develop a negative outcome. So far, still little is known about the possible etiologic mechanism that could not only explain the adverse neonatal effects but also the degree of clinical involvement and presentation in the early period after birth. Pharmacogenetics and moreover pharmacogenomics, the study of specific genetic variations and their effect on drug response, are not widespread. This review describes possible relationship between SSRIs pharmacogenetics and different neonatal outcomes and summarizes the current pharmacogenetic inquiries in relation to maternal-foetal environment.

  14. Analysis of pharmacogenetic traits in two distinct South African populations

    Directory of Open Access Journals (Sweden)

    Ikediobi Ogechi

    2011-05-01

    Full Text Available Abstract Our knowledge of pharmacogenetic variability in diverse populations is scarce, especially in sub-Saharan Africa. To bridge this gap in knowledge, we characterised population frequencies of clinically relevant pharmacogenetic traits in two distinct South African population groups. We genotyped 211 tagging single nucleotide polymorphisms (tagSNPs in 12 genes that influence antiretroviral drug disposition, in 176 South African individuals belonging to two distinct population groups residing in the Western Cape: the Xhosa (n = 109 and Cape Mixed Ancestry (CMA (n = 67 groups. The minor allele frequencies (MAFs of eight tagSNPs in six genes (those encoding the ATP binding cassette sub-family B, member 1 [ABCB1], four members of the cytochrome P450 family [CYP2A7P1, CYP2C18, CYP3A4, CYP3A5] and UDP-glucuronosyltransferase 1 [UGT1A1] were significantly different between the Xhosa and CMA populations (Bonferroni p CYP2C18, CYP3A4, the gene encoding solute carrier family 22 member 6 [SLC22A6] and UGT1A1 between the two South African populations. Characterising the Xhosa and CMA population frequencies of variant alleles important for drug transport and metabolism can help to establish the clinical relevance of pharmacogenetic testing in these populations.

  15. Current clinical evidence on pioglitazone pharmacogenomics

    Directory of Open Access Journals (Sweden)

    Marina eKawaguchi-Suzuki

    2013-11-01

    Full Text Available Pioglitazone is the most widely used thiazolidinedione and acts as an insulin-sensitizer through activation of the Peroxisome Proliferator-Activated Receptor-γ (PPARγ. Pioglitazone is approved for use in the management of type 2 diabetes mellitus, but its use in other therapeutic areas is increasing due to pleiotropic effects. In this hypothesis article, the current clinical evidence on pioglitazone pharmacogenomics is summarized and related to variability in pioglitazone response. How genetic variation in the human genome affects the pharmacokinetics and pharmacodynamics of pioglitazone was examined. For pharmacodynamic effects, hypoglycemic and anti-atherosclerotic effects, risks of fracture or edema, and the increase in body mass index in response to pioglitazone based on genotype were examined. The genes CYP2C8 and PPARG are the most extensively studied to date and selected polymorphisms contribute to respective variability in pioglitazone pharmacokinetics and pharmacodynamics. We hypothesized that genetic variation in pioglitazone pathway genes contributes meaningfully to the clinically observed variability in drug response. To test the hypothesis that genetic variation in PPARG associates with variability in pioglitazone response, we conducted a meta-analysis to synthesize the currently available data on the PPARG p.Pro12Ala polymorphism. The results showed that PPARG 12Ala carriers had a more favorable change in fasting blood glucose from baseline as compared to patients with the wild-type Pro12Pro genotype (p=0.018. Unfortunately, findings for many other genes lack replication in independent cohorts to confirm association; further studies are needed. Also, the biological functionality of these polymorphisms is unknown. Based on current evidence, we propose that pharmacogenomics may provide an important tool to individualize pioglitazone therapy and better optimize therapy in patients with T2DM or other conditions for which pioglitazone

  16. Advances and challenges in hereditary cancer pharmacogenetics.

    Science.gov (United States)

    Cascorbi, Ingolf; Werk, Anneke Nina

    2017-01-01

    Cancer pharmacogenetics usually considers tumor-specific targets. However, hereditary genetic variants may interfere with the pharmacokinetics of antimetabolites and other anti-cancer drugs, which may lead to severe adverse events. Areas covered: Here, the impact of hereditary genes considered in drug labels such as thiopurine S-methyltransferase (TPMT), UDP-glucuronosyltransferase 1A1 (UTG1A1) and dihydropyrimidine dehydrogenase (DPYD) are discussed with respect to guidelines of the Clinical Pharmacogenetics Implementation Consortium (CPIC). Moreover, the association between genetic variants of drug transporters with the clinical outcome is comprehensively discussed. Expert opinion: Precision therapy in the field of oncology is developing tremendously. There are a number of somatic tumor genetic markers that are indicative for treatment with anti-cancer drugs. By contrast, for some hereditary variants, recommendations have been developed. Although we have vast knowledge on the association between drug transporter variants and clinical outcome, the overall data is inconsistent and the predictability of the related phenotype is low. Further developments in research may lead to the discovery of rare, but functionally relevant single nucleotide polymorphisms and a better understanding of multiple genomic, epigenomic as well as phenotypic factors, contributing to drug response in malignancies.

  17. Some aspects of genetics and pharmacogenetics understanding by ...

    African Journals Online (AJOL)

    The aim of the present work is to analyze students' awareness about pharmacogenetics in the National University of Pharmacy (NUPh) since its development is delayed in Ukraine. Methods: Field investigations have been used in this work. The material analysis based on questioning 637 students of the 1st–4th year ...

  18. Pharmacogenomics and epilepsy: the road ahead.

    LENUS (Irish Health Repository)

    Cavalleri, Gianpiero L

    2011-10-01

    Epilepsy is one of the most common, serious neurological disorders, affecting an estimated 50 million people worldwide. The condition is typically treated using antiepileptic drugs of which there are 16 in widespread use. However, there are many different syndrome and seizure types within epilepsy and information guiding clinicians on the most effective drug and dose for individual patients is lacking. Further, all of the antiepileptic drugs have associated adverse reactions, some of which are severe and life-threatening. Here, we review the pharmacogenomic work to date in the context of these issues and comment on key aspects of study design that are required to speed up the identification of clinically relevant genetic factors.

  19. Designing a post-genomics knowledge ecosystem to translate pharmacogenomics into public health action.

    Science.gov (United States)

    Dove, Edward S; Faraj, Samer A; Kolker, Eugene; Ozdemir, Vural

    2012-01-01

    Translation of pharmacogenomics to public health action is at the epicenter of the life sciences agenda. Post-genomics knowledge is simultaneously co-produced at multiple scales and locales by scientists, crowd-sourcing and biological citizens. The latter are entrepreneurial citizens who are autonomous, self-governing and increasingly conceptualizing themselves in biological terms, ostensibly taking responsibility for their own health, and engaging in patient advocacy and health activism. By studying these heterogeneous 'scientific cultures', we can locate innovative parameters of collective action to move pharmacogenomics to practice (personalized therapeutics). To this end, we reconceptualize knowledge-based innovation as a complex ecosystem comprising 'actors' and 'narrators'. For robust knowledge translation, we require a nested post-genomics technology governance system composed of first-order narrators (for example, social scientists, philosophers, bioethicists) situated at arm's length from innovation actors (for example, pharmacogenomics scientists). Yet, second-order narrators (for example, an independent and possibly crowd-funded think-tank of citizen scholars, marginalized groups and knowledge end-users) are crucial to prevent first-order narrators from gaining excessive power that can be misused in the course of steering innovations. To operate such 'self-calibrating' and nested innovation ecosystems, we introduce the concept of 'wiki-governance' to enable mutual and iterative learning among innovation actors and first- and second-order narrators. '[A] scientific expert is someone who knows more and more about less and less, until finally knowing (almost) everything about (almost) nothing.' [1] 'Ubuntu: I am because you are.' [2].

  20. The diffusion of innovation: factors influencing the uptake of pharmacogenetics

    DEFF Research Database (Denmark)

    Nielsen, Louise Fuks; Møldrup, Claus

    2007-01-01

    BACKGROUND: Inspired by diffusion research, this paper examines how perceived need, health status, experiences with medicine and testing, consumption of mass media and sociodemography influence the public's familiarity, knowledge, attitudes and intentions regarding pharmacogenetics. The objective...

  1. Public involvement in pharmacogenomics research: a national survey on public attitudes towards pharmacogenomics research and the willingness to donate DNA samples to a DNA bank in Japan.

    Science.gov (United States)

    Kobayashi, Eriko; Satoh, Nobunori

    2009-11-01

    To assess the attitudes of the Japanese general public towards pharmacogenomics research and a DNA bank for identifying genomic markers associated with ADRs and their willingness to donate DNA samples, we conducted a national survey for 1,103 Japanese adults from the general public, not a patient population. The response rate was 36.8%. The majority of the respondents showed a positive attitude towards pharmacogenomics research (81.0%) and a DNA bank (70.4%). Considering fictitious clinical situations such as taking medications and experiencing ADRs, the willingness to donate DNA samples when experiencing ADRs (61.7%) was higher than when taking medications (45.3%). Older generations were significantly associated with a decreased willingness to donate (OR = 0.45, CI 0.28-0.72 in 50s. OR = 0.49, CI: 0.31-0.77 in 60s). Positive attitudes towards pharmacogenomics research, a DNA bank, blood/bone marrow/organ donation were significantly associated with an increased willingness. However, the respondents had the following concerns regarding a DNA bank: the confidentiality of their personal information, the manner by which research results were utilized and simply the use of their own DNA for research. In order to attain public understanding to overcome these concerns, a process of public awareness should be put into place to emphasize the beneficial aspects of identifying genomic markers associated with ADRs and to address these concerns raised in our study. Further study is needed to assess the willingness of actual patients taking medications in real situations, since the respondents in our study were from the general public, not a patient population, and their willingness was assessed on the condition of assuming that they were patients taking medications.

  2. A lay prescription for tailor-made drugs--focus group reflections on pharmacogenomics

    DEFF Research Database (Denmark)

    Almarsdóttir, Anna Birna; Björnsdóttir, Ingunn; Traulsen, Janine Morgall

    2005-01-01

    the consequences of the Human Genome Project over the next 40 years, and asked to give advice to politicians and the pharmaceutical industry. A dominating theme in the focus groups was the expectation that drugs developed based on pharmacogenomics will be more expensive than conventional mass produced drugs...

  3. Pharmacometabolomics-aided Pharmacogenomics in Autoimmune Disease

    Directory of Open Access Journals (Sweden)

    Theodora Katsila

    2016-03-01

    Full Text Available Inter-individual variability has been a major hurdle to optimize disease management. Precision medicine holds promise for improving health and healthcare via tailor-made therapeutic strategies. Herein, we outline the paradigm of “pharmacometabolomics-aided pharmacogenomics” in autoimmune diseases. We envisage merging pharmacometabolomic and pharmacogenomic data (to address the interplay of genomic and environmental influences with information technologies to facilitate data analysis as well as sense- and decision-making on the basis of synergy between artificial and human intelligence. Humans can detect patterns, which computer algorithms may fail to do so, whereas data-intensive and cognitively complex settings and processes limit human ability. We propose that better-informed, rapid and cost-effective omics studies need the implementation of holistic and multidisciplinary approaches.

  4. Exploring a Laboratory Model of Pharmacogenetics as Applied to Clinical Decision Making

    Directory of Open Access Journals (Sweden)

    Angela Smith, PharmD Candidate

    2013-01-01

    Full Text Available Objective: To evaluate a pilot of a laboratory model for relating pharmacogenetics to clinical decision making. Case Study: This pilot was undertaken and evaluated to help determine if a pharmacogenetics laboratory should be included in the core Doctor of Pharmacy curriculum. The placement of the laboratory exercise in the curriculum was determined by identifying the point in the curriculum where the students had been introduced to the chemistry of deoxyribonucleic acid (DNA as well as instructed on the chemistry of genetic variation. The laboratory included cytochrome P450 2C19 genotyping relative to the *2 variant. Twenty-four students served as the pilot group. Students provided buccal swabs as the source of DNA. Students stabilized the samples and were then provided instructions related to sample preparation, polymerase chain reaction, and gel electrophoresis. The results were reported as images of gels. Students used a reference gel image to compare their results to. Students then applied a dosing algorithm to make a “clinical decision” relative to clopidogrel use. Students were offered a post laboratory survey regarding attitudes toward the laboratory. Twenty-four students completed the laboratory with genotyping results being provided for 22 students (91.7%. Sixteen students were wild-type (*1/*1, while six students were heterozygous (*1/*2. Twenty-three students (96% completed the post laboratory survey. All 23 agreed (6, 26.1% or strongly agreed (17, 73.9% that the laboratory “had relevance and value in the pharmacy curriculum”. Conclusion: The post pilot study survey exploring a laboratory model for pharmacogenetics related to clinical decision making indicated that such a laboratory would be viewed positively by students. This model may be adopted by colleges to expand pharmacogenetics education.

  5. Exploring a Laboratory Model of Pharmacogenetics as Applied to Clinical Decision Making

    Directory of Open Access Journals (Sweden)

    David F. Kisor

    2013-01-01

    Full Text Available Objective: To evaluate a pilot of a laboratory model for relating pharmacogenetics to clinical decision making. Case Study: This pilot was undertaken and evaluated to help determine if a pharmacogenetics laboratory should be included in the core Doctor of Pharmacy curriculum. The placement of the laboratory exercise in the curriculum was determined by identifying the point in the curriculum where the students had been introduced to the chemistry of deoxyribonucleic acid (DNA as well as instructed on the chemistry of genetic variation. The laboratory included cytochrome P450 2C19 genotyping relative to the *2 variant. Twenty-four students served as the pilot group. Students provided buccal swabs as the source of DNA. Students stabilized the samples and were then provided instructions related to sample preparation, polymerase chain reaction, and gel electrophoresis. The results were reported as images of gels. Students used a reference gel image to compare their results to. Students then applied a dosing algorithm to make a "clinical decision" relative to clopidogrel use. Students were offered a post laboratory survey regarding attitudes toward the laboratory. Twenty-four students completed the laboratory with genotyping results being provided for 22 students (91.7%. Sixteen students were wild-type (*1/*1, while six students were heterozygous (*1/*2. Twenty-three students (96% completed the post laboratory survey. All 23 agreed (6, 26.1% or strongly agreed (17, 73.9% that the laboratory "had relevance and value in the pharmacy curriculum" Conclusion: The post pilot study survey exploring a laboratory model for pharmacogenetics related to clinical decision making indicated that such a laboratory would be viewed positively by students. This model may be adopted by colleges to expand pharmacogenetics education.   Type: Case Study

  6. Verification of pharmacogenetics-based warfarin dosing algorithms in Han-Chinese patients undertaking mechanic heart valve replacement.

    Science.gov (United States)

    Zhao, Li; Chen, Chunxia; Li, Bei; Dong, Li; Guo, Yingqiang; Xiao, Xijun; Zhang, Eryong; Qin, Li

    2014-01-01

    To study the performance of pharmacogenetics-based warfarin dosing algorithms in the initial and the stable warfarin treatment phases in a cohort of Han-Chinese patients undertaking mechanic heart valve replacement. We searched PubMed, Chinese National Knowledge Infrastructure and Wanfang databases for selecting pharmacogenetics-based warfarin dosing models. Patients with mechanic heart valve replacement were consecutively recruited between March 2012 and July 2012. The predicted warfarin dose of each patient was calculated and compared with the observed initial and stable warfarin doses. The percentage of patients whose predicted dose fell within 20% of their actual therapeutic dose (percentage within 20%), and the mean absolute error (MAE) were utilized to evaluate the predictive accuracy of all the selected algorithms. A total of 8 algorithms including Du, Huang, Miao, Wei, Zhang, Lou, Gage, and International Warfarin Pharmacogenetics Consortium (IWPC) model, were tested in 181 patients. The MAE of the Gage, IWPC and 6 Han-Chinese pharmacogenetics-based warfarin dosing algorithms was less than 0.6 mg/day in accuracy and the percentage within 20% exceeded 45% in all of the selected models in both the initial and the stable treatment stages. When patients were stratified according to the warfarin dose range, all of the equations demonstrated better performance in the ideal-dose range (1.88-4.38 mg/day) than the low-dose range (pharmacogenetics-based warfarin dosing regimens performed similarly in our cohort. However, the algorithms of Wei, Huang, and Miao showed a better potential for warfarin prediction in the initial and the stable treatment phases in Han-Chinese patients undertaking mechanic heart valve replacement.

  7. Systems genetics analysis of pharmacogenomics variation during antidepressant treatment

    DEFF Research Database (Denmark)

    Madsen, Majbritt Busk; Kogelman, L J A; Kadarmideen, H N

    2016-01-01

    Selective serotonin reuptake inhibitors (SSRIs) are the most widely used antidepressants, but the efficacy of the treatment varies significantly among individuals. It is believed that complex genetic mechanisms play a part in this variation. We have used a network based approach to unravel the in...... genes involved in calcium homeostasis. In conclusion, we suggest a difference in genetic interaction networks between initial and subsequent SSRI response.The Pharmacogenomics Journal advance online publication, 18 October 2016; doi:10.1038/tpj.2016.68....

  8. Genetic polymorphisms in very important pharmacogenomic variants in the Zhuang ethnic group of Southwestern China: A cohort study in the Zhuang population.

    Science.gov (United States)

    Li, Jing; Guo, Chenghao; Yan, Mengdan; Niu, Fanglin; Chen, Peng; Li, Bin; Jin, Tianbo

    2018-04-01

    Pharmacogenomics, the study of the role of genetics in drug response, has recently become a focal point of research. Previous studies showed that genes associated with drug detoxification vary among different populations. However, pharmacogenomic information of the Zhuang ethnic group is scarce. The aim of the present study was to screen members of the Zhuang ethnicity in southwestern China for genotype frequencies of very important pharmacogenomic (VIP) variants and to determine the differences between the Zhuang ethnicity and other human populations.We genotyped 80 variants of VIP genes in 100 unrelated healthy Zhuang adults from the Yunnan province of China. Next, we analyzed the genotyping data with Structure and F-statistics (Fst).We compared our data with those of other populations using the HapMap data set, and observed that the frequency distribution of Zhuang population in Yunnan closely resembles that of JPT. Furthermore, population structure and Fst analysis showed that the Zhuang population is closely related to the Shaanxi Han population with respect to genetic background.Our study supplements existing information on Zhuang population pharmacogenomics and provides an extensive overview for developing personalized medicine.

  9. Individualized Hydrocodone Therapy Based on Phenotype, Pharmacogenetics, and Pharmacokinetic Dosing.

    Science.gov (United States)

    Linares, Oscar A; Fudin, Jeffrey; Daly, Annemarie L; Boston, Raymond C

    2015-12-01

    (1) To quantify hydrocodone (HC) and hydromorphone (HM) metabolite pharmacokinetics with pharmacogenetics in CYP2D6 ultra-rapid metabolizer (UM), extensive metabolizer (EM), and poor metabolizer (PM) metabolizer phenotypes. (2) To develop an HC phenotype-specific dosing strategy for HC that accounts for HM production using clinical pharmacokinetics integrated with pharmacogenetics for patient safety. In silico clinical trial simulation. Healthy white men and women without comorbidities or history of opioid, or any other drug or nutraceutical use, age 26.3±5.7 years (mean±SD; range, 19 to 36 y) and weight 71.9±16.8 kg (range, 50 to 108 kg). CYP2D6 phenotype-specific HC clinical pharmacokinetic parameter estimates and phenotype-specific percentages of HM formed from HC. PMs had lower indices of HC disposition compared with UMs and EMs. Clearance was reduced by nearly 60% and the t1/2 was increased by about 68% compared with EMs. The canonical order for HC clearance was UM>EM>PM. HC elimination mainly by the liver, represented by ke, was reduced about 70% in PM. However, HC's apparent Vd was not significantly different among UMs, EMs, and PM. The canonical order of predicted plasma HM concentrations was UM>EM>PM. For each of the CYP2D6 phenotypes, the mean predicted HM levels were within HM's therapeutic range, which indicates HC has significant phenotype-dependent pro-drug effects. Our results demonstrate that pharmacogenetics afford clinicians an opportunity to individualize HC dosing, while adding enhanced opportunity to account for its conversion to HM in the body.

  10. Genetic tests for predicting the toxicity and efficacy of anticancer chemotherapy.

    Science.gov (United States)

    Mladosievicova, B; Carter, A; Kristova, V

    2007-01-01

    The standard anticancer therapy based "on one size fits all" modality has been determined to be ineffective or to be the cause of adverse drug reactions in many oncologic patients. Most pharmacogenetic and pharmacogenomic studies so far have been focused on toxicity of anticancer drugs such as 6-mercaptopurine, thioguanine, irinotecan, methotrexate, 5-fluorouracil (5-FU). Variation in genes are known to influence not only toxicity, but also efficacy of chemotherapeutics such as platinum analogues, 5-FU and irinotecan. The majority of current pharmacogenetic studies focus on single enzyme deficiencies as predictors of drug effects; however effects of most anticancer drugs are determined by the interplay of several gene products. These effects are polygenic in nature. This review briefly describes genetic variations that may impact efficacy and toxicity of drugs used in cancer chemotherapy.

  11. Pharmacogenomic and clinical data link non-pharmacokinetic metabolic dysregulation to drug side effect pathogenesis

    DEFF Research Database (Denmark)

    Zielinski, Daniel C.; Filipp, F. V.; Bordbar, A.

    2015-01-01

    Drug side effects cause a significant clinical and economic burden. However, mechanisms of drug action underlying side effect pathogenesis remain largely unknown. Here, we integrate pharmacogenomic and clinical data with a human metabolic network and find that non-pharmacokinetic metabolic pathways...

  12. Pharmacogenetics of drug-induced birth defects : What is known so far?

    NARCIS (Netherlands)

    Wilffert, Bob; Altena, Judith; Tijink, Laurien; van Gelder, Marleen M. H. J.; de Jong-van den Berg, Lolkje T. W.

    A literature review was performed to collect information on the role of pharmacogenetics in six proposed teratogenic mechanisms associated with drug use during pregnancy: folate antagonism, oxidative stress, angiotensin-converting enzyme inhibition and angiotensin II receptor antagonism,

  13. Pharmacogenomics Bias - Systematic distortion of study results by genetic heterogeneity

    Directory of Open Access Journals (Sweden)

    Zietemann, Vera

    2008-04-01

    Full Text Available Background: Decision analyses of drug treatments in chronic diseases require modeling the progression of disease and treatment response beyond the time horizon of clinical or epidemiological studies. In many such models, progression and drug effect have been applied uniformly to all patients; heterogeneity in progression, including pharmacogenomic effects, has been ignored. Objective: We sought to systematically evaluate the existence, direction and relative magnitude of a pharmacogenomics bias (PGX-Bias resulting from failure to adjust for genetic heterogeneity in both treatment response (HT and heterogeneity in progression of disease (HP in decision-analytic studies based on clinical study data. Methods: We performed a systematic literature search in electronic databases for studies regarding the effect of genetic heterogeneity on the validity of study results. Included studies have been summarized in evidence tables. In the case of lacking evidence from published studies we sought to perform our own simulation considering both HT and HP. We constructed two simple Markov models with three basic health states (early-stage disease, late-stage disease, dead, one adjusting and the other not adjusting for genetic heterogeneity. Adjustment was done by creating different disease states for presence (G+ and absence (G- of a dichotomous genetic factor. We compared the life expectancy gains attributable to treatment resulting from both models and defined pharmacogenomics bias as percent deviation of treatment-related life expectancy gains in the unadjusted model from those in the adjusted model. We calculated the bias as a function of underlying model parameters to create generic results. We then applied our model to lipid-lowering therapy with pravastatin in patients with coronary atherosclerosis, incorporating the influence of two TaqIB polymorphism variants (B1 and B2 on progression and drug efficacy as reported in the DNA substudy of the REGRESS

  14. Verification of Pharmacogenetics-Based Warfarin Dosing Algorithms in Han-Chinese Patients Undertaking Mechanic Heart Valve Replacement

    Science.gov (United States)

    Zhao, Li; Chen, Chunxia; Li, Bei; Dong, Li; Guo, Yingqiang; Xiao, Xijun; Zhang, Eryong; Qin, Li

    2014-01-01

    Objective To study the performance of pharmacogenetics-based warfarin dosing algorithms in the initial and the stable warfarin treatment phases in a cohort of Han-Chinese patients undertaking mechanic heart valve replacement. Methods We searched PubMed, Chinese National Knowledge Infrastructure and Wanfang databases for selecting pharmacogenetics-based warfarin dosing models. Patients with mechanic heart valve replacement were consecutively recruited between March 2012 and July 2012. The predicted warfarin dose of each patient was calculated and compared with the observed initial and stable warfarin doses. The percentage of patients whose predicted dose fell within 20% of their actual therapeutic dose (percentage within 20%), and the mean absolute error (MAE) were utilized to evaluate the predictive accuracy of all the selected algorithms. Results A total of 8 algorithms including Du, Huang, Miao, Wei, Zhang, Lou, Gage, and International Warfarin Pharmacogenetics Consortium (IWPC) model, were tested in 181 patients. The MAE of the Gage, IWPC and 6 Han-Chinese pharmacogenetics-based warfarin dosing algorithms was less than 0.6 mg/day in accuracy and the percentage within 20% exceeded 45% in all of the selected models in both the initial and the stable treatment stages. When patients were stratified according to the warfarin dose range, all of the equations demonstrated better performance in the ideal-dose range (1.88–4.38 mg/day) than the low-dose range (warfarin dose prediction and in the low-dose and the ideal-dose ranges. Conclusions All of the selected pharmacogenetics-based warfarin dosing regimens performed similarly in our cohort. However, the algorithms of Wei, Huang, and Miao showed a better potential for warfarin prediction in the initial and the stable treatment phases in Han-Chinese patients undertaking mechanic heart valve replacement. PMID:24728385

  15. Novel Use of Pharmacogenetic Testing in the Identification of CYP2C9 Polymorphisms Related to NSAID-Induced Gastropathy.

    Science.gov (United States)

    Gupta, Anita; Zheng, Lu; Ramanujam, Vendhan; Gallagher, John

    2015-05-01

    To illustrate the potential value of pharmacogenetic testing to identify patients at risk for nonsteroidal anti-inflammatory drug-induced gastropathy. Case report. We report a case encountered in an outpatient setting for pain management. We present a case of a patient treated with celecoxib who developed severe nonsteroidal anti-inflammatory drug-induced gastropathy. Suspecting a relation between this adverse event and altered drug metabolism, pharmacogenetic testing was performed to assess the role of the cytochrome P450 (CP450) enzyme profile. Pharmacogenetic testing revealed a relation between this adverse event and an allelic variant of cytochrome P450, CYP2C9, subsequently leading to discontinuation of the drug along with counseling to caution the patient to avoid the use of celecoxib and other drugs metabolized by the same enzyme. Although pharmacogenetic testing is not routinely used in clinical decision making, pain physicians must be aware of the potential benefits of this testing for managing patients with pain, and to improve drug efficacy and safety profile. Wiley Periodicals, Inc.

  16. Pharmacogenetics in cancer therapy - 8 years of experience at the Institute for Oncology and Radiology of Serbia.

    Science.gov (United States)

    Cavic, Milena; Krivokuca, Ana; Boljevic, Ivana; Brotto, Ksenija; Jovanovic, Katarina; Tanic, Miljana; Filipovic, Lana; Zec, Manja; Malisic, Emina; Jankovic, Radmila; Radulovic, Sinisa

    2016-01-01

    Pharmacogenetics is a study of possible mechanism by which an individual's response to drugs is genetically determined by variations in their DNA sequence. The aim of pharmacogenetics is to identify the optimal drug and dose for each individual based on their genetic constitution, i.e. to individualize drug treatment. This leads to achieving the maximal therapeutic response for each patient, while reducing adverse side effects of therapy and the cost of treatment. A centralized pharmacogenetics service was formed at the Institute for Oncology and Radiology of Serbia (IORS) with the aim to provide a personalized approach to cancer treatment of Serbian patients. Analyses of KRAS mutations in metastatic colorectal cancer, EGFR mutations in advanced non-small cell lung cancer, CYP2D6 polymorphism in breast cancer, DPD polymorphism in colorectal cancer and MTHFR polymorphism in osteosarcoma have been performed by real time polymerase chain reaction (PCR) and PCR-restriction fragment length polymorphism (PCR-RFLP). Mutation testing analyses were successful for 1694 KRAS samples and 1821 EGFR samples, while polymorphism testing was successful for 9 CYP2D6 samples, 65 DPD samples and 35 MTHFR samples. Pharmacogenetic methods presented in this paper provide cancer patients in Serbia the best possible choice of treatment at the moment.

  17. Asymmetry in scientific method and limits to cross-disciplinary dialogue: toward a shared language and science policy in pharmacogenomics and human disease genetics.

    Science.gov (United States)

    Ozdemir, Vural; Williams-Jones, Bryn; Graham, Janice E; Preskorn, Sheldon H; Gripeos, Dimitrios; Glatt, Stephen J; Friis, Robert H; Reist, Christopher; Szabo, Sandor; Lohr, James B; Someya, Toshiyuki

    2007-04-01

    Pharmacogenomics is a hybrid field of experimental science at the intersection of human disease genetics and clinical pharmacology sharing applications of the new genomic technologies. But this hybrid field is not yet stable or fully integrated, nor is science policy in pharmacogenomics fully equipped to resolve the challenges of this emerging hybrid field. The disciplines of human disease genetics and clinical pharmacology contain significant differences in their scientific practices. Whereas clinical pharmacology originates as an experimental science, human disease genetics is primarily observational in nature. The result is a significant asymmetry in scientific method that can differentially impact the degree to which gene-environment interactions are discerned and, by extension, the study sample size required in each discipline. Because the number of subjects enrolled in observational genetic studies of diseases is characteristically viewed as an important criterion of scientific validity and reliability, failure to recognize discipline-specific requirements for sample size may lead to inappropriate dismissal or silencing of meritorious, although smaller-scale, craft-based pharmacogenomic investigations using an experimental study design. Importantly, the recognition that pharmacogenomics is an experimental science creates an avenue for systematic policy response to the ethical imperative to prospectively pursue genetically customized therapies before regulatory approval of pharmaceuticals. To this end, we discuss the critical role of interdisciplinary engagement between medical sciences, policy, and social science. We emphasize the need for development of shared standards across scientific, methodologic, and socioethical epistemologic divides in the hybrid field of pharmacogenomics to best serve the interests of public health.

  18. Genome-wide pharmacogenetics of antidepressant response in the GENDEP project

    DEFF Research Database (Denmark)

    Uher, Rudolf; Perroud, Nader; Ng, Mandy Y.M.

    2010-01-01

    . A set of 72 a priori-selected candidate genes did not show pharmacogenetic associations above a chance level, but an association with response to escitalopram was detected in the interleukin-6 gene, which is a close homologue of IL11. Conclusions: While limited statistical power means that a number...

  19. Pharmacogenetics in the Brazilian population

    Directory of Open Access Journals (Sweden)

    Guilherme eSuarez-Kurtz

    2010-10-01

    Full Text Available Brazil is the 5th largest country in the world and its present population, in excess of 190 million, is highly heterogeneous, as a result of centuries of admixture between Amerindians, Europeans and Sub-Saharan Africans. The estimated individual proportions of biogeographical ancestry vary widely and continuously among Brazilians, most individuals - irrespective of self-identification as White, Brown or Black, the major categories of the Brazilian Census race/color system - having significant degrees of European and African ancestry, while a sizeable number display also Amerindian ancestry. These features have important pharmacogenetic (PGx implications: first, extrapolation of PGx data from relatively well-defined ethnic groups is clearly not applicable to the majority of Brazilians; second, the frequency distribution of polymorphisms in pharmacogenes (e.g. CYP3A5, CYP2C9, GSTM1, ABCB1, GSTM3, VKORC, etc varies continuously among Brazilians and is not captured by race/color self-identification; third, the intrinsic heterogeneity of the Brazilian population must be acknowledged in the design and interpretation of PGx studies in order to avoid spurious conclusions based on improper matching of study cohorts. The peculiarities of PGx in Brazilians are illustrated with data for different therapeutic groups, such as anticoagulants, HIV-protease inhibitors and nonsteroidal antinflammatory drugs, and the challenges and advantages created by population admixture for the study and implementation of PGx are discussed. PGx data for Amerindian groups and Brazilian-born, first generation Japanese are presented to illustrate the rich diversity of the Brazilian population. Finally, I introduce the reader to the Brazilian Pharmacogenetic Network or Refargen (www.refargen.org.br, a nationwide consortium of research groups, with the mission to provide leadership in PGx research and education in Brazil, with a population health impact.

  20. Trick or treat: The effect of placebo on the power of pharmacogenetic association studies

    Directory of Open Access Journals (Sweden)

    Singer Clara

    2005-03-01

    Full Text Available Abstract The genetic mapping of drug-response traits is often characterised by a poor signal-to-noise ratio that is placebo related and which distinguishes pharmacogenetic association studies from classical case-control studies for disease susceptibility. The goal of this study was to evaluate the statistical power of candidate gene association studies under different pharmacogenetic scenarios, with special emphasis on the placebo effect. Genotype/phenotype data were simulated, mimicking samples from clinical trials, and response to the drug was modelled as a binary trait. Association was evaluated by a logistic regression model. Statistical power was estimated as a function of the number of single nucleotide polymorphisms (SNPs genotyped, the frequency of the placebo 'response', the genotype relative risk (GRR of the response polymorphism, the strategy for selecting SNPs for genotyping, the number of individuals in the trial and the ratio of placebo-treated to drugtreated patients. We show that: (i the placebo 'response' strongly affects the statistical power of association studies -- even a highly penetrant drug-response allele requires at least a 500-patient trial in order to reach 80 per cent power, several-fold more than the value estimated by standard tools that are not calibrated to pharmacogenetics; (ii the power of a pharmacogenetic association study depends primarily on the penetrance of the response genotype and, when this penetrance is fixed, power decreases for larger placebo effects; (iii power is dramatically increased when adding markers; (iv an optimal study design includes a similar number of placebo- and drugtreated patients; and (v in this setting, straightforward haplotype analysis does not seem to have an advantage over single marker analysis.

  1. [Use of pharmacogenetic testing to prevent adverse drug reactions during statin therapy].

    Science.gov (United States)

    Rumyantsev, N A; Kukes, V G; Kazakov, R E; Rumyantsev, A A; Sychev, D A

    The number of patients receiving statins increases every year and due to the fact that they should take statins during their lives, the problem of their safety use comes to the forefront. The paper analyzes the safety of using the medications of this group and discusses the diagnosis of myopathies induced by statins and the occurrence of immune-mediated statin myopathies. It considers a personalized approach to prescribing statins, analyzes Russian and foreign experience in using pharmacogenetics to reduce the risk of myopathies, publishes the results of the authors' experience in clinically introducing pharmacogenetic testing at hospitals, and analyzes the long-term results of determining the polymorphism of the SLCO1B1 gene for the prediction of the risk of adverse events when using statins and estimating patient compliance to prescribed treatment.

  2. Population Analysis of Pharmacogenetic Polymorphisms Related to Acute Lymphoblastic Leukemia Drug Treatment

    Directory of Open Access Journals (Sweden)

    Marcela A. Chiabai

    2012-01-01

    Full Text Available This study aimed to evaluate in the Brazilian population, the genotypes and population frequencies of pharmacogenetic polymorphisms involved in the response to drugs used in treatment of acute lymphoblastic leukemia (ALL, and to compare the data with data from the HapMap populations. There was significant differentiation between most population pairs, but few associations between genetic ancestry and SNPs in the Brazilian population were observed. AMOVA analysis comparing the Brazilian population to all other populations retrieved from HapMap pointed to a genetic proximity with the European population. These associations point to preclusion of the use of genetic ancestry as a proxy for predicting drug response. In this way, any study aiming to correlate genotype with drug response in the Brazilian population should be based on pharmacogenetic SNP genotypes.

  3. Pharmacogenomics and Efficacy of Risperidone Long-Term Treatment in Thai Autistic Children and Adolescents

    NARCIS (Netherlands)

    Nuntamool, Nopphadol; Ngamsamut, Nattawat; Vanwong, Natchaya; Puangpetch, Apichaya; Chamnanphon, Monpat; Hongkaew, Yaowaluck; Limsila, Penkhae; Suthisisang, Chuthamanee; Wilffert, Bob; Sukasem, Chonlaphat

    2017-01-01

    The purpose of this study was to evaluate the association of pharmacogenomic factors and clinical outcome in autistic children and adolescents who were treated with risperidone for long periods. Eighty-two autistic subjects diagnosed with DSM-IV and who were treated with risperidone for more than

  4. Prognostic, predictive and pharmacogenomic assessments of CDX2 refine stratification of colorectal cancer.

    Science.gov (United States)

    Bruun, Jarle; Sveen, Anita; Barros, Rita; Eide, Peter W; Eilertsen, Ina; Kolberg, Matthias; Pellinen, Teijo; David, Leonor; Svindland, Aud; Kallioniemi, Olli; Guren, Marianne G; Nesbakken, Arild; Almeida, Raquel; Lothe, Ragnhild A

    2018-06-14

    We aimed to refine the value of CDX2 as an independent prognostic and predictive biomarker in colorectal cancer (CRC) according to disease stage and chemotherapy sensitivity in preclinical models. CDX2 expression was evaluated in 1045 stage I-IV primary CRCs by gene expression (n=403) or immunohistochemistry (n=642) and in relation to 5-year relapse-free survival (RFS), overall survival (OS), and chemotherapy. Pharmacogenomic associations between CDX2 expression and 69 chemotherapeutics were assessed by drug screening of 35 CRC cell lines. CDX2 expression was lost in 11.6% of cases and showed independent poor prognostic value in multivariable models. For individual stages, CDX2 was prognostic only in stage IV, independent of chemotherapy. Among stage I-III patients not treated in an adjuvant setting, CDX2 loss was associated with a particularly poor survival in the BRAF-mutated subgroup, but prognostic value was independent of microsatellite instability status and the consensus molecular subtypes In stage III, the 5-year RFS rate was higher among patients with loss of CDX2 who received adjuvant chemotherapy than among patients who did not. The CDX2-negative cell lines were significantly more sensitive to chemotherapeutics than CDX2-positive cells, and the multidrug resistance genes MDR1 and CFTR were significantly downregulated both in CDX2-negative cells and patient tumors. Molecular Oncology (2018) © 2018 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

  5. Clinical pharmacogenetics implementation: approaches, successes, and challenges.

    Science.gov (United States)

    Weitzel, Kristin W; Elsey, Amanda R; Langaee, Taimour Y; Burkley, Benjamin; Nessl, David R; Obeng, Aniwaa Owusu; Staley, Benjamin J; Dong, Hui-Jia; Allan, Robert W; Liu, J Felix; Cooper-Dehoff, Rhonda M; Anderson, R David; Conlon, Michael; Clare-Salzler, Michael J; Nelson, David R; Johnson, Julie A

    2014-03-01

    Current challenges exist to widespread clinical implementation of genomic medicine and pharmacogenetics. The University of Florida (UF) Health Personalized Medicine Program (PMP) is a pharmacist-led, multidisciplinary initiative created in 2011 within the UF Clinical Translational Science Institute. Initial efforts focused on pharmacogenetics, with long-term goals to include expansion to disease-risk prediction and disease stratification. Herein we describe the processes for development of the program, the challenges that were encountered and the clinical acceptance by clinicians of the genomic medicine implementation. The initial clinical implementation of the UF PMP began in June 2012 and targeted clopidogrel use and the CYP2C19 genotype in patients undergoing left heart catheterization and percutaneous-coronary intervention (PCI). After 1 year, 1,097 patients undergoing left heart catheterization were genotyped preemptively, and 291 of those underwent subsequent PCI. Genotype results were reported to the medical record for 100% of genotyped patients. Eighty patients who underwent PCI had an actionable genotype, with drug therapy changes implemented in 56 individuals. Average turnaround time from blood draw to genotype result entry in the medical record was 3.5 business days. Seven different third party payors, including Medicare, reimbursed for the test during the first month of billing, with an 85% reimbursement rate for outpatient claims that were submitted in the first month. These data highlight multiple levels of success in clinical implementation of genomic medicine. © 2014 Wiley Periodicals, Inc.

  6. Anticoagulation Endpoints with Clinical Implementation of Warfarin Pharmacogenetic Dosing in a Real-World Setting – A Proposal for a New Pharmacogenetic Dosing Approach

    Science.gov (United States)

    Arwood, Meghan J.; Deng, Jiexin; Drozda, Katarzyna; Pugach, Oksana; Nutescu, Edith A.; Schmidt, Stephan; Duarte, Julio D.; Cavallari, Larisa H.

    2016-01-01

    Achieving therapeutic anticoagulation efficiently with warfarin is important to reduce thrombotic and bleeding risks and is influenced by genotype. Utilizing data from a diverse population of 257 patients who received VKORC1 and CYP2C9 genotype-guided warfarin dosing, we aimed to examine genotype-associated differences in anticoagulation endpoints and derive a novel pharmacogenetic nomogram to more optimally dose warfarin. We observed significant differences across patients with 0, 1, or ≥2 reduced-function VKORC1 or CYP2C9 alleles, respectively, in time to achieve therapeutic international normalized ratio (INR) (7.8±5.8, 7.2±4.7, and 5.4±4.6 days, P=0.0004) and mean percentage of time in therapeutic range in the first 28 days (22.2, 27.8, and 32.2%, P=0.0127) with use of existing pharmacogenetic algorithms. These data suggest that more aggressive dosing is necessary for patients with 0 to 1 VKORC1/CYP2C9 variants to more efficiently achieve therapeutic anticoagulation. Herein, we provide a novel kinetic/pharmacodynamic-derived dosing nomogram optimized for a heterogeneous patient population. PMID:28032893

  7. Economics of Pharmacogenetic-Guided Treatments: Underwhelming or Overstated?

    Science.gov (United States)

    Hughes, Dyfrig A

    2018-05-01

    Economic evaluations have dispelled a perception that precision medicine, achieved through pharmacogenetic testing, reduces healthcare costs. For many tests aimed at preventing adverse drug reactions, cost-effectiveness analyses predict modest improvements in health benefits and increases in total costs. While there are many uncertainties in estimating the value of testing, factors that influence cost-effectiveness include the rarity of the outcome, the effectiveness of alternative treatments, and the scope and perspective of analysis. © 2018 ASCPT.

  8. Fluoropyrimidine and platinum toxicity pharmacogenetics: an umbrella review of systematic reviews and meta-analyses.

    Science.gov (United States)

    Campbell, Jared M; Bateman, Emma; Peters, Micah Dj; Bowen, Joanne M; Keefe, Dorothy M; Stephenson, Matthew D

    2016-03-01

    Fluoropyrimidine (FU) and platinum-based chemotherapies are greatly complicated by their associated toxicities. This umbrella systematic review synthesized all systematic reviews that investigated associations between germline variations and toxicity, with the aim of informing personalized medicine. Systematic reviews are important in pharmacogenetics where false positives are common. Four systematic reviews were identified for FU-induced toxicity and three for platinum. Polymorphisms of DPYD and TYMS, but not MTHFR, were statistically significantly associated with FU-induced toxicity (although only DPYD had clinical significance). For platinum, GSTP1 was found to not be associated with toxicity. This umbrella systematic review has synthesized the best available evidence on the pharmacogenetics of FU and platinum toxicity. It provides a useful reference for clinicians and identifies important research gaps.

  9. Public involvement in pharmacogenomics research: a national survey on patients' attitudes towards pharmacogenomics research and the willingness to donate DNA samples to a DNA bank in Japan.

    Science.gov (United States)

    Kobayashi, Eriko; Sakurada, Tomoya; Ueda, Shiro; Satoh, Nobunori

    2011-05-01

    To assess the attitude of Japanese patients towards pharmacogenomics research and a DNA bank for identifying genomic markers associated with adverse drug reactions (ADRs) and their willingness to donate DNA samples, we conducted a survey of 550 male and female patients. The majority of the respondents showed a positive attitude towards pharmacogenomics research (87.6%) and a DNA bank (75.1%). The willingness to donate DNA samples when experiencing severe ADRs (55.8%) was higher than when taking medications (40.4%). Positive attitudes towards a DNA bank and organ donation were significantly associated with an increased willingness to donate. Though the level of positive attitude in the patient population was higher than that in the general public in our former study (81.0 and 70.4%, respectively), the level of the willingness of patients to donate was 40.4% when taking medications and 55.8% when experiencing severe ADRs which was lower than that of the general public in our former study (45.3 and 61.7%). The results suggested that the level of true willingness in the patient population was lower than that of the general public considering the fictitious situation presented to the public (to suppose that they were patients receiving medication). It is important to assess the willingness of patients who are true potential donors, not the general public.

  10. Role of biomarkers in understanding and treating children with asthma: towards personalized care

    Directory of Open Access Journals (Sweden)

    Lang JE

    2013-08-01

    Full Text Available Jason E Lang,1 Kathryn V Blake21Division of Pulmonary and Sleep Medicine, Nemours Children's Hospital, Orlando, FL, USA; 2Center for Pharmacogenomics and Translational Research, Nemours Children's Clinic, Jacksonville, FL, USA Both authors contributed equally to this workAbstract: Asthma is one of the most common chronic diseases affecting children. Despite publicized expert panels on asthma management and the availability of high-potency inhaled corticosteroids, asthma continues to pose an enormous burden on quality of life for children. Research into the genetic and molecular origins of asthma are starting to show how distinct disease entities exist within the syndrome of "asthma". Biomarkers can be used to diagnose underlying molecular mechanisms that can predict the natural course of disease or likely response to drug treatment. The progress of personalized medicine in the care of children with asthma is still in its infancy. We are not yet able to apply stratified asthma treatments based on molecular phenotypes, although that time may be fast approaching. This review discusses some of the recent advances in asthma genetics and the use of current biomarkers that can help guide improved treatment. For example, the fraction of expired nitric oxide and serum Immunoglobulin E (IgE (including allergen-specific IgE, when evaluated in the context of recurrent asthma symptoms, are general predictors of allergic airway inflammation. Biomarker assays for secondhand tobacco smoke exposure and cysteinyl leukotrienes are both promising areas of study that can help personalize management, not just for pharmacologic management, but also education and prevention efforts.Keywords: asthma, biomarkers, children, management

  11. Using local multiplicity to improve effect estimation from a hypothesis-generating pharmacogenetics study.

    Science.gov (United States)

    Zou, W; Ouyang, H

    2016-02-01

    We propose a multiple estimation adjustment (MEA) method to correct effect overestimation due to selection bias from a hypothesis-generating study (HGS) in pharmacogenetics. MEA uses a hierarchical Bayesian approach to model individual effect estimates from maximal likelihood estimation (MLE) in a region jointly and shrinks them toward the regional effect. Unlike many methods that model a fixed selection scheme, MEA capitalizes on local multiplicity independent of selection. We compared mean square errors (MSEs) in simulated HGSs from naive MLE, MEA and a conditional likelihood adjustment (CLA) method that model threshold selection bias. We observed that MEA effectively reduced MSE from MLE on null effects with or without selection, and had a clear advantage over CLA on extreme MLE estimates from null effects under lenient threshold selection in small samples, which are common among 'top' associations from a pharmacogenetics HGS.

  12. Does Pharmacogenetic Testing for CYP450 2D6 and 2C19 among Patients with Diagnoses within the Schizophrenic Spectrum Reduce Treatment Costs?

    DEFF Research Database (Denmark)

    Herbild, Louise; Andersen, Stig Ejdrup; Werge, Thomas

    2013-01-01

    The effect of pharmacogenetic testing for CYP450 2D6 and 2C19 on treatment costs have not yet been documented. This study used Danish patient registers to calculate health care costs of treating patients with diagnoses within the schizophrenic spectrum for one year with or without pharmacogenetic...... testing for polymorphisms in the genes for the CYP2D6 and CYP2C19 enzymes. In a randomized, controlled trial, stratified with respect to metabolizer genotype, 104 patients were assigned to treatment based on pharmacogenetic testing and 103 patients to treatment as usual. Random exclusion of extensive...

  13. Pharmacogenomic Variants May Influence the Urinary Excretion of Novel Kidney Injury Biomarkers in Patients Receiving Cisplatin

    Science.gov (United States)

    Chang, Cara; Hu, Yichun; Hogan, Susan L.; Mercke, Nickie; Gomez, Madeleine; O’Bryant, Cindy; Bowles, Daniel W.; George, Blessy; Wen, Xia; Aleksunes, Lauren M.; Joy, Melanie S.

    2017-01-01

    Nephrotoxicity is a dose limiting side effect associated with the use of cisplatin in the treatment of solid tumors. The degree of nephrotoxicity is dictated by the selective accumulation of cisplatin in renal tubule cells due to: (1) uptake by organic cation transporter 2 (OCT2) and copper transporter 1 (CTR1); (2) metabolism by glutathione S-transferases (GSTs) and γ-glutamyltransferase 1 (GGT1); and (3) efflux by multidrug resistance-associated protein 2 (MRP2) and multidrug and toxin extrusion protein 1 (MATE1). The purpose of this study was to determine the significance of single nucleotide polymorphisms that regulate the expression and function of transporters and metabolism genes implicated in development of acute kidney injury (AKI) in cisplatin treated patients. Changes in the kidney function were assessed using novel urinary protein biomarkers and traditional markers. Genotyping was conducted by the QuantStudio 12K Flex Real-Time PCR System using a custom open array chip with metabolism, transport, and transcription factor polymorphisms of interest to cisplatin disposition and toxicity. Traditional and novel biomarker assays for kidney toxicity were assessed for differences according to genotype by ANOVA. Allele and genotype frequencies were determined based on Caucasian population frequencies. The polymorphisms rs596881 (SLC22A2/OCT2), and rs12686377 and rs7851395 (SLC31A1/CTR1) were associated with renoprotection and maintenance of estimated glomerular filtration rate (eGFR). Polymorphisms in SLC22A2/OCT2, SLC31A1/CTRI, SLC47A1/MATE1, ABCC2/MRP2, and GSTP1 were significantly associated with increases in the urinary excretion of novel AKI biomarkers: KIM-1, TFF3, MCP1, NGAL, clusterin, cystatin C, and calbindin. Knowledge concerning which genotypes in drug transporters are associated with cisplatin-induced nephrotoxicity may help to identify at-risk patients and initiate strategies, such as using lower or fractionated cisplatin doses or avoiding

  14. DNA cards: determinants of DNA yield and quality in collecting genetic samples for pharmacogenetic studies.

    Science.gov (United States)

    Mas, Sergi; Crescenti, Anna; Gassó, Patricia; Vidal-Taboada, Jose M; Lafuente, Amalia

    2007-08-01

    As pharmacogenetic studies frequently require establishment of DNA banks containing large cohorts with multi-centric designs, inexpensive methods for collecting and storing high-quality DNA are needed. The aims of this study were two-fold: to compare the amount and quality of DNA obtained from two different DNA cards (IsoCode Cards or FTA Classic Cards, Whatman plc, Brentford, Middlesex, UK); and to evaluate the effects of time and storage temperature, as well as the influence of anticoagulant ethylenediaminetetraacetic acid on the DNA elution procedure. The samples were genotyped by several methods typically used in pharmacogenetic studies: multiplex PCR, PCR-restriction fragment length polymorphism, single nucleotide primer extension, and allelic discrimination assay. In addition, they were amplified by whole genome amplification to increase genomic DNA mass. Time, storage temperature and ethylenediaminetetraacetic acid had no significant effects on either DNA card. This study reveals the importance of drying blood spots prior to isolation to avoid haemoglobin interference. Moreover, our results demonstrate that re-isolation protocols could be applied to increase the amount of DNA recovered. The samples analysed were accurately genotyped with all the methods examined herein. In conclusion, our study shows that both DNA cards, IsoCode Cards and FTA Classic Cards, facilitate genetic and pharmacogenetic testing for routine clinical practice.

  15. Cases of Adverse Reaction to Psychotropic Drugs and Possible Association with Pharmacogenetics

    Directory of Open Access Journals (Sweden)

    Irina Piatkov

    2012-10-01

    Full Text Available Thousands of samples for pharmacogenetic tests have been analysed in our laboratory since its establishment. In this article we describe some of the most interesting cases of CYP poor metabolisers associated with adverse reactions to psychotropic drugs. Prevention of disease/illness, including Adverse Drug Reaction (ADR, is an aim of modern medicine. Scientific data supports the fact that evaluation of drug toxicology includes several factors, one of which is genetic variations in pharmacodynamics and pharmacokinetics of drug pathways. These variations are only a part of toxicity evaluation, however, even if it would help to prevent only a small percentage of patients from suffering adverse drug reactions, especially life threatening ADRs, pharmacogenetic testing should play a significant role in any modern psychopharmacologic practice. Medical practitioners should also consider the use of other medications or alternative dosing strategies for drugs in patients identified as altered metabolisers. This will promise not only better and safer treatments for patients, but also potentially lowering overall healthcare costs.

  16. Pharmacogenetics Informed Decision Making in Adolescent Psychiatric Treatment: A Clinical Case Report

    Directory of Open Access Journals (Sweden)

    Teri Smith

    2015-02-01

    Full Text Available Advances made in genetic testing and tools applied to pharmacogenetics are increasingly being used to inform clinicians in fields such as oncology, hematology, diabetes (endocrinology, cardiology and expanding into psychiatry by examining the influences of genetics on drug efficacy and metabolism. We present a clinical case example of an adolescent male with anxiety, attention deficit hyperactivity disorder (ADHD and autism spectrum disorder who did not tolerate numerous medications and dosages over several years in attempts to manage his symptoms. Pharmacogenetics testing was performed and DNA results on this individual elucidated the potential pitfalls in medication use because of specific pharmacodynamic and pharmacokinetic differences specifically involving polymorphisms of genes in the cytochrome p450 enzyme system. Future studies and reports are needed to further illustrate and determine the type of individualized medicine approach required to treat individuals based on their specific gene patterns. Growing evidence supports this biological approach for standard of care in psychiatry.

  17. From evidence based medicine to mechanism based medicine : Reviewing the role of pharmacogenetics

    NARCIS (Netherlands)

    Wilffert, Bob; Swen, Jesse; Mulder, Hans; Touw, Daan; Maitland-Van der Zee, Anke-Hilse; Deneer, Vera

    Aim of the review The translation of evidence based medicine to a specific patient presents a considerable challenge. We present by means of the examples nortriptyline, tramadol, clopidogrel, coumarins, abacavir and antipsychotics the discrepancy between available pharmacogenetic information and its

  18. From evidence based medicine to mechanism based medicine. Reviewing the role of pharmacogenetics

    NARCIS (Netherlands)

    Wilffert, Bob; Swen, Jesse; Mulder, Hans; Touw, Daan; Maitland-Van der Zee, Anke-Hilse; Deneer, Vera

    Aim of the review The translation of evidence based medicine to a specific patient presents a considerable challenge. We present by means of the examples nortriptyline, tramadol, clopidogrel, coumarins, abacavir and antipsychotics the discrepancy between available pharmacogenetic information and its

  19. Pharmacogenetics in clinical practice: how far have we come and where are we going?

    Science.gov (United States)

    Johnson, Julie A

    2013-01-01

    Recent years have seen great advances in our understanding of genetic contributors to drug response. Drug discovery and development around targeted genetic (somatic) mutations has led to a number of new drugs with genetic indications, particularly for the treatment of cancers. Our knowledge of genetic contributors to variable drug response for existing drugs has also expanded dramatically, such that the evidence now supports clinical use of genetic data to guide treatment in some situations, and across a variety of therapeutic areas. Clinical implementation of pharmacogenetics has seen substantial growth in recent years and groups are working to identify the barriers and best practices for pharmacogenetic-guided treatment. The advances and challenges in these areas are described and predictions about future use of genetics in drug therapy are discussed. PMID:23651030

  20. Neural network analysis in pharmacogenetics of mood disorders

    Directory of Open Access Journals (Sweden)

    Serretti Alessandro

    2004-12-01

    Full Text Available Abstract Background The increasing number of available genotypes for genetic studies in humans requires more advanced techniques of analysis. We previously reported significant univariate associations between gene polymorphisms and antidepressant response in mood disorders. However the combined analysis of multiple gene polymorphisms and clinical variables requires the use of non linear methods. Methods In the present study we tested a neural network strategy for a combined analysis of two gene polymorphisms. A Multi Layer Perceptron model showed the best performance and was therefore selected over the other networks. One hundred and twenty one depressed inpatients treated with fluvoxamine in the context of previously reported pharmacogenetic studies were included. The polymorphism in the transcriptional control region upstream of the 5HTT coding sequence (SERTPR and in the Tryptophan Hydroxylase (TPH gene were analysed simultaneously. Results A multi layer perceptron network composed by 1 hidden layer with 7 nodes was chosen. 77.5 % of responders and 51.2% of non responders were correctly classified (ROC area = 0.731 – empirical p value = 0.0082. Finally, we performed a comparison with traditional techniques. A discriminant function analysis correctly classified 34.1 % of responders and 68.1 % of non responders (F = 8.16 p = 0.0005. Conclusions Overall, our findings suggest that neural networks may be a valid technique for the analysis of gene polymorphisms in pharmacogenetic studies. The complex interactions modelled through NN may be eventually applied at the clinical level for the individualized therapy.

  1. Clinical Pharmacogenetics of Cytochrome P450-Associated Drugs in Children

    Directory of Open Access Journals (Sweden)

    Ida Aka

    2017-11-01

    Full Text Available Cytochrome P450 (CYP enzymes are commonly involved in drug metabolism, and genetic variation in the genes encoding CYPs are associated with variable drug response. While genotype-guided therapy has been clinically implemented in adults, these associations are less well established for pediatric patients. In order to understand the frequency of pediatric exposures to drugs with known CYP interactions, we compiled all actionable drug–CYP interactions with a high level of evidence using Clinical Pharmacogenomic Implementation Consortium (CPIC data and surveyed 10 years of electronic health records (EHR data for the number of children exposed to CYP-associated drugs. Subsequently, we performed a focused literature review for drugs commonly used in pediatrics, defined as more than 5000 pediatric patients exposed in the decade-long EHR cohort. There were 48 drug–CYP interactions with a high level of evidence in the CPIC database. Of those, only 10 drugs were commonly used in children (ondansetron, oxycodone, codeine, omeprazole, lansoprazole, sertraline, amitriptyline, citalopram, escitalopram, and risperidone. For these drugs, reports of the drug–CYP interaction in cohorts including children were sparse. There are adequate data for implementation of genotype-guided therapy for children for three of the 10 commonly used drugs (codeine, omeprazole and lansoprazole. For the majority of commonly used drugs with known CYP interactions, more data are required to support pharmacogenomic implementation in children.

  2. Pharmacogenetics of healthy volunteers in Puerto Rico

    Science.gov (United States)

    Claudio-Campos, Karla; Orengo-Mercado, Carmelo; Renta, Jessicca Y.; Peguero, Muriel; García, Ricardo; Hernández, Gabriel; Corey, Susan; Cadilla, Carmen L.; Duconge, Jorge

    2016-01-01

    Puerto Ricans are a unique Hispanic population with European, Native American (Taino), and higher West African ancestral contributions than other non-Caribbean Hispanics. In admixed populations, such as Puerto Ricans, genetic variants can be found at different frequencies when compared to parental populations and uniquely combined and distributed. Therefore, in this review, we aimed to collect data from studies conducted in healthy Puerto Ricans and to report the frequencies of genetic polymorphisms with major relevance in drug response. Filtering for healthy volunteers or individuals, we performed a search of pharmacogenetic studies in academic literature databases without limiting the period of the results. The search was limited to Puerto Ricans living in the island, excluding those studies performed in mainland (United States). We found that the genetic markers impacting pharmacological therapy in the areas of cardiovascular, oncology, and neurology are the most frequently investigated. Coincidently, the top causes of mortality in the island are cardiovascular diseases, cancer, diabetes, Alzheimer’s disease, and stroke. In addition, polymorphisms in genes that encode for members of the CYP450 family (CYP2C9, CYP2C19, and CYP2D6) are also available due to their relevance in the metabolism of drugs. The complex genetic background of Puerto Ricans is responsible for the divergence in the reported allele frequencies when compared to parental populations (Africans, East Asians, and Europeans). The importance of reporting the findings of pharmacogenetic studies conducted in Puerto Ricans is to identify genetic variants with potential utility among this genetically complex population and eventually move forward the adoption of personalized medicine in the island. PMID:26501165

  3. Pharmacogenetics of healthy volunteers in Puerto Rico.

    Science.gov (United States)

    Claudio-Campos, Karla; Orengo-Mercado, Carmelo; Renta, Jessicca Y; Peguero, Muriel; García, Ricardo; Hernández, Gabriel; Corey, Susan; Cadilla, Carmen L; Duconge, Jorge

    2015-12-01

    Puerto Ricans are a unique Hispanic population with European, Native American (Taino), and higher West African ancestral contributions than other non-Caribbean Hispanics. In admixed populations, such as Puerto Ricans, genetic variants can be found at different frequencies when compared to parental populations and uniquely combined and distributed. Therefore, in this review, we aimed to collect data from studies conducted in healthy Puerto Ricans and to report the frequencies of genetic polymorphisms with major relevance in drug response. Filtering for healthy volunteers or individuals, we performed a search of pharmacogenetic studies in academic literature databases without limiting the period of the results. The search was limited to Puerto Ricans living in the island, excluding those studies performed in mainland (United States). We found that the genetic markers impacting pharmacological therapy in the areas of cardiovascular, oncology, and neurology are the most frequently investigated. Coincidently, the top causes of mortality in the island are cardiovascular diseases, cancer, diabetes, Alzheimer's disease, and stroke. In addition, polymorphisms in genes that encode for members of the CYP450 family (CYP2C9, CYP2C19, and CYP2D6) are also available due to their relevance in the metabolism of drugs. The complex genetic background of Puerto Ricans is responsible for the divergence in the reported allele frequencies when compared to parental populations (Africans, East Asians, and Europeans). The importance of reporting the findings of pharmacogenetic studies conducted in Puerto Ricans is to identify genetic variants with potential utility among this genetically complex population and eventually move forward the adoption of personalized medicine in the island.

  4. Warfarin and vitamin K intake in the era of pharmacogenetics

    OpenAIRE

    Lurie, Yael; Loebstein, Ronen; Kurnik, Daniel; Almog, Shlomo; Halkin, Hillel

    2010-01-01

    The considerable variability in the warfarin dose–response relationship between individuals, is explained mainly by genetic variation in its major metabolic (CYP2C9) and target (VKORC1) enzymes. Despite the predominance of pharmacogenetics, environmental factors also affect the pharmacokinetics and pharmacodynamics of warfarin, and are often overlooked. Among these factors, dietary and supplemental vitamin K consumption is a controllable contributor to within-, and between-patient variability...

  5. Importance of pharmacogenetics in the treatment of children with attention deficit hyperactive disorder: a case report.

    Science.gov (United States)

    Tan-Kam, Teerarat; Suthisisang, Chutamanee; Pavasuthipaisit, Chosita; Limsila, Penkhae; Puangpetch, Apichaya; Sukasem, Chonlaphat

    2013-01-01

    This case report highlights the importance of pharmacogenetic testing in the treatment of attention deficit hyperactive disorder (ADHD). A 6-year-old boy diagnosed with ADHD was prescribed methylphenidate 5 mg twice daily (7 am and noon) and the family was compliant with administration of this medication. On the first day of treatment, the patient had an adverse reaction, becoming disobedient, more mischievous, erratic, resistant to discipline, would not go to sleep until midnight, and had a poor appetite. The All-In-One PGX (All-In-One Pharmacogenetics for Antipsychotics test for CYP2D6, CYP2C19, and CYP2C9) was performed using microarray-based and real-time polymerase chain reaction techniques. The genotype of our patient was identified to be CYP2D6*2/*10, with isoforms of the enzyme consistent with a predicted cytochrome P450 2D6 intermediate metabolizer phenotype. Consequently, the physician adjusted the methylphenidate dose to 2.5 mg once daily in the morning. At this dosage, the patient had a good response without any further adverse reactions. Pharmacogenetic testing should be included in the management plan for ADHD. In this case, cooperation between the medical team and the patients' relatives was key to successful treatment.

  6. Pharmacogenomics and Efficacy of Risperidone Long-Term Treatment in Thai Autistic Children and Adolescents.

    Science.gov (United States)

    Nuntamool, Nopphadol; Ngamsamut, Nattawat; Vanwong, Natchaya; Puangpetch, Apichaya; Chamnanphon, Monpat; Hongkaew, Yaowaluck; Limsila, Penkhae; Suthisisang, Chuthamanee; Wilffert, Bob; Sukasem, Chonlaphat

    2017-10-01

    The purpose of this study was to evaluate the association of pharmacogenomic factors and clinical outcome in autistic children and adolescents who were treated with risperidone for long periods. Eighty-two autistic subjects diagnosed with DSM-IV and who were treated with risperidone for more than 1 year were recruited. Pharmacogenomics and clinical outcome (CGI-I, aggressive, overactivity and repetitive score) were evaluated. Almost all patients showed stable symptoms on aggressive behaviour (89.02%), overactivity (71.95%), repetitive (70.89%) behaviour and all clinical symptoms (81.71%). Only 4.48% of patients showed minimally worse CGI-I score. Patients in the non-stable symptom group had DRD2 Taq1A non-wild-type (TT and CT) frequencies higher than the clinically stable group (p = 0.04), whereas other gene polymorphisms showed no significant association. Haplotype ACCTCAT (rs6311, rs1045642, rs1128503, rs1800497, rs4436578, rs1799978, rs6280) showed a significant association with non-stable clinical outcome (χ 2  = 6.642, p = 0.010). Risperidone levels showed no association with any clinical outcome. On the other hand, risperidone dose, 9-OH risperidone levels and prolactin levels were significantly higher in the non-stable compared to the stable symptom group (p = 0.013, p = 0.044, p = 0.030). Increased appetite was the most common adverse drug reaction and associated with higher body-weight, whereas it was not significantly associated with genetic variations and non-genetic information. In conclusion, risperidone showed efficacy to control autism, especially aggressive symptoms in long-term treatment. However, Taq1A T - carrier of dopamine 2 receptor gene - is associated with non-stable response in risperidone-treated patients. This study supports pharmacogenomics testing for personalized therapy with risperidone in autistic children and adolescents. © 2017 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  7. Added value of pharmacogenetic testing in predicting statin response: Results from the REGRESS trial

    NARCIS (Netherlands)

    Van Der Baan, F.H.; Knol, M.J.; Maitland-Van Der Zee, A.H.; Regieli, J.J.; Van Iperen, E.P.A.; Egberts, A.C.G.; Klungel, O.H.; Grobbee, D.E.; Jukema, J.W.

    2013-01-01

    It was investigated whether pharmacogenetic factors, both as single polymorphism and as gene-gene interactions, have an added value over non-genetic factors in predicting statin response. Five common polymorphisms were selected in apolipoprotein E, angiotensin-converting enzyme, hepatic lipase and

  8. Pharmacogenetics and Cardiovascular Disease—Implications for Personalized Medicine

    Science.gov (United States)

    Cavallari, Larisa H.

    2013-01-01

    The past decade has seen tremendous advances in our understanding of the genetic factors influencing response to a variety of drugs, including those targeted at treatment of cardiovascular diseases. In the case of clopidogrel, warfarin, and statins, the literature has become sufficiently strong that guidelines are now available describing the use of genetic information to guide treatment with these therapies, and some health centers are using this information in the care of their patients. There are many challenges in moving from research data to translation to practice; we discuss some of these barriers and the approaches some health systems are taking to overcome them. The body of literature that has led to the clinical implementation of CYP2C19 genotyping for clopidogrel, VKORC1, CYP2C9; and CYP4F2 for warfarin; and SLCO1B1 for statins is comprehensively described. We also provide clarity for other genes that have been extensively studied relative to these drugs, but for which the data are conflicting. Finally, we comment briefly on pharmacogenetics of other cardiovascular drugs and highlight β-blockers as the drug class with strong data that has not yet seen clinical implementation. It is anticipated that genetic information will increasingly be available on patients, and it is important to identify those examples where the evidence is sufficiently robust and predictive to use genetic information to guide clinical decisions. The review herein provides several examples of the accumulation of evidence and eventual clinical translation in cardiovascular pharmacogenetics. PMID:23686351

  9. Molecular Classification and Pharmacogenetics of Primary Plasma Cell Leukemia: An Initial Approach toward Precision Medicine.

    Science.gov (United States)

    Simeon, Vittorio; Todoerti, Katia; La Rocca, Francesco; Caivano, Antonella; Trino, Stefania; Lionetti, Marta; Agnelli, Luca; De Luca, Luciana; Laurenzana, Ilaria; Neri, Antonino; Musto, Pellegrino

    2015-07-30

    Primary plasma cell leukemia (pPCL) is a rare and aggressive variant of multiple myeloma (MM) which may represent a valid model for high-risk MM. This disease is associated with a very poor prognosis, and unfortunately, it has not significantly improved during the last three decades. New high-throughput technologies have allowed a better understanding of the molecular basis of this disease and moved toward risk stratification, providing insights for targeted therapy studies. This knowledge, added to the pharmacogenetic profile of new and old agents in the analysis of efficacy and safety, could contribute to help clinical decisions move toward a precision medicine and a better clinical outcome for these patients. In this review, we describe the available literature concerning the genomic characterization and pharmacogenetics of plasma cell leukemia (PCL).

  10. Novel drug metabolism indices for pharmacogenetic functional status based on combinatory genotyping of CYP2C9, CYP2C19 and CYP2D6 genes

    Science.gov (United States)

    Villagra, David; Goethe, John; Schwartz, Harold I; Szarek, Bonnie; Kocherla, Mohan; Gorowski, Krystyna; Windemuth, Andreas; Ruaño, Gualberto

    2011-01-01

    Aims We aim to demonstrate clinical relevance and utility of four novel drug-metabolism indices derived from a combinatory (multigene) approach to CYP2C9, CYP2C19 and CYP2D6 allele scoring. Each index considers all three genes as complementary components of a liver enzyme drug metabolism system and uniquely benchmarks innate hepatic drug metabolism reserve or alteration through CYP450 combinatory genotype scores. Methods A total of 1199 psychiatric referrals were genotyped for polymorphisms in the CYP2C9, CYP2C19 and CYP2D6 gene loci and were scored on each of the four indices. The data were used to create distributions and rankings of innate drug metabolism capacity to which individuals can be compared. Drug-specific indices are a combination of the drug metabolism indices with substrate-specific coefficients. Results The combinatory drug metabolism indices proved useful in positioning individuals relative to a population with regard to innate drug metabolism capacity prior to pharmacotherapy. Drug-specific indices generate pharmacogenetic guidance of immediate clinical relevance, and can be further modified to incorporate covariates in particular clinical cases. Conclusions We believe that this combinatory approach represents an improvement over the current gene-by-gene reporting by providing greater scope while still allowing for the resolution of a single-gene index when needed. This method will result in novel clinical and research applications, facilitating the translation from pharmacogenomics to personalized medicine, particularly in psychiatry where many drugs are metabolized or activated by multiple CYP450 isoenzymes. PMID:21861665

  11. Fulfilling the promise of personalized medicine? Systematic review and field synopsis of pharmacogenetic studies.

    Directory of Open Access Journals (Sweden)

    Michael V Holmes

    2009-12-01

    Full Text Available Studies of the genetic basis of drug response could help clarify mechanisms of drug action/metabolism, and facilitate development of genotype-based predictive tests of efficacy or toxicity (pharmacogenetics.We conducted a systematic review and field synopsis of pharmacogenetic studies to quantify the scope and quality of available evidence in this field in order to inform future research.Original research articles were identified in Medline, reference lists from 24 meta-analyses/systematic reviews/review articles and U.S. Food and Drug Administration website of approved pharmacogenetic tests. STUDY ELIGIBILITY CRITERIA, PARTICIPANTS, AND INTERVENTION CRITERIA: We included any study in which either intended or adverse response to drug therapy was examined in relation to genetic variation in the germline or cancer cells in humans.Study characteristics and data reported in abstracts were recorded. We further analysed full text from a random 10% subset of articles spanning the different subclasses of study.From 102,264 Medline hits and 1,641 articles from other sources, we identified 1,668 primary research articles (1987 to 2007, inclusive. A high proportion of remaining articles were reviews/commentaries (ratio of reviews to primary research approximately 25 ratio 1. The majority of studies (81.8% were set in Europe and North America focussing on cancer, cardiovascular disease and neurology/psychiatry. There was predominantly a candidate gene approach using common alleles, which despite small sample sizes (median 93 [IQR 40-222] with no trend to an increase over time, generated a high proportion (74.5% of nominally significant (por=4 studies, only 31 meta-analyses were identified. The majority (69.4% of end-points were continuous and likely surrogate rather than hard (binary clinical end-points.The high expectation but limited translation of pharmacogenetic research thus far may be explained by the preponderance of reviews over primary research

  12. Accuracy assessment of pharmacogenetically predictive warfarin dosing algorithms in patients of an academic medical center anticoagulation clinic.

    Science.gov (United States)

    Shaw, Paul B; Donovan, Jennifer L; Tran, Maichi T; Lemon, Stephenie C; Burgwinkle, Pamela; Gore, Joel

    2010-08-01

    The objectives of this retrospective cohort study are to evaluate the accuracy of pharmacogenetic warfarin dosing algorithms in predicting therapeutic dose and to determine if this degree of accuracy warrants the routine use of genotyping to prospectively dose patients newly started on warfarin. Seventy-one patients of an outpatient anticoagulation clinic at an academic medical center who were age 18 years or older on a stable, therapeutic warfarin dose with international normalized ratio (INR) goal between 2.0 and 3.0, and cytochrome P450 isoenzyme 2C9 (CYP2C9) and vitamin K epoxide reductase complex subunit 1 (VKORC1) genotypes available between January 1, 2007 and September 30, 2008 were included. Six pharmacogenetic warfarin dosing algorithms were identified from the medical literature. Additionally, a 5 mg fixed dose approach was evaluated. Three algorithms, Zhu et al. (Clin Chem 53:1199-1205, 2007), Gage et al. (J Clin Ther 84:326-331, 2008), and International Warfarin Pharmacogenetic Consortium (IWPC) (N Engl J Med 360:753-764, 2009) were similar in the primary accuracy endpoints with mean absolute error (MAE) ranging from 1.7 to 1.8 mg/day and coefficient of determination R (2) from 0.61 to 0.66. However, the Zhu et al. algorithm severely over-predicted dose (defined as >or=2x or >or=2 mg/day more than actual dose) in twice as many (14 vs. 7%) patients as Gage et al. 2008 and IWPC 2009. In conclusion, the algorithms published by Gage et al. 2008 and the IWPC 2009 were the two most accurate pharmacogenetically based equations available in the medical literature in predicting therapeutic warfarin dose in our study population. However, the degree of accuracy demonstrated does not support the routine use of genotyping to prospectively dose all patients newly started on warfarin.

  13. Pharmacogenetics in cardiovascular diseases: State of the art and implementation-recommendations of the French National Network of Pharmacogenetics (RNPGx).

    Science.gov (United States)

    Lamoureux, Fabien; Duflot, Thomas

    2017-04-01

    The use of genomic markers to predict drug response and effectiveness has the potential to improve healthcare by increasing drug efficacy and minimizing adverse effects. Polymorphisms associated with inter-individual variability in drug metabolism, transport, or pharmacodynamics of major cardiovascular drugs have been identified. These include single nucleotide polymorphisms (SNP) affecting clinical outcomes in patients receiving antiplatelet agents, oral anticoagulants and statins. Based on clinical evidence supporting genetic testing in the management of cardiovascular diseases using these drug classes, this short review presents clinical guidance regarding current pharmacogenetics implementation in routine medical practice. Copyright © 2017 Société française de pharmacologie et de thérapeutique. Published by Elsevier Masson SAS. All rights reserved.

  14. Post-market drug evaluation research training capacity in Canada: an environmental scan of Canadian educational institutions.

    Science.gov (United States)

    Wiens, Matthew O; Soon, Judith A; MacLeod, Stuart M; Sharma, Sunaina; Patel, Anik

    2014-01-01

    Ongoing efforts by Health Canada intended to modernize the legislation and regulation of pharmaceuticals will help improve the safety and effectiveness of drug products. It will be imperative to ensure that comprehensive and specialized training sites are available to train researchers to support the regulation of therapeutic products. The objective of this educational institution inventory was to conduct an environmental scan of educational institutions in Canada able to train students in areas of post-market drug evaluation research. A systematic web-based environmental scan of Canadian institutions was conducted. The website of each university was examined for potential academic programs. Six core programmatic areas were determined a priori as necessary to train competent post-market drug evaluation researchers. These included biostatistics, epidemiology, pharmacoepidemiology, health economics or pharmacoeconomics, pharmacogenetics or pharmacogenomics and patient safety/pharmacovigilance. Twenty-three academic institutions were identified that had the potential to train students in post-market drug evaluation research. Overall, 23 institutions taught courses in epidemiology, 22 in biostatistics, 17 in health economics/pharmacoeconomics, 5 in pharmacoepidemiology, 5 in pharmacogenetics/pharmacogenomics, and 3 in patient safety/pharmacovigilance. Of the 23 institutions, only the University of Ottawa offered six core courses. Two institutions offered five, seven offered four and the remaining 14 offered three or fewer. It is clear that some institutions may offer programs not entirely reflected in the nomenclature used for this review. As Heath Canada moves towards a more progressive licensing framework, augmented training to increase research capacity and expertise in drug safety and effectiveness is timely and necessary.

  15. State of Art of Cancer Pharmacogenomics in Latin American Populations

    Directory of Open Access Journals (Sweden)

    Andrés López-Cortés

    2017-05-01

    Full Text Available Over the past decades, several studies have shown that tumor-related somatic and germline alterations predicts tumor prognosis, drug response and toxicity. Latin American populations present a vast geno-phenotypic diversity due to the great interethnic and interracial mixing. This genetic flow leads to the appearance of complex characteristics that allow individuals to adapt to endemic environments, such as high altitude or extreme tropical weather. These genetic changes, most of them subtle and unexplored, could establish a mutational profile to develop new pharmacogenomic therapies specific for Latin American populations. In this review, we present the current status of research on somatic and germline alterations in Latin America compared to those found in Caucasian and Asian populations.

  16. Cost-effectiveness of pharmacogenetic-guided dosing of warfarin in the United Kingdom and Sweden

    NARCIS (Netherlands)

    Verhoef, T. I.; Redekop, W. K.; Langenskiold, S.; Kamali, F.; Wadelius, M.; Burnside, G.; Maitland-van der Zee, A.-H.; Hughes, D. A.; Pirmohamed, M.

    2016-01-01

    We aimed to assess the cost-effectiveness of pharmacogenetic-guided dosing of warfarin in patients with atrial fibrillation (AF) in the United Kingdom and Sweden. Data from EU-PACT, a randomized controlled trial in newly diagnosed AF patients, were used to model the incremental costs per

  17. Pharmacogenetic landscape of Metabolic Syndrome components drug response in Tunisia and comparison with worldwide populations

    Science.gov (United States)

    Jmel, Haifa; Romdhane, Lilia; Ben Halima, Yosra; Hechmi, Meriem; Naouali, Chokri; Dallali, Hamza; Hamdi, Yosr; Shan, Jingxuan; Abid, Abdelmajid; Jamoussi, Henda; Trabelsi, Sameh; Chouchane, Lotfi; Luiselli, Donata; Abdelhak, Sonia

    2018-01-01

    Genetic variation is an important determinant affecting either drug response or susceptibility to adverse drug reactions. Several studies have highlighted the importance of ethnicity in influencing drug response variability that should be considered during drug development. Our objective is to characterize the genetic variability of some pharmacogenes involved in the response to drugs used for the treatment of Metabolic Syndrome (MetS) in Tunisia and to compare our results to the worldwide populations. A set of 135 Tunisians was genotyped using the Affymetrix Chip 6.0 genotyping array. Variants located in 24 Very Important Pharmacogenes (VIP) involved in MetS drug response were extracted from the genotyping data. Analysis of variant distribution in Tunisian population compared to 20 worldwide populations publicly available was performed using R software packages. Common variants between Tunisians and the 20 investigated populations were extracted from genotyping data. Multidimensional screening showed that Tunisian population is clustered with North African and European populations. The greatest divergence was observed with the African and Asian population. In addition, we performed Inter-ethnic comparison based on the genotype frequencies of five VIP biomarkers. The genotype frequencies of the biomarkers rs3846662, rs1045642, rs7294 and rs12255372 located respectively in HMGCR, ABCB1, VKORC1 and TCF7L2 are similar between Tunisian, Tuscan (TSI) and European (CEU). The genotype frequency of the variant rs776746 located in CYP3A5 gene is similar between Tunisian and African populations and different from CEU and TSI. The present study shows that the genetic make up of the Tunisian population is relatively complex in regard to pharmacogenes and reflects previous historical events. It is important to consider this ethnic difference in drug prescription in order to optimize drug response to avoid serious adverse drug reactions. Taking into account similarities with

  18. Pharmacogenetic landscape of Metabolic Syndrome components drug response in Tunisia and comparison with worldwide populations.

    Science.gov (United States)

    Jmel, Haifa; Romdhane, Lilia; Ben Halima, Yosra; Hechmi, Meriem; Naouali, Chokri; Dallali, Hamza; Hamdi, Yosr; Shan, Jingxuan; Abid, Abdelmajid; Jamoussi, Henda; Trabelsi, Sameh; Chouchane, Lotfi; Luiselli, Donata; Abdelhak, Sonia; Kefi, Rym

    2018-01-01

    Genetic variation is an important determinant affecting either drug response or susceptibility to adverse drug reactions. Several studies have highlighted the importance of ethnicity in influencing drug response variability that should be considered during drug development. Our objective is to characterize the genetic variability of some pharmacogenes involved in the response to drugs used for the treatment of Metabolic Syndrome (MetS) in Tunisia and to compare our results to the worldwide populations. A set of 135 Tunisians was genotyped using the Affymetrix Chip 6.0 genotyping array. Variants located in 24 Very Important Pharmacogenes (VIP) involved in MetS drug response were extracted from the genotyping data. Analysis of variant distribution in Tunisian population compared to 20 worldwide populations publicly available was performed using R software packages. Common variants between Tunisians and the 20 investigated populations were extracted from genotyping data. Multidimensional screening showed that Tunisian population is clustered with North African and European populations. The greatest divergence was observed with the African and Asian population. In addition, we performed Inter-ethnic comparison based on the genotype frequencies of five VIP biomarkers. The genotype frequencies of the biomarkers rs3846662, rs1045642, rs7294 and rs12255372 located respectively in HMGCR, ABCB1, VKORC1 and TCF7L2 are similar between Tunisian, Tuscan (TSI) and European (CEU). The genotype frequency of the variant rs776746 located in CYP3A5 gene is similar between Tunisian and African populations and different from CEU and TSI. The present study shows that the genetic make up of the Tunisian population is relatively complex in regard to pharmacogenes and reflects previous historical events. It is important to consider this ethnic difference in drug prescription in order to optimize drug response to avoid serious adverse drug reactions. Taking into account similarities with

  19. Rapid evidence review of the comparative effectiveness, harms, and cost-effectiveness of pharmacogenomics-guided antidepressant treatment versus usual care for major depressive disorder.

    Science.gov (United States)

    Peterson, Kimberly; Dieperink, Eric; Anderson, Johanna; Boundy, Erin; Ferguson, Lauren; Helfand, Mark

    2017-06-01

    This study aims to conduct an evidence review of the effectiveness, harms, and cost-effectiveness of pharmacogenomics-guided antidepressant treatment for major depressive disorder. We searched MEDLINE®, the Cochrane Central Registry of Controlled Trials, and PsycINFO through February 2017. We used prespecified criteria to select studies, abstract data, and rate internal validity and strength of the evidence (PROSPERO number CRD42016036358). We included two randomized trials (RCT), five controlled cohort studies, and six modeling studies of mostly women in their mid-40s with few comorbidities. CNSDose (ABCB1, ABCC1, CYP2C19, CYP2D6, UGT1A1) is the only pharmacogenomics test that significantly improved remission (one additional remitting patient in 12 weeks per three genotyped, 95% CI 1.7 to 3.5) and reduced intolerability in an RCT. ABCB1 genotyping leads to one additional remitting patient in 5 weeks per three genotyped (95% CI 3 to 20), but tolerability was not reported. In an RCT, GeneSight (CYP2D6, CYPC19, CYP1A2, SLC6A4, HTR2A) did not statistically significantly improve remission, and evidence is inconclusive about its tolerability. Evidence is generally low strength because RCTs were few and underpowered. Cost-effectiveness is unclear due to lack of directly observed cost-effectiveness outcomes. We found no studies that evaluated whether pharmacogenomics shortens time to optimal treatment, whether improvements were due to switches to genetically congruent medication, or whether effectiveness varies based on test and patient characteristics. Certain pharmacogenomics tools show promise of improving short-term remission rates in women in their mid-40s with few comorbidities. But, important evidence limitations preclude recommending their widespread use and indicate a need for further research.

  20. Pharmacogenetics of lipid diseases

    Directory of Open Access Journals (Sweden)

    Ordovas Jose M

    2004-01-01

    Full Text Available Abstract The genetic basis for most of the rare lipid monogenic disorders have been elucidated, but the challenge remains in determining the combination of genes that contribute to the genetic variability in lipid levels in the general population; this has been estimated to be in the range of 40-60 per cent of the total variability. Therefore, the effect of common polymorphisms on lipid phenotypes will be greatly modulated by gene-gene and gene-environment interactions. This approach can also be used to characterise the individuality of the response to lipid-lowering therapies, whether using drugs (pharmacogenetics or dietary interventions (nutrigenetics. In this regard, multiple studies have already described significant interactions between candidate genes for lipid and drug metabolism that modulate therapeutic response--although the outcomes of these studies have been controversial and call for more rigorous experimental design and analytical approaches. Once solid evidence about the predictive value of genetic panels is obtained, risk and therapeutic algorithms can begin to be generated that should provide an accurate measure of genetic predisposition, as well as targeted behavioural modifications or drugs of choice and personalised dosages of these drugs.

  1. Pharmacogenetics of asthma

    Science.gov (United States)

    Lima, John J.; Blake, Kathryn V.; Tantisira, Kelan G.; Weiss, Scott T.

    2009-01-01

    Purpose of review Patient response to the asthma drug classes, bronchodilators, inhaled corticosteroids and leukotriene modifiers, are characterized by a large degree of heterogeneity, which is attributable in part to genetic variation. Herein, we review and update the pharmacogenetics and pharmaogenomics of common asthma drugs. Recent findings Early studies suggest that bronchodilator reversibility and asthma worsening in patients on continuous short-acting and long-acting β-agonists are related to the Gly16Arg genotype for the ADRB2. More recent studies including genome-wide association studies implicate variants in other genes contribute to bronchodilator response heterogeneity and fail to replicate asthma worsening associated with continuous β-agonist use. Genetic determinants of the safety of long-acting β-agonist require further study. Variants in CRHR1, TBX21, and FCER2 contribute to variability in response for lung function, airways responsiveness, and exacerbations in patients taking inhaled corticosteroids. Variants in ALOX5, LTA4H, LTC4S, ABCC1, CYSLTR2, and SLCO2B1 contribute to variability in response to leukotriene modifiers. Summary Identification of novel variants that contribute to response heterogeneity supports future studies of single nucleotide polymorphism discovery and include gene expression and genome-wide association studies. Statistical models that predict the genomics of response to asthma drugs will complement single nucleotide polymorphism discovery in moving toward personalized medicine. PMID:19077707

  2. APPLICATIONS OF PHARMACOGENETIC TESTING FOR PERSONALIZATION OF THERAPY WITH ORAL ANTICOAGULANTS IN RUSSIA

    Directory of Open Access Journals (Sweden)

    D. A. Sychev

    2013-01-01

    Full Text Available The clinical significance of the patient genetic characteristics in the individual pharmacological response to oral anticoagulants is considered. Possible tactics of warfarin dosing and new oral anticoagulants choice on the basis of pharmacogenetic testing as well as indications for this approach in clinical practice are discussed. It should increase efficacy and safety of anticoagulant therapy.

  3. Pharmacogenetic Variation at CYP2D6, CYP2C9, and CYP2C19: Population Genetic and Forensic Aspects

    OpenAIRE

    Sistonen, Johanna

    2008-01-01

    Pharmacogenetics deals with genetically determined variation in drug response. In this context, three phase I drug-metabolizing enzymes, CYP2D6, CYP2C9, and CYP2C19, have a central role, affecting the metabolism of about 20-30% of clinically used drugs. Since genes coding for these enzymes in human populations exhibit high genetic polymorphism, they are of major pharmacogenetic importance. The aims of this study were to develop new genotyping methods for CYP2D6, CYP2C9, and CYP2C19 that would...

  4. Gender-specific genetic determinants of blood pressure and organ weight: pharmacogenetic approach

    Czech Academy of Sciences Publication Activity Database

    Ueno, T.; Tremblay, J.; Kuneš, Jaroslav; Zicha, Josef; Dobešová, Zdenka; Pausova, Z.; Deng, A. Y.; Sun, Y.; Jacob, H. J.; Hamet, P.

    2003-01-01

    Roč. 52, č. 6 (2003), s. 689-700 ISSN 0862-8408 R&D Projects: GA MŠk LN00A069; GA AV ČR IAA7011711; GA ČR GA305/03/0769 Institutional research plan: CEZ:AV0Z5011922 Keywords : Prague hypertriglyceridemic rat * quantitative trait loci ů hypertension * pharmacogenetics Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 0.939, year: 2003

  5. Pharmacogenetics-based warfarin dosing algorithm decreases time to stable anticoagulation and the risk of major hemorrhage: an updated meta-analysis of randomized controlled trials.

    Science.gov (United States)

    Wang, Zhi-Quan; Zhang, Rui; Zhang, Peng-Pai; Liu, Xiao-Hong; Sun, Jian; Wang, Jun; Feng, Xiang-Fei; Lu, Qiu-Fen; Li, Yi-Gang

    2015-04-01

    Warfarin is yet the most widely used oral anticoagulant for thromboembolic diseases, despite the recently emerged novel anticoagulants. However, difficulty in maintaining stable dose within the therapeutic range and subsequent serious adverse effects markedly limited its use in clinical practice. Pharmacogenetics-based warfarin dosing algorithm is a recently emerged strategy to predict the initial and maintaining dose of warfarin. However, whether this algorithm is superior over conventional clinically guided dosing algorithm remains controversial. We made a comparison of pharmacogenetics-based versus clinically guided dosing algorithm by an updated meta-analysis. We searched OVID MEDLINE, EMBASE, and the Cochrane Library for relevant citations. The primary outcome was the percentage of time in therapeutic range. The secondary outcomes were time to stable therapeutic dose and the risks of adverse events including all-cause mortality, thromboembolic events, total bleedings, and major bleedings. Eleven randomized controlled trials with 2639 participants were included. Our pooled estimates indicated that pharmacogenetics-based dosing algorithm did not improve percentage of time in therapeutic range [weighted mean difference, 4.26; 95% confidence interval (CI), -0.50 to 9.01; P = 0.08], but it significantly shortened the time to stable therapeutic dose (weighted mean difference, -8.67; 95% CI, -11.86 to -5.49; P pharmacogenetics-based algorithm significantly reduced the risk of major bleedings (odds ratio, 0.48; 95% CI, 0.23 to 0.98; P = 0.04), but it did not reduce the risks of all-cause mortality, total bleedings, or thromboembolic events. Our results suggest that pharmacogenetics-based warfarin dosing algorithm significantly improves the efficiency of International Normalized Ratio correction and reduces the risk of major hemorrhage.

  6. The Promise of Pharmacogenomics in Reducing Toxicity During Acute Lymphoblastic Leukemia Maintenance Treatment

    Directory of Open Access Journals (Sweden)

    Shoshana Rudin

    2017-04-01

    Full Text Available Pediatric acute lymphoblastic leukemia (ALL affects a substantial number of children every year and requires a long and rigorous course of chemotherapy treatments in three stages, with the longest phase, the maintenance phase, lasting 2–3 years. While the primary drugs used in the maintenance phase, 6-mercaptopurine (6-MP and methotrexate (MTX, are necessary for decreasing risk of relapse, they also have potentially serious toxicities, including myelosuppression, which may be life-threatening, and gastrointestinal toxicity. For both drugs, pharmacogenomic factors have been identified that could explain a large amount of the variance in toxicity between patients, and may serve as effective predictors of toxicity during the maintenance phase of ALL treatment. 6-MP toxicity is associated with polymorphisms in the genes encoding thiopurine methyltransferase (TPMT, nudix hydrolase 15 (NUDT15, and potentially inosine triphosphatase (ITPA, which vary between ethnic groups. Moreover, MTX toxicity is associated with polymorphisms in genes encoding solute carrier organic anion transporter family member 1B1 (SLCO1B1 and dihydrofolate reductase (DHFR. Additional polymorphisms potentially associated with toxicities for MTX have also been identified, including those in the genes encoding solute carrier family 19 member 1 (SLC19A1 and thymidylate synthetase (TYMS, but their contributions have not yet been well quantified. It is clear that pharmacogenomics should be incorporated as a dosage-calibrating tool in pediatric ALL treatment in order to predict and minimize the occurrence of serious toxicities for these patients.

  7. Deep learning in pharmacogenomics: from gene regulation to patient stratification.

    Science.gov (United States)

    Kalinin, Alexandr A; Higgins, Gerald A; Reamaroon, Narathip; Soroushmehr, Sayedmohammadreza; Allyn-Feuer, Ari; Dinov, Ivo D; Najarian, Kayvan; Athey, Brian D

    2018-05-01

    This Perspective provides examples of current and future applications of deep learning in pharmacogenomics, including: identification of novel regulatory variants located in noncoding domains of the genome and their function as applied to pharmacoepigenomics; patient stratification from medical records; and the mechanistic prediction of drug response, targets and their interactions. Deep learning encapsulates a family of machine learning algorithms that has transformed many important subfields of artificial intelligence over the last decade, and has demonstrated breakthrough performance improvements on a wide range of tasks in biomedicine. We anticipate that in the future, deep learning will be widely used to predict personalized drug response and optimize medication selection and dosing, using knowledge extracted from large and complex molecular, epidemiological, clinical and demographic datasets.

  8. Variability in the efficacy of psychopharmaceuticals: contributions from pharmacogenomics, ethnopsychopharmacology, and psychological and psychiatric anthropologies.

    Science.gov (United States)

    Ninnemann, Kristi M

    2012-03-01

    Psychological and psychiatric anthropology have long questioned the universality of psychiatric diagnoses, bringing to light the fluidity of mental disorder, and recognizing that the experience and expression of psychopathology is influenced by complex and interacting genetic, environmental, and cultural factors. The majority of our discussions, however, have remained centered around the role of culture in shaping mental illness: drawing attention to subjective experiences of mental illness and culturally patterned modes of symptom presentation, and interrogating the cogency of universal diagnostic rubrics. Psychological and psychiatric anthropology have yet to robustly engage the broadly assumed universal validity of psychiatric medications and the ways in which they are prescribed and experienced. This article provides an introduction into the fields of pharmacogenomics and ethnopsychopharmacology, areas of inquiry seeking to understand the ways in which genetic variability occurring between, and within, large population groups influences individual ability to metabolize psychotropic medications. This piece further addresses the complex issue of psychopharmaceutical efficacy, stressing the ways in which, just as with psychopathology, medications and their outcomes are likewise influenced by the complex interactions of genes, environment, and culture. Lastly, ways in which anthropology can and should engage with the growing fields of pharmacogenomics and ethnopsychopharmacology are suggested.

  9. Potential of adaptive clinical trial designs in pharmacogenetic research, A simulation based on the IPASS trial

    NARCIS (Netherlands)

    Van Der Baan, Frederieke H.; Knol, Mirjam J.|info:eu-repo/dai/nl/304820350; Klungel, Olaf H.|info:eu-repo/dai/nl/181447649; Egberts, Toine C.G.|info:eu-repo/dai/nl/162850050; Grobbee, Diederick E.; Roes, Kit C.B.

    2011-01-01

    Background: An adaptive clinical trial design that allows population enrichment after interim analysis can be advantageous in pharmacogenetic research if previous evidence is not strong enough to exclude part of the patient population beforehand.With this design, underpowered studies or unnecessary

  10. Ethical, Political and Societal Implications of the Open Access Journal Movement in the Era of Economic Crisis, with Emphasis on Public Health Pharmacogenomics.

    Science.gov (United States)

    Bragazzi, Nicola Luigi

    2013-12-01

    Publication of the research outputs is a vital step of the research processes and a gateway between the laboratory and the global society. Open Access is revolutionizing the dissemination of scientific ideas, particularly in the field of public health pharmacogenomics that examines the ways in which pharmacogenomics impacts health systems and services at a societal level, rather than a narrow bench to bedside model of translation science. This manuscript argues that despite some limitations and drawbacks, open access has profound ethical, political and societal implications especially on underdeveloped and developing countries, and that it provides opportunities for science to grow in these resource-limited countries, particularly in the era of a severe economic and financial crisis that is imposing cuts and restrictions to research.

  11. Impact of Pharmacogenetics on Efficacy and Safety of Statin Therapy for Dyslipidemia.

    Science.gov (United States)

    Maxwell, Whitney D; Ramsey, Laura B; Johnson, Samuel G; Moore, Kate G; Shtutman, Michael; Schoonover, John H; Kawaguchi-Suzuki, Marina

    2017-09-01

    Interindividual variability in response to 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, or statins, with regard to both efficacy and safety is an obvious target for pharmacogenetic research. Many genes have been identified as possible contributors to variability in statin response and safety. Genetic polymorphisms may alter the structure or expression of coded proteins, with potential impacts on lipid and statin absorption, distribution, metabolism, and elimination as well as response pathways related to the pharmacologic effect. Many studies have explored the variation in statins' pharmacokinetic and pharmacodynamic parameters; however, to our knowledge, few have established definitive relationships between the genetic polymorphisms and patient outcomes, such as cardiovascular events. In this review article, we provide a statin-based summary of available evidence describing pharmacogenetic associations that may be of clinical relevance in the future. Although currently available studies are often small or retrospective, and may have conflicting results, they may be useful in providing direction for future confirmatory studies and may point to associations that could be confirmed in the future when more patient outcomes-based studies are available. We also summarize the clinically relevant evidence currently available to assist clinicians with providing personalized pharmacotherapy for patients requiring statin therapy. © 2017 Pharmacotherapy Publications, Inc.

  12. Privacy in Pharmacogenetics: An End-to-End Case Study of Personalized Warfarin Dosing.

    Science.gov (United States)

    Fredrikson, Matthew; Lantz, Eric; Jha, Somesh; Lin, Simon; Page, David; Ristenpart, Thomas

    2014-08-01

    We initiate the study of privacy in pharmacogenetics, wherein machine learning models are used to guide medical treatments based on a patient's genotype and background. Performing an in-depth case study on privacy in personalized warfarin dosing, we show that suggested models carry privacy risks, in particular because attackers can perform what we call model inversion : an attacker, given the model and some demographic information about a patient, can predict the patient's genetic markers. As differential privacy (DP) is an oft-proposed solution for medical settings such as this, we evaluate its effectiveness for building private versions of pharmacogenetic models. We show that DP mechanisms prevent our model inversion attacks when the privacy budget is carefully selected . We go on to analyze the impact on utility by performing simulated clinical trials with DP dosing models. We find that for privacy budgets effective at preventing attacks, patients would be exposed to increased risk of stroke, bleeding events, and mortality . We conclude that current DP mechanisms do not simultaneously improve genomic privacy while retaining desirable clinical efficacy, highlighting the need for new mechanisms that should be evaluated in situ using the general methodology introduced by our work.

  13. Life-Threatening Adverse Events Following Therapeutic Opioid Administration in Adults: Is Pharmacogenetic Analysis Useful?

    Directory of Open Access Journals (Sweden)

    Parvaz Madadi

    2013-01-01

    Full Text Available BACKGROUND: Systemic approaches are needed to understand how variations in the genes associated with opioid pharmacokinetics and response can be used to predict patient outcome. The application of pharmacogenetic analysis to two cases of life-threatening opioid-induced respiratory depression is presented. The usefulness of genotyping in the context of these cases is discussed.

  14. Pharmacogenetics of warfarin: challenges and opportunities

    Science.gov (United States)

    Ta Michael Lee, Ming; Klein, Teri E

    2014-01-01

    Since the introduction in the 1950s, warfarin has become the commonly used oral anticoagulant for the prevention of thromboembolism in patients with deep vein thrombosis, atrial fibrillation or prosthetic heart valve replacement. Warfarin is highly efficacious; however, achieving the desired anticoagulation is difficult because of its narrow therapeutic window and highly variable dose response among individuals. Bleeding is often associated with overdose of warfarin. There is overwhelming evidence that an individual's warfarin maintenance is associated with clinical factors and genetic variations, most notably polymorphisms in cytochrome P450 2C9 and vitamin K epoxide reductase subunit 1. Numerous dose-prediction algorithms incorporating both genetic and clinical factors have been developed and tested clinically. However, results from major clinical trials are not available yet. This review aims to provide an overview of the field of warfarin which includes information about the drug, genetics of warfarin dose requirements, dosing algorithms developed and the challenges for the clinical implementation of warfarin pharmacogenetics. PMID:23657428

  15. CYP2D6 polymorphisms and their influence on risperidone treatment

    Directory of Open Access Journals (Sweden)

    Puangpetch A

    2016-12-01

    Full Text Available Apichaya Puangpetch,1 Natchaya Vanwong,1 Nopphadol Nuntamool,2 Yaowaluck Hongkaew,1 Monpat Chamnanphon,1 Chonlaphat Sukasem1 1Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, 2Molecular Medicine, Faculty of Science, Mahidol University, Bangkok, Thailand Abstract: Cytochrome P450 enzyme especially CYP2D6 plays a major role in biotransformation. The interindividual variations of treatment response and toxicity are influenced by the polymorphisms of this enzyme. This review emphasizes the effect of CYP2D6 polymorphisms in risperidone treatment in terms of basic knowledge, pharmacogenetics, effectiveness, adverse events, and clinical practice. Although the previous studies showed different results, the effective responses in risperidone treatment depend on the CYP2D6 polymorphisms. Several studies suggested that CYP2D6 polymorphisms were associated with plasma concentration of risperidone, 9-hydroxyrisperidone, and active moiety but did not impact on clinical outcomes. In addition, CYP2D6 poor metabolizer showed more serious adverse events such as weight gain and prolactin than other predicted phenotype groups. The knowledge of pharmacogenomics of CYP2D6 in risperidone treatment is increasing, and it can be used for the development of personalized medication in term of genetic-based dose recommendation. Moreover, the effects of many factors in risperidone treatment are still being investigated. Both the CYP2D6 genotyping and therapeutic drug monitoring are the important steps to complement the genetic-based risperidone treatment. Keywords: CYP2D6, risperidone, polymorphisms, adverse drug reaction, pharmacogenetics, pharmacokinetics, pharmacodynamics

  16. The utility of pharmacogenetic testing to support the treatment of bipolar disorder

    Directory of Open Access Journals (Sweden)

    Ielmini M

    2018-03-01

    Full Text Available Marta Ielmini,1 Nicola Poloni,1 Ivano Caselli,1 Jordi Espadaler,2 Miquel Tuson,2 Alessandro Grecchi,3 Camilla Callegari1 1Department of Medicine and Surgery, Division of Psychiatry, University of Insubria, Varese, Italy; 2AB-BIOTICS S.A, R&D Unit, Sant Cugat del Valles, Barcelona, Spain; 3ASST Santi Paolo e Carlo Borromeo, Division of Psychiatry, Milan, Italy Background: Bipolar disorder (BD is a frequent cause of disability, health care costs, and risk of suicide. Pharmacogenetic tests (PGTs could help clinicians to identify those patients predisposed to the occurrence of adverse events (AEs improving the understanding of the correlation between genetic variants and drug response.Materials and methods: The study evaluated 30 patients affected by BD type I or II (according to Diagnostic and Statistical Manual of Mental Disorders, version 5 who underwent the PGT Neurofarmagen® (AB-BIOTICS SA, Barcelona, Spain between March 2016 and March 2017. The primary aim of this study was to identify if the treatment prescribed by the psychiatrists was consistent with the treatment suggested by the PGT at T0 (corresponding to the test report communication. As a secondary aim, we wanted to assess if clinicians had changed the treatment (in case of discordance at T1 (3-month follow-up visit according to the results of the PGT.Results: At T0, only 4 patients (13% had an optimal therapy in line with the PGT suggestions. At 3-month follow-up, 13 patients (40% had received a change of therapy consistent to the test, showing a significant statistical improvement in the Clinical Global Impression item Severity (CGI-S score over time compared to those not having changes consistent with the test. Regarding AEs, at baseline 9 out of 10 (90% of the patients who received a therapy modification according to the test presented AEs, and a significant within-group reduction was observed after 3 months (p = 0.031.Conclusion: Despite the small sample size, the study shows

  17. Review of Opioid Pharmacogenetics and Considerations for Pain Management.

    Science.gov (United States)

    Owusu Obeng, Aniwaa; Hamadeh, Issam; Smith, Michael

    2017-09-01

    Opioid analgesics are the standards of care for the treatment of moderate to severe nociceptive pain, particularly in the setting of cancer and surgery. Their analgesic properties mainly emanate from stimulation of the μ receptors, which are encoded by the OPRM1 gene. Hepatic metabolism represents the major route of elimination, which, for some opioids, namely codeine and tramadol, is necessary for their bioactivation into more potent analgesics. The highly polymorphic nature of the genes coding for phase I and phase II enzymes (pharmacokinetics genes) that are involved in the metabolism and bioactivation of opioids suggests a potential interindividual variation in their disposition and, most likely, response. In fact, such an association has been substantiated in several pharmacokinetic studies described in this review, in which drug exposure and/or metabolism differed significantly based on the presence of polymorphisms in these pharmacokinetics genes. Furthermore, in some studies, the observed variability in drug exposure translated into differences in the incidence of opioid-related adverse effects, particularly nausea, vomiting, constipation, and respiratory depression. Although the influence of polymorphisms in pharmacokinetics genes, as well as pharmacodynamics genes (OPRM1 and COMT) on response to opioids has been a subject of intense research, the results have been somehow conflicting, with some evidence insinuating for a potential role for OPRM1. The Clinical Pharmacogenetics Implementation Consortium guidelines provide CYP2D6-guided therapeutic recommendations to individualize treatment with tramadol and codeine. However, implementation guidelines for other opioids, which are more commonly used in real-world settings for pain management, are currently lacking. Hence, further studies are warranted to bridge this gap in our knowledge base and ultimately ascertain the role of pharmacogenetic markers as predictors of response to opioid analgesics. © 2017

  18. Influence of pre-hydration and pharmacogenetics on plasma methotrexate concentration and renal dysfunction following high-dose methotrexate therapy.

    Science.gov (United States)

    Yanagimachi, Masakatsu; Goto, Hiroaki; Kaneko, Tetsuji; Naruto, Takuya; Sasaki, Koji; Takeuchi, Masanobu; Tanoshima, Reo; Kato, Hiromi; Yokosuka, Tomoko; Kajiwara, Ryosuke; Fujii, Hisaki; Tanaka, Fumiko; Goto, Shoko; Takahashi, Hiroyuki; Mori, Masaaki; Kai, Sumio; Yokota, Shumpei

    2013-12-01

    High-dose methotrexate therapy (HD-MTX) has been well established for the treatment of childhood acute lymphoblastic leukemia (ALL). The aims of this study were to investigate whether clinical and pharmacogenetic factors influence plasma MTX concentration and renal dysfunction in patients treated with HD-MTX. In a total of 127 courses of HD-MTX in 51 patients with childhood ALL, influence of clinical and pharmacogenetic factors on plasma MTX concentration and HD-MTX-related renal dysfunction was evaluated. Clinical factors included age, gender, duration of HD-MTX continuous-infusion and duration of pre-hydration before HD-MTX. Pharmacogenetic factors included 5 gene polymorphisms within the MTX pathway genes, namely, SLC19A1, MTHFR, ABCC2 and ABCG2. Short duration of pre-hydration before HD-MTX is the most important risk factor for prolonged high MTX concentration (p < 0.001, OR 6.40, 95 % CI 2.39-17.16) and renal dysfunction (p = 0.013, OR 3.15, 95 % CI 1.27-7.80). The T allele at MTHFR C677T was the risk factor for prolonged high MTX concentration (p = 0.009, OR 5.54, 95 % CI 1.54-19.85), but not for renal dysfunction. We found the influence of MTHFR C677T polymorphism on prolonged high MTX concentration. We reconfirmed the importance of adequate pre-hydration before HD-MTX to prevent prolonged high MTX concentration and MTX-related renal dysfunction.

  19. Assessment of Pharmacogenomic Panel Assay for Prediction of Taxane Toxicities: Preliminary Results

    Directory of Open Access Journals (Sweden)

    Raffaele Di Francia

    2017-11-01

    Full Text Available Backbone: Paclitaxel and docetaxel are the primary taxane anticancer drugs regularly used to treat, breast, gastric, ovarian, head/neck, lung, and genitourinary neoplasm. Suspension of taxane treatments compromising patient benefits is more frequently caused by peripheral neuropathy and allergy, than to tumor progression. Several strategies for preventing toxicity have been investigated so far. Recently, findings on the genetic variants associated with toxicity and resistance to taxane-based chemotherapy have been reported.Methods: An extensive panel of five polymorphisms on four candidate genes (ABCB1, CYP2C8*3, CYP3A4*1B, XRCC3, previously validated as significant markers related to paclitaxel and Docetaxel toxicity, are analyzed and discussed. We genotyped 76 cancer patients, and 35 of them received paclitaxel or docetaxel-based therapy. What is more, an early outline evaluation of the genotyping costs and benefit was assessed.Results: Out of 35 patients treated with a taxane, six (17.1% had adverse neuropathy events. Pharmacogenomics analysis showed no correlation between candidate gene polymorphisms and toxicity, except for the XRCC3 AG+GG allele [OR 2.61 (95% CI: 0.91–7.61] which showed a weak significant trend of risk of neurotoxicities vs. the AG allele [OR 1.52 (95% CI: 0.51–4.91] P = 0.03.Summary: Based on our experimental results and data from the literature, we propose a useful and low-cost genotyping panel assay for the prevention of toxicity in patients undergoing taxane-based therapy. With the individual pharmacogenomics profile, clinicians will have additional information to plan the better treatment for their patients to minimize toxicity and maximize benefits, including determining cost-effectiveness for national healthcare sustainability.

  20. Atomoxetine pharmacogenetics: associations with pharmacokinetics, treatment response and tolerability.

    Science.gov (United States)

    Brown, Jacob T; Bishop, Jeffrey R

    2015-01-01

    Atomoxetine is indicated for the treatment of attention deficit hyperactivity disorder and is predominantly metabolized by the CYP2D6 enzyme. Differences in pharmacokinetic parameters as well as clinical treatment outcomes across CYP2D6 genotype groups have resulted in dosing recommendations within the product label, but clinical studies supporting the use of genotype guided dosing are currently lacking. Furthermore, pharmacokinetic and clinical studies have primarily focused on extensive as compared with poor metabolizers, with little information known about other metabolizer categories as well as genes involved in the pharmacodynamics of atomoxetine. This review describes the pharmacogenetic associations with atomoxetine pharmacokinetics, treatment response and tolerability with considerations for the clinical utility of this information.

  1. Pharmacokinetics, pharmacodynamics, and pharmacogenetics of hydroxyurea treatment for children with sickle cell anemia

    Science.gov (United States)

    Despotovic, Jenny M.; Mortier, Nicole A.; Flanagan, Jonathan M.; He, Jin; Smeltzer, Matthew P.; Kimble, Amy C.; Aygun, Banu; Wu, Song; Howard, Thad; Sparreboom, Alex

    2011-01-01

    Hydroxyurea therapy has proven laboratory and clinical efficacies for children with sickle cell anemia (SCA). When administered at maximum tolerated dose (MTD), hydroxyurea increases fetal hemoglobin (HbF) to levels ranging from 10% to 40%. However, interpatient variability of percentage of HbF (%HbF) response is high, MTD itself is variable, and accurate predictors of hydroxyurea responses do not currently exist. HUSTLE (NCT00305175) was designed to provide first-dose pharmacokinetics (PK) data for children with SCA initiating hydroxyurea therapy, to investigate pharmacodynamics (PD) parameters, including HbF response and MTD after standardized dose escalation, and to evaluate pharmacogenetics influences on PK and PD parameters. For 87 children with first-dose PK studies, substantial interpatient variability was observed, plus a novel oral absorption phenotype (rapid or slow) that influenced serum hydroxyurea levels and total hydroxyurea exposure. PD responses in 174 subjects were robust and similar to previous cohorts; %HbF at MTD was best predicted by 5 variables, including baseline %HbF, whereas MTD was best predicted by 5 variables, including serum creatinine. Pharmacogenetics analysis showed single nucleotide polymorphisms influencing baseline %HbF, including 5 within BCL11A, but none influencing MTD %HbF or dose. Accurate prediction of hydroxyurea treatment responses for SCA remains a worthy but elusive goal. PMID:21876119

  2. [MODERN VIEWS ON THE PHARMACOGENETICS OF PAIN.

    Science.gov (United States)

    Makharin, O A; Zhenilo, V M; Patyuchenko, O Yu

    2017-09-01

    Quality anesthesia during surgery and in the postoperative period remains a topical problem of modern anesthesiology. The study of genetic characteristics of a patient is a goal that may be allow us to develop a personalized approach to solve this problem. The purpose of the review is a synthesis of literature data about the influence of genetic factors on pain perception and its treatment. The review included information obtained from SCOPUS, MedLine, EMBASE. The search keywords were: pain, pharmacogenetics, polymorphism, analgesics.Describe the effect ofgene polymorphisms of OPRM, 5HTRIA, 5HTR2A, COMT GCHI, SCN9A, KCNSI, CACNA2D3, CACNG2, PTGSI, PTGS2, MDRJ/ABCB] on the perception of pain, and CYP2D6, CYP2C9, CYP3A4 on the pharmacokinetics and pharmacodynamics of medi- cations used in the treatment of pain.

  3. Combined approach with therapeutic drug monitoring and pharmacogenomics in renal transplant recipients

    Directory of Open Access Journals (Sweden)

    S Manvizhi

    2013-01-01

    Full Text Available In patients undergoing renal transplantation, dose individualization for tacrolimus is routinely achieved with therapeutic drug monitoring (TDM. The patient started on 5.5 mg/day of tacrolimus had a significantly elevated tacrolimus trough concentration. The tacrolimus dose was regularly reduced following TDM at many time periods in the post transplant period but the tacrolimus concentration was consistently elevated. Genomic analysis done after four years revealed mutations in the genes encoding for CYP3A5 and MDR1 (2677G > T. Pharmacogenomics alongside TDM, will soon emerge as the backbone of dose individualization. But for genomics to be beneficial, it should be advocated in the pre-transplant or early post transplant period.

  4. Pharmacogenetic testing prior to carbamazepine treatment of epilepsy: patients' and physicians' preferences for testing and service delivery.

    Science.gov (United States)

    Powell, Graham; Holmes, Emily A F; Plumpton, Catrin O; Ring, Adele; Baker, Gus A; Jacoby, Ann; Pirmohamed, Munir; Marson, Anthony G; Hughes, Dyfrig A

    2015-11-01

    Pharmacogenetic studies have identified the presence of the HLA-A*31:01 allele as a predictor of cutaneous adverse drugs reactions (ADRs) to carbamazepine. This study aimed to ascertain the preferences of patients and clinicians to inform carbamazepine pharmacogenetic testing services. Attributes of importance to people with epilepsy and neurologists were identified through interviews and from published sources. Discrete choice experiments (DCEs) were conducted in 82 people with epilepsy and 83 neurologists. Random-effects logit regression models were used to determine the importance of the attributes and direction of effect. In the patient DCE, all attributes (seizure remission, reduction in seizure frequency, memory problems, skin rash and rare, severe ADRs) were significant. The estimated utility of testing was greater, at 0.52 (95% CI 0.19, 1.00) than not testing at 0.33 (95% CI -0.07, 0.81). In the physician DCE, cost, inclusion in the British National Formulary, coverage, negative predictive value (NPV) and positive predictive value (PPV) were significant. Marginal rates of substitution indicated that neurologists were willing to pay £5.87 for a 1 percentage point increase in NPV and £3.99 for a 1 percentage point increase in PPV. The inclusion of both patients' and clinicians' perspectives represents an important contribution to the understanding of preferences towards pharmacogenetic testing prior to initiating carbamazepine. Both groups identified different attributes but had generally consistent preferences. Patients' acceptance of a decrease in treatment benefit for a reduced chance of severe ADRs adds support for the implementation of HLA-A*31:01 testing in routine practice. © 2015 The British Pharmacological Society.

  5. Potential of a Pharmacogenetic-Guided Algorithm to Predict Optimal Warfarin Dosing in a High-Risk Hispanic Patient

    Directory of Open Access Journals (Sweden)

    Dagmar F. Hernandez-Suarez MD

    2016-12-01

    Full Text Available Deep abdominal vein thrombosis is extremely rare among thrombotic events secondary to the use of contraceptives. A case to illustrate the clinical utility of ethno-specific pharmacogenetic testing in warfarin management of a Hispanic patient is reported. A 37-year-old Hispanic Puerto Rican, non-gravid female with past medical history of abnormal uterine bleeding on hormonal contraceptive therapy was evaluated for abdominal pain. Physical exam was remarkable for unspecific diffuse abdominal tenderness, and general initial laboratory results—including coagulation parameters—were unremarkable. A contrast-enhanced computed tomography showed a massive thrombosis of the main portal, splenic, and superior mesenteric veins. On admission the patient was started on oral anticoagulation therapy with warfarin at 5 mg/day and low-molecular-weight heparin. The prediction of an effective warfarin dose of 7.5 mg/day, estimated by using a recently developed pharmacogenetic-guided algorithm for Caribbean Hispanics, coincided with the actual patient’s warfarin dose to reach the international normalized ratio target. We speculate that the slow rise in patient’s international normalized ratio observed on the initiation of warfarin therapy, the resulting high risk for thromboembolic events, and the required warfarin dose of 7.5 mg/day are attributable in some part to the presence of the NQO1 *2 (g.559C>T, p.P187S polymorphism, which seems to be significantly associated with resistance to warfarin in Hispanics. By adding genotyping results of this novel variant, the predictive model can inform clinicians better about the optimal warfarin dose in Caribbean Hispanics. The results highlight the potential for pharmacogenetic testing of warfarin to improve patient care.

  6. Pharmacogenetics: progress, pitfalls and clinical potential for coronary heart disease.

    Science.gov (United States)

    Humphries, Steve E; Hingorani, Aroon

    2006-02-01

    Much has been written about the potential of pharmacogenetic testing to inform therapy based on an individual's genetic makeup, and to decide the most effective choice of available drugs, or to avoid dangerous side effects. Currently, there is little hard data for either in the field of cardiovascular disease. The usual approach has been opportunistic use of drug trials in unrelated patients, and to look for differences in response or outcome by "candidate gene" genotype, for example genes coding for drug metabolising enzymes (activators and metabolisers), and enzymes and receptors involved in lipid metabolism, adrenergic response, etc. As with all association studies, initially promising results have often failed the test of replication in larger studies, and the relationship between the CETP Taq-I variant and response to statins has now been disproved. The strongest data to date is the report [Chasman, D.I., Posada, D., Subrahmanyan, L., Cook, N.R., Stanton Jr., V.P., Ridker, P.M., 2004. Pharmacogenetic study of statin therapy and cholesterol reduction. J. Am. Med. Assoc. 291, 2821-2827] of a poorer cholesterol-lowering response to Pravastatin in the 7% of patients carrying a certain haplotype of the HMG CoA reductase gene (14% fall versus 19%), but if this is overcome simply by a higher dose, it is of little clinical relevance. Currently, the best example of avoiding side effects is determining genotype at the CYP2C9 locus with respect of warfarin treatment, since carriers for functional variants (>20% of the population) require lower doses for optimal anticoagulation, and homozygotes, although rare, may well experience serious bleeding if given a usual dose. The full potential of this field will only be realised with much further work.

  7. [Pharmacogenetics in anesthesia and intensive care medicine : Clinical and legal challenges exemplified by malignant hyperthermia].

    Science.gov (United States)

    Klingler, W; Pfenninger, E

    2016-05-01

    Pharmacotherapy is a key component of anesthesiology and intensive care medicine. The individual genetic profile influences not only the effect of pharmaceuticals but can also completely alter the mode of action. New technologies for genetic screening (e.g. next generation sequencing) and increasing knowledge of molecular pathways foster the disclosure of pharmacogenetic syndromes, which are classified as rare diseases. Taking into account the high genetic variability in humans and over 8000 known rare diseases, up to 20 % of the population may be affected. In summary, rare diseases are not rare. Most pharmacogenetic syndromes lead to a weakening or loss of pharmacological action. In contrast, malignant hyperthermia (MH), which is the most relevant pharmacogenetic syndrome for anesthesia, is characterized by a pharmacologically induced overactivation of calcium metabolism in skeletal muscle. Volatile anesthetic agents and succinylcholine trigger life-threatening hypermetabolic crises. Emergency treatment is based on inhibition of the calcium release channel of the sarcoplasmic reticulum by dantrolene. After an adverse pharmacological event patients must be informed and a clarification consultation must be carried out during which the hereditory character of MH is explained. The patient should be referred to a specialist MH center where a predisposition can be diagnosed by the functional in vitro contracture test from a muscle biopsy. Additional molecular genetic investigations can yield mutations in the genes for calcium-regulating proteins in skeletal muscle, e.g. ryanodine receptor 1 (RyR1) and calcium voltage-gated channel subunit alpha 1S (CACNA1S). Currently, an association to MH has only been shown for 35 mutations out of more than 400 known and probably hundreds of unknown genetic variations. Furthermore, MH predisposition is not excluded by negative mutation screening. For anesthesiological patient safety it is crucial to identify individuals at risk and

  8. Pharmacogenomics of alcohol addiction: Personalizing pharmacologic treatment of alcohol dependence

    Directory of Open Access Journals (Sweden)

    Ragia Georgia

    2014-01-01

    Full Text Available Alcohol dependence is a serious psychiatric disorder with harmful physical, mental and social consequences, and a high probability of a chronic relapsing course. The field of pharmacologic treatment of alcohol dependence and craving is expanding rapidly; the drugs that have been found to reduce relapse rates or drinking in alcohol-dependent patients and are approved for treatment of alcohol dependence are naltrexone, acamprosate and disulfiram, whereas also topiramate appears as a promising therapy. For many patients, however, these treatments are not effective. Evidence from a number of different studies suggests that genetic variation is a significant contributor to interindividual variation of clinical presentation of alcohol problems and response to a given treatment. The aim of the present review is to summarize and discuss the findings on the association between gene polymorphisms and the response to alcohol dependence treatment medications. It is anticipated that future implementation of pharmacogenomics in clinical practice will help personalize alcohol dependence drug treatment, and development personalized hospital pharmacology.

  9. Validation of the 17-item Hamilton Depression Rating Scale definition of response for adults with major depressive disorder using equipercentile linking to Clinical Global Impression scale ratings: analysis of Pharmacogenomic Research Network Antidepressant Medication Pharmacogenomic Study (PGRN-AMPS) data.

    Science.gov (United States)

    Bobo, William V; Angleró, Gabriela C; Jenkins, Gregory; Hall-Flavin, Daniel K; Weinshilboum, Richard; Biernacka, Joanna M

    2016-05-01

    The study aimed to define thresholds of clinically significant change in 17-item Hamilton Depression Rating Scale (HDRS-17) scores using the Clinical Global Impression-Improvement (CGI-I) Scale as a gold standard. We conducted a secondary analysis of individual patient data from the Pharmacogenomic Research Network Antidepressant Medication Pharmacogenomic Study, an 8-week, single-arm clinical trial of citalopram or escitalopram treatment of adults with major depression. We used equipercentile linking to identify levels of absolute and percent change in HDRS-17 scores that equated with scores on the CGI-I at 4 and 8 weeks. Additional analyses equated changes in the HDRS-7 and Bech-6 scale scores with CGI-I scores. A CGI-I score of 2 (much improved) corresponded to an absolute decrease (improvement) in HDRS-17 total score of 11 points and a percent decrease of 50-57%, from baseline values. Similar results were observed for percent change in HDRS-7 and Bech-6 scores. Larger absolute (but not percent) decreases in HDRS-17 scores equated with CGI-I scores of 2 in persons with higher baseline depression severity. Our results support the consensus definition of response based on HDRS-17 scores (>50% decrease from baseline). A similar definition of response may apply to the HDRS-7 and Bech-6. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Mechanisms and pharmacogenetic signals underlying thiazide diuretics blood pressure response.

    Science.gov (United States)

    Shahin, Mohamed H; Johnson, Julie A

    2016-04-01

    Thiazide (TZD) diuretics are among the most commonly prescribed antihypertensives globally; however their chronic blood pressure (BP) lowering mechanism remains unclear. Herein we discuss the current evidence regarding specific mechanisms regulating the antihypertensive effects of TZDs, suggesting that TZDs act via multiple complex and interacting mechanisms, including natriuresis with short term use and direct vasodilatory effects chronically. Additionally, we review pharmacogenomics signals that have been associated with TZDs BP-response in several cohorts (i.e. NEDD4L, PRKCA, EDNRA-GNAS, and YEATS4) and discuss how these genes might be related to TZD BP-response mechanism. Understanding the association between these genes and TZD BP mechanism might facilitate the development of new drugs and therapeutic approaches based on a deeper understanding of the determinants of BP-response. Copyright © 2016. Published by Elsevier Ltd.

  11. Optogenetics and pharmacogenetics: principles and applications.

    Science.gov (United States)

    Jiang, Jingwei; Cui, Huxing; Rahmouni, Kamal

    2017-12-01

    Remote and selective spatiotemporal control of the activity of neurons to regulate behavior and physiological functions has been a long-sought goal in system neuroscience. Identification and subsequent bioengineering of light-sensitive ion channels (e.g., channelrhodopsins, halorhodopsin, and archaerhodopsins) from the bacteria have made it possible to use light to artificially modulate neuronal activity, namely optogenetics. Recent advance in genetics has also allowed development of novel pharmacological tools to selectively and remotely control neuronal activity using engineered G protein-coupled receptors, which can be activated by otherwise inert drug-like small molecules such as the designer receptors exclusively activated by designer drug, a form of chemogenetics. The cutting-edge optogenetics and pharmacogenetics are powerful tools in neuroscience that allow selective and bidirectional modulation of the activity of defined populations of neurons with unprecedented specificity. These novel toolboxes are enabling significant advances in deciphering how the nervous system works and its influence on various physiological processes in health and disease. Here, we discuss the fundamental elements of optogenetics and chemogenetics approaches and some of the applications that yielded significant advances in various areas of neuroscience and beyond. Copyright © 2017 the American Physiological Society.

  12. Enhancing Reproducibility in Cancer Drug Screening: How Do We Move Forward?

    DEFF Research Database (Denmark)

    Shi, Leming; Haibe-Kains, Benjamin; Birkbak, Nicolai Juul

    2014-01-01

    Large-scale pharmacogenomic high-throughput screening (HTS) studies hold great potential for generating robust genomic predictors of drug response. Two recent large-scale HTS studies have reported results of such screens, revealing several known and novel drug sensitivities and biomarkers...

  13. New insights into the pharmacogenomics of antidepressant response from the GENDEP and STAR*D studies: rare variant analysis and high-density imputation.

    Science.gov (United States)

    Fabbri, C; Tansey, K E; Perlis, R H; Hauser, J; Henigsberg, N; Maier, W; Mors, O; Placentino, A; Rietschel, M; Souery, D; Breen, G; Curtis, C; Sang-Hyuk, L; Newhouse, S; Patel, H; Guipponi, M; Perroud, N; Bondolfi, G; O'Donovan, M; Lewis, G; Biernacka, J M; Weinshilboum, R M; Farmer, A; Aitchison, K J; Craig, I; McGuffin, P; Uher, R; Lewis, C M

    2017-11-21

    Genome-wide association studies have generally failed to identify polymorphisms associated with antidepressant response. Possible reasons include limited coverage of genetic variants that this study tried to address by exome genotyping and dense imputation. A meta-analysis of Genome-Based Therapeutic Drugs for Depression (GENDEP) and Sequenced Treatment Alternatives to Relieve Depression (STAR*D) studies was performed at the single-nucleotide polymorphism (SNP), gene and pathway levels. Coverage of genetic variants was increased compared with previous studies by adding exome genotypes to previously available genome-wide data and using the Haplotype Reference Consortium panel for imputation. Standard quality control was applied. Phenotypes were symptom improvement and remission after 12 weeks of antidepressant treatment. Significant findings were investigated in NEWMEDS consortium samples and Pharmacogenomic Research Network Antidepressant Medication Pharmacogenomic Study (PGRN-AMPS) for replication. A total of 7062 950 SNPs were analyzed in GENDEP (n=738) and STAR*D (n=1409). rs116692768 (P=1.80e-08, ITGA9 (integrin α9)) and rs76191705 (P=2.59e-08, NRXN3 (neurexin 3)) were significantly associated with symptom improvement during citalopram/escitalopram treatment. At the gene level, no consistent effect was found. At the pathway level, the Gene Ontology (GO) terms GO: 0005694 (chromosome) and GO: 0044427 (chromosomal part) were associated with improvement (corrected P=0.007 and 0.045, respectively). The association between rs116692768 and symptom improvement was replicated in PGRN-AMPS (P=0.047), whereas rs76191705 was not. The two SNPs did not replicate in NEWMEDS. ITGA9 codes for a membrane receptor for neurotrophins and NRXN3 is a transmembrane neuronal adhesion receptor involved in synaptic differentiation. Despite their meaningful biological rationale for being involved in antidepressant effect, replication was partial. Further studies may help in clarifying

  14. The future of pharmacogenetics in the treatment of heart failure.

    Science.gov (United States)

    Anwar, Mohamed Subhan; Iskandar, Muhammad Zaid; Parry, Helen M; Doney, Alex S; Palmer, Colin N; Lang, Chim C

    2015-11-01

    Heart failure is a common disease with high levels of morbidity and mortality. Current treatment comprises β-blockers, ACE inhibitors, aldosterone antagonists and diuretics. Variation in clinical response seen in patients begs the question of whether there is a pharmacogenetic component yet to be identified. To date, the genes most studied involve the β-1, β-2, α-2 adrenergic receptors and the renin-angiotensin-aldosterone pathway, mainly focusing on SNPs. However results have been inconsistent. Genome-wide association studies and next-generation sequencing are seen as alternative approaches to discovering genetic variations influencing drug response. Hopefully future research will lay the foundations for genotype-led drug management in these patients with the ultimate aim of improving their clinical outcome.

  15. Genetics of Psoriasis and Pharmacogenetics of Biological Drugs

    Directory of Open Access Journals (Sweden)

    Rocío Prieto-Pérez

    2013-01-01

    Full Text Available Psoriasis is a chronic inflammatory disease of the skin. The causes of psoriasis are unknown, although family and twin studies have shown genetic factors to play a key role in its development. The many genes associated with psoriasis and the immune response include TNFα, IL23, and IL12. Advances in knowledge of the pathogenesis of psoriasis have enabled the development of new drugs that target cytokines (e.g., etanercept, adalimumab, and infliximab, which target TNFα, and ustekinumab, which targets the p40 subunit of IL23 and IL12. These drugs have improved the safety and efficacy of treatment in comparison with previous therapies. However, not all patients respond equally to treatment, possibly owing to interindividual genetic variability. In this review, we describe the genes associated with psoriasis and the immune response, the biological drugs used to treat chronic severe plaque psoriasis, new drugs in phase II and III trials, and current knowledge on the implications of pharmacogenomics in predicting response to these treatments.

  16. Bernard Lerer: recipient of the 2014 inaugural Werner Kalow Responsible Innovation Prize in Global Omics and Personalized Medicine (Pacific Rim Association for Clinical Pharmacogenetics).

    Science.gov (United States)

    Ozdemir, Vural; Endrenyi, Laszlo; Aynacıoğlu, Sükrü; Bragazzi, Nicola Luigi; Dandara, Collet; Dove, Edward S; Ferguson, Lynnette R; Geraci, Christy Jo; Hafen, Ernst; Kesim, Belgin Eroğlu; Kolker, Eugene; Lee, Edmund J D; Llerena, Adrian; Nacak, Muradiye; Shimoda, Kazutaka; Someya, Toshiyuki; Srivastava, Sanjeeva; Tomlinson, Brian; Vayena, Effy; Warnich, Louise; Yaşar, Umit

    2014-04-01

    This article announces the recipient of the 2014 inaugural Werner Kalow Responsible Innovation Prize in Global Omics and Personalized Medicine by the Pacific Rim Association for Clinical Pharmacogenetics (PRACP): Bernard Lerer, professor of psychiatry and director of the Biological Psychiatry Laboratory, Hadassah-Hebrew University Medical Center, Jerusalem, Israel. The Werner Kalow Responsible Innovation Prize is given to an exceptional interdisciplinary scholar who has made highly innovative and enduring contributions to global omics science and personalized medicine, with both vertical and horizontal (transdisciplinary) impacts. The prize is established in memory of a beloved colleague, mentor, and friend, the late Professor Werner Kalow, who cultivated the idea and practice of pharmacogenetics in modern therapeutics commencing in the 1950s. PRACP, the prize's sponsor, is one of the longest standing learned societies in the Asia-Pacific region, and was founded by Kalow and colleagues more than two decades ago in the then-emerging field of pharmacogenetics. In announcing this inaugural prize and its winner, we seek to highlight the works of prize winner, Professor Lerer. Additionally, we contextualize the significance of the prize by recalling the life and works of Professor Kalow and providing a brief socio-technical history of the rise of pharmacogenetics and personalized medicine as a veritable form of 21(st) century scientific practice. The article also fills a void in previous social science analyses of pharmacogenetics, by bringing to the fore the works of Kalow from 1995 to 2008, when he presciently noted the rise of yet another field of postgenomics inquiry--pharmacoepigenetics--that railed against genetic determinism and underscored the temporal and spatial plasticity of genetic components of drug response, with invention of the repeated drug administration (RDA) method that estimates the dynamic heritabilities of drug response. The prize goes a long way

  17. Applications of pharmacogenomics in regulatory science: a product life cycle review.

    Science.gov (United States)

    Tan-Koi, W C; Leow, P C; Teo, Y Y

    2018-05-22

    With rapid developments of pharmacogenomics (PGx) and regulatory science, it is important to understand the current PGx integration in product life cycle, impact on clinical practice thus far and opportunities ahead. We conducted a cross-sectional review on PGx-related regulatory documents and implementation guidelines in the United States and Europe. Our review found that although PGx-related guidance in both markets span across the entire product life cycle, the scope of implementation guidelines varies across two continents. Approximately one-third of Food and Drug Administration (FDA)-approved drugs with PGx information in drug labels and half of the European labels posted on PharmGKB website contain recommendations on genetic testing. The drugs affected 19 and 15 World Health Organization Anatomical Therapeutic Chemical drug classes (fourth level) in the United States and Europe, respectively, with protein kinase inhibitors (13 drugs in the United States and 16 drugs in Europe) being most prevalent. Topics of emerging interest were novel technologies, adaptive design in clinical trial and sample collection.

  18. Methotrexate-induced toxicity pharmacogenetics: an umbrella review of systematic reviews and meta-analyses.

    Science.gov (United States)

    Campbell, Jared M; Bateman, Emma; Stephenson, Matthew D; Bowen, Joanne M; Keefe, Dorothy M; Peters, Micah D J

    2016-07-01

    Methotrexate chemotherapy is associated with various toxicities which can result in the interruption or discontinuation of treatment and a subsequently raised risk of relapse. This umbrella systematic review was conducted to synthesize the results of all existing systematic reviews that investigate the pharmacogenetics of methotrexate-induced toxicity, with the aim of developing a comprehensive reference for personalized medicine. Databases searched were PubMed, Embase, JBI Database of Systematic Reviews and Implementation Reports, DARE, and ProQuest. Papers were critically appraised by two reviewers, and data were extracted using a standardized tool. Three systematic reviews on methotrexate-induced toxicity were included in the review. Meta-analyses were reported across Asian, Caucasian, pediatric and adult patients for the MTHFR C677T and A1298C polymorphisms. Toxicity outcomes included different forms of hematologic, ectodermal and hepatic toxicities. Results varied considerably depending on the patient groups and subgroups investigated in the different systematic reviews, as well as the genetic models utilized. However, significant associations were found between the MTHFR C677T allele and; hepatic toxicity, myelosuppression, oral mucositis, gastrointestinal toxicity, and skin toxicity. Additionally, limited evidence suggests that the MTHFR A1298C polymorphism may be associated with decreased risk of skin toxicity and leukopenia. This umbrella systematic review has synthesized the best available evidence on the pharmacogenetics of methotrexate toxicity. The next step in making personalized medicine for methotrexate therapy a clinical reality is research on the effectiveness and cost-effectiveness of MTHFR genotype testing to enable the close monitoring of at-risk patients for the timely initiation of rescue therapies.

  19. Pharmacogenetics and Metabolism from Science to Implementation in Clinical Practice: The Example of Dihydropyrimidine Dehydrogenase.

    Science.gov (United States)

    Del Re, Marzia; Restante, Giuliana; Di Paolo, Antonello; Crucitta, Stefania; Rofi, Eleonora; Danesi, Romano

    2017-01-01

    Fluoropyrimidines are widely used in the treatment of solid tumors and remain the backbone of many combination chemotherapy regimens. Despite their clinical benefit, they are associated with frequent gastrointestinal and hematological toxicities, which often lead to treatment discontinuation. Fluoropyrimidines undergo complex anabolic and catabolic biotransformation. Enzymes involved in this pathway include dihydropyrimidine dehydrogenase (DPD), which breaks down 5-FU and its prodrugs. Candidate gene approaches have demonstrated associations between 5-FU treatment outcomes and germline polymorphisms in DPD. The aim of this review is to report and discuss the latest results on fluoropyrimidine pharmacogenetics. Literature from PubMed databases and bibliography from retrieved publications have been analyzed according to terms such DPD, DPYD, fluoropyrimdines, polymorphisms, toxicity, pharmacogenetics. To date, many sequence variations have been identified within DPYD gene, although the majority of these have no functional consequences on enzymatic activity. Nowadays, there is a general agreement on the clinical significance of the importance of DPD deficiency in patients who suffer from severe, life-threatening drug toxicity although preemptive testing is not applied to all patients. Considering the published literature, clinicians are strongly encouraged to consider testing for DPD poor metabolizer variants as a rational pre-treatment screening for patients candidate to a fluoropyrimidine-based regimens, in order to prevent toxicities and personalise treatments. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Japan PGx Data Science Consortium Database: SNPs and HLA genotype data from 2994 Japanese healthy individuals for pharmacogenomics studies.

    Science.gov (United States)

    Kamitsuji, Shigeo; Matsuda, Takashi; Nishimura, Koichi; Endo, Seiko; Wada, Chisa; Watanabe, Kenji; Hasegawa, Koichi; Hishigaki, Haretsugu; Masuda, Masatoshi; Kuwahara, Yusuke; Tsuritani, Katsuki; Sugiura, Kenkichi; Kubota, Tomoko; Miyoshi, Shinji; Okada, Kinya; Nakazono, Kazuyuki; Sugaya, Yuki; Yang, Woosung; Sawamoto, Taiji; Uchida, Wataru; Shinagawa, Akira; Fujiwara, Tsutomu; Yamada, Hisaharu; Suematsu, Koji; Tsutsui, Naohisa; Kamatani, Naoyuki; Liou, Shyh-Yuh

    2015-06-01

    Japan Pharmacogenomics Data Science Consortium (JPDSC) has assembled a database for conducting pharmacogenomics (PGx) studies in Japanese subjects. The database contains the genotypes of 2.5 million single-nucleotide polymorphisms (SNPs) and 5 human leukocyte antigen loci from 2994 Japanese healthy volunteers, as well as 121 kinds of clinical information, including self-reports, physiological data, hematological data and biochemical data. In this article, the reliability of our data was evaluated by principal component analysis (PCA) and association analysis for hematological and biochemical traits by using genome-wide SNP data. PCA of the SNPs showed that all the samples were collected from the Japanese population and that the samples were separated into two major clusters by birthplace, Okinawa and other than Okinawa, as had been previously reported. Among 87 SNPs that have been reported to be associated with 18 hematological and biochemical traits in genome-wide association studies (GWAS), the associations of 56 SNPs were replicated using our data base. Statistical power simulations showed that the sample size of the JPDSC control database is large enough to detect genetic markers having a relatively strong association even when the case sample size is small. The JPDSC database will be useful as control data for conducting PGx studies to explore genetic markers to improve the safety and efficacy of drugs either during clinical development or in post-marketing.

  1. Hyperprolactinemia and CYP2D6, DRD2 and HTR2C genes polymorphism in patients with schizophrenia

    NARCIS (Netherlands)

    Fedorenko, Olga Yu.; Loonen, Anton J. M.; Vyalova, Natalya M.; Boiko, Аnastasiya S.; Pozhidaev, Ivan V.; Osmanova, Diana Z.; Rakhmazova, Lyubov D.; Bokhan, Nikolay А.; Ivanov, Mikhail V.; Freidin, Maxim B.; Ivanova, Svetlana А.

    2017-01-01

    Introduction: Hyperprolactinemia is a common serious side effect of antipsychotic medications that are currently used in the treatment of patients with schizophrenia. Pharmacogenetic approaches offer the possibility of identifying patient-specific biomarkers for predicting the risk of this side

  2. Exploring genetic and non-genetic risk factors for delayed graft function, acute and subclinical rejection in renal transplant recipients

    NARCIS (Netherlands)

    Moes, Dirk Jan A. R.; Press, Rogier R.; Ackaert, Oliver; Ploeger, Bart A.; Bemelman, Frederike J.; Diack, Cheikh; Wessels, Judith A. M.; van der Straaten, Tahar; Danhof, Meindert; Sanders, Jan-Stephan F.; Homan van der Heide, Jaap J.; Guchelaar, Henk Jan; de Fijter, Johan W.

    2016-01-01

    This study aimed at identifying pharmacological factors such as pharmacogenetics and drug exposure as new predictive biomarkers for delayed graft function (DGF), acute rejection (AR) and/or subclinical rejection (SCR). Adult renal transplant recipients (n = 361) on cyclosporine-based

  3. Hepatitis C virus pharmacogenomics in Latin American populations: implications in the era of direct-acting antivirals

    Directory of Open Access Journals (Sweden)

    Trinks J

    2017-03-01

    Full Text Available Julieta Trinks,1,2 Mariela Caputo,2,3 María L Hulaniuk,1 Daniel Corach,2,3 Diego Flichman2,4 1Basic Science and Experimental Medicine Institute (ICBME, University Institute of the Italian Hospital of Buenos Aires, 2Scientific and Technological National Research Council (CONICET, 3Servicio de Huellas Digitales Genéticas, Facultad de Farmacia y Bioquímica, 4Cátedra de Virología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina Abstract: In recent years, great progress has been made in the field of new therapeutic options for hepatitis C virus (HCV infection. The new direct-acting antiviral agents (DAAs represent a great hope for millions of chronically infected individuals because their use may lead to excellent cure rates with fewer side effects. In Latin America, the high prevalence of HCV genotype 1 infection and the significant association of Native American ancestry with risk predictive single-nucleotide polymorphisms (SNPs in IFNL4 and ITPA genes highlight the need to implement new treatment regimens in these populations. However, the universal accessibility to DAAs is still not a reality in the region as their high cost is one of the major, although not the only, limiting factors for their broad implementation. Therefore, under these circumstances, could the assessment of host genetic markers be a useful tool to prioritize DAA treatment until global access to these new drugs can be achieved? This review will summarize the scientific evidences and the potential implications of HCV pharmacogenomics in this rapidly evolving era of anti-HCV drug development. Keywords: hepatitis C virus, pharmacogenomics, PEG-IFN/RBV, DAAs, Latin America

  4. ABCB1 haplotype and OPRM1 118A > G genotype interaction in methadone maintenance treatment pharmacogenetics

    Directory of Open Access Journals (Sweden)

    Barratt DT

    2012-04-01

    Full Text Available Daniel T Barratt1, Janet K Coller1, Richard Hallinan2, Andrew Byrne2, Jason M White1, David JR Foster3, Andrew A Somogyi1,41Discipline of Pharmacology, School of Medical Sciences, University of Adelaide, Adelaide, South Australia; 2The Byrne Surgery, Specialist Drug and Alcohol Practice, Redfern, New South Wales; 3Division of Health Sciences, Sansom Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia; 4Department of Clinical Pharmacology, Royal Adelaide Hospital, Adelaide, South Australia, AustraliaBackground: Genetic variability in ABCB1, encoding the P-glycoprotein efflux transporter, has been linked to altered methadone maintenance treatment dose requirements. However, subsequent studies have indicated that additional environmental or genetic factors may confound ABCB1 pharmacogenetics in different methadone maintenance treatment settings. There is evidence that genetic variability in OPRM1, encoding the mu opioid receptor, and ABCB1 may interact to affect morphine response in opposite ways. This study aimed to examine whether a similar gene-gene interaction occurs for methadone in methadone maintenance treatment.Methods: Opioid-dependent subjects (n = 119 maintained on methadone (15–300 mg/day were genotyped for five single nucleotide polymorphisms of ABCB1 (61A > G; 1199G > A; 1236C > T; 2677G > T; 3435C > T, as well as for the OPRM1 18A > G single nucleotide polymorphism. Subjects’ methadone doses and trough plasma (R-methadone concentrations (Ctrough were compared between ABCB1 haplotypes (with and without controlling for OPRM1 genotype, and between OPRM1 genotypes (with and without controlling for ABCB1 haplotype.Results: Among wild-type OPRM1 subjects, an ABCB1 variant haplotype group (subjects with a wild-type and 61A:1199G:1236C:2677T:3435T haplotype combination, or homozygous for the 61A:1199G:1236C:2677T:3435T haplotype had significantly lower doses (median ± standard

  5. Exploring genetic and non-genetic risk factors for delayed graft function, acute and subclinical rejection in renal transplant recipients

    NARCIS (Netherlands)

    Moes, Dirk Jan A. R.; Press, Rogier R.; Ackaert, Oliver; Ploeger, Bart A.; Bemelman, Frederike J.; Diack, Cheikh; Wessels, Judith A. M.; van der Straaten, Tahar; Danhof, Meindert; Sanders, Jan-Stephan F.; van der Heide, Jaap J. Homan; Guchelaar, Henk Jan; de Fijter, Johan W.

    AIMS This study aimed at identifying pharmacological factors such as pharmacogenetics and drug exposure as new predictive biomarkers for delayed graft function (DGF), acute rejection (AR) and/or subclinical rejection (SCR). METHODS Adult renal transplant recipients (n = 361) on cyclosporine-based

  6. Pharmacokinetic, Pharmacogenetic, and Other Factors Influencing CNS Penetration of Antiretrovirals

    Directory of Open Access Journals (Sweden)

    Jacinta Nwamaka Nwogu

    2016-01-01

    Full Text Available Neurological complications associated with the human immunodeficiency virus (HIV are a matter of great concern. While antiretroviral (ARV drugs are the cornerstone of HIV treatment and typically produce neurological benefit, some ARV drugs have limited CNS penetration while others have been associated with neurotoxicity. CNS penetration is a function of several factors including sieving role of blood-brain and blood-CSF barriers and activity of innate drug transporters. Other factors are related to pharmacokinetics and pharmacogenetics of the specific ARV agent or mediated by drug interactions, local inflammation, and blood flow. In this review, we provide an overview of the various factors influencing CNS penetration of ARV drugs with an emphasis on those commonly used in sub-Saharan Africa. We also summarize some key associations between ARV drug penetration, CNS efficacy, and neurotoxicity.

  7. Routine pharmacogenetic testing in clinical practice: dream or reality?

    Science.gov (United States)

    Grossman, Iris

    2007-10-01

    Pharmacogenetics (PGx) has become progressively popular in recent years, thanks to growing anticipation among scientists, healthcare providers and the general public for the incorporation of genetic tests into the diagnostic arsenal at the physician's disposal. Indeed, much research has been dedicated to elucidation of genetic determinants underlying interindividual variability in pharmacokinetic parameters, as well as drug safety and efficacy. However, few PGx applications have thus far been realized in healthcare management. This review uses examples from PGx research of psychiatric drugs to illustrate why the current published findings are inadequate and insufficient for utilization as routine clinical predictors of treatment safety, efficacy or dosing. I therefore suggest the necessary steps to demonstrate the validity, utility and cost-effectiveness of PGx. These recommendations include a whole range of aspects, starting from standardization of criteria and assessment of the technical quality of genotyping assays, up to design of prospective PGx studies, providing the basis for reimbursement programs to be recognized in routine clinical practice.

  8. PG4KDS: a model for the clinical implementation of pre-emptive pharmacogenetics.

    Science.gov (United States)

    Hoffman, James M; Haidar, Cyrine E; Wilkinson, Mark R; Crews, Kristine R; Baker, Donald K; Kornegay, Nancy M; Yang, Wenjian; Pui, Ching-Hon; Reiss, Ulrike M; Gaur, Aditya H; Howard, Scott C; Evans, William E; Broeckel, Ulrich; Relling, Mary V

    2014-03-01

    Pharmacogenetics is frequently cited as an area for initial focus of the clinical implementation of genomics. Through the PG4KDS protocol, St. Jude Children's Research Hospital pre-emptively genotypes patients for 230 genes using the Affymetrix Drug Metabolizing Enzymes and Transporters (DMET) Plus array supplemented with a CYP2D6 copy number assay. The PG4KDS protocol provides a rational, stepwise process for implementing gene/drug pairs, organizing data, and obtaining consent from patients and families. Through August 2013, 1,559 patients have been enrolled, and four gene tests have been released into the electronic health record (EHR) for clinical implementation: TPMT, CYP2D6, SLCO1B1, and CYP2C19. These genes are coupled to 12 high-risk drugs. Of the 1,016 patients with genotype test results available, 78% of them had at least one high-risk (i.e., actionable) genotype result placed in their EHR. Each diplotype result released to the EHR is coupled with an interpretive consult that is created in a concise, standardized format. To support-gene based prescribing at the point of care, 55 interruptive clinical decision support (CDS) alerts were developed. Patients are informed of their genotyping result and its relevance to their medication use through a letter. Key elements necessary for our successful implementation have included strong institutional support, a knowledgeable clinical laboratory, a process to manage any incidental findings, a strategy to educate clinicians and patients, a process to return results, and extensive use of informatics, especially CDS. Our approach to pre-emptive clinical pharmacogenetics has proven feasible, clinically useful, and scalable. © 2014 Wiley Periodicals, Inc.

  9. Optimizing clopidogrel dose response: a new clinical algorithm comprising CYP2C19 pharmacogenetics and drug interactions

    Directory of Open Access Journals (Sweden)

    Saab YB

    2015-09-01

    Full Text Available Yolande B Saab,1 Rony Zeenny,2 Wijdan H Ramadan2 1School of Pharmacy, Pharmaceutical Sciences Department, 2School of Pharmacy, Pharmacy Practice Department, Lebanese American University, Byblos, Lebanon Purpose: Response to clopidogrel varies widely with nonresponse rates ranging from 4% to 30%. A reduced function of the gene variant of the CYP2C19 has been associated with lower drug metabolite levels, and hence diminished platelet inhibition. Drugs that alter CYP2C19 activity may also mimic genetic variants. The aim of the study is to investigate the cumulative effect of CYP2C19 gene polymorphisms and drug interactions that affects clopidogrel dosing, and apply it into a new clinical-pharmacogenetic algorithm that can be used by clinicians in optimizing clopidogrel-based treatment. Method: Clopidogrel dose optimization was analyzed based on two main parameters that affect clopidogrel metabolite area under the curve: different CYP2C19 genotypes and concomitant drug intake. Clopidogrel adjusted dose was computed based on area under the curve ratios for different CYP2C19 genotypes when a drug interacting with CYP2C19 is added to clopidogrel treatment. A clinical-pharmacogenetic algorithm was developed based on whether clopidogrel shows 1 expected effect as per indication, 2 little or no effect, or 3 clinical features that patients experience and fit with clopidogrel adverse drug reactions. Results: The study results show that all patients under clopidogrel treatment, whose genotypes are different from *1*1, and concomitantly taking other drugs metabolized by CYP2C19 require clopidogrel dose adjustment. To get a therapeutic effect and avoid adverse drug reactions, therapeutic dose of 75 mg clopidogrel, for example, should be lowered to 6 mg or increased to 215 mg in patients with different genotypes. Conclusion: The implementation of clopidogrel new algorithm has the potential to maximize the benefit of clopidogrel pharmacological therapy

  10. Systematic review and meta-analysis

    DEFF Research Database (Denmark)

    Bek, S; Bojesen, A B; Nielsen, J V

    2017-01-01

    B and TNF signalling pathways (including CTCN5, TEC, PTPRC, FCGR2A, NFKBIB, FCGR2A, IRAK3). Explorative prediction analyses found that biomarkers for clinical treatment selection are not yet available.The Pharmacogenomics Journal advance online publication, 13 June 2017; doi:10.1038/tpj.2017.26....

  11. Human genetics: international projects and personalized medicine.

    Science.gov (United States)

    Apellaniz-Ruiz, Maria; Gallego, Cristina; Ruiz-Pinto, Sara; Carracedo, Angel; Rodríguez-Antona, Cristina

    2016-03-01

    In this article, we present the progress driven by the recent technological advances and new revolutionary massive sequencing technologies in the field of human genetics. We discuss this knowledge in relation with drug response prediction, from the germline genetic variation compiled in the 1000 Genomes Project or in the Genotype-Tissue Expression project, to the phenome-genome archives, the international cancer projects, such as The Cancer Genome Atlas or the International Cancer Genome Consortium, and the epigenetic variation and its influence in gene expression, including the regulation of drug metabolism. This review is based on the lectures presented by the speakers of the Symposium "Human Genetics: International Projects & New Technologies" from the VII Conference of the Spanish Pharmacogenetics and Pharmacogenomics Society, held on the 20th and 21st of April 2015.

  12. The role of depression pharmacogenetic decision support tools in shared decision making.

    Science.gov (United States)

    Arandjelovic, Katarina; Eyre, Harris A; Lenze, Eric; Singh, Ajeet B; Berk, Michael; Bousman, Chad

    2017-10-29

    Patients discontinue antidepressant medications due to lack of knowledge, unrealistic expectations, and/or unacceptable side effects. Shared decision making (SDM) invites patients to play an active role in their treatment and may indirectly improve outcomes through enhanced engagement in care, adherence to treatment, and positive expectancy of medication outcomes. We believe decisional aids, such as pharmacogenetic decision support tools (PDSTs), facilitate SDM in the clinical setting. PDSTs may likewise predict drug tolerance and efficacy, and therefore adherence and effectiveness on an individual-patient level. There are several important ethical considerations to be navigated when integrating PDSTs into clinical practice. The field requires greater empirical research to demonstrate clinical utility, and the mechanisms thereof, as well as exploration of the ethical use of these technologies.

  13. Pharmacogenetics of drug-drug interaction and drug-drug-gene interaction: a systematic review on CYP2C9, CYP2C19 and CYP2D6.

    Science.gov (United States)

    Bahar, Muh Akbar; Setiawan, Didik; Hak, Eelko; Wilffert, Bob

    2017-05-01

    Currently, most guidelines on drug-drug interaction (DDI) neither consider the potential effect of genetic polymorphism in the strength of the interaction nor do they account for the complex interaction caused by the combination of DDI and drug-gene interaction (DGI) where there are multiple biotransformation pathways, which is referred to as drug-drug-gene interaction (DDGI). In this systematic review, we report the impact of pharmacogenetics on DDI and DDGI in which three major drug-metabolizing enzymes - CYP2C9, CYP2C19 and CYP2D6 - are central. We observed that several DDI and DDGI are highly gene-dependent, leading to a different magnitude of interaction. Precision drug therapy should take pharmacogenetics into account when drug interactions in clinical practice are expected.

  14. Pharmacogenetics of clozapine response and induced weight gain: A comprehensive review and meta-analysis.

    Science.gov (United States)

    Gressier, Florence; Porcelli, Stefano; Calati, Raffaella; Serretti, Alessandro

    2016-02-01

    Clozapine (CLZ) is the prototype atypical antipsychotic and it has many advantages over other antipsychotic drugs. Several data suggest that both CLZ response and induced weight gain are strongly determined by genetic variability. However, results remain mainly inconclusive. We aim to review the literature data about pharmacogenetics studies on CLZ efficacy, focusing on pharmacodynamic genes. Further, we performed meta-analyses on response when at least three studies for each polymorphism were available. Sensitivity analyses were conducted on Caucasian population when feasible. Electronic literature search was performed to identify pertinent studies published until May 2014 using PubMed, ISI Web of Knowledge and PsycINFO databases. For meta-analyses, data were entered and analyzed through RevMan version 5.2 using a random-effect model. Our literature search yielded 9266 articles on CLZ; among these, we identified 59 pertinent pharmacogenetic studies. Genotype data were retrieved for 14 polymorphisms in 9 genes. Among these, we had available data from at least three independent samples for 8 SNPs in 6 genes to perform meta-analyses: DRD2 rs1799732, DRD3 rs6280, HTR2A rs6313, rs6311, rs6314, HTR2C rs6318, HTR3A rs1062613, TNFa rs1800629. Although literature review provided conflicting results, in meta-analyses three genetic variants within serotonin genes resulted associated to CLZ response: rs6313 and rs6314 within HTR2A gene and rs1062613 within HT3A gene. On the other hand, no clear finding emerged for CLZ-induced weight gain. Our results suggest a possible serotonergic modulation of CLZ clinical response. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  15. Efficiency and effectiveness of the use of an acenocoumarol pharmacogenetic dosing algorithm versus usual care in patients with venous thromboembolic disease initiating oral anticoagulation: study protocol for a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Carcas Antonio J

    2012-12-01

    Full Text Available Abstract Background Hemorrhagic events are frequent in patients on treatment with antivitamin-K oral anticoagulants due to their narrow therapeutic margin. Studies performed with acenocoumarol have shown the relationship between demographic, clinical and genotypic variants and the response to these drugs. Once the influence of these genetic and clinical factors on the dose of acenocoumarol needed to maintain a stable international normalized ratio (INR has been demonstrated, new strategies need to be developed to predict the appropriate doses of this drug. Several pharmacogenetic algorithms have been developed for warfarin, but only three have been developed for acenocoumarol. After the development of a pharmacogenetic algorithm, the obvious next step is to demonstrate its effectiveness and utility by means of a randomized controlled trial. The aim of this study is to evaluate the effectiveness and efficiency of an acenocoumarol dosing algorithm developed by our group which includes demographic, clinical and pharmacogenetic variables (VKORC1, CYP2C9, CYP4F2 and ApoE in patients with venous thromboembolism (VTE. Methods and design This is a multicenter, single blind, randomized controlled clinical trial. The protocol has been approved by La Paz University Hospital Research Ethics Committee and by the Spanish Drug Agency. Two hundred and forty patients with VTE in which oral anticoagulant therapy is indicated will be included. Randomization (case/control 1:1 will be stratified by center. Acenocoumarol dose in the control group will be scheduled and adjusted following common clinical practice; in the experimental arm dosing will be following an individualized algorithm developed and validated by our group. Patients will be followed for three months. The main endpoints are: 1 Percentage of patients with INR within the therapeutic range on day seven after initiation of oral anticoagulant therapy; 2 Time from the start of oral anticoagulant treatment

  16. Efficiency and effectiveness of the use of an acenocoumarol pharmacogenetic dosing algorithm versus usual care in patients with venous thromboembolic disease initiating oral anticoagulation: study protocol for a randomized controlled trial.

    Science.gov (United States)

    Carcas, Antonio J; Borobia, Alberto M; Velasco, Marta; Abad-Santos, Francisco; Díaz, Manuel Quintana; Fernández-Capitán, Carmen; Ruiz-Giménez, Nuria; Madridano, Olga; Sillero, Pilar Llamas

    2012-12-13

    Hemorrhagic events are frequent in patients on treatment with antivitamin-K oral anticoagulants due to their narrow therapeutic margin. Studies performed with acenocoumarol have shown the relationship between demographic, clinical and genotypic variants and the response to these drugs. Once the influence of these genetic and clinical factors on the dose of acenocoumarol needed to maintain a stable international normalized ratio (INR) has been demonstrated, new strategies need to be developed to predict the appropriate doses of this drug. Several pharmacogenetic algorithms have been developed for warfarin, but only three have been developed for acenocoumarol. After the development of a pharmacogenetic algorithm, the obvious next step is to demonstrate its effectiveness and utility by means of a randomized controlled trial. The aim of this study is to evaluate the effectiveness and efficiency of an acenocoumarol dosing algorithm developed by our group which includes demographic, clinical and pharmacogenetic variables (VKORC1, CYP2C9, CYP4F2 and ApoE) in patients with venous thromboembolism (VTE). This is a multicenter, single blind, randomized controlled clinical trial. The protocol has been approved by La Paz University Hospital Research Ethics Committee and by the Spanish Drug Agency. Two hundred and forty patients with VTE in which oral anticoagulant therapy is indicated will be included. Randomization (case/control 1:1) will be stratified by center. Acenocoumarol dose in the control group will be scheduled and adjusted following common clinical practice; in the experimental arm dosing will be following an individualized algorithm developed and validated by our group. Patients will be followed for three months. The main endpoints are: 1) Percentage of patients with INR within the therapeutic range on day seven after initiation of oral anticoagulant therapy; 2) Time from the start of oral anticoagulant treatment to achievement of a stable INR within the therapeutic

  17. APPLIED ASPECTS OF SLCO1B1 PHARMACOGENETIC TESTING FOR PREDICTING OF STATIN-INDUCED MYOPATHY AND PERSONALIZATION OF STATINS THERAPY

    Directory of Open Access Journals (Sweden)

    D. A. Sychev

    2015-09-01

    Full Text Available The clinical significance of the SLCO1B1 gene polymorphism (encoding an organic anion transport polipeptide in the development of statin induced myopathy is considered. Possible tactics of statin dose determination on the basis of pharmacogenetic testing is discussed. Indications for the use of this approach in clinical practice that should increase the efficacy and safety of the statin therapy are also considered.

  18. Bernard Lerer: Recipient of the 2014 Inaugural Werner Kalow Responsible Innovation Prize in Global Omics and Personalized Medicine (Pacific Rim Association for Clinical Pharmacogenetics)

    Science.gov (United States)

    Aynacıoğlu, Şükrü; Bragazzi, Nicola Luigi; Dandara, Collet; Dove, Edward S.; Ferguson, Lynnette R.; Geraci, Christy Jo; Hafen, Ernst; Kesim, Belgin Eroğlu; Kolker, Eugene; Lee, Edmund J.D.; LLerena, Adrian; Nacak, Muradiye; Shimoda, Kazutaka; Someya, Toshiyuki; Srivastava, Sanjeeva; Tomlinson, Brian; Vayena, Effy; Warnich, Louise; Yaşar, Ümit

    2014-01-01

    Abstract This article announces the recipient of the 2014 inaugural Werner Kalow Responsible Innovation Prize in Global Omics and Personalized Medicine by the Pacific Rim Association for Clinical Pharmacogenetics (PRACP): Bernard Lerer, professor of psychiatry and director of the Biological Psychiatry Laboratory, Hadassah-Hebrew University Medical Center, Jerusalem, Israel. The Werner Kalow Responsible Innovation Prize is given to an exceptional interdisciplinary scholar who has made highly innovative and enduring contributions to global omics science and personalized medicine, with both vertical and horizontal (transdisciplinary) impacts. The prize is established in memory of a beloved colleague, mentor, and friend, the late Professor Werner Kalow, who cultivated the idea and practice of pharmacogenetics in modern therapeutics commencing in the 1950s. PRACP, the prize's sponsor, is one of the longest standing learned societies in the Asia-Pacific region, and was founded by Kalow and colleagues more than two decades ago in the then-emerging field of pharmacogenetics. In announcing this inaugural prize and its winner, we seek to highlight the works of prize winner, Professor Lerer. Additionally, we contextualize the significance of the prize by recalling the life and works of Professor Kalow and providing a brief socio-technical history of the rise of pharmacogenetics and personalized medicine as a veritable form of 21st century scientific practice. The article also fills a void in previous social science analyses of pharmacogenetics, by bringing to the fore the works of Kalow from 1995 to 2008, when he presciently noted the rise of yet another field of postgenomics inquiry—pharmacoepigenetics—that railed against genetic determinism and underscored the temporal and spatial plasticity of genetic components of drug response, with invention of the repeated drug administration (RDA) method that estimates the dynamic heritabilities of drug response. The prize goes a

  19. Pharmacogenetics of ustekinumab in patients with moderate-to-severe plaque psoriasis.

    Science.gov (United States)

    Prieto-Pérez, Rocío; Llamas-Velasco, Mar; Cabaleiro, Teresa; Solano-López, Guillermo; Márquez, Beatriz; Román, Manuel; Ochoa, Dolores; Talegón, María; Daudén, Esteban; Abad-Santos, Francisco

    2017-01-01

    Aim/Materials & methods: Few studies have evaluated the influence of pharmacogenetics in psoriatic patients treated with ustekinumab. We evaluated 121 polymorphisms to study a possible association between these SNPs and the response to ustekinumab (PASI75 at 4 months; n = 69). The adjusted results (false discovery rate) showed an association between five SNPs in TNFRSF1A, HTR2A, NFKBIA, ADAM33 and IL13 genes, and poor response to ustekinumab. Furthermore, six SNPs in CHUK, C17orf51, ZNF816A, STAT4, SLC22A4 and Corf72 genes were associated with better response to ustekinumab. However, there was no significant association between response to ustekinumab and SNPs in HLA-C as it has been recently described. Finally, a higher weight was obtained in nonresponders than responders (p = 0.018). Further studies would be necessary to be closer to personalized medicine.

  20. Clinical impact of pharmacogenetic profiling with a clinical decision support tool in polypharmacy home health patients: A prospective pilot randomized controlled trial.

    Directory of Open Access Journals (Sweden)

    Lindsay S Elliott

    Full Text Available In polypharmacy patients under home health management, pharmacogenetic testing coupled with guidance from a clinical decision support tool (CDST on reducing drug, gene, and cumulative interaction risk may provide valuable insights in prescription drug treatment, reducing re-hospitalization and emergency department (ED visits. We assessed the clinical impact of pharmacogenetic profiling integrating binary and cumulative drug and gene interaction warnings on home health polypharmacy patients.This prospective, open-label, randomized controlled trial was conducted at one hospital-based home health agency between February 2015 and February 2016. Recruitment came from patient referrals to home health at hospital discharge. Eligible patients were aged 50 years and older and taking or initiating treatment with medications with potential or significant drug-gene-based interactions. Subjects (n = 110 were randomized to pharmacogenetic profiling (n = 57. The study pharmacist reviewed drug-drug, drug-gene, and cumulative drug and/or gene interactions using the YouScript® CDST to provide drug therapy recommendations to clinicians. The control group (n = 53 received treatment as usual including pharmacist guided medication management using a standard drug information resource. The primary outcome measure was the number of re-hospitalizations and ED visits at 30 and 60 days after discharge from the hospital. The mean number of re-hospitalizations per patient in the tested vs. untested group was 0.25 vs. 0.38 at 30 days (relative risk (RR, 0.65; 95% confidence interval (CI, 0.32-1.28; P = 0.21 and 0.33 vs. 0.70 at 60 days following enrollment (RR, 0.48; 95% CI, 0.27-0.82; P = 0.007. The mean number of ED visits per patient in the tested vs. untested group was 0.25 vs. 0.40 at 30 days (RR, 0.62; 95% CI, 0.31-1.21; P = 0.16 and 0.39 vs. 0.66 at 60 days (RR, 0.58; 95% CI, 0.34-0.99; P = 0.045. Differences in composite outcomes at 60 days (exploratory endpoints

  1. Parkinson’s Disease: From Pathogenesis to Pharmacogenomics

    Directory of Open Access Journals (Sweden)

    Ramón Cacabelos

    2017-03-01

    addition to enhancing dopaminergic neurotransmission. Since biochemical changes and therapeutic outcomes are highly dependent upon the genomic profiles of PD patients, personalized treatments should rely on pharmacogenetic procedures to optimize therapeutics.

  2. Economic and developmental considerations for pharmacogenomic technology.

    Science.gov (United States)

    Vernon, John A; Johnson, Scott J; Hughen, W Keener; Trujillo, Antonio

    2006-01-01

    The pharmaceutical industry's core business is the innovation, development and marketing of new drugs. Pharmacogenetic (PG) testing and technology has the potential to increase a drug's value in many ways. A critical issue for the industry is whether products in development should be teamed with genetic tests that could segment the total population into responders and non-responders. In this paper we use a cost-effectiveness framework to model the strategic decision-making considerations by pharmaceutical manufacturers as they relate to drug development and the new technology of PG (the science of using genetic markers to predict drug response). In a simple, static, one-period model we consider three drug development strategies: a drug is exclusively developed and marketed to patients with a particular genetic marker; no distinguishing among patients based on the expression of a genetic marker is made (traditional approach); and a strategy whereby a drug is marketed to patients both with and without the genetic marker but there is price discrimination between the two subpopulations. We developed three main principles: revenues under a strategy targeting only the responder subpopulation will never generate more revenue than that which could have been obtained under a traditional approach; total revenues under a targeted PG strategy will be less than that under a traditional approach but higher than a naive [corrected] view would believe them to be; and a traditional [corrected] approach will earn the same total revenues as a price discrimination strategy, assuming no intermarket arbitrage. While these principles relate to the singular (and quite narrow) consideration of drug revenues, they may nevertheless partially explain why PG is not being used as widely as was predicted several years ago when the technology first became available, especially in terms of pharmaceutical manufacturer-developed tests.

  3. Subjective response as a consideration in the pharmacogenetics of alcoholism treatment.

    Science.gov (United States)

    Roche, Daniel Jo; Ray, Lara A

    2015-01-01

    Currently available pharmacological treatments for alcoholism have modest efficacy and high individual variability in treatment outcomes, both of which have been partially attributed to genetic factors. One path to reducing the variability and improving the efficacy associated with these pharmacotherapies may be to identify overlapping genetic contributions to individual differences in both subjective responses to alcohol and alcoholism pharmacotherapy outcomes. As acute subjective response to alcohol is highly predictive of future alcohol related problems, identifying such shared genetic mechanisms may inform the development of personalized treatments that can effectively target converging pathophysiological mechanisms that convey risk for alcoholism. The focus of this review is to revisit the association between subjective response to alcohol and the etiology of alcoholism while also describing genetic contributions to this relationship, discuss potential pharmacogenetic approaches to target subjective response to alcohol in order to improve the treatment of alcoholism and examine conceptual and methodological issues associated with these topics, and outline future approaches to overcome these challenges.

  4. Implementation and utilization of genetic testing in personalized medicine

    Directory of Open Access Journals (Sweden)

    Abul-Husn NS

    2014-08-01

    acceptance is pharmacogenetic testing, which interrogates sequence variants implicated in interindividual drug response variability. Although clinical pharmacogenetic testing has not previously been widely adopted, advances in rapid turnaround time genetic testing technology and the recent implementation of preemptive genotyping programs at selected medical centers suggest that personalized medicine through pharmacogenetics is now a reality. This review aims to summarize the current state of implementing genetic testing for personalized medicine, with an emphasis on clinical pharmacogenetic testing.Keywords: personalized medicine, pharmacogenetics, pharmacogenomics, direct-to-consumer genetic testing, point-of-care genetic testing, preemptive genetic testing, implementation

  5. Pharmacogenetic effects of angiotensin-converting enzyme inhibitors over age-related urea andcreatinine variations in patients with dementia due to Alzheimer disease

    OpenAIRE

    Ferreira de Oliveira, Fabricio; Berretta, Juliana Marília; Suchi Chen, Elizabeth; Cardoso Smith, Marilia; Ferreira Bertolucci, Paulo Henrique

    2016-01-01

    Background: Renal function declines according to age and vascular risk factors, whereas few data are available regarding geneticallymediated effects of anti-hypertensives over renal function. Objective: To estimate urea and creatinine variations in dementia due to Alzheimer disease (AD) by way of a pharmacogenetic analysis of the anti-hypertensive effects of angiotensin-converting enzyme inhibitors (ACEis). Methods: Consecutive outpatients older than 60 years-old with AD and no history of kid...

  6. Prediction of treatment response to adalimumab

    DEFF Research Database (Denmark)

    Krintel, S B; Dehlendorff, C; Hetland, M L

    2016-01-01

    At least 30% of patients with rheumatoid arthritis (RA) do not respond to biologic agents, which emphasizes the need of predictive biomarkers. We aimed to identify microRNAs (miRNAs) predictive of response to adalimumab in 180 treatment-naïve RA patients enrolled in the OPtimized treatment algori...... of low expression of miR-22 and high expression of miR-886.3p was associated with EULAR good response. Future studies to assess the utility of these miRNAs as predictive biomarkers are needed.The Pharmacogenomics Journal advance online publication, 5 May 2015; doi:10.1038/tpj.2015.30....

  7. Combination of biomarkers

    DEFF Research Database (Denmark)

    Thurfjell, Lennart; Lötjönen, Jyrki; Lundqvist, Roger

    2012-01-01

    The New National Institute on Aging-Alzheimer's Association diagnostic guidelines for Alzheimer's disease (AD) incorporate biomarkers in the diagnostic criteria and suggest division of biomarkers into two categories: Aβ accumulation and neuronal degeneration or injury.......The New National Institute on Aging-Alzheimer's Association diagnostic guidelines for Alzheimer's disease (AD) incorporate biomarkers in the diagnostic criteria and suggest division of biomarkers into two categories: Aβ accumulation and neuronal degeneration or injury....

  8. Pharmacogenetics-based area-under-curve model can predict efficacy and adverse events from axitinib in individual patients with advanced renal cell carcinoma.

    Science.gov (United States)

    Yamamoto, Yoshiaki; Tsunedomi, Ryouichi; Fujita, Yusuke; Otori, Toru; Ohba, Mitsuyoshi; Kawai, Yoshihisa; Hirata, Hiroshi; Matsumoto, Hiroaki; Haginaka, Jun; Suzuki, Shigeo; Dahiya, Rajvir; Hamamoto, Yoshihiko; Matsuyama, Kenji; Hazama, Shoichi; Nagano, Hiroaki; Matsuyama, Hideyasu

    2018-03-30

    We investigated the relationship between axitinib pharmacogenetics and clinical efficacy/adverse events in advanced renal cell carcinoma (RCC) and established a model to predict clinical efficacy and adverse events using pharmacokinetic and gene polymorphisms related to drug metabolism and efflux in a phase II trial. We prospectively evaluated the area under the plasma concentration-time curve (AUC) of axitinib, objective response rate, and adverse events in 44 consecutive advanced RCC patients treated with axitinib. To establish a model for predicting clinical efficacy and adverse events, polymorphisms in genes including ABC transporters ( ABCB1 and ABCG2 ), UGT1A , and OR2B11 were analyzed by whole-exome sequencing, Sanger sequencing, and DNA microarray. To validate this prediction model, calculated AUC by 6 gene polymorphisms was compared with actual AUC in 16 additional consecutive patients prospectively. Actual AUC significantly correlated with the objective response rate ( P = 0.0002) and adverse events (hand-foot syndrome, P = 0.0055; and hypothyroidism, P = 0.0381). Calculated AUC significantly correlated with actual AUC ( P treatment precisely predicted actual AUC after axitinib treatment ( P = 0.0066). Our pharmacogenetics-based AUC prediction model may determine the optimal initial dose of axitinib, and thus facilitate better treatment of patients with advanced RCC.

  9. Pharmacogenetic Study in Rectal Cancer Patients Treated With Preoperative Chemoradiotherapy: Polymorphisms in Thymidylate Synthase, Epidermal Growth Factor Receptor, GSTP1, and DNA Repair Genes

    International Nuclear Information System (INIS)

    Páez, David; Salazar, Juliana; Paré, Laia; Pertriz, Lourdes; Targarona, Eduardo; Rio, Elisabeth del; Barnadas, Agusti; Marcuello, Eugenio; Baiget, Montserrat

    2011-01-01

    Purpose: Several studies have been performed to evaluate the usefulness of neoadjuvant treatment using oxaliplatin and fluoropyrimidines for locally advanced rectal cancer. However, preoperative biomarkers of outcome are lacking. We studied the polymorphisms in thymidylate synthase, epidermal growth factor receptor, glutathione S-transferase pi 1 (GSTP1), and several DNA repair genes to evaluate their usefulness as pharmacogenetic markers in a cohort of 128 rectal cancer patients treated with preoperative chemoradiotherapy. Methods and Materials: Blood samples were obtained from 128 patients with Stage II-III rectal cancer. DNA was extracted from the peripheral blood nucleated cells, and the genotypes were analyzed by polymerase chain reaction amplification and automated sequencing techniques or using a 48.48 dynamic array on the BioMark system. The germline polymorphisms studied were thymidylate synthase, (VNTR/5′UTR, 2R G>C single nucleotide polymorphism [SNP], 3R G>C SNP), epidermal growth factor receptor (Arg497Lys), GSTP1 (Ile105val), excision repair cross-complementing 1 (Asn118Asn, 8092C>A, 19716G>C), X-ray repair cross-complementing group 1 (XRCC1) (Arg194Trp, Arg280His, Arg399Gln), and xeroderma pigmentosum group D (Lys751Gln). The pathologic response, pathologic regression, progression-free survival, and overall survival were evaluated according to each genotype. Results: The ∗3/∗3 thymidylate synthase genotype was associated with a greater response rate (pathologic complete remission and microfoci residual tumor, 59% in ∗3/∗3 vs. 35% in ∗2/∗2 and ∗2/∗3; p = .013). For the thymidylate synthase genotype, the median progression-free survival was 103 months for the ∗3/∗3 patients and 84 months for the ∗2/∗2 and ∗2/∗3 patients (p = .039). For XRCC1 Arg399Gln SNP, the median progression-free survival was 101 months for the G/G, 78 months for the G/A, and 31 months for the A/A patients (p = .048). Conclusions: The thymidylate

  10. Pharmacogenetic Study in Rectal Cancer Patients Treated With Preoperative Chemoradiotherapy: Polymorphisms in Thymidylate Synthase, Epidermal Growth Factor Receptor, GSTP1, and DNA Repair Genes

    Energy Technology Data Exchange (ETDEWEB)

    Paez, David, E-mail: dpaez@santpau.cat [Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, Barcelona (Spain); Salazar, Juliana; Pare, Laia [Centre for Biomedical Network Research on Rare Diseases, Barcelona (Spain); Department of Genetics, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, Barcelona (Spain); Pertriz, Lourdes [Department of Radiotherapy, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, Barcelona (Spain); Targarona, Eduardo [Department of Surgery, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, Barcelona (Spain); Rio, Elisabeth del [Centre for Biomedical Network Research on Rare Diseases, Barcelona (Spain); Department of Genetics, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, Barcelona (Spain); Barnadas, Agusti; Marcuello, Eugenio [Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, Barcelona (Spain); Baiget, Montserrat [Centre for Biomedical Network Research on Rare Diseases, Barcelona (Spain); Department of Genetics, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, Barcelona (Spain)

    2011-12-01

    Purpose: Several studies have been performed to evaluate the usefulness of neoadjuvant treatment using oxaliplatin and fluoropyrimidines for locally advanced rectal cancer. However, preoperative biomarkers of outcome are lacking. We studied the polymorphisms in thymidylate synthase, epidermal growth factor receptor, glutathione S-transferase pi 1 (GSTP1), and several DNA repair genes to evaluate their usefulness as pharmacogenetic markers in a cohort of 128 rectal cancer patients treated with preoperative chemoradiotherapy. Methods and Materials: Blood samples were obtained from 128 patients with Stage II-III rectal cancer. DNA was extracted from the peripheral blood nucleated cells, and the genotypes were analyzed by polymerase chain reaction amplification and automated sequencing techniques or using a 48.48 dynamic array on the BioMark system. The germline polymorphisms studied were thymidylate synthase, (VNTR/5 Prime UTR, 2R G>C single nucleotide polymorphism [SNP], 3R G>C SNP), epidermal growth factor receptor (Arg497Lys), GSTP1 (Ile105val), excision repair cross-complementing 1 (Asn118Asn, 8092C>A, 19716G>C), X-ray repair cross-complementing group 1 (XRCC1) (Arg194Trp, Arg280His, Arg399Gln), and xeroderma pigmentosum group D (Lys751Gln). The pathologic response, pathologic regression, progression-free survival, and overall survival were evaluated according to each genotype. Results: The Asterisk-Operator 3/ Asterisk-Operator 3 thymidylate synthase genotype was associated with a greater response rate (pathologic complete remission and microfoci residual tumor, 59% in Asterisk-Operator 3/ Asterisk-Operator 3 vs. 35% in Asterisk-Operator 2/ Asterisk-Operator 2 and Asterisk-Operator 2/ Asterisk-Operator 3; p = .013). For the thymidylate synthase genotype, the median progression-free survival was 103 months for the Asterisk-Operator 3/ Asterisk-Operator 3 patients and 84 months for the Asterisk-Operator 2/ Asterisk-Operator 2 and Asterisk-Operator 2/ Asterisk

  11. Convergent functional genomics of anxiety disorders: translational identification of genes, biomarkers, pathways and mechanisms.

    Science.gov (United States)

    Le-Niculescu, H; Balaraman, Y; Patel, S D; Ayalew, M; Gupta, J; Kuczenski, R; Shekhar, A; Schork, N; Geyer, M A; Niculescu, A B

    2011-05-24

    Anxiety disorders are prevalent and disabling yet understudied from a genetic standpoint, compared with other major psychiatric disorders such as bipolar disorder and schizophrenia. The fact that they are more common, diverse and perceived as embedded in normal life may explain this relative oversight. In addition, as for other psychiatric disorders, there are technical challenges related to the identification and validation of candidate genes and peripheral biomarkers. Human studies, particularly genetic ones, are susceptible to the issue of being underpowered, because of genetic heterogeneity, the effect of variable environmental exposure on gene expression, and difficulty of accrual of large, well phenotyped cohorts. Animal model gene expression studies, in a genetically homogeneous and experimentally tractable setting, can avoid artifacts and provide sensitivity of detection. Subsequent translational integration of the animal model datasets with human genetic and gene expression datasets can ensure cross-validatory power and specificity for illness. We have used a pharmacogenomic mouse model (involving treatments with an anxiogenic drug--yohimbine, and an anti-anxiety drug--diazepam) as a discovery engine for identification of anxiety candidate genes as well as potential blood biomarkers. Gene expression changes in key brain regions for anxiety (prefrontal cortex, amygdala and hippocampus) and blood were analyzed using a convergent functional genomics (CFG) approach, which integrates our new data with published human and animal model data, as a translational strategy of cross-matching and prioritizing findings. Our work identifies top candidate genes (such as FOS, GABBR1, NR4A2, DRD1, ADORA2A, QKI, RGS2, PTGDS, HSPA1B, DYNLL2, CCKBR and DBP), brain-blood biomarkers (such as FOS, QKI and HSPA1B), pathways (such as cAMP signaling) and mechanisms for anxiety disorders--notably signal transduction and reactivity to environment, with a prominent role for the

  12. Pharmacogenomics Implications of Using Herbal Medicinal Plants on African Populations in Health Transition

    Science.gov (United States)

    Thomford, Nicholas E.; Dzobo, Kevin; Chopera, Denis; Wonkam, Ambroise; Skelton, Michelle; Blackhurst, Dee; Chirikure, Shadreck; Dandara, Collet

    2015-01-01

    The most accessible points of call for most African populations with respect to primary health care are traditional health systems that include spiritual, religious, and herbal medicine. This review focusses only on the use of herbal medicines. Most African people accept herbal medicines as generally safe with no serious adverse effects. However, the overlap between conventional medicine and herbal medicine is a reality among countries in health systems transition. Patients often simultaneously seek treatment from both conventional and traditional health systems for the same condition. Commonly encountered conditions/diseases include malaria, HIV/AIDS, hypertension, tuberculosis, and bleeding disorders. It is therefore imperative to understand the modes of interaction between different drugs from conventional and traditional health care systems when used in treatment combinations. Both conventional and traditional drug entities are metabolized by the same enzyme systems in the human body, resulting in both pharmacokinetics and pharmacodynamics interactions, whose properties remain unknown/unquantified. Thus, it is important that profiles of interaction between different herbal and conventional medicines be evaluated. This review evaluates herbal and conventional drugs in a few African countries and their potential interaction at the pharmacogenomics level. PMID:26402689

  13. Prevention of Fetal Congenital Malformations with Allowance for the Pharmacogenetic Features of the Metabolism of Antiepileptic Drugs and Hereditary Abnormalities in the Folate Cycle

    Directory of Open Access Journals (Sweden)

    D. V. Dmitrenko

    2014-01-01

    Full Text Available Fetal congenital malformations are among the most dangerous complications of pregnancy in women with epilepsy taking antiepileptic drugs. Valproic acid and phenobarbital have the greatest risk of teratogenic effects. Insights into the current mechanisms of teratogenic effect of antiepileptic drugs, pharmacogenetic features of the metabolism of valproates and hereditary abnormalities in the folate cycle enables prevention of fetal congenital malformations. 

  14. Personalized Regenerative Medicine

    Directory of Open Access Journals (Sweden)

    Babak Arjmand

    2017-03-01

    Full Text Available Personalized medicine as a novel field of medicine refers to the prescription of specific therapeutics procedure for an individual. This approach has established based on pharmacogenetic and pharmacogenomic information and data. The terms precision and personalized medicines are sometimes applied interchangeably. However, there has been a shift from “personalized medicine” towards “precision medicine”. Although personalized medicine emerged from pharmacogenetics, nowadays it covers many fields of healthcare. Accordingly, regenerative medicine and cellular therapy as the new fields of medicine use cell-based products in order to develop personalized treatments. Different sources of stem cells including mesenchymal stem cells, embryonic stem cells and induced pluripotent stem cells (iPSCs have been considered in targeted therapies which could give many advantages. iPSCs as the novel and individual pluripotent stem cells have been introduced as the appropriate candidates for personalized cell therapies. Cellular therapies can provide a personalized approach. Because of person-to-person and population differences in the result of stem cell therapy, individualized cellular therapy must be adjusted according to the patient specific profile, in order to achieve best therapeutic results and outcomes. Several factors should be considered to achieve personalized stem cells therapy such as, recipient factors, donor factors, and the overall body environment in which the stem cells could be active and functional. In addition to these factors, the source of stem cells must be carefully chosen based on functional and physical criteria that lead to optimal outcomes.

  15. Validation of New Cancer Biomarkers

    DEFF Research Database (Denmark)

    Duffy, Michael J; Sturgeon, Catherine M; Söletormos, Georg

    2015-01-01

    BACKGROUND: Biomarkers are playing increasingly important roles in the detection and management of patients with cancer. Despite an enormous number of publications on cancer biomarkers, few of these biomarkers are in widespread clinical use. CONTENT: In this review, we discuss the key steps...... in advancing a newly discovered cancer candidate biomarker from pilot studies to clinical application. Four main steps are necessary for a biomarker to reach the clinic: analytical validation of the biomarker assay, clinical validation of the biomarker test, demonstration of clinical value from performance...... of the biomarker test, and regulatory approval. In addition to these 4 steps, all biomarker studies should be reported in a detailed and transparent manner, using previously published checklists and guidelines. Finally, all biomarker studies relating to demonstration of clinical value should be registered before...

  16. Biomarkers in Autism

    Directory of Open Access Journals (Sweden)

    Robert eHendren

    2014-08-01

    Full Text Available Autism spectrum disorders (ASD are complex, heterogeneous disorders caused by an interaction between genetic vulnerability and environmental factors. In an effort to better target the underlying roots of ASD for diagnosis and treatment, efforts to identify reliable biomarkers in genetics, neuroimaging, gene expression and measures of the body’s metabolism are growing. For this article, we review the published studies of potential biomarkers in autism and conclude that while there is increasing promise of finding biomarkers that can help us target treatment, there are none with enough evidence to support routine clinical use unless medical illness is suspected. Promising biomarkers include those for mitochondrial function, oxidative stress, and immune function. Genetic clusters are also suggesting the potential for useful biomarkers.

  17. [Proper antibiotic therapy. From penicillin to pharmacogenomic].

    Science.gov (United States)

    Caramia, G; Ruffini, E

    2012-04-01

    judgment, and clinical discretion is always required in their application. Genome studies have identified hundreds of genetic polymorphism important determinants of the efficacy of therapy and several trial demonstrated the successful use of pharmacogenomic testing to reduce the incidence of hypersensitivity reactions in patients. Knowing the phenotype of a patient prior to therapy, optimal dose and type drugs can be prescribed to achieve better management of patients.

  18. Undetected Toxicity Risk in Pharmacogenetic Testing for Dihydropyrimidine Dehydrogenase

    Directory of Open Access Journals (Sweden)

    Felicia Stefania Falvella

    2015-04-01

    Full Text Available Fluoropyrimidines, the mainstay agents for the treatment of colorectal cancer, alone or as a part of combination therapies, cause severe adverse reactions in about 10%–30% of patients. Dihydropyrimidine dehydrogenase (DPD, a key enzyme in the catabolism of 5-fluorouracil, has been intensively investigated in relation to fluoropyrimidine toxicity, and several DPD gene (DPYD polymorphisms are associated with decreased enzyme activity and increased risk of fluoropyrimidine-related toxicity. In patients carrying non-functional DPYD variants (c.1905+1G>A, c.1679T>G, c.2846A>T, fluoropyrimidines should be avoided or reduced according to the patients’ homozygous or heterozygous status, respectively. For other common DPYD variants (c.496A>G, c.1129-5923C>G, c.1896T>C, conflicting data are reported and their use in clinical practice still needs to be validated. The high frequency of DPYD polymorphism and the lack of large prospective trials may explain differences in studies’ results. The epigenetic regulation of DPD expression has been recently investigated to explain the variable activity of the enzyme. DPYD promoter methylation and its regulation by microRNAs may affect the toxicity risk of fluoropyrimidines. The studies we reviewed indicate that pharmacogenetic testing is promising to direct personalised dosing of fluoropyrimidines, although further investigations are needed to establish the role of DPD in severe toxicity in patients treated for colorectal cancer.

  19. Have biomarkers made their mark? A brief review of dental biomarkers

    Directory of Open Access Journals (Sweden)

    Mohammed Kaleem Sultan

    2014-01-01

    Full Text Available Biomarkers are substances that are released into the human body by tumor cells or by other cells in response to tumor. A high level of a tumor marker is considered a sign of certain cancer, which makes biomarker the subject of many testing methods for the diagnosis of cancers. In recent times, these biomarkers have been successfully isolated to diagnose dental-related tumors, benign and malignant conditions. This article is a brief review of literature for various biomarkers used in the field of dentistry.

  20. Analysis of pharmacogenomic variants associated with population differentiation.

    Directory of Open Access Journals (Sweden)

    Bora Yeon

    Full Text Available In the present study, we systematically investigated population differentiation of drug-related (DR genes in order to identify common genetic features underlying population-specific responses to drugs. To do so, we used the International HapMap project release 27 Data and Pharmacogenomics Knowledge Base (PharmGKB database. First, we compared four measures for assessing population differentiation: the chi-square test, the analysis of variance (ANOVA F-test, Fst, and Nearest Shrunken Centroid Method (NSCM. Fst showed high sensitivity with stable specificity among varying sample sizes; thus, we selected Fst for determining population differentiation. Second, we divided DR genes from PharmGKB into two groups based on the degree of population differentiation as assessed by Fst: genes with a high level of differentiation (HD gene group and genes with a low level of differentiation (LD gene group. Last, we conducted a gene ontology (GO analysis and pathway analysis. Using all genes in the human genome as the background, the GO analysis and pathway analysis of the HD genes identified terms related to cell communication. "Cell communication" and "cell-cell signaling" had the lowest Benjamini-Hochberg's q-values (0.0002 and 0.0006, respectively, and "drug binding" was highly enriched (16.51 despite its relatively high q-value (0.0142. Among the 17 genes related to cell communication identified in the HD gene group, five genes (STX4, PPARD, DCK, GRIK4, and DRD3 contained single nucleotide polymorphisms with Fst values greater than 0.5. Specifically, the Fst values for rs10871454, rs6922548, rs3775289, rs1954787, and rs167771 were 0.682, 0.620, 0.573, 0.531, and 0.510, respectively. In the analysis using DR genes as the background, the HD gene group contained six significant terms. Five were related to reproduction, and one was "Wnt signaling pathway," which has been implicated in cancer. Our analysis suggests that the HD gene group from PharmGKB is

  1. Analysis of pharmacogenomic variants associated with population differentiation.

    Science.gov (United States)

    Yeon, Bora; Ahn, Eunyong; Kim, Kyung-Im; Kim, In-Wha; Oh, Jung Mi; Park, Taesung

    2015-01-01

    In the present study, we systematically investigated population differentiation of drug-related (DR) genes in order to identify common genetic features underlying population-specific responses to drugs. To do so, we used the International HapMap project release 27 Data and Pharmacogenomics Knowledge Base (PharmGKB) database. First, we compared four measures for assessing population differentiation: the chi-square test, the analysis of variance (ANOVA) F-test, Fst, and Nearest Shrunken Centroid Method (NSCM). Fst showed high sensitivity with stable specificity among varying sample sizes; thus, we selected Fst for determining population differentiation. Second, we divided DR genes from PharmGKB into two groups based on the degree of population differentiation as assessed by Fst: genes with a high level of differentiation (HD gene group) and genes with a low level of differentiation (LD gene group). Last, we conducted a gene ontology (GO) analysis and pathway analysis. Using all genes in the human genome as the background, the GO analysis and pathway analysis of the HD genes identified terms related to cell communication. "Cell communication" and "cell-cell signaling" had the lowest Benjamini-Hochberg's q-values (0.0002 and 0.0006, respectively), and "drug binding" was highly enriched (16.51) despite its relatively high q-value (0.0142). Among the 17 genes related to cell communication identified in the HD gene group, five genes (STX4, PPARD, DCK, GRIK4, and DRD3) contained single nucleotide polymorphisms with Fst values greater than 0.5. Specifically, the Fst values for rs10871454, rs6922548, rs3775289, rs1954787, and rs167771 were 0.682, 0.620, 0.573, 0.531, and 0.510, respectively. In the analysis using DR genes as the background, the HD gene group contained six significant terms. Five were related to reproduction, and one was "Wnt signaling pathway," which has been implicated in cancer. Our analysis suggests that the HD gene group from PharmGKB is associated with

  2. Pharmacogenetic Predictors of Treatment-Related Toxicity Among Children With Acute Lymphoblastic Leukemia.

    Science.gov (United States)

    Maxwell, Rochelle R; Cole, Peter D

    2017-06-01

    The aim of this review is to summarize the most recent and most robust pharmacogenetic predictors of treatment-related toxicity (TRT) in childhood acute lymphoblastic leukemia (ALL). Multiple studies have examined the toxicities of the primary chemotherapeutic agents used to treat childhood ALL in relation to host genetic factors. However, few results have been replicated independently, largely due to cohort differences in ancestry, chemotherapy treatment protocols, and definitions of toxicities. To date, there is only one widely accepted clinical guideline for dose modification based on gene status: thiopurine dosing based on TPMT genotype. Based on recent data, it is likely that this guideline will be modified to incorporate other gene variants, such as NUDT15. We highlight genetic variants that have been consistently associated with TRT across treatment groups, as well as those that best illustrate the underlying pathophysiology of TRT. In the coming decade, we expect that survivorship care will routinely specify screening recommendations based on genetics. Furthermore, clinical trials testing protective interventions may modify inclusion criteria based on genetically determined risk of specific TRTs.

  3. Clinical importance of pharmacogenetics in the treatment of hepatitis C virus infection.

    Science.gov (United States)

    Kamal, Adina Maria; MitruŢ, Paul; Kamal, Kamal Constantin; Tica, Oana Sorina; Niculescu, Mihaela; Alexandru, Dragoş Ovidiu; Tica, Andrei Adrian

    2016-01-01

    Globally, over 4% of the world population is affected by hepatitis C virus (HCV) infection. The current standard of care for hepatitis C infection is combination therapy with pegylated interferon and ribavirin for 48 weeks, which yield a sustained virological response in only a little over half of the patients with genotype 1 HCV. We investigated the clinical importance of pharmacogenetics in treatment efficacy and prediction of hematotoxicity. A total of 148 patients infected with HCV were enrolled. All patients were treated for a period of 48 weeks or less with pegylated interferon and ribavirin. Four genotypes were investigated: inosine triphosphatase (ITPA) rs1127354, C20orf194 rs6051702, interferon lambda (IFNL)3 rs8099917, IFNL3÷4 rs12979860 in the population from southwestern Romania. Genetic variants for rs129798660 and rs6051702 proved once more to represent an indisputable clinical tool for predicting sustained virological response (SVR) (69.23%, chi-square p=0.007846, ppharmacogenetics should play a constant role in treatment decisions for patients infected with hepatitis C virus.

  4. Pharmacogenetics of hepatitis C: transition from interferon-based therapies to direct-acting antiviral agents

    Directory of Open Access Journals (Sweden)

    Kamal SM

    2014-06-01

    28B gene and natural clearance of HCV infection or after PEGylated interferon-alpha and ribavirin treatment with and without direct antiviral agents. This paper synthesizes the recent advances in the pharmacogenetics of HCV infection in the era of triple therapies.Keywords: hepatitis C virus, interleukin-28B polymorphisms, PEGylated interferon and ribavirin, direct-acting antiviral agents, pharmacogenetics, rational therapeutics

  5. Pharmacogenetics in diverse ethnic populations--implications for drug discovery and development.

    Science.gov (United States)

    McCarthy, Linda C; Davies, Kirstie J; Campbell, David A

    2002-07-01

    It is widely acknowledged that the vast quantities of data now publicly available as a result of the human genome initiative have the potential to revolutionize the pharmaceutical industry. More tangibly to the drug development business, the dawn of the pharmacogenetics era has the potential to impact not only the discovery of new medicines but also the safety and efficacy of pharmaceutical agents. Coincident with these scientific advances is the emergence of new markets for pharmaceutical agents. Japan, which represents the world's second biggest market, is a good example. With the ICH E5 agreement in 1998 and a rapid change in the drug registration process in Japan, there are increasing opportunities to improve access to more medicines in all parts of the world. However, it is increasingly clear that significant genetic variation still exists between populations, with a host of data on interethnic variation in drug metabolizing enzyme and drug transporter activity. Evidence suggesting that this genetic variation may play an important role in defining some of the interethnic variation in drug response to currently marketed compounds is reviewed here, and future possibilities of using such information to better streamline the drug development process are discussed.

  6. Pharmacogenetics and pathophysiology of CACNA1S mutations in malignant hyperthermia.

    Science.gov (United States)

    Beam, Teresa A; Loudermilk, Emily F; Kisor, David F

    2017-02-01

    A review of the pharmacogenetics (PGt) and pathophysiology of calcium voltage-gated channel subunit alpha1 S (CACNA1S) mutations in malignant hyperthermia susceptibility type 5 (MHS5; MIM #60188) is presented. Malignant hyperthermia (MH) is a life-threatening hypermetabolic state of skeletal muscle usually induced by volatile, halogenated anesthetics and/or the depolarizing neuromuscular blocker succinylcholine. In addition to ryanodine receptor 1 (RYR1) mutations, several CACNA1S mutations are known to be risk factors for increased susceptibility to MH (MHS). However, the presence of these pathogenic CACNA1S gene variations cannot be used to positively predict MH since the condition is genetically heterogeneous with variable expression and incomplete penetrance. At present, one or at most six CACNA1S mutations display significant linkage or association either to clinically diagnosed MH or to MHS as determined by contracture testing. Additional pathogenic variants in CACNA1S, either alone or in combination with genes affecting Ca 2+ homeostasis, are likely to be discovered in association to MH as whole exome sequencing becomes more commonplace. Copyright © 2017 the American Physiological Society.

  7. [ETHICS, MORALS AND SOCIETY IN PERSONALIZED MEDICINE].

    Science.gov (United States)

    Flugelman, Anath

    2015-09-01

    Following the completion of the human genome project, genomic medicine including personalized medicine, widely based on pharmacogenetics and pharmacogenomics, is rapidly developing. This breakthrough should benefit humankind thanks to tailoring the most appropriate prevention, interventions and therapies to each individual, minimizing adverse side effects, based on inter-personal genetic variety and polymorphism. Yet wide spectrum ethical, legal and social issues carry significant implications regarding individuals, families, society and public health. The main issues concern genomic information and autonomy, justice and equity, resources allocation and solidarity, challenging the traditional role of medicine and dealing with unlimited boundaries of knowledge. Those issues are not new nor exceptional to genomic medicine, yet their wide unlimited scope and implications on many aspects of life renders them crucial. These aspects will be discussed in light of Beauchamp and Childress' four principles: non-maleficence, beneficence, autonomy and justice, and main moral philosophies, Kant's autonomy, Utilitarianism which promotes the common good, and Rawls' Theory of Justice.

  8. SNP genetic polymorphisms of MDR-1, CYP1A2 and CYPB11 genes in four canine breeds upon toxicological evaluation.

    Science.gov (United States)

    Gagliardi, Rosa; Llambí, Silvia; Arruga, M Victoria

    2015-01-01

    The fields of pharmacogenetics and pharmacogenomics have become increasingly promising regarding the clinical application of genetic data to aid in prevention of adverse reactions. Specific screening tests can predict which animals express modified proteins or genetic sequences responsible for adverse effects associated with a drug. Among the genetic variations that have been investigated in dogs, the multidrug resistance gene (MDR) is the best studied. However, other genes such as CYP1A2 and CYP2B11 control the protein syntheses involved in the metabolism of many drugs. In the present study, the MDR-1, CYP1A2 and CYP2B11 genes were examined to identify SNP polymorphisms associated with these genes in the following four canine breeds: Uruguayan Cimarron, Border Collie, Labrador Retriever and German Shepherd. The results revealed that several SNPs of the CYP1A2 and CYP2B11 genes are potential targets for drug sensitivity investigations.

  9. Biomarker Qualification: Toward a Multiple Stakeholder Framework for Biomarker Development, Regulatory Acceptance, and Utilization.

    Science.gov (United States)

    Amur, S; LaVange, L; Zineh, I; Buckman-Garner, S; Woodcock, J

    2015-07-01

    The discovery, development, and use of biomarkers for a variety of drug development purposes are areas of tremendous interest and need. Biomarkers can become accepted for use through submission of biomarker data during the drug approval process. Another emerging pathway for acceptance of biomarkers is via the biomarker qualification program developed by the Center for Drug Evaluation and Research (CDER, US Food and Drug Administration). Evidentiary standards are needed to develop and evaluate various types of biomarkers for their intended use and multiple stakeholders, including academia, industry, government, and consortia must work together to help develop this evidence. The article describes various types of biomarkers that can be useful in drug development and evidentiary considerations that are important for qualification. A path forward for coordinating efforts to identify and explore needed biomarkers is proposed for consideration. © 2015 American Society for Clinical Pharmacology and Therapeutics.

  10. Molecular actions and clinical pharmacogenetics of lithium therapy

    Science.gov (United States)

    Can, Adem; Schulze, Thomas G.; Gould, Todd D.

    2014-01-01

    Mood disorders, including bipolar disorder and depression, are relatively common human diseases for which pharmacological treatment options are often not optimal. Among existing pharmacological agents and mood stabilizers used for the treatment of mood disorders, lithium has a unique clinical profile. Lithium has efficacy in the treatment of bipolar disorder generally, and in particular mania, while also being useful in the adjunct treatment of refractory depression. In addition to antimanic and adjunct antidepressant efficacy, lithium is also proven effective in the reduction of suicide and suicidal behaviors. However, only a subset of patients manifests beneficial responses to lithium therapy and the underlying genetic factors of response are not exactly known. Here we discuss preclinical research suggesting mechanisms likely to underlie lithium’s therapeutic actions including direct targets inositol monophosphatase and glycogen synthase kinase-3 (GSK-3) among others, as well as indirect actions including modulation of neurotrophic and neurotransmitter systems and circadian function. We follow with a discussion of current knowledge related to the pharmacogenetic underpinnings of effective lithium therapy in patients within this context. Progress in elucidation of genetic factors that may be involved in human response to lithium pharmacology has been slow, and there is still limited conclusive evidence for the role of a particular genetic factor. However, the development of new approaches such as genome-wide association studies (GWAS), and increased use of genetic testing and improved identification of mood disorder patients sub-groups will lead to improved elucidation of relevant genetic factors in the future. PMID:24534415

  11. Pharmacogenomics of sterol synthesis and statin use in schizophrenia subjects treated with antipsychotics.

    Science.gov (United States)

    Vassas, Thomas J; Burghardt, Kyle J; Ellingrod, Vicki L

    2014-01-01

    Patients with schizophrenia treated with antipsychotics often develop metabolic side effects including dyslipidemia. Antipsychotics potentially upregulate gene expression of a lipid metabolism pathway protein called SREBP via SREB transcription factors (SREBFs). Genetic variation within SREBF may contribute to dyslipidemias and lipid medication efficacy within schizophrenia. A cross-sectional study of 157 patients were genotyped for SREBF1 (rs11868035) and SREBF2 (rs1057217) variants, and assessed for fasting lipids. The cohort's mean age was 46.6 years, was 64% male and 86% were using atypical antipsychotics. When stratified by statin use, those receiving a statin and carrying the SREBF1 T allele exhibited higher total cholesterol levels (p = 0.01), triglyceride levels (p = 0.04) and low-density lipoprotein levels (p = 0.03). A regression analysis controlling for gender differences in lipids showed that the SREBF1 T allele and statin interaction remained only for total cholesterol levels (F[4,149] = 5.8; p < 0.0001). For schizophrenia individuals with the SREBF1 rs11868035 T allele, incomplete response to statin medications may be seen. Future investigations may allow for personalizing dyslipidemia treatment based on pharmacogenetics within schizophrenia.

  12. Mass spectrometry for biomarker development

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Chaochao; Liu, Tao; Baker, Erin Shammel; Rodland, Karin D.; Smith, Richard D.

    2015-06-19

    Biomarkers potentially play a crucial role in early disease diagnosis, prognosis and targeted therapy. In the past decade, mass spectrometry based proteomics has become increasingly important in biomarker development due to large advances in technology and associated methods. This chapter mainly focuses on the application of broad (e.g. shotgun) proteomics in biomarker discovery and the utility of targeted proteomics in biomarker verification and validation. A range of mass spectrometry methodologies are discussed emphasizing their efficacy in the different stages in biomarker development, with a particular emphasis on blood biomarker development.

  13. Biomarkers of Pediatric Brain Tumors

    Directory of Open Access Journals (Sweden)

    Mark D Russell

    2013-03-01

    Full Text Available Background and Need for Novel Biomarkers: Brain tumors are the leading cause of death by solid tumors in children. Although improvements have been made in their radiological detection and treatment, our capacity to promptly diagnose pediatric brain tumors in their early stages remains limited. This contrasts several other cancers where serum biomarkers such as CA 19-9 and CA 125 facilitate early diagnosis and treatment. Aim: The aim of this article is to review the latest literature and highlight biomarkers which may be of clinical use in the common types of primary pediatric brain tumor. Methods: A PubMed search was performed to identify studies reporting biomarkers in the bodily fluids of pediatric patients with brain tumors. Details regarding the sample type (serum, cerebrospinal fluid or urine, biomarkers analyzed, methodology, tumor type and statistical significance were recorded. Results: A total of 12 manuscripts reporting 19 biomarkers in 367 patients vs. 397 controls were identified in the literature. Of the 19 biomarkers identified, 12 were isolated from cerebrospinal fluid, 2 from serum, 3 from urine, and 2 from multiple bodily fluids. All but one study reported statistically significant differences in biomarker expression between patient and control groups.Conclusions: This review identifies a panel of novel biomarkers for pediatric brain tumors. It provides a platform for the further studies necessary to validate these biomarkers and, in addition, highlights several techniques through which new biomarkers can be discovered.

  14. Impact of a personal CYP2D6 testing workshop on physician assistant student attitudes toward pharmacogenetics.

    Science.gov (United States)

    O'Brien, Travis J; LeLacheur, Susan; Ward, Caitlin; Lee, Norman H; Callier, Shawneequa; Harralson, Arthur F

    2016-03-01

    We assessed the impact of personal CYP2D6 testing on physician assistant student competency in, and attitudes toward, pharmacogenetics (PGx). Buccal samples were genotyped for CYP2D6 polymorphisms. Results were discussed during a 3-h PGx workshop. PGx knowledge was assessed by pre- and post-tests. Focus groups assessed the impact of the workshop on attitudes toward the clinical utility of PGx. Both student knowledge of PGx, and its perceived clinical utility, increased immediately following the workshop. However, exposure to PGx on clinical rotations following the workshop seemed to influence student attitudes toward PGx utility. Personal CYP2D6 testing improves both knowledge and comfort with PGx. Continued exposure to PGx concepts is important for transfer of learning.

  15. Clinical pharmacogenomics testing in the era of next generation sequencing: challenges and opportunities for precision medicine.

    Science.gov (United States)

    Ji, Yuan; Si, Yue; McMillin, Gwendolyn A; Lyon, Elaine

    2018-04-23

    The rapid development and dramatic decrease in cost of sequencing techniques have ushered the implementation of genomic testing in patient care. Next generation DNA sequencing (NGS) techniques have been used increasingly in clinical laboratories to scan the whole or part of the human genome in order to facilitate diagnosis and/or prognostics of genetic disease. Despite many hurdles and debates, pharmacogenomics (PGx) is believed to be an area of genomic medicine where precision medicine could have immediate impact in the near future. Areas covered: This review focuses on lessons learned through early attempts of clinically implementing PGx testing; the challenges and opportunities that PGx testing brings to precision medicine in the era of NGS. Expert commentary: Replacing targeted analysis approach with NGS for PGx testing is neither technically feasible nor necessary currently due to several technical limitations and uncertainty involved in interpreting variants of uncertain significance for PGx variants. However, reporting PGx variants out of clinical whole exome or whole genome sequencing (WES/WGS) might represent additional benefits for patients who are tested by WES/WGS.

  16. Pharmacogenetics of taxanes: impact of gene polymorphisms of drug transporters on pharmacokinetics and toxicity.

    Science.gov (United States)

    Jabir, Rafid Salim; Naidu, Rakesh; Annuar, Muhammad Azrif Bin Ahmad; Ho, Gwo Fuang; Munisamy, Murali; Stanslas, Johnson

    2012-12-01

    Interindividual variability in drug response and the emergence of adverse drug effects are the main causes of treatment failure in cancer therapy. Functional membrane drug transporters play important roles in altering pharmacokinetic profile, resistance to treatment, toxicity and patient survival. Pharmacogenetic studies of these transporters are expected to provide new approaches for optimizing therapy. Taxanes are approved for the treatment of various cancers. Circulating taxanes are taken up by SLCO1B3 into hepatocytes. The CYP450 enzymes CYP3A4, CYP3A5 and CYP2C8 are responsible for the conversion of taxanes into their metabolites. Ultimately, ABCB1 and ABCC2 will dispose the metabolites into bile canaliculi. Polymorphisms of genes encoding for proteins involved in the transport and clearance of taxanes reduce excretion of the drugs, leading to development of toxicity in patients. This review addresses current knowledge on genetic variations of transporters affecting taxanes pharmacokinetics and toxicity, and provides insights into future direction for personalized medicine.

  17. Introducing Pharmacogenetics and Personalized Medicine via a Weblog

    Directory of Open Access Journals (Sweden)

    Kaitlin Bova

    2014-01-01

    Full Text Available Objectives: To evaluate a weblog (blog-based course introducing pharmacogenetics (PGt and personalized medicine (PM relative to freshmen pharmacy students' knowledge base. Methods: Incoming freshmen pharmacy students were invited by email to enroll in a one semester-hour, elective, on-line blog-based course entitled "Personal Genome Evaluation". The course was offered during the students' first semester in college. A topic list related to PGt and PM was developed by a group of faculty with topics being presented via the blog once or twice weekly through week 14 of the 15 week semester. A pre-course and post-course survey was sent to the students to compare their knowledge base relative to general information, drug response related to PGt, and PM. Results: Fifty-one freshmen pharmacy students enrolled in the course and completed the pre-course survey and 49 of the 51 students completed the post-course survey. There was an increase in the students' general, PGt and PM knowledge base as evidenced by a statistically significant higher number of correct responses for 17 of 21 questions on the post-course survey as compared to the pre-course survey. Notably, following the course, students had an increased knowledge base relative to "genetic privacy", drug dosing based on metabolizer phenotype, and the breadth of PM, among other specific points. Conclusions: The study indicated that introducing PGt and PM via a blog format was feasible, increasing the students' knowledge of these emerging areas. The blog format is easily transferable and can be adopted by colleges/schools to introduce PGt and PM.   Type: Case Study

  18. Prognostic biomarkers in osteoarthritis

    Science.gov (United States)

    Attur, Mukundan; Krasnokutsky-Samuels, Svetlana; Samuels, Jonathan; Abramson, Steven B.

    2013-01-01

    Purpose of review Identification of patients at risk for incident disease or disease progression in osteoarthritis remains challenging, as radiography is an insensitive reflection of molecular changes that presage cartilage and bone abnormalities. Thus there is a widely appreciated need for biochemical and imaging biomarkers. We describe recent developments with such biomarkers to identify osteoarthritis patients who are at risk for disease progression. Recent findings The biochemical markers currently under evaluation include anabolic, catabolic, and inflammatory molecules representing diverse biological pathways. A few promising cartilage and bone degradation and synthesis biomarkers are in various stages of development, awaiting further validation in larger populations. A number of studies have shown elevated expression levels of inflammatory biomarkers, both locally (synovial fluid) and systemically (serum and plasma). These chemical biomarkers are under evaluation in combination with imaging biomarkers to predict early onset and the burden of disease. Summary Prognostic biomarkers may be used in clinical knee osteoarthritis to identify subgroups in whom the disease progresses at different rates. This could facilitate our understanding of the pathogenesis and allow us to differentiate phenotypes within a heterogeneous knee osteoarthritis population. Ultimately, such findings may help facilitate the development of disease-modifying osteoarthritis drugs (DMOADs). PMID:23169101

  19. Pharmacogenetics of aldo-keto reductase 1C (AKR1C) enzymes.

    Science.gov (United States)

    Alshogran, Osama Y

    2017-10-01

    Genetic variation in metabolizing enzymes contributes to variable drug response and disease risk. Aldo-keto reductase type 1C (AKR1C) comprises a sub-family of reductase enzymes that play critical roles in the biotransformation of various drug substrates and endogenous compounds such as steroids. Several single nucleotide polymorphisms have been reported among AKR1C encoding genes, which may affect the functional expression of the enzymes. Areas covered: This review highlights and comprehensively discusses previous pharmacogenetic reports that have examined genetic variations in AKR1C and their association with disease development, drug disposition, and therapeutic outcomes. The article also provides information about the effect of AKR1C genetic variants on enzyme function in vitro. Expert opinion: The current evidence that links the effect of AKR1C gene polymorphisms to disease progression and development is inconsistent and needs further validation, despite of the tremendous knowledge available. Information about association of AKR1C genetic variants and drug efficacy, safety, and pharmacokinetics is limited, thus, future studies that advance our understanding about these relationships and their clinical relevance are needed. It is imperative to achieve consistent findings before the potential translation and adoption of AKR1C genetic variants in clinical practice.

  20. Weight Gain, Schizophrenia and Antipsychotics: New Findings from Animal Model and Pharmacogenomic Studies

    Directory of Open Access Journals (Sweden)

    Fabio Panariello

    2011-01-01

    Full Text Available Excess body weight is one of the most common physical health problems among patients with schizophrenia that increases the risk for many medical problems, including type 2 diabetes mellitus, coronary heart disease, osteoarthritis, and hypertension, and accounts in part for 20% shorter life expectancy than in general population. Among patients with severe mental illness, obesity can be attributed to an unhealthy lifestyle, personal genetic profile, as well as the effects of psychotropic medications, above all antipsychotic drugs. Novel “atypical” antipsychotic drugs represent a substantial improvement on older “typical” drugs. However, clinical experience has shown that some, but not all, of these drugs can induce substantial weight gain. Animal models of antipsychotic-related weight gain and animal transgenic models of knockout or overexpressed genes of antipsychotic receptors have been largely evaluated by scientific community for changes in obesity-related gene expression or phenotypes. Moreover, pharmacogenomic approaches have allowed to detect more than 300 possible candidate genes for antipsychotics-induced body weight gain. In this paper, we summarize current thinking on: (1 the role of polymorphisms in several candidate genes, (2 the possible roles of various neurotransmitters and neuropeptides in this adverse drug reaction, and (3 the state of development of animal models in this matter. We also outline major areas for future research.

  1. Time-related patient data retrieval for the case studies from the pharmacogenomics research network

    Science.gov (United States)

    Zhu, Qian; Tao, Cui; Ding, Ying; Chute, Christopher G.

    2012-01-01

    There are lots of question-based data elements from the pharmacogenomics research network (PGRN) studies. Many data elements contain temporal information. To semantically represent these elements so that they can be machine processiable is a challenging problem for the following reasons: (1) the designers of these studies usually do not have the knowledge of any computer modeling and query languages, so that the original data elements usually are represented in spreadsheets in human languages; and (2) the time aspects in these data elements can be too complex to be represented faithfully in a machine-understandable way. In this paper, we introduce our efforts on representing these data elements using semantic web technologies. We have developed an ontology, CNTRO, for representing clinical events and their temporal relations in the web ontology language (OWL). Here we use CNTRO to represent the time aspects in the data elements. We have evaluated 720 time-related data elements from PGRN studies. We adapted and extended the knowledge representation requirements for EliXR-TIME to categorize our data elements. A CNTRO-based SPARQL query builder has been developed to customize users’ own SPARQL queries for each knowledge representation requirement. The SPARQL query builder has been evaluated with a simulated EHR triple store to ensure its functionalities. PMID:23076712

  2. Time-related patient data retrieval for the case studies from the pharmacogenomics research network.

    Science.gov (United States)

    Zhu, Qian; Tao, Cui; Ding, Ying; Chute, Christopher G

    2012-11-01

    There are lots of question-based data elements from the pharmacogenomics research network (PGRN) studies. Many data elements contain temporal information. To semantically represent these elements so that they can be machine processiable is a challenging problem for the following reasons: (1) the designers of these studies usually do not have the knowledge of any computer modeling and query languages, so that the original data elements usually are represented in spreadsheets in human languages; and (2) the time aspects in these data elements can be too complex to be represented faithfully in a machine-understandable way. In this paper, we introduce our efforts on representing these data elements using semantic web technologies. We have developed an ontology, CNTRO, for representing clinical events and their temporal relations in the web ontology language (OWL). Here we use CNTRO to represent the time aspects in the data elements. We have evaluated 720 time-related data elements from PGRN studies. We adapted and extended the knowledge representation requirements for EliXR-TIME to categorize our data elements. A CNTRO-based SPARQL query builder has been developed to customize users' own SPARQL queries for each knowledge representation requirement. The SPARQL query builder has been evaluated with a simulated EHR triple store to ensure its functionalities.

  3. Biomarkers in Prostate Cancer Epidemiology

    Directory of Open Access Journals (Sweden)

    Mudit Verma

    2011-09-01

    Full Text Available Understanding the etiology of a disease such as prostate cancer may help in identifying populations at high risk, timely intervention of the disease, and proper treatment. Biomarkers, along with exposure history and clinical data, are useful tools to achieve these goals. Individual risk and population incidence of prostate cancer result from the intervention of genetic susceptibility and exposure. Biochemical, epigenetic, genetic, and imaging biomarkers are used to identify people at high risk for developing prostate cancer. In cancer epidemiology, epigenetic biomarkers offer advantages over other types of biomarkers because they are expressed against a person’s genetic background and environmental exposure, and because abnormal events occur early in cancer development, which includes several epigenetic alterations in cancer cells. This article describes different biomarkers that have potential use in studying the epidemiology of prostate cancer. We also discuss the characteristics of an ideal biomarker for prostate cancer, and technologies utilized for biomarker assays. Among epigenetic biomarkers, most reports indicate GSTP1 hypermethylation as the diagnostic marker for prostate cancer; however, NKX2-5, CLSTN1, SPOCK2, SLC16A12, DPYS, and NSE1 also have been reported to be regulated by methylation mechanisms in prostate cancer. Current challenges in utilization of biomarkers in prostate cancer diagnosis and epidemiologic studies and potential solutions also are discussed.

  4. Replication of LDL GWAs hits in PROSPER/PHASE as validation for future (pharmacogenetic analyses

    Directory of Open Access Journals (Sweden)

    Stott David J

    2011-10-01

    Full Text Available Abstract Background The PHArmacogenetic study of Statins in the Elderly at risk (PHASE is a genome wide association study in the PROspective Study of Pravastatin in the Elderly at risk for vascular disease (PROSPER that investigates the genetic variation responsible for the individual variation in drug response to pravastatin. Statins lower LDL-cholesterol in general by 30%, however not in all subjects. Moreover, clinical response is highly variable and adverse effects occur in a minority of patients. In this report we first describe the rationale of the PROSPER/PHASE project and second show that the PROSPER/PHASE study can be used to study pharmacogenetics in the elderly. Methods The genome wide association study (GWAS was conducted using the Illumina 660K-Quad beadchips following manufacturer's instructions. After a stringent quality control 557,192 SNPs in 5,244 subjects were available for analysis. To maximize the availability of genetic data and coverage of the genome, imputation up to 2.5 million autosomal CEPH HapMap SNPs was performed with MACH imputation software. The GWAS for LDL-cholesterol is assessed with an additive linear regression model in PROBABEL software, adjusted for age, sex, and country of origin to account for population stratification. Results Forty-two SNPs reached the GWAS significant threshold of p = 5.0e-08 in 5 genomic loci (APOE/APOC1; LDLR; FADS2/FEN1; HMGCR; PSRC1/CELSR5. The top SNP (rs445925, chromosome 19 with a p-value of p = 2.8e-30 is located within the APOC1 gene and near the APOE gene. The second top SNP (rs6511720, chromosome 19 with a p-value of p = 5.22e-15 is located within the LDLR gene. All 5 genomic loci were previously associated with LDL-cholesterol levels, no novel loci were identified. Replication in WOSCOPS and CARE confirmed our results. Conclusion With the GWAS in the PROSPER/PHASE study we confirm the previously found genetic associations with LDL-cholesterol levels. With this proof

  5. Effect of pharmacogenetics on plasma lumefantrine pharmacokinetics and malaria treatment outcome in pregnant women.

    Science.gov (United States)

    Mutagonda, Ritah F; Kamuhabwa, Appolinary A R; Minzi, Omary M S; Massawe, Siriel N; Asghar, Muhammad; Homann, Manijeh V; Färnert, Anna; Aklillu, Eleni

    2017-07-03

    Pregnancy has considerable effects on the pharmacokinetic properties of drugs used to treat uncomplicated Plasmodium falciparum malaria. The role of pharmacogenetic variation on anti-malarial drug disposition and efficacy during pregnancy is not well investigated. The study aimed to examine the effect of pharmacogenetics on lumefantrine (LF) pharmacokinetics and treatment outcome in pregnant women. Pregnant women with uncomplicated falciparum malaria were enrolled and treated with artemether-lumefantrine (ALu) at Mkuranga and Kisarawe district hospitals in Coast Region of Tanzania. Day-7 LF plasma concentration and genotyping forCYP2B6 (c.516G>T, c.983T>C), CYP3A4*1B, CYP3A5 (*3, *6, *7) and ABCB1 c.4036A4G were determined. Blood smear for parasite quantification by microscopy, and dried blood spot for parasite screening and genotyping using qPCR and nested PCR were collected at enrolment up to day 28 to differentiate between reinfection from recrudescence. Treatment response was recorded following the WHO protocol. In total, 92 pregnant women in their second and third trimester were included in the study and 424 samples were screened for presence of P. falciparum. Parasites were detected during the follow up period in 11 (12%) women between day 7 and 28 after treatment and PCR genotyping confirmed recrudescent infection in 7 (63.3%) women. The remaining four (36.4%) pregnant women had reinfection: one on day 14 and three on day 28. The overall PCR-corrected treatment failure rate was 9.0% (95% CI 4.4-17.4). Day 7 LF concentration was not significantly influenced by CYP2B6, CYP3A4*1B and ABCB1 c.4036A>G genotypes. Significant associations between CYP3A5 genotype and day 7 plasma LF concentrations was found, being higher in carriers of CYP3A5 defective variant alleles than CYP3A5*1/*1 genotype. No significant influence of CYP2B6, CYP3A5 and ABCB1 c.4036A>Genotypes on malaria treatment outcome were observed. However, CYP3A4*1B did affect malaria treatment outcome in

  6. OX1 and OX2 orexin/hypocretin receptor pharmacogenetics

    Directory of Open Access Journals (Sweden)

    Miles Douglas Thompson

    2014-05-01

    Full Text Available Orexin/hypocretin peptide mutations are rare in humans. Even though human narcolepsy is associated with orexin deficiency, this is only extremely rarely due to mutations in the gene coding prepro-orexin, the precursor for both orexin peptides. In contrast, coding and non-coding variants of the OX1 and OX2 orexin receptors have been identified in many human populations; sometimes, these have been associated with disease phenotype, although most confer a relatively low risk. In most cases, these studies have been based on a candidate gene hypothesis that predicts involvement of orexins in the relevant pathophysiological processes. In the current review, the known human OX1/HCRTR1 and OX2/HCRTR2 genetic variants/polymorphisms as well as studies concerning their involvement in disorders such as narcolepsy, excessive daytime sleepiness, cluster headache, polydipsia-hyponatremia in schizophrenia, and affective disorders are presented. In most cases, the functional cellular or pharmacological correlates of orexin variants have not been investigated  with the exception of the possible impact of an amino acid 10 Pro/Ser variant of OX2 on orexin potency  leaving conclusions on the nature of the receptor variant effects speculative. Nevertheless, we present perspectives that could shape the basis for further studies. The pharmacology and other properties of the orexin receptor variants are discussed in the context of GPCR signaling. Since orexinergic therapeutics are emerging, the impact of receptor variants on the affinity or potency of ligands deserves consideration. This perspective (pharmacogenetics is also discussed in the review.

  7. Protein biomarker enrichment by biomarker antibody complex elution for immunoassay biosensing

    NARCIS (Netherlands)

    Sabatté, G.S.; Feitsma, H.; Evers, T.H.; Prins, M.W.J.

    2011-01-01

    It is very challenging to perform sample enrichment for protein biomarkers because proteins can easily change conformation and denature. In this paper we demonstrate protein enrichment suited for high-sensitivity integrated immuno-biosensing. The method enhances the concentration of the biomarkers

  8. Predictive Biomarkers for Asthma Therapy.

    Science.gov (United States)

    Medrek, Sarah K; Parulekar, Amit D; Hanania, Nicola A

    2017-09-19

    Asthma is a heterogeneous disease characterized by multiple phenotypes. Treatment of patients with severe disease can be challenging. Predictive biomarkers are measurable characteristics that reflect the underlying pathophysiology of asthma and can identify patients that are likely to respond to a given therapy. This review discusses current knowledge regarding predictive biomarkers in asthma. Recent trials evaluating biologic therapies targeting IgE, IL-5, IL-13, and IL-4 have utilized predictive biomarkers to identify patients who might benefit from treatment. Other work has suggested that using composite biomarkers may offer enhanced predictive capabilities in tailoring asthma therapy. Multiple biomarkers including sputum eosinophil count, blood eosinophil count, fractional concentration of nitric oxide in exhaled breath (FeNO), and serum periostin have been used to identify which patients will respond to targeted asthma medications. Further work is needed to integrate predictive biomarkers into clinical practice.

  9. Cardiac biomarkers in Neonatology

    OpenAIRE

    Vijlbrief, D.C.

    2015-01-01

    In this thesis, the role for cardiac biomarkers in neonatology was investigated. Several clinically relevant results were reported. In term and preterm infants, hypoxia and subsequent adaptation play an important role in cardiac biomarker elevation. The elevated natriuretic peptides are indicative of abnormal function; elevated troponins are suggestive for cardiomyocyte damage. This methodology makes these biomarkers of additional value in the treatment of newborn infants, separate or as a co...

  10. Pharmacogenetics of efficacy and safety of HCV treatment in HCV-HIV coinfected patients: significant associations with IL28B and SOCS3 gene variants.

    Directory of Open Access Journals (Sweden)

    Francesc Vidal

    Full Text Available This was a safety and efficacy pharmacogenetic study of a previously performed randomized trial which compared the effectiveness of treatment of hepatitis C virus infection with pegylated interferon alpha (pegIFNα 2a vs. 2b, both with ribavirin, for 48 weeks, in HCV-HIV coinfected patients.The study groups were made of 99 patients (efficacy pharmacogenetic substudy and of 114 patients (safety pharmacogenetic substudy. Polymorphisms in the following candidate genes IL28B, IL6, IL10, TNFα, IFNγ, CCL5, MxA, OAS1, SOCS3, CTLA4 and ITPA were assessed. Genotyping was carried out using Sequenom iPLEX-Gold, a single-base extension polymerase chain reaction. Efficacy end-points assessed were: rapid, early and sustained virological response (RVR, EVR and SVR, respectively. Safety end-points assessed were: anemia, neutropenia, thrombocytopenia, flu-like syndrome, gastrointestinal disturbances and depression. Chi square test, Student's T test, Mann-Whitney U test and logistic regression were used for statistic analyses.As efficacy is concerned, IL28B and CTLA4 gene polymorphisms were associated with RVR (p<0.05 for both comparisons. Nevertheless, only polymorphism in the IL28B gene was associated with SVR (p = 0.004. In the multivariate analysis, the only gene independently associated with SVR was IL28B (OR 2.61, 95%CI 1.2-5.6, p = 0.01. With respect to safety, there were no significant associations between flu-like syndrome or depression and the genetic variants studied. Gastrointestinal disturbances were associated with ITPA gene polymorphism (p = 0.04. Anemia was associated with OAS1 and CTLA4 gene polymorphisms (p = 0.049 and p = 0.045, respectively, neutropenia and thromobocytopenia were associated with SOCS3 gene polymorphism (p = 0.02 and p = 0.002, respectively. In the multivariate analysis, the associations of the SOCS3 gene polymorphism with neutropenia (OR 0.26, 95%CI 0.09-0.75, p = 0.01 and thrombocytopenia (OR

  11. Using Workflow Modeling to Identify Areas to Improve Genetic Test Processes in the University of Maryland Translational Pharmacogenomics Project.

    Science.gov (United States)

    Cutting, Elizabeth M; Overby, Casey L; Banchero, Meghan; Pollin, Toni; Kelemen, Mark; Shuldiner, Alan R; Beitelshees, Amber L

    Delivering genetic test results to clinicians is a complex process. It involves many actors and multiple steps, requiring all of these to work together in order to create an optimal course of treatment for the patient. We used information gained from focus groups in order to illustrate the current process of delivering genetic test results to clinicians. We propose a business process model and notation (BPMN) representation of this process for a Translational Pharmacogenomics Project being implemented at the University of Maryland Medical Center, so that personalized medicine program implementers can identify areas to improve genetic testing processes. We found that the current process could be improved to reduce input errors, better inform and notify clinicians about the implications of certain genetic tests, and make results more easily understood. We demonstrate our use of BPMN to improve this important clinical process for CYP2C19 genetic testing in patients undergoing invasive treatment of coronary heart disease.

  12. Biomarkers of sepsis

    Science.gov (United States)

    2013-01-01

    Sepsis is an unusual systemic reaction to what is sometimes an otherwise ordinary infection, and it probably represents a pattern of response by the immune system to injury. A hyper-inflammatory response is followed by an immunosuppressive phase during which multiple organ dysfunction is present and the patient is susceptible to nosocomial infection. Biomarkers to diagnose sepsis may allow early intervention which, although primarily supportive, can reduce the risk of death. Although lactate is currently the most commonly used biomarker to identify sepsis, other biomarkers may help to enhance lactate’s effectiveness; these include markers of the hyper-inflammatory phase of sepsis, such as pro-inflammatory cytokines and chemokines; proteins such as C-reactive protein and procalcitonin which are synthesized in response to infection and inflammation; and markers of neutrophil and monocyte activation. Recently, markers of the immunosuppressive phase of sepsis, such as anti-inflammatory cytokines, and alterations of the cell surface markers of monocytes and lymphocytes have been examined. Combinations of pro- and anti-inflammatory biomarkers in a multi-marker panel may help identify patients who are developing severe sepsis before organ dysfunction has advanced too far. Combined with innovative approaches to treatment that target the immunosuppressive phase, these biomarkers may help to reduce the mortality rate associated with severe sepsis which, despite advances in supportive measures, remains high. PMID:23480440

  13. The role of the gene SERPINH1 as a pharmacogenetic biomarker for choroidal neovascularization (CNV) responses to anti vascular endothelial growth factor (VEGF) treatment in clinical practice

    OpenAIRE

    Pierce, Charles

    2015-01-01

    Age related macular degeneration is the commonest cause of blindness in the western world and current treatment regimens represent a significant output for national health services. The disease process is multifactorial in origin and has a variable progression and response to current methods of treatment. A targeted approach with individualized therapy based on recognized biomarkers to predict disease outcome would be the ideal treatment modality.We plan to investigate the role of genes known...

  14. Biomarkers for Detecting Mitochondrial Disorders

    Directory of Open Access Journals (Sweden)

    Josef Finsterer

    2018-01-01

    Full Text Available (1 Objectives: Mitochondrial disorders (MIDs are a genetically and phenotypically heterogeneous group of slowly or rapidly progressive disorders with onset from birth to senescence. Because of their variegated clinical presentation, MIDs are difficult to diagnose and are frequently missed in their early and late stages. This is why there is a need to provide biomarkers, which can be easily obtained in the case of suspecting a MID to initiate the further diagnostic work-up. (2 Methods: Literature review. (3 Results: Biomarkers for diagnostic purposes are used to confirm a suspected diagnosis and to facilitate and speed up the diagnostic work-up. For diagnosing MIDs, a number of dry and wet biomarkers have been proposed. Dry biomarkers for MIDs include the history and clinical neurological exam and structural and functional imaging studies of the brain, muscle, or myocardium by ultrasound, computed tomography (CT, magnetic resonance imaging (MRI, MR-spectroscopy (MRS, positron emission tomography (PET, or functional MRI. Wet biomarkers from blood, urine, saliva, or cerebrospinal fluid (CSF for diagnosing MIDs include lactate, creatine-kinase, pyruvate, organic acids, amino acids, carnitines, oxidative stress markers, and circulating cytokines. The role of microRNAs, cutaneous respirometry, biopsy, exercise tests, and small molecule reporters as possible biomarkers is unsolved. (4 Conclusions: The disadvantages of most putative biomarkers for MIDs are that they hardly meet the criteria for being acceptable as a biomarker (missing longitudinal studies, not validated, not easily feasible, not cheap, not ubiquitously available and that not all MIDs manifest in the brain, muscle, or myocardium. There is currently a lack of validated biomarkers for diagnosing MIDs.

  15. Biomarkers of adverse drug reactions.

    Science.gov (United States)

    Carr, Daniel F; Pirmohamed, Munir

    2018-02-01

    Adverse drug reactions can be caused by a wide range of therapeutics. Adverse drug reactions affect many bodily organ systems and vary widely in severity. Milder adverse drug reactions often resolve quickly following withdrawal of the casual drug or sometimes after dose reduction. Some adverse drug reactions are severe and lead to significant organ/tissue injury which can be fatal. Adverse drug reactions also represent a financial burden to both healthcare providers and the pharmaceutical industry. Thus, a number of stakeholders would benefit from development of new, robust biomarkers for the prediction, diagnosis, and prognostication of adverse drug reactions. There has been significant recent progress in identifying predictive genomic biomarkers with the potential to be used in clinical settings to reduce the burden of adverse drug reactions. These have included biomarkers that can be used to alter drug dose (for example, Thiopurine methyltransferase (TPMT) and azathioprine dose) and drug choice. The latter have in particular included human leukocyte antigen (HLA) biomarkers which identify susceptibility to immune-mediated injuries to major organs such as skin, liver, and bone marrow from a variety of drugs. This review covers both the current state of the art with regard to genomic adverse drug reaction biomarkers. We also review circulating biomarkers that have the potential to be used for both diagnosis and prognosis, and have the added advantage of providing mechanistic information. In the future, we will not be relying on single biomarkers (genomic/non-genomic), but on multiple biomarker panels, integrated through the application of different omics technologies, which will provide information on predisposition, early diagnosis, prognosis, and mechanisms. Impact statement • Genetic and circulating biomarkers present significant opportunities to personalize patient therapy to minimize the risk of adverse drug reactions. ADRs are a significant heath issue

  16. Proton pump inhibitors: from CYP2C19 pharmacogenetics to precision medicine.

    Science.gov (United States)

    El Rouby, Nihal; Lima, John J; Johnson, Julie A

    2018-04-01

    Proton Pump inhibitors (PPIs) are commonly used for a variety of acid related disorders. Despite the overall effectiveness and safety profile of PPIs, some patients do not respond adequately or develop treatment related adverse events. This variable response among patients is in part due to genotype variability of CYP2C19, the gene encoding the CYP450 (CYP2C19) isoenzyme responsible for PPIs metabolism. Areas covered: This article provides an overview of the pharmacokinetics and mechanism of action of the currently available PPIs, including the magnitude of CYPC19 contribution to their metabolism. Additionally, the role of CYP2C19 genetic variability in the therapeutic effectiveness or outcomes of PPI therapy is highlighted in details, to provide supporting evidence for the potential value of CYP2C19 genotype-guided approaches to PPI drug therapy. Expert opinion: There is a large body of evidence describing the impact of CYP2C19 variability on PPIs and its potential role in individualizing PPI therapy, yet, CYP2C19 pharmacogenetics has not been widely implemented into clinical practice. More data are needed but CYP2C19 genotype-guided dosing of PPIs is likely to become increasingly common and is expected to improve clinical outcomes, and minimize side effects related to PPIs.

  17. Biomarker Identification Using Text Mining

    Directory of Open Access Journals (Sweden)

    Hui Li

    2012-01-01

    Full Text Available Identifying molecular biomarkers has become one of the important tasks for scientists to assess the different phenotypic states of cells or organisms correlated to the genotypes of diseases from large-scale biological data. In this paper, we proposed a text-mining-based method to discover biomarkers from PubMed. First, we construct a database based on a dictionary, and then we used a finite state machine to identify the biomarkers. Our method of text mining provides a highly reliable approach to discover the biomarkers in the PubMed database.

  18. Meeting Report--NASA Radiation Biomarker Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Straume, Tore; Amundson, Sally A,; Blakely, William F.; Burns, Frederic J.; Chen, Allen; Dainiak, Nicholas; Franklin, Stephen; Leary, Julie A.; Loftus, David J.; Morgan, William F.; Pellmar, Terry C.; Stolc, Viktor; Turteltaub, Kenneth W.; Vaughan, Andrew T.; Vijayakumar, Srinivasan; Wyrobek, Andrew J.

    2008-05-01

    A summary is provided of presentations and discussions from the NASA Radiation Biomarker Workshop held September 27-28, 2007, at NASA Ames Research Center in Mountain View, California. Invited speakers were distinguished scientists representing key sectors of the radiation research community. Speakers addressed recent developments in the biomarker and biotechnology fields that may provide new opportunities for health-related assessment of radiation-exposed individuals, including for long-duration space travel. Topics discussed include the space radiation environment, biomarkers of radiation sensitivity and individual susceptibility, molecular signatures of low-dose responses, multivariate analysis of gene expression, biomarkers in biodefense, biomarkers in radiation oncology, biomarkers and triage following large-scale radiological incidents, integrated and multiple biomarker approaches, advances in whole-genome tiling arrays, advances in mass-spectrometry proteomics, radiation biodosimetry for estimation of cancer risk in a rat skin model, and confounding factors. Summary conclusions are provided at the end of the report.

  19. Replication of LDL GWAs hits in PROSPER/PHASE as validation for future (pharmaco)genetic analyses

    LENUS (Irish Health Repository)

    Trompet, Stella

    2011-10-06

    Abstract Background The PHArmacogenetic study of Statins in the Elderly at risk (PHASE) is a genome wide association study in the PROspective Study of Pravastatin in the Elderly at risk for vascular disease (PROSPER) that investigates the genetic variation responsible for the individual variation in drug response to pravastatin. Statins lower LDL-cholesterol in general by 30%, however not in all subjects. Moreover, clinical response is highly variable and adverse effects occur in a minority of patients. In this report we first describe the rationale of the PROSPER\\/PHASE project and second show that the PROSPER\\/PHASE study can be used to study pharmacogenetics in the elderly. Methods The genome wide association study (GWAS) was conducted using the Illumina 660K-Quad beadchips following manufacturer\\'s instructions. After a stringent quality control 557,192 SNPs in 5,244 subjects were available for analysis. To maximize the availability of genetic data and coverage of the genome, imputation up to 2.5 million autosomal CEPH HapMap SNPs was performed with MACH imputation software. The GWAS for LDL-cholesterol is assessed with an additive linear regression model in PROBABEL software, adjusted for age, sex, and country of origin to account for population stratification. Results Forty-two SNPs reached the GWAS significant threshold of p = 5.0e-08 in 5 genomic loci (APOE\\/APOC1; LDLR; FADS2\\/FEN1; HMGCR; PSRC1\\/CELSR5). The top SNP (rs445925, chromosome 19) with a p-value of p = 2.8e-30 is located within the APOC1 gene and near the APOE gene. The second top SNP (rs6511720, chromosome 19) with a p-value of p = 5.22e-15 is located within the LDLR gene. All 5 genomic loci were previously associated with LDL-cholesterol levels, no novel loci were identified. Replication in WOSCOPS and CARE confirmed our results. Conclusion With the GWAS in the PROSPER\\/PHASE study we confirm the previously found genetic associations with LDL-cholesterol levels. With this proof

  20. Multiple Sclerosis Cerebrospinal Fluid Biomarkers

    Directory of Open Access Journals (Sweden)

    Gavin Giovannoni

    2006-01-01

    Full Text Available Cerebrospinal fluid (CSF is the body fluid closest to the pathology of multiple sclerosis (MS. For many candidate biomarkers CSF is the only fluid that can be investigated. Several factors need to be standardized when sampling CSF for biomarker research: time/volume of CSF collection, sample processing/storage, and the temporal relationship of sampling to clinical or MRI markers of disease activity. Assays used for biomarker detection must be validated so as to optimize the power of the studies. A formal method for establishing whether or not a particular biomarker can be used as a surrogate end-point needs to be adopted. This process is similar to that used in clinical trials, where the reporting of studies has to be done in a standardized way with sufficient detail to permit a critical review of the study and to enable others to reproduce the study design. A commitment must be made to report negative studies so as to prevent publication bias. Pre-defined consensus criteria need to be developed for MS-related prognostic biomarkers. Currently no candidate biomarker is suitable as a surrogate end-point. Bulk biomarkers of the neurodegenerative process such as glial fibrillary acidic protein (GFAP and neurofilaments (NF have advantages over intermittent inflammatory markers.

  1. Addressing small sample size bias in multiple-biomarker trials: Inclusion of biomarker-negative patients and Firth correction.

    Science.gov (United States)

    Habermehl, Christina; Benner, Axel; Kopp-Schneider, Annette

    2018-03-01

    In recent years, numerous approaches for biomarker-based clinical trials have been developed. One of these developments are multiple-biomarker trials, which aim to investigate multiple biomarkers simultaneously in independent subtrials. For low-prevalence biomarkers, small sample sizes within the subtrials have to be expected, as well as many biomarker-negative patients at the screening stage. The small sample sizes may make it unfeasible to analyze the subtrials individually. This imposes the need to develop new approaches for the analysis of such trials. With an expected large group of biomarker-negative patients, it seems reasonable to explore options to benefit from including them in such trials. We consider advantages and disadvantages of the inclusion of biomarker-negative patients in a multiple-biomarker trial with a survival endpoint. We discuss design options that include biomarker-negative patients in the study and address the issue of small sample size bias in such trials. We carry out a simulation study for a design where biomarker-negative patients are kept in the study and are treated with standard of care. We compare three different analysis approaches based on the Cox model to examine if the inclusion of biomarker-negative patients can provide a benefit with respect to bias and variance of the treatment effect estimates. We apply the Firth correction to reduce the small sample size bias. The results of the simulation study suggest that for small sample situations, the Firth correction should be applied to adjust for the small sample size bias. Additional to the Firth penalty, the inclusion of biomarker-negative patients in the analysis can lead to further but small improvements in bias and standard deviation of the estimates. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Pharmacogenetic determinants of outcomes on triplet hepatic artery infusion and intravenous cetuximab for liver metastases from colorectal cancer (European trial OPTILIV, NCT00852228).

    Science.gov (United States)

    Lévi, Francis; Karaboué, Abdoulaye; Saffroy, Raphaël; Desterke, Christophe; Boige, Valerie; Smith, Denis; Hebbar, Mohamed; Innominato, Pasquale; Taieb, Julien; Carvalho, Carlos; Guimbaud, Rosine; Focan, Christian; Bouchahda, Mohamed; Adam, René; Ducreux, Michel; Milano, Gérard; Lemoine, Antoinette

    2017-09-26

    The hepatic artery infusion (HAI) of irinotecan, oxaliplatin and 5-fluorouracil with intravenous cetuximab achieved outstanding efficacy in previously treated patients with initially unresectable liver metastases from colorectal cancer. This planned study aimed at the identification of pharmacogenetic predictors of outcomes. Circulating mononuclear cells were analysed for 207 single-nucleotide polymorphisms (SNPs) from 34 pharmacology genes. Single-nucleotide polymorphisms passing stringent Hardy-Weinberg equilibrium test were tested for their association with outcomes in 52 patients (male/female, 36/16; WHO PS, 0-1). VKORC1 SNPs (rs9923231 and rs9934438) were associated with early and objective responses, and survival. For rs9923231, T/T achieved more early responses than C/T (50% vs 5%, P=0.029) and greatest 4-year survival (46% vs 0%, P=0.006). N-acetyltransferase-2 (rs1041983 and rs1801280) were associated with up to seven-fold more macroscopically complete hepatectomies. Progression-free survival was largest in ABCB1 rs1045642 T/T (P=0.026) and rs2032582 T/T (P=0.035). Associations were found between toxicities and gene variants (P<0.05), including neutropenia with ABCB1 (rs1045642) and SLC0B3 (rs4149117 and rs7311358); and diarrhoea with CYP2C9 (rs1057910), CYP2C19 (rs3758581), UGT1A6 (rs4124874) and SLC22A1 (rs72552763). VKORC1, NAT2 and ABCB1 variants predicted for HAI efficacy. Pharmacogenetics could guide the personalisation of liver-targeted medico-surgical therapies.

  3. Comprehensive Analysis of Cancer-Proteogenome to Identify Biomarkers for the Early Diagnosis and Prognosis of Cancer.

    Science.gov (United States)

    Shukla, Hem D

    2017-10-25

    During the past century, our understanding of cancer diagnosis and treatment has been based on a monogenic approach, and as a consequence our knowledge of the clinical genetic underpinnings of cancer is incomplete. Since the completion of the human genome in 2003, it has steered us into therapeutic target discovery, enabling us to mine the genome using cutting edge proteogenomics tools. A number of novel and promising cancer targets have emerged from the genome project for diagnostics, therapeutics, and prognostic markers, which are being used to monitor response to cancer treatment. The heterogeneous nature of cancer has hindered progress in understanding the underlying mechanisms that lead to abnormal cellular growth. Since, the start of The Cancer Genome Atlas (TCGA), and the International Genome consortium projects, there has been tremendous progress in genome sequencing and immense numbers of cancer genomes have been completed, and this approach has transformed our understanding of the diagnosis and treatment of different types of cancers. By employing Genomics and proteomics technologies, an immense amount of genomic data is being generated on clinical tumors, which has transformed the cancer landscape and has the potential to transform cancer diagnosis and prognosis. A complete molecular view of the cancer landscape is necessary for understanding the underlying mechanisms of cancer initiation to improve diagnosis and prognosis, which ultimately will lead to personalized treatment. Interestingly, cancer proteome analysis has also allowed us to identify biomarkers to monitor drug and radiation resistance in patients undergoing cancer treatment. Further, TCGA-funded studies have allowed for the genomic and transcriptomic characterization of targeted cancers, this analysis aiding the development of targeted therapies for highly lethal malignancy. High-throughput technologies, such as complete proteome, epigenome, protein-protein interaction, and pharmacogenomics

  4. Biomarkers in Airway Diseases

    Directory of Open Access Journals (Sweden)

    Janice M Leung

    2013-01-01

    Full Text Available The inherent limitations of spirometry and clinical history have prompted clinicians and scientists to search for surrogate markers of airway diseases. Although few biomarkers have been widely accepted into the clinical armamentarium, the authors explore three sources of biomarkers that have shown promise as indicators of disease severity and treatment response. In asthma, exhaled nitric oxide measurements can predict steroid responsiveness and sputum eosinophil counts have been used to titrate anti-inflammatory therapies. In chronic obstructive pulmonary disease, inflammatory plasma biomarkers, such as fibrinogen, club cell secretory protein-16 and surfactant protein D, can denote greater severity and predict the risk of exacerbations. While the multitude of disease phenotypes in respiratory medicine make biomarker development especially challenging, these three may soon play key roles in the diagnosis and management of airway diseases.

  5. Validation of biomarkers of food intake − critical assessment of candidate biomarkers

    DEFF Research Database (Denmark)

    Dragsted, Lars Ove; Gao, Qian; Scalbert, Augustin

    2018-01-01

    Biomarkers of food intake (BFIs) are a promising tool for limiting misclassification in nutrition research where more subjective dietary assessment instruments are used. They may also be used to assess compliance to dietary guidelines or to a dietary intervention. Biomarkers therefore hold promis...

  6. Early-Phase Studies of Biomarkers

    DEFF Research Database (Denmark)

    Pepe, Margaret S.; Janes, Holly; Li, Christopher I.

    2016-01-01

    of a positive biomarker test in cases (true positive) to cost associated with a positive biomarker test in controls (false positive). Guidance is offered on soliciting the cost/benefit ratio. The calculations are based on the longstanding decision theory concept of providing a net benefit on average...... impact on patient outcomes of using the biomarker to make clinical decisions....

  7. Institutional profile: Karolinska Institutet.

    Science.gov (United States)

    Eliasson, Erik; Sim, Sarah C; Rane, Anders; Ingelman-Sundberg, Magnus

    2012-12-01

    Research in pharmacogenomics has been intensive at Karolinska Institutet (KI) for approximately 25 years. Initial initiatives were focused on the identification and characterization of novel CYP2D6 alleles causing ultrarapid or defective drug metabolism. Such discoveries were possible owing to the early implementation of therapeutic drug monitoring and the access to individuals phenotyped with respect to drug metabolism. The translational work at KI has been of utmost importance for successful research, including functional characterization and clinical validation of allelic variants in drug metabolism, as well as discoveries of novel polymorphisms, recent examples being the CYP2C19 and UGT2B17 genes. The clinical pharmacology laboratory at KI campus Huddinge is one of the leading sites for therapeutic drug monitoring in northern Europe and obtains an increasing number of clinical requests, also important for pharmacogenetic research. Furthermore, the recently opened Center for Hematology and Regenerative Medicine, with a clear translational emphasis, offers an opportunity for studying drug metabolism and toxicity in vitro by use of human hepatocytes.

  8. Biomarkers of PTSD: military applications and considerations.

    Science.gov (United States)

    Lehrner, Amy; Yehuda, Rachel

    2014-01-01

    Although there are no established biomarkers for posttraumatic stress disorder (PTSD) as yet, biological investigations of PTSD have made progress identifying the pathophysiology of PTSD. Given the biological and clinical complexity of PTSD, it is increasingly unlikely that a single biomarker of disease will be identified. Rather, investigations will more likely identify different biomarkers that indicate the presence of clinically significant PTSD symptoms, associate with risk for PTSD following trauma exposure, and predict or identify recovery. While there has been much interest in PTSD biomarkers, there has been less discussion of their potential clinical applications, and of the social, legal, and ethical implications of such biomarkers. This article will discuss possible applications of PTSD biomarkers, including the social, legal, and ethical implications of such biomarkers, with an emphasis on military applications. Literature on applications of PTSD biomarkers and on potential ethical and legal implications will be reviewed. Biologically informed research findings hold promise for prevention, assessment, treatment planning, and the development of prophylactic and treatment interventions. As with any biological indicator of disorder, there are potentially positive and negative clinical, social, legal, and ethical consequences of using such biomarkers. Potential clinical applications of PTSD biomarkers hold promise for clinicians, patients, and employers. The search for biomarkers of PTSD should occur in tandem with an interdisciplinary discussion regarding the potential implications of applying biological findings in clinical and employment settings.

  9. Implementation of proteomic biomarkers: making it work

    Science.gov (United States)

    Mischak, Harald; Ioannidis, John PA; Argiles, Angel; Attwood, Teresa K; Bongcam-Rudloff, Erik; Broenstrup, Mark; Charonis, Aristidis; Chrousos, George P; Delles, Christian; Dominiczak, Anna; Dylag, Tomasz; Ehrich, Jochen; Egido, Jesus; Findeisen, Peter; Jankowski, Joachim; Johnson, Robert W; Julien, Bruce A; Lankisch, Tim; Leung, Hing Y; Maahs, David; Magni, Fulvio; Manns, Michael P; Manolis, Efthymios; Mayer, Gert; Navis, Gerjan; Novak, Jan; Ortiz, Alberto; Persson, Frederik; Peter, Karlheinz; Riese, Hans H; Rossing, Peter; Sattar, Naveed; Spasovski, Goce; Thongboonkerd, Visith; Vanholder, Raymond; Schanstra, Joost P; Vlahou, Antonia

    2012-01-01

    While large numbers of proteomic biomarkers have been described, they are generally not implemented in medical practice. We have investigated the reasons for this shortcoming, focusing on hurdles downstream of biomarker verification, and describe major obstacles and possible solutions to ease valid biomarker implementation. Some of the problems lie in suboptimal biomarker discovery and validation, especially lack of validated platforms with well-described performance characteristics to support biomarker qualification. These issues have been acknowledged and are being addressed, raising the hope that valid biomarkers may start accumulating in the foreseeable future. However, successful biomarker discovery and qualification alone does not suffice for successful implementation. Additional challenges include, among others, limited access to appropriate specimens and insufficient funding, the need to validate new biomarker utility in interventional trials, and large communication gaps between the parties involved in implementation. To address this problem, we propose an implementation roadmap. The implementation effort needs to involve a wide variety of stakeholders (clinicians, statisticians, health economists, and representatives of patient groups, health insurance, pharmaceutical companies, biobanks, and regulatory agencies). Knowledgeable panels with adequate representation of all these stakeholders may facilitate biomarker evaluation and guide implementation for the specific context of use. This approach may avoid unwarranted delays or failure to implement potentially useful biomarkers, and may expedite meaningful contributions of the biomarker community to healthcare. PMID:22519700

  10. DNA Methylation Biomarkers: Cancer and Beyond

    Directory of Open Access Journals (Sweden)

    Thomas Mikeska

    2014-09-01

    Full Text Available Biomarkers are naturally-occurring characteristics by which a particular pathological process or disease can be identified or monitored. They can reflect past environmental exposures, predict disease onset or course, or determine a patient’s response to therapy. Epigenetic changes are such characteristics, with most epigenetic biomarkers discovered to date based on the epigenetic mark of DNA methylation. Many tissue types are suitable for the discovery of DNA methylation biomarkers including cell-based samples such as blood and tumor material and cell-free DNA samples such as plasma. DNA methylation biomarkers with diagnostic, prognostic and predictive power are already in clinical trials or in a clinical setting for cancer. Outside cancer, strong evidence that complex disease originates in early life is opening up exciting new avenues for the detection of DNA methylation biomarkers for adverse early life environment and for estimation of future disease risk. However, there are a number of limitations to overcome before such biomarkers reach the clinic. Nevertheless, DNA methylation biomarkers have great potential to contribute to personalized medicine throughout life. We review the current state of play for DNA methylation biomarkers, discuss the barriers that must be crossed on the way to implementation in a clinical setting, and predict their future use for human disease.

  11. Importance of pharmacogenetic markers in the methylenetetrahydrofolate reductase gene during methotrexate treatment in pediatric patients with acute lymphoblastic leukemia

    Directory of Open Access Journals (Sweden)

    Lazić Jelena

    2017-01-01

    Full Text Available Despite remarkable progress in survival of children with acute lymphoblastic leukemia (ALL which has reached about 85%, early toxicity and relapse rate remain issues that need to to be resolved. Genetic variants are important factors influencing the metabolism of cytotoxic drugs in ALL treatment. Variants in genes coding for methotrexate (MTX-metabolizing enzymes are under constant scientific interest due to their potential impact on drug toxicity and relapse rate. We investigated methylenetetrahydrofolate reductase (MTHFR c.677C>T and MTHFR c.1298A>C variants as pharmacogenetic markers of MTX toxicity and predictors of relapse. The study enrolled 161 children with ALL, treated according to the current International Berlin-Frankfurt-Munster group (BFM for diagnostics and treatment of leukemia and lymphoma protocols. Genotyping was performed using PCRRFLP and allele-specific PCR assays. Our results revealed similar distributions of MTHFR c.677C>T and MTHFR c.1298A>C genotypes among 104 healthy individuals as compared to pediatric ALL patients. A lower incidence of early MTX toxicity was noted in the MTHFR c.677TT genotype (p=0.017, while MTHFR c.1298A>C genotypes were not associated with MTX toxicity. Carriers of any MTHFR c.677C>T and MTHFR c.1298A>C genotypes did not experience decreased overall survival (OAS or higher relapse rates. Genetic variants in the MTHFR gene are not involved in leukemogenesis in pediatric ALL. The presence of the MTHFR c.677TT genotype was recognized as a predictive factor for decreased MTX toxicity during the intensification phase of therapy. Neither MTHFR c.677C>T nor MTHFR c.1298A>C genotypes correlated with an increased number of toxic deaths or relapse rate. Our study emphasizes the importance of implementing pharmacogenetic markers in order to optimize pediatric ALL therapy. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. III 41004

  12. Implementation of proteomic biomarkers: making it work.

    Science.gov (United States)

    Mischak, Harald; Ioannidis, John P A; Argiles, Angel; Attwood, Teresa K; Bongcam-Rudloff, Erik; Broenstrup, Mark; Charonis, Aristidis; Chrousos, George P; Delles, Christian; Dominiczak, Anna; Dylag, Tomasz; Ehrich, Jochen; Egido, Jesus; Findeisen, Peter; Jankowski, Joachim; Johnson, Robert W; Julien, Bruce A; Lankisch, Tim; Leung, Hing Y; Maahs, David; Magni, Fulvio; Manns, Michael P; Manolis, Efthymios; Mayer, Gert; Navis, Gerjan; Novak, Jan; Ortiz, Alberto; Persson, Frederik; Peter, Karlheinz; Riese, Hans H; Rossing, Peter; Sattar, Naveed; Spasovski, Goce; Thongboonkerd, Visith; Vanholder, Raymond; Schanstra, Joost P; Vlahou, Antonia

    2012-09-01

    While large numbers of proteomic biomarkers have been described, they are generally not implemented in medical practice. We have investigated the reasons for this shortcoming, focusing on hurdles downstream of biomarker verification, and describe major obstacles and possible solutions to ease valid biomarker implementation. Some of the problems lie in suboptimal biomarker discovery and validation, especially lack of validated platforms with well-described performance characteristics to support biomarker qualification. These issues have been acknowledged and are being addressed, raising the hope that valid biomarkers may start accumulating in the foreseeable future. However, successful biomarker discovery and qualification alone does not suffice for successful implementation. Additional challenges include, among others, limited access to appropriate specimens and insufficient funding, the need to validate new biomarker utility in interventional trials, and large communication gaps between the parties involved in implementation. To address this problem, we propose an implementation roadmap. The implementation effort needs to involve a wide variety of stakeholders (clinicians, statisticians, health economists, and representatives of patient groups, health insurance, pharmaceutical companies, biobanks, and regulatory agencies). Knowledgeable panels with adequate representation of all these stakeholders may facilitate biomarker evaluation and guide implementation for the specific context of use. This approach may avoid unwarranted delays or failure to implement potentially useful biomarkers, and may expedite meaningful contributions of the biomarker community to healthcare. © 2012 The Authors. European Journal of Clinical Investigation © 2012 Stichting European Society for Clinical Investigation Journal Foundation.

  13. Biomarkers of PTSD: military applications and considerations

    Directory of Open Access Journals (Sweden)

    Amy Lehrner

    2014-08-01

    Full Text Available Background: Although there are no established biomarkers for posttraumatic stress disorder (PTSD as yet, biological investigations of PTSD have made progress identifying the pathophysiology of PTSD. Given the biological and clinical complexity of PTSD, it is increasingly unlikely that a single biomarker of disease will be identified. Rather, investigations will more likely identify different biomarkers that indicate the presence of clinically significant PTSD symptoms, associate with risk for PTSD following trauma exposure, and predict or identify recovery. While there has been much interest in PTSD biomarkers, there has been less discussion of their potential clinical applications, and of the social, legal, and ethical implications of such biomarkers. Objective: This article will discuss possible applications of PTSD biomarkers, including the social, legal, and ethical implications of such biomarkers, with an emphasis on military applications. Method: Literature on applications of PTSD biomarkers and on potential ethical and legal implications will be reviewed. Results: Biologically informed research findings hold promise for prevention, assessment, treatment planning, and the development of prophylactic and treatment interventions. As with any biological indicator of disorder, there are potentially positive and negative clinical, social, legal, and ethical consequences of using such biomarkers. Conclusions: Potential clinical applications of PTSD biomarkers hold promise for clinicians, patients, and employers. The search for biomarkers of PTSD should occur in tandem with an interdisciplinary discussion regarding the potential implications of applying biological findings in clinical and employment settings.

  14. Mining biomarker information in biomedical literature

    Directory of Open Access Journals (Sweden)

    Younesi Erfan

    2012-12-01

    Full Text Available Abstract Background For selection and evaluation of potential biomarkers, inclusion of already published information is of utmost importance. In spite of significant advancements in text- and data-mining techniques, the vast knowledge space of biomarkers in biomedical text has remained unexplored. Existing named entity recognition approaches are not sufficiently selective for the retrieval of biomarker information from the literature. The purpose of this study was to identify textual features that enhance the effectiveness of biomarker information retrieval for different indication areas and diverse end user perspectives. Methods A biomarker terminology was created and further organized into six concept classes. Performance of this terminology was optimized towards balanced selectivity and specificity. The information retrieval performance using the biomarker terminology was evaluated based on various combinations of the terminology's six classes. Further validation of these results was performed on two independent corpora representing two different neurodegenerative diseases. Results The current state of the biomarker terminology contains 119 entity classes supported by 1890 different synonyms. The result of information retrieval shows improved retrieval rate of informative abstracts, which is achieved by including clinical management terms and evidence of gene/protein alterations (e.g. gene/protein expression status or certain polymorphisms in combination with disease and gene name recognition. When additional filtering through other classes (e.g. diagnostic or prognostic methods is applied, the typical high number of unspecific search results is significantly reduced. The evaluation results suggest that this approach enables the automated identification of biomarker information in the literature. A demo version of the search engine SCAIView, including the biomarker retrieval, is made available to the public through http

  15. Dietary and health biomarkers - time for an update

    DEFF Research Database (Denmark)

    Dragsted, Lars Ove; Gao, Qian; Pratico, Giulia

    2017-01-01

    for these biomarker classes, and no recent systematic review of all proposed biomarkers for food intake. While advanced databases exist for the human and food metabolomes, additional tools are needed to curate and evaluate current data on dietary and health biomarkers. The Food Biomarkers Alliance (FoodBAll) under......In the dietary and health research area, biomarkers are extensively used for multiple purposes. These include biomarkers of dietary intake and nutrient status, biomarkers used to measure the biological effects of specific dietary components, and biomarkers to assess the effects of diet on health...... much mechanistic insight into the effects of food components and diets. Although hundreds of papers in nutrition are published annually, there is no current ontology for the area, no generally accepted classification terminology for biomarkers in nutrition and health, no systematic validation scheme...

  16. Biomarkers of HIV-associated Cancer

    OpenAIRE

    Flepisi, Brian Thabile; Bouic, Patrick; Sissolak, Gerhard; Rosenkranz, Bernd

    2014-01-01

    Cancer biomarkers have provided great opportunities for improving the management of cancer patients by enhancing the efficiency of early detection, diagnosis, and efficacy of treatment. Every cell type has a unique molecular signature, referred to as biomarkers, which are identifiable characteristics such as levels or activities of a myriad of genes, proteins, or other molecular features. Biomarkers can facilitate the molecular definition of cancer, provide information about the course of can...

  17. Analysis of biomarker data a practical guide

    CERN Document Server

    Looney, Stephen W

    2015-01-01

    A "how to" guide for applying statistical methods to biomarker data analysis Presenting a solid foundation for the statistical methods that are used to analyze biomarker data, Analysis of Biomarker Data: A Practical Guide features preferred techniques for biomarker validation. The authors provide descriptions of select elementary statistical methods that are traditionally used to analyze biomarker data with a focus on the proper application of each method, including necessary assumptions, software recommendations, and proper interpretation of computer output. In addition, the book discusses

  18. Mixed effects modeling of proliferation rates in cell-based models: consequence for pharmacogenomics and cancer.

    Directory of Open Access Journals (Sweden)

    Hae Kyung Im

    2012-02-01

    Full Text Available The International HapMap project has made publicly available extensive genotypic data on a number of lymphoblastoid cell lines (LCLs. Building on this resource, many research groups have generated a large amount of phenotypic data on these cell lines to facilitate genetic studies of disease risk or drug response. However, one problem that may reduce the usefulness of these resources is the biological noise inherent to cellular phenotypes. We developed a novel method, termed Mixed Effects Model Averaging (MEM, which pools data from multiple sources and generates an intrinsic cellular growth rate phenotype. This intrinsic growth rate was estimated for each of over 500 HapMap cell lines. We then examined the association of this intrinsic growth rate with gene expression levels and found that almost 30% (2,967 out of 10,748 of the genes tested were significant with FDR less than 10%. We probed further to demonstrate evidence of a genetic effect on intrinsic growth rate by determining a significant enrichment in growth-associated genes among genes targeted by top growth-associated SNPs (as eQTLs. The estimated intrinsic growth rate as well as the strength of the association with genetic variants and gene expression traits are made publicly available through a cell-based pharmacogenomics database, PACdb. This resource should enable researchers to explore the mediating effects of proliferation rate on other phenotypes.

  19. Pharmacogenetics of cerebrovascular metabolism modulators in dementia due to Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Fabricio Ferreira de Oliveira

    2015-03-01

    Full Text Available The aims of this study were to investigate risk factors for cognitive and functional decline among 193 patients with Alzheimer’s disease dementia (AD, and to conduct pharmacogenetic analysis on cerebrovascular metabolism modulators, taking into account APOE haplotypes and the genotypes of ACE, CETP, LDLR and the LXR-β gene. For all patients, later age at AD onset was the most important risk factor for faster cognitive and functional decline, while the late-life coronary heart disease risk was inversely related to cognitive decline only for carriers of APOE4+ haplotypes. Schooling was protective against cognitive decline only for women and carriers of APOE4+ haplotypes, while higher body mass index in late life was protective against cognitive decline only for men. Carriers of the APOE-ε4/ε4 haplotype had earlier AD onset, whereas genotypes of CETP and LDLR that had traditionally been associated with higher risk of AD were associated with later onset of dementia. Angiotensin-converting enzyme inhibitors caused a 50% reduction in Mini-Mental State Examination score changes, and had better disease-modifying properties than did centrally-acting angiotensin-converting enzyme inhibitors alone. Angiotensin receptor blockers had genetically mediated effects that led to faster cognitive and functional decline, while patients with genetic tendencies towards faster cognitive and functional decline had maximum benefits when they used lipophilic statins, and vice versa.

  20. Overlap of proteomics biomarkers between women with pre-eclampsia and PCOS: a systematic review and biomarker database integration.

    Science.gov (United States)

    Khan, Gulafshana Hafeez; Galazis, Nicolas; Docheva, Nikolina; Layfield, Robert; Atiomo, William

    2015-01-01

    Do any proteomic biomarkers previously identified for pre-eclampsia (PE) overlap with those identified in women with polycystic ovary syndrome (PCOS). Five previously identified proteomic biomarkers were found to be common in women with PE and PCOS when compared with controls. Various studies have indicated an association between PCOS and PE; however, the pathophysiological mechanisms supporting this association are not known. A systematic review and update of our PCOS proteomic biomarker database was performed, along with a parallel review of PE biomarkers. The study included papers from 1980 to December 2013. In all the studies analysed, there were a total of 1423 patients and controls. The number of proteomic biomarkers that were catalogued for PE was 192. Five proteomic biomarkers were shown to be differentially expressed in women with PE and PCOS when compared with controls: transferrin, fibrinogen α, β and γ chain variants, kininogen-1, annexin 2 and peroxiredoxin 2. In PE, the biomarkers were identified in serum, plasma and placenta and in PCOS, the biomarkers were identified in serum, follicular fluid, and ovarian and omental biopsies. The techniques employed to detect proteomics have limited ability in identifying proteins that are of low abundance, some of which may have a diagnostic potential. The sample sizes and number of biomarkers identified from these studies do not exclude the risk of false positives, a limitation of all biomarker studies. The biomarkers common to PE and PCOS were identified from proteomic analyses of different tissues. This data amalgamation of the proteomic studies in PE and in PCOS, for the first time, discovered a panel of five biomarkers for PE which are common to women with PCOS, including transferrin, fibrinogen α, β and γ chain variants, kininogen-1, annexin 2 and peroxiredoxin 2. If validated, these biomarkers could provide a useful framework for the knowledge infrastructure in this area. To accomplish this goal, a

  1. Psychiatry meets pharmacogenetics for the treatment of revolving door patients with psychiatric disorders.

    Science.gov (United States)

    Panza, Francesco; Lozupone, Madia; Stella, Eleonora; Lofano, Lucia; Gravina, Carolina; Urbano, Maria; Daniele, Antonio; Bellomo, Antonello; Logroscino, Giancarlo; Greco, Antonio; Seripa, Davide

    2016-12-01

    Therapeutic failures (TFs) and adverse drug reactions (ADRs), together with the recurring nature of the clinical course of psychiatric disorders, mainly bipolar disorders (BDs), strongly contributed to the prevalence and frequency of hospital readmissions observed in these patients. This is the revolving door (RD) condition, dramatically rising costs for the management of these patients in psychiatric settings. Areas covered: We searched in the medical literature until May 2016 to review the role of functional variants in the cytochrome P450 (CYP) 2D6 gene on observed ADRs and TFs in RD patients with BDs, conferring a different capacity to metabolize psychotropic drugs. Expert commentary: CYP2D6 functional polymorphisms might directly contributed to the prevalence and frequency of the RD condition, commonly observed in BD patients. Although several environmental and socio-demographic/diagnostic variables such as alcohol/drug abuse, and medication non-compliance accounted for a significant proportion of the ability to predict RD prevalence and frequency, the pharmacogenetics of CYP, particularly CYP2D6, may help to identify BD patients at risk for ADRs and TFs. These patients may be addressed towards alternative treatments, thus improving their quality of life, and reducing RD prevalence and frequency and the overall costs for their management.

  2. Pharmacogenetics of neurological and psychiatric diseases at older age: has the time come?

    Science.gov (United States)

    Lozupone, Madia; Panza, Francesco; Stella, Eleonora; La Montagna, Maddalena; Bisceglia, Paola; Miscio, Giuseppe; Galizia, Ilaria; Daniele, Antonio; di Mauro, Lazzaro; Bellomo, Antonello; Logroscino, Giancarlo; Greco, Antonio; Seripa, Davide

    2017-03-01

    In recent years, a number of pharmacological approaches for treating neuropsychiatric conditions at older age have proven to be inadequate. The resulting increased prevalence of therapeutic failures (TF) and a worsening of clinical symptoms often linked to adverse reactions (ADRs), are perhaps among the major causes of the increasing rate of hospitalizations and institutionalizations observed in these patients. Areas covered: This review underlines the importance of pharmacogenetic data to fingerprint the pharmacological treatment of neuropsychiatric late-life conditions throughout the analysis of metabolizing enzymes and transporters of psychotropic drugs, mainly those of the cytochrome P450 (CYP) family. Pharmacodynamic response measures as treatment effects mediated through targets (i.e., receptors in the brain) may also contribute to this image. Expert opinion: CYP genetics is the basis of a continuum on which environmental and physiological factors act, modeling the phenotype observed in clinical practice with advancing age. Furthermore, other specific polymorphic genes influence drug response through differential effects of their functional genetic variants. The known genotypes associated with an altered metabolizer status and drug transporters may help clinical decision-making to avoid concomitant treatments, reduce therapeutic attempts and increase drug safety in neuropsychiatric conditions in older age, after controlling for other clinical variables.

  3. EL RETO DE LA MUESTRA BIOLÓGICA EN LOS ESTUDIOS FARMACOGENÉTICOS O OBJETIVO DA MOSTRA BIOLÓGICA NOS ESTUDOS FARMACOGENÉTICOS BIOLOGICAL SAMPLE’S CHALLENGE ON PHARMACOGENETIC STUDIES

    Directory of Open Access Journals (Sweden)

    Alexandre Bota i Arqué

    2004-01-01

    Full Text Available Este trabajo parte de la constatación del importante incremento de estudios farmacológicos que lleva asociado un estudio farmacogenético sin que exista un conocimiento muy claro de sus consecuencias. Su primer reto es dilucidar si estos estudios tienen mayores implicaciones que las determinaciones de parámetros de rutina. No se puede obviar que la genética genera cierta preocupación debido, entre otros factores, al lenguaje técnico, la desinformación, las simplificaciones que generan los medios de comunicación, y su complejidad. El segundo objetivo es definir qué figura de propiedad tienen los investigadores o las empresas patrocinantes de las muestras biológicas y los datos genéticos en los estudios de farmacogenéticaEste trabalho parte da constatação do importante incremento dos estudos farmacológicos que leva associado um estudo farmacogenético sem que exista um conhecimento muito claro de suas conseqüências. Seu primeiro objetivo é esclarecer se estes estudos tem maiores implicações que as determinações de parâmetros de rotina. Não se pode considerar obvio que a genética gera certa preocupação devido, entre outros fatores, à linguagem técnica, à desinformação, às simplificações geradas pelos meios de comunicação, e sua complexidade. O segundo objetivo é definir que figura de propriedade tem os pesquisadores ou as empresas patrocinadoras das amostras biológicas e os dados genéticos nos estudos de farmacogenéticaThis work starts stating the great increase of pharmacological studies associated with pharmacogenetic studies without clear knowledge of their consequences. The first challenge is to find out whether pharmacogenetic studies have greater implications than the determination of routine parameters. We cannot obviate that genetics engenders special worries due to several factors, such as: technical language, lack of information, media simplifications and complexity. The second goal is to define

  4. Proteomic and metabolomic approaches to biomarker discovery

    CERN Document Server

    Issaq, Haleem J

    2013-01-01

    Proteomic and Metabolomic Approaches to Biomarker Discovery demonstrates how to leverage biomarkers to improve accuracy and reduce errors in research. Disease biomarker discovery is one of the most vibrant and important areas of research today, as the identification of reliable biomarkers has an enormous impact on disease diagnosis, selection of treatment regimens, and therapeutic monitoring. Various techniques are used in the biomarker discovery process, including techniques used in proteomics, the study of the proteins that make up an organism, and metabolomics, the study of chemical fingerprints created from cellular processes. Proteomic and Metabolomic Approaches to Biomarker Discovery is the only publication that covers techniques from both proteomics and metabolomics and includes all steps involved in biomarker discovery, from study design to study execution.  The book describes methods, and presents a standard operating procedure for sample selection, preparation, and storage, as well as data analysis...

  5. Biomarkers of latent TB infection

    DEFF Research Database (Denmark)

    Ruhwald, Morten; Ravn, Pernille

    2009-01-01

    For the last 100 years, the tuberculin skin test (TST) has been the only diagnostic tool available for latent TB infection (LTBI) and no biomarker per se is available to diagnose the presence of LTBI. With the introduction of M. tuberculosis-specific IFN-gamma release assays (IGRAs), a new area...... of in vitro immunodiagnostic tests for LTBI based on biomarker readout has become a reality. In this review, we discuss existing evidence on the clinical usefulness of IGRAs and the indefinite number of potential new biomarkers that can be used to improve diagnosis of latent TB infection. We also present...... early data suggesting that the monocyte-derived chemokine inducible protein-10 may be useful as a novel biomarker for the immunodiagnosis of latent TB infection....

  6. Fluid biomarkers in multiple system atrophy

    DEFF Research Database (Denmark)

    Laurens, Brice; Constantinescu, Radu; Freeman, Roy

    2015-01-01

    Despite growing research efforts, no reliable biomarker currently exists for the diagnosis and prognosis of multiple system atrophy (MSA). Such biomarkers are urgently needed to improve diagnostic accuracy, prognostic guidance and also to serve as efficacy measures or surrogates of target...... engagement for future clinical trials. We here review candidate fluid biomarkers for MSA and provide considerations for further developments and harmonization of standard operating procedures. A PubMed search was performed until April 24, 2015 to review the literature with regard to candidate blood...... and cerebrospinal fluid (CSF) biomarkers for MSA. Abstracts of 1760 studies were retrieved and screened for eligibility. The final list included 60 studies assessing fluid biomarkers in patients with MSA. Most studies have focused on alpha-synuclein, markers of axonal degeneration or catecholamines. Their results...

  7. Allergic asthma biomarkers using systems approaches

    Directory of Open Access Journals (Sweden)

    Gaurab eSircar

    2014-01-01

    Full Text Available Asthma is characterized by lung inflammation caused by complex interaction between the immune system and environmental factors such as allergens and inorganic pollutants. Recent research in this field is focused on discovering new biomarkers associated with asthma pathogenesis. This review illustrates updated research associating biomarkers of allergic asthma and their potential use in systems biology of the disease. We focus on biomolecules with altered expression, which may serve as inflammatory, diagnostic and therapeutic biomarkers of asthma discovered in human or experimental asthma model using genomic, proteomic and epigenomic approaches for gene and protein expression profiling. These include high-throughput technologies such as state of the art microarray and proteomics Mass Spectrometry (MS platforms. Emerging concepts of molecular interactions and pathways may provide new insights in searching potential clinical biomarkers. We summarized certain pathways with significant linkage to asthma pathophysiology by analyzing the compiled biomarkers. Systems approaches with this data can identify the regulating networks, which will eventually identify the key biomarkers to be used for diagnostics and drug discovery.

  8. Stevens-Johnson syndrome and toxic epidermal necrolysis: an update on pharmacogenetics studies in drug-induced severe skin reaction.

    Science.gov (United States)

    Rufini, Sara; Ciccacci, Cinzia; Politi, Cristina; Giardina, Emiliano; Novelli, Giuseppe; Borgiani, Paola

    2015-11-01

    Stevens-Johnson syndrome and toxic epidermal necrolysis are severe, life-threatening drug reactions involving skin and membranes mucous, which are associated with significant morbidity and mortality and triggered, especially by drug exposure. Different studies have demonstrated that drug response is a multifactorial character and that the interindividual variability in this response depends on both environmental and genetic factors. The last ones have a relevant significance. In fact, the identification of new specific genetic markers involved in the response to drugs, will be of great utility to establish a more personalized therapeutic approach and to prevent the appearance of these adverse reactions. In this review, we summarize recent progresses in the Pharmacogenetics studies related to Stevens-Johnson syndrome/toxic epidermal necrolysis reporting the major genetic factors identified in the last years as associated with the disease and highlighting the use of some of these genomic variants in the clinical practice.

  9. Urinary Biomarkers of Brain Diseases

    Directory of Open Access Journals (Sweden)

    Manxia An

    2015-12-01

    Full Text Available Biomarkers are the measurable changes associated with a physiological or pathophysiological process. Unlike blood, urine is not subject to homeostatic mechanisms. Therefore, greater fluctuations could occur in urine than in blood, better reflecting the changes in human body. The roadmap of urine biomarker era was proposed. Although urine analysis has been attempted for clinical diagnosis, and urine has been monitored during the progression of many diseases, particularly urinary system diseases, whether urine can reflect brain disease status remains uncertain. As some biomarkers of brain diseases can be detected in the body fluids such as cerebrospinal fluid and blood, there is a possibility that urine also contain biomarkers of brain diseases. This review summarizes the clues of brain diseases reflected in the urine proteome and metabolome.

  10. Cardiovascular Pharmacogenomics and Cognitive Function in Patients with Schizophrenia.

    Science.gov (United States)

    Ward, Kristen M; Kraal, A Zarina; Flowers, Stephanie A; Ellingrod, Vicki L

    2017-09-01

    The authors sought to examine the impact of multiple risk alleles for cognitive dysfunction and cardiovascular disease risk on cognitive function and to determine if these relationships varied by cognitive reserve (CR) or concomitant medication use in patients with schizophrenia. They conducted a cross-sectional study in ambulatory mental health centers. A total of 122 adults with a schizophrenia spectrum diagnosis who were maintained on a stable antipsychotic regimen for at least 6 months before study enrollment were included. Patients were divided into three CR groups based on years of formal education: no high school completion or equivalent (low-education group [18 patients]), completion of high school or equivalent (moderate-education group [36 patients], or any degree of post-high school education (high-education group [68 patients]). The following pharmacogenomic variants were genotyped for each patient: AGT M268T (rs699), ACE insertion/deletion (or ACE I/D, rs1799752), and APOE ε2, ε3, and ε4 (rs429358 and rs7412). Risk allele carrier status (identified per gene as AGT M268 T carriers, ACE D carriers, and APOE ε4 carriers) was not significantly different among CR groups. The Brief Assessment of Cognition in Schizophrenia (BACS) scale was used to assess cognitive function. The mean ± SD patient age was 43.9 ± 11.6 years. Cardiovascular risk factors such as hypertension and hyperlipidemia diagnoses, and use of antihypertensive and lipid-lowering agents, did not significantly differ among CR groups. Mixed modeling revealed that risk allele carrier status was significantly associated with lower verbal memory scores for ACE D and APOE ε4 carriers, but AGT T carrier status was significantly associated with higher verbal memory scores (p=0.0188, p=0.0055, and p=0.0058, respectively). These results were only significant in the low-education group. In addition, medication-gene interactions were not significant predictors of BACS scores. ACE D and APOE ε4

  11. Proteomic biomarkers for ovarian cancer risk in women with polycystic ovary syndrome: a systematic review and biomarker database integration.

    Science.gov (United States)

    Galazis, Nicolas; Olaleye, Olalekan; Haoula, Zeina; Layfield, Robert; Atiomo, William

    2012-12-01

    To review and identify possible biomarkers for ovarian cancer (OC) in women with polycystic ovary syndrome (PCOS). Systematic literature searches of MEDLINE, EMBASE, and Cochrane using the search terms "proteomics," "proteomic," and "ovarian cancer" or "ovarian carcinoma." Proteomic biomarkers for OC were then integrated with an updated previously published database of all proteomic biomarkers identified to date in patients with PCOS. Academic department of obstetrics and gynecology in the United Kingdom. A total of 180 women identified in the six studies. Tissue samples from women with OC vs. tissue samples from women without OC. Proteomic biomarkers, proteomic technique used, and methodologic quality score. A panel of six biomarkers was overexpressed both in women with OC and in women with PCOS. These biomarkers include calreticulin, fibrinogen-γ, superoxide dismutase, vimentin, malate dehydrogenase, and lamin B2. These biomarkers could help improve our understanding of the links between PCOS and OC and could potentially be used to identify subgroups of women with PCOS at increased risk of OC. More studies are required to further evaluate the role these biomarkers play in women with PCOS and OC. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  12. Cardiovascular biomarkers in clinical studies of type 2 diabetes

    DEFF Research Database (Denmark)

    Baldassarre, M P A; Andersen, A; Consoli, A

    2018-01-01

    biomarkers and 3) novel biomarkers (oxidative stress and endothelial dysfunction biomarkers). Within each category we present the currently best validated biomarkers with special focus on the population of interest (type 2 diabetes). For each individual biomarker, the physiological role, the validation...

  13. Dietary and health biomarkers-time for an update

    NARCIS (Netherlands)

    Dragsted, L.O.; Gao Qizian,; Praticò, G.; Manach, Claudine; Wishart, D.S.; Scalbert, A.; Feskens, E.J.M.

    2017-01-01

    In the dietary and health research area, biomarkers are extensively used for multiple purposes. These include biomarkers of dietary intake and nutrient status, biomarkers used to measure the biological effects of specific dietary components, and biomarkers to assess the effects of diet on health.

  14. Characterisation of the HLA-DRB1*07:01 biomarker for lapatinib-induced liver toxicity during treatment of early-stage breast cancer patients with lapatinib in combination with trastuzumab and/or taxanes.

    Science.gov (United States)

    Spraggs, C F; Parham, L R; Briley, L P; Warren, L; Williams, L S; Fraser, D J; Jiang, Z; Aziz, Z; Ahmed, S; Demetriou, G; Mehta, A; Jackson, N; Byrne, J; Andersson, M; Toi, M; Harris, L; Gralow, J; Zujewski, J A; Crescenzo, R; Armour, A; Perez, E; Piccart, M

    2017-08-08

    HLA-DRB1*07:01 allele carriage was characterised as a risk biomarker for lapatinib-induced liver injury in a large global study evaluating lapatinib, alone and in combination with trastuzumab and taxanes, as adjuvant therapy for advanced breast cancer (adjuvant lapatinib and/or trastuzumab treatment optimisation). HLA-DRB1*07:01 carriage was associated with serum alanine aminotransferase (ALT) elevations in lapatinib-treated patients (odds ratio 6.5, P=3 × 10 -26 , n=4482) and the risk and severity of ALT elevation for lapatinib-treated patients was higher in homozygous than heterozygous HLA-DRB1*07:01 genotype carriers. A higher ALT case incidence plus weaker HLA association observed during concurrent administration of lapatinib and taxane suggested a subset of liver injury in this combination group that was HLA-DRB1*07:01 independent. Furthermore, the incidence of ALT elevation demonstrated an expected correlation with geographic HLA-DRB1*07:01 carriage frequency. Robust ALT elevation risk estimates for HLA-DRB1*07:01 may support causality discrimination and safety risk management during the use of lapatinib combination therapy for the treatment of metastatic breast cancer.The Pharmacogenomics Journal advance online publication, 8 August 2017; doi:10.1038/tpj.2017.39.

  15. Evaluating biomarkers for prognostic enrichment of clinical trials.

    Science.gov (United States)

    Kerr, Kathleen F; Roth, Jeremy; Zhu, Kehao; Thiessen-Philbrook, Heather; Meisner, Allison; Wilson, Francis Perry; Coca, Steven; Parikh, Chirag R

    2017-12-01

    A potential use of biomarkers is to assist in prognostic enrichment of clinical trials, where only patients at relatively higher risk for an outcome of interest are eligible for the trial. We investigated methods for evaluating biomarkers for prognostic enrichment. We identified five key considerations when considering a biomarker and a screening threshold for prognostic enrichment: (1) clinical trial sample size, (2) calendar time to enroll the trial, (3) total patient screening costs and the total per-patient trial costs, (4) generalizability of trial results, and (5) ethical evaluation of trial eligibility criteria. Items (1)-(3) are amenable to quantitative analysis. We developed the Biomarker Prognostic Enrichment Tool for evaluating biomarkers for prognostic enrichment at varying levels of screening stringency. We demonstrate that both modestly prognostic and strongly prognostic biomarkers can improve trial metrics using Biomarker Prognostic Enrichment Tool. Biomarker Prognostic Enrichment Tool is available as a webtool at http://prognosticenrichment.com and as a package for the R statistical computing platform. In some clinical settings, even biomarkers with modest prognostic performance can be useful for prognostic enrichment. In addition to the quantitative analysis provided by Biomarker Prognostic Enrichment Tool, investigators must consider the generalizability of trial results and evaluate the ethics of trial eligibility criteria.

  16. The current status of biomarkers for predicting toxicity

    Science.gov (United States)

    Campion, Sarah; Aubrecht, Jiri; Boekelheide, Kim; Brewster, David W; Vaidya, Vishal S; Anderson, Linnea; Burt, Deborah; Dere, Edward; Hwang, Kathleen; Pacheco, Sara; Saikumar, Janani; Schomaker, Shelli; Sigman, Mark; Goodsaid, Federico

    2013-01-01

    Introduction There are significant rates of attrition in drug development. A number of compounds fail to progress past preclinical development due to limited tools that accurately monitor toxicity in preclinical studies and in the clinic. Research has focused on improving tools for the detection of organ-specific toxicity through the identification and characterization of biomarkers of toxicity. Areas covered This article reviews what we know about emerging biomarkers in toxicology, with a focus on the 2012 Northeast Society of Toxicology meeting titled ‘Translational Biomarkers in Toxicology.’ The areas covered in this meeting are summarized and include biomarkers of testicular injury and dysfunction, emerging biomarkers of kidney injury and translation of emerging biomarkers from preclinical species to human populations. The authors also provide a discussion about the biomarker qualification process and possible improvements to this process. Expert opinion There is currently a gap between the scientific work in the development and qualification of novel biomarkers for nonclinical drug safety assessment and how these biomarkers are actually used in drug safety assessment. A clear and efficient path to regulatory acceptance is needed so that breakthroughs in the biomarker toolkit for nonclinical drug safety assessment can be utilized to aid in the drug development process. PMID:23961847

  17. Meta-Analysis on Pharmacogenetics of Platinum-Based Chemotherapy in Non Small Cell Lung Cancer (NSCLC) Patients

    Science.gov (United States)

    Yin, Ji-Ye; Huang, Qiong; Zhao, Ying-Chun; Zhou, Hong-Hao; Liu, Zhao-Qian

    2012-01-01

    Aim To determine the pharmacogenetics of platinum-based chemotherapy in Non Small Cell Lung Cancer (NSCLC) patients. Methods Publications were selected from PubMed, Cochrane Library and ISI Web of Knowledge. A meta-analysis was conducted to determine the association between genetic polymorphisms and platinum-based chemotherapy by checking odds ratio (OR) and 95% confidence interval (CI). Results Data were extracted from 24 publications, which included 11 polymorphisms in 8 genes for meta-analysis. MDR1 C3435T (OR = 1.97, 95% CI: 1.11–3.50, P = 0.02), G2677A/T (OR = 2.61, 95% CI: 1.44–4.74, P = 0.002) and GSTP1 A313G (OR = 0.32, 95% CI: 0.17–0.58, P = 0.0002) were significantly correlated with platinum-based chemotherapy in Asian NSCLC patients. Conclusion Attention should be paid to MDR1 C3435T, G2677A/T and GSTP1 A313G for personalized chemotherapy treatment for NSCLC patients in Asian population in the future. PMID:22761669

  18. The NINDS Parkinson's disease biomarkers program: The Ninds Parkinson's Disease Biomarkers Program

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, Liana S. [Department of Neurology, Johns Hopkins University School of Medicine, Baltimore Maryland USA; Drake, Daniel [Department of Biostatistics, Columbia University, New York New York USA; Alcalay, Roy N. [Department of Neurology, Columbia University, New York New York USA; Babcock, Debra [National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda Maryland USA; Bowman, F. DuBois [Department of Biostatistics, Columbia University, New York New York USA; Chen-Plotkin, Alice [Department of Neurology, University of Pennsylvania, Philadelphia Pennsylvania USA; Dawson, Ted M. [Department of Neurology, Johns Hopkins University School of Medicine, Baltimore Maryland USA; Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Solomon H. Snyder Department of Neuroscience, Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore Maryland USA; Dewey, Richard B. [Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas USA; German, Dwight C. [Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas USA; Huang, Xuemei [Department of Neurology, Penn State Hershey Medical Center, Hershey Pennsylvania USA; Landin, Barry [Center for Information Technology, National Institutes of Health, Bethesda Maryland USA; McAuliffe, Matthew [Center for Information Technology, National Institutes of Health, Bethesda Maryland USA; Petyuk, Vladislav A. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland Washington USA; Scherzer, Clemens R. [Department of Neurology, Brigham & Women' s Hospital, Harvard Medical School, Cambridge Massachusetts USA; Hillaire-Clarke, Coryse St. [National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda Maryland USA; Sieber, Beth-Anne [National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda Maryland USA; Sutherland, Margaret [National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda Maryland USA; Tarn, Chi [Coriell Institute for Medical Research, Camden New Jersey USA; West, Andrew [Department of Neurology, University of Alabama at Birmingham, Birmingham USA; Vaillancourt, David [Department of Applied Physiology and Kinesiology, University of Florida, Gainesville Florida USA; Zhang, Jing [Department of Pathology, University of Washington, Seattle Washington USA; Gwinn, Katrina [National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda Maryland USA

    2015-10-07

    Background: Neuroprotection for Parkinson Disease (PD) remains elusive. Biomarkers hold the promise of removing roadblocks to therapy development. The National Institute of Neurological Disorders and Stroke (NINDS) has therefore established the Parkinson’s Disease Biomarkers Program (PDBP) to promote discovery of biomarkers for use in phase II-III clinical trials in PD. Methods: The PDBP facilitates biomarker development to improve neuroprotective clinical trial design, essential for advancing therapeutics for PD. To date, eleven consortium projects in the PDBP are focused on the development of clinical and laboratory-based PD biomarkers for diagnosis, progression tracking, and/or the prediction of prognosis. Seven of these projects also provide detailed longitudinal data and biospecimens from PD patients and controls, as a resource for all PD researchers. Standardized operating procedures and pooled reference samples have been created in order to allow cross-project comparisons and assessment of batch effects. A web-based Data Management Resource facilitates rapid sharing of data and biosamples across the entire PD research community for additional biomarker projects. Results: Here we describe the PDBP, highlight standard operating procedures for the collection of biospecimens and data, and provide an interim report with quality control analysis on the first 1082 participants and 1033 samples with quality control analysis collected as of October 2014. Conclusions: By making samples and data available to academics and industry, encouraging the adoption of existing standards, and providing a resource which complements existing programs, the PDBP will accelerate the pace of PD biomarker research, with the goal of improving diagnostic methods and treatment.

  19. Biomarkers of the Dementia

    Directory of Open Access Journals (Sweden)

    Mikio Shoji

    2011-01-01

    Full Text Available Recent advances in biomarker studies on dementia are summarized here. CSF Aβ40, Aβ42, total tau, and phosphorylated tau are the most sensitive biomarkers for diagnosis of Alzheimer's disease (AD and prediction of onset of AD from mild cognitive impairment (MCI. Based on this progress, new diagnostic criteria for AD, MCI, and preclinical AD were proposed by National Institute of Aging (NIA and Alzheimer's Association in August 2010. In these new criteria, progress in biomarker identification and amyloid imaging studies in the past 10 years have added critical information. Huge contributions of basic and clinical studies have established clinical evidence supporting these markers. Based on this progress, essential therapy for cure of AD is urgently expected.

  20. Resting-State Functional Connectivity-Based Biomarkers and Functional MRI-Based Neurofeedback for Psychiatric Disorders: A Challenge for Developing Theranostic Biomarkers.

    Science.gov (United States)

    Yamada, Takashi; Hashimoto, Ryu-Ichiro; Yahata, Noriaki; Ichikawa, Naho; Yoshihara, Yujiro; Okamoto, Yasumasa; Kato, Nobumasa; Takahashi, Hidehiko; Kawato, Mitsuo

    2017-10-01

    Psychiatric research has been hampered by an explanatory gap between psychiatric symptoms and their neural underpinnings, which has resulted in poor treatment outcomes. This situation has prompted us to shift from symptom-based diagnosis to data-driven diagnosis, aiming to redefine psychiatric disorders as disorders of neural circuitry. Promising candidates for data-driven diagnosis include resting-state functional connectivity MRI (rs-fcMRI)-based biomarkers. Although biomarkers have been developed with the aim of diagnosing patients and predicting the efficacy of therapy, the focus has shifted to the identification of biomarkers that represent therapeutic targets, which would allow for more personalized treatment approaches. This type of biomarker (i.e., "theranostic biomarker") is expected to elucidate the disease mechanism of psychiatric conditions and to offer an individualized neural circuit-based therapeutic target based on the neural cause of a condition. To this end, researchers have developed rs-fcMRI-based biomarkers and investigated a causal relationship between potential biomarkers and disease-specific behavior using functional MRI (fMRI)-based neurofeedback on functional connectivity. In this review, we introduce a recent approach for creating a theranostic biomarker, which consists mainly of 2 parts: (1) developing an rs-fcMRI-based biomarker that can predict diagnosis and/or symptoms with high accuracy, and (2) the introduction of a proof-of-concept study investigating the relationship between normalizing the biomarker and symptom changes using fMRI-based neurofeedback. In parallel with the introduction of recent studies, we review rs-fcMRI-based biomarker and fMRI-based neurofeedback, focusing on the technological improvements and limitations associated with clinical use. © The Author 2017. Published by Oxford University Press on behalf of CINP.

  1. Evaluation of prescriber responses to pharmacogenomics clinical decision support for thiopurine S-methyltransferase testing.

    Science.gov (United States)

    Ubanyionwu, Samuel; Formea, Christine M; Anderson, Benjamin; Wix, Kelly; Dierkhising, Ross; Caraballo, Pedro J

    2018-02-15

    Results of a study of prescribers' responses to a pharmacogenomics-based clinical decision support (CDS) alert designed to prompt thiopurine S -methyltransferase (TPMT) status testing are reported. A single-center, retrospective, chart review-based study was conducted to evaluate prescriber compliance with a pretest CDS alert that warned of potential thiopurine drug toxicity resulting from deficient TPMT activity due to TPMT gene polymorphism. The CDS alert was triggered when prescribers ordered thiopurine drugs for patients whose records did not indicate TPMT status or when historical thiopurine use was documented in the electronic health record. The alert pop-up also provided a link to online educational resources to guide thiopurine dosing calculations. During the 9-month study period, 500 CDS alerts were generated: in 101 cases (20%), TPMT phenotyping or TPMT genotyping was ordered; in 399 cases (80%), testing was not ordered. Multivariable regression analysis indicated that documentation of historical thiopurine use was the only independent predictor of test ordering. Among the 99 patients tested subsequent to CDS alerts, 70 (71%) had normal TPMT activity, 29 (29%) had intermediate activity, and none had deficient activity. The online resources provided thiopurine dosing recommendations applicable to 24 patients, but only 3 were prescribed guideline-supported doses after CDS alerts. The pretest CDS rule resulted in a large proportion of neglected alerts due to poor alerting accuracy and consequent alert fatigue. Prescriber usage of online thiopurine dosing resources was low. Copyright © 2018 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  2. Diagnostic and prognostic epigenetic biomarkers in cancer.

    Science.gov (United States)

    Costa-Pinheiro, Pedro; Montezuma, Diana; Henrique, Rui; Jerónimo, Carmen

    2015-01-01

    Growing cancer incidence and mortality worldwide demands development of accurate biomarkers to perfect detection, diagnosis, prognostication and monitoring. Urologic (prostate, bladder, kidney), lung, breast and colorectal cancers are the most common and despite major advances in their characterization, this has seldom translated into biomarkers amenable for clinical practice. Epigenetic alterations are innovative cancer biomarkers owing to stability, frequency, reversibility and accessibility in body fluids, entailing great potential of assay development to assist in patient management. Several studies identified putative epigenetic cancer biomarkers, some of which have been commercialized. However, large multicenter validation studies are required to foster translation to the clinics. Herein we review the most promising epigenetic detection, diagnostic, prognostic and predictive biomarkers for the most common cancers.

  3. MicroRNA biomarkers in glioblastoma

    DEFF Research Database (Denmark)

    Hermansen, Simon Kjær; Kristensen, Bjarne Winther

    2013-01-01

    tissues. Understanding these alterations is key to developing new biomarkers and intelligent treatment strategies. This review presents an overview of current knowledge about miRNA alterations in glioblastoma while focusing on the clinical future of miRNAs as biomarkers and discussing the strengths...

  4. Orexin Receptor Multimerization versus Functional Interactions: Neuropharmacological Implications for Opioid and Cannabinoid Signalling and Pharmacogenetics

    Directory of Open Access Journals (Sweden)

    Miles D. Thompson

    2017-10-01

    Full Text Available Orexins/hypocretins are neuropeptides formed by proteolytic cleavage of a precursor peptide, which are produced by neurons found in the lateral hypothalamus. The G protein-coupled receptors (GPCRs for these ligands, the OX1 and OX2 orexin receptors, are more widely expressed throughout the central nervous system. The orexin/hypocretin system has been implicated in many pathways, and its dysregulation is under investigation in a number of diseases. Disorders in which orexinergic mechanisms are being investigated include narcolepsy, idiopathic sleep disorders, cluster headache and migraine. Human narcolepsy has been associated with orexin deficiency; however, it has only rarely been attributed to mutations in the gene encoding the precursor peptide. While gene variations within the canine OX2 gene hcrtr2 have been directly linked with narcolepsy, the majority of human orexin receptor variants are weakly associated with diseases (the idiopathic sleep disorders, cluster headache and polydipsia-hyponatremia in schizophrenia or are of potential pharmacogenetic significance. Evidence for functional and/or heterodimerization between wild-type variant orexin receptors and opioid and cannabinoid receptors is discussed in the context of its relevance to depression and epilepsy.

  5. DRD4 and DAT1 in ADHD: Functional neurobiology to pharmacogenetics

    Directory of Open Access Journals (Sweden)

    Darko Turic

    2010-05-01

    Full Text Available Darko Turic1, James Swanson2, Edmund Sonuga-Barke1,31Institute for Disorders of Impulse and Attention, School of Psychology, University of Southampton, UK; 2Child Development Center, University of California, Irvine, California, US; 3Department of Experimental, Clinical and Health Psychology, Ghent University, BelgiumAbstract: Attention deficit/hyperactivity disorder (ADHD is a common and potentially very impairing neuropsychiatric disorder of childhood. Statistical genetic studies of twins have shown ADHD to be highly heritable, with the combination of genes and gene by environment interactions accounting for around 80% of phenotypic variance. The initial molecular genetic studies where candidates were selected because of the efficacy of dopaminergic compounds in the treatment of ADHD were remarkably successful and provided strong evidence for the role of DRD4 and DAT1 variants in the pathogenesis of ADHD. However, the recent application of noncandidate gene strategies (eg, genome-wide association scans has failed to identify additional genes with substantial genetic main effects, and the effects for DRD4 and DAT1 have not been replicated. This is the usual pattern observed for most other physical and mental disorders evaluated with current state-of-the-art methods. In this paper we discuss future strategies for genetic studies in ADHD, highlighting both the pitfalls and possible solutions relating to candidate gene studies, genome-wide studies, defining the phenotype, and statistical approaches.Keywords: dopamine, ADHD, pharmacogenetics, candidate gene

  6. Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for rasburicase therapy in the context of G6PD deficiency genotype.

    Science.gov (United States)

    Relling, M V; McDonagh, E M; Chang, T; Caudle, K E; McLeod, H L; Haidar, C E; Klein, T; Luzzatto, L

    2014-08-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is associated with development of acute hemolytic anemia (AHA) induced by a number of drugs. We provide guidance as to which G6PD genotypes are associated with G6PD deficiency in males and females. Rasburicase is contraindicated in G6PD-deficient patients due to the risk of AHA and possibly methemoglobinemia. Unless preemptive genotyping has established a positive diagnosis of G6PD deficiency, quantitative enzyme assay remains the mainstay of screening prior to rasburicase use. The purpose of this article is to help interpret the results of clinical G6PD genotype tests so that they can guide the use of rasburicase. Detailed guidelines on other aspects of the use of rasburicase, including analyses of cost-effectiveness, are beyond the scope of this document. Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines are published and updated periodically on https://www.pharmgkb.org/page/cpic to reflect new developments in the field.

  7. Biomarkers in acute heart failure.

    Science.gov (United States)

    Mallick, Aditi; Januzzi, James L

    2015-06-01

    The care of patients with acutely decompensated heart failure is being reshaped by the availability and understanding of several novel and emerging heart failure biomarkers. The gold standard biomarkers in heart failure are B-type natriuretic peptide and N-terminal pro-B-type natriuretic peptide, which play an important role in the diagnosis, prognosis, and management of acute decompensated heart failure. Novel biomarkers that are increasingly involved in the processes of myocardial injury, neurohormonal activation, and ventricular remodeling are showing promise in improving diagnosis and prognosis among patients with acute decompensated heart failure. These include midregional proatrial natriuretic peptide, soluble ST2, galectin-3, highly-sensitive troponin, and midregional proadrenomedullin. There has also been an emergence of biomarkers for evaluation of acute decompensated heart failure that assist in the differential diagnosis of dyspnea, such as procalcitonin (for identification of acute pneumonia), as well as markers that predict complications of acute decompensated heart failure, such as renal injury markers. In this article, we will review the pathophysiology and usefulness of established and emerging biomarkers for the clinical diagnosis, prognosis, and management of acute decompensated heart failure. Copyright © 2015 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  8. Comprehensive Analysis of Cancer-Proteogenome to Identify Biomarkers for the Early Diagnosis and Prognosis of Cancer

    Directory of Open Access Journals (Sweden)

    Hem D. Shukla

    2017-10-01

    , and pharmacogenomics data, are indispensable to glean into the cancer genome and proteome and these approaches have generated multidimensional universal studies of genes and proteins (OMICS data which has the potential to facilitate precision medicine. However, due to slow progress in computational technologies, the translation of big omics data into their clinical aspects have been slow. In this review, attempts have been made to describe the role of high-throughput genomic and proteomic technologies in identifying a panel of biomarkers which could be used for the early diagnosis and prognosis of cancer.

  9. Pharmacogenetic analysis of opioid dependence treatment dose and dropout rate.

    Science.gov (United States)

    Crist, Richard C; Li, James; Doyle, Glenn A; Gilbert, Alex; Dechairo, Bryan M; Berrettini, Wade H

    2018-01-01

    Currently, no pharmacogenetic tests for selecting an opioid-dependence pharmacotherapy have been approved by the US Food and Drug Administration. Determine the effects of variants in 11 genes on dropout rate and dose in patients receiving methadone or buprenorphine/naloxone (ClinicalTrials.gov Identifier: NCT00315341). Variants in six pharmacokinetic genes (CYP1A2, CYP2B6, CYP2C19, CYP2C9, CYP2D6, CYP3A4) and five pharmacodynamic genes (HTR2A, OPRM1, ADRA2A, COMT, SLC6A4) were genotyped in samples from a 24-week, randomized, open-label trial of methadone and buprenorphine/naloxone for the treatment of opioid dependence (n = 764; 68.7% male). Genotypes were then used to determine the metabolism phenotype for each pharmacokinetic gene. Phenotypes or genotypes for each gene were analyzed for association with dropout rate and mean dose. Genotype for 5-HTTLPR in the SLC6A4 gene was nominally associated with dropout rate when the methadone and buprenorphine/naloxone groups were combined. When the most significant variants associated with dropout rate were analyzed using pairwise analyses, SLC6A4 (5-HTTLPR) and COMT (Val158Met; rs4860) had nominally significant associations with dropout rate in methadone patients. None of the genes analyzed in the study was associated with mean dose of methadone or buprenorphine/naloxone. This study suggests that functional polymorphisms related to synaptic dopamine or serotonin levels may predict dropout rates during methadone treatment. Patients with the S/S genotype at 5-HTTLPR in SLC6A4 or the Val/Val genotype at Val158Met in COMT may require additional treatment to improve their chances of completing addiction treatment. Replication in other methadone patient populations will be necessary to ensure the validity of these findings.

  10. Inflammatory biomarkers and cancer

    DEFF Research Database (Denmark)

    Rasmussen, Line Jee Hartmann; Schultz, Martin; Gaardsting, Anne

    2017-01-01

    and previous cancer diagnoses compared to patients who were not diagnosed with cancer. Previous cancer, C-reactive protein (CRP) and suPAR were significantly associated with newly diagnosed cancer during follow-up in multiple logistic regression analyses adjusted for age, sex and CRP. Neither any of the PRRs......In Denmark, patients with serious nonspecific symptoms and signs of cancer (NSSC) are referred to the diagnostic outpatient clinics (DOCs) where an accelerated cancer diagnostic program is initiated. Various immunological and inflammatory biomarkers have been associated with cancer, including...... soluble urokinase plasminogen activator receptor (suPAR) and the pattern recognition receptors (PRRs) pentraxin-3, mannose-binding lectin, ficolin-1, ficolin-2 and ficolin-3. We aimed to evaluate these biomarkers and compare their diagnostic ability to classical biomarkers for diagnosing cancer...

  11. The path from biomarker discovery to regulatory qualification

    CERN Document Server

    Goodsaid, Federico

    2013-01-01

    The Path from Biomarker Discovery to Regulatory Qualification is a unique guide that focuses on biomarker qualification, its history and current regulatory settings in both the US and abroad. This multi-contributed book provides a detailed look at the next step to developing biomarkers for clinical use and covers overall concepts, challenges, strategies and solutions based on the experiences of regulatory authorities and scientists. Members of the regulatory, pharmaceutical and biomarker development communities will benefit the most from using this book-it is a complete and practical guide to biomarker qualification, providing valuable insight to an ever-evolving and important area of regulatory science. For complimentary access to chapter 13, 'Classic' Biomarkers of Liver Injury, by John R. Senior, Associate Director for Science, Food and Drug Administration, Silver Spring, Maryland, USA, please visit the following site:  http://tinyurl.com/ClassicBiomarkers Contains a collection of experiences of different...

  12. RECENT ADVANCES IN BIOMARKERS IN SEVERE BURNS.

    Science.gov (United States)

    Ruiz-Castilla, Mireia; Roca, Oriol; Masclans, Joan R; Barret, Joan P

    2016-02-01

    The pathophysiology of burn injuries is tremendously complex. A thorough understanding is essential for correct treatment of the burned area and also to limit the appearance of organ dysfunction, which, in fact, is a key determinant of morbidity and mortality. In this context, research into biomarkers may play a major role. Biomarkers have traditionally been considered an important area of medical research: the measurement of certain biomarkers has led to a better understanding of pathophysiology, while others have been used either to assess the effectiveness of specific treatments or for prognostic purposes. Research into biomarkers may help to improve the prognosis of patients with severe burn injury. The aim of the present clinical review is to discuss new evidence of the value of biomarkers in this setting.

  13. The Indian Consensus Document on cardiac biomarker

    Directory of Open Access Journals (Sweden)

    I. Satyamurthy

    2014-01-01

    Full Text Available Despite recent advances, the diagnosis and management of heart failure evades the clinicians. The etiology of congestive heart failure (CHF in the Indian scenario comprises of coronary artery disease, diabetes mellitus and hypertension. With better insights into the pathophysiology of CHF, biomarkers have evolved rapidly and received diagnostic and prognostic value. In CHF biomarkers prove as measures of the extent of pathophysiological derangement; examples include biomarkers of myocyte necrosis, myocardial remodeling, neurohormonal activation, etc. In CHF biomarkers act as indicators for the presence, degree of severity and prognosis of the disease, they may be employed in combination with the present conventional clinical assessments. These make the biomarkers feasible options against the present expensive measurements and may provide clinical benefits.

  14. Biomarkers in DILI: one more step forward

    Directory of Open Access Journals (Sweden)

    Mercedes Robles-Díaz

    2016-08-01

    Full Text Available Despite being relatively rare, drug-induced liver injury (DILI is a serious condition, both for the individual patient due to the risk of acute liver failure, and for the drug development industry and regulatory agencies due to associations with drug development attritions, black box warnings and postmarketing withdrawals. A major limitation in DILI diagnosis and prediction is the current lack of specific biomarkers. Despite refined usage of traditional liver biomarkers in DILI, reliable disease outcome predictions are still difficult to make. These limitations have driven the growing interest in developing new more sensitive and specific DILI biomarkers, which can improve early DILI prediction, diagnosis and course of action. Several promising DILI biomarker candidates have been discovered to date, including mechanistic-based biomarker candidates such as glutamate dehydrogenase, high-mobility group box 1 protein and keratin-18, which can also provide information on the injury mechanism of different causative agents. Furthermore, microRNAs have received much attention lately as potential non-invasive DILI biomarker candidates, in particular miR-122. Advances in omics technologies offer a new approach for biomarker exploration studies. The ability to screen a large number of molecules (for example metabolites, proteins or DNA simultaneously enables the identification of ‘toxicity signatures’, which may be used to enhance preclinical safety assessments and disease diagnostics. Omics-based studies can also provide information on the underlying mechanisms of distinct forms of DILI that may further facilitate the identification of early diagnostic biomarkers and safer implementation of personalized medicine. In this review we summarize recent advances in the area of DILI biomarker studies.

  15. Biomarkers for equine joint injury and osteoarthritis.

    Science.gov (United States)

    McIlwraith, C Wayne; Kawcak, Christopher E; Frisbie, David D; Little, Christopher B; Clegg, Peter D; Peffers, Mandy J; Karsdal, Morten A; Ekman, Stina; Laverty, Sheila; Slayden, Richard A; Sandell, Linda J; Lohmander, L S; Kraus, Virginia B

    2018-03-01

    We report the results of a symposium aimed at identifying validated biomarkers that can be used to complement clinical observations for diagnosis and prognosis of joint injury leading to equine osteoarthritis (OA). Biomarkers might also predict pre-fracture change that could lead to catastrophic bone failure in equine athletes. The workshop was attended by leading scientists in the fields of equine and human musculoskeletal biomarkers to enable cross-disciplinary exchange and improve knowledge in both. Detailed proceedings with strategic planning was written, added to, edited and referenced to develop this manuscript. The most recent information from work in equine and human osteoarthritic biomarkers was accumulated, including the use of personalized healthcare to stratify OA phenotypes, transcriptome analysis of anterior cruciate ligament (ACL) and meniscal injuries in the human knee. The spectrum of "wet" biomarker assays that are antibody based that have achieved usefulness in both humans and horses, imaging biomarkers and the role they can play in equine and human OA was discussed. Prediction of musculoskeletal injury in the horse remains a challenge, and the potential usefulness of spectroscopy, metabolomics, proteomics, and development of biobanks to classify biomarkers in different stages of equine and human OA were reviewed. The participants concluded that new information and studies in equine musculoskeletal biomarkers have potential translational value for humans and vice versa. OA is equally important in humans and horses, and the welfare issues associated with catastrophic musculoskeletal injury in horses add further emphasis to the need for good validated biomarkers in the horse. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:823-831, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  16. Biology and Biomarkers for Wound Healing

    Science.gov (United States)

    Lindley, Linsey E.; Stojadinovic, Olivera; Pastar, Irena; Tomic-Canic, Marjana

    2016-01-01

    Background As the population grows older, the incidence and prevalence of conditions which lead to a predisposition for poor wound healing also increases. Ultimately, this increase in non-healing wounds has led to significant morbidity and mortality with subsequent huge economic ramifications. Therefore, understanding specific molecular mechanisms underlying aberrant wound healing is of great importance. It has, and will continue to be the leading pathway to the discovery of therapeutic targets as well as diagnostic molecular biomarkers. Biomarkers may help identify and stratify subsets of non-healing patients for whom biomarker-guided approaches may aid in healing. Methods A series of literature searches were performed using Medline, PubMed, Cochrane Library, and Internet searches. Results Currently, biomarkers are being identified using biomaterials sourced locally, from human wounds and/or systemically using systematic high-throughput “omics” modalities (genomic, proteomic, lipidomic, metabolomic analysis). In this review we highlight the current status of clinically applicable biomarkers and propose multiple steps in validation and implementation spectrum including those measured in tissue specimens e.g. β-catenin and c-myc, wound fluid e.g. MMP’s and interleukins, swabs e.g. wound microbiota and serum e.g. procalcitonin and MMP’s. Conclusions Identification of numerous potential biomarkers utilizing different avenues of sample collection and molecular approaches is currently underway. A focus on simplicity, and consistent implementation of these biomarkers as well as an emphasis on efficacious follow-up therapeutics is necessary for transition of this technology to clinically feasible point-of-care applications. PMID:27556760

  17. Overview of Biomarkers and Surrogate Endpoints in Drug Development

    Directory of Open Access Journals (Sweden)

    John A. Wagner

    2002-01-01

    Full Text Available There are numerous factors that recommend the use of biomarkers in drug development including the ability to provide a rational basis for selection of lead compounds, as an aid in determining or refining mechanism of action or pathophysiology, and the ability to work towards qualification and use of a biomarker as a surrogate endpoint. Examples of biomarkers come from many different means of clinical and laboratory measurement. Total cholesterol is an example of a clinically useful biomarker that was successfully qualified for use as a surrogate endpoint. Biomarkers require validation in most circumstances. Validation of biomarker assays is a necessary component to delivery of high-quality research data necessary for effective use of biomarkers. Qualification is necessary for use of a biomarker as a surrogate endpoint. Putative biomarkers are typically identified because of a relationship to known or hypothetical steps in a pathophysiologic cascade. Biomarker discovery can also be effected by expression profiling experiment using a variety of array technologies and related methods. For example, expression profiling experiments enabled the discovery of adipocyte related complement protein of 30 kD (Acrp30 or adiponectin as a biomarker for in vivo activation of peroxisome proliferator-activated receptors (PPAR γ activity.

  18. Biomarker monitoring in sports doping control.

    Science.gov (United States)

    Pottgiesser, Torben; Schumacher, Yorck Olaf

    2012-06-01

    Biomarker monitoring can be considered a new era in the effort against doping. Opposed to the old concept in doping control of direct detection of a prohibited substance in a biological sample such as urine or blood, the new paradigm allows a personalized longitudinal monitoring of biomarkers that indicate non-physiological responses independently of the used doping technique or substance, and may cause sanctioning of illicit practices. This review presents the development of biomarker monitoring in sports doping control and focuses on the implementation of the Athlete Biological Passport as the current concept of the World Anti Doping Agency for the detection of blood doping (hematological module). The scope of the article extends to the description of novel biomarkers and future concepts of application.

  19. Biomarkers in Prodromal Parkinson Disease: a Qualitative Review.

    Science.gov (United States)

    Cooper, Christine A; Chahine, Lama M

    2016-11-01

    Over the past several years, the concept of prodromal Parkinson disease (PD) has been increasingly recognized. This term refers to individuals who do not fulfill motor diagnostic criteria for PD, but who have clinical, genetic, or biomarker characteristics suggesting risk of developing PD in the future. Clinical diagnosis of prodromal PD has low specificity, prompting the need for objective biomarkers with higher specificity. In this qualitative review, we discuss objectively defined putative biomarkers for PD and prodromal PD. We searched Pubmed and Embase for articles pertaining to objective biomarkers for PD and their application in prodromal cohorts. Articles were selected based on relevance and methodology. Objective biomarkers of demonstrated utility in prodromal PD include ligand-based imaging and transcranial sonography. Development of serum, cerebrospinal fluid, and tissue-based biomarkers is underway, but their application in prodromal PD has yet to meaningfully occur. Combining objective biomarkers with clinical or genetic prodromal features increases the sensitivity and specificity for identifying prodromal PD. Several objective biomarkers for prodromal PD show promise but require further study, including their application to and validation in prodromal cohorts followed longitudinally. Accurate identification of prodromal PD will likely require a multimodal approach. (JINS, 2016, 22, 956-967).

  20. The effect of pharmacogenetic profiling with a clinical decision support tool on healthcare resource utilization and estimated costs in the elderly exposed to polypharmacy.

    Science.gov (United States)

    Brixner, D; Biltaji, E; Bress, A; Unni, S; Ye, X; Mamiya, T; Ashcraft, K; Biskupiak, J

    2016-01-01

    To compare healthcare resource utilization (HRU) and clinical decision-making for elderly patients based on cytochrome P450 (CYP) pharmacogenetic testing and the use of a comprehensive medication management clinical decision support tool (CDST), to a cohort of similar non-tested patients. An observational study compared a prospective cohort of patients ≥65 years subjected to pharmacogenetic testing to a propensity score (PS) matched historical cohort of untested patients in a claims database. Patients had a prescribed medication or dose change of at least one of 61 oral drugs or combinations of ≥3 drugs at enrollment. Four-month HRU outcomes examined included hospitalizations, emergency department (ED) and outpatient visits and provider acceptance of test recommendations. Costs were estimated using national data sources. There were 205 tested patients PS matched to 820 untested patients. Hospitalization rate was 9.8% in the tested group vs. 16.1% in the untested group (RR = 0.61, 95% CI = 0.39-0.95, p = 0.027), ED visit rate was 4.4% in the tested group vs. 15.4% in the untested group (RR = 0.29, 95% CI = 0.15-0.55, p = 0.0002) and outpatient visit rate was 71.7% in the tested group vs. 36.5% in the untested group (RR = 1.97, 95% CI = 1.74-2.23, p provider majority (95%) considered the test helpful and 46% followed CDST provided recommendations. Patients CYP DNA tested and treated according to the personalized prescribing system had a significant decrease in hospitalizations and emergency department visits, resulting in potential cost savings. Providers had a high satisfaction rate with the clinical utility of the system and followed recommendations when appropriate.

  1. Biomarkers of cancer cachexia.

    Science.gov (United States)

    Loumaye, Audrey; Thissen, Jean-Paul

    2017-12-01

    Cachexia is a complex multifactorial syndrome, characterized by loss of skeletal muscle and fat mass, which affects the majority of advanced cancer patients and is associated with poor prognosis. Interestingly, reversing muscle loss in animal models of cancer cachexia leads to prolong survival. Therefore, detecting cachexia and maintaining muscle mass represent a major goal in the care of cancer patients. However, early diagnosis of cancer cachexia is currently limited for several reasons. Indeed, cachexia development is variable according to tumor and host characteristics. In addition, safe, accessible and non-invasive tools to detect skeletal muscle atrophy are desperately lacking in clinical practice. Finally, the precise molecular mechanisms and the key players involved in cancer cachexia remain poorly characterized. The need for an early diagnosis of cancer cachexia supports therefore the quest for a biomarker that might reflect skeletal muscle atrophy process. Current research offers different promising ways to identify such a biomarker. Initially, the quest for a biomarker of cancer cachexia has mostly focused on mediators of muscle atrophy, produced by both tumor and host, in an attempt to define new therapeutic approaches. In another hand, molecules released by the muscle into the circulation during the atrophy process have been also considered as potential biomarkers. More recently, several "omics" studies are emerging to identify new muscular or circulating markers of cancer cachexia. Some genetic markers could also contribute to identify patients more susceptible to develop cachexia. This article reviews our current knowledge regarding potential biomarkers of cancer cachexia. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  2. Imaging biomarkers as surrogate endpoints for drug development

    International Nuclear Information System (INIS)

    Richter, Wolf S.

    2006-01-01

    The employment of biomarkers (including imaging biomarkers, especially PET) in drug development has gained increasing attention during recent years. This has been partly stimulated by the hope that the integration of biomarkers into drug development programmes may be a means to increase the efficiency and effectiveness of the drug development process by early identification of promising drug candidates - thereby counteracting the rising costs of drug development. More importantly, however, the interest in biomarkers for drug development is the logical consequence of recent advances in biosciences and medicine which are leading to target-specific treatments in the framework of ''personalised medicine''. A considerable proportion of target-specific drugs will show effects in subgroups of patients only. Biomarkers are a means to identify potential responders, or patient subgroups at risk for specific side-effects. Biomarkers are used in early drug development in the context of translational medicine to gain information about the drug's potential in different patient groups and disease states. The information obtained at this stage is mainly important for designing subsequent clinical trials and to identify promising drug candidates. Biomarkers in later phases of clinical development may - if properly validated - serve as surrogate endpoints for clinical outcomes. Regulatory agencies in the EU and the USA have facilitated the use of biomarkers early in the development process. The validation of biomarkers as surrogate endpoints is part of FDA's ''critical path initiative''. (orig.)

  3. Impact of biomarker development on drug safety assessment

    International Nuclear Information System (INIS)

    Marrer, Estelle; Dieterle, Frank

    2010-01-01

    Drug safety has always been a key aspect of drug development. Recently, the Vioxx case and several cases of serious adverse events being linked to high-profile products have increased the importance of drug safety, especially in the eyes of drug development companies and global regulatory agencies. Safety biomarkers are increasingly being seen as helping to provide the clarity, predictability, and certainty needed to gain confidence in decision making: early-stage projects can be stopped quicker, late-stage projects become less risky. Public and private organizations are investing heavily in terms of time, money and manpower on safety biomarker development. An illustrative and 'door opening' safety biomarker success story is the recent recognition of kidney safety biomarkers for pre-clinical and limited translational contexts by FDA and EMEA. This milestone achieved for kidney biomarkers and the 'know how' acquired is being transferred to other organ toxicities, namely liver, heart, vascular system. New technologies and molecular-based approaches, i.e., molecular pathology as a complement to the classical toolbox, allow promising discoveries in the safety biomarker field. This review will focus on the utility and use of safety biomarkers all along drug development, highlighting the present gaps and opportunities identified in organ toxicity monitoring. A last part will be dedicated to safety biomarker development in general, from identification to diagnostic tests, using the kidney safety biomarkers success as an illustrative example.

  4. More Accurate Oral Cancer Screening with Fewer Salivary Biomarkers

    Directory of Open Access Journals (Sweden)

    James Michael Menke

    2017-10-01

    Full Text Available Signal detection and Bayesian inferential tools were applied to salivary biomarkers to improve screening accuracy and efficiency in detecting oral squamous cell carcinoma (OSCC. Potential cancer biomarkers are identified by significant differences in assay concentrations, receiver operating characteristic areas under the curve (AUCs, sensitivity, and specificity. However, the end goal is to report to individual patients their risk of having disease given positive or negative test results. Likelihood ratios (LRs and Bayes factors (BFs estimate evidential support and compile biomarker information to optimize screening accuracy. In total, 26 of 77 biomarkers were mentioned as having been tested at least twice in 137 studies and published in 16 summary papers through 2014. Studies represented 10 212 OSCC and 25 645 healthy patients. The measure of biomarker and panel information value was number of biomarkers needed to approximate 100% positive predictive value (PPV. As few as 5 biomarkers could achieve nearly 100% PPV for a disease prevalence of 0.2% when biomarkers were ordered from highest to lowest LR. When sequentially interpreting biomarker tests, high specificity was more important than test sensitivity in achieving rapid convergence toward a high PPV. Biomarkers ranked from highest to lowest LR were more informative and easier to interpret than AUC or Youden index. The proposed method should be applied to more recently published biomarker data to test its screening value.

  5. Identifying Predictors of Taxane-Induced Peripheral Neuropathy Using Mass Spectrometry-Based Proteomics Technology.

    Directory of Open Access Journals (Sweden)

    Emily I Chen

    Full Text Available Major advances in early detection and therapy have significantly increased the survival of breast cancer patients. Unfortunately, most cancer therapies are known to carry a substantial risk of adverse long-term treatment-related effects. Little is known about patient susceptibility to severe side effects after chemotherapy. Chemotherapy-induced peripheral neuropathy (CIPN is a common side effect of taxanes. Recent advances in genome-wide genotyping and sequencing technologies have supported the discoveries of a number of pharmacogenetic markers that predict response to chemotherapy. However, effectively implementing these pharmacogenetic markers in the clinic remains a major challenge. On the other hand, recent advances in proteomic technologies incorporating mass spectrometry (MS for biomarker discovery show great promise to provide clinically relevant protein biomarkers. In this study, we evaluated the association between protein content in serum exosomes and severity of CIPN. Women with early stage breast cancer receiving adjuvant taxane chemotherapy were assessed with the FACT-Ntx score and serum was collected before and after the taxane treatment. Based on the change in FACT-Ntx score from baseline to 12 month follow-up, we separated patients into two groups: those who had no change (Group 1, N = 9 and those who had a ≥20% worsening (Group 1, N = 8. MS-based proteomics technology was used to identify proteins present in serum exosomes to determine potential biomarkers. Mann-Whitney-Wilcoxon analysis was applied and maximum FDR was controlled at 20%. From the serum exosomes derived from this cohort, we identified over 700 proteins known to be in different subcellular locations and have different functions. Statistical analysis revealed a 12-protein signature that resulted in a distinct separation between baseline serum samples of both groups (q<0.2 suggesting that the baseline samples can predict subsequent neurotoxicity. These toxicity

  6. Cardiovascular biomarkers and sex: the case for women.

    Science.gov (United States)

    Daniels, Lori B; Maisel, Alan S

    2015-10-01

    Measurement of biomarkers is a critical component of cardiovascular care. Women and men differ in their cardiac physiology and manifestations of cardiovascular disease. Although most cardiovascular biomarkers are used by clinicians without taking sex into account, sex-specific differences in biomarkers clearly exist. Baseline concentrations of many biomarkers (including cardiac troponin, natriuretic peptides, galectin-3, and soluble ST2) differ in men versus women, but these sex-specific differences do not generally translate into a need for differential sex-based cut-off points. Furthermore, most biomarkers are similarly diagnostic and prognostic, regardless of sex. Two potential exceptions are cardiac troponins measured by high-sensitivity assay, and proneurotensin. Troponin levels are lower in women than in men and, with the use of high-sensitivity assays, sex-specific cut-off points might improve the diagnosis of myocardial infarction. Proneurotensin is a novel biomarker that was found to be predictive of incident cardiovascular disease in women, but not men, and was also predictive of incident breast cancer. If confirmed, proneurotensin might be a unique biomarker of disease risk in women. With any biomarker, an understanding of sex-specific differences might improve its use and might also lead to an enhanced understanding of the physiological differences between the hearts of men and women.

  7. LABORATORY BIOMARKERS FOR ANKYLOSING SPONDYLITIS

    Directory of Open Access Journals (Sweden)

    E. N. Aleksandrova

    2017-01-01

    Full Text Available Ankylosing spondylitis (AS is a chronic inflammatory disease from a group of spondyloarthritis (SpA, which is characterized by lesions of the sacroiliac joints and spine with the common involvement of entheses and peripheral joints in the pathological process. Advances in modern laboratory medicine have contributed to a substantial expansion of the range of pathogenetic, diagnostic, and prognostic biomarkers of AS. As of now, there are key pathogenetic biomarkers of AS (therapeutic targets, which include tumor necrosis factor-α (TNF-α, interleukin 17 (IL-17, and IL-23. Among the laboratory diagnostic and prognostic biomarkers, HLA-B27 and C-reactive protein are of the greatest value in clinical practice; the former for the early diagnosis of the disease and the latter for the assessment of disease activity, the risk of radiographic progression and the efficiency of therapy. Anti-CD74 antibodies are a new biomarker that has high sensitivity and specificity values in diagnosing axial SpA at an early stage. A number of laboratory biomarkers, including calprotectin, matrix metalloproteinase-3 (MMP-3, vascular endothelial growth factor, Dickkopf-1 (Dkk-1, and C-terminal telopeptide of type II collagen (CTX II do not well reflect disease activity, but may predict progressive structural changes in the spine and sacroiliac joints in AS. Blood calprotectin level monitoring allows the effective prediction of a response to therapy with TNF inhibitors and anti-IL-17А monoclonal antibodies. The prospects for the laboratory diagnosis of AS are associated with the clinical validation of candidate biomarkers during large-scale prospective cohort studies and with a search for new proteomic, transcriptomic and genomic markers, by using innovative molecular and cellular technologies.

  8. Biomarkers in T cell therapy clinical trials

    Directory of Open Access Journals (Sweden)

    Kalos Michael

    2011-08-01

    Full Text Available Abstract T cell therapy represents an emerging and promising modality for the treatment of both infectious disease and cancer. Data from recent clinical trials have highlighted the potential for this therapeutic modality to effect potent anti-tumor activity. Biomarkers, operationally defined as biological parameters measured from patients that provide information about treatment impact, play a central role in the development of novel therapeutic agents. In the absence of information about primary clinical endpoints, biomarkers can provide critical insights that allow investigators to guide the clinical development of the candidate product. In the context of cell therapy trials, the definition of biomarkers can be extended to include a description of parameters of the cell product that are important for product bioactivity. This review will focus on biomarker studies as they relate to T cell therapy trials, and more specifically: i. An overview and description of categories and classes of biomarkers that are specifically relevant to T cell therapy trials, and ii. Insights into future directions and challenges for the appropriate development of biomarkers to evaluate both product bioactivity and treatment efficacy of T cell therapy trials.

  9. The development and applications of biomarkers

    International Nuclear Information System (INIS)

    Normandy, J.; Peeters, J.

    1994-01-01

    This report is a compilation of submitted abstracts of scientific papers presented at the second Department of Energy-supported workshop on the use and applications of biomarkers held in Santa Fe, New Mexico, from April 26--29, 1994. The abstracts present a synopsis of the latest scientific developments in biomarker research and how these developments meet with the practical needs of the occupational physician as well as the industrial hygienist and the health physicist. In addition to considering the practical applications and potential benefits of this promising technology, the potential ethical and legal ramifications of using biomarkers to monitor workers are discussed. The abstracts further present insights on the present benefits that can be derived from using biomarkers as well as a perspective on what further research is required to fully meet the needs of the medical community

  10. Biomarkers in psoriasis and psoriatic arthritis.

    Science.gov (United States)

    Villanova, Federica; Di Meglio, Paola; Nestle, Frank O

    2013-04-01

    Psoriasis is a common immune-mediated disease of the skin, which associates in 20-30% of patients with psoriatic arthritis (PsA). The immunopathogenesis of both conditions is not fully understood as it is the result of a complex interaction between genetic, environmental and immunological factors. At present there is no cure for psoriasis and there are no specific markers that can accurately predict disease progression and therapeutic response. Therefore, biomarkers for disease prognosis and response to treatment are urgently needed to help clinicians with objective indications to improve patient management and outcomes. Although many efforts have been made to identify psoriasis/PsA biomarkers none of them has yet been translated into routine clinical practice. In this review we summarise the different classes of possible biomarkers explored in psoriasis and PsA so far and discuss novel strategies for biomarker discovery.

  11. The development and applications of biomarkers

    Energy Technology Data Exchange (ETDEWEB)

    Normandy, J.; Peeters, J. [eds.

    1994-04-15

    This report is a compilation of submitted abstracts of scientific papers presented at the second Department of Energy-supported workshop on the use and applications of biomarkers held in Santa Fe, New Mexico, from April 26--29, 1994. The abstracts present a synopsis of the latest scientific developments in biomarker research and how these developments meet with the practical needs of the occupational physician as well as the industrial hygienist and the health physicist. In addition to considering the practical applications and potential benefits of this promising technology, the potential ethical and legal ramifications of using biomarkers to monitor workers are discussed. The abstracts further present insights on the present benefits that can be derived from using biomarkers as well as a perspective on what further research is required to fully meet the needs of the medical community.

  12. Biomarkers in spinal cord compression Ethics and perspectives

    Directory of Open Access Journals (Sweden)

    Iencean A.St.

    2016-09-01

    Full Text Available The phosphorylated form of the high-molecular-weight neurofilament subunit NF-H (pNF-H in serum or in cerebro-spinal fluid (CSF is a specific lesional biomarker for spinal cord injury. The lesional biomarkers and the reaction biomarkers are both presented after several hours post-injury. The specific predictive patterns of lesional biomarkers could be used to aid clinicians with making a diagnosis and establishing a prognosis, and evaluating therapeutic interventions. Diagnosis, prognosis, and treatment guidance based on biomarker used as a predictive indicator can determine ethical difficulties by differentiated therapies in patients with spinal cord compression. At this point based on studies until today we cannot take a decision based on biomarker limiting the treatment of neurological recovery in patients with complete spinal cord injury because we do not know the complexity of the biological response to spinal cord compression.

  13. Implementing genomics and pharmacogenomics in the clinic: The National Human Genome Research Institute's genomic medicine portfolio.

    Science.gov (United States)

    Manolio, Teri A

    2016-10-01

    Increasing knowledge about the influence of genetic variation on human health and growing availability of reliable, cost-effective genetic testing have spurred the implementation of genomic medicine in the clinic. As defined by the National Human Genome Research Institute (NHGRI), genomic medicine uses an individual's genetic information in his or her clinical care, and has begun to be applied effectively in areas such as cancer genomics, pharmacogenomics, and rare and undiagnosed diseases. In 2011 NHGRI published its strategic vision for the future of genomic research, including an ambitious research agenda to facilitate and promote the implementation of genomic medicine. To realize this agenda, NHGRI is consulting and facilitating collaborations with the external research community through a series of "Genomic Medicine Meetings," under the guidance and leadership of the National Advisory Council on Human Genome Research. These meetings have identified and begun to address significant obstacles to implementation, such as lack of evidence of efficacy, limited availability of genomics expertise and testing, lack of standards, and difficulties in integrating genomic results into electronic medical records. The six research and dissemination initiatives comprising NHGRI's genomic research portfolio are designed to speed the evaluation and incorporation, where appropriate, of genomic technologies and findings into routine clinical care. Actual adoption of successful approaches in clinical care will depend upon the willingness, interest, and energy of professional societies, practitioners, patients, and payers to promote their responsible use and share their experiences in doing so. Published by Elsevier Ireland Ltd.

  14. Biomarkers of intermediate endpoints in environmental and occupational health

    DEFF Research Database (Denmark)

    Knudsen, Lisbeth E; Hansen, Ase M

    2007-01-01

    The use of biomarkers in environmental and occupational health is increasing due to increasing demands on information about health risks from unfavourable exposures. Biomarkers provide information about individual loads. Biomarkers of intermediate endpoints benefit in comparison with biomarkers...... of exposure from the fact that they are closer to the adverse outcome in the pathway from exposure to health effects and may provide powerful information for intervention. Some biomarkers are specific, e.g., DNA and protein adducts, while others are unspecific like the cytogenetic biomarkers of chromosomal...... health effect from the result of the measurement has been performed for the cytogenetic biomarkers showing a predictive value of high levels of CA and increased risk of cancer. The use of CA in future studies is, however, limited by the laborious and sensitive procedure of the test and lack of trained...

  15. CBD: a biomarker database for colorectal cancer.

    Science.gov (United States)

    Zhang, Xueli; Sun, Xiao-Feng; Cao, Yang; Ye, Benchen; Peng, Qiliang; Liu, Xingyun; Shen, Bairong; Zhang, Hong

    2018-01-01

    Colorectal cancer (CRC) biomarker database (CBD) was established based on 870 identified CRC biomarkers and their relevant information from 1115 original articles in PubMed published from 1986 to 2017. In this version of the CBD, CRC biomarker data were collected, sorted, displayed and analysed. The CBD with the credible contents as a powerful and time-saving tool provide more comprehensive and accurate information for further CRC biomarker research. The CBD was constructed under MySQL server. HTML, PHP and JavaScript languages have been used to implement the web interface. The Apache was selected as HTTP server. All of these web operations were implemented under the Windows system. The CBD could provide to users the multiple individual biomarker information and categorized into the biological category, source and application of biomarkers; the experiment methods, results, authors and publication resources; the research region, the average age of cohort, gender, race, the number of tumours, tumour location and stage. We only collect data from the articles with clear and credible results to prove the biomarkers are useful in the diagnosis, treatment or prognosis of CRC. The CBD can also provide a professional platform to researchers who are interested in CRC research to communicate, exchange their research ideas and further design high-quality research in CRC. They can submit their new findings to our database via the submission page and communicate with us in the CBD.Database URL: http://sysbio.suda.edu.cn/CBD/.

  16. Emerging Concepts and Methodologies in Cancer Biomarker Discovery.

    Science.gov (United States)

    Lu, Meixia; Zhang, Jinxiang; Zhang, Lanjing

    2017-01-01

    Cancer biomarker discovery is a critical part of cancer prevention and treatment. Despite the decades of effort, only a small number of cancer biomarkers have been identified for and validated in clinical settings. Conceptual and methodological breakthroughs may help accelerate the discovery of additional cancer biomarkers, particularly their use for diagnostics. In this review, we have attempted to review the emerging concepts in cancer biomarker discovery, including real-world evidence, open access data, and data paucity in rare or uncommon cancers. We have also summarized the recent methodological progress in cancer biomarker discovery, such as high-throughput sequencing, liquid biopsy, big data, artificial intelligence (AI), and deep learning and neural networks. Much attention has been given to the methodological details and comparison of the methodologies. Notably, these concepts and methodologies interact with each other and will likely lead to synergistic effects when carefully combined. Newer, more innovative concepts and methodologies are emerging as the current emerging ones became mainstream and widely applied to the field. Some future challenges are also discussed. This review contributes to the development of future theoretical frameworks and technologies in cancer biomarker discovery and will contribute to the discovery of more useful cancer biomarkers.

  17. A Pharmacogenetic Discovery: Cystamine Protects Against Haloperidol-Induced Toxicity and Ischemic Brain Injury.

    Science.gov (United States)

    Zhang, Haili; Zheng, Ming; Wu, Manhong; Xu, Dan; Nishimura, Toshihiko; Nishimura, Yuki; Giffard, Rona; Xiong, Xiaoxing; Xu, Li Jun; Clark, J David; Sahbaie, Peyman; Dill, David L; Peltz, Gary

    2016-05-01

    Haloperidol is an effective antipsychotic agent, but it causes Parkinsonian-like extrapyramidal symptoms in the majority of treated subjects. To address this treatment-limiting toxicity, we analyzed a murine genetic model of haloperidol-induced toxicity (HIT). Analysis of a panel of consomic strains indicated that a genetic factor on chromosome 10 had a significant effect on susceptibility to HIT. We analyzed a whole-genome SNP database to identify allelic variants that were uniquely present on chromosome 10 in the strain that was previously shown to exhibit the highest level of susceptibility to HIT. This analysis implicated allelic variation within pantetheinase genes (Vnn1 and Vnn3), which we propose impaired the biosynthesis of cysteamine, could affect susceptibility to HIT. We demonstrate that administration of cystamine, which is rapidly metabolized to cysteamine, could completely prevent HIT in the murine model. Many of the haloperidol-induced gene expression changes in the striatum of the susceptible strain were reversed by cystamine coadministration. Since cystamine administration has previously been shown to have other neuroprotective actions, we investigated whether cystamine administration could have a broader neuroprotective effect. Cystamine administration caused a 23% reduction in infarct volume after experimentally induced cerebral ischemia. Characterization of this novel pharmacogenetic factor for HIT has identified a new approach for preventing the treatment-limiting toxicity of an antipsychotic agent, which could also be used to reduce the extent of brain damage after stroke. Copyright © 2016 by the Genetics Society of America.

  18. Biomarkers of Aging: From Function to Molecular Biology

    Directory of Open Access Journals (Sweden)

    Karl-Heinz Wagner

    2016-06-01

    Full Text Available Aging is a major risk factor for most chronic diseases and functional impairments. Within a homogeneous age sample there is a considerable variation in the extent of disease and functional impairment risk, revealing a need for valid biomarkers to aid in characterizing the complex aging processes. The identification of biomarkers is further complicated by the diversity of biological living situations, lifestyle activities and medical treatments. Thus, there has been no identification of a single biomarker or gold standard tool that can monitor successful or healthy aging. Within this short review the current knowledge of putative biomarkers is presented, focusing on their application to the major physiological mechanisms affected by the aging process including physical capability, nutritional status, body composition, endocrine and immune function. This review emphasizes molecular and DNA-based biomarkers, as well as recent advances in other biomarkers such as microRNAs, bilirubin or advanced glycation end products.

  19. Biomarkers of PTSD: military applications and considerations

    OpenAIRE

    Amy Lehrner; Rachel Yehuda

    2014-01-01

    Background: Although there are no established biomarkers for posttraumatic stress disorder (PTSD) as yet, biological investigations of PTSD have made progress identifying the pathophysiology of PTSD. Given the biological and clinical complexity of PTSD, it is increasingly unlikely that a single biomarker of disease will be identified. Rather, investigations will more likely identify different biomarkers that indicate the presence of clinically significant PTSD symptoms, associate with risk fo...

  20. WONOEP appraisal: Biomarkers of epilepsy-associated comorbidities.

    Science.gov (United States)

    Ravizza, Teresa; Onat, Filiz Y; Brooks-Kayal, Amy R; Depaulis, Antoine; Galanopoulou, Aristea S; Mazarati, Andrey; Numis, Adam L; Sankar, Raman; Friedman, Alon

    2017-03-01

    Neurologic and psychiatric comorbidities are common in patients with epilepsy. Diagnostic, predictive, and pharmacodynamic biomarkers of such comorbidities do not exist. They may share pathogenetic mechanisms with epileptogenesis/ictogenesis, and as such are an unmet clinical need. The objectives of the subgroup on biomarkers of comorbidities at the XIII Workshop on the Neurobiology of Epilepsy (WONOEP) were to present the state-of-the-art recent research findings in the field that highlighting potential biomarkers for comorbidities in epilepsy. We review recent progress in the field, including molecular, imaging, and genetic biomarkers of comorbidities as discussed during the WONOEP meeting on August 31-September 4, 2015, in Heybeliada Island (Istanbul, Turkey). We further highlight new directions and concepts from studies on comorbidities and potential new biomarkers for the prediction, diagnosis, and treatment of epilepsy-associated comorbidities. The activation of various molecular signaling pathways such as the "Janus Kinase/Signal Transducer and Activator of Transcription," "mammalian Target of Rapamycin," and oxidative stress have been shown to correlate with the presence and severity of subsequent cognitive abnormalities. Furthermore, dysfunction in serotonergic transmission, hyperactivity of the hypothalamic-pituitary-adrenocortical axis, the role of the inflammatory cytokines, and the contributions of genetic factors have all recently been regarded as relevant for understanding epilepsy-associated depression and cognitive deficits. Recent evidence supports the utility of imaging studies as potential biomarkers. The role of such biomarker may be far beyond the diagnosis of comorbidities, as accumulating clinical data indicate that comorbidities can predict epilepsy outcomes. Future research is required to reveal whether molecular changes in specific signaling pathways or advanced imaging techniques could be detected in the clinical settings and correlate

  1. Proteomic Biomarkers for Spontaneous Preterm Birth

    DEFF Research Database (Denmark)

    Kacerovsky, Marian; Lenco, Juraj; Musilova, Ivana

    2014-01-01

    This review aimed to identify, synthesize, and analyze the findings of studies on proteomic biomarkers for spontaneous preterm birth (PTB). Three electronic databases (Medline, Embase, and Scopus) were searched for studies in any language reporting the use of proteomic biomarkers for PTB published...

  2. Imaging biomarker roadmap for cancer studies

    NARCIS (Netherlands)

    O'Connor, James P. B.; Aboagye, Eric O.; Adams, Judith E.; Aerts, Hugo J. W. L.; Barrington, Sally F.; Beer, Ambros J.; Boellaard, Ronald; Bohndiek, Sarah E.; Brady, Michael; Brown, Gina; Buckley, David L.; Chenevert, Thomas L.; Clarke, Laurence P.; Collette, Sandra; Cook, Gary J.; Desouza, Nandita M.; Dickson, John C.; Dive, Caroline; Evelhoch, Jeffrey L.; Faivre-Finn, Corinne; Gallagher, Ferdia A.; Gilbert, Fiona J.; Gillies, Robert J.; Goh, Vicky; Griffiths, J. R.; Groves, Ashley M.; Halligan, Steve; Harris, Adrian L.; Hawkes, David J.; Hoekstra, Otto S.; Huang, Erich P.; Hutton, Brian F.; Jackson, Edward F.; Jayson, Gordon C.; Jones, Andrew; Koh, Dow-Mu; Lacombe, Denis; Lambin, Philippe; Lassau, Nathalie; Leach, Martin O.; Lee, Ting-Yim; Leen, Edward L.; Lewis, Jason S.; Liu, Yan; Lythgoe, Mark F.; Manoharan, Prakash; Maxwell, Ross J.; Miles, Kenneth A.; Morgan, Bruno; Morris, Steve; Ng, Tony; Padhani, Anwar R.; Parker, Geoff J. M.; Partridge, Mike; Pathak, Arvind P.; Peet, Andrew C.; Punwani, Shonit; Reynolds, Andrew R.; Robinson, Simon P.; Shankar, Lalitha K.; Sharma, Ricky A.; Soloviev, Dmitry; Stroobants, Sigrid G.; Sullivan, Daniel C.; Taylor, Stuart A.; Tofts, Paul S.; Tozer, Gillian M.; van Herk, Marcel B.; Walker-Samuel, Simon; Wason, James; Williams, Kaye J.; Workman, Paul; Yankeelov, Thomas E.; Brindle, Kevin M.; McShane, Lisa M.; Jackson, Alan; Waterton, John C.

    Imaging biomarkers (IBs) are integral to the routine management of patients with cancer. IBs used daily in oncology include clinical TNM stage, objective response and left ventricular ejection fraction. Other CT, MRI, PET and ultrasonography biomarkers are used extensively in cancer research and

  3. Clinical, behavioural and pharmacogenomic factors influencing the response to levothyroxine therapy in patients with primary hypothyroidism-protocol for a systematic review.

    Science.gov (United States)

    Dew, Rosie; Okosieme, Onyebuchi; Dayan, Colin; Eligar, Vinay; Khan, Ishrat; Razvi, Salman; Pearce, Simon; Wilkes, Scott

    2017-03-21

    Suboptimal thyroid hormone therapy including under-replacement and over-replacement is common amongst patients with hypothyroidism. This is a significant health concern as affected patients are at risk of adverse cardiovascular or metabolic consequences. Despite a growing body of evidence on the effects of various factors on thyroid hormone replacement, a systematic appraisal of the evidence is lacking. This review aims to appraise and quantify the extent to which clinical, behavioural and pharmacogenomic factors affect levothyroxine therapy in patients with primary hypothyroidism. The databases Web of Science, Cochrane Library, EMBASE and PubMed will be searched. Patients must be adults over the age of 18 years, suffering from primary hypothyroidism including overt and subclinical hypothyroidism and receiving levothyroxine treatment. Studies in children, pregnant women and patients with secondary or tertiary hypothyroidism will not be included. We will also exclude studies focused on forms of thyroid hormone replacement therapy other than levothyroxine. The primary outcome is to quantify the effect of clinical, behavioural and pharmacogenomic factors on thyroid stimulating hormone (TSH) levels. Secondary outcomes are the effect these factors have on thyroxine (T4) and triiodothyronine (T3) levels, mortality, morbidity, quality of life, treatment complications, adverse effects, physical and social functioning. Studies will be screened through reading the title, abstract and then full text. Two reviewers will independently extract the data and select articles, and a third reviewer will be consulted if there is any disagreement. We will undertake a meta-analysis of studies in which there is a defined intervention or exposure, patients are receiving levothyroxine for hypothyroidism, there is an appropriate control group of levothyroxine treated patients that are not exposed to the intervention, and the primary outcome is determined by serum TSH levels. Studies will

  4. Possible biomarkers modulating haloperidol efficacy and/or tolerability.

    Science.gov (United States)

    Porcelli, Stefano; Crisafulli, Concetta; Calabrò, Marco; Serretti, Alessandro; Rujescu, Dan

    2016-04-01

    Haloperidol (HP) is widely used in the treatment of several forms of psychosis. Despite of its efficacy, HP use is a cause of concern for the elevated risk of adverse drug reactions. adverse drug reactions risk and HP efficacy greatly vary across subjects, indicating the involvement of several factors in HP mechanism of action. The use of biomarkers that could monitor or even predict HP treatment impact would be of extreme importance. We reviewed the elements that could potentially be used as peripheral biomarkers of HP effectiveness. Although a validated biomarker still does not exist, we underlined the several potential findings (e.g., about cytokines, HP metabolites and genotypic biomarkers) which could pave the way for future research on HP biomarkers.

  5. Novel biomarkers for prediabetes, diabetes, and associated complications

    Science.gov (United States)

    Dorcely, Brenda; Katz, Karin; Jagannathan, Ram; Chiang, Stephanie S; Oluwadare, Babajide; Goldberg, Ira J; Bergman, Michael

    2017-01-01

    The number of individuals with prediabetes is expected to grow substantially and estimated to globally affect 482 million people by 2040. Therefore, effective methods for diagnosing prediabetes will be required to reduce the risk of progressing to diabetes and its complications. The current biomarkers, glycated hemoglobin (HbA1c), fructosamine, and glycated albumin have limitations including moderate sensitivity and specificity and are inaccurate in certain clinical conditions. Therefore, identification of additional biomarkers is being explored recognizing that any single biomarker will also likely have inherent limitations. Therefore, combining several biomarkers may more precisely identify those at high risk for developing prediabetes and subsequent progression to diabetes. This review describes recently identified biomarkers and their potential utility for addressing the burgeoning epidemic of dysglycemic disorders. PMID:28860833

  6. Imperfect Gold Standards for Kidney Injury Biomarker Evaluation

    Science.gov (United States)

    Betensky, Rebecca A.; Emerson, Sarah C.; Bonventre, Joseph V.

    2012-01-01

    Clinicians have used serum creatinine in diagnostic testing for acute kidney injury for decades, despite its imperfect sensitivity and specificity. Novel tubular injury biomarkers may revolutionize the diagnosis of acute kidney injury; however, even if a novel tubular injury biomarker is 100% sensitive and 100% specific, it may appear inaccurate when using serum creatinine as the gold standard. Acute kidney injury, as defined by serum creatinine, may not reflect tubular injury, and the absence of changes in serum creatinine does not assure the absence of tubular injury. In general, the apparent diagnostic performance of a biomarker depends not only on its ability to detect injury, but also on disease prevalence and the sensitivity and specificity of the imperfect gold standard. Assuming that, at a certain cutoff value, serum creatinine is 80% sensitive and 90% specific and disease prevalence is 10%, a new perfect biomarker with a true 100% sensitivity may seem to have only 47% sensitivity compared with serum creatinine as the gold standard. Minimizing misclassification by using more strict criteria to diagnose acute kidney injury will reduce the error when evaluating the performance of a biomarker under investigation. Apparent diagnostic errors using a new biomarker may be a reflection of errors in the imperfect gold standard itself, rather than poor performance of the biomarker. The results of this study suggest that small changes in serum creatinine alone should not be used to define acute kidney injury in biomarker or interventional studies. PMID:22021710

  7. Biomarkers in cancer screening: a public health perspective.

    Science.gov (United States)

    Srivastava, Sudhir; Gopal-Srivastava, Rashmi

    2002-08-01

    The last three decades have witnessed a rapid advancement and diffusion of technology in health services. Technological innovations have given health service providers the means to diagnose and treat an increasing number of illnesses, including cancer. In this effort, research on biomarkers for cancer detection and risk assessment has taken a center stage in our effort to reduce cancer deaths. For the first time, scientists have the technologies to decipher and understand these biomarkers and to apply them to earlier cancer detection. By identifying people at high risk of developing cancer, it would be possible to develop intervention efforts on prevention rather than treatment. Once fully developed and validated, then the regular clinical use of biomarkers in early detection and risk assessment will meet nationally recognized health care needs: detection of cancer at its earliest stage. The dramatic rise in health care costs in the past three decades is partly related to the proliferation of new technologies. More recent analysis indicates that technological change, such as new procedures, products and capabilities, is the primary explanation of the historical increase in expenditure. Biomarkers are the new entrants in this competing environment. Biomarkers are considered as a competing, halfway or add-on technology. Technology such as laboratory tests of biomarkers will cost less compared with computed tomography (CT) scans and other radiographs. However, biomarkers for earlier detection and risk assessment have not achieved the level of confidence required for clinical applications. This paper discusses some issues related to biomarker development, validation and quality assurance. Some data on the trends of diagnostic technologies, proteomics and genomics are presented and discussed in terms of the market share. Eventually, the use of biomarkers in health care could reduce cost by providing noninvasive, sensitive and reliable assays at a fraction of the cost of

  8. Pharmacogenetics and induction/consolidation therapy toxicities in acute lymphoblastic leukemia patients treated with AIEOP-BFM ALL 2000 protocol.

    Science.gov (United States)

    Franca, R; Rebora, P; Bertorello, N; Fagioli, F; Conter, V; Biondi, A; Colombini, A; Micalizzi, C; Zecca, M; Parasole, R; Petruzziello, F; Basso, G; Putti, M C; Locatelli, F; d'Adamo, P; Valsecchi, M G; Decorti, G; Rabusin, M

    2017-01-01

    Drug-related toxicities represent an important clinical concern in chemotherapy, genetic variants could help tailoring treatment to patient. A pharmacogenetic multicentric study was performed on 508 pediatric acute lymphoblastic leukemia patients treated with AIEOP-BFM 2000 protocol: 28 variants were genotyped by VeraCode and Taqman technologies, deletions of GST-M1 and GST-T1 by multiplex PCR. Toxicities were derived from a central database: 251 patients (49.4%) experienced at least one gastrointestinal (GI) or hepatic (HEP) or neurological (NEU) grade III/IV episode during the remission induction phase: GI occurred in 63 patients (12.4%); HEP in 204 (40.2%) and NEU in 44 (8.7%). Logistic regression model adjusted for sex, risk and treatment phase revealed that ITPA rs1127354 homozygous mutated patients showed an increased risk of severe GI and NEU. ABCC1 rs246240 and ADORA2A rs2236624 homozygous mutated genotypes were associated to NEU and HEP, respectively. These three variants could be putative predictive markers for chemotherapy-related toxicities in AIEOP-BFM protocols.

  9. Advances in Biomarkers in Critical Ill Polytrauma Patients.

    Science.gov (United States)

    Papurica, Marius; Rogobete, Alexandru F; Sandesc, Dorel; Dumache, Raluca; Cradigati, Carmen A; Sarandan, Mirela; Nartita, Radu; Popovici, Sonia E; Bedreag, Ovidiu H

    2016-01-01

    The complexity of the cases of critically ill polytrauma patients is given by both the primary, as well as the secondary, post-traumatic injuries. The severe injuries of organ systems, the major biochemical and physiological disequilibrium, and the molecular chaos lead to a high rate of morbidity and mortality in this type of patient. The 'gold goal' in the intensive therapy of such patients resides in the continuous evaluation and monitoring of their clinical status. Moreover, optimizing the therapy based on the expression of certain biomarkers with high specificity and sensitivity is extremely important because of the clinical course of the critically ill polytrauma patient. In this paper we wish to summarize the recent studies of biomarkers useful for the intensive care unit (ICU) physician. For this study the available literature on specific databases such as PubMed and Scopus was thoroughly analyzed. Each article was carefully reviewed and useful information for this study extracted. The keywords used to select the relevant articles were "sepsis biomarker", "traumatic brain injury biomarker" "spinal cord injury biomarker", "inflammation biomarker", "microRNAs biomarker", "trauma biomarker", and "critically ill patients". For this study to be carried out 556 original type articles were analyzed, as well as case reports and reviews. For this review, 89 articles with relevant topics for the present paper were selected. The critically ill polytrauma patient, because of the clinical complexity the case presents with, needs a series of evaluations and specific monitoring. Recent studies show a series of either tissue-specific or circulating biomarkers that are useful in the clinical status evaluation of these patients. The biomarkers existing today, with regard to the critically ill polytrauma patient, can bring a significant contribution to increasing the survival rate, by adapting the therapy according to their expressions. Nevertheless, the necessity remains to

  10. Blood Biomarkers in Idiopathic Pulmonary Fibrosis.

    Science.gov (United States)

    Guiot, Julien; Moermans, Catherine; Henket, Monique; Corhay, Jean-Louis; Louis, Renaud

    2017-06-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive and lethal lung disease of unknown origin whose incidence has been increasing over the latest decade partly as a consequence of population ageing. New anti-fibrotic therapy including pirfenidone and nintedanib have now proven efficacy in slowing down the disease. Nevertheless, diagnosis and follow-up of IPF remain challenging. This review examines the recent literature on potentially useful blood molecular and cellular biomarkers in IPF. Most of the proposed biomarkers belong to chemokines (IL-8, CCL18), proteases (MMP-1 and MMP-7), and growth factors (IGBPs) families. Circulating T cells and fibrocytes have also gained recent interest in that respect. Up to now, though several interesting candidates are profiling there has not been a single biomarker, which proved to be specific of the disease and predictive of the evolution (decline of pulmonary function test values, risk of acute exacerbation or mortality). Large scale multicentric studies are eagerly needed to confirm the utility of these biomarkers.

  11. Biomarkers in inflammatory bowel diseases

    DEFF Research Database (Denmark)

    Bennike, Tue; Birkelund, Svend; Stensballe, Allan

    2014-01-01

    Unambiguous diagnosis of the two main forms of inflammatory bowel diseases (IBD): Ulcerative colitis (UC) and Crohn's disease (CD), represents a challenge in the early stages of the diseases. The diagnosis may be established several years after the debut of symptoms. Hence, protein biomarkers...... for early and accurate diagnostic could help clinicians improve treatment of the individual patients. Moreover, the biomarkers could aid physicians to predict disease courses and in this way, identify patients in need of intensive treatment. Patients with low risk of disease flares may avoid treatment...... with medications with the concomitant risk of adverse events. In addition, identification of disease and course specific biomarker profiles can be used to identify biological pathways involved in the disease development and treatment. Knowledge of disease mechanisms in general can lead to improved future...

  12. Biomarkers of acute lung injury: worth their salt?

    Directory of Open Access Journals (Sweden)

    Proudfoot Alastair G

    2011-12-01

    Full Text Available Abstract The validation of biomarkers has become a key goal of translational biomedical research. The purpose of this article is to discuss the role of biomarkers in the management of acute lung injury (ALI and related research. Biomarkers should be sensitive and specific indicators of clinically important processes and should change in a relevant timeframe to affect recruitment to trials or clinical management. We do not believe that they necessarily need to reflect pathogenic processes. We critically examined current strategies used to identify biomarkers and which, owing to expedience, have been dominated by reanalysis of blood derived markers from large multicenter Phase 3 studies. Combining new and existing validated biomarkers with physiological and other data may add predictive power and facilitate the development of important aids to research and therapy.

  13. Biomarkers in Diabetic Retinopathy.

    Science.gov (United States)

    Jenkins, Alicia J; Joglekar, Mugdha V; Hardikar, Anandwardhan A; Keech, Anthony C; O'Neal, David N; Januszewski, Andrzej S

    2015-01-01

    There is a global diabetes epidemic correlating with an increase in obesity. This coincidence may lead to a rise in the prevalence of type 2 diabetes. There is also an as yet unexplained increase in the incidence of type 1 diabetes, which is not related to adiposity. Whilst improved diabetes care has substantially improved diabetes outcomes, the disease remains a common cause of working age adult-onset blindness. Diabetic retinopathy is the most frequently occurring complication of diabetes; it is greatly feared by many diabetes patients. There are multiple risk factors and markers for the onset and progression of diabetic retinopathy, yet residual risk remains. Screening for diabetic retinopathy is recommended to facilitate early detection and treatment. Common biomarkers of diabetic retinopathy and its risk in clinical practice today relate to the visualization of the retinal vasculature and measures of glycemia, lipids, blood pressure, body weight, smoking, and pregnancy status. Greater knowledge of novel biomarkers and mediators of diabetic retinopathy, such as those related to inflammation and angiogenesis, has contributed to the development of additional therapeutics, in particular for late-stage retinopathy, including intra-ocular corticosteroids and intravitreal vascular endothelial growth factor inhibitors ('anti-VEGFs') agents. Unfortunately, in spite of a range of treatments (including laser photocoagulation, intraocular steroids, and anti-VEGF agents, and more recently oral fenofibrate, a PPAR-alpha agonist lipid-lowering drug), many patients with diabetic retinopathy do not respond well to current therapeutics. Therefore, more effective treatments for diabetic retinopathy are necessary. New analytical techniques, in particular those related to molecular markers, are accelerating progress in diabetic retinopathy research. Given the increasing incidence and prevalence of diabetes, and the limited capacity of healthcare systems to screen and treat

  14. Biomarkers of carcinogen exposure and early effects.

    OpenAIRE

    2006-01-01

    The purpose of this review is to summarise the current situation regarding the types and uses of biomarkers of exposure and effect for the main classes of food-derived genotoxic carcinogens, and to consider some aspects of the intercomparison between these biomarkers. The biomarkers of exposure and early effects of carcinogens that have been most extensively developed are those for genotoxic agents and for compounds that generate hydroxyl radicals and other reactive radical species, and it is...

  15. Bayesian additive decision trees of biomarker by treatment interactions for predictive biomarker detection and subgroup identification.

    Science.gov (United States)

    Zhao, Yang; Zheng, Wei; Zhuo, Daisy Y; Lu, Yuefeng; Ma, Xiwen; Liu, Hengchang; Zeng, Zhen; Laird, Glen

    2017-10-11

    Personalized medicine, or tailored therapy, has been an active and important topic in recent medical research. Many methods have been proposed in the literature for predictive biomarker detection and subgroup identification. In this article, we propose a novel decision tree-based approach applicable in randomized clinical trials. We model the prognostic effects of the biomarkers using additive regression trees and the biomarker-by-treatment effect using a single regression tree. Bayesian approach is utilized to periodically revise the split variables and the split rules of the decision trees, which provides a better overall fitting. Gibbs sampler is implemented in the MCMC procedure, which updates the prognostic trees and the interaction tree separately. We use the posterior distribution of the interaction tree to construct the predictive scores of the biomarkers and to identify the subgroup where the treatment is superior to the control. Numerical simulations show that our proposed method performs well under various settings comparing to existing methods. We also demonstrate an application of our method in a real clinical trial.

  16. Use of biomarkers in ALS drug development and clinical trials.

    Science.gov (United States)

    Bakkar, Nadine; Boehringer, Ashley; Bowser, Robert

    2015-05-14

    The past decade has seen a dramatic increase in the discovery of candidate biomarkers for ALS. These biomarkers typically can either differentiate ALS from control subjects or predict disease course (slow versus fast progression). At the same time, late-stage clinical trials for ALS have failed to generate improved drug treatments for ALS patients. Incorporation of biomarkers into the ALS drug development pipeline and the use of biologic and/or imaging biomarkers in early- and late-stage ALS clinical trials have been absent and only recently pursued in early-phase clinical trials. Further clinical research studies are needed to validate biomarkers for disease progression and develop biomarkers that can help determine that a drug has reached its target within the central nervous system. In this review we summarize recent progress in biomarkers across ALS model systems and patient population, and highlight continued research directions for biomarkers that stratify the patient population to enrich for patients that may best respond to a drug candidate, monitor disease progression and track drug responses in clinical trials. It is crucial that we further develop and validate ALS biomarkers and incorporate these biomarkers into the ALS drug development process. This article is part of a Special Issue entitled ALS complex pathogenesis. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. [Biomarkers of radiation-induced DNA repair processes].

    Science.gov (United States)

    Vallard, Alexis; Rancoule, Chloé; Guy, Jean-Baptiste; Espenel, Sophie; Sauvaigo, Sylvie; Rodriguez-Lafrasse, Claire; Magné, Nicolas

    2017-11-01

    The identification of DNA repair biomarkers is of paramount importance. Indeed, it is the first step in the process of modulating radiosensitivity and radioresistance. Unlike tools of detection and measurement of DNA damage, DNA repair biomarkers highlight the variations of DNA damage responses, depending on the dose and the dose rate. The aim of the present review is to describe the main biomarkers of radiation-induced DNA repair. We will focus on double strand breaks (DSB), because of their major role in radiation-induced cell death. The most important DNA repair biomarkers are DNA damage signaling proteins, with ATM, DNA-PKcs, 53BP1 and γ-H2AX. They can be analyzed either using immunostaining, or using lived cell imaging. However, to date, these techniques are still time and money consuming. The development of "omics" technologies should lead the way to new (and usable in daily routine) DNA repair biomarkers. Copyright © 2017 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  18. The Biomarker Knowledge System Informatics Pilot Project Supplement To The Biomarker Development Laboratory at Moffitt (Bedlam) — EDRN Public Portal

    Science.gov (United States)

    The Biomarker Knowledge System Informatics Pilot Project goal will develop network interfaces among databases that contain information about existing clinical populations and biospecimens and data relating to those specimens that are important in biomarker assay validation. This protocol comprises one of two that will comprise the Moffitt participation in the Biomarker Knowledge System Informatics Pilot Project. THIS PROTOCOL (58) is the Sput-Epi Database.

  19. Glycosylation-Based Serum Biomarkers for Cancer Diagnostics and Prognostics.

    Science.gov (United States)

    Kirwan, Alan; Utratna, Marta; O'Dwyer, Michael E; Joshi, Lokesh; Kilcoyne, Michelle

    2015-01-01

    Cancer is the second most common cause of death in developed countries with approximately 14 million newly diagnosed individuals and over 6 million cancer-related deaths in 2012. Many cancers are discovered at a more advanced stage but better survival rates are correlated with earlier detection. Current clinically approved cancer biomarkers are most effective when applied to patients with widespread cancer. Single biomarkers with satisfactory sensitivity and specificity have not been identified for the most common cancers and some biomarkers are ineffective for the detection of early stage cancers. Thus, novel biomarkers with better diagnostic and prognostic performance are required. Aberrant protein glycosylation is well known hallmark of cancer and represents a promising source of potential biomarkers. Glycoproteins enter circulation from tissues or blood cells through active secretion or leakage and patient serum is an attractive option as a source for biomarkers from a clinical and diagnostic perspective. A plethora of technical approaches have been developed to address the challenges of glycosylation structure detection and determination. This review summarises currently utilised glycoprotein biomarkers and novel glycosylation-based biomarkers from the serum glycoproteome under investigation as cancer diagnostics and for monitoring and prognostics and includes details of recent high throughput and other emerging glycoanalytical techniques.

  20. Colorectal cancer tumour markers and biomarkers: Recent therapeutic advances

    Science.gov (United States)

    Lech, Gustaw; Słotwiński, Robert; Słodkowski, Maciej; Krasnodębski, Ireneusz Wojciech

    2016-01-01

    Colorectal cancer (CRC) is the second most commonly diagnosed cancer among females and third among males worldwide. It also contributes significantly to cancer-related deaths, despite the continuous progress in diagnostic and therapeutic methods. Biomarkers currently play an important role in the detection and treatment of patients with colorectal cancer. Risk stratification for screening might be augmented by finding new biomarkers which alone or as a complement of existing tests might recognize either the predisposition or early stage of the disease. Biomarkers have also the potential to change diagnostic and treatment algorithms by selecting the proper chemotherapeutic drugs across a broad spectrum of patients. There are attempts to personalise chemotherapy based on presence or absence of specific biomarkers. In this review, we update review published last year and describe our understanding of tumour markers and biomarkers role in CRC screening, diagnosis, treatment and follow-up. Goal of future research is to identify those biomarkers that could allow a non-invasive and cost-effective diagnosis, as well as to recognise the best prognostic panel and define the predictive biomarkers for available treatments. PMID:26855534