WorldWideScience

Sample records for biomarker candidate identification

  1. Chemometric Multivariate Tools for Candidate Biomarker Identification: LDA, PLS-DA, SIMCA, Ranking-PCA.

    Science.gov (United States)

    Robotti, Elisa; Marengo, Emilio

    2016-01-01

    2-D gel electrophoresis usually provides complex maps characterized by a low reproducibility: this hampers the use of spot volume data for the identification of reliable biomarkers. Under these circumstances, effective and robust methods for the comparison and classification of 2-D maps are fundamental for the identification of an exhaustive panel of candidate biomarkers. Multivariate methods are the most suitable since they take into consideration the relationships between the variables, i.e., effects of synergy and antagonism between the spots. Here the most common multivariate methods used in spot volume datasets analysis are presented. The methods are applied on a sample dataset to prove their effectiveness.

  2. Identification and validation of candidate epigenetic biomarkers in lung adenocarcinoma

    DEFF Research Database (Denmark)

    Daugaard, Iben; Dominguez, Diana; Kjeldsen, Tina E;

    2016-01-01

    , HOXA5, Chr1(q21.1).A, and Chr6(p22.1). In particular the OSR1, SIM1 and HOXB3/HOXB4 regions demonstrated high potential as biomarkers in LAC. For OSR1, hypermethylation was detected in 47/48 LAC cases compared to 1/31 tumor-adjacent normal lung samples. Similarly, 45/49 and 36/48 LAC cases compared...... patients by methylation-sensitive high resolution melting (MS-HRM) analysis. Significant increases in methylation were confirmed for 15 DMRs associated with the genes and genomic regions: OSR1, SIM1, GHSR, OTX2, LOC648987, HIST1H3E, HIST1H3G/HIST1H2BI, HIST1H2AJ/HIST1H2BM, HOXD10, HOXD3, HOXB3/HOXB4, HOXA3...... to 3/31 and 0/31 tumor-adjacent normal lung samples showed hypermethylation of the SIM1 and HOXB3/HOXB4 regions, respectively. In conclusion, this study has identified and validated 15 DMRs that can be targeted as biomarkers in LAC....

  3. Identification of plasma biomarker candidates in glioblastoma using an antibody-array-based proteomic approach.

    Science.gov (United States)

    Zupancic, Klemen; Blejec, Andrej; Herman, Ana; Veber, Matija; Verbovsek, Urska; Korsic, Marjan; Knezevic, Miomir; Rozman, Primoz; Turnsek, Tamara Lah; Gruden, Kristina; Motaln, Helena

    2014-09-01

    Glioblastoma multiforme (GBM) is a brain tumour with a very high patient mortality rate, with a median survival of 47 weeks. This might be improved by the identification of novel diagnostic, prognostic and predictive therapy-response biomarkers, preferentially through the monitoring of the patient blood. The aim of this study was to define the impact of GBM in terms of alterations of the plasma protein levels in these patients. We used a commercially available antibody array that includes 656 antibodies to analyse blood plasma samples from 17 healthy volunteers in comparison with 17 blood plasma samples from patients with GBM. We identified 11 plasma proteins that are statistically most strongly associated with the presence of GBM. These proteins belong to three functional signalling pathways: T-cell signalling and immune responses; cell adhesion and migration; and cell-cycle control and apoptosis. Thus, we can consider this identified set of proteins as potential diagnostic biomarker candidates for GBM. In addition, a set of 16 plasma proteins were significantly associated with the overall survival of these patients with GBM. Guanine nucleotide binding protein alpha (GNAO1) was associated with both GBM presence and survival of patients with GBM. Antibody array analysis represents a useful tool for the screening of plasma samples for potential cancer biomarker candidates in small-scale exploratory experiments; however, clinical validation of these candidates requires their further evaluation in a larger study on an independent cohort of patients.

  4. Identification of Circulating Biomarker Candidates for Hepatocellular Carcinoma (HCC: An Integrated Prioritization Approach.

    Directory of Open Access Journals (Sweden)

    Faryal Mehwish Awan

    Full Text Available Hepatocellular carcinoma (HCC is the world's third most widespread cancer. Currently available circulating biomarkers for this silently progressing malignancy are not sufficiently specific and sensitive to meet all clinical needs. There is an imminent and pressing need for the identification of novel circulating biomarkers to increase disease-free survival rate. In order to facilitate the selection of the most promising circulating protein biomarkers, we attempted to define an objective method likely to have a significant impact on the analysis of vast data generated from cutting-edge technologies. Current study exploits data available in seven publicly accessible gene and protein databases, unveiling 731 liver-specific proteins through initial enrichment analysis. Verification of expression profiles followed by integration of proteomic datasets, enriched for the cancer secretome, filtered out 20 proteins including 6 previously characterized circulating HCC biomarkers. Finally, interactome analysis of these proteins with midkine (MDK, dickkopf-1 (DKK-1, current standard HCC biomarker alpha-fetoprotein (AFP, its interacting partners in conjunction with HCC-specific circulating and liver deregulated miRNAs target filtration highlighted seven novel statistically significant putative biomarkers including complement component 8, alpha (C8A, mannose binding lectin (MBL2, antithrombin III (SERPINC1, 11β-hydroxysteroid dehydrogenase type 1 (HSD11B1, alcohol dehydrogenase 6 (ADH6, beta-ureidopropionase (UPB1 and cytochrome P450, family 2, subfamily A, polypeptide 6 (CYP2A6. Our proposed methodology provides a swift assortment process for biomarker prioritization that eventually reduces the economic burden of experimental evaluation. Further dedicated validation studies of potential putative biomarkers on HCC patient blood samples are warranted. We hope that the use of such integrative secretome, interactome and miRNAs target filtration approach will

  5. Identification of plasma biomarker candidates in glioblastoma using an antibody-array-based proteomic approach

    Directory of Open Access Journals (Sweden)

    Zupancic Klemen

    2014-09-01

    Full Text Available Background. Glioblastoma multiforme (GBM is a brain tumour with a very high patient mortality rate, with a median survival of 47 weeks. This might be improved by the identification of novel diagnostic, prognostic and predictive therapy-response biomarkers, preferentially through the monitoring of the patient blood. The aim of this study was to define the impact of GBM in terms of alterations of the plasma protein levels in these patients. Materials and methods. We used a commercially available antibody array that includes 656 antibodies to analyse blood plasma samples from 17 healthy volunteers in comparison with 17 blood plasma samples from patients with GBM.

  6. Identification of Candidate Biomarkers in Ovarian Cancer Serum by Depletion of Highly Abundant Proteins and Differential In Gel Electrophoresis

    Science.gov (United States)

    Andersen, John D.; Boylan, Kristin L.M.; Xue, Feifei S.; Anderson, Lorraine B.; Witthuhn, Bruce A.; Markowski, Todd W.; Higgins, LeeAnn; Skubitz, Amy P.N.

    2012-01-01

    Ovarian cancer is the fifth leading cause of cancer death for women in the U.S., yet survival rates are over 90% when it is diagnosed at an early stage, highlighting the need for biomarkers for early detection. To enhance the discovery of tumor-specific proteins which could represent novel serum biomarkers for ovarian cancer, we depleted serum of highly abundant proteins which can mask the detection of proteins present in serum at low concentrations. Three commercial immunoaffinity columns were used in parallel to deplete the highly abundant proteins in serum from 60 patients with serous ovarian carcinoma and 60 non-cancer controls. Medium and low abundance serum proteins from each serum pool were then evaluated by the quantitative proteomic technique of Differential-In-Gel-Electrophoresis (DIGE). The number of protein spots that were elevated in ovarian cancer sera by at least 2-fold ranged from 36 to 248, depending upon the depletion and separation methods. From the 33 spots picked for MS analysis, nine different proteins were identified, including the novel candidate ovarian cancer biomarkers leucine-rich alpha-2 glycoprotein-1 and ficolin 3. Western blotting validated the relative increases in serum protein levels for three of the proteins identified, demonstrating the utility of this approach for the identification of novel serum biomarkers for ovarian cancer. PMID:20162585

  7. Identification of candidate synovial membrane biomarkers after Achyranthes aspera treatment for rheumatoid arthritis.

    Science.gov (United States)

    Zheng, Wen; Lu, Xianghong; Fu, Zhirong; Zhang, Lin; Li, Ximin; Xu, Xiaobao; Ren, Yina; Lu, Yongzhuang; Fu, Hongwei; Tian, Jingkui

    2016-03-01

    Rheumatoid arthritis (RA) is a systemic autoimmune disease whose main symptom is a heightened inflammatory response in synovial tissues. To verify the anti-arthritic activities of Achyranthes aspera and its possible therapy-related factors on the pathogenesis of RA, the saponins in A. aspera root were isolated and identified to treat the collagen-induced arthritis (CIA) rats. Phytochemical analysis isolated and identified methyl caffeate, 25-S-inokosterone, 25-S-inokosterone β-D-glucopyranosyl 3-(O-β-D-glucopyranosyloxy)-oleanolate, and β-D-glucopyranosyl 3-(O-β-D-galactopyranosyl (1→2)(O-β-D-glucopyranosyloxy)-oleanolate as main compounds in the root of A. aspera. Proteomics was performed to determine the differentially expressed proteins in either inflamed or drug-treated synovium of CIA rats. Treatment resulted in dramatically decreased paw swelling, proliferation of inflammatory cells, and bone degradation. Fibrinogen, procollagen, protein disulfide-isomerase A3, and apolipoprotein A-I were all increased in inflamed synovial tissues and were found to decrease when administered drug therapy. Furthermore, Alpha-1-antiproteinase and manganese superoxide dismutase were both increased in drug-treated synovial tissues. The inhibition of RA progression shows that A. aspera is a promising candidate for future treatment of human arthritis. Importantly, the total saponins found within A. aspera are the active component. Finally, autoantigens such as fibrinogen and collagen could act as inducers of RA due to their aggravation of inflammation. Given this, it is possible that the vimentin and PDIA3 could be the candidate biomarkers specific to Achyranthes saponin therapy for rheumatoid arthritis in synovial membrane.

  8. Biomarker Candidate Identification in Yersinia Pestis Using Organism-Wide Semiquantitative Proteomics

    Energy Technology Data Exchange (ETDEWEB)

    Hixson, Kim K.; Adkins, Joshua N.; Baker, Scott E.; Moore, Ronald J.; Smith, Richard D.; McCutchen-Maloney, Sandra L.; Lipton, Mary S.

    2006-11-03

    Yersinia pestis, the causative agent of plague, is listed by the CDC as a level A select pathogen. To better enable detection, intervention and treatment of Y. pestis infections, it is necessary to understand its protein expression under conditions that promote or inhibit virulence. To this end, we have utilized a novel combination of the accurate mass and time tag methodology of mass spectrometry and clustering analysis using OmniViz™ to compare the protein abundance changes of 992 identified proteins under four growth conditions. Temperature and Ca2+ concentration were used to trigger virulence associated protein expression fundamental to the low calcium response. High-resolution liquid chromatography and electrospray ionization mass spectrometry were utilized to determine protein identity and abundance on the genome-wide level. The cluster analyses revealed, in a rapid visual platform, the reproducibility of the current method as well as relevant protein abundance changes of expected and novel proteins relating to a specific growth condition and sub-cellular location. Using this method, 89 proteins were identified as having a similar abundance change profile to 29 known virulence associated proteins, providing additional biomarker candidates for future detection and vaccine development strategies.

  9. Identification of candidate diagnostic serum biomarkers for Kawasaki disease using proteomic analysis

    Science.gov (United States)

    Kimura, Yayoi; Yanagimachi, Masakatsu; Ino, Yoko; Aketagawa, Mao; Matsuo, Michie; Okayama, Akiko; Shimizu, Hiroyuki; Oba, Kunihiro; Morioka, Ichiro; Imagawa, Tomoyuki; Kaneko, Tetsuji; Yokota, Shumpei; Hirano, Hisashi; Mori, Masaaki

    2017-01-01

    Kawasaki disease (KD) is a systemic vasculitis and childhood febrile disease that can lead to cardiovascular complications. The diagnosis of KD depends on its clinical features, and thus it is sometimes difficult to make a definitive diagnosis. In order to identify diagnostic serum biomarkers for KD, we explored serum KD-related proteins, which differentially expressed during the acute and recovery phases of two patients by mass spectrometry (MS). We identified a total of 1,879 proteins by MS-based proteomic analysis. The levels of three of these proteins, namely lipopolysaccharide-binding protein (LBP), leucine-rich alpha-2-glycoprotein (LRG1), and angiotensinogen (AGT), were higher in acute phase patients. In contrast, the level of retinol-binding protein 4 (RBP4) was decreased. To confirm the usefulness of these proteins as biomarkers, we analyzed a total of 270 samples, including those collected from 55 patients with acute phase KD, by using western blot analysis and microarray enzyme-linked immunosorbent assays (ELISAs). Over the course of this experiment, we determined that the expression level of these proteins changes specifically in the acute phase of KD, rather than the recovery phase of KD or other febrile illness. Thus, LRG1 could be used as biomarkers to facilitate KD diagnosis based on clinical features. PMID:28262744

  10. Identification of a candidate biomarker from perfusion MRI to anticipate glioblastoma progression after chemoradiation

    Energy Technology Data Exchange (ETDEWEB)

    Khalifa, J. [INSERM UMR 1214, TONIC (TOulouse NeuroImaging Centre), Toulouse (France); Institut Claudius Regaud/Institut Universitaire du Cancer de Toulouse - Oncopole, Department of Radiation Oncology, Toulouse (France); Tensaouti, F. [INSERM UMR 1214, TONIC (TOulouse NeuroImaging Centre), Toulouse (France); Chaltiel, L. [Institut Claudius Regaud/Institut Universitaire du Cancer de Toulouse - Oncopole, Department of Biostatistics, Toulouse (France); Lotterie, J.A. [INSERM UMR 1214, TONIC (TOulouse NeuroImaging Centre), Toulouse (France); CHU Rangueil, Department of Nuclear Medicine, Toulouse (France); Catalaa, I. [INSERM UMR 1214, TONIC (TOulouse NeuroImaging Centre), Toulouse (France); CHU Rangueil, Department of Radiology, Toulouse (France); Sunyach, M.P. [Centre Leon Berard, Department of Radiation Oncology, Lyon (France); Ibarrola, D. [CERMEP - Imagerie du Vivant, Lyon (France); Noel, G. [EA 3430, University of Strasbourg, Department of Radiation Oncology, Centre Paul Strauss, Strasbourg (France); Truc, G. [Centre Georges-Francois Leclerc, Department of Radiation Oncology, Dijon (France); Walker, P. [University of Burgundy, Laboratory of Electronics, Computer Science and Imaging (Le2I), UMR 6306 CNRS, Dijon (France); Magne, N. [Institut de cancerologie Lucien-Neuwirth, Department of Radiation Oncology, Saint-Priest-en-Jarez (France); Charissoux, M. [Department of Radiation Oncology, Institut du Cancer de Montpellier, Montpellier (France); Ken, S. [INSERM UMR 1214, TONIC (TOulouse NeuroImaging Centre), Toulouse (France); Institut Claudius Regaud/Institut Universitaire du Cancer de Toulouse - Oncopole, Department of Medical Physics, Toulouse (France); Peran, P. [INSERM UMR 1214, TONIC (TOulouse NeuroImaging Centre), Toulouse (France); Universite Toulouse III Paul Sabatier, UMR 1214, Toulouse (France); Berry, I. [INSERM UMR 1214, TONIC (TOulouse NeuroImaging Centre), Toulouse (France); CHU Rangueil, Department of Nuclear Medicine, Toulouse (France); Universite Toulouse III Paul Sabatier, UMR 1214, Toulouse (France); Moyal, E.C. [Institut Claudius Regaud/Institut Universitaire du Cancer de Toulouse - Oncopole, Department of Radiation Oncology, Toulouse (France); Universite Toulouse III Paul Sabatier, Toulouse (France); INSERM U1037, Centre de Recherches contre le Cancer de Toulouse, Toulouse (FR); Laprie, A. [INSERM UMR 1214, TONIC (TOulouse NeuroImaging Centre), Toulouse (FR); Institut Claudius Regaud/Institut Universitaire du Cancer de Toulouse - Oncopole, Department of Radiation Oncology, Toulouse (FR); Universite Toulouse III Paul Sabatier, Toulouse (FR)

    2016-11-15

    To identify relevant relative cerebral blood volume biomarkers from T2* dynamic-susceptibility contrast magnetic resonance imaging to anticipate glioblastoma progression after chemoradiation. Twenty-five patients from a prospective study with glioblastoma, primarily treated by chemoradiation, were included. According to the last follow-up MRI confirmed status, patients were divided into: relapse group (n = 13) and control group (n = 12). The time of last MR acquisition was t{sub end}; MR acquisitions performed at t{sub end-2M}, t{sub end-4M} and t{sub end-6M} (respectively 2, 4 and 6 months before t{sub end}) were analyzed to extract relevant variations among eleven perfusion biomarkers (B). These variations were assessed through R(B), as the absolute value of the ratio between ∇B from t{sub end-4M} to t{sub end-2M} and ∇B from t{sub end-6M} to t{sub end-4M}. The optimal cut-off for R(B) was determined using receiver-operating-characteristic curve analysis. The fraction of hypoperfused tumor volume (F{sub h}P{sub g}) was a relevant biomarker. A ratio R(F{sub h}P{sub g}) ≥ 0.61 would have been able to anticipate relapse at the next follow-up with a sensitivity/specificity/accuracy of 92.3 %/63.6 %/79.2 %. High R(F{sub h}Pg) (≥0.61) was associated with more relapse at t{sub end} compared to low R(F{sub h}Pg) (75 % vs 12.5 %, p = 0.008). Iterative analysis of F{sub h}P{sub g} from consecutive examinations could provide surrogate markers to predict progression at the next follow-up. (orig.)

  11. Quantitative iTRAQ-Based Proteomic Identification of Candidate Biomarkers for Diabetic Nephropathy in Plasma of Type 1 Diabetic Patients

    DEFF Research Database (Denmark)

    Overgaard, Anne Julie; Thingholm, Tine Engberg; Larsen, Martin R

    2010-01-01

    INTRODUCTION: As part of a clinical proteomics programme focused on diabetes and its complications, it was our goal to investigate the proteome of plasma in order to find improved candidate biomarkers to predict diabetic nephropathy. METHODS: Proteins derived from plasma from a cross...... immunoassay confirmed the overall protein expression patterns observed by the iTRAQ analysis. CONCLUSION: The candidate biomarkers discovered in this cross-sectional cohort may turn out to be progression biomarkers and might have several clinical applications in the treatment and monitoring of diabetic......-sectional cohort of 123 type 1 diabetic patients previously diagnosed as normoalbuminuric, microalbuminuric or macroalbuminuric were enriched with hexapeptide library beads and subsequently pooled within three groups. Proteins from the three groups were compared by online liquid chromatography and tandem mass...

  12. Identification of HSPA8 as a candidate biomarker for endometrial carcinoma by using iTRAQ-based proteomic analysis

    Directory of Open Access Journals (Sweden)

    Shan N

    2016-04-01

    Full Text Available Nianchun Shan,1 Wei Zhou,2 Shufen Zhang,1 Yu Zhang1 1Department of Obstetric and Gynecology, 2Health Management Center, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China Abstract: Although there are advances in diagnostic, predictive, and therapeutic strategies, discovering protein biomarker for early detection is required for improving the survival rate of the patients with endometrial carcinoma. In this study, we identify proteins that are differentially expressed between the Stage I endometrial carcinoma and the normal pericarcinous tissues by using isobaric tags for relative and absolute quantitation (iTRAQ-based proteomic analysis. Totally, we screened 1,266 proteins. Among them, 103 proteins were significantly overexpressed, and 30 were significantly downexpressed in endometrial carcinoma. Using the bioinformatics analysis, we identified a list of proteins that might be closely associated with endometrial carcinoma, including CCT7, HSPA8, PCBP2, LONP1, PFN1, and EEF2. We validated the gene overexpression of these molecules in the endometrial carcinoma tissues and found that HSPA8 was most significantly upregulated. We further validated the overexpression of HSPA8 by using immunoblot analysis. Then, HSPA8 siRNA was transferred into the endometrial cancer cells RL-95-2 and HEC-1B. The depletion of HSPA8 siRNAs significantly reduced cell proliferation, promoted cell apoptosis, and suppressed cell growth in both cell lines. Taken together, HSPA8 plays a vital role in the development of endometrial carcinoma. HSPA8 is a candidate biomarker for early diagnosis and therapy of Stage I endometrial carcinoma. Keywords: iTRAQ, HSPA8, endometrial carcinoma, RL-95-2 cells

  13. The identification of novel potential injury mechanisms and candidate biomarkers in renal allograft rejection by quantitative proteomics.

    Science.gov (United States)

    Sigdel, Tara K; Salomonis, Nathan; Nicora, Carrie D; Ryu, Soyoung; He, Jintang; Dinh, Van; Orton, Daniel J; Moore, Ronald J; Hsieh, Szu-Chuan; Dai, Hong; Thien-Vu, Minh; Xiao, Wenzhong; Smith, Richard D; Qian, Wei-Jun; Camp, David G; Sarwal, Minnie M

    2014-02-01

    Early transplant dysfunction and failure because of immunological and nonimmunological factors still presents a significant clinical problem for transplant recipients. A critical unmet need is the noninvasive detection and prediction of immune injury such that acute injury can be reversed by proactive immunosuppression titration. In this study, we used iTRAQ -based proteomic discovery and targeted ELISA validation to discover and validate candidate urine protein biomarkers from 262 renal allograft recipients with biopsy-confirmed allograft injury. Urine samples were randomly split into a training set of 108 patients and an independent validation set of 154 patients, which comprised the clinical biopsy-confirmed phenotypes of acute rejection (AR) (n = 74), stable graft (STA) (n = 74), chronic allograft injury (CAI) (n = 58), BK virus nephritis (BKVN) (n = 38), nephrotic syndrome (NS) (n = 8), and healthy, normal control (HC) (n = 10). A total of 389 proteins were measured that displayed differential abundances across urine specimens of the injury types (p 1.5) from all other transplant categories (HLA class II protein HLA-DRB1, KRT14, HIST1H4B, FGG, ACTB, FGB, FGA, KRT7, DPP4). Increased levels of three of these proteins, fibrinogen beta (FGB; p = 0.04), fibrinogen gamma (FGG; p = 0.03), and HLA DRB1 (p = 0.003) were validated by ELISA in AR using an independent sample set. The fibrinogen proteins further segregated AR from BK virus nephritis (FGB p = 0.03, FGG p = 0.02), a finding that supports the utility of monitoring these urinary proteins for the specific and sensitive noninvasive diagnosis of acute renal allograft rejection.

  14. Biomarkers of silicosis: Potential candidates

    Directory of Open Access Journals (Sweden)

    Tiwari R

    2005-01-01

    Full Text Available Silica dust is widely prevalent in the atmosphere and more common than the other types of dust, thus making silicosis the most frequently occurring pneumoconiosis. In India also, studies carried out by National Institute of Occupational Health have shown high prevalence of silicosis in small factories and even in nonoccupational exposed subjects. The postero-anterior chest radiographs remain the key tool in diagnosing and assessing the extent and severity of interstitial lung disease. Although Computed Tomography detects finer anatomical structure than radiography it could not get popularity because of its cost. On the basis of histological features of silicosis many potential biomarkers such as Cytokines, Tumor Necrosis Factor, Interleukin 1, Angiotensin Converting Enzyme, Serum Copper, Fas ligand (FasL, etc. have been tried. However, further studies are needed to establish these potential biomarkers as true biomarker of silicosis.

  15. Candidate immune biomarkers for radioimmunotherapy.

    Science.gov (United States)

    Levy, Antonin; Nigro, Giulia; Sansonetti, Philippe J; Deutsch, Eric

    2017-08-01

    Newly available immune checkpoint blockers (ICBs), capable to revert tumor immune tolerance, are revolutionizing the anticancer armamentarium. Recent evidence also established that ionizing radiation (IR) could produce antitumor immune responses, and may as well synergize with ICBs. Multiple radioimmunotherapy combinations are thenceforth currently assessed in early clinical trials. Past examples have highlighted the need for treatment personalization, and there is an unmet need to decipher immunological biomarkers that could allow selecting patients who could benefit from these promising but expensive associations. Recent studies have identified potential predictive and prognostic immune assays at the cellular (tumor microenvironment composition), genomic (mutational/neoantigen load), and peripheral blood levels. Within this review, we collected the available evidence regarding potential personalized immune biomarker-directed radiation therapy strategies that might be used for patient selection in the era of radioimmunotherapy. Copyright © 2017. Published by Elsevier B.V.

  16. GC-MS Based Plasma Metabolomics for Identification of Candidate Biomarkers for Hepatocellular Carcinoma in Egyptian Cohort.

    Directory of Open Access Journals (Sweden)

    Mohammad R Nezami Ranjbar

    Full Text Available This study evaluates changes in metabolite levels in hepatocellular carcinoma (HCC cases vs. patients with liver cirrhosis by analysis of human blood plasma using gas chromatography coupled with mass spectrometry (GC-MS. Untargeted metabolomic analysis of plasma samples from participants recruited in Egypt was performed using two GC-MS platforms: a GC coupled to single quadruple mass spectrometer (GC-qMS and a GC coupled to a time-of-flight mass spectrometer (GC-TOFMS. Analytes that showed statistically significant changes in ion intensities were selected using ANOVA models. These analytes and other candidates selected from related studies were further evaluated by targeted analysis in plasma samples from the same participants as in the untargeted metabolomic analysis. The targeted analysis was performed using the GC-qMS in selected ion monitoring (SIM mode. The method confirmed significant changes in the levels of glutamic acid, citric acid, lactic acid, valine, isoleucine, leucine, alpha tocopherol, cholesterol, and sorbose in HCC cases vs. patients with liver cirrhosis. Specifically, our findings indicate up-regulation of metabolites involved in branched-chain amino acid (BCAA metabolism. Although BCAAs are increasingly used as a treatment for cancer cachexia, others have shown that BCAA supplementation caused significant enhancement of tumor growth via activation of mTOR/AKT pathway, which is consistent with our results that BCAAs are up-regulated in HCC.

  17. Cerebrospinal fluid biomarker candidates for parkinsonian disorders

    Directory of Open Access Journals (Sweden)

    Radu eConstantinescu

    2013-01-01

    Full Text Available The parkinsonian disorders are a large group of neurodegenerative diseases including idiopathic Parkinson's disease (PD and atypical parkinsonian disorders, such as multiple system atrophy, progressive supranuclear palsy, corticobasal degeneration, and dementia with Lewy bodies. The etiology of these disorders is not known although it is considered to be a combination of genetic and environmental factors. One of the greatest obstacles for developing efficacious disease-modifying treatment strategies is the lack of biomarkers. Reliable biomarkers are needed for early and accurate diagnosis, to measure disease progression and response to therapy. In this review several of the most promising cerebrospinal biomarker candidates are discussed. Alpha synuclein seems to be intimately involved in the pathogenesis of synucleinopathies and its levels can be measured in the cerebrospinal fluid and in plasma. In a similar way, tau protein accumulation seems to be involved in the pathogenesis of tauopathies. Urate, a potent antioxidant, seems to be associated to the risk of developing PD and with its progression. Neurofilament light chain levels are increased in atypical parkinsonian disorders compared with PD and healthy controls. The new "omics" techniques are potent tools offering new insights in the patho-etiology of these disorders. Some of the difficulties encountered in developing biomarkers are discussed together with future perspectives.

  18. Sparse discriminant analysis for breast cancer biomarker identification and classification

    Institute of Scientific and Technical Information of China (English)

    Yu Shi; Daoqing Dai; Chaochun Liu; Hong Yan

    2009-01-01

    Biomarker identification and cancer classification are two important procedures in microarray data analysis. We propose a novel uni-fied method to carry out both tasks. We first preselect biomarker candidates by eliminating unrelated genes through the BSS/WSS ratio filter to reduce computational cost, and then use a sparse discriminant analysis method for simultaneous biomarker identification and cancer classification. Moreover, we give a mathematical justification about automatic biomarker identification. Experimental results show that the proposed method can identify key genes that have been verified in biochemical or biomedical research and classify the breast cancer type correctly.

  19. A Bioinformatics Filtering Strategy for Identifying Radiation Response Biomarker Candidates

    Science.gov (United States)

    Oh, Jung Hun; Wong, Harry P.; Wang, Xiaowei; Deasy, Joseph O.

    2012-01-01

    The number of biomarker candidates is often much larger than the number of clinical patient data points available, which motivates the use of a rational candidate variable filtering methodology. The goal of this paper is to apply such a bioinformatics filtering process to isolate a modest number (<10) of key interacting genes and their associated single nucleotide polymorphisms involved in radiation response, and to ultimately serve as a basis for using clinical datasets to identify new biomarkers. In step 1, we surveyed the literature on genetic and protein correlates to radiation response, in vivo or in vitro, across cellular, animal, and human studies. In step 2, we analyzed two publicly available microarray datasets and identified genes in which mRNA expression changed in response to radiation. Combining results from Step 1 and Step 2, we identified 20 genes that were common to all three sources. As a final step, a curated database of protein interactions was used to generate the most statistically reliable protein interaction network among any subset of the 20 genes resulting from Steps 1 and 2, resulting in identification of a small, tightly interacting network with 7 out of 20 input genes. We further ranked the genes in terms of likely importance, based on their location within the network using a graph-based scoring function. The resulting core interacting network provides an attractive set of genes likely to be important to radiation response. PMID:22768051

  20. A bioinformatics filtering strategy for identifying radiation response biomarker candidates.

    Directory of Open Access Journals (Sweden)

    Jung Hun Oh

    Full Text Available The number of biomarker candidates is often much larger than the number of clinical patient data points available, which motivates the use of a rational candidate variable filtering methodology. The goal of this paper is to apply such a bioinformatics filtering process to isolate a modest number (<10 of key interacting genes and their associated single nucleotide polymorphisms involved in radiation response, and to ultimately serve as a basis for using clinical datasets to identify new biomarkers. In step 1, we surveyed the literature on genetic and protein correlates to radiation response, in vivo or in vitro, across cellular, animal, and human studies. In step 2, we analyzed two publicly available microarray datasets and identified genes in which mRNA expression changed in response to radiation. Combining results from Step 1 and Step 2, we identified 20 genes that were common to all three sources. As a final step, a curated database of protein interactions was used to generate the most statistically reliable protein interaction network among any subset of the 20 genes resulting from Steps 1 and 2, resulting in identification of a small, tightly interacting network with 7 out of 20 input genes. We further ranked the genes in terms of likely importance, based on their location within the network using a graph-based scoring function. The resulting core interacting network provides an attractive set of genes likely to be important to radiation response.

  1. Biomarker Identification Using Text Mining

    Directory of Open Access Journals (Sweden)

    Hui Li

    2012-01-01

    Full Text Available Identifying molecular biomarkers has become one of the important tasks for scientists to assess the different phenotypic states of cells or organisms correlated to the genotypes of diseases from large-scale biological data. In this paper, we proposed a text-mining-based method to discover biomarkers from PubMed. First, we construct a database based on a dictionary, and then we used a finite state machine to identify the biomarkers. Our method of text mining provides a highly reliable approach to discover the biomarkers in the PubMed database.

  2. Testing of the OMERACT 8 draft validation criteria for a soluble biomarker reflecting structural damage in rheumatoid arthritis: a systematic literature search on 5 candidate biomarkers

    DEFF Research Database (Denmark)

    Syversen, Silje W; Landewe, Robert; van der Heijde, Désirée;

    2009-01-01

    OBJECTIVE: To test the OMERACT 8 draft validation criteria for soluble biomarkers by assessing the strength of literature evidence in support of 5 candidate biomarkers. METHODS: A systematic literature search was conducted on the 5 soluble biomarkers RANKL, osteoprotegerin (OPG), matrix...... metalloprotease (MMP-3), urine C-telopeptide of types I and II collagen (U-CTX-I and U CTX-II), focusing on the 14 OMERACT 8 criteria. Two electronic voting exercises were conducted to address: (1) strength of evidence for each biomarker as reflecting structural damage according to each individual criterion...... and the importance of each individual criterion; (2) overall strength of evidence in support of each of the 5 candidate biomarkers as reflecting structural damage endpoints in rheumatoid arthritis (RA) and identification of omissions to the criteria set. RESULTS: The search identified 111 articles. The strength...

  3. Identification of a novel biomarker candidate, a 4.8-kDa peptide fragment from a neurosecretory protein VGF precursor, by proteomic analysis of cerebrospinal fluid from children with acute encephalopathy using SELDI-TOF-MS

    Directory of Open Access Journals (Sweden)

    Fujino Osamu

    2011-08-01

    Full Text Available Abstract Background Acute encephalopathy includes rapid deterioration and has a poor prognosis. Early intervention is essential to prevent progression of the disease and subsequent neurologic complications. However, in the acute period, true encephalopathy cannot easily be differentiated from febrile seizures, especially febrile seizures of the complex type. Thus, an early diagnostic marker has been sought in order to enable early intervention. The purpose of this study was to identify a novel marker candidate protein differentially expressed in the cerebrospinal fluid (CSF of children with encephalopathy using proteomic analysis. Methods For detection of biomarkers, CSF samples were obtained from 13 children with acute encephalopathy and 42 children with febrile seizure. Mass spectral data were generated by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS technology, which is currently applied in many fields of biological and medical sciences. Diagnosis was made by at least two pediatric neurologists based on the clinical findings and routine examinations. All specimens were collected for diagnostic tests and the remaining portion of the specimens were used for the SELDI-TOF MS investigations. Results In experiment 1, CSF from patients with febrile seizures (n = 28, patients with encephalopathy (n = 8 (including influenza encephalopathy (n = 3, encephalopathy due to rotavirus (n = 1, human herpes virus 6 (n = 1 were used for the SELDI analysis. In experiment 2, SELDI analysis was performed on CSF from a second set of febrile seizure patients (n = 14 and encephalopathy patients (n = 5. We found that the peak with an m/z of 4810 contributed the most to the separation of the two groups. After purification and identification of the 4.8-kDa protein, a 4.8-kDa proteolytic peptide fragment from the neurosecretory protein VGF precursor (VGF4.8 was identified as a novel biomarker for encephalopathy. Conclusions

  4. Serum Glycoprotein Biomarker Discovery and Qualification Pipeline Reveals Novel Diagnostic Biomarker Candidates for Esophageal Adenocarcinoma.

    Science.gov (United States)

    Shah, Alok K; Cao, Kim-Anh Lê; Choi, Eunju; Chen, David; Gautier, Benoît; Nancarrow, Derek; Whiteman, David C; Saunders, Nicholas A; Barbour, Andrew P; Joshi, Virendra; Hill, Michelle M

    2015-11-01

    We report an integrated pipeline for efficient serum glycoprotein biomarker candidate discovery and qualification that may be used to facilitate cancer diagnosis and management. The discovery phase used semi-automated lectin magnetic bead array (LeMBA)-coupled tandem mass spectrometry with a dedicated data-housing and analysis pipeline; GlycoSelector (http://glycoselector.di.uq.edu.au). The qualification phase used lectin magnetic bead array-multiple reaction monitoring-mass spectrometry incorporating an interactive web-interface, Shiny mixOmics (http://mixomics-projects.di.uq.edu.au/Shiny), for univariate and multivariate statistical analysis. Relative quantitation was performed by referencing to a spiked-in glycoprotein, chicken ovalbumin. We applied this workflow to identify diagnostic biomarkers for esophageal adenocarcinoma (EAC), a life threatening malignancy with poor prognosis in the advanced setting. EAC develops from metaplastic condition Barrett's esophagus (BE). Currently diagnosis and monitoring of at-risk patients is through endoscopy and biopsy, which is expensive and requires hospital admission. Hence there is a clinical need for a noninvasive diagnostic biomarker of EAC. In total 89 patient samples from healthy controls, and patients with BE or EAC were screened in discovery and qualification stages. Of the 246 glycoforms measured in the qualification stage, 40 glycoforms (as measured by lectin affinity) qualified as candidate serum markers. The top candidate for distinguishing healthy from BE patients' group was Narcissus pseudonarcissus lectin (NPL)-reactive Apolipoprotein B-100 (p value = 0.0231; AUROC = 0.71); BE versus EAC, Aleuria aurantia lectin (AAL)-reactive complement component C9 (p value = 0.0001; AUROC = 0.85); healthy versus EAC, Erythroagglutinin Phaseolus vulgaris (EPHA)-reactive gelsolin (p value = 0.0014; AUROC = 0.80). A panel of 8 glycoforms showed an improved AUROC of 0.94 to discriminate EAC from BE. Two biomarker candidates

  5. Cystatin C: a candidate biomarker for amyotrophic lateral sclerosis.

    Directory of Open Access Journals (Sweden)

    Meghan E Wilson

    Full Text Available Amyotrophic lateral sclerosis (ALS is a fatal neurologic disease characterized by progressive motor neuron degeneration. Clinical disease management is hindered by both a lengthy diagnostic process and the absence of effective treatments. Reliable panels of diagnostic, surrogate, and prognostic biomarkers are needed to accelerate disease diagnosis and expedite drug development. The cysteine protease inhibitor cystatin C has recently gained interest as a candidate diagnostic biomarker for ALS, but further studies are required to fully characterize its biomarker utility. We used quantitative enzyme-linked immunosorbent assay (ELISA to assess initial and longitudinal cerebrospinal fluid (CSF and plasma cystatin C levels in 104 ALS patients and controls. Cystatin C levels in ALS patients were significantly elevated in plasma and reduced in CSF compared to healthy controls, but did not differ significantly from neurologic disease controls. In addition, the direction of longitudinal change in CSF cystatin C levels correlated to the rate of ALS disease progression, and initial CSF cystatin C levels were predictive of patient survival, suggesting that cystatin C may function as a surrogate marker of disease progression and survival. These data verify prior results for reduced cystatin C levels in the CSF of ALS patients, identify increased cystatin C levels in the plasma of ALS patients, and reveal correlations between CSF cystatin C levels to both ALS disease progression and patient survival.

  6. Phosphorylated tau as a candidate biomarker for amyotrophic lateral sclerosis.

    Science.gov (United States)

    Grossman, Murray; Elman, Lauren; McCluskey, Leo; McMillan, Corey T; Boller, Ashley; Powers, John; Rascovsky, Katya; Hu, William; Shaw, Les; Irwin, David J; Lee, Virginia M-Y; Trojanowski, John Q

    2014-04-01

    An increasingly varied clinical spectrum of cases with amyotrophic lateral sclerosis (ALS) has been identified, and objective criteria for clinical trial eligibility are necessary. To develop a cerebrospinal fluid (CSF) biomarker sensitive and specific for the diagnosis of ALS. A case-control study including 51 individuals with ALS and 23 individuals with a disorder associated with a 4-repeat tauopathy was conducted at an academic medical center. The CSF level of tau phosphorylated at threonine 181 (ptau) and ratio of ptau to total tau (ttau). Using a cross-validation prediction procedure, we found significantly reduced CSF levels of ptau and the ptau:ttau ratio in ALS relative to 4-repeat tauopathy and to controls. In the validation cohort, the receiver operating characteristic area under the curve for the ptau:ttau ratio was 0.916, and the comparison of ALS with 4-repeat tauopathy showed 92.0% sensitivity and 91.7% specificity. Correct classification based on a low CSF ptau:ttau ratio was confirmed in 18 of 21 cases (86%) with autopsy-proved or genetically determined disease. In patients with available measures, ptau:ttau in ALS correlated with clinical measures of disease severity, such as the Mini-Mental State Examination (n = 51) and ALS Functional Rating Scale-Revised (n = 42), and regression analyses related the ptau:ttau ratio to magnetic resonance imaging (n = 10) evidence of disease in the corticospinal tract and white matter projections involving the prefrontal cortex. The CSF ptau:ttau ratio may be a candidate biomarker to provide objective support for the diagnosis of ALS.

  7. PHOSPHORYLATED TAU: CANDIDATE BIOMARKER FOR AMYOTROPHIC LATERAL SCLEROSIS

    Science.gov (United States)

    Grossman, Murray; Elman, Lauren; McCluskey, Leo; McMillan, Corey T.; Boller, Ashley; Powers, John; Rascovsky, Katya; Hu, William; Shaw, Les; Irwin, David J.; Lee, Virginia M.-Y.; Trojanowski, John Q.

    2014-01-01

    IMPORTANCE An increasingly varied clinical spectrum of cases with amyotrophic lateral sclerosis (ALS) has been identified, and objective criteria for clinical trial eligibility is necessary. OBJECTIVE We sought to develop a cerebrospinal fluid (CSF) biomarker sensitive and specific for the diagnosis of ALS. DESIGN Case-control study. SETTING Academic medical center. PARTICIPANTS 51 individuals with ALS and 23 individuals with a disorder associated with a four-repeat tauopathy (4R-tau). MAIN OUTCOME MEASURE CSF level of tau phosophorylated at threonine 181 (ptau), and ratio of ptau to total tau (ttau). RESULTS Using a cross-validation prediction procedure, we found significantly reduced CSF levels of ptau and ptau:ttau in ALS relative to 4R-tau and to controls. In the validation cohort, the receiver operating characteristic area under the curve for the ptau:ttau ratio was 0.916, and the comparison of ALS to 4R-tau showed sensitivity=92% and specificity=91.7%. Correct classification based on low CSF ptau:ttau was confirmed in 18 (85.7%) of 21 cases with autopsy-proven or genetically-determined disease. In patients with available measures, ptau:ttau in ALS correlated with clinical measures of disease severity such as Mini Mental State Exam (n=51) and ALS Functional Rating Scale-Revised (n=42), and regression analyses related ptau:ttau to MRI (n=10) evidence of disease in the corticospinal tract and white matter projections involving prefrontal cortex. CONCLUSIONS AND RELEVANCE CSF ptau:ttau may be a candidate biomarker to provide objective support for the diagnosis of ALS. PMID:24492862

  8. Identification of DNA methylation biomarkers from Infinium arrays

    Directory of Open Access Journals (Sweden)

    Richard D Emes

    2012-08-01

    Full Text Available Epigenetic modifications of DNA, such as cytosine methylation are differentially abundant in diseases such as cancer. A goal for clinical research is finding sites that are differentially methylated between groups of samples to act as potential biomarkers for disease outcome. However, clinical samples are often limited in availability, represent a heterogeneous collection of cells or are of uncertain clinical class. Array based methods for identification of methylation provide a cost effective method to survey a proportion of the methylome at single base resolution. The Illumina Infinium array has become a popular and reliable high throughput method in this field and are proving useful in the identification of biomarkers for disease. Here, we compare a commonly used statistical test with a new intuitive and flexible computational approach to quickly detect differentially methylated sites. The method rapidly identifies and ranks candidate lists with greatest inter-group variability whilst controlling for intra-group variability. Intuitive and biologically relevant filters can be imposed to quickly identify sites and genes of interest.

  9. CSF CXCL10, CXCL9, and neopterin as candidate prognostic biomarkers for HTLV-1-associated myelopathy/tropical spastic paraparesis.

    Directory of Open Access Journals (Sweden)

    Tomoo Sato

    Full Text Available BACKGROUND: Human T-lymphotropic virus type 1 (HTLV-1 -associated myelopathy/tropical spastic paraparesis (HAM/TSP is a rare chronic neuroinflammatory disease. Since the disease course of HAM/TSP varies among patients, there is a dire need for biomarkers capable of predicting the rate of disease progression. However, there have been no studies to date that have compared the prognostic values of multiple potential biomarkers for HAM/TSP. METHODOLOGY/PRINCIPAL FINDINGS: Peripheral blood and cerebrospinal fluid (CSF samples from HAM/TSP patients and HTLV-1-infected control subjects were obtained and tested retrospectively for several potential biomarkers, including chemokines and other cytokines, and nine optimal candidates were selected based on receiver operating characteristic (ROC analysis. Next, we evaluated the relationship between these candidates and the rate of disease progression in HAM/TSP patients, beginning with a first cohort of 30 patients (Training Set and proceeding to a second cohort of 23 patients (Test Set. We defined "deteriorating HAM/TSP" as distinctly worsening function (≥3 grades on Osame's Motor Disability Score (OMDS over four years and "stable HAM/TSP" as unchanged or only slightly worsened function (1 grade on OMDS over four years, and we compared the levels of the candidate biomarkers in patients divided into these two groups. The CSF levels of chemokine (C-X-C motif ligand 10 (CXCL10, CXCL9, and neopterin were well-correlated with disease progression, better even than HTLV-1 proviral load in PBMCs. Importantly, these results were validated using the Test Set. CONCLUSIONS/SIGNIFICANCE: As the CSF levels of CXCL10, CXCL9, and neopterin were the most strongly correlated with rate of disease progression, they represent the most viable candidates for HAM/TSP prognostic biomarkers. The identification of effective prognostic biomarkers could lead to earlier detection of high-risk patients, more patient-specific treatment

  10. 2-Furoylglycine as a Candidate Biomarker of Coffee Consumption.

    Science.gov (United States)

    Heinzmann, Silke S; Holmes, Elaine; Kochhar, Sunil; Nicholson, Jeremy K; Schmitt-Kopplin, Philippe

    2015-09-30

    Specific and sensitive food biomarkers are necessary to support dietary intake assessment and link nutritional habits to potential impact on human health. A multistep nutritional intervention study was conducted to suggest novel biomarkers for coffee consumption. (1)H NMR metabolic profiling combined with multivariate data analysis resolved 2-furoylglycine (2-FG) as a novel putative biomarker for coffee consumption. We relatively quantified 2-FG in the urine of coffee drinkers and investigated its origin, metabolism, and excretion kinetics. When searching for its potential precursors, we found different furan derivatives in coffee products, which are known to get metabolized to 2-FG. Maximal urinary excretion of 2-FG occurred 2 h after consumption (p = 0.0002) and returned to baseline after 24 h (p = 0.74). The biomarker was not excreted after consumption of coffee substitutes such as tea and chicory coffee and might therefore be a promising acute biomarker for the detection of coffee consumption in human urine.

  11. Preclinical biomarkers for a cyclin-dependent kinase inhibitor translate to candidate pharmacodynamic biomarkers in phase I patients.

    Science.gov (United States)

    Berkofsky-Fessler, Windy; Nguyen, Tri Q; Delmar, Paul; Molnos, Juliette; Kanwal, Charu; DePinto, Wanda; Rosinski, James; McLoughlin, Patricia; Ritland, Steve; DeMario, Mark; Tobon, Krishna; Reidhaar-Olson, John F; Rueger, Ruediger; Hilton, Holly

    2009-09-01

    A genomics-based approach to identify pharmacodynamic biomarkers was used for a cyclin-dependent kinase inhibitory drug. R547 is a potent cyclin-dependent kinase inhibitor with a potent antiproliferative effect at pharmacologically relevant doses and is currently in phase I clinical trials. Using preclinical data derived from microarray experiments, we identified pharmacodynamic biomarkers to test in blood samples from patients in clinical trials. These candidate biomarkers were chosen based on several criteria: relevance to the mechanism of action of R547, dose responsiveness in preclinical models, and measurable expression in blood samples. We identified 26 potential biomarkers of R547 action and tested their clinical validity in patient blood samples by quantitative real-time PCR analysis. Based on the results, eight genes (FLJ44342, CD86, EGR1, MKI67, CCNB1, JUN, HEXIM1, and PFAAP5) were selected as dose-responsive pharmacodynamic biomarkers for phase II clinical trials.

  12. Metabolomic Biomarker Identification in Presence of Outliers and Missing Values.

    Science.gov (United States)

    Kumar, Nishith; Hoque, Md Aminul; Shahjaman, Md; Islam, S M Shahinul; Mollah, Md Nurul Haque

    2017-01-01

    Metabolomics is the sophisticated and high-throughput technology based on the entire set of metabolites which is known as the connector between genotypes and phenotypes. For any phenotypic changes, potential metabolite (biomarker) identification is very important because it provides diagnostic as well as prognostic markers and can help to develop new biomolecular therapy. Biomarker identification from metabolomics data analysis is hampered by the use of high-throughput technology that provides high dimensional data matrix which contains missing values as well as outliers. However, missing value imputation and outliers handling techniques play important role in identifying biomarker correctly. Although several missing value imputation techniques are available, outliers deteriorate the accuracy of imputation as well as the accuracy of biomarker identification. Therefore, in this paper we have proposed a new biomarker identification technique combining the groupwise robust singular value decomposition, t-test, and fold-change approach that can identify biomarkers more correctly from metabolomics dataset. We have also compared the performance of the proposed technique with those of other traditional techniques for biomarker identification using both simulated and real data analysis in absence and presence of outliers. Using our proposed method in hepatocellular carcinoma (HCC) dataset, we have also identified the four upregulated and two downregulated metabolites as potential metabolomic biomarkers for HCC disease.

  13. Proteome analysis of acute kidney injury - Discovery of new predominantly renal candidates for biomarker of kidney disease.

    Science.gov (United States)

    Malagrino, Pamella Araujo; Venturini, Gabriela; Yogi, Patrícia Schneider; Dariolli, Rafael; Padilha, Kallyandra; Kiers, Bianca; Gois, Tamiris Carneiro; Cardozo, Karina Helena Morais; Carvalho, Valdemir Melechco; Salgueiro, Jéssica Silva; Girardi, Adriana Castello Costa; Titan, Silvia Maria de Oliveira; Krieger, José Eduardo; Pereira, Alexandre Costa

    2017-01-16

    The main bottleneck in studies aiming to identify novel biomarkers in acute kidney injury (AKI) has been the identification of markers that are organ and process specific. Here, we have used different tissues from a controlled porcine renal ischemia/reperfusion (I/R) model to identify new, predominantly renal biomarker candidates for kidney disease. Urine and serum samples were analyzed in pre-ischemia, ischemia (60min) and 4, 11 and 16h post-reperfusion, and renal cortex samples after 24h of reperfusion. Peptides were analyzed on the Q-Exactive™. In renal cortex proteome, we observed an increase in the synthesis of proteins in the ischemic kidney compared to the contralateral, highlighted by transcription factors and epithelial adherens junction proteins. Intersecting the set of proteins up- or down-regulated in the ischemic tissue with both serum and urine proteomes, we identified 6 proteins in the serum that may provide a set of targets for kidney injury. Additionally, we identified 49, being 4 predominantly renal, proteins in urine. As prove of concept, we validated one of the identified biomarkers, dipeptidyl peptidase IV, in a set of patients with diabetic nephropathy. In conclusion, we identified 55 systemic proteins, some of them predominantly renal, candidates for biomarkers of renal disease.

  14. Neutrophils, a candidate biomarker and target for radiation therapy?

    Science.gov (United States)

    Schernberg, Antoine; Blanchard, Pierre; Chargari, Cyrus; Deutsch, Eric

    2017-08-23

    Neutrophils are the most abundant blood-circulating white blood cells, continuously generated in the bone marrow. Growing evidence suggests they regulate the innate and adaptive immune system during tumor evolution. This review will first summarize the recent findings on neutrophils as a key player in cancer evolution, then as a potential biomarker, and finally as therapeutic targets, with respective focuses on the interplay with radiation therapy. A complex interplay: Neutrophils have been associated with tumor progression through multiple pathways. Ionizing radiation has cytotoxic effects on cancer cells, but the sensitivity to radiation therapy in vivo differ from isolated cancer cells in vitro, partially due to the tumor microenvironment. Different microenvironmental states, whether baseline or induced, can modulate or even attenuate the effects of radiation, with consequences for therapeutic efficacy. Inflammatory biomarkers: Inflammation-based scores have been widely studied as prognostic biomarkers in cancer patients. We have performed a large retrospective cohort of patients undergoing radiation therapy (1233 patients), with robust relationship between baseline blood neutrophil count and 3-year's patient's overall survival in patients with different cancer histologies. (Pearson's correlation test: p = .001, r = -.93). Therapeutic approaches: Neutrophil-targeting agents are being developed for the treatment of inflammatory and autoimmune diseases. Neutrophils either can exert antitumoral (N1 phenotype) or protumoral (N2 phenotype) activity, depending on the Tumor Micro Environment. Tumor associated N2 neutrophils are characterized by high expression of CXCR4, VEGF, and gelatinase B/MMP9. TGF-β within the tumor microenvironment induces a population of TAN with a protumor N2 phenotype. TGF-β blockade slows tumor growth through activation of CD8 + T cells, macrophages, and tumor associated neutrophils with an antitumor N1 phenotype. This supports

  15. Development of a label-free LC-MS/MS strategy to approach the identification of candidate protein biomarkers of disease recurrence in prostate cancer patients in a clinical trial of combined hormone and radiation therapy.

    LENUS (Irish Health Repository)

    Morrissey, Brian

    2013-06-01

    Combined hormone and radiation therapy (CHRT) is one of the principle curative regimes for localised prostate cancer (PCa). Following treatment, many patients subsequently experience disease recurrence however; current diagnostics tests fail to predict the onset of disease recurrence. Biomarkers that address this issue would be of significant advantage.

  16. Evaluation of the biomarker candidate MFAP4 for non-invasive assessment of hepatic fibrosis in hepatitis C patients

    DEFF Research Database (Denmark)

    Bracht, Thilo; Mölleken, Christian; Ahrens, Maike;

    2016-01-01

    BACKGROUND: The human microfibrillar-associated protein 4 (MFAP4) is located to extracellular matrix fibers and plays a role in disease-related tissue remodeling. Previously, we identified MFAP4 as a serum biomarker candidate for hepatic fibrosis and cirrhosis in hepatitis C patients. The aim...... in a retrospective study including n = 542 hepatitis C patients. We applied a univariate logistic regression model based on MFAP4 serum levels and furthermore derived a multivariate model including also age and gender. Youden-optimal cutoffs for binary classification were determined for both models without......). CONCLUSIONS: We confirmed the applicability of MFAP4 as a novel serum biomarker for assessment of hepatic fibrosis and identification of high-risk patients with severe fibrosis stages in hepatitis C. The combination of MFAP4 with existing tests might lead to a more accurate non-invasive diagnosis of hepatic...

  17. Validation of Candidate Serum Ovarian Cancer Biomarkers for Early Detection

    Directory of Open Access Journals (Sweden)

    Feng Su

    2007-01-01

    Full Text Available Objective: We have previously analyzed protein profi les using Surface Enhanced Laser Desorption and Ionization Time-Of-Flight Mass Spectroscopy (SELDI-TOF-MS [Kozak et al. 2003, Proc. Natl. Acad. Sci. U.S.A. 100:12343–8] and identified 3 differentially expressed serum proteins for the diagnosis of ovarian cancer (OC [Kozak et al. 2005, Proteomics, 5:4589–96], namely, apolipoprotein A-I (apoA-I, transthyretin (TTR and transferin (TF. The objective of the present study is to determine the efficacy of the three OC biomarkers for the detection of early stage (ES OC, in direct comparison to CA125.Methods: The levels of CA125, apoA-I, TTR and TF were measured in 392 serum samples [82 women with normal ovaries (N, 24 women with benign ovarian tumors (B, 85 women with ovarian tumors of low malignant potential (LMP, 126 women with early stage ovarian cancer (ESOC, and 75 women with late stage ovarian cancer (LSOC], obtained through the GOG and Cooperative Human Tissue Network. Following statistical analysis, multivariate regression models were built to evaluate the utility of the three OC markers in early detection.Results: Multiple logistic regression models (MLRM utilizing all biomarker values (CA125, TTR, TF and apoA-I from all histological subtypes (serous, mucinous, and endometrioid adenocarcinoma distinguished normal samples from LMP with 91% sensitivity (specifi city 92%, and normal samples from ESOC with a sensitivity of 89% (specifi city 92%. MLRM, utilizing values of all four markers from only the mucinous histological subtype showed that collectively, CA125, TTR, TF and apoA-I, were able to distinguish normal samples from mucinous LMP with 90% sensitivity, and further distinguished normal samples from early stage mucinous ovarian cancer with a sensitivity of 95%. In contrast, in serum samples from patients with mucinous tumors, CA125 alone was able to distinguish normal samples from LMP and early stage ovarian cancer with a sensitivity of

  18. Sets of serum exosomal microRNAs as candidate diagnostic biomarkers for Kawasaki disease

    Science.gov (United States)

    Jia, Hong-Ling; Liu, Chao-Wu; Zhang, Li; Xu, Wei-Jun; Gao, Xue-Juan; Bai, Jun; Xu, Yu-Fen; Xu, Ming-Guo; Zhang, Gong

    2017-01-01

    Although Kawasaki disease is the main cause of acquired heart disease in children, no diagnostic biomarkers are available. We aimed to identify candidate biomarkers for diagnosing Kawasaki disease using serum exosomal microRNAs (miRNAs). Using frozen serum samples from a biobank, high-throughput microarray technologies, two-stage real-time quantitative PCR, and a self-referencing strategy for data normalization, we narrowed down the list of biomarker candidates to a set of 4 miRNAs. We further validated the diagnostic capabilities of the identified miRNAs (namely, CT(miR-1246)-CT(miR-4436b-5p) and CT(miR-197-3p)-CT(miR-671-5p)) in 79 samples from two hospitals. We found that this 4-miRNA set could distinguish KD patients from other febrile patients as well as from healthy individuals in a single pass, with a minimal rate of false positives and negatives. We thus propose, for the first time, that serum exosomal miRNAs represent candidate diagnostic biomarkers for Kawasaki disease. Additionally, we describe an effective strategy of screening for biomarkers of complex diseases even when little mechanistic knowledge is available. PMID:28317854

  19. Neuropathological biomarker candidates in brain tumors: key issues for translational efficiency.

    Science.gov (United States)

    Hainfellner, J A; Heinzl, H

    2010-01-01

    Brain tumors comprise a large spectrum of rare malignancies in children and adults that are often associated with severe neurological symptoms and fatal outcome. Neuropathological tumor typing provides both prognostic and predictive tissue information which is the basis for optimal postoperative patient management and therapy. Molecular biomarkers may extend and refine prognostic and predictive information in a brain tumor case, providing more individualized and optimized treatment options. In the recent past a few neuropathological brain tumor biomarkers have translated smoothly into clinical use whereas many candidates show protracted translation. We investigated the causes of protracted translation of candidate brain tumor biomarkers. Considering the research environment from personal, social and systemic perspectives we identified eight determinants of translational success: methodology, funding, statistics, organization, phases of research, cooperation, self-reflection, and scientific progeny. Smoothly translating biomarkers are associated with low degrees of translational complexity whereas biomarkers with protracted translation are associated with high degrees. Key issues for translational efficiency of neuropathological brain tumor biomarker research seem to be related to (i) the strict orientation to the mission of medical research, that is the improval of medical practice as primordial purpose of research, (ii) definition of research priorities according to clinical needs, and (iii) absorption of translational complexities by means of operatively beneficial standards. To this end, concrete actions should comprise adequate scientific education of young investigators, and shaping of integrative diagnostics and therapy research both on the local level and the level of influential international brain tumor research platforms.

  20. Biomarkers for osteoarthritis: investigation, identification, and prognosis

    Directory of Open Access Journals (Sweden)

    Zhai G

    2012-06-01

    Full Text Available Guangju Zhai,1,2 Erfan Aref Eshghi11Faculty of Medicine, Memorial University of Newfoundland, St John's, NL, Canada; 2Department of Twin Research and Genetic Epidemiology, King's College London, London, UKAbstract: Osteoarthritis (OA is the most common form of arthritis and results in substantial morbidity and disability in the elderly, imposing a great economic burden on society. While there are drugs available on the market that mitigate pain and improve function, there are no disease-modifying osteoarthritis drugs, partly because there is no reliable method that can be used to identify early OA changes. There is a pressing need to develop reliable biomarkers that can inform on the process of joint destruction in OA. Such biomarkers could aid in drug development by identifying fast progressors and detecting early response to therapy, thus reducing patient numbers and time required for clinical trials. Over the last several years, dramatic advances in our understanding of the biochemistry of cartilage have led to a cascade of studies testing proteins as biomarkers of OA. Investigation of single-nucleotide polymorphisms as genetic biomarkers and the application of technologies such as metabolomics to OA are generating potentially additional biomarkers that could help detect early OA changes. This review summarizes the data on the investigation of biochemical and genetic markers in OA and highlights the new biomarkers that are recently reported and their application and limitation in the management of OA. However, despite the dramatic growth of knowledge concerning the discovery of a number of useful biomarkers, the real breakthrough in this area is still not achieved.Keywords: osteoarthritis, biochemical markers, metabolomics, genetics, epigenetics

  1. Metabolomics in the identification of biomarkers of dietary intake.

    Science.gov (United States)

    O'Gorman, Aoife; Gibbons, Helena; Brennan, Lorraine

    2013-01-01

    Traditional methods for assessing dietary exposure can be unreliable, with under reporting one of the main problems. In an attempt to overcome such problems there is increasing interest in identifying biomarkers of dietary intake to provide a more accurate measurement. Metabolomics is an analytical technique that aims to identify and quantify small metabolites. Recently, there has been an increased interest in the application of metabolomics coupled with statistical analysis for the identification of dietary biomarkers, with a number of putative biomarkers identified. This minireview focuses on metabolomics based approaches and highlights some of the key successes.

  2. Identification of cancer protein biomarkers using proteomic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Mor, Gil G; Ward, David C; Bray-Ward, Patricia

    2015-03-10

    The claimed invention describes methods to diagnose or aid in the diagnosis of cancer. The claimed methods are based on the identification of biomarkers which are particularly well suited to discriminate between cancer subjects and healthy subjects. These biomarkers were identified using a unique and novel screening method described herein. The biomarkers identified herein can also be used in the prognosis and monitoring of cancer. The invention comprises the use of leptin, prolactin, OPN and IGF-II for diagnosing, prognosis and monitoring of ovarian cancer.

  3. Identification of cancer protein biomarkers using proteomic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Mor, Gil G. (Cheshire, CT); Ward, David C. (Las Vegas, NV); Bray-Ward, Patricia (Las Vegas, NV)

    2010-02-23

    The claimed invention describes methods to diagnose or aid in the diagnosis of cancer. The claimed methods are based on the identification of biomarkers which are particularly well suited to discriminate between cancer subjects and healthy subjects. These biomarkers were identified using a unique and novel screening method described herein. The biomarkers identified herein can also be used in the prognosis and monitoring of cancer. The invention comprises the use of leptin, prolactin, OPN and IGF-II for diagnosing, prognosis and monitoring of ovarian cancer.

  4. Identification of cancer protein biomarkers using proteomic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Mor, Gil G.; Ward, David C.; Bray-Ward, Patricia

    2016-10-18

    The claimed invention describes methods to diagnose or aid in the diagnosis of cancer. The claimed methods are based on the identification of biomarkers which are particularly well suited to discriminate between cancer subjects and healthy subjects. These biomarkers were identified using a unique and novel screening method described herein. The biomarkers identified herein can also be used in the prognosis and monitoring of cancer. The invention comprises the use of leptin, prolactin, OPN and IGF-II for diagnosing, prognosis and monitoring of ovarian cancer.

  5. Whole genome homology-based identification of candidate genes ...

    African Journals Online (AJOL)

    Josephine Erhiakporeh

    2016-07-06

    Jul 6, 2016 ... identification of a set of 75 candidate genes (42, 22 and 11 from Arabidopsis, potato and tomato, ... understanding on the genetic basis of drought tolerance by using the .... Comparative genomics and genes expression assay ... Primer code ... physiological and molecular responses to drought stress.

  6. Application of proteomics in the discovery of candidate protein biomarkers in a Diabetes Autoantibody Standardization Program sample subset

    Energy Technology Data Exchange (ETDEWEB)

    Metz, Thomas O.; Qian, Weijun; Jacobs, Jon M.; Gritsenko, Marina A.; Moore, Ronald J.; Polpitiya, Ashoka D.; Monroe, Matthew E.; Camp, David G.; mueller, Patricia W.; Smith, Richard D.

    2008-02-01

    Objective. Before biomarkers predictive of type 1 diabetes can be evaluated in proficiency evaluations, they must be identified and validated in initial, exploratory studies. Hypothesis-driven comparative studies may be performed to identify candidate biomarkers but are limited to the current knowledge of metabolic, signaling, and inflammatory pathways in the context of type 1 diabetes. Alternatively, untargeted “-omics” approaches may be employed in profiling studies to identify candidate biomarkers of type 1 diabetes.

  7. Engineered gold nanoparticles for identification of novel ovarian biomarkers

    Science.gov (United States)

    Giri, Karuna

    Ovarian cancer is a leading cause of cancer related death among women in the US and worldwide. The disease has a high mortality rate due to limited tools available that can diagnose ovarian cancer at an early stage and the lack of effective treatments for disease free survival at late stages. Identification of proteins specifically expressed/overexpressed in ovarian cancer could lead to identification of novel diagnostic biomarkers and therapeutic targets that improve patient outcomes. In this regard, mass spectrometry is a powerful tool to probe the proteome of a cancer cell. It can aid discovery of proteins important for the pathophysiology of ovarian cancer. These proteins in turn could serve as diagnostic and treatment biomarkers of the disease. However, a limitation of mass spectrometry based proteomic analyses is that the technique lacks sensitivity and is biased against detection of low abundance proteins. With current approaches to biomarker discovery, we may therefore be overlooking candidate proteins that are important for ovarian cancer. This study presents a new approach to enrich low abundance proteins and subsequently detect them with mass spectrometry. Gold nanoparticles (AuNPs) and functionalization of their surfaces provide an excellent opportunity to capture and enrich low abundance proteins. First, the study focused on conducting an extensive investigation of the time evolution of nanoparticle-protein interaction and understanding drivers of protein attachment on nanoparticle surface. The adsorption of proteins to AuNPs was found to be highly dynamic with multiple attachment and detachment events which decreased over time. Initially, electrostatic forces played an important role in protein binding and structurally flexible proteins such as those involved in RNA processing were more likely to bind to AuNPs. More importantly, the feasibility and success of protein enrichment by AuNPs was evaluated. The AuNPs based approach was able to detect

  8. A targeted proteomic strategy for the measurement of oral cancer candidate biomarkers in human saliva.

    Science.gov (United States)

    Kawahara, Rebeca; Bollinger, James G; Rivera, César; Ribeiro, Ana Carolina P; Brandão, Thaís Bianca; Paes Leme, Adriana F; MacCoss, Michael J

    2016-01-01

    Head and neck cancers, including oral squamous cell carcinoma (OSCC), are the sixth most common malignancy in the world and are characterized by poor prognosis and a low survival rate. Saliva is oral fluid with intimate contact with OSCC. Besides non-invasive, simple, and rapid to collect, saliva is a potential source of biomarkers. In this study, we build an SRM assay that targets fourteen OSCC candidate biomarker proteins, which were evaluated in a set of clinically-derived saliva samples. Using Skyline software package, we demonstrated a statistically significant higher abundance of the C1R, LCN2, SLPI, FAM49B, TAGLN2, CFB, C3, C4B, LRG1, SERPINA1 candidate biomarkers in the saliva of OSCC patients. Furthermore, our study also demonstrated that CFB, C3, C4B, SERPINA1 and LRG1 are associated with the risk of developing OSCC. Overall, this study successfully used targeted proteomics to measure in saliva a panel of biomarker candidates for OSCC.

  9. Proteomic profiling of exosomes leads to the identification of novel biomarkers for prostate cancer.

    Directory of Open Access Journals (Sweden)

    Diederick Duijvesz

    Full Text Available BACKGROUND: Current markers for prostate cancer, such as PSA lack specificity. Therefore, novel biomarkers are needed. Unfortunately, the complexity of body fluids often hampers biomarker discovery. An attractive alternative approach is the isolation of small vesicles, i.e. exosomes, ∼100 nm, which contain proteins that are specific to the tissue from which they are derived and therefore can be considered as treasure chests for disease-specific biomarker discovery. MATERIALS AND METHODS: Exosomes were isolated from 2 immortalized primary prostate epithelial cells (PNT2C2 and RWPE-1 and 2 PCa cell lines (PC346C and VCaP by ultracentrifugation. After tryptic digestion, proteomic analyses utilized a nanoLC coupled with an LTQ-Orbitrap operated in tandem MS (MS/MS mode. Accurate Mass and Time (AMT tag approach was employed for peptide identification and quantitation. Candidate biomarkers were validated by Western blotting and Immunohistochemistry. RESULTS: Proteomic characterization resulted in the identification of 248, 233, 169, and 216 proteins by at least 2 peptides in exosomes from PNT2C2, RWPE-1, PC346C, and VCaP, respectively. Statistical analyses revealed 52 proteins differently abundant between PCa and control cells, 9 of which were more abundant in PCa. Validation by Western blotting confirmed a higher abundance of FASN, XPO1 and PDCD6IP (ALIX in PCa exosomes. CONCLUSIONS: Identification of exosomal proteins using high performance LC-FTMS resulted in the discovery of PDCD6IP, FASN, XPO1 and ENO1 as new candidate biomarkers for prostate cancer.

  10. Enrichment of MCI and early Alzheimer's disease treatment trials using neurochemical and imaging candidate biomarkers.

    LENUS (Irish Health Repository)

    Hampel, H

    2012-02-01

    In the earliest clinical stages of Alzheimer\\'s Disease (AD), when symptoms are mild, clinical diagnosis will still be difficult. AD related molecular mechanisms precede symptoms. Biological markers can serve as early diagnostic indicators, as markers of preclinical pathological change, e.g. underlying mechanisms of action (MoA). Hypothesis based candidates are derived from structural and functional neuroimaging as well as from cerebrospinal fluid (CSF) and plasma. Unbiased exploratory approaches e.g. proteome analysis or rater independent fully automated imaging post-processing methods yield novel candidates. Recent progress in the validation of core feasible imaging and neurochemical biomarkers for functions such as early detection, classification, progression and prediction of AD is summarized. Single core feasible biomarkers can already be used to enrich populations at risk for AD and may be further enhanced using distinct combinations. Some biomarkers are currently in the process of implementation as primary or secondary outcome variables into regulatory guideline documents, e.g. regarding phase II in drug development programs as outcome measures in proof of concept or dose finding studies. There are specific biomarkers available depending on the hypothesized mechanism of action of a medicinal product, e.g. impact on the amyloidogenic cascade or on tauhyperphosphorylation. Ongoing large-scale international controlled multi-center trials will provide further validation of selected core feasible imaging and CSF biomarker candidates as outcome measures in early AD for use in phase III clinical efficacy trials. There is a need of rigorous co-development of biological trait- and statemarker candidates facilitated through planned synergistic collaboration between academic, industrial and regulatory partners.

  11. Clinical Neuropathology practice news 2-2014: ATRX, a new candidate biomarker in gliomas.

    Science.gov (United States)

    Haberler, Christine; Wöhrer, Adelheid

    2014-01-01

    Genome-wide molecular approaches have substantially elucidated molecular alterations and pathways involved in the oncogenesis of brain tumors. In gliomas, several molecular biomarkers including IDH mutation, 1p/19q co-deletion, and MGMT promotor methylation status have been introduced into neuropathological practice. Recently, mutations of the ATRX gene have been found in various subtypes and grades of gliomas and were shown to refine the prognosis of malignant gliomas in combination with IDH and 1p/19q status. Mutations of ATRX are associated with loss of nuclear ATRX protein expression, detectable by a commercially available antibody, thus turning ATRX into a promising prognostic candidate biomarker in the routine neuropathological setting.

  12. Multicentre quality control evaluation of different biomarker candidates for amyotrophic lateral sclerosis.

    Science.gov (United States)

    Lehnert, Stefan; Costa, Julia; de Carvalho, Mamede; Kirby, Janine; Kuzma-Kozakiewicz, Magdalena; Morelli, Claudia; Robberecht, Wim; Shaw, Pamela; Silani, Vincenzo; Steinacker, Petra; Tumani, Hayrettin; Van Damme, Philip; Ludolph, Albert; Otto, Markus

    2014-09-01

    Abstract Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron disease that mainly causes degeneration of the upper and lower motor neurons, ultimately leading to paralysis and death within three to five years after first symptoms. The pathological mechanisms leading to ALS are still not completely understood. Several biomarker candidates have been proposed in cerebrospinal fluid (CSF). However, none of these has successfully translated into clinical routine. Part of the reason for this failure to translate may relate to differences across laboratories. For this reason, several of the most commonly used ALS biomarker candidates were evaluated on clinically well-defined ALS samples from six European centres in a multicentre sample-collection approach with centralized sample processing. Results showed that phosphorylated neurofilament heavy chain differentiated between ALS and control cases in all centres. We therefore propose that measurement of phosphorylated neurofilaments in CSF is the most promising candidate for translation into the clinical setting and might serve as a benchmark for other biomarker candidates.

  13. Improving low-level plasma protein mass spectrometry-based detection for candidate biomarker discovery and validation

    Energy Technology Data Exchange (ETDEWEB)

    Page, Jason S.; Kelly, Ryan T.; Camp, David G.; Smith, Richard D.

    2008-09-01

    Methods. To improve the detection of low abundance protein candidate biomarker discovery and validation, particularly in complex biological fluids such as blood plasma, increased sensitivity is desired using mass spectrometry (MS)-based instrumentation. A key current limitation on the sensitivity of electrospray ionization (ESI) MS is due to the fact that many sample molecules in solution are never ionized, and the vast majority of the ions that are created are lost during transmission from atmospheric pressure to the low pressure region of the mass analyzer. Two key technologies, multi-nanoelectrospray emitters and the electrodynamic ion funnel have recently been developed and refined at Pacific Northwest National Laboratory (PNNL) to greatly improve the ionization and transmission efficiency of ESI MS based analyses. Multi-emitter based ESI enables the flow from a single source (typically a liquid chromatography [LC] column) to be divided among an array of emitters (Figure 1). The flow rate delivered to each emitter is thus reduced, allowing the well-documented benefits of nanoelectrospray 1 for both sensitivity and quantitation to be realized for higher flow rate separations. To complement the increased ionization efficiency afforded by multi-ESI, tandem electrodynamic ion funnels have also been developed at PNNL, and shown to greatly improve ion transmission efficiency in the ion source interface.2, 3 These technologies have been integrated into a triple quadrupole mass spectrometer for multiple reaction monitoring (MRM) of probable biomarker candidates in blood plasma and show promise for the identification of new species even at low level concentrations.

  14. Translational database selection and multiplexed sequence capture for up front filtering of reliable breast cancer biomarker candidates.

    Directory of Open Access Journals (Sweden)

    Patrik L Ståhl

    Full Text Available Biomarker identification is of utmost importance for the development of novel diagnostics and therapeutics. Here we make use of a translational database selection strategy, utilizing data from the Human Protein Atlas (HPA on differentially expressed protein patterns in healthy and breast cancer tissues as a means to filter out potential biomarkers for underlying genetic causatives of the disease. DNA was isolated from ten breast cancer biopsies, and the protein coding and flanking non-coding genomic regions corresponding to the selected proteins were extracted in a multiplexed format from the samples using a single DNA sequence capture array. Deep sequencing revealed an even enrichment of the multiplexed samples and a great variation of genetic alterations in the tumors of the sampled individuals. Benefiting from the upstream filtering method, the final set of biomarker candidates could be completely verified through bidirectional Sanger sequencing, revealing a 40 percent false positive rate despite high read coverage. Of the variants encountered in translated regions, nine novel non-synonymous variations were identified and verified, two of which were present in more than one of the ten tumor samples.

  15. Transforming growth factor β receptor 1 is a new candidate prognostic biomarker after acute myocardial infarction

    Directory of Open Access Journals (Sweden)

    Devaux Yvan

    2011-12-01

    Full Text Available Abstract Background Prediction of left ventricular (LV remodeling after acute myocardial infarction (MI is clinically important and would benefit from the discovery of new biomarkers. Methods Blood samples were obtained upon admission in patients with acute ST-elevation MI who underwent primary percutaneous coronary intervention. Messenger RNA was extracted from whole blood cells. LV function was evaluated by echocardiography at 4-months. Results In a test cohort of 32 MI patients, integrated analysis of microarrays with a network of protein-protein interactions identified subgroups of genes which predicted LV dysfunction (ejection fraction ≤ 40% with areas under the receiver operating characteristic curve (AUC above 0.80. Candidate genes included transforming growth factor beta receptor 1 (TGFBR1. In a validation cohort of 115 MI patients, TGBFR1 was up-regulated in patients with LV dysfunction (P Conclusions We identified TGFBR1 as a new candidate prognostic biomarker after acute MI.

  16. Candidate Biomarkers in Children with Autism Spectrum Disorder: A Review of MRI Studies

    Institute of Scientific and Technical Information of China (English)

    Dongyun Li; Hans-Otto Karnath; Xiu Xu

    2017-01-01

    Searching for effective biomarkers is one of the most challenging tasks in the research field of Autism Spectrum Disorder (ASD).Magnetic resonance imaging (MRI) provides a non-invasive and powerful tool for investigating changes in the structure,function,maturation,connectivity,and metabolism of the brain of children with ASD.Here,we review the more recent MRI studies in young children with ASD,aiming to provide candidate biomarkers for the diagnosis of childhood ASD.The review covers structural imaging methods,diffusion tensor imaging,resting-state functional MRI,and magnetic reso nance spectroscopy.Future advances in neuroimaging techniques,as well as cross-disciplinary studies and largescale collaborations will be needed for an integrated approach linking neuroimaging,genetics,and phenotypic data to allow the discovery of new,effective biomarkers.

  17. Classification of genes and putative biomarker identification using distribution metrics on expression profiles.

    Directory of Open Access Journals (Sweden)

    Hung-Chung Huang

    Full Text Available BACKGROUND: Identification of genes with switch-like properties will facilitate discovery of regulatory mechanisms that underlie these properties, and will provide knowledge for the appropriate application of Boolean networks in gene regulatory models. As switch-like behavior is likely associated with tissue-specific expression, these gene products are expected to be plausible candidates as tissue-specific biomarkers. METHODOLOGY/PRINCIPAL FINDINGS: In a systematic classification of genes and search for biomarkers, gene expression profiles (GEPs of more than 16,000 genes from 2,145 mouse array samples were analyzed. Four distribution metrics (mean, standard deviation, kurtosis and skewness were used to classify GEPs into four categories: predominantly-off, predominantly-on, graded (rheostatic, and switch-like genes. The arrays under study were also grouped and examined by tissue type. For example, arrays were categorized as 'brain group' and 'non-brain group'; the Kolmogorov-Smirnov distance and Pearson correlation coefficient were then used to compare GEPs between brain and non-brain for each gene. We were thus able to identify tissue-specific biomarker candidate genes. CONCLUSIONS/SIGNIFICANCE: The methodology employed here may be used to facilitate disease-specific biomarker discovery.

  18. Biomarker Candidates of Chlamydophila pneumoniae Proteins and Protein Fragments Identified by Affinity-Proteomics Using FTICR-MS and LC-MS/MS

    Science.gov (United States)

    Susnea, Iuliana; Bunk, Sebastian; Wendel, Albrecht; Hermann, Corinna; Przybylski, Michael

    2011-04-01

    We report here an affinity-proteomics approach that combines 2D-gel electrophoresis and immunoblotting with high performance mass spectrometry to the identification of both full length protein antigens and antigenic fragments of Chlamydophila pneumoniae (C. pneumoniae). The present affinity-mass spectrometry approach effectively utilized high resolution FTICR mass spectrometry and LC-tandem-MS for protein identification, and enabled the identification of several new highly antigenic C. pneumoniae proteins that were not hitherto reported or previously detected only in other Chlamydia species, such as Chlamydia trachomatis. Moreover, high resolution affinity-MS provided the identification of several neo-antigenic protein fragments containing N- and C-terminal, and central domains such as fragments of the membrane protein Pmp21 and the secreted chlamydial proteasome-like factor (Cpaf), representing specific biomarker candidates.

  19. Identification of new transitional disk candidates in Lupus with Herschel

    CERN Document Server

    Bustamante, I; Ribas, Á; Bouy, H; Prusti, T; Pilbratt, G L; André, Ph

    2015-01-01

    New data from the Herschel Space Observatory are broadening our understanding of the physics and evolution of the outer regions of protoplanetary disks in star forming regions. In particular they prove to be useful to identify transitional disk candidates. The goals of this work are to complement the detections of disks and the identification of transitional disk candidates in the Lupus clouds with data from the Herschel Gould Belt Survey. We extracted photometry at 70, 100, 160, 250, 350 and 500 $\\mu$m of all spectroscopically confirmed Class II members previously identified in the Lupus regions and analyzed their updated spectral energy distributions. We have detected 34 young disks in Lupus in at least one Herschel band, from an initial sample of 123 known members in the observed fields. Using the criteria defined in Ribas et al. (2013) we have identified five transitional disk candidates in the region. Three of them are new to the literature. Their PACS-70 $\\mu$m fluxes are systematically higher than thos...

  20. Identification of new transitional disk candidates in Lupus with Herschel

    Science.gov (United States)

    Bustamante, I.; Merín, B.; Ribas, Á.; Bouy, H.; Prusti, T.; Pilbratt, G. L.; André, Ph.

    2015-06-01

    Context. New data from the Herschel Space Observatory are broadening our understanding of the physics and evolution of the outer regions of protoplanetary disks in star-forming regions. In particular they prove to be useful for identifying transitional disk candidates. Aims: The goals of this work are to complement the detections of disks and the identification of transitional disk candidates in the Lupus clouds with data from the Herschel Gould Belt Survey. Methods: We extracted photometry at 70, 100, 160, 250, 350, and 500 μm of all spectroscopically confirmed Class II members previously identified in the Lupus regions and analyzed their updated spectral energy distributions. Results: We have detected 34 young disks in Lupus in at least one Herschel band, from an initial sample of 123 known members in the observed fields. Using recently defined criteria, we have identified five transitional disk candidates in the region. Three of them are new to the literature. Their PACS-70 μm fluxes are systematically higher than those of normal T Tauri stars in the same associations, as already found in T Cha and in the transitional disks in the Chamaeleon molecular cloud. Conclusions: Herschel efficiently complements mid-infrared surveys for identifying transitional disk candidates and confirms that these objects seem to have substantially different outer disks than the T Tauri stars in the same molecular clouds. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Tables 5-7 and Figs. 3 and 4 are available in electronic form at http://www.aanda.org

  1. Microarray-based Identification of Novel Biomarkers in Asthma

    Directory of Open Access Journals (Sweden)

    Kenji Izuhara

    2006-01-01

    Full Text Available Bronchial asthma is a complicated and diverse disorder affected by genetic and environmental factors. It is widely accepted that it is a Th2-type inflammation originating in lung and caused by inhalation of ubiquitous allergens. The complicated and diverse pathogenesis of this disease yet to be clarified. Functional genomics is the analysis of whole gene expression profiling under given condition, and microarray technology is now the most powerful tool for functional genomics. Several attempts to clarify the pathogenesis of bronchial asthma have been carried out using microarray technology, providing us some novel biomarkers for diagnosis, therapeutic targets or understanding pathogenic mechanisms of bronchial asthma. In this article, we review the outcomes of these analyses by the microarray approach as applied to this disease by focusing on the identification of novel biomarkers.

  2. Computational identification of candidate nucleotide cyclases in higher plants

    KAUST Repository

    Wong, Aloysius Tze

    2013-09-03

    In higher plants guanylyl cyclases (GCs) and adenylyl cyclases (ACs) cannot be identified using BLAST homology searches based on annotated cyclic nucleotide cyclases (CNCs) of prokaryotes, lower eukaryotes, or animals. The reason is that CNCs are often part of complex multifunctional proteins with different domain organizations and biological functions that are not conserved in higher plants. For this reason, we have developed CNC search strategies based on functionally conserved amino acids in the catalytic center of annotated and/or experimentally confirmed CNCs. Here we detail this method which has led to the identification of >25 novel candidate CNCs in Arabidopsis thaliana, several of which have been experimentally confirmed in vitro and in vivo. We foresee that the application of this method can be used to identify many more members of the growing family of CNCs in higher plants. © Springer Science+Business Media New York 2013.

  3. Computational identification of candidate nucleotide cyclases in higher plants.

    Science.gov (United States)

    Wong, Aloysius; Gehring, Chris

    2013-01-01

    In higher plants guanylyl cyclases (GCs) and adenylyl cyclases (ACs) cannot be identified using BLAST homology searches based on annotated cyclic nucleotide cyclases (CNCs) of prokaryotes, lower eukaryotes, or animals. The reason is that CNCs are often part of complex multifunctional proteins with different domain organizations and biological functions that are not conserved in higher plants. For this reason, we have developed CNC search strategies based on functionally conserved amino acids in the catalytic center of annotated and/or experimentally confirmed CNCs. Here we detail this method which has led to the identification of >25 novel candidate CNCs in Arabidopsis thaliana, several of which have been experimentally confirmed in vitro and in vivo. We foresee that the application of this method can be used to identify many more members of the growing family of CNCs in higher plants.

  4. Discovery of colorectal cancer biomarker candidates by membrane proteomic analysis and subsequent verification using selected reaction monitoring (SRM) and tissue microarray (TMA) analysis.

    Science.gov (United States)

    Kume, Hideaki; Muraoka, Satoshi; Kuga, Takahisa; Adachi, Jun; Narumi, Ryohei; Watanabe, Shio; Kuwano, Masayoshi; Kodera, Yoshio; Matsushita, Kazuyuki; Fukuoka, Junya; Masuda, Takeshi; Ishihama, Yasushi; Matsubara, Hisahiro; Nomura, Fumio; Tomonaga, Takeshi

    2014-06-01

    identification of useful biomarker candidates for various cancers. Data are available via ProteomeXchange with identifier PXD000851. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Engineering of glucosinolate biosynthesis: candidate gene identification and validation.

    Science.gov (United States)

    Møldrup, Morten E; Salomonsen, Bo; Halkier, Barbara A

    2012-01-01

    The diverse biological roles of glucosinolates as plant defense metabolites and anticancer compounds have spurred a strong interest in their biosynthetic pathways. Since the completion of the Arabidopsis genome, functional genomics approaches have enabled significant progress on the elucidation of glucosinolate biosynthesis, although in planta validation of candidate gene function often is hampered by time-consuming generation of knockout and overexpression lines in Arabidopsis. To better exploit the increasing amount of data available from genomic sequencing, microarray database and RNAseq, time-efficient methods for identification and validation of candidate genes are needed. This chapter covers the methodology we are using for gene discovery in glucosinolate engineering, namely, guilt-by-association-based in silico methods and fast proof-of-function screens by transient expression in Nicotiana benthamiana. Moreover, the lessons learned in the rapid, transient tobacco system are readily translated to our robust, versatile yeast expression platform, where additional genes critical for large-scale microbial production of glucosinolates can be identified. We anticipate that the methodology presented here will be beneficial to elucidate and engineer other plant biosynthetic pathways.

  6. Biomarker candidate discovery in Atlantic cod (Gadus morhua) continuously exposed to North Sea produced water from egg to fry

    DEFF Research Database (Denmark)

    Bohne-Kjersem, Anneli; Bache, Nicolai; Meier, Sonnich

    2010-01-01

    changes that may be useful as biomarker candidates of produced water (PW) and oestradiol exposure in Atlantic cod fry. The biomarker candidates discovered in this study may, following validation, prove effective as diagnostic tools in monitoring exposure and effects of discharges from the petroleum......In this study Atlantic cod (Gadus morhua) were exposed to different levels of North Sea produced water (PW) and 17beta-oestradiol (E(2)), a natural oestrogen, from egg to fry stage (90 days). By comparing changes in protein expression following E(2) exposure to changes induced by PW treatment, we...

  7. Proteomic identification of host and parasite biomarkers in saliva from patients with uncomplicated Plasmodium falciparum malaria

    Directory of Open Access Journals (Sweden)

    Huang Honglei

    2012-05-01

    Full Text Available Abstract Background Malaria cases attributed to Plasmodium falciparum account for approximately 600,000 deaths yearly, mainly in African children. The gold standard method to diagnose malaria requires the visualization of the parasite in blood. The role of non-invasive diagnostic methods to diagnose malaria remains unclear. Methods A protocol was optimized to deplete highly abundant proteins from saliva to improve the dynamic range of the proteins identified and assess their suitability as candidate biomarkers of malaria infection. A starch-based amylase depletion strategy was used in combination with four different lectins to deplete glycoproteins (Concanavalin A and Aleuria aurantia for N-linked glycoproteins; jacalin and peanut agglutinin for O-linked glycoproteins. A proteomic analysis of depleted saliva samples was performed in 17 children with fever and a positive–malaria slide and compared with that of 17 malaria-negative children with fever. Results The proteomic signature of malaria-positive patients revealed a strong up-regulation of erythrocyte-derived and inflammatory proteins. Three P. falciparum proteins, PFL0480w, PF08_0054 and PFI0875w, were identified in malaria patients and not in controls. Aleuria aurantia and jacalin showed the best results for parasite protein identification. Conclusions This study shows that saliva is a suitable clinical specimen for biomarker discovery. Parasite proteins and several potential biomarkers were identified in patients with malaria but not in patients with other causes of fever. The diagnostic performance of these markers should be addressed prospectively.

  8. Mitochondrial DNA mutations—candidate biomarkers for breast cancer diagnosis in Bangladesh

    Institute of Scientific and Technical Information of China (English)

    Gazi Nurun Nahar Sultana; Atiqur Rahman; Abu Din Ahmed Shahinuzzaman; Rowshan Ara Begum; Chowdhury Faiz Hossain

    2012-01-01

    Breast cancer is a major health problem that affects more than 24% of women in Bangladesh.Furthermore,among low-income countries including Bangladesh,individuals have a high risk for developing breast cancer.This study aimed to identify candidate mitochondrial DNA (mtDNA) biomarkers for breast cancer diagnosis in Bangladeshi women to be used as a preventive approach.We screened the blood samples from 24 breast cancer patients and 20 healthy controls to detect polymorphisms in the D-loop and the ND3- and ND4-coding regions of mtDNA by direct sequencing.Among 14 distinct mutations,10 polymorphisms were found in the D-loop,3 were found in the ND3-coding region,and 1 was found in the ND4-coding region.The frequency of two novel polymorphisms in the D-loop,one at position 16290 (T-ins) and the other at position 16293 (A-del),was higher in breast cancer patients than in control subjects (position 16290:odds ratio =6.011,95% confidence interval =1.2482 to 28.8411,P =0.002; position 16293:odds ratio =5.6028,95% confidence interval =1.4357 to 21.8925,P =0.010).We also observed one novel mutation in the ND3-coding region at position 10316 (A > G) in 69% of breast cancer patients but not in control subjects.The study suggests that two novel polymorphisms in the D-loop may be candidate biomarkers for breast cancer diagnosis in Bangladeshi women.

  9. Small Molecule Metabolite Biomarker Candidates in Urine from Mice Exposed to Formaldehyde

    Directory of Open Access Journals (Sweden)

    Juan Zhang

    2014-09-01

    Full Text Available Formaldehyde (FA is a ubiquitous compound used in a wide variety of industries, and is also a major indoor pollutant emitted from building materials, furniture, etc. Because FA is rapidly metabolized and endogenous to many materials, specific biomarkers for exposure have not been identified. In this study, we identified small metabolite biomarkers in urine that might be related FA exposure. Mice were allowed to inhale FA (0, 4, 8 mg/m3 6 h per day for 7 consecutive days, and urine samples were collected on the 7th day of exposure. Liquid chromatography coupled with time of flight-mass spectrometry and principal component analysis (PCA was applied to determine alterations of endogenous metabolites in urine. Additionally, immune toxicity studies were conducted to ensure that any resultant toxic effects could be attributed to inhalation of FA. The results showed a significant decrease in the relative rates of T lymphocyte production in the spleen and thymus of mice exposed to FA. Additionally, decreased superoxide dismutase activity and increased reactive oxygen species levels were found in the isolated spleen cells of exposed mice. A total of 12 small molecules were found to be altered in the urine, and PCA analysis showed that urine from the control and FA exposed groups could be distinguished from each other based on the altered molecules. Hippuric acid and cinnamoylglycine were identified in urine using exact mass and fragment ions. Our results suggest that the pattern of metabolites found in urine is significantly changed following FA inhalation, and hippuric acid and cinnamoylglycine might represent potential biomarker candidates for FA exposure.

  10. Increased serum G72 protein levels in patients with schizophrenia: a potential candidate biomarker.

    Science.gov (United States)

    Akyol, Esra Soydaş; Albayrak, Yakup; Aksoy, Nurkan; Şahin, Başak; Beyazyüz, Murat; Kuloğlu, Murat; Hashimoto, Kenji

    2017-04-01

    The product of the G72 gene is an activator of d-amino acid oxidase and has been suggested to play a role in the pathogenesis of schizophrenia. Increased G72 protein levels may be associated with disturbed glutamatergic transmission and increased reactive oxygen species. Only one pilot study by Lin et al. has investigated the potential role of serum G72 protein levels as a biomarker for schizophrenia. In this study, we aimed to compare serum G72 protein levels between patients with schizophrenia and healthy controls, and to retest the results of the previous pilot study. Materials and methods In total, 107 patients with a diagnosis of schizophrenia according to the inclusion and exclusion criteria and 60 age-sex-matched healthy controls were included in the study. The groups were compared regarding serum G72 protein levels. The mean serum G72 protein values were 495.90±152.03 pg/ml in the schizophrenia group and 346.10±102.08 pg/ml in the healthy control group. The mean serum G72 protein level was significantly increased in the schizophrenia group compared with the healthy control group (t=-3.89, pschizophrenia and healthy control groups. It was determined that the cut-off value was 141.51 pg/ml with a sensitivity of 0.991 and a specificity of 0.821. We suggest that serum G72 protein levels may represent a candidate biomarker for schizophrenia and have confirmed the results of the previous preliminary study. Additional studies with larger sample sizes and the inclusion of first episode schizophrenia patients are required to clarify the reliability and validity of serum G72 protein levels as a biomarker for schizophrenia.

  11. Odor identification and Alzheimer disease biomarkers in clinically normal elderly

    Science.gov (United States)

    Growdon, Matthew E.; Schultz, Aaron P.; Dagley, Alexander S.; Amariglio, Rebecca E.; Hedden, Trey; Rentz, Dorene M.; Johnson, Keith A.; Sperling, Reisa A.; Albers, Mark W.

    2015-01-01

    Objectives: Our objective was to investigate cross-sectional associations between odor identification ability and imaging biomarkers of neurodegeneration and amyloid deposition in clinically normal (CN) elderly individuals, specifically testing the hypothesis that there may be an interaction between amyloid deposition and neurodegeneration in predicting odor identification dysfunction. Methods: Data were collected on 215 CN participants from the Harvard Aging Brain Study. Measurements included the 40-item University of Pennsylvania Smell Identification Test and neuropsychological testing, hippocampal volume (HV) and entorhinal cortex (EC) thickness from MRI, and amyloid burden using Pittsburgh compound B (PiB) PET. A linear regression model with backward elimination (p < 0.05 retention) evaluated the cross-sectional association between the University of Pennsylvania Smell Identification Test and amyloid burden, HV, and EC thickness, assessing for effect modification by PiB status. Covariates included age, sex, premorbid intelligence, APOE ε4 carrier status, and Boston Naming Test. Results: In unadjusted univariate analyses, worse olfaction was associated with decreased HV (p < 0.001), thinner EC (p = 0.003), worse episodic memory (p = 0.03), and marginally associated with greater amyloid burden (binary PiB status, p = 0.06). In the multivariate model, thinner EC in PiB-positive individuals (interaction term) was associated with worse olfaction (p = 0.02). Conclusions: In CN elderly, worse odor identification was associated with markers of neurodegeneration. Furthermore, individuals with elevated cortical amyloid and thinner EC exhibited worse odor identification, elucidating the potential contribution of olfactory testing to detect preclinical AD in CN individuals. PMID:25934852

  12. Identification of a candidate stem cell in human gallbladder.

    Science.gov (United States)

    Manohar, Rohan; Li, Yaming; Fohrer, Helene; Guzik, Lynda; Stolz, Donna Beer; Chandran, Uma R; LaFramboise, William A; Lagasse, Eric

    2015-05-01

    There are currently no reports of identification of stem cells in human gallbladder. The differences between human gallbladder and intrahepatic bile duct (IHBD) cells have also not been explored. The goals of this study were to evaluate if human fetal gallbladder contains a candidate stem cell population and if fetal gallbladder cells are distinct from fetal IHBD cells. We found that EpCAM+CD44+CD13+ cells represent the cell population most enriched for clonal self-renewal from primary gallbladder. Primary EpCAM+CD44+CD13+ cells gave rise to EpCAM+CD44+CD13+ and EpCAM+CD44+CD13- cells in vitro, and gallbladder cells expanded in vitro exhibited short-term engraftment in vivo. Last, we found that CD13, CD227, CD66, CD26 and CD49b were differentially expressed between gallbladder and IHBD cells cultured in vitro indicating clear phenotypic differences between the two cell populations. Microarray analyses of expanded cultures confirmed that both cell types have unique transcriptional profiles with predicted functional differences in lipid, carbohydrate, nucleic acid and drug metabolism. In conclusion, we have isolated a distinct clonogenic population of epithelial cells from primary human fetal gallbladder with stem cell characteristics and found it to be unique compared to IHBD cells.

  13. Application of proteomics in the discovery of candidate protein biomarkers in a diabetes autoantibody standardization program sample subset.

    Science.gov (United States)

    Metz, Thomas O; Qian, Wei-Jun; Jacobs, Jon M; Gritsenko, Marina A; Moore, Ronald J; Polpitiya, Ashoka D; Monroe, Matthew E; Camp, David G; Mueller, Patricia W; Smith, Richard D

    2008-02-01

    Novel biomarkers of type 1 diabetes must be identified and validated in initial, exploratory studies before they can be assessed in proficiency evaluations. Currently, untargeted "-omics" approaches are underutilized in profiling studies of clinical samples. This report describes the evaluation of capillary liquid chromatography (LC) coupled with mass spectrometry (MS) in a pilot proteomic analysis of human plasma and serum from a subset of control and type 1 diabetic individuals enrolled in the Diabetes Autoantibody Standardization Program, with the goal of identifying candidate biomarkers of type 1 diabetes. Initial high-resolution capillary LC-MS/MS experiments were performed to augment an existing plasma peptide database, while subsequent LC-FTICR studies identified quantitative differences in the abundance of plasma proteins. Analysis of LC-FTICR proteomic data identified five candidate protein biomarkers of type 1 diabetes. alpha-2-Glycoprotein 1 (zinc), corticosteroid-binding globulin, and lumican were 2-fold up-regulated in type 1 diabetic samples relative to control samples, whereas clusterin and serotransferrin were 2-fold up-regulated in control samples relative to type 1 diabetic samples. Observed perturbations in the levels of all five proteins are consistent with the metabolic aberrations found in type 1 diabetes. While the discovery of these candidate protein biomarkers of type 1 diabetes is encouraging, follow up studies are required for validation in a larger population of individuals and for determination of laboratory-defined sensitivity and specificity values using blinded samples.

  14. Candidate proteins, metabolites and transcripts in the Biomarkers for Spinal Muscular Atrophy (BforSMA clinical study.

    Directory of Open Access Journals (Sweden)

    Richard S Finkel

    Full Text Available BACKGROUND: Spinal Muscular Atrophy (SMA is a neurodegenerative motor neuron disorder resulting from a homozygous mutation of the survival of motor neuron 1 (SMN1 gene. The gene product, SMN protein, functions in RNA biosynthesis in all tissues. In humans, a nearly identical gene, SMN2, rescues an otherwise lethal phenotype by producing a small amount of full-length SMN protein. SMN2 copy number inversely correlates with disease severity. Identifying other novel biomarkers could inform clinical trial design and identify novel therapeutic targets. OBJECTIVE: To identify novel candidate biomarkers associated with disease severity in SMA using unbiased proteomic, metabolomic and transcriptomic approaches. MATERIALS AND METHODS: A cross-sectional single evaluation was performed in 108 children with genetically confirmed SMA, aged 2-12 years, manifesting a broad range of disease severity and selected to distinguish factors associated with SMA type and present functional ability independent of age. Blood and urine specimens from these and 22 age-matched healthy controls were interrogated using proteomic, metabolomic and transcriptomic discovery platforms. Analyte associations were evaluated against a primary measure of disease severity, the Modified Hammersmith Functional Motor Scale (MHFMS and to a number of secondary clinical measures. RESULTS: A total of 200 candidate biomarkers correlate with MHFMS scores: 97 plasma proteins, 59 plasma metabolites (9 amino acids, 10 free fatty acids, 12 lipids and 28 GC/MS metabolites and 44 urine metabolites. No transcripts correlated with MHFMS. DISCUSSION: In this cross-sectional study, "BforSMA" (Biomarkers for SMA, candidate protein and metabolite markers were identified. No transcript biomarker candidates were identified. Additional mining of this rich dataset may yield important insights into relevant SMA-related pathophysiology and biological network associations. Additional prospective studies are needed

  15. Surfactant protein D is a candidate biomarker for subclinical tobacco smoke-induced lung damage

    DEFF Research Database (Denmark)

    Johansson, Sofie L.; Tan, Qihua; Holst, René;

    2014-01-01

    Variation in Surfactant Protein D (SP-D) is associated with lung function in tobacco smoke-induced chronic respiratory disease. We hypothesized that the same association exists in the general population and could be used to identify individuals sensitive to smoke-induced lung damage. The associat......Variation in Surfactant Protein D (SP-D) is associated with lung function in tobacco smoke-induced chronic respiratory disease. We hypothesized that the same association exists in the general population and could be used to identify individuals sensitive to smoke-induced lung damage...... or haplotypes, and expiratory lung function were assessed using twin study methodology and mixed-effects models. Significant inverse associations were evident between sSP-D and the forced expiratory volume in 1 second and forced vital capacity in the presence of current tobacco smoking but not in non...... with lung function measures in interaction with tobacco smoking. The obtained data suggest sSP-D as a candidate biomarker in risk assessments for subclinical tobacco smoke-induced lung damage. The data and derived conclusion warrant confirmation in a longitudinal population following chronic obstructive...

  16. Proteomic Profiling of Exosomes Leads to the Identification of Novel Biomarkers for Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Duijvesz, Diederick; Burnum-Johnson, Kristin E.; Gritsenko, Marina A.; Hoogland, Marije; Vredenbregt-van den Berg, Mirella S.; Willemsen, Rob; Luider, Theo N.; Pasa-Tolic, Ljiljana; Jenster, Guido

    2013-12-31

    Introduction: Current markers for prostate cancer, such as PSA lack specificity. Therefore, novel biomarkers are needed. Unfortunately, biomarker discovery from body fluids is often hampered by the high abundance of many proteins unrelated to disease. An attractive alternative biomarker discovery approach is the isolation of small vesicles (exosomes, ~100 nm). They contain proteins that are specific to the tissue from which they are derived and therefore can be considered as treasure chests for disease-specific marker discovery. Profiling prostate cancer-derived exosomes could reveal new markers for this malignancy. Materials and Methods: Exosomes were isolated from 2 immortalized primary prostate epithelial cells (PNT2C2 and RWPE-1) and 2 PCa cell lines (PC346C and VCaP) by ultracentrifugation. Proteomic analyses utilized a nanoLC coupled with an LTQ-Orbitrap operated in tandem MS (MS/MS) mode, followed by the Accurate Mass and Time (AMT) tag approach. Exosomal proteins were validated by Western blotting. A Tissue Micro Array, containing 481 different PCa samples (radical prostatectomy), was used to correlate candidate markers with several clinical-pathological parameters such as PSA, Gleason score, biochemical recurrence, and (PCa-related) death. Results: Proteomic characterization resulted in the identification of 263 proteins by at least 2 peptides. Specifically analysis of exosomes from PNT2C2, RWPE-1, PC346C, and VCaP identified 248, 233, 169, and 216 proteins, respectively. Statistical analyses revealed 52 proteins differently expressed between PCa and control cells, 9 of which were more abundant in PCa. Validation by Western blotting confirmed a higher abundance of FASN, XPO1 and PDCD6IP (ALIX) in PCa exosomes. The Tissue Micro 4 Array showed strong correlation of higher Gleason scores and local recurrence with increased cytoplasmic XPO1 (P<0.001). Conclusions: Differentially abundant proteins of cell line-derived exosomes make a clear subdivision between

  17. Identification of candidate genes in osteoporosis by integrated microarray analysis

    Science.gov (United States)

    Li, J. J.; Wang, B. Q.; Yang, Y.; Li, D.

    2016-01-01

    bone formation. Cite this article: J. J. Li, B. Q. Wang, Q. Fei, Y. Yang, D. Li. Identification of candidate genes in osteoporosis by integrated microarray analysis. Bone Joint Res 2016;5:594–601. DOI: 10.1302/2046-3758.512.BJR-2016-0073.R1. PMID:27908864

  18. Candidate serological biomarkers for cancer identified from the secretomes of 23 cancer cell lines and the human protein atlas.

    Science.gov (United States)

    Wu, Chih-Ching; Hsu, Chia-Wei; Chen, Chi-De; Yu, Chia-Jung; Chang, Kai-Ping; Tai, Dar-In; Liu, Hao-Ping; Su, Wen-Hui; Chang, Yu-Sun; Yu, Jau-Song

    2010-06-01

    Although cancer cell secretome profiling is a promising strategy used to identify potential body fluid-accessible cancer biomarkers, questions remain regarding the depth to which the cancer cell secretome can be mined and the efficiency with which researchers can select useful candidates from the growing list of identified proteins. Therefore, we analyzed the secretomes of 23 human cancer cell lines derived from 11 cancer types using one-dimensional SDS-PAGE and nano-LC-MS/MS performed on an LTQ-Orbitrap mass spectrometer to generate a more comprehensive cancer cell secretome. A total of 31,180 proteins was detected, accounting for 4,584 non-redundant proteins, with an average of 1,300 proteins identified per cell line. Using protein secretion-predictive algorithms, 55.8% of the proteins appeared to be released or shed from cells. The identified proteins were selected as potential marker candidates according to three strategies: (i) proteins apparently secreted by one cancer type but not by others (cancer type-specific marker candidates), (ii) proteins released by most cancer cell lines (pan-cancer marker candidates), and (iii) proteins putatively linked to cancer-relevant pathways. We then examined protein expression profiles in the Human Protein Atlas to identify biomarker candidates that were simultaneously detected in the secretomes and highly expressed in cancer tissues. This analysis yielded 6-137 marker candidates selective for each tumor type and 94 potential pan-cancer markers. Among these, we selectively validated monocyte differentiation antigen CD14 (for liver cancer), stromal cell-derived factor 1 (for lung cancer), and cathepsin L1 and interferon-induced 17-kDa protein (for nasopharyngeal carcinoma) as potential serological cancer markers. In summary, the proteins identified from the secretomes of 23 cancer cell lines and the Human Protein Atlas represent a focused reservoir of potential cancer biomarkers.

  19. Identification of serum biomarkers in dogs naturally infected with Babesia canis canis using a proteomic approach

    Science.gov (United States)

    2014-01-01

    Background Canine babesiosis is a tick-borne disease that is caused by the haemoprotozoan parasites of the genus Babesia. There are limited data on serum proteomics in dogs, and none of the effect of babesiosis on the serum proteome. The aim of this study was to identify the potential serum biomarkers of babesiosis using proteomic techniques in order to increase our understanding about disease pathogenesis. Results Serum samples were collected from 25 dogs of various breeds and sex with naturally occurring babesiosis caused by B. canis canis. Blood was collected on the day of admission (day 0), and subsequently on the 1st and 6th day of treatment. Two-dimensional electrophoresis (2DE) of pooled serum samples of dogs with naturally occurring babesiosis (day 0, day 1 and day 6) and healthy dogs were run in triplicate. 2DE image analysis showed 64 differentially expressed spots with p ≤ 0.05 and 49 spots with fold change ≥2. Six selected spots were excised manually and subjected to trypsin digest prior to identification by electrospray ionisation mass spectrometry on an Amazon ion trap tandem mass spectrometry (MS/MS). Mass spectrometry data was processed using Data Analysis software and the automated Matrix Science Mascot Daemon server. Protein identifications were assigned using the Mascot search engine to interrogate protein sequences in the NCBI Genbank database. A number of differentially expressed serum proteins involved in inflammation mediated acute phase response, complement and coagulation cascades, apolipoproteins and vitamin D metabolism pathway were identified in dogs with babesiosis. Conclusions Our findings confirmed two dominant pathogenic mechanisms of babesiosis, haemolysis and acute phase response. These results may provide possible serum biomarker candidates for clinical monitoring of babesiosis and this study could serve as the basis for further proteomic investigations in canine babesiosis. PMID:24885808

  20. Proteomic analysis of synovial fluid as an analytical tool to detect candidate biomarkers for knee osteoarthritis.

    Science.gov (United States)

    Liao, Weixiong; Li, Zhongli; Zhang, Hao; Li, Ji; Wang, Ketao; Yang, Yimeng

    2015-01-01

    We conducted research to detect the proteomic profiles in synovial fluid (SF) from knee osteoarthritis (OA) patients to better understand the pathogenesis and aetiology of OA. Our long-term goal is to identify reliable candidate biomarkers for OA in SF. The SF proteins obtained from 10 knee OA patients and 10 non-OA patients (9 of whom were patients with a meniscus injury in the knee; 1 had a discoid meniscus in the knee, and all exhibited intact articular cartilage) were separated by two-dimensional electrophoresis (2-DE). The repeatability of the obtained protein spots regarding their intensity was tested via triplicate 2-DE of selected samples. The observed protein expression patterns were subjected to statistical analysis, and differentially expressed protein spots were identified via matrix-assisted laser desorption/ionisation-time of flight/time of flight mass spectrometry (MALDI-TOF/TOF MS). Our analyses showed low intrasample variability and clear intersample variation. Among the protein spots observed on the gels, there were 29 significant differences, of which 22 corresponded to upregulation and 7 to downregulation in the OA group. One of the upregulated protein spots was confirmed to be haptoglobin by mass spectrometry, and the levels of haptoglobin in SF are positively correlated with the severity of OA (r = 0.89, P < 0.001). This study showed that 2-DE could be used under standard conditions to screen SF samples and identify a small subset of proteins in SF that are potential markers associated with OA. Spots of interest identified by mass spectrometry, such as haptoglobin, may be associated with OA severity.

  1. Advances in Gas Chromatographic Methods for the Identification of Biomarkers in Cancer

    Directory of Open Access Journals (Sweden)

    Konstantinos A. Kouremenos, Mikael Johansson, Philip J. Marriott

    2012-01-01

    Full Text Available Screening complex biological specimens such as exhaled air, tissue, blood and urine to identify biomarkers in different forms of cancer has become increasingly popular over the last decade, mainly due to new instruments and improved bioinformatics. However, despite some progress, the identification of biomarkers has shown to be a difficult task with few new biomarkers (excluding recent genetic markers being considered for introduction to clinical analysis. This review describes recent advances in gas chromatographic methods for the identification of biomarkers in the detection, diagnosis and treatment of cancer. It presents a general overview of cancer metabolism, the current biomarkers used for cancer diagnosis and treatment, a background to metabolic changes in tumors, an overview of current GC methods, and collectively presents the scope and outlook of GC methods in oncology.

  2. Biomarker identification and effect estimation on schizophrenia –a high dimensional data analysis

    Directory of Open Access Journals (Sweden)

    Yuanzhang eLi

    2015-05-01

    Full Text Available Biomarkers have been examined in schizophrenia research for decades. Medical morbidity and mortality rates, as well as personal and societal costs, are associated with schizophrenia patients. The identification of biomarkers and alleles, which often have a small effect individually, may help to develop new diagnostic tests for early identification and treatment. Currently, there is not a commonly accepted statistical approach to identify predictive biomarkers from high dimensional data. We used space Decomposition-Gradient-Regression method (DGR to select biomarkers, which are associated with the risk of schizophrenia. Then, we used the gradient scores, generated from the selected biomarkers, as the prediction factor in regression to estimate their effects. We also used an alternative approach, classification and regression tree (CART, to compare the biomarker selected by DGR and found about 70% of the selected biomarkers were the same. However, the advantage of DGR is that it can evaluate individual effects for each biomarker from their combined effect. In DGR analysis of serum specimens of US military service members with a diagnosis of schizophrenia from 1992 to 2005 and their controls, Alpha-1-Antitrypsin (AAT, Interleukin-6 receptor (IL-6r and Connective Tissue Growth Factor (CTGF were selected to identify schizophrenia for males; and Alpha-1-Antitrypsin (AAT, Apolipoprotein B (Apo B and Sortilin were selected for females. If these findings from military subjects are replicated by other studies, they suggest the possibility of a novel biomarker panel as an adjunct to earlier diagnosis and initiation of treatment.

  3. Identification of genes from the Treacher Collins candidate region

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, M.; Dixon, J.; Edwards, S. [Univ. of California, Irvine, CA (United States)]|[Univ. of Manchester (United Kingdom)] [and others

    1994-09-01

    Treacher Collins syndrome (TCOF1) is an autosomal dominant disorder of craniofacial development. The TCOF1 locus has previously been mapped to chromosome 5q32-33. The candidate gene region has been defined as being between two flanking markers, ribosomal protein S14 (RPS14) and Annexin 6 (ANX6), by analyzing recombination events in affected individuals. It is estimated that the distance between these flanking markers is 500 kb by three separate analysis methods: (1) radiation hybrid mapping; (2) genetic linkage; and (3) YAC contig analysis. A cosmid contig which spans the candidate gene region for TCOF1 has been constructed by screening the Los Alamos National Laboratory flow-sorted chromosome 5 cosmid library. Cosmids were obtained by using a combination of probes generated from YAC end clones, Alu-PCR fragments from YACs, and asymmetric PCR fragments from both T7 and T3 cosmid ends. Exon amplifications, the selection of genomic coding sequences based upon the presence of functional splice acceptor and donor sites, was used to identify potential exon sequences. Sequences found to be conserved between species were then used to screen cDNA libraries in order to identify candidate genes. To date, four different cDNAs have been isolated from this region and are being analyzed as potential candidate genes for TCOF1. These include the genes encoding plasma glutathione peroxidase (GPX3), heparin sulfate sulfotransferase (HSST), a gene with homology to the ETS family of proteins and one which shows no homology to any known genes. Work is also in progress to identify and characterize additional cDNAs from the candidate gene region.

  4. Identification of candidate genome regions controlling disease resistance in Arachis

    Directory of Open Access Journals (Sweden)

    Pike Jodie

    2009-08-01

    Full Text Available Abstract Background Worldwide, diseases are important reducers of peanut (Arachis hypogaea yield. Sources of resistance against many diseases are available in cultivated peanut genotypes, although often not in farmer preferred varieties. Wild species generally harbor greater levels of resistance and even apparent immunity, although the linkage of agronomically un-adapted wild alleles with wild disease resistance genes is inevitable. Marker-assisted selection has the potential to facilitate the combination of both cultivated and wild resistance loci with agronomically adapted alleles. However, in peanut there is an almost complete lack of knowledge of the regions of the Arachis genome that control disease resistance. Results In this work we identified candidate genome regions that control disease resistance. For this we placed candidate disease resistance genes and QTLs against late leaf spot disease on the genetic map of the A-genome of Arachis, which is based on microsatellite markers and legume anchor markers. These marker types are transferable within the genus Arachis and to other legumes respectively, enabling this map to be aligned to other Arachis maps and to maps of other legume crops including those with sequenced genomes. In total, 34 sequence-confirmed candidate disease resistance genes and five QTLs were mapped. Conclusion Candidate genes and QTLs were distributed on all linkage groups except for the smallest, but the distribution was not even. Groupings of candidate genes and QTLs for late leaf spot resistance were apparent on the upper region of linkage group 4 and the lower region of linkage group 2, indicating that these regions are likely to control disease resistance.

  5. Identification of candidate genes for dyslexia susceptibility on chromosome 18.

    Directory of Open Access Journals (Sweden)

    Thomas S Scerri

    Full Text Available Six independent studies have identified linkage to chromosome 18 for developmental dyslexia or general reading ability. Until now, no candidate genes have been identified to explain this linkage. Here, we set out to identify the gene(s conferring susceptibility by a two stage strategy of linkage and association analysis.Linkage analysis: 264 UK families and 155 US families each containing at least one child diagnosed with dyslexia were genotyped with a dense set of microsatellite markers on chromosome 18. Association analysis: Using a discovery sample of 187 UK families, nearly 3000 SNPs were genotyped across the chromosome 18 dyslexia susceptibility candidate region. Following association analysis, the top ranking SNPs were then genotyped in the remaining samples. The linkage analysis revealed a broad signal that spans approximately 40 Mb from 18p11.2 to 18q12.2. Following the association analysis and subsequent replication attempts, we observed consistent association with the same SNPs in three genes; melanocortin 5 receptor (MC5R, dymeclin (DYM and neural precursor cell expressed, developmentally down-regulated 4-like (NEDD4L.Along with already published biological evidence, MC5R, DYM and NEDD4L make attractive candidates for dyslexia susceptibility genes. However, further replication and functional studies are still required.

  6. Identification of candidate genes for dyslexia susceptibility on chromosome 18.

    Science.gov (United States)

    Scerri, Thomas S; Paracchini, Silvia; Morris, Andrew; MacPhie, I Laurence; Talcott, Joel; Stein, John; Smith, Shelley D; Pennington, Bruce F; Olson, Richard K; DeFries, John C; Monaco, Anthony P; Richardson, Alex J

    2010-10-28

    Six independent studies have identified linkage to chromosome 18 for developmental dyslexia or general reading ability. Until now, no candidate genes have been identified to explain this linkage. Here, we set out to identify the gene(s) conferring susceptibility by a two stage strategy of linkage and association analysis. Linkage analysis: 264 UK families and 155 US families each containing at least one child diagnosed with dyslexia were genotyped with a dense set of microsatellite markers on chromosome 18. Association analysis: Using a discovery sample of 187 UK families, nearly 3000 SNPs were genotyped across the chromosome 18 dyslexia susceptibility candidate region. Following association analysis, the top ranking SNPs were then genotyped in the remaining samples. The linkage analysis revealed a broad signal that spans approximately 40 Mb from 18p11.2 to 18q12.2. Following the association analysis and subsequent replication attempts, we observed consistent association with the same SNPs in three genes; melanocortin 5 receptor (MC5R), dymeclin (DYM) and neural precursor cell expressed, developmentally down-regulated 4-like (NEDD4L). Along with already published biological evidence, MC5R, DYM and NEDD4L make attractive candidates for dyslexia susceptibility genes. However, further replication and functional studies are still required.

  7. Biomarker analysis of Morquio syndrome: identification of disease state and drug responsive markers

    Directory of Open Access Journals (Sweden)

    Martell Lisa

    2011-12-01

    Full Text Available Abstract Background This study was conducted to identify potential biomarkers that could be used to evaluate disease progression and monitor responses to enzyme replacement therapy (ERT in patients with mucopolysaccharidosis (MPS IVA. Methods Levels of 88 candidate biomarkers were compared in plasma samples from 50 healthy controls and 78 MPSIVA patients not receiving ERT to test for significant correlations to the presence of MPSIVA. MPSIVA samples were also tested for correlations between candidate biomarkers and age, endurance, or urinary keratin sulfate (KS levels. Then, levels of the same 88 analytes were followed over 36 weeks in 20 MPSIVA patients receiving ERT to test for significant correlations related to ERT, age, or endurance. Results Nineteen candidate biomarkers were significantly different between MPSIVA and unaffected individuals. Of these, five also changed significantly in response to ERT: alpha-1-antitrypsin, eotaxin, lipoprotein(a, matrix metalloprotein (MMP-2, and serum amyloid P. Three of these were significantly lower in MPSIVA individuals versus unaffected controls and were increased during ERT: alpha-1-antitrypsin, lipoprotein(a, and serum amyloid P. Conclusions Candidate biomarkers alpha-1-antitrypsin, lipoprotein(a, and serum amyloid P may be suitable markers, in addition to urinary KS, to follow the response to ERT in MPSIVA patients.

  8. Candidate Gene Identification of Flowering Time Genes in Cotton

    Directory of Open Access Journals (Sweden)

    Corrinne E. Grover

    2015-07-01

    Full Text Available Flowering time control is critically important to all sexually reproducing angiosperms in both natural ecological and agronomic settings. Accordingly, there is much interest in defining the genes involved in the complex flowering-time network and how these respond to natural and artificial selection, the latter often entailing transitions in day-length responses. Here we describe a candidate gene analysis in the cotton genus , which uses homologs from the well-described flowering network to bioinformatically and phylogenetically identify orthologs in the published genome sequence from Ulbr., one of the two model diploid progenitors of the commercially important allopolyploid cottons, L. and L. Presence and patterns of expression were evaluated from 13 aboveground tissues related to flowering for each of the candidate genes using allopolyploid as a model. Furthermore, we use a comparative context to determine copy number variability of each key gene family across 10 published angiosperm genomes. Data suggest a pattern of repeated loss of duplicates following ancient whole-genome doubling events in diverse lineages. The data presented here provide a foundation for understanding both the parallel evolution of day-length neutrality in domesticated cottons and the flowering-time network, in general, in this important crop plant.

  9. Developing an integrated proteo-genomic approach for the characterisation of biomarkers for the identification of Bacillus anthracis.

    Science.gov (United States)

    Misra, Raju V; Ahmod, Nadia Z; Parker, Robert; Fang, Min; Shah, Haroun; Gharbia, Saheer

    2012-02-01

    identified in this study could be detected in a complex background, in which 0.1 μg of protein extract from B. anthracis was spiked into 9.90 μg of B. cereus protein extracts. The integration of both stable non-redundant peptides with molecular methodology for marker discovery and validation, improves the robustness of identifying and characterising candidate biomarkers for the identification of bacteria such as B. anthracis.

  10. Direct cancer tissue proteomics: a method to identify candidate cancer biomarkers from formalin-fixed paraffin-embedded archival tissues.

    Science.gov (United States)

    Hwang, S-I; Thumar, J; Lundgren, D H; Rezaul, K; Mayya, V; Wu, L; Eng, J; Wright, M E; Han, D K

    2007-01-01

    Successful treatment of multiple cancer types requires early detection and identification of reliable biomarkers present in specific cancer tissues. To test the feasibility of identifying proteins from archival cancer tissues, we have developed a methodology, termed direct tissue proteomics (DTP), which can be used to identify proteins directly from formalin-fixed paraffin-embedded prostate cancer tissue samples. Using minute prostate biopsy sections, we demonstrate the identification of 428 prostate-expressed proteins using the shotgun method. Because the DTP method is not quantitative, we employed the absolute quantification method and demonstrate picogram level quantification of prostate-specific antigen. In depth bioinformatics analysis of these expressed proteins affords the categorization of metabolic pathways that may be important for distinct stages of prostate carcinogenesis. Furthermore, we validate Wnt-3 as an upregulated protein in cancerous prostate cells by immunohistochemistry. We propose that this general strategy provides a roadmap for successful identification of critical molecular targets of multiple cancer types.

  11. Identification of Saliva Using MicroRNA Biomarkers for Forensic Purpose.

    Science.gov (United States)

    Wang, Zheng; Zhang, Ji; Wei, Wei; Zhou, Di; Luo, Haibo; Chen, Xiaogang; Hou, Yiping

    2015-05-01

    In the forensic science community, microRNA (miRNA) profiling has started to be explored as an alternative tool for body fluid identification. Several origins of body fluid can be distinguished by measuring differential expression patterns of particular miRNAs. However, most of reported saliva miRNAs are nonoverlapping and debatable. The aim of this study was to develop a strategy of identifying saliva using miRNA biomarkers for forensic purpose. Eight miRNA candidates were selected to examine expression abundance in forensically relevant body fluids using hydrolysis probes quantitative real-time PCR (TaqMan qPCR). Results revealed that none of them was truly saliva specific, and only miR-200c-3p, miR-203a, and miR-205-5p were higher or more moderate expression in saliva. A stepwise strategy that combines each of three miRNAs with different body fluid-specific miRNAs was developed, and three miRNA combinations could effectively differentiate saliva from other body fluids.

  12. Identification of CBX3 and ABCA5 as Putative Biomarkers for Tumor Stem Cells in Osteosarcoma

    Science.gov (United States)

    Saini, Vaibhav; Hose, Curtis D.; Monks, Anne; Nagashima, Kunio; Han, Bingnan; Newton, Dianne L.; Millione, Angelena; Shah, Jalpa; Hollingshead, Melinda G.; Hite, Karen M.; Burkett, Mark W.; Delosh, Rene M.; Silvers, Thomas E.; Scudiero, Dominic A.; Shoemaker, Robert H.

    2012-01-01

    Recently, there has been renewed interest in the role of tumor stem cells (TSCs) in tumorigenesis, chemoresistance, and relapse of malignant tumors including osteosarcoma. The potential exists to improve osteosarcoma treatment through characterization of TSCs and identification of therapeutic targets. Using transcriptome, proteome, immunophenotyping for cell-surface markers, and bioinformatic analyses, heterogeneous expression of previously reported TSC or osteosarcoma markers, such as CD133, nestin, POU5F1 (OCT3/4), NANOG, SOX2, and aldehyde dehydrogenase, among others, was observed in vitro. However, consistently significantly lower CD326, CD24, CD44, and higher ABCG2 expression in TSC-enriched as compared with un-enriched osteosarcoma cultures was observed. In addition, consistently higher CBX3 expression in TSC-enriched osteosarcoma cultures was identified. ABCA5 was identified as a putative biomarker of TSCs and/or osteosarcoma. Lastly, in a high-throughput screen we identified epigenetic (5-azacytidine), anti-microtubule (vincristine), and anti-telomerase (3,11-difluoro-6,8,13-trimethyl- 8H-quino [4,3,2-kl] acridinium methosulfate; RHPS4)-targeted therapeutic agents as candidates for TSC ablation in osteosarcoma. PMID:22870217

  13. Identification of CBX3 and ABCA5 as putative biomarkers for tumor stem cells in osteosarcoma.

    Science.gov (United States)

    Saini, Vaibhav; Hose, Curtis D; Monks, Anne; Nagashima, Kunio; Han, Bingnan; Newton, Dianne L; Millione, Angelena; Shah, Jalpa; Hollingshead, Melinda G; Hite, Karen M; Burkett, Mark W; Delosh, Rene M; Silvers, Thomas E; Scudiero, Dominic A; Shoemaker, Robert H

    2012-01-01

    Recently, there has been renewed interest in the role of tumor stem cells (TSCs) in tumorigenesis, chemoresistance, and relapse of malignant tumors including osteosarcoma. The potential exists to improve osteosarcoma treatment through characterization of TSCs and identification of therapeutic targets. Using transcriptome, proteome, immunophenotyping for cell-surface markers, and bioinformatic analyses, heterogeneous expression of previously reported TSC or osteosarcoma markers, such as CD133, nestin, POU5F1 (OCT3/4), NANOG, SOX2, and aldehyde dehydrogenase, among others, was observed in vitro. However, consistently significantly lower CD326, CD24, CD44, and higher ABCG2 expression in TSC-enriched as compared with un-enriched osteosarcoma cultures was observed. In addition, consistently higher CBX3 expression in TSC-enriched osteosarcoma cultures was identified. ABCA5 was identified as a putative biomarker of TSCs and/or osteosarcoma. Lastly, in a high-throughput screen we identified epigenetic (5-azacytidine), anti-microtubule (vincristine), and anti-telomerase (3,11-difluoro-6,8,13-trimethyl- 8H-quino [4,3,2-kl] acridinium methosulfate; RHPS4)-targeted therapeutic agents as candidates for TSC ablation in osteosarcoma.

  14. Identification of CBX3 and ABCA5 as putative biomarkers for tumor stem cells in osteosarcoma.

    Directory of Open Access Journals (Sweden)

    Vaibhav Saini

    Full Text Available Recently, there has been renewed interest in the role of tumor stem cells (TSCs in tumorigenesis, chemoresistance, and relapse of malignant tumors including osteosarcoma. The potential exists to improve osteosarcoma treatment through characterization of TSCs and identification of therapeutic targets. Using transcriptome, proteome, immunophenotyping for cell-surface markers, and bioinformatic analyses, heterogeneous expression of previously reported TSC or osteosarcoma markers, such as CD133, nestin, POU5F1 (OCT3/4, NANOG, SOX2, and aldehyde dehydrogenase, among others, was observed in vitro. However, consistently significantly lower CD326, CD24, CD44, and higher ABCG2 expression in TSC-enriched as compared with un-enriched osteosarcoma cultures was observed. In addition, consistently higher CBX3 expression in TSC-enriched osteosarcoma cultures was identified. ABCA5 was identified as a putative biomarker of TSCs and/or osteosarcoma. Lastly, in a high-throughput screen we identified epigenetic (5-azacytidine, anti-microtubule (vincristine, and anti-telomerase (3,11-difluoro-6,8,13-trimethyl- 8H-quino [4,3,2-kl] acridinium methosulfate; RHPS4-targeted therapeutic agents as candidates for TSC ablation in osteosarcoma.

  15. Identification of urine protein biomarkers with the potential for early detection of lung cancer

    OpenAIRE

    Hongjuan Zhang; Jing Cao; Lin Li; Yanbin Liu; Hong Zhao; Nan Li; Bo Li; Aiqun Zhang; Huanwei Huang; She Chen; Mengqiu Dong; Lei Yu; Jian Zhang; Liang Chen

    2015-01-01

    Lung cancer is the leading cause of cancer-related deaths and has an overall 5-year survival rate lower than 15%. Large-scale clinical trials have demonstrated a significant relative reduction in mortality in high-risk individuals with low-dose computed tomography screening. However, biomarkers capable of identifying the most at-risk population and detecting lung cancer before it becomes clinically apparent are urgently needed in the clinic. Here, we report the identification of urine biomark...

  16. Identification of serum biomarkers for aging and anabolic response

    Directory of Open Access Journals (Sweden)

    Urban Randall J

    2011-06-01

    Full Text Available Abstract Objective With the progressive aging of the human population, there is an inexorable decline in muscle mass, strength and function. Anabolic supplementation with testosterone has been shown to effectively restore muscle mass in both young and elderly men. In this study, we were interested in identifying serum factors that change with age in two distinct age groups of healthy men, and whether these factors were affected by testosterone supplementation. Methods We measured the protein levels of a number of serum biomarkers using a combination of banked serum samples from older men (60 to 75 years and younger men (ages 18 to 35, as well as new serum specimens obtained through collaboration. We compared baseline levels of all biomarkers between young and older men. In addition, we evaluated potential changes in these biomarker levels in association with testosterone dose (low dose defined as 125 mg per week or below compared to high dose defined as 300 mg per week or above in our banked specimens. Results We identified nine serum biomarkers that differed between the young and older subjects. These age-associated biomarkers included: insulin-like growth factor (IGF1, N-terminal propeptide of type III collagen (PIIINP, monokine induced by gamma interferon (MIG, epithelial-derived neutrophil-activating peptide 78 (ENA78, interleukin 7 (IL-7, p40 subunit of interleukin 12 (IL-12p40, macrophage inflammatory protein 1β (MIP-1β, platelet derived growth factor β (PDGFβ and interferon-inducible protein 10 (IP-10. We further observed testosterone dose-associated changes in some but not all age related markers: IGF1, PIIINP, leptin, MIG and ENA78. Gains in lean mass were confirmed by dual energy X-ray absorptiometry (DEXA. Conclusions Results from this study suggest that there are potential phenotypic biomarkers in serum that can be associated with healthy aging and that some but not all of these biomarkers reflect gains in muscle mass upon

  17. Using MALDI-IMS and MRM to stablish a pipeline for discovery and validation of tumor neovasculature biomarker candidates. — EDRN Public Portal

    Science.gov (United States)

    In an effort to circumvent the limitations associated with biomarker discovery workflows involving cell lines and cell cultures, histology-directed MALDI protein profiling and imaging mass spectrometry will be used for identification of vascular endothelial biomarkers suitable for early prostate cancer detection by CEUS targeted molecular imaging

  18. Proteomics for Cerebrospinal Fluid Biomarker Identification in Parkinsons Disease: Methods and Critical Aspects

    Directory of Open Access Journals (Sweden)

    Antonio Conti

    2015-01-01

    Full Text Available Parkinson's disease (PD, similar with other neurodegenerative disorders, would benefit from the identification of early biomarkers for differential diagnosis and prognosis to address prompt clinical treatments. Together with hypothesis driven approaches, PD has been investigated by high-throughput differential proteomic analysis of cerebrospinal fluid (CSF protein content. The principal methodologies and techniques utilized in the proteomics field for PD biomarker discovery from CSF are presented in this mini review. The positive aspects and challenges in proteome-based biomarker research are also discussed.

  19. Identification of consensus biomarkers for predicting non-genotoxic hepatocarcinogens

    Science.gov (United States)

    Huang, Shan-Han; Tung, Chun-Wei

    2017-01-01

    The assessment of non-genotoxic hepatocarcinogens (NGHCs) is currently relying on two-year rodent bioassays. Toxicogenomics biomarkers provide a potential alternative method for the prioritization of NGHCs that could be useful for risk assessment. However, previous studies using inconsistently classified chemicals as the training set and a single microarray dataset concluded no consensus biomarkers. In this study, 4 consensus biomarkers of A2m, Ca3, Cxcl1, and Cyp8b1 were identified from four large-scale microarray datasets of the one-day single maximum tolerated dose and a large set of chemicals without inconsistent classifications. Machine learning techniques were subsequently applied to develop prediction models for NGHCs. The final bagging decision tree models were constructed with an average AUC performance of 0.803 for an independent test. A set of 16 chemicals with controversial classifications were reclassified according to the consensus biomarkers. The developed prediction models and identified consensus biomarkers are expected to be potential alternative methods for prioritization of NGHCs for further experimental validation.

  20. Identification of Schistosoma mansoni candidate antigens for diagnosis of schistosomiasis

    Directory of Open Access Journals (Sweden)

    Gardenia Braz Figueiredo Carvalho

    2011-11-01

    Full Text Available The development of a more sensitive diagnostic test for schistosomiasis is needed to overcome the limitations of the use of stool examination in low endemic areas. Using parasite antigens in enzyme linked immunosorbent assay is a promising strategy, however a more rational selection of parasite antigens is necessary. In this study we performed in silico analysis of the Schistosoma mansoni genome, using SchistoDB database and bioinformatic tools for screening immunogenic antigens. Based on evidence of expression in all parasite life stage within the definitive host, extracellular or plasmatic membrane localization, low similarity to human and other helminthic proteins and presence of predicted B cell epitopes, six candidates were selected: a glycosylphosphatidylinositol-anchored 200 kDa protein, two putative cytochrome oxidase subunits, two expressed proteins and one hypothetical protein. The recognition in unidimensional and bidimensional Western blot of protein with similar molecular weight and isoelectric point to the selected antigens by sera from S. mansoni infected mice indicate a good correlation between these two approaches in selecting immunogenic proteins.

  1. Identification of Novel Vaccine Candidates against Campylobacter through Reverse Vaccinology

    Directory of Open Access Journals (Sweden)

    Marine Meunier

    2016-01-01

    Full Text Available Campylobacteriosis is the most prevalent bacterial foodborne gastroenteritis affecting humans in the European Union. Human cases are mainly due to Campylobacter jejuni or Campylobacter coli, and contamination is associated with the handling and/or consumption of poultry meat. In fact, poultry constitutes the bacteria’s main reservoir. A promising way of decreasing the incidence of campylobacteriosis in humans would be to decrease avian colonization. Poultry vaccination is of potential for this purpose. However, despite many studies, there is currently no vaccine available on the market to reduce the intestinal Campylobacter load in chickens. It is essential to identify and characterize new vaccine antigens. This study applied the reverse vaccinology approach to detect new vaccine candidates. The main criteria used to select immune proteins were localization, antigenicity, and number of B-epitopes. Fourteen proteins were identified as potential vaccine antigens. In vitro and in vivo experiments now need to be performed to validate the immune and protective power of these newly identified antigens.

  2. Immunodiagnosis of porcine cysticercosis: identification of candidate antigens through immunoproteomics.

    Science.gov (United States)

    Diaz-Masmela, Yuliet; Fragoso, Gladis; Ambrosio, Javier R; Mendoza-Hernández, Guillermo; Rosas, Gabriela; Estrada, Karel; Carrero, Julio César; Sciutto, Edda; Laclette, Juan P; Bobes, Raúl J

    2013-12-01

    Cysticercosis, caused by the larval stage of Taenia solium, is a zoonotic disease affecting pigs and humans that is endemic to developing countries in Latin America, Africa and South East Asia. The prevalence of infection in pigs, the intermediate host for T. solium, has been used as an indicator for monitoring disease transmission in endemic areas. However, accurate and specific diagnostic tools for porcine cysticercosis remain to be established. Using proteomic approaches and the T. solium genome sequence, seven antigens were identified as specific for porcine cysticercosis, namely, tropomyosin 2, alpha-1 tubulin, beta-tubulin 2, annexin B1, small heat-shock protein, 14-3-3 protein, and cAMP-dependent protein kinase. None of these proteins were cross-reactive when tested with sera from pigs infected with Ascaris spp., Cysticercus tenuicollis and hydatid cysts of Echinococcus spp. or with serum from a Taenia saginata-infected cow. Comparison with orthologues, indicated that the amino acid sequences of annexin B1 and cAMP-dependent protein kinase possessed highly specific regions, which might make them suitable candidates for development of a specific diagnostic assay for porcine cysticercosis.

  3. Prospective transcriptomic pathway analysis of human lymphatic vascular insufficiency: identification and validation of a circulating biomarker panel.

    Directory of Open Access Journals (Sweden)

    Shin Lin

    Full Text Available BACKGROUND: In our previous transcriptional profiling of a murine model, we have identified a remarkably small number of specific pathways with altered expression in lymphedema. In this investigation, we utilized microarray-based transcriptomics of human skin for an unbiased a priori prospective candidate identification, with subsequent validation of these candidates through direct serum assay. The resulting multi-analyte biomarker panel sensitively should sensitively discriminate human lymphedema subjects from normal individuals. METHODS AND FINDINGS: We enrolled 63 lymphedema subjects and 27 normals in our attempt to discover protein analytes that can distinguish diseased individuals from controls. To minimize technical and biologically irrelevant variation, we first identified potential candidates by performing transcriptional microarray analysis on paired diseased and normal skin specimens sampled from the same individuals. We focused our attention on genes with corresponding protein products that are secreted and took these candidates forward to a protein multiplex assay applied to diseased and normal subjects. We developed a logistic regression-based model on an eventual group of six proteins and validated our system on a separate cohort of study subjects. The area under the receiver operating characteristic curve was calculated to be 0.87 (95% CI : 0.75 to 0.97. CONCLUSIONS: We have developed an accurate bioassay utilizing proteins representing four central pathogenetic modalities of the disease: lymphangiogenesis, inflammation, fibrosis, and lipid metabolism, suggesting that these proteins are directly related to the pathogenesis of the tissue pathology in lymphatic vascular insufficiency. Further studies are warranted to determine whether this newly-identified biomarker panel will possess utility as an instrument for in vitro diagnosis of early and latent disease; the ultimate applicability to risk stratification, quantitation of

  4. Is there Progress? An Overview of Select Biomarker Candidates for Major Depressive Disorder

    Directory of Open Access Journals (Sweden)

    Juan Joseph Young

    2016-04-01

    Full Text Available Major Depressive Disorder (MDD contributes to a significant worldwide disease burden, expected to be second only to heart disease by 2050. However, accurate diagnosis has been a historical weakness in clinical psychiatry. As a result, there is a demand for diagnostic modalities with greater objectivity that could improve on current psychiatric practice that relies mainly on self-reporting of symptoms and clinical interviews. Over the past two decades, literature on a growing number of putative biomarkers for MDD increasingly suggests that MDD patients have significantly different biological profiles compared to healthy controls. However, difficulty in elucidating their exact relationships within depression pathology renders individual markers inconsistent diagnostic tools. Consequently, further biomarker research could potentially improve our understanding of MDD pathophysiology as well as aid in interpreting response to treatment, narrow differential diagnoses, and help refine current MDD criteria. Representative of this, multiplex assays using multiple sources of biomarkers are reported to be more accurate options in comparison to individual markers that exhibit lower specificity and sensitivity, and are more prone to confounding factors. In the future, more sophisticated multiplex assays may hold promise for use in screening and diagnosing depression and determining clinical severity as an advance over relying solely on current subjective diagnostic criteria. A pervasive limitation in existing research is heterogeneity inherent in MDD studies, which impacts the validity of biomarker data. Additionally, small sample sizes of most studies limit statistical power. Yet, as the RDoC project evolves to decrease these limitations, and stronger studies with more generalizable data are developed, significant advances in the next decade are expected to yield important information in the development of MDD biomarkers for use in clinical settings.

  5. Heart-type fatty acid binding protein and vascular endothelial growth factor: cerebrospinal fluid biomarker candidates for Alzheimer's disease.

    Science.gov (United States)

    Guo, Liang-Hao; Alexopoulos, Panagiotis; Perneczky, Robert

    2013-10-01

    The main objective of the study was to validate the findings of previous cerebrospinal fluid (CSF) proteomic studies for the differentiation between Alzheimer's disease (AD) dementia and physiological ageing. The most consistently significant proteins in the separation between AD dementia versus normal controls using CSF proteomics were identified in the literature. The classification performance of the four pre-selected proteins was explored in 92 controls, 149 patients with mild cognitive impairment (MCI), and 69 patients with AD dementia. Heart-type fatty acid binding protein (hFABP) and vascular endothelial growth factor (VEGF) CSF concentrations distinguished between healthy controls and patients with AD dementia with a sensitivity and specificity of 57 and 35%, and 76 and 84%, respectively. The optimal classification was achieved by a combination of the two additional CSF biomarker candidates in conjunction with the three established markers Amyloid-β (Aβ)1-42, total-Tau (tTau), and phosphorylated-Tau (pTau)181, which resulted in a sensitivity of 83% and a specificity of 86%. hFABP also predicted the progression from MCI to AD dementia. The present study provides evidence in support of hFABP and VEGF in CSF as AD biomarker candidates to be used in combination with the established markers Aβ1-42, tTau, and pTau181.

  6. Identification of protein biomarkers for cervical cancer using human cervicovaginal fluid.

    Directory of Open Access Journals (Sweden)

    Geert A A Van Raemdonck

    Full Text Available OBJECTIVES: Cervicovaginal fluid (CVF can be considered as a potential source of biomarkers for diseases of the lower female reproductive tract. The fluid can easily be collected, thereby offering new opportunities such as the development of self tests. Our objective was to identify a CVF protein biomarker for cervical cancer or its precancerous state. METHODS: A differential proteomics study was set up using CVF samples from healthy and precancerous women. Label-free spectral counting was applied to quantify protein abundances. RESULTS: The proteome analysis revealed 16 candidate biomarkers of which alpha-actinin-4 (p = 0.001 and pyruvate kinase isozyme M1/M2 (p = 0.014 were most promising. Verification of alpha-actinin-4 by ELISA (n = 28 showed that this candidate biomarker discriminated between samples from healthy and both low-risk and high-risk HPV-infected women (p = 0.009. Additional analysis of longitudinal samples (n = 29 showed that alpha-actinin-4 levels correlated with virus persistence and clearing, with a discrimination of approximately 18 pg/ml. CONCLUSIONS: Our results show that CVF is an excellent source of protein biomarkers for detection of lower female genital tract pathologies and that alpha-actinin-4 derived from CVF is a promising candidate biomarker for the precancerous state of cervical cancer. Further studies regarding sensitivity and specificity of this biomarker will demonstrate its utility for improving current screening programs and/or its use for a cervical cancer self-diagnosis test.

  7. Developmental origins of metabolic disorders: The need for biomarker candidates and therapeutic targets from adequate preclinical models

    Directory of Open Access Journals (Sweden)

    Antonio Gonzalez-Bulnes

    2016-03-01

    Full Text Available The investigation on obesity and associated disorders have changed from an scenario in which genome drove the phenotype to a dynamic setup in which prenatal and early-postnatal conditions are determinant. However, research in human beings is difficult due to confounding factors (lifestyle and socioeconomic heterogeneity plus ethical issues. Hence, there is currently an intensive effort for developing adequate preclinical models, aiming for an adequate combination of basic studies in rodent models and specific preclinical studies in large animals. The results of these research strategies may increase the identification and development of contrasted biomarkers and therapeutic targets.

  8. Identification of Biomarkers for Endometriosis Using Clinical Proteomics

    Directory of Open Access Journals (Sweden)

    Yang Zhao

    2015-01-01

    Full Text Available Background: We investigated possible biomarkers for endometriosis (EM using the ClinProt technique and proteomics methods. Methods: We enrolled 50 patients with EM, 34 with benign ovarian neoplasms and 40 healthy volunteers in this study. Serum proteomic spectra were generated by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MS combined with weak cationic exchange (WCX magnetic beads. Possible biomarkers were analyzed by a random and repeat pattern model-validation method that we designed, and ClinProtools software, results were refined using online liquid chromatography-tandem MS. Results: We found a cluster of 5 peptides (4210, 5264, 2660, 5635, and 5904 Da, using 3 peptides (4210, 5904, 2660 Da to discriminate EM patients from healthy volunteers, with 96.67% sensitivity and 100% specificity. We selected 4210 and 5904 m/z, which differed most between patients with EM and controls, and identified them as fragments of ATP1B4, and the fibrinogen alpha (FGA isoform 1/2 of the FGA chain precursor, respectively. Conclusions: ClinProt can identify EM biomarkers, which - most notably - distinguish even early-stage or minimal disease. We found 5 stable peaks at 4210, 5264, 2660, 5635, and 5904 Da as potential EM biomarkers, the strongest of which were associated with ATP1B4 (4210 Da and FGA (5904 Da; this indicates that ATP1B4 and FGA are associated with EM pathogenesis.

  9. EPS Biomarkers Improve Stratification of NCCN Active Surveillance Candidates: Performance of Secretion Capacity and TMPRSS2:ERG Models

    Science.gov (United States)

    Whelan, Christopher; Kawachi, Mark; Smith, David D.; Linehan, Jennifer; Babilonia, Gail; Mejia, Rosa; Wilson, Timothy; Smith, Steven

    2014-01-01

    Purpose Active surveillance (AS) is a viable patient option for prostate cancer where a clinical determination of low-risk and presumably organ-confined disease can be made. In an effort to standardize risk stratification schemes, the National Comprehensive Cancer Network (NCCN) has provided guidelines for the AS option. Our purpose was to determine the effectiveness of expressed prostatic secretion (EPS) biomarkers in detecting occult risk factors in NCCN AS candidates. Materials and Methods EPS specimens were obtained prior to Robot-Assisted Radical Prostatectomy (RARP). Secretion capacity biomarkers: total RNA and EPS specimen volume were measured by standard techniques. RNA expression biomarkers: TXNRD1-mRNA, PSA-mRNA, TMPRSS2:ERG fusion mRNA and PCA3-mRNAs were measured by quantitative reverse-transcription PCR. Results Of the 528 patients from whom EPS was collected, 216 were eligible for AS under NCCN guidelines. Variable Selection in logistic regression identified two models, one featuring Type III and Type VI TMPRSS2:ERG variants, and one featuring two secretion capacity biomarkers. Of the two high performing models, the secretion capacity model was the most effective in detecting patients within this group that were upstaged or both upstaged and upgraded. It reduced the risk of upstaging in patients with a negative test by nearly 8 fold, and reduced the risk of being both upstaged and upgraded by about 5 fold, while doubling the prevalence upstaging in the positive test group. Conclusions Non-invasive EPS testing may improve patient acceptance of AS by dramatically reducing the presence of occult risk factors among patients eligible for AS under NCCN guidelines. PMID:23669563

  10. A conceptual framework for the identification of candidate drugs and drug targets in acute promyelocytic leukemia

    DEFF Research Database (Denmark)

    Marstrand, T T; Borup, R; Willer, A

    2010-01-01

    regulation, and (ii) the identification of candidate drugs and drug targets for therapeutic interventions. Significantly, our study provides a conceptual framework that can be applied to any subtype of AML and cancer in general to uncover novel information from published microarray data sets at low cost...

  11. Identification of novel autism candidate regions through analysis of reported cytogenetic abnormalities associated with autism

    NARCIS (Netherlands)

    Vorstman, JAS; Staal, WG; van Daalen, E; van Engeland, H; Hochstenbach, PFR; Franke, L

    2006-01-01

    The identification of the candidate genes for autism through linkage and association studies has proven to be a difficult enterprise. An alternative approach is the analysis of cytogenetic abnormalities associated with autism. We present a review of all studies to date that relate patients with cyto

  12. Identification of novel autism candidate regions through analysis of reported cytogenetic abnormalities associated with autism

    NARCIS (Netherlands)

    Vorstman, JAS; Staal, WG; van Daalen, E; van Engeland, H; Hochstenbach, PFR; Franke, L

    The identification of the candidate genes for autism through linkage and association studies has proven to be a difficult enterprise. An alternative approach is the analysis of cytogenetic abnormalities associated with autism. We present a review of all studies to date that relate patients with

  13. Identification of Biomarkers for Endometriosis Using Clinical Proteomics

    Institute of Scientific and Technical Information of China (English)

    Yang Zhao; Ya-Nan Liu; Yi Li; Li Tian; Xue Ye; Heng Cui; Xiao-Hong Chang

    2015-01-01

    Background:We investigated possible biomarkers for endometriosis (EM) using the ClinProt technique and proteomics methods.Methods:We enrolled 50 patients with EM,34 with benign ovarian neoplasms and 40 healthy volunteers in this study.Serum proteomic spectra were generated by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MS) combined with weak cationic exchange (WCX) magnetic beads.Possible biomarkers were analyzed by a random and repeat pattern model-validation method that we designed,and ClinProtools software,results were refined using online liquid chromatography-tandem MS.Results:We found a cluster of 5 peptides (4210,5264,2660,5635,and 5904 Da),using 3 peptides (4210,5904,2660 Da) to discriminate EM patients from healthy volunteers,with 96.67% sensitivity and 100% specificity.We selected 4210 and 5904 m/z,which differed most between patients with EM and controls,and identified them as fragments of ATP1B4,and the fibrinogen alpha (FGA) isoform 1/2 of the FGA chain precursor,respectively.Conclusions:ClinProt can identify EM biomarkers,which-most notably-distinguish even early-stage or minimal disease.We found 5 stable peaks at 4210,5264,2660,5635,and 5904 Da as potential EM biomarkers,the strongest of which were associated with ATP1B4 (4210 Da) and FGA (5904 Da); this indicates that ATP1B4 and FGA are associated with EM pathogenesis.

  14. Identification of Microbial and Proteomic Biomarkers in Early Childhood Caries

    OpenAIRE

    Hart, Thomas C.; Patricia M Corby; Milos Hauskrecht; Ok Hee Ryu; Richard Pelikan; Michal Valko; Oliveira, Maria B.; Gerald T. Hoehn; Bretz, Walter A.

    2011-01-01

    International audience; The purpose of this study was to provide a univariate and multivariate analysis of genomic microbial data and salivary mass-spectrometry proteomic profiles for dental caries outcomes. In order to determine potential useful biomarkers for dental caries, a multivariate classification analysis was employed to build predictive models capable of classifying microbial and salivary sample profiles with generalization performance. We used high-throughput methodologies includin...

  15. Identification of serum protein biomarkers for utrophin based DMD therapy

    Science.gov (United States)

    Guiraud, Simon; Edwards, Benjamin; Squire, Sarah E.; Babbs, Arran; Shah, Nandini; Berg, Adam; Chen, Huijia; Davies, Kay E.

    2017-01-01

    Despite promising therapeutic avenues, there is currently no effective treatment for Duchenne muscular dystrophy (DMD), a lethal monogenic disorder caused by the loss of the large cytoskeletal protein, dystrophin. A highly promising approach to therapy, applicable to all DMD patients irrespective to their genetic defect, is to modulate utrophin, a functional paralogue of dystrophin, able to compensate for the primary defects of DMD restoring sarcolemmal stability. One of the major difficulties in assessing the effectiveness of therapeutic strategies is to define appropriate outcome measures. In the present study, we utilised an aptamer based proteomics approach to profile 1,310 proteins in plasma of wild-type, mdx and Fiona (mdx overexpressing utrophin) mice. Comparison of the C57 and mdx sera revealed 83 proteins with statistically significant >2 fold changes in dystrophic serum abundance. A large majority of previously described biomarkers (ANP32B, THBS4, CAMK2A/B/D, CYCS, CAPNI) were normalised towards wild-type levels in Fiona animals. This work also identified potential mdx markers specific to increased utrophin (DUS3, TPI1) and highlights novel mdx biomarkers (GITR, MYBPC1, HSP60, SIRT2, SMAD3, CNTN1). We define a panel of putative protein mdx biomarkers to evaluate utrophin based strategies which may help to accelerate their translation to the clinic. PMID:28252048

  16. Identification of prognostic and diagnostic biomarkers of glucose intolerance in ApoE3Leiden mice

    NARCIS (Netherlands)

    Wopereis, S.; Radonjic, M.; Rubingh, C.; Erk, M. van; Smilde, A.; Duyvenvoorde, W. van; Cnubben, N.; Kooistra, T.; Ommen, B. van; Kleemann, R.

    2012-01-01

    The prevalence of diabetes mellitus Type 2 could be significantly reduced by early identification of subjects at risk, allowing for better prevention and earlier treatment. Glucose intolerance (GI) is a hallmark of the prediabetic stage. This study aims at identifying 1) prognostic biomarkers predic

  17. A biophysical basis for mucus solids concentration as a candidate biomarker for airways disease.

    Directory of Open Access Journals (Sweden)

    David B Hill

    Full Text Available In human airways diseases, including cystic fibrosis (CF and chronic obstructive pulmonary disease (COPD, host defense is compromised and airways inflammation and infection often result. Mucus clearance and trapping of inhaled pathogens constitute key elements of host defense. Clearance rates are governed by mucus viscous and elastic moduli at physiological driving frequencies, whereas transport of trapped pathogens in mucus layers is governed by diffusivity. There is a clear need for simple and effective clinical biomarkers of airways disease that correlate with these properties. We tested the hypothesis that mucus solids concentration, indexed as weight percent solids (wt%, is such a biomarker. Passive microbead rheology was employed to determine both diffusive and viscoelastic properties of mucus harvested from human bronchial epithelial (HBE cultures. Guided by sputum from healthy (1.5-2.5 wt% and diseased (COPD, CF; 5 wt% subjects, mucus samples were generated in vitro to mimic in vivo physiology, including intermediate range wt% to represent disease progression. Analyses of microbead datasets showed mucus diffusive properties and viscoelastic moduli scale robustly with wt%. Importantly, prominent changes in both biophysical properties arose at ∼4 wt%, consistent with a gel transition (from a more viscous-dominated solution to a more elastic-dominated gel. These findings have significant implications for: (1 penetration of cilia into the mucus layer and effectiveness of mucus transport; and (2 diffusion vs. immobilization of micro-scale particles relevant to mucus barrier properties. These data provide compelling evidence for mucus solids concentration as a baseline clinical biomarker of mucus barrier and clearance functions.

  18. Heptadecanoylcarnitine (C17) a novel candidate biomarker for propionic and methylmalonic acidemias during expanded newborn screening

    Science.gov (United States)

    Malvagia, Sabrina; Haynes, Christopher A.; Grisotto, Laura; Ombrone, Daniela; Funghini, Silvia; Moretti, Elisa; McGreevy, Kathleen; Buggeri, Annibale; Guerrini, Renzo; Yahyaoui, Raquel; Garg, Uttam; Seeterlin, Mary; Chace, Donald; De Jesus, Victor; la Marca, Giancarlo

    2017-01-01

    Background 3-hydroxypalmitoleoyl-carnitine (C16:1-OH) was recently reported to be elevated in acylcarnitine profile of propionic acidemia (PA) or methylmalonic acidemia (MMA) patients during expanded newborn screening (NBS). High levels of C16:1-OH, combined with other hydroxylated long chain acylcarnitines are related to long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD). Methods The acylcarnitine profile of two LCHADD patients was evaluated using liquid chromatography-tandem mass spectrometric method. A specific retention time was reported for each hydroxylated long chain acylcarnitine. The same method was applied to some neonatal dried blood spots (DBS) from PA and MMA patients presenting abnormal C16:1-OH concentrations. Results The final retention time of the peak corresponding to C16:1-OH in LCHADD patients differed from those in MMA and PA patients. Heptadecanoylcarnitine (C17) has been identified as the novel biomarker specific for PA and MMA patients through high resolution mass spectrometry (Orbitrap) experiments. We found that 21 out of 23 neonates (22 MMA, and 1PA) diagnosed through the Tuscany region NBS program had significantly higher levels of C17 compared to levels detected in controls. Twenty-three maternal deficiencies (21 vitamin B12 deficiency, 1 homocystinuria and 1 gastrin deficiency) and 82 false positive for propionylcarnitine (C3) results were also analyzed. Conclusions This paper reports on the characterization of a novel biomarker able to detect propionate disorders during expanded newborn screening (NBS). The use of this new biomarker may improve the analytical performances of NBS programs especially in laboratories where second tier tests are not performed. PMID:26368264

  19. Heptadecanoylcarnitine (C17) a novel candidate biomarker for newborn screening of propionic and methylmalonic acidemias.

    Science.gov (United States)

    Malvagia, Sabrina; Haynes, Christopher A; Grisotto, Laura; Ombrone, Daniela; Funghini, Silvia; Moretti, Elisa; McGreevy, Kathleen S; Biggeri, Annibale; Guerrini, Renzo; Yahyaoui, Raquel; Garg, Uttam; Seeterlin, Mary; Chace, Donald; De Jesus, Victor R; la Marca, Giancarlo

    2015-10-23

    3-Hydroxypalmitoleoyl-carnitine (C16:1-OH) has recently been reported to be elevated in acylcarnitine profiles of patients with propionic acidemia (PA) or methylmalonic acidemia (MMA) during expanded newborn screening (NBS). High levels of C16:1-OH, combined with other hydroxylated long chain acylcarnitines are related to long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD) and trifunctional protein (TFP) deficiency. The acylcarnitine profile of two LCHADD patients was evaluated using liquid chromatography-tandem mass spectrometric method. A specific retention time was determined for each hydroxylated long chain acylcarnitine. The same method was applied to some neonatal dried blood spots (DBSs) from PA and MMA patients presenting abnormal C16:1-OH concentrations. The retention time of the peak corresponding to C16:1-OH in LCHADD patients differed from those in MMA and PA patients. Heptadecanoylcarnitine (C17) has been identified as the novel biomarker specific for PA and MMA patients through high resolution mass spectrometry (Orbitrap) experiments. We found that 21 out of 23 neonates (22 MMA, and 1PA) diagnosed through the Tuscany region NBS program exhibited significantly higher levels of C17 compared to controls. Twenty-three maternal deficiency (21 vitamin B12 deficiency, 1 homocystinuria and 1 gastrin deficiency) samples and 82 false positive for elevated propionylcarnitine (C3) were also analyzed. We have characterized a novel biomarker able to detect propionate disorders during expanded newborn screening (NBS). The use of this new biomarker may improve the analytical performances of NBS programs especially in laboratories where second tier tests are not performed. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Metabolomics Identifies Multiple Candidate Biomarkers to Diagnose and Stage Human African Trypanosomiasis

    Science.gov (United States)

    Vincent, Isabel M.; Daly, Rónán; Courtioux, Bertrand; Cattanach, Amy M.; Biéler, Sylvain; Ndung’u, Joseph M.; Bisser, Sylvie; Barrett, Michael P.

    2016-01-01

    Treatment for human African trypanosomiasis is dependent on the species of trypanosome causing the disease and the stage of the disease (stage 1 defined by parasites being present in blood and lymphatics whilst for stage 2, parasites are found beyond the blood-brain barrier in the cerebrospinal fluid (CSF)). Currently, staging relies upon detecting the very low number of parasites or elevated white blood cell numbers in CSF. Improved staging is desirable, as is the elimination of the need for lumbar puncture. Here we use metabolomics to probe samples of CSF, plasma and urine from 40 Angolan patients infected with Trypanosoma brucei gambiense, at different disease stages. Urine samples provided no robust markers indicative of infection or stage of infection due to inherent variability in urine concentrations. Biomarkers in CSF were able to distinguish patients at stage 1 or advanced stage 2 with absolute specificity. Eleven metabolites clearly distinguished the stage in most patients and two of these (neopterin and 5-hydroxytryptophan) showed 100% specificity and sensitivity between our stage 1 and advanced stage 2 samples. Neopterin is an inflammatory biomarker previously shown in CSF of stage 2 but not stage 1 patients. 5-hydroxytryptophan is an important metabolite in the serotonin synthetic pathway, the key pathway in determining somnolence, thus offering a possible link to the eponymous symptoms of “sleeping sickness”. Plasma also yielded several biomarkers clearly indicative of the presence (87% sensitivity and 95% specificity) and stage of disease (92% sensitivity and 81% specificity). A logistic regression model including these metabolites showed clear separation of patients being either at stage 1 or advanced stage 2 or indeed diseased (both stages) versus control. PMID:27941966

  1. Matrix metalloproteinases as candidate biomarkers in adults with congenital heart disease.

    Science.gov (United States)

    Baggen, Vivan J M; Eindhoven, Jannet A; van den Bosch, Annemien E; Witsenburg, Maarten; Cuypers, Judith A A E; Langstraat, Jannette S; Boersma, Eric; Roos-Hesselink, Jolien W

    2016-07-01

    Context Matrix metalloproteinases (MMPs) are associated with diastolic dysfunction and heart failure in acquired heart disease. Objective To investigate the role of MMPs as novel biomarkers in clinically stable adults with congenital heart disease. Methods We measured serum MMP-2, -3, -9 and tissue inhibitor of matrix metalloproteinase-1 in 425 patients and analysed the association with cardiac function and exercise capacity. Results MMP-2 was significantly associated with exercise capacity, ventilatory efficiency and left ventricular deceleration time, independently of age, sex, body surface area and NT-proBNP. Conclusion MMP-2 may provide new information in the clinical evaluation of adults with congenital heart disease.

  2. Measuring similarity and improving stability in biomarker identification methods applied to Fourier-transform infrared (FTIR) spectroscopy.

    Science.gov (United States)

    Trevisan, Júlio; Park, Juhyun; Angelov, Plamen P; Ahmadzai, Abdullah A; Gajjar, Ketan; Scott, Andrew D; Carmichael, Paul L; Martin, Francis L

    2014-04-01

    FTIR spectroscopy is a powerful diagnostic tool that can also derive biochemical signatures of a wide range of cellular materials, such as cytology, histology, live cells, and biofluids. However, while classification is a well-established subject, biomarker identification lacks standards and validation of its methods. Validation of biomarker identification methods is difficult because, unlike classification, there is usually no reference biomarker against which to test the biomarkers extracted by a method. In this paper, we propose a framework to assess and improve the stability of biomarkers derived by a method, and to compare biomarkers derived by different method set-ups and between different methods by means of a proposed "biomarkers similarity index".

  3. Distribution of microRNA biomarker candidates in solid tissues and body fluids.

    Science.gov (United States)

    Fehlmann, Tobias; Ludwig, Nicole; Backes, Christina; Meese, Eckart; Keller, Andreas

    2016-11-01

    Small non-coding RNAs, especially microRNAs, are discussed as promising biomarkers for a substantial number of human pathologies. A broad understanding in which solid tissues, cell types or body fluids a microRNA is expressed helps also to understand and to improve the suitability of miRNAs as non- or minimally-invasive disease markers. We recently reported the Human miRNA Tissue Atlas ( http://www.ccb.uni-saarland.de/tissueatlas ) containing 105 miRNA profiles of 31 organs from 2 corpses. We subsequently added miRNA profiles measured by others and us using the same array technology as for the first version of the Human miRNA Tissue Atlas. The latter profiles stem from 163 solid organs including lung, prostate and gastric tissue, from 253 whole blood samples and 66 fractioned blood cell isolates, from body fluids including 72 serum samples, 278 plasma samples, 29 urine samples, and 16 saliva samples and from different collection and storage conditions. While most miRNAs are ubiquitous abundant in solid tissues and whole blood, we also identified miRNAs that are rather specific for tissues. Our web-based repository now hosting 982 full miRNomes all of which are measured by the same microarray technology. The knowledge of these variant abundances of miRNAs in solid tissues, in whole blood and in other body fluids is essential to judge the value of miRNAs as biomarker.

  4. Identification of Biomarkers for Footpad Dermatitis Development and Wound Healing.

    Science.gov (United States)

    Chen, Juxing; Tellez, Guillermo; Escobar, Jeffery

    2016-01-01

    Footpad dermatitis (FPD) is a type of skin inflammation that causes necrotic lesions on the plantar surface of the footpads in commercial poultry, with significant animal welfare, and economic implications. To identify biomarkers for FPD development and wound healing, a battery cage trial was conducted in which a paper sheet was put on the bottom of cages to hold feces to induce FPD of broilers. Day-of-hatch Ross 308 male broiler chicks were fed a corn-soybean meal diet and assigned to 3 treatments with 8 cages per treatment and 11 birds per cage. Cages without paper sheets were used as a negative control (NEG). Cages with paper sheets during the entire growth period (d 0-30) were used as a positive control (POS) to continually induce FPD. Cages with paper sheets during d 0-13 and without paper sheets during d 14-30 were used to examine the dynamic of FPD development and lesion wound healing (LWH). Footpad lesions were scored to grade (G) 1-5 with no lesion in G1 and most severe lesion in G5. Covering with paper sheets in POS and LWH induced 99% incidence of G3 footpads on d 13. Removing paper sheets from LWH healed footpad lesions by d 30. One representative bird, with lesions most close to pen average lesion score, was chosen to collect footpad skin samples for biomarker analysis. Total collagen protein and mRNA levels of tenascin X (TNX), type I α1 collagen (COL1A1), type III α1 collagen (COL3A1), tissue inhibitor of metalloproteinase 3 (TIMP3), and integrin α1 (ITGA1) mRNA levels were decreased (P < 0.05), while mRNA levels of tenascin C (TNC), tumor necrosis factor (TNF) α, Toll-like receptor (TLR) 4 and vascular endothelial growth factor (VEGF), IL-1β, and the ratio of MMP2 to all TIMP were increased (P < 0.03) in G3 footpads in POS and LWH compared to G1 footpads in NEG on d 14. These parameters continued to worsen with development of more severe lesions in POS. After paper sheets were removed (i.e., LWH), levels of these parameters gradually or rapidly

  5. Identification of biomarkers for footpad dermatitis development and wound healing

    Directory of Open Access Journals (Sweden)

    Juxing eChen

    2016-03-01

    Full Text Available Footpad dermatitis (FPD is a type of skin inflammation that causes necrotic lesions on the plantar surface of footpads in commercial poultry, with significant animal welfare and economic implications. To identify biomarkers for FPD development and wound healing, a battery cage trial was conducted in which a paper sheet was put on the bottom of cages to hold feces to induce FPD. Day-of-hatch Ross 308 male broiler chicks were fed a corn soybean meal diet and assigned to 3 treatments with 8 cages per treatment and 11 birds per cage. Cages without paper sheets were used as a negative control (NEG. Cages with paper sheets during the entire growth period (d 0-30 were used as a positive control (POS to continually induce FPD. Cages with paper sheets during d 0-13 and without paper sheets during d 14-30 were used to examine the dynamic of FPD development and lesion wound healing (LWH. Footpad lesions were scored to grade (G 1 to 5 with no lesion in G1 and most severe lesion in G5. Covering with paper sheets in POS and LWH induced 99% incidence of G3 footpads on d 13. Removing paper sheets from LWH healed footpad lesions by d 30. One representative bird, with lesions most close to pen average lesion score, was chosen to collect footpad skin samples for biomarker analysis. Total collagen protein and mRNA levels of tenascin X, type I α1 collagen, type III α1 collagen, tissue inhibitor of metalloproteinase 3, and integrin α1 mRNA levels were decreased (P < 0.05, while mRNA levels of tenascin C, tumor necrosis factor α, Toll-like receptor 4, vascular endothelial growth factor, and IL-1β were increased (P < 0.03 in G3 footpads in POS and LWH compared to G1 footpads in NEG on d 14. These parameters continued to worsen with development of more severe lesions in POS. After removing paper sheets (LWH, levels of these parameters returned to levels measured in NEG. In summary, these biomarkers were interrelated with dynamic changes of footpad lesion scores

  6. The TARC/sICAM5 ratio in patient plasma is a candidate biomarker for drug resistant epilepsy

    Directory of Open Access Journals (Sweden)

    John R. Pollard

    2013-01-01

    Full Text Available Epilepsy is a common affliction that involves inflammatory processes. There are currently no definitive chemical diagnostic biomarkers in the blood, so diagnosis is based on a sometimes expensive synthesis of clinical observation, radiology, neuro-psychological testing and interictal and ictal EEG studies. Soluble ICAM5 (sICAM5, also known as telencephalin, is an anti-inflammatory protein of strictly CNS-origin that is also found in blood. Here we have tested the hypothesis that plasma concentrations of select inflammatory cytokines, including sICAM5, might serve as biomarkers for epilepsy diagnosis. To test this hypothesis, we developed a highly sensitive and accurate electrochemiluminescent ELISA assay to measure sICAM5 levels, and measured levels of sICAM5 and 18 other inflammatory mediators in epilepsy patient plasma and controls. Patient samples were drawn from in-patients undergoing video-EEG monitoring, without regard to timing of seizures. Differences were defined by t-test, and Receiver Operating Condition (ROC curves determined the ability of these tests to distinguish between the two populations. In epilepsy patient plasmas, we found that concentrations of anti-inflammatory sICAM5 are reduced (p=0.002 and pro-inflammatory IL-1β, IL-2 and IL-8 are elevated. TARC (thymus and activation regulated chemokine, CCL17 concentrations trend high. In contrast, levels of BDNF and a variety of other proinflammatory mediators are not altered. Based on p-value and ROC analysis, we find that the ratio of TARC/sICAM5 discriminates accurately between patients and controls, with an ROC Area Under the Curve (AUC of 1.0 (p=0.034. In conclusion, we find that the ratio of TARC to sICAM5 accurately distinguishes between the two populations and provides a statistically and mechanistically compelling candidate blood biomarker for drug resistant epilepsy.

  7. Glutathione transferase (GST) as a candidate molecular-based biomarker for soil toxin exposure in the earthworm Lumbricus rubellus

    Energy Technology Data Exchange (ETDEWEB)

    LaCourse, E. James, E-mail: james.la-course@liverpool.ac.u [Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA (United Kingdom); Hernandez-Viadel, Mariluz; Jefferies, James R. [Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA (United Kingdom); Svendsen, Claus; Spurgeon, David J. [Centre for Ecology and Hydrology, Huntingdon PE28 2LS (United Kingdom); Barrett, John [Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA (United Kingdom); John Morgan, A.; Kille, Peter [Biosciences, University of Cardiff, Cardiff CF10 3TL (United Kingdom); Brophy, Peter M. [Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA (United Kingdom)

    2009-08-15

    The earthworm Lumbricus rubellus (Hoffmeister, 1843) is a terrestrial pollution sentinel. Enzyme activity and transcription of phase II detoxification superfamily glutathione transferases (GST) is known to respond in earthworms after soil toxin exposure, suggesting GST as a candidate molecular-based pollution biomarker. This study combined sub-proteomics, bioinformatics and biochemical assay to characterise the L. rubellus GST complement as pre-requisite to initialise assessment of the applicability of GST as a biomarker. L. rubellus possesses a range of GSTs related to known classes, with evidence of tissue-specific synthesis. Two affinity-purified GSTs dominating GST protein synthesis (Sigma and Pi class) were cloned, expressed and characterised for enzyme activity with various substrates. Electrospray ionisation mass spectrometry (ESI-MS) and tandem mass spectrometry (MS/MS) following SDS-PAGE were superior in retaining subunit stability relative to two-dimensional gel electrophoresis (2-DE). This study provides greater understanding of Phase II detoxification GST superfamily status of an important environmental pollution sentinel organism. - This study currently provides the most comprehensive view of the Phase II detoxification enzyme superfamily of glutathione transferases within the important environmental pollution sentinel earthworm Lumbricus rubellus.

  8. Identification of clinical candidates from the benzazepine class of histamine H3 receptor antagonists.

    Science.gov (United States)

    Wilson, David M; Apps, James; Bailey, Nicholas; Bamford, Mark J; Beresford, Isabel J; Brackenborough, Kim; Briggs, Michael A; Brough, Stephen; Calver, Andrew R; Crook, Barry; Davis, Rebecca K; Davis, Robert P; Davis, Susannah; Dean, David K; Harris, Leanne; Heslop, Teresa; Holland, Vicky; Jeffrey, Phillip; Panchal, Terrance A; Parr, Christopher A; Quashie, Nigel; Schogger, Joanne; Sehmi, Sanjeet S; Stean, Tania O; Steadman, Jon G A; Trail, Brenda; Wald, Jeffrey; Worby, Angela; Takle, Andrew K; Witherington, Jason; Medhurst, Andrew D

    2013-12-15

    This Letter describes the discovery of GSK189254 and GSK239512 that were progressed as clinical candidates to explore the potential of H3 receptor antagonists as novel therapies for the treatment of Alzheimer's disease and other dementias. By carefully controlling the physicochemical properties of the benzazepine series and through the implementation of an aggressive and innovative screening strategy that employed high throughput in vivo assays to efficiently triage compounds, the medicinal chemistry effort was able to rapidly progress the benzazepine class of H3 antagonists through to the identification of clinical candidates with robust in vivo efficacy and excellent developability properties.

  9. The use of MYBL2 as a novel candidate biomarker of cervical cancer.

    Science.gov (United States)

    Martin, Cara M; Astbury, Katharine; Kehoe, Louise; O'Crowley, Jacqueline Barry; O'Toole, Sharon; O'Leary, John J

    2015-01-01

    Cervical cancer is the third most common cancer affecting women worldwide. It is characterized by chromosomal aberrations and alteration in the expression levels of many cell cycle regulatory proteins, driven primarily by transforming human papillomavirus (HPV) infection. MYBL2 is a member of the MYB proto-oncogene family that encodes DNA binding proteins. These proteins are involved in cell proliferation and control of cellular differentiation. We have previously demonstrated the utility of MYBL2 as a putative biomarker for cervical pre-cancer and cancer. In this chapter we describe the methodological approach for testing MYBL2 protein expression in tissue biopsies from cases of cervical intraepithelial neoplasia (CIN) and cervical cancer, using immunohistochemistry techniques on the automated immunostaining platform, the Ventana BenchMark LT. The protocol outlines the various steps in the procedure from cutting tissue sections, antibody optimization, antigen retrieval, immunostaining, and histological review.

  10. Identification of urinary peptide biomarkers associated with rheumatoid arthritis.

    Directory of Open Access Journals (Sweden)

    Angelique Stalmach

    Full Text Available Early diagnosis and treatment of rheumatoid arthritis are associated with improved outcomes but current diagnostic tools such as rheumatoid factor or anti-citrullinated protein antibodies have shown limited sensitivity. In this pilot study we set out to establish a panel of urinary biomarkers associated with rheumatoid arthritis using capillary electrophoresis coupled to mass spectrometry. We compared the urinary proteome of 33 participants of the Scottish Early Rheumatoid Arthritis inception cohort study with 30 healthy controls and identified 292 potential rheumatoid arthritis-specific peptides. Amongst them, 39 were used to create a classifier model using support vector machine algorithms. Specific peptidic fragments were differentially excreted between groups; fragments of protein S100-A9 and gelsolin were less abundant in rheumatoid arthritis while fragments of uromodulin, complement C3 and fibrinogen were all increasingly excreted. The model generated was subsequently tested in an independent test-set of 31 samples. The classifier demonstrated a sensitivity of 88% and a specificity of 93% in diagnosing the condition, with an area under the receiver operating characteristic curve of 0.93 (p<0.0001. These preliminary results suggest that urinary biomarkers could be useful in the early diagnosis of rheumatoid arthritis. Further studies are currently being undertaken in larger cohorts of patients with rheumatoid arthritis and other athridities to assess the potential of the urinary peptide based classifier in the early detection of rheumatoid arthritis.

  11. Identification of Microbial and Proteomic Biomarkers in Early Childhood Caries

    Directory of Open Access Journals (Sweden)

    Thomas C. Hart

    2011-01-01

    Full Text Available The purpose of this study was to provide a univariate and multivariate analysis of genomic microbial data and salivary mass-spectrometry proteomic profiles for dental caries outcomes. In order to determine potential useful biomarkers for dental caries, a multivariate classification analysis was employed to build predictive models capable of classifying microbial and salivary sample profiles with generalization performance. We used high-throughput methodologies including multiplexed microbial arrays and SELDI-TOF-MS profiling to characterize the oral flora and salivary proteome in 204 children aged 1–8 years (n=118 caries-free, n=86 caries-active. The population received little dental care and was deemed at high risk for childhood caries. Findings of the study indicate that models incorporating both microbial and proteomic data are superior to models of only microbial or salivary data alone. Comparison of results for the combined and independent data suggests that the combination of proteomic and microbial sources is beneficial for the classification accuracy and that combined data lead to improved predictive models for caries-active and caries-free patients. The best predictive model had a 6% test error, >92% sensitivity, and >95% specificity. These findings suggest that further characterization of the oral microflora and the salivary proteome associated with health and caries may provide clinically useful biomarkers to better predict future caries experience.

  12. The extracellular domain of neurotrophin receptor p75 as a candidate biomarker for amyotrophic lateral sclerosis.

    Directory of Open Access Journals (Sweden)

    Stephanie R Shepheard

    Full Text Available Objective biomarkers for amyotrophic lateral sclerosis would facilitate the discovery of new treatments. The common neurotrophin receptor p75 is up regulated and the extracellular domain cleaved from injured neurons and peripheral glia in amyotrophic lateral sclerosis. We have tested the hypothesis that urinary levels of extracellular neurotrophin receptor p75 serve as a biomarker for both human motor amyotrophic lateral sclerosis and the SOD1(G93A mouse model of the disease. The extracellular domain of neurotrophin receptor p75 was identified in the urine of amyotrophic lateral sclerosis patients by an immuno-precipitation/western blot procedure and confirmed by mass spectrometry. An ELISA was established to measure urinary extracellular neurotrophin receptor p75. The mean value for urinary extracellular neurotrophin receptor p75 from 28 amyotrophic lateral sclerosis patients measured by ELISA was 7.9±0.5 ng/mg creatinine and this was significantly higher (p<0.001 than 12 controls (2.6±0.2 ng/mg creatinine and 19 patients with other neurological disease (Parkinson's disease and Multiple Sclerosis; 4.1±0.2 ng/mg creatinine. Pilot data of disease progression rates in 14 MND patients indicates that p75NTR(ECD levels were significantly higher (p = 0.0041 in 7 rapidly progressing patients as compared to 7 with slowly progressing disease. Extracellular neurotrophin receptor p75 was also readily detected in SOD1(G93A mice by immuno-precipitation/western blot before the onset of clinical symptoms. These findings indicate a significant relation between urinary extracellular neurotrophin receptor p75 levels and disease progression and suggests that it may be a useful marker of disease activity and progression in amyotrophic lateral sclerosis.

  13. The extracellular domain of neurotrophin receptor p75 as a candidate biomarker for amyotrophic lateral sclerosis.

    Science.gov (United States)

    Shepheard, Stephanie R; Chataway, Tim; Schultz, David W; Rush, Robert A; Rogers, Mary-Louise

    2014-01-01

    Objective biomarkers for amyotrophic lateral sclerosis would facilitate the discovery of new treatments. The common neurotrophin receptor p75 is up regulated and the extracellular domain cleaved from injured neurons and peripheral glia in amyotrophic lateral sclerosis. We have tested the hypothesis that urinary levels of extracellular neurotrophin receptor p75 serve as a biomarker for both human motor amyotrophic lateral sclerosis and the SOD1(G93A) mouse model of the disease. The extracellular domain of neurotrophin receptor p75 was identified in the urine of amyotrophic lateral sclerosis patients by an immuno-precipitation/western blot procedure and confirmed by mass spectrometry. An ELISA was established to measure urinary extracellular neurotrophin receptor p75. The mean value for urinary extracellular neurotrophin receptor p75 from 28 amyotrophic lateral sclerosis patients measured by ELISA was 7.9±0.5 ng/mg creatinine and this was significantly higher (pSclerosis; 4.1±0.2 ng/mg creatinine). Pilot data of disease progression rates in 14 MND patients indicates that p75NTR(ECD) levels were significantly higher (p = 0.0041) in 7 rapidly progressing patients as compared to 7 with slowly progressing disease. Extracellular neurotrophin receptor p75 was also readily detected in SOD1(G93A) mice by immuno-precipitation/western blot before the onset of clinical symptoms. These findings indicate a significant relation between urinary extracellular neurotrophin receptor p75 levels and disease progression and suggests that it may be a useful marker of disease activity and progression in amyotrophic lateral sclerosis.

  14. Identification of MicroRNAs as Potential Biomarker for Gastric Cancer by System Biological Analysis

    Directory of Open Access Journals (Sweden)

    Wenying Yan

    2014-01-01

    Full Text Available Gastric cancers (GC have the high morbidity and mortality rates worldwide and there is a need to identify sufficiently sensitive biomarkers for GC. MicroRNAs (miRNAs could be promising potential biomarkers for GC diagnosis. We employed a systematic and integrative bioinformatics framework to identify GC-related microRNAs from the public microRNA and mRNA expression dataset generated by RNA-seq technology. The performance of the 17 candidate miRNAs was evaluated by hierarchal clustering, ROC analysis, and literature mining. Fourteen have been found to be associated with GC and three microRNAs (miR-211, let-7b, and miR-708 were for the first time reported to associate with GC and may be used for diagnostic biomarkers for GC.

  15. Identification of Biomarkers for Esophageal Squamous Cell Carcinoma Using Feature Selection and Decision Tree Methods

    Directory of Open Access Journals (Sweden)

    Chun-Wei Tung

    2013-01-01

    Full Text Available Esophageal squamous cell cancer (ESCC is one of the most common fatal human cancers. The identification of biomarkers for early detection could be a promising strategy to decrease mortality. Previous studies utilized microarray techniques to identify more than one hundred genes; however, it is desirable to identify a small set of biomarkers for clinical use. This study proposes a sequential forward feature selection algorithm to design decision tree models for discriminating ESCC from normal tissues. Two potential biomarkers of RUVBL1 and CNIH were identified and validated based on two public available microarray datasets. To test the discrimination ability of the two biomarkers, 17 pairs of expression profiles of ESCC and normal tissues from Taiwanese male patients were measured by using microarray techniques. The classification accuracies of the two biomarkers in all three datasets were higher than 90%. Interpretable decision tree models were constructed to analyze expression patterns of the two biomarkers. RUVBL1 was consistently overexpressed in all three datasets, although we found inconsistent CNIH expression possibly affected by the diverse major risk factors for ESCC across different areas.

  16. Biomarker Identification and Pathway Analysis by Serum Metabolomics of Lung Cancer

    Directory of Open Access Journals (Sweden)

    Yingrong Chen

    2015-01-01

    Full Text Available Lung cancer is one of the most common causes of cancer death, for which no validated tumor biomarker is sufficiently accurate to be useful for diagnosis. Additionally, the metabolic alterations associated with the disease are unclear. In this study, we investigated the construction, interaction, and pathways of potential lung cancer biomarkers using metabolomics pathway analysis based on the Kyoto Encyclopedia of Genes and Genomes database and the Human Metabolome Database to identify the top altered pathways for analysis and visualization. We constructed a diagnostic model using potential serum biomarkers from patients with lung cancer. We assessed their specificity and sensitivity according to the area under the curve of the receiver operator characteristic (ROC curves, which could be used to distinguish patients with lung cancer from normal subjects. The pathway analysis indicated that sphingolipid metabolism was the top altered pathway in lung cancer. ROC curve analysis indicated that glycerophospho-N-arachidonoyl ethanolamine (GpAEA and sphingosine were potential sensitive and specific biomarkers for lung cancer diagnosis and prognosis. Compared with the traditional lung cancer diagnostic biomarkers carcinoembryonic antigen and cytokeratin 19 fragment, GpAEA and sphingosine were as good or more appropriate for detecting lung cancer. We report our identification of potential metabolic diagnostic and prognostic biomarkers of lung cancer and clarify the metabolic alterations in lung cancer.

  17. Identification of prostate cancer biomarkers in urinary exosomes.

    Science.gov (United States)

    Øverbye, Anders; Skotland, Tore; Koehler, Christian J; Thiede, Bernd; Seierstad, Therese; Berge, Viktor; Sandvig, Kirsten; Llorente, Alicia

    2015-10-01

    Exosomes have recently appeared as a novel source of non-invasive cancer biomarkers since tumour-specific molecules can be found in exosomes isolated from biological fluids. We have here investigated the proteome of urinary exosomes by using mass spectrometry to identify proteins differentially expressed in prostate cancer patients compared to healthy male controls. In total, 15 control and 16 prostate cancer samples of urinary exosomes were analyzed. Importantly, 246 proteins were differentially expressed in the two groups. The majority of these proteins (221) were up-regulated in exosomes from prostate cancer patients. These proteins were analyzed according to specific criteria to create a focus list that contained 37 proteins. At 100% specificity, 17 of these proteins displayed individual sensitivities above 60%. Even though several of these proteins showed high sensitivity and specificity for prostate cancer as individual biomarkers, combining them in a multi-panel test has the potential for full differentiation of prostate cancer from non-disease controls. The highest sensitivity, 94%, was observed for transmembrane protein 256 (TM256; chromosome 17 open reading frame 61). LAMTOR proteins were also distinctly enriched with very high specificity for patient samples. TM256 and LAMTOR1 could be used to augment the sensitivity to 100%. Other prominent proteins were V-type proton ATPase 16 kDa proteolipid subunit (VATL), adipogenesis regulatory factor (ADIRF), and several Rab-class members and proteasomal proteins. In conclusion, this study clearly shows the potential of using urinary exosomes in the diagnosis and clinical management of prostate cancer.

  18. Proteomic analysis of urinary biomarker candidates for nonmuscle invasive bladder cancer.

    Science.gov (United States)

    Lindén, Mårten; Lind, Sara Bergström; Mayrhofer, Corina; Segersten, Ulrika; Wester, Kenneth; Lyutvinskiy, Yaroslav; Zubarev, Roman; Malmström, Per-Uno; Pettersson, Ulf

    2012-01-01

    Nonmuscle invasive tumors of the bladder often recur and thereby bladder cancer patients need regular re-examinations which are invasive, unpleasant, and expensive. A noninvasive and less expensive method, e.g. a urine dipstick test, for monitoring recurrence would thus be advantageous. In this study, the complementary techniques mass spectrometry (MS) and Western blotting (WB)/dot blot (DB) were used to screen the urine samples from bladder cancer patients. High resolving MS was used to analyze and quantify the urinary proteome and 29 proteins had a significantly higher abundance (pblot for four selected proteins; fibrinogen β chain precursor, apolipoprotein E, α-1-antitrypsin, and leucine-rich α-2-glycoprotein 1. Dot blot analysis of an independent urine sample set pointed out fibrinogen β chain and α-1-antitrypsin as most interesting biomarkers having sensitivity and specificity values in the range of 66-85%. Exploring the Human Protein Atlas (HPA) also revealed that bladder cancer tumors are the likely source of these proteins. They have the potential of being useful in diagnosis, monitoring of recurrence and thus may improve the treatment of bladder tumors, especially nonmuscle invasive tumors.

  19. Lipid fingerprint image accurately conveys human colon cell pathophysiologic state: A solid candidate as biomarker.

    Science.gov (United States)

    Bestard-Escalas, Joan; Garate, Jone; Maimó-Barceló, Albert; Fernández, Roberto; Lopez, Daniel Horacio; Lage, Sergio; Reigada, Rebeca; Khorrami, Sam; Ginard, Daniel; Reyes, José; Amengual, Isabel; Fernández, José A; Barceló-Coblijn, Gwendolyn

    2016-12-01

    Membrane lipids are gaining increasing attention in the clinical biomarker field, as they are associated with different pathologic processes such as cancer or neurodegenerative diseases. Analyzing human colonoscopic sections by matrix assisted laser/desorption ionization (MALDI) mass spectrometry imaging techniques, we identified a defined number of lipid species changing concomitant to the colonocyte differentiation and according to a quite simple mathematical expression. These species felt into two lipid families tightly associated in signaling: phosphatidylinositols and arachidonic acid-containing lipids. On the other hand, an opposed pattern was observed in lamina propria for AA-containing lipids, coinciding with the physiological distribution of the immunological response cells in this tissue. Importantly, the lipid gradient was accompanied by a gradient in expression of enzymes involved in lipid mobilization. Finally, both lipid and protein gradients were lost in adenomatous polyps. The latter allowed us to assess how different a single lipid species is handled in a pathological context depending on the cell type. The strict patterns of distribution in lipid species and lipid enzymes described here unveil the existence of fine regulatory mechanisms orchestrating the lipidome according to the physiological state of the cell. In addition, these results provide solid evidence that the cell lipid fingerprint image can be used to predict precisely the physiological and pathological status of a cell, reinforcing its translational impact in clinical research.

  20. P50: A candidate ERP biomarker of prodromal Alzheimer’s disease

    Science.gov (United States)

    Payne, Lisa; Polikar, Robi; Moberg, Paul J.; Wolk, David A.; Kounios, John

    2015-01-01

    INTRODUCTION Reductions of cerebrospinal fluid (CSF) amyloid-beta (Aβ42) and elevated phosphorylated-tau (p-Tau) reflect in vivo Alzheimer’s disease (AD) pathology and show utility in predicting conversion from mild cognitive impairment (MCI) to dementia. We investigated the P50 event-related potential component as a noninvasive biomarker of AD pathology in non-demented elderly. METHODS 36 MCI patients were stratified into amyloid positive (MCI-AD, n=17) and negative (MCI-Other, n=19) groups using CSF levels of Aβ42. All amyloid positive patients were also p-Tau positive. P50s were elicited with an auditory oddball paradigm. RESULTS MCI-AD patients yielded larger P50s than MCI-Other. The best amyloid-status predictor model showed 94.7% sensitivity, 94.1% specificity and 94.4% total accuracy. DISCUSSION P50 predicted amyloid status in MCI patients, thereby showing a relationship with AD pathology versus MCI from another etiology. The P50 may have clinical utility for inexpensive pre-screening and assessment of Alzheimer’s pathology. PMID:26256251

  1. Candidate inflammatory biomarkers display unique relationships with alpha-synuclein and correlate with measures of disease severity in subjects with Parkinson's disease.

    Science.gov (United States)

    Eidson, Lori N; Kannarkat, George T; Barnum, Christopher J; Chang, Jianjun; Chung, Jaegwon; Caspell-Garcia, Chelsea; Taylor, Peggy; Mollenhauer, Brit; Schlossmacher, Michael G; Ereshefsky, Larry; Yen, Mark; Kopil, Catherine; Frasier, Mark; Marek, Kenneth; Hertzberg, Vicki S; Tansey, Malú G

    2017-08-18

    Efforts to identify fluid biomarkers of Parkinson's disease (PD) have intensified in the last decade. As the role of inflammation in PD pathophysiology becomes increasingly recognized, investigators aim to define inflammatory signatures to help elucidate underlying mechanisms of disease pathogenesis and aid in identification of patients with inflammatory endophenotypes that could benefit from immunomodulatory interventions. However, discordant results in the literature and a lack of information regarding the stability of inflammatory factors over a 24-h period have hampered progress. Here, we measured inflammatory proteins in serum and CSF of a small cohort of PD (n = 12) and age-matched healthy control (HC) subjects (n = 6) at 11 time points across 24 h to (1) identify potential diurnal variation, (2) reveal differences in PD vs HC, and (3) to correlate with CSF levels of amyloid β (Aβ) and α-synuclein in an effort to generate data-driven hypotheses regarding candidate biomarkers of PD. Despite significant variability in other factors, a repeated measures two-way analysis of variance by time and disease state for each analyte revealed that serum IFNγ, TNF, and neutrophil gelatinase-associated lipocalin (NGAL) were stable across 24 h and different between HC and PD. Regression analysis revealed that C-reactive protein (CRP) was the only factor with a strong linear relationship between CSF and serum. PD and HC subjects showed significantly different relationships between CSF Aβ proteins and α-synuclein and specific inflammatory factors, and CSF IFNγ and serum IL-8 positively correlated with clinical measures of PD. Finally, linear discriminant analysis revealed that serum TNF and CSF α-synuclein discriminated between PD and HC with a minimum of 82% sensitivity and 83% specificity. Our findings identify a panel of inflammatory factors in serum and CSF that can be reliably measured, distinguish between PD and HC, and monitor inflammation as disease

  2. A Bioinformatics Approach for Biomarker Identification in Radiation-Induced Lung Inflammation from Limited Proteomics Data

    Science.gov (United States)

    Oh, Jung Hun; Craft, Jeffrey M.; Townsend, Reid; Deasy, Joseph O.; Bradley, Jeffrey D.; El Naqa, Issam

    2011-01-01

    Many efforts have been made to discover novel biomarkers for early disease detection in oncology. However, the lack of efficient computational strategies impedes the discovery of disease-specific biomarkers for better understanding and management of treatment outcomes. In this study, we propose a novel graph-based scoring function to rank and identify the most robust biomarkers from limited proteomics data. The proposed method measures the proximity between candidate proteins identified by mass spectrometry (MS) analysis utilizing prior reported knowledge in the literature. Recent advances in mass spectrometry provide new opportunities to identify unique biomarkers from peripheral blood samples in complex treatment modalities such as radiation therapy (radiotherapy), which enables early disease detection, disease progression monitoring, and targeted intervention. Specifically, the dose-limiting role of radiation-induced lung injury known as radiation pneumonitis (RP) in lung cancer patients receiving radiotherapy motivates the search for robust predictive biomarkers. In this case study, plasma from 26 locally advanced non-small cell lung cancer (NSCLC) patients treated with radiotherapy in a longitudinal 3×3 matched-control cohort was fractionated using in-line, sequential multi-affinity chromatography. The complex peptide mixtures from endoprotease digestions were analyzed using comparative, high-resolution liquid chromatography (LC)-MS to identify and quantify differential peptide signals. Through analysis of survey mass spectra and annotations of peptides from the tandem spectra, we found candidate proteins that appear to be associated with RP. Based on the proposed methodology, alpha-2-macroglobulin (α2M) was unambiguously ranked as the top candidate protein. As independent validation of this candidate protein, enzyme-linked immunosorbent assay (ELISA) experiments were performed on independent cohort of 20 patients’ samples resulting in early significant

  3. Panel of seven long noncoding RNA as a candidate prognostic biomarker for ovarian cancer

    Directory of Open Access Journals (Sweden)

    Zhan XH

    2017-06-01

    Full Text Available Xiaohui Zhan,1,2 Chuanpeng Dong,3 Gang Liu,3 Yixue Li,1,2,4 Lei Liu3 1Key Lab of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 2University of Chinese Academy of Sciences, Beijing, 3Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 4Shanghai Center for Bioinformation Technology, Shanghai Industrial Technology Institute, Shanghai, People’s Republic of China Abstract: Ovarian cancer is one of the most common and lethal gynecological malignancies. The diagnosis of ovarian cancer is often at an advanced stage. Accumulated evidence suggests that long noncoding RNAs (lncRNAs play important roles during ovarian tumorigenesis. In this study, using the lncRNA-mining approach, we analyzed lncRNA expression profiles of 493 ovarian cancer patients from Gene Expression Omnibus datasets, and identified a signature group of seven lncRNAs (BC037530, AK021924, AK094536, AK094536, BC062365, BC004123 and BC007937 associated with patient survival in the training dataset GSE9891. We also formulated a risk score model to divide patients into low-risk and high-risk groups based on the expression of these seven lncRNAs. We further validated the predictive power of our risk score model in two other datasets, GSE26193 and GSE63885. Our analysis showed that the seven-lncRNA signature can serve as an independent predictor apart from Federation of Gynecology and Obstetrics (FIGO stage and patient age. Further investigation revealed the seven-lncRNA signature correlated with few critical signaling pathways involved in cancer. Combined, all these findings strongly support that the seven-lncRNA signature can serve as a strong prognosis biomarker. Keywords: lncRNA, ovarian cancer, prognostic, gene signature, survival

  4. Vulnerability to depression: from brain neuroplasticity to identification of biomarkers.

    Science.gov (United States)

    Blugeot, Aurélie; Rivat, Cyril; Bouvier, Elodie; Molet, Jenny; Mouchard, Amandine; Zeau, Brigitte; Bernard, Christophe; Benoliel, Jean-Jacques; Becker, Chrystel

    2011-09-07

    A stressful event increases the risk of developing depression later in life, but the possible predisposing factors remain unknown. Our study aims to characterize latent vulnerability traits underlying the development of depressive disorders in adult animals. Four weeks after a priming stressful event, serum corticosterone concentration returned to control values in all animals, whereas the other biological parameters returned to basal level in only 58% of animals (called nonvulnerable). In contrast, 42% of animals displayed persistent decreased serum and hippocampus BDNF concentrations, reduced hippocampal volume and neurogenesis, CA3 dendritic retraction and decrease in spine density, as well as amygdala neuron hypertrophy, constituting latent vulnerability traits to depression. In this group, called vulnerable, a subsequent mild stress evoked a rise of serum corticosterone levels and a "depressive" phenotype, in contrast to nonvulnerable animals. Intracerebroventricular administration of 7,8-dihydroxyflavone, a selective TrkB receptor agonist, dampened the development of the "depressive" phenotype. Our results thus characterize the presence of latent vulnerability traits that underlie the emergence of depression and identify the association of low BDNF with normal corticosterone serum concentrations as a predictive biomarker of vulnerability to depression.

  5. Biomarkers for ragwort poisoning in horses: identification of protein targets

    Directory of Open Access Journals (Sweden)

    Beynon Robert J

    2008-08-01

    Full Text Available Abstract Background Ingestion of the poisonous weed ragwort (Senecio jacobea by horses leads to irreversible liver damage. The principal toxins of ragwort are the pyrrolizidine alkaloids that are rapidly metabolised to highly reactive and cytotoxic pyrroles, which can escape into the circulation and bind to proteins. In this study a non-invasive in vitro model system has been developed to investigate whether pyrrole toxins induce specific modifications of equine blood proteins that are detectable by proteomic methods. Results One dimensional gel electrophoresis revealed a significant alteration in the equine plasma protein profile following pyrrole exposure and the formation of a high molecular weight protein aggregate. Using mass spectrometry and confirmation by western blotting the major components of this aggregate were identified as fibrinogen, serum albumin and transferrin. Conclusion These findings demonstrate that pyrrolic metabolites can modify equine plasma proteins. The high molecular weight aggregate may result from extensive inter- and intra-molecular cross-linking of fibrinogen with the pyrrole. This model has the potential to form the basis of a novel proteomic strategy aimed at identifying surrogate protein biomarkers of ragwort exposure in horses and other livestock.

  6. AZU-1: A Candidate Breast Tumor Suppressor and Biomarker for Tumor Progression

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Huei-Mei; Schmeichel, Karen L; Mian, I. Saira; Lelie`vre, Sophie; Petersen, Ole W; Bissell, Mina J

    2000-02-04

    To identify genes misregulated in the final stages of breast carcinogenesis, we performed differential display to compare the gene expression patterns of the human tumorigenic mammary epithelial cells, HMT-3522-T4-2, with those of their immediate premalignant progenitors, HMT-3522-S2. We identified a novel gene, called anti-zuai-1 (AZU-1), that was abundantly expressed in non- and premalignant cells and tissues but was appreciably reduced in breast tumor cell types and in primary tumors. The AZU-1 gene encodes an acidic 571-amino-acid protein containing at least two structurally distinct domains with potential protein-binding functions: an N-terminal serine and proline-rich domain with a predicted immunoglobulin-like fold and a C-terminal coiled-coil domain. In HMT-3522 cells, the bulk of AZU-1 protein resided in a detergent-extractable cytoplasmic pool and was present at much lower levels in tumorigenic T4-2 cells than in their nonmalignant counterparts. Reversion of the tumorigenic phenotype of T4-2 cells, by means described previously, was accompanied by the up-regulation of AZU-1. In addition, reexpression of AZU-1 in T4-2 cells, using viral vectors, was sufficient to reduce their malignant phenotype substantially, both in culture and in vivo. These results indicate that AZU-1 is a candidate breast tumor suppressor that may exert its effects by promoting correct tissue morphogenesis.

  7. [Pilot study on predictive value of plasmatic levels of 9 angiogenetic biomarkers in selection of patients candidate to prostate biopsy].

    Science.gov (United States)

    Serretta, Vincenzo; Scurria, Salvatore; Dispensa, Nino; Chiapparrone, Gaetano; Provenzano, Sandro; Caruso, Stefano; Bronte, Giuseppe; Cicero, Giuseppe; Russo, Antonio

    2013-01-01

    To reduce the number of negative prostate biopsies in patients with elevated PSA serum levels represents a major challenge in urological oncology. Angiogenetic factors might be involved in initial stages of prostate cancer and might represent useful tools in patients' selection for prostate biopsy. The plasmatic levels of Angiopoietin-2, Follistatin, G-CSF, HGF, IL-8, Leptin, PDGF-BB, PECAM-1 and VEGF were measured by BioPlex immunoassay in patients undergoing prostate biopsy for palpable prostate nodule and/or elevated PSA levels (≥4 ng/mL). They were related with biopsy results. ROC curve analysis was exploited to test the diagnostic accuracy of each biomarker by AUC calculation. A potential cut-off level was computed. Fifty patients were entered. Median PSA was 6.8 ng/mL. A prostate nodule was palpable in 18 (36%) patients. The median number of biopsy cores was 12. Prostate cancer was detected in 25 (50%) and ASAP and PIN in 2 more patients (4%) respectively. Among the 9 considered biomarkers, only leptin showed an interesting diagnostic performance with an AUC of 0.781, at a cut-off value of 2.11 ng/mL, demonstrating a sensitivity of 78%, a specificity of 77% and a positive predictive value of 85%. Main limitations of our study are the exploratory design and the criteria adopted for patients' selection determining a detection rate for prostate cancer above the usual range. Leptin only, in our preliminary study, shows promising diagnostic accuracy for the selection of patients candidate to prostate biopsy. Further studies are required to confirm its diagnostic value and its relation with BMI.

  8. Pairwise protein expression classifier for candidate biomarker discovery for early detection of human disease prognosis

    Directory of Open Access Journals (Sweden)

    Kaur Parminder

    2012-08-01

    Full Text Available Abstract Background An approach to molecular classification based on the comparative expression of protein pairs is presented. The method overcomes some of the present limitations in using peptide intensity data for class prediction for problems such as the detection of a disease, disease prognosis, or for predicting treatment response. Data analysis is particularly challenging in these situations due to sample size (typically tens being much smaller than the large number of peptides (typically thousands. Methods based upon high dimensional statistical models, machine learning or other complex classifiers generate decisions which may be very accurate but can be complex and difficult to interpret in simple or biologically meaningful terms. A classification scheme, called ProtPair, is presented that generates simple decision rules leading to accurate classification which is based on measurement of very few proteins and requires only relative expression values, providing specific targeted hypotheses suitable for straightforward validation. Results ProtPair has been tested against clinical data from 21 patients following a bone marrow transplant, 13 of which progress to idiopathic pneumonia syndrome (IPS. The approach combines multiple peptide pairs originating from the same set of proteins, with each unique peptide pair providing an independent measure of discriminatory power. The prediction rate of the ProtPair for IPS study as measured by leave-one-out CV is 69.1%, which can be very beneficial for clinical diagnosis as it may flag patients in need of closer monitoring. The “top ranked” proteins provided by ProtPair are known to be associated with the biological processes and pathways intimately associated with known IPS biology based on mouse models. Conclusions An approach to biomarker discovery, called ProtPair, is presented. ProtPair is based on the differential expression of pairs of peptides and the associated proteins. Using mass

  9. Use of cervicovaginal fluid for the identification of biomarkers for pathologies of the female genital tract

    Directory of Open Access Journals (Sweden)

    Tjalma Wiebren AA

    2010-12-01

    Full Text Available Abstract Cervicovaginal fluid has an important function in the homeostasis and immunity of the lower female genital tract. Analysis of the cervicovaginal fluid proteome may therefore yield important information about the pathogenesis of numerous gynecological pathologies. Additionally, cervicovaginal fluid has great potential as a source of biomarkers for these conditions. This review provides a detailed discussion about the human cervicovaginal proteome and the proteomics studies performed to characterize this biological fluid. Furthermore, infection-correlated pathological conditions of the female genital tract are discussed for which cervicovaginal fluid has been used in order to identify potential biomarkers. Recent years, numerous studies have analyzed cervicovaginal fluid samples utilizing antibody-based technologies, such as ELISA or Western blotting, to identify biomarkers for preterm birth, premature preterm rupture of membranes, bacterial vaginosis and cervical cancer. The present article will discuss the importance of proteomic technologies as alternative techniques to gain additional meaningful information about these conditions. In addition, the review focuses on recent proteomic studies on cervicovaginal fluid samples for the identification of potential biomarkers. We conclude that the use of proteomic technology for analysis of human cervicovaginal fluid samples is promising and may lead to the discovery of new biomarkers which can improve disease prevention and therapy development.

  10. Genomic and metabolomic advances in the identification of disease and adverse event biomarkers.

    Science.gov (United States)

    Mendrick, Donna L; Schnackenberg, Laura

    2009-10-01

    Incomplete knowledge of tissue pathogenesis is hampering the identification of biomarkers for the appropriate therapeutic targets to prevent or inhibit disease processes, and the prediction and diagnosis of injury due to disease and adverse events of drug therapy. The revolution in genomics and metabolomics, combined with advanced bioinformatics and computational methods for mining such large, complex data sets, are beginning to provide critical insights into tissue injury. Such results will move us closer to the promise of personalized medicine.

  11. Identification of a biomarker panel for colorectal cancer diagnosis

    Directory of Open Access Journals (Sweden)

    García-Bilbao Amaia

    2012-01-01

    Full Text Available Abstract Background Malignancies arising in the large bowel cause the second largest number of deaths from cancer in the Western World. Despite progresses made during the last decades, colorectal cancer remains one of the most frequent and deadly neoplasias in the western countries. Methods A genomic study of human colorectal cancer has been carried out on a total of 31 tumoral samples, corresponding to different stages of the disease, and 33 non-tumoral samples. The study was carried out by hybridisation of the tumour samples against a reference pool of non-tumoral samples using Agilent Human 1A 60-mer oligo microarrays. The results obtained were validated by qRT-PCR. In the subsequent bioinformatics analysis, gene networks by means of Bayesian classifiers, variable selection and bootstrap resampling were built. The consensus among all the induced models produced a hierarchy of dependences and, thus, of variables. Results After an exhaustive process of pre-processing to ensure data quality--lost values imputation, probes quality, data smoothing and intraclass variability filtering--the final dataset comprised a total of 8, 104 probes. Next, a supervised classification approach and data analysis was carried out to obtain the most relevant genes. Two of them are directly involved in cancer progression and in particular in colorectal cancer. Finally, a supervised classifier was induced to classify new unseen samples. Conclusions We have developed a tentative model for the diagnosis of colorectal cancer based on a biomarker panel. Our results indicate that the gene profile described herein can discriminate between non-cancerous and cancerous samples with 94.45% accuracy using different supervised classifiers (AUC values in the range of 0.997 and 0.955.

  12. Lung fibrosis: drug screening and disease biomarker identification with a lung slice culture model and subtracted cDNA Library.

    Science.gov (United States)

    Guo, Tong; Lok, Ka Yee; Yu, Changhe; Li, Zhuo

    2014-09-01

    Pulmonary fibrosis is a progressive and irreversible disorder with no appropriate cure. A practical and effective experimental model that recapitulates the disease will greatly benefit the research community and, ultimately, patients. In this study, we tested the lung slice culture (LSC) system for its potential use in drug screening and disease biomarker identification. Fibrosis was induced by treating rat lung slices with 1ng/ml TGF-β1 and 2.5μM CdCl2, quantified by measuring the content of hydroxyproline, and confirmed by detecting the expression of collagen type III alpha 1 (Col3α1) and connective tissue growth factor (CTGF) genes. The anti-fibrotic effects of pirfenidone, spironolactone and eplerenone were assessed by their capability to reduce hydroxyproline content. A subtractive hybridisation technique was used to create two cDNA libraries (subtracted and unsubtracted) from lung slices. The housekeeping gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was employed to assess the subtraction efficiency of the subtracted cDNA library. Clones from the two libraries were sequenced and the genes were identified by performing a BLAST search on the NCBI GenBank database. Furthermore, the relevance of the genes to fibrosis formation was verified. The results presented here show that fibrosis was effectively induced in cultured lung slices, which exhibited significantly elevated levels of hydroxyproline and Col3α1/CTGF gene expression. Several inhibitors have demonstrated their anti-fibrotic effects by significantly reducing hydroxyproline content. The subtracted cDNA library, which was enriched for differentially expressed genes, was used to successfully identify genes associated with fibrosis. Collectively, the results indicate that our LSC system is an effective model for the screening of drug candidates and for disease biomarker identification.

  13. Investigation by imaging mass spectrometry of biomarker candidates for aging in the hair cortex.

    Directory of Open Access Journals (Sweden)

    Michihiko Luca Waki

    Full Text Available BACKGROUND: Human hair is one of the essential components that define appearance and is a useful source of samples for non-invasive biomonitoring. We describe a novel application of imaging mass spectrometry (IMS of hair biomolecules for advanced molecular characterization and a better understanding of hair aging. As a cosmetic and biomedical application, molecules whose levels in hair altered with aging were comprehensively investigated. METHODS: Human hair was collected from 15 young (20±5 years old and 15 older (50±5 years old volunteers. Matrix-free laser desorption/ionization IMS was used to visualize molecular distribution in the hair sections. Hair-specific ions displaying a significant difference in the intensities between the 2 age groups were extracted as candidate markers for aging. Tissue localization of the molecules and alterations in their levels in the cortex and medulla in the young and old groups were determined. RESULTS: Among the 31 molecules detected specifically in hair sections, 2--one at m/z 153.00, tentatively assigned to be dihydrouracil, and the other at m/z 207.04, identified to be 3,4-dihydroxymandelic acid (DHMA--exhibited a higher signal intensity in the young group than in the old, and 1 molecule at m/z 164.00, presumed to be O-phosphoethanolamine, displayed a higher intensity in the old group. Among the 3, putative O-phosphoethanolamine showed a cortex-specific distribution. The 3 molecules in cortex presented the same pattern of alteration in signal intensity with aging, whereas those in medulla did not exhibit significant alteration. CONCLUSION: Three molecules whose levels in hair altered with age were extracted. While they are all possible markers for aging, putative dihydrouracil and DHMA, are also suspected to play a role in maintaining hair properties and could be targets for cosmetic supplementation. Mapping of ion localization in hair by IMS is a powerful method to extract biomolecules in specified

  14. Evidence for post-translational processing of vascular endothelial (VE-cadherin in brain tumors: towards a candidate biomarker.

    Directory of Open Access Journals (Sweden)

    Isabelle Vilgrain

    Full Text Available Vessel abnormalities are among the most important features in malignant glioma. Vascular endothelial (VE-cadherin is of major importance for vascular integrity. Upon cytokine challenge, VE-cadherin structural modifications have been described including tyrosine phosphorylation and cleavage. The goal of this study was to examine whether these events occurred in human glioma vessels. We demonstrated that VE-cadherin is highly expressed in human glioma tissue and tyrosine phosphorylated at site Y(685, a site previously found phosphorylated upon VEGF challenge, via Src activation. In vitro experiments showed that VEGF-induced VE-cadherin phosphorylation, preceded the cleavage of its extracellular adhesive domain (sVE, 90 kDa. Interestingly, metalloproteases (MMPs secreted by glioma cell lines were responsible for sVE release. Because VEGF and MMPs are important components of tumor microenvironment, we hypothesized that VE-cadherin proteolysis might occur in human brain tumors. Analysis of glioma patient sera prior treatment confirmed the presence of sVE in bloodstream. Furthermore, sVE levels studied in a cohort of 53 glioma patients were significantly predictive of the overall survival at three years (HR 0.13 [0.04; 0.40] p ≤ 0.001, irrespective to histopathological grade of tumors. Altogether, these results suggest that VE-cadherin structural modifications should be examined as candidate biomarkers of tumor vessel abnormalities, with promising applications in oncology.

  15. Diffusion Tensor Imaging in NAWM and NADGM in MS and CIS: Association with Candidate Biomarkers in Sera

    Directory of Open Access Journals (Sweden)

    Renuka Natarajan

    2013-01-01

    Full Text Available The aim of this study was to evaluate diffusion tensor imaging (DTI indices in the corpus callosum and pyramidal tract in normal-appearing white matter (NAWM and the caudate nucleus and thalamus in deep grey matter (NADGM in all MS subtypes and clinically isolated syndrome (CIS. Furthermore, it was determined whether these metrics are associated with clinical measures and the serum levels of candidate immune biomarkers. Apparent diffusion coefficients (ADC values were significantly higher than in controls in all six studied NAWM regions in SPMS, 4/6 regions in RRMS and PPMS and 2/6 regions in CIS. In contrast, decreased fractional anisotropy (FA values in comparison to controls were detected in 2/6 NAWM regions in SPMS and 1/6 in RRMS and PPMS. In RRMS, the level of neurological disability correlated with thalamic FA values (r=0.479, P=0.004. In chronic progressive subtypes and CIS, ADC values of NAWM and NADGM were associated with the levels of MIF, sFas, and sTNF-α. Our data indicate that DTI may be useful in detecting pathological changes in NAWM and NADGM in MS patients and that these changes are related to neurological disability.

  16. The imbalance in expression of angiogenic and anti-angiogenic factors as candidate predictive biomarker in preeclampsia

    Directory of Open Access Journals (Sweden)

    Pooneh Nikuei

    2015-07-01

    Full Text Available Preeclampsia is an important pregnancy disorder with serious maternal and fetal complications which its etiology has not been completely understood yet. Early diagnosis and management of disease could reduce its potential side effects. The vascular endothelial growth factor (VEGF family including VEGF-A is the most potent endothelial growth factor which induces angiogenesis and endothelial cell proliferation and has basic role in vasculogenesis. VEGF and its tyrosine kinase receptors (Flt1 and KDR are major factors for fetal and placental angiogenic development. Finding mechanisms involved in expression of angiogenic factors may lead to new prognostic and therapeutic points in management of preeclampsia. Recent researches, has shown capability of some anti-angiogenic factors as potential candidate to be used as early predictors for preeclampsia. Soluble fms-like tyrosin kinase-1 (sFlt1 is a truncated splice variant of the membrane-bound VEGF receptor Flt1, that is produced by the placenta and it can bind to angiogenic growth factors and neutraliz, their effects. It is also observed that the ratio of sFlt1 to placental growth factor is valuable as prognostic marker. In this review, VEGF family member’s role in angiogenesis is evaluated as biomarkers to be used for prediction of preeclampsia.

  17. Identification and initial assessment of candidate BWR late-phase in-vessel accident management strategies

    Energy Technology Data Exchange (ETDEWEB)

    Hodge, S.A.

    1991-04-15

    Work sponsored by the United States Nuclear Regulatory Commission (USNRC) to identify and perform preliminary assessments of candidate BWR (boiling water reactor) in-vessel accident management strategies was completed at Oak Ridge National Laboratory (ORNL) during fiscal year 1990. Mitigative strategies for containment events have been the subject of a companion study at Brookhaven National Laboratory. The focus of this Oak Ridge effort was the development of new strategies for mitigation of the late phase events, that is, the events that would occur in-vessel after the onset of significant core damage. The work began with an investigation of the current status of BWR in-vessel accident management procedures and proceeded through a preliminary evaluation of several candidate new strategies. The steps leading to the identification of the candidate strategies are described. The four new candidate late-phase (in-vessel) accident mitigation strategies identified by this study and discussed in the report are: (1) keep the reactor vessel depressurized; (2) restore injection in a controlled manner; (3) inject boron if control blade damage has occurred; and (4) containment flooding to maintain core and structural debris in-vessel. Additional assessments of these strategies are proposed.

  18. Identification and Targeting of Candidate Pre-Existing Lurker Cells that Give Rise to Castration-Resistant Prostate Cancer

    Science.gov (United States)

    2014-10-01

    propagation. Lgr5+ intestinal stem cells can initiate and maintain murine intestinal adenomas (6, 7). In mouse models of skin cancer, hair follicle bulge...AWARD NUMBER: W81XWH-13-1-0470 TITLE: Identification and Targeting of Candidate Pre... Targeting of Candidate Pre-Existing Lurker Cells that Give Rise to 5a. CONTRACT NUMBER Castration-Resistant Prostate Cancer 5b

  19. Discovery and identification of potential biomarkers of pediatric Acute Lymphoblastic Leukemia

    Directory of Open Access Journals (Sweden)

    Cui Ziyou

    2009-03-01

    Full Text Available Abstract Background Acute lymphoblastic leukemia (ALL is a common form of cancer in children. Currently, bone marrow biopsy is used for diagnosis. Noninvasive biomarkers for the early diagnosis of pediatric ALL are urgently needed. The aim of this study was to discover potential protein biomarkers for pediatric ALL. Methods Ninety-four pediatric ALL patients and 84 controls were randomly divided into a "training" set (45 ALL patients, 34 healthy controls and a test set (49 ALL patients, 30 healthy controls and 30 pediatric acute myeloid leukemia (AML patients. Serum proteomic profiles were measured using surface-enhanced laser desorption/ionization-time-of-flight mass spectroscopy (SELDI-TOF-MS. A classification model was established by Biomarker Pattern Software (BPS. Candidate protein biomarkers were purified by HPLC, identified by LC-MS/MS and validated using ProteinChip immunoassays. Results A total of 7 protein peaks (9290 m/z, 7769 m/z, 15110 m/z, 7564 m/z, 4469 m/z, 8937 m/z, 8137 m/z were found with differential expression levels in the sera of pediatric ALL patients and controls using SELDI-TOF-MS and then analyzed by BPS to construct a classification model in the "training" set. The sensitivity and specificity of the model were found to be 91.8%, and 90.0%, respectively, in the test set. Two candidate protein peaks (7769 and 9290 m/z were found to be down-regulated in ALL patients, where these were identified as platelet factor 4 (PF4 and pro-platelet basic protein precursor (PBP. Two other candidate protein peaks (8137 and 8937 m/z were found up-regulated in the sera of ALL patients, and these were identified as fragments of the complement component 3a (C3a. Conclusion Platelet factor (PF4, connective tissue activating peptide III (CTAP-III and two fragments of C3a may be potential protein biomarkers of pediatric ALL and used to distinguish pediatric ALL patients from healthy controls and pediatric AML patients. Further studies with

  20. Potentials of single-cell biology in identification and validation of disease biomarkers.

    Science.gov (United States)

    Niu, Furong; Wang, Diane C; Lu, Jiapei; Wu, Wei; Wang, Xiangdong

    2016-09-01

    Single-cell biology is considered a new approach to identify and validate disease-specific biomarkers. However, the concern raised by clinicians is how to apply single-cell measurements for clinical practice, translate the message of single-cell systems biology into clinical phenotype or explain alterations of single-cell gene sequencing and function in patient response to therapies. This study is to address the importance and necessity of single-cell gene sequencing in the identification and development of disease-specific biomarkers, the definition and significance of single-cell biology and single-cell systems biology in the understanding of single-cell full picture, the development and establishment of whole-cell models in the validation of targeted biological function and the figure and meaning of single-molecule imaging in single cell to trace intra-single-cell molecule expression, signal, interaction and location. We headline the important role of single-cell biology in the discovery and development of disease-specific biomarkers with a special emphasis on understanding single-cell biological functions, e.g. mechanical phenotypes, single-cell biology, heterogeneity and organization of genome function. We have reason to believe that such multi-dimensional, multi-layer, multi-crossing and stereoscopic single-cell biology definitely benefits the discovery and development of disease-specific biomarkers.

  1. Safety Lead Optimization and Candidate Identification: Integrating New Technologies into Decision-Making.

    Science.gov (United States)

    Dambach, Donna M; Misner, Dinah; Brock, Mathew; Fullerton, Aaron; Proctor, William; Maher, Jonathan; Lee, Dong; Ford, Kevin; Diaz, Dolores

    2016-04-18

    Discovery toxicology focuses on the identification of the most promising drug candidates through the development and implementation of lead optimization strategies and hypothesis-driven investigation of issues that enable rational and informed decision-making. The major goals are to [a] identify and progress the drug candidate with the best overall drug safety profile for a therapeutic area, [b] remove the most toxic drugs from the portfolio prior to entry into humans to reduce clinical attrition due to toxicity, and [c] establish a well-characterized hazard and translational risk profile to enable clinical trial designs. This is accomplished through a framework that balances the multiple considerations to identify a drug candidate with the overall best drug characteristics and provides a cogent understanding of mechanisms of toxicity. The framework components include establishing a target candidate profile for each program that defines the qualities of a successful candidate based on the intended therapeutic area, including the risk tolerance for liabilities; evaluating potential liabilities that may result from engaging the therapeutic target (pharmacology-mediated or on-target) and that are chemical structure-mediated (off-target); and characterizing identified liabilities. Lead optimization and investigation relies upon the integrated use of a variety of technologies and models (in silico, in vitro, and in vivo) that have achieved a sufficient level of qualification or validation to provide confidence in their use. We describe the strategic applications of various nonclinical models (established and new) for a holistic and integrated risk assessment that is used for rational decision-making. While this review focuses on strategies for small molecules, the overall concepts, approaches, and technologies are generally applicable to biotherapeutics.

  2. Identification of quantitative trait loci and candidate genes for cadmium tolerance in Populus

    Energy Technology Data Exchange (ETDEWEB)

    Induri, Brahma R [West Virginia University; Ellis, Danielle R [West Virginia University; Slavov, Goncho T. [West Virginia University; Yin, Tongming [ORNL; Zhang, Xinye [ORNL; Tuskan, Gerald A [ORNL; DiFazio, Steven P [West Virginia University

    2012-01-01

    Understanding genetic variation for the response of Populus to heavy metals like cadmium (Cd) is an important step in elucidating the underlying mechanisms of tolerance. In this study, a pseudo-backcross pedigree of Populus trichocarpa Torr. & Gray and Populus deltoides Bart. was characterized for growth and performance traits after Cd exposure. A total of 16 quantitative trait loci (QTL) at logarithm of odds (LOD) ratio 2.5 were detected for total dry weight, its components and root volume. Major QTL for Cd responses were mapped to two different linkage groups and the relative allelic effects were in opposing directions on the two chromosomes, suggesting differential mechanisms at these two loci. The phenotypic variance explained by Cd QTL ranged from 5.9 to 11.6% and averaged 8.2% across all QTL. A whole-genome microarray study led to the identification of nine Cd-responsive genes from these QTL. Promising candidates for Cd tolerance include an NHL repeat membrane-spanning protein, a metal transporter and a putative transcription factor. Additional candidates in the QTL intervals include a putative homolog of a glutamate cysteine ligase, and a glutathione-S-transferase. Functional characterization of these candidate genes should enhance our understanding of Cd metabolism and transport and phytoremediation capabilities of Populus.

  3. Heritability and clinical determinants of serum indoxyl sulfate and p-cresyl sulfate, candidate biomarkers of the human microbiome enterotype.

    Directory of Open Access Journals (Sweden)

    Liesbeth Viaene

    Full Text Available BACKGROUND: Indoxyl sulfate and p-cresyl sulfate are unique microbial co-metabolites. Both co-metabolites have been involved in the pathogenesis of accelerated cardiovascular disease and renal disease progression. Available evidence suggests that indoxyl sulfate and p-cresyl sulfate may be considered candidate biomarkers of the human enterotype and may help to explain the link between diet and cardiovascular disease burden. OBJECTIVE AND DESIGN: Information on clinical determinants and heritability of indoxyl sulfate and p-cresyl sulfate serum is non-existing. To clarify this issue, the authors determined serum levels of indoxyl sulfate and p-cresyl sulfate in 773 individuals, recruited in the frame of the Flemish Study on Environment, Genes and Health Outcomes (FLEMENGHO study. RESULTS: Serum levels of indoxyl sulfate and p-cresyl sulfate amounted to 3.1 (2.4-4.3 and 13.0 (7.4-21.5 μM, respectively. Regression analysis identified renal function, age and sex as independent determinants of both co-metabolites. Both serum indoxyl sulfate (h2 = 0.17 and p-cresyl sulfate (h2 = 0.18 concentrations showed moderate but significant heritability after adjustment for covariables, with significant genetic and environmental correlations for both co-metabolites. LIMITATIONS: Family studies cannot provide conclusive evidence for a genetic contribution, as confounding by shared environmental effects can never be excluded. CONCLUSIONS: The heritability of indoxyl sulfate and p-cresyl sulfate is moderate. Besides genetic host factors and environmental factors, also renal function, sex and age influence the serum levels of these co-metabolites.

  4. Peptide fingerprinting of Alzheimer's disease in cerebrospinal fluid: identification and prospective evaluation of new synaptic biomarkers.

    Directory of Open Access Journals (Sweden)

    Holger Jahn

    Full Text Available BACKGROUND: Today, dementias are diagnosed late in the course of disease. Future treatments have to start earlier in the disease process to avoid disability requiring new diagnostic tools. The objective of this study is to develop a new method for the differential diagnosis and identification of new biomarkers of Alzheimer's disease (AD using capillary-electrophoresis coupled to mass-spectrometry (CE-MS and to assess the potential of early diagnosis of AD. METHODS AND FINDINGS: Cerebrospinal fluid (CSF of 159 out-patients of a memory-clinic at a University Hospital suffering from neurodegenerative disorders and 17 cognitively-healthy controls was used to create differential peptide pattern for dementias and prospective blinded-comparison of sensitivity and specificity for AD diagnosis against the Criterion standard in a naturalistic prospective sample of patients. Sensitivity and specificity of the new method compared to standard diagnostic procedures and identification of new putative biomarkers for AD was the main outcome measure. CE-MS was used to reliably detect 1104 low-molecular-weight peptides in CSF. Training-sets of patients with clinically secured sporadic Alzheimer's disease, frontotemporal dementia, and cognitively healthy controls allowed establishing discriminative biomarker pattern for diagnosis of AD. This pattern was already detectable in patients with mild cognitive impairment (MCI. The AD-pattern was tested in a prospective sample of patients (n = 100 and AD was diagnosed with a sensitivity of 87% and a specificity of 83%. Using CSF measurements of beta-amyloid1-42, total-tau, and phospho(181-tau, AD-diagnosis had a sensitivity of 88% and a specificity of 67% in the same sample. Sequence analysis of the discriminating biomarkers identified fragments of synaptic proteins like proSAAS, apolipoprotein J, neurosecretory protein VGF, phospholemman, and chromogranin A. CONCLUSIONS: The method may allow early differential

  5. Identification of Tetranectin as a Potential Biomarker for Metastatic Oral Cancer

    Directory of Open Access Journals (Sweden)

    Shen Hu

    2010-09-01

    Full Text Available Lymph node involvement is the most important predictor of survival rates in patients with oral squamous cell carcinoma (OSCC. A biomarker that can indicate lymph node metastasis would be valuable to classify patients with OSCC for optimal treatment. In this study, we have performed a serum proteomic analysis of OSCC using 2-D gel electrophoresis and liquid chromatography/tandem mass spectrometry. One of the down-regulated proteins in OSCC was identified as tetranectin, which is a protein encoded by the CLEC3B gene (C-type lectin domain family 3, member B. We further tested the protein level in serum and saliva from patients with lymph-node metastatic and primary OSCC. Tetranectin was found significantly under-expressed in both serum and saliva of metastatic OSCC compared to primary OSCC. Our results suggest that serum or saliva tetranectin may serve as a potential biomarker for metastatic OSCC. Other candidate serum biomarkers for OSCC included superoxide dismutase, ficolin 2, CD-5 antigen-like protein, RalA binding protein 1, plasma retinol-binding protein and transthyretin. Their clinical utility for OSCC detection remains to be further tested in cancer patients.

  6. Identification of an epigenetic biomarker panel with high sensitivity and specificity for colorectal cancer and adenomas

    Directory of Open Access Journals (Sweden)

    Lind Guro E

    2011-07-01

    Full Text Available Abstract Background The presence of cancer-specific DNA methylation patterns in epithelial colorectal cells in human feces provides the prospect of a simple, non-invasive screening test for colorectal cancer and its precursor, the adenoma. This study investigates a panel of epigenetic markers for the detection of colorectal cancer and adenomas. Methods Candidate biomarkers were subjected to quantitative methylation analysis in test sets of tissue samples from colorectal cancers, adenomas, and normal colonic mucosa. All findings were verified in independent clinical validation series. A total of 523 human samples were included in the study. Receiver operating characteristic (ROC curve analysis was used to evaluate the performance of the biomarker panel. Results Promoter hypermethylation of the genes CNRIP1, FBN1, INA, MAL, SNCA, and SPG20 was frequent in both colorectal cancers (65-94% and adenomas (35-91%, whereas normal mucosa samples were rarely (0-5% methylated. The combined sensitivity of at least two positives among the six markers was 94% for colorectal cancers and 93% for adenoma samples, with a specificity of 98%. The resulting areas under the ROC curve were 0.984 for cancers and 0.968 for adenomas versus normal mucosa. Conclusions The novel epigenetic marker panel shows very high sensitivity and specificity for both colorectal cancers and adenomas. Our findings suggest this biomarker panel to be highly suitable for early tumor detection.

  7. Development of a blood-based molecular biomarker test for identification of schizophrenia before disease onset

    Science.gov (United States)

    Chan, M K; Krebs, M-O; Cox, D; Guest, P C; Yolken, R H; Rahmoune, H; Rothermundt, M; Steiner, J; Leweke, F M; van Beveren, N J M; Niebuhr, D W; Weber, N S; Cowan, D N; Suarez-Pinilla, P; Crespo-Facorro, B; Mam-Lam-Fook, C; Bourgin, J; Wenstrup, R J; Kaldate, R R; Cooper, J D; Bahn, S

    2015-01-01

    Recent research efforts have progressively shifted towards preventative psychiatry and prognostic identification of individuals before disease onset. We describe the development of a serum biomarker test for the identification of individuals at risk of developing schizophrenia based on multiplex immunoassay profiling analysis of 957 serum samples. First, we conducted a meta-analysis of five independent cohorts of 127 first-onset drug-naive schizophrenia patients and 204 controls. Using least absolute shrinkage and selection operator regression, we identified an optimal panel of 26 biomarkers that best discriminated patients and controls. Next, we successfully validated this biomarker panel using two independent validation cohorts of 93 patients and 88 controls, which yielded an area under the curve (AUC) of 0.97 (0.95–1.00) for schizophrenia detection. Finally, we tested its predictive performance for identifying patients before onset of psychosis using two cohorts of 445 pre-onset or at-risk individuals. The predictive performance achieved by the panel was excellent for identifying USA military personnel (AUC: 0.90 (0.86–0.95)) and help-seeking prodromal individuals (AUC: 0.82 (0.71–0.93)) who developed schizophrenia up to 2 years after baseline sampling. The performance increased further using the latter cohort following the incorporation of CAARMS (Comprehensive Assessment of At-Risk Mental State) positive subscale symptom scores into the model (AUC: 0.90 (0.82–0.98)). The current findings may represent the first successful step towards a test that could address the clinical need for early intervention in psychiatry. Further developments of a combined molecular/symptom-based test will aid clinicians in the identification of vulnerable patients early in the disease process, allowing more effective therapeutic intervention before overt disease onset. PMID:26171982

  8. Syndrome to gene (S2G): in-silico identification of candidate genes for human diseases.

    Science.gov (United States)

    Gefen, Avitan; Cohen, Raphael; Birk, Ohad S

    2010-03-01

    The identification of genomic loci associated with human genetic syndromes has been significantly facilitated through the generation of high density SNP arrays. However, optimal selection of candidate genes from within such loci is still a tedious labor-intensive bottleneck. Syndrome to Gene (S2G) is based on novel algorithms which allow an efficient search for candidate genes in a genomic locus, using known genes whose defects cause phenotypically similar syndromes. S2G (http://fohs.bgu.ac.il/s2g/index.html) includes two components: a phenotype Online Mendelian Inheritance in Man (OMIM)-based search engine that alleviates many of the problems in the existing OMIM search engine (negation phrases, overlapping terms, etc.). The second component is a gene prioritizing engine that uses a novel algorithm to integrate information from 18 databases. When the detailed phenotype of a syndrome is inserted to the web-based software, S2G offers a complete improved search of the OMIM database for similar syndromes. The software then prioritizes a list of genes from within a genomic locus, based on their association with genes whose defects are known to underlie similar clinical syndromes. We demonstrate that in all 30 cases of novel disease genes identified in the past year, the disease gene was within the top 20% of candidate genes predicted by S2G, and in most cases--within the top 10%. Thus, S2G provides clinicians with an efficient tool for diagnosis and researchers with a candidate gene prediction tool based on phenotypic data and a wide range of gene data resources. S2G can also serve in studies of polygenic diseases, and in finding interacting molecules for any gene of choice.

  9. Classification study of WISE infrared sources: identification of candidate asymptotic giant branch stars

    Institute of Scientific and Technical Information of China (English)

    Xun Tu; Zhong-Xiang Wang

    2013-01-01

    In the Wide-field Infrared Survey Explorer (WISE) all-sky source catalog there are 76 million mid-infrared point sources that were detected in the first three WISE bands and have association with only one 2MASS near-IR source within 3".We search for their identifications in the SIMBAD database and find 3.2 million identified sources.Based on these known sources,we establish three criteria for selecting candidate asymptotic giant branch (AGB) stars in the Galaxy,which are three defined zones in a color-color diagram,Galactic latitude |b| ≤ 20°,and "corrected" WISE third-band W3c≤ 11.Applying these criteria to the WISE+2MASS sources,1.37 million of them are selected.We analyze the WISE third-band W3 distribution of the selected sources,and further establish that W3≤8 is required in order to exclude a large fraction of normal stars from them.We therefore find 0.47 million candidate AGB stars in our Galaxy from the WISE source catalog.Using W3c,we estimate their distances and derive their Galactic distributions.The candidates are generally distributed around the Galactic center uniformly,with 68% (1-σ) of them within approximately 8 kpc.We discuss the idea that optical spectroscopy can be used to verify the C-rich AGB stars in our candidates,and thus a fraction of them (~10%) will be good targets for the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST)survey that is planned to start in fall of 2012.

  10. Gene expression analysis of 4 biomarker candidates in Eisenia fetida exposed to an environmental metallic trace elements gradient: A microcosm study

    Energy Technology Data Exchange (ETDEWEB)

    Brulle, Franck; Lemiere, Sebastien [Univ Lille Nord de France, F-59000 Lille (France); LGCgE, Equipe Ecologie Numerique et Ecotoxicologie, Lille 1, F-59650 Villeneuve d' Ascq (France); Waterlot, Christophe; Douay, Francis [Univ Lille Nord de France, F-59000 Lille (France); LGCgE, Equipe Sols et Environnement, Groupe ISA, 48 boulevard Vauban, F-59046 Lille Cedex (France); Vandenbulcke, Franck, E-mail: franck.vandenbulcke@univ-lille1.fr [Univ Lille Nord de France, F-59000 Lille (France); LGCgE, Equipe Ecologie Numerique et Ecotoxicologie, Lille 1, F-59650 Villeneuve d' Ascq (France)

    2011-11-15

    Past activities of 2 smelters (Metaleurop Nord and Nyrstar) led to the accumulation of high amounts of Metal Trace Elements (TEs) in top soils of the Noyelles-Godault/Auby area, Northern France. Earthworms were exposed to polluted soils collected in this area to study and better understand the physiological changes, the mechanisms of acclimation, and detoxification resulting from TE exposure. Previously we have cloned and transcriptionally characterized potential biomarkers from immune cells of the ecotoxicologically important earthworm species Eisenia fetida exposed in vivo to TE-spiked standard soils. In the present study, analysis of expression kinetics of four candidate indicator genes (Cadmium-metallothionein, coactosin like protein, phytochelatin synthase and lysenin) was performed in E. fetida after microcosm exposures to natural soils exhibiting an environmental cadmium (Cd) gradient in a kinetic manner. TE body burdens were also measured. This microcosm study provided insights into: (1) the ability of the 4 tested genes to serve as expression biomarkers, (2) detoxification processes through the expression analysis of selected genes, and (3) influence of land uses on the response of potential biomarkers (gene expression or TE uptake). - Highlights: {yields} Expression biomarkers in animals exposed to Cadmium-contaminated field soils. {yields} Expression kinetics to test the ability of genes to serve as expression biomarkers. {yields} Study of detoxification processes through the expression analysis of selected genes.

  11. Identification of candidate T-cell epitopes and molecular mimics in chronic Lyme disease.

    Science.gov (United States)

    Hemmer, B; Gran, B; Zhao, Y; Marques, A; Pascal, J; Tzou, A; Kondo, T; Cortese, I; Bielekova, B; Straus, S E; McFarland, H F; Houghten, R; Simon, R; Pinilla, C; Martin, R

    1999-12-01

    Elucidating the cellular immune response to infectious agents is a prerequisite for understanding disease pathogenesis and designing effective vaccines. In the identification of microbial T-cell epitopes, the availability of purified or recombinant bacterial proteins has been a chief limiting factor. In chronic infectious diseases such as Lyme disease, immune-mediated damage may add to the effects of direct infection by means of molecular mimicry to tissue autoantigens. Here, we describe a new method to effectively identify both microbial epitopes and candidate autoantigens. The approach combines data acquisition by positional scanning peptide combinatorial libraries and biometric data analysis by generation of scoring matrices. In a patient with chronic neuroborreliosis, we show that this strategy leads to the identification of potentially relevant T-cell targets derived from both Borrelia burgdorferi and the host. We also found that the antigen specificity of a single T-cell clone can be degenerate and yet the clone can preferentially recognize different peptides derived from the same organism, thus demonstrating that flexibility in T-cell recognition does not preclude specificity. This approach has potential applications in the identification of ligands in infectious diseases, tumors and autoimmune diseases.

  12. Identification of Surface Protein Biomarkers of Listeria monocytogenes via Bioinformatics and Antibody-Based Protein Detection Tools

    Science.gov (United States)

    Zhang, Cathy X. Y.; Brooks, Brian W.; Huang, Hongsheng; Pagotto, Franco

    2016-01-01

    ABSTRACT The Gram-positive bacterium Listeria monocytogenes causes a significant percentage of the fatalities among foodborne illnesses in humans. Surface proteins specifically expressed in a wide range of L. monocytogenes serotypes under selective enrichment culture conditions could serve as potential biomarkers for detection and isolation of this pathogen via antibody-based methods. Our study aimed to identify such biomarkers. Interrogation of the L. monocytogenes serotype 4b strain F2365 genome identified 130 putative or known surface proteins. The homologues of four surface proteins, LMOf2365_0578, LMOf2365_0581, LMOf2365_0639, and LMOf2365_2117, were assessed as biomarkers due to the presence of conserved regions among strains of L. monocytogenes which are variable among other Listeria species. Rabbit polyclonal antibodies against the four recombinant proteins revealed the expression of only LMOf2365_0639 on the surface of serotype 4b strain LI0521 cells despite PCR detection of mRNA transcripts for all four proteins in the organism. Three of 35 monoclonal antibodies (MAbs) to LMOf2365_0639, MAbs M3643, M3644, and M3651, specifically recognized 42 (91.3%) of 46 L. monocytogenes lineage I and II isolates grown in nonselective brain heart infusion medium. While M3644 and M3651 reacted with 14 to 15 (82.4 to 88.2%) of 17 L. monocytogenes lineage I and II isolates, M3643 reacted with 22 (91.7%) of 24 lineage I, II, and III isolates grown in selective enrichment media (UVM1, modified Fraser, Palcam, and UVM2 media). The three MAbs exhibited only weak reactivities (the optical densities at 414 nm were close to the cutoff value) to some other Listeria species grown in selective enrichment media. Collectively, the data indicate the potential of LMOf2365_0639 as a surface biomarker of L. monocytogenes, with the aid of specific MAbs, for pathogen detection, identification, and isolation in clinical, environmental, and food samples. IMPORTANCE L. monocytogenes is

  13. Host Response to Environmental Hazards: Using Literature, Bioinformatics, and Computation to Derive Candidate Biomarkers of Toxic Industrial Chemical Exposure

    Science.gov (United States)

    2015-10-01

    Biomarkers of Toxic Industrial Chemical Exposure Major Jonathan D. Stallings *1 , Danielle L. Ippolito 1 , Anders Wallqvist 2 , B. Claire McDyre 3 , and...Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S...data to infer biomarkers of toxic industrial chemicals exposure. Using a computational and relational approach we prioritized militarily relevant

  14. Biomarkers to guide clinical therapeutics in rheumatology?

    Science.gov (United States)

    Robinson, William H; Mao, Rong

    2016-03-01

    The use of biomarkers in rheumatology can help identify disease risk, improve diagnosis and prognosis, target therapy, assess response to treatment, and further our understanding of the underlying pathogenesis of disease. Here, we discuss the recent advances in biomarkers for rheumatic disorders, existing impediments to progress in this field, and the potential of biomarkers to enable precision medicine and thereby transform rheumatology. Although significant challenges remain, progress continues to be made in biomarker discovery and development for rheumatic diseases. The use of next-generation technologies, including large-scale sequencing, proteomic technologies, metabolomic technologies, mass cytometry, and other single-cell analysis and multianalyte analysis technologies, has yielded a slew of new candidate biomarkers. Nevertheless, these biomarkers still require rigorous validation and have yet to make their way into clinical practice and therapeutic development. This review focuses on advances in the biomarker field in the last 12 months as well as the challenges that remain. Better biomarkers, ideally mechanistic ones, are needed to guide clinical decision making in rheumatology. Although the use of next-generation techniques for biomarker discovery is making headway, it is imperative that the roadblocks in our search for new biomarkers are overcome to enable identification of biomarkers with greater diagnostic and predictive utility. Identification of biomarkers with robust diagnostic and predictive utility would enable precision medicine in rheumatology.

  15. Identification of new biomarker candidates for glucocorticoid induced insulin resistance using literature mining

    Directory of Open Access Journals (Sweden)

    Fleuren Wilco WM

    2013-02-01

    Full Text Available Abstract Background Glucocorticoids are potent anti-inflammatory agents used for the treatment of diseases such as rheumatoid arthritis, asthma, inflammatory bowel disease and psoriasis. Unfortunately, usage is limited because of metabolic side-effects, e.g. insulin resistance, glucose intolerance and diabetes. To gain more insight into the mechanisms behind glucocorticoid induced insulin resistance, it is important to understand which genes play a role in the development of insulin resistance and which genes are affected by glucocorticoids. Medline abstracts contain many studies about insulin resistance and the molecular effects of glucocorticoids and thus are a good resource to study these effects. Results We developed CoPubGene a method to automatically identify gene-disease associations in Medline abstracts. We used this method to create a literature network of genes related to insulin resistance and to evaluate the importance of the genes in this network for glucocorticoid induced metabolic side effects and anti-inflammatory processes. With this approach we found several genes that already are considered markers of GC induced IR, such as phosphoenolpyruvate carboxykinase (PCK and glucose-6-phosphatase, catalytic subunit (G6PC. In addition, we found genes involved in steroid synthesis that have not yet been recognized as mediators of GC induced IR. Conclusions With this approach we are able to construct a robust informative literature network of insulin resistance related genes that gave new insights to better understand the mechanisms behind GC induced IR. The method has been set up in a generic way so it can be applied to a wide variety of disease networks.

  16. Rat Models and Identification of Candidate Early Serum Biomarkers of Battlefield Traumatic Brain Injury

    Science.gov (United States)

    2007-07-31

    correlation (ΔCn) of 0.08. SEQUEST results were further filtered and analyzed using software developed in-house. Analysis of proteomic data To...0.25 0 0 0.75 0 0.25 Echinoderm m icrotubule associated protein like 1 Q 4V 8C 3 2.249E-05 0.546875 0.5 1 0.5 0.5 1.5 1.5 0.5 2.25...B rain, glandular regions of the stom ach, m ast cells and fetal liver. Y es 34 G -protein coupled sensory epithelial neuropeptide-like receptor

  17. Protein expression and promoter methylation of the candidate biomarker TCF21 in head and neck squamous cell carcinoma.

    Science.gov (United States)

    Weiss, Daniel; Stockmann, Christian; Schrödter, Katrin; Rudack, Claudia

    2013-06-01

    -expression of p16, a protein induced by HPV (p = 0.006). Both over-expression and increased promoter methylation of TCF21 were frequently observed in HNSCCs. TCF21 promoter hypermethylation was found to lead to gene silencing in the HNSCCs, but not in the benign tonsils. These epigenetic, and possibly also genetic, alterations of the TCF21 gene in HNSCCs may be driven by HPV infection, nicotine and alcohol abuse, or both. These findings, together with its stage- and primary site-dependent expression, turn TCF21 into a promising candidate biomarker in HNSCC.

  18. Identification of serum proteomic biomarkers for early porcine reproductive and respiratory syndrome (PRRS infection

    Directory of Open Access Journals (Sweden)

    Genini Sem

    2012-08-01

    Full Text Available Abstract Background Porcine reproductive and respiratory syndrome (PRRS is one of the most significant swine diseases worldwide. Despite its relevance, serum biomarkers associated with early-onset viral infection, when clinical signs are not detectable and the disease is characterized by a weak anti-viral response and persistent infection, have not yet been identified. Surface-enhanced laser desorption ionization time of flight mass spectrometry (SELDI-TOF MS is a reproducible, accurate, and simple method for the identification of biomarker proteins related to disease in serum. This work describes the SELDI-TOF MS analyses of sera of 60 PRRSV-positive and 60 PRRSV-negative, as measured by PCR, asymptomatic Large White piglets at weaning. Sera with comparable and low content of hemoglobin ( Results A total of 200 significant peaks (p  Conclusions SELDI-TOF MS profiling of sera from PRRSV-positive and PRRSV-negative asymptomatic piglets provided a proteomic signature with large scale diagnostic potential for early identification of PRRSV infection in weaning piglets. Furthermore, SELDI-TOF protein markers represent a refined phenotype of PRRSV infection that might be useful for whole genome association studies.

  19. Identification of matrix metalloproteinase-12 as a candidate molecule for prevention and treatment of cardiometabolic disease.

    Science.gov (United States)

    Amor, Melina; Moreno-Viedma, Veronica; Sarabi, Alisina; Grün, Nicole G; Itariu, Bianca; Leitner, Lukas; Steiner, Irene; Bilban, Martin; Kodama, Keiichi; Butte, Atul J; Staffler, Guenther; Zeyda, Maximilian; Stulnig, Thomas M

    2016-06-30

    Obesity is strongly associated with metabolic syndrome, a combination of risk factors that predispose to the development of the cardiometabolic diseases: atherosclerotic cardiovascular disease and type 2 diabetes mellitus. Prevention of metabolic syndrome requires novel interventions to address this health challenge. The objective of this study was the identification of candidate molecules for the prevention and treatment of insulin resistance and atherosclerosis, conditions that underlie type 2 diabetes mellitus and cardiovascular disease, respectively. We used an unbiased bioinformatics approach to identify molecules that are upregulated in both conditions by combining murine and human data from a microarray experiment and meta-analyses. We obtained a pool of eight genes that were upregulated in all the databases analysed. These included well known and novel molecules involved in the pathophysiology of type 2 diabetes mellitus and cardiovascular disease. Notably, matrix metalloproteinase 12 (Mmp12) was highly ranked in all analyses and was therefore chosen for further investigation. Analyses of visceral and subcutaneous white adipose tissue from obese compared to lean mice and humans convincingly confirmed the up-regulation of Mmp12 in obesity at mRNA, protein and activity levels. In conclusion, using this unbiased approach an interesting pool of candidate molecules was identified, all of which have potential as targets in the treatment and prevention of cardiometabolic diseases.

  20. Development and Evaluation of a Multiplexed Mass Spectrometry-Based Assay for Measuring Candidate Peptide Biomarkers in Alzheimer’s Disease Neuroimaging Initiative (ADNI) CSF

    Science.gov (United States)

    Spellman, Daniel S.; Wildsmith, Kristin R.; Honigberg, Lee A.; Tuefferd, Marianne; Baker, David; Raghavan, Nandini; Nairn, Angus C.; Croteau, Pascal; Schirm, Michael; Allard, Rene; Lamontagne, Julie; Chelsky, Daniel; Hoffmann, Steven; Potter, William Z.

    2015-01-01

    Purpose We describe the outcome of the Biomarkers Consortium CSF Proteomics Project, a public-private partnership of government, academia, non-profit, and industry. The goal of this study was to evaluate a multiplexed mass spectrometry-based approach for the qualification of candidate Alzheimer’s Disease (AD) biomarkers using CSF samples from the AD Neuroimaging Initiative (ADNI). Experimental Design Reproducibility of sample processing, analytic variability, and ability to detect a variety of analytes of interest were thoroughly investigated. Multiple approaches to statistical analyses assessed whether panel analytes were associated with baseline pathology (MCI, AD) vs. Healthy Controls (CN) or associated with progression for MCI patients, and included: (i) univariate association analyses, (ii) univariate prediction models, (iii) exploratory multivariate analyses, and (iv) supervised multivariate analysis. Results A robust targeted mass spectrometry-based approach for the qualification of candidate AD biomarkers was developed. The results identified several peptides with potential diagnostic or predictive utility, with the most significant differences observed for the following peptides for differentiating (including peptides from Hemoglobin A (HBA), Hemoglobin B (HBB), and Superoxide dismutase (SODE)) or predicting (including peptides from Neuronal pentraxin-2 (NPTX2), Neurosecretory protein VGF (VGF), and Secretogranin-2 (SCG2)) progression vs. non-progression from mild cognitive impairment to AD. Conclusions and Clinical Relevance These data provide potential insights into the biology of CSF in AD and MCI progression and provide a novel tool for AD researchers and clinicians working to improve diagnostic accuracy, evaluation of treatment efficacy, and early diagnosis. PMID:25676562

  1. Plaque array method and proteomics-based identification of biomarkers from Alzheimer's disease serum.

    Science.gov (United States)

    Madasamy, Shanmugavel; Chaudhuri, Vaishali; Kong, Raymond; Alderete, Benjamin; Adams, Christopher M; Knaak, Tim D; Ruan, Weiming; Wu, Alan H B; Bigos, Marty; Amento, Edward P

    2015-02-20

    Progressive accumulation of amyloid plaques in the regions of brain, carotid and cerebral arteries is the leading cause of Alzheimer's disease (AD) and related dementia in affected patients. The early identification of individuals with AD remains a challenging task relying on symptomatic events and thus the development of a biomarker-based approach will significantly aid in the diagnosis of AD. Here we describe a flow cytometer-based serum biomarker identification method using plaque particles, and applying mass spectrometry based proteomic analysis of the isolated plaque particles for the identification of serum proteins present in the plaque particles. We identified 195 serum proteins that participate in the process of plaque particle formation. Among the 195 proteins identified, 68.2% of them overlapped in abeta-42, cholesterol, tau-275 and α-synuclein plaque particles. Significantly, 22.5% of the proteins identified as bound to abeta-42 plaque particles generated in AD serum were unique when compared with cholesterol, α-synuclein and tau plaque particles. In age-matched control experiments, 15% of them showed in vitro insoluble abeta-42 particle formation and 59% of the identified plaque particle constituents from AD serum were also present in the insoluble plaque particles derived from control. We have developed an in vitro method for plaque particle detection and identified serum protein markers that are associated with AD-related plaque particle formation. With further clinical validation, this assay may provide a novel, non-invasive means for the early detection of AD. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Identification of Biomarkers in Cerebrospinal Fluid and Serum of Multiple Sclerosis Patients by Immunoproteomics Approach

    Directory of Open Access Journals (Sweden)

    Paolo Colomba

    2014-12-01

    Full Text Available Multiple sclerosis (MS is an autoimmune inflammatory demyelinating disease of the central nervous system. At present, the molecular mechanisms causing the initiation, development and progression of MS are poorly understood, and no reliable proteinaceous disease markers are available. In this study, we used an immunoproteomics approach to identify autoreactive antibodies in the cerebrospinal fluid of MS patients to use as candidate markers with potential diagnostic value. We identified an autoreactive anti-transferrin antibody that may have a potential link with the development and progression of MS. We found this antibody at high levels also in the serum of MS patients and created an immunoenzymatic assay to detect it. Because of the complexity and heterogeneity of multiple sclerosis, it is difficult to find a single marker for all of the processes involved in the origin and progression of the disease, so the development of a panel of biomarkers is desirable, and anti-transferrin antibody could be one of these.

  3. NI-82DIFFUSION AND CONVENTIONAL MR IMAGING GENOMIC BIOMARKER SIGNATURE FOR EGFR MUTATION IDENTIFICATION IN GLIOBLASTOMA

    Science.gov (United States)

    Wassal, Eslam; Zinn, Pascal; Colen, Rivka

    2014-01-01

    PURPOSE: To create a diffusion and conventional MR imaging biomarker signature in order to identify those Glioblastoma (GBM) patients with EGFR mutation status. EGFR is the cell-surface receptor for members of the epidermal growth factor family(EGF-family)of extracellular protein ligands,a subfamily of receptor tyrosine kinases. EGFR gene expression is present in 40% of GBM patients.Identification of EGFR as an oncogene has led to the development of anticancer therapeutics directed against EGFR.Thus,a non-invasive imaging surrogate that predicts EGFR mutation status will help stratify patients into therapy and clinical trials. MATERIALS AND METHODS: We identified 80 treatment-naïve patients from TCGA who had both gene and microRNA expression profiles including the EGFR mutation status and pretreatment MRI from The Cancer Imaging Archive (TCIA). Qualitative VASARI imaging features for these 80 patients were assessed by 3 independent neuroradiologists and consensus was reached. Quantitative volumetric analysis was done in the 3D Slicer software 3.6 using segmentation module.Fluid Attenuated Inversion Recovery (FLAIR)was used for segmentation of the edema and post-contrast T1 weighted imaging(T1W1)for segmentation of enhancement and necrosis.Diffusion was analyzed in Olea Sphere 2.3 and Conventional FLAIR/post- contrast T1WI was registered to DWI/ADC maps. ADC, FLAIR, T1 Gadolinium enhancement values were measured using the ROI based method, in the perilesional edema/non-enhancing tumor and the enhancing tumor zones, dividing the perilesional edema/non-enhancing tumor into 3 zones each of 1 cm width, 3 ROI measurements were taken from each zone. Each quantitative feature was correlated to EGFR mutation status to create the imaging biomarker signature predictive of EGFR mutation status. Survival analysis was done in all cases. RESULTS: A diffusion and conventional MR imaging biomarker signature was created that predicted EGFR mutation status. CONCLUSIONS: EGFR

  4. Improving the quality of biomarker candidates in untargeted metabolomics via peak table-based alignment of comprehensive two-dimensional gas chromatography-mass spectrometry data

    Science.gov (United States)

    Bean, Heather D.; Hill, Jane E.; Dimandja, Jean-Marie D.

    2015-01-01

    The potential of high-resolution analytical technologies like GC×GC/TOF MS in untargeted metabolomics and biomarker discovery has been limited by the development of fully automated software that can efficiently align and extract information from multiple chromatographic data sets. In this work we report the first investigation on a peak-by-peak basis of the chromatographic factors that impact GC×GC data alignment. A representative set of 16 compounds of different chromatographic characteristics were followed through the alignment of 63 GC×GC chromatograms. We found that varying the mass spectral match parameter had a significant influence on the alignment for poorly- resolved peaks, especially those at the extremes of the detector linear range, and no influence on well- chromatographed peaks. Therefore, optimized chromatography is required for proper GC×GC data alignment. Based on these observations, a workflow is presented for the conservative selection of biomarker candidates from untargeted metabolomics analyses. PMID:25857541

  5. Anti-Aβ Autoantibodies in Amyloid Related Imaging Abnormalities (ARIA): Candidate Biomarker for Immunotherapy in Alzheimer’s Disease and Cerebral Amyloid Angiopathy

    Science.gov (United States)

    DiFrancesco, Jacopo C.; Longoni, Martina; Piazza, Fabrizio

    2015-01-01

    Amyloid-related imaging abnormalities (ARIA) represent the major severe side effect of amyloid-beta (Aβ) immunotherapy for Alzheimer’s disease (AD). Early biomarkers of ARIA represent an important challenge to ensure safe and beneficial effects of immunotherapies, given that different promising clinical trials in prodromal and subjects at risk for AD are underway. The recent demonstration that cerebrospinal fluid (CSF) anti-Aβ autoantibodies play a key role in the development of the ARIA-like events characterizing cerebral amyloid angiopathy-related inflammation generated great interest in the field of immunotherapy. Herein, we critically review the growing body of evidence supporting the monitoring of CSF anti-Aβ autoantibody as a promising candidate biomarker for ARIA in clinical trials. PMID:26441825

  6. Proteomic identification of potential prognostic biomarkers in resectable pancreatic ductal adenocarcinoma.

    Science.gov (United States)

    Iuga, Cristina; Seicean, Andrada; Iancu, Cornel; Buiga, Rareş; Sappa, Praveen K; Völker, Uwe; Hammer, Elke

    2014-04-01

    Pancreatic cancer is a devastating disease with a mortality rate almost identical with its incidence. In this context, the investigation of the pancreatic cancer proteome has gained considerable attention because profiles of proteins may be able to identify disease states and progression more accurately. Therefore, our objective was to investigate the changes in the proteome of patients suffering from pancreatic ductal adenocarcinoma (PDAC) by a comprehensive quantitative approach. Comparative proteomic profiling by label-free LC-MS/MS analysis of nine matched pairs of tumor and nontumor pancreas samples was used to identify differences in protein levels characteristic for PDAC. In this analysis, 488 proteins were quantified by at least two peptides of which 99 proteins displayed altered levels in PDAC (p 1.3). Screening of data revealed a number of molecules that had already been related to PDAC such as galectin-1 (LEG1), major vault protein, adenylyl cyclase-associated protein 1 (CAP1), but also a potential new prognostic biomarker prolargin (PRELP). The Kaplan-Meier survival analysis revealed a significant correlation of protein abundance of PRELP with postoperative survival of patients with PDAC. For selected proteins the findings were verified by targeted proteomics (SRM), validated by immunohistochemistry and Western blotting and their value as candidate biomarkers is discussed.

  7. Biomarkers for Primary Sjo¨ gren’s Syndrome

    Institute of Scientific and Technical Information of China (English)

    Weiqian Chen; Heng Cao; Jin Lin; Nancy Olsen; Song Guo Zheng

    2015-01-01

    Primary Sjogren’s syndrome (pSS) is a systemic autoimmune disease with exocrine gland dysfunction and multi-organ involvement. Recent progress in understanding the pathogenesis of pSS offers an opportunity to find new biomarkers for the diagnosis and assessment of disease activity. Screening noninvasive biomarkers from the saliva and tears has significant potential. The need for specific and sensitive biomarker candidates in pSS is significant. This review aims to summarize recent advances in the identification of biomarkers of Sjogren syndrome, trying to identify reliable, sensitive, and specific biomarkers that can be used to guide treatment decisions.

  8. Identification of Biomarkers for Defense Response to Plasmopara viticola in a Resistant Grape Variety

    Directory of Open Access Journals (Sweden)

    Giulia Chitarrini

    2017-09-01

    Full Text Available Downy mildew (Plasmopara viticola is one of the most destructive diseases of the cultivated species Vitis vinifera. The use of resistant varieties, originally derived from backcrosses of North American Vitis spp., is a promising solution to reduce disease damage in the vineyards. To shed light on the type and the timing of pathogen-triggered resistance, this work aimed at discovering biomarkers for the defense response in the resistant variety Bianca, using leaf discs after inoculation with a suspension of P. viticola. We investigated primary and secondary metabolism at 12, 24, 48, and 96 h post-inoculation (hpi. We used methods of identification and quantification for lipids (LC-MS/MS, phenols (LC-MS/MS, primary compounds (GC-MS, and semi-quantification for volatile compounds (GC-MS. We were able to identify and quantify or semi-quantify 176 metabolites, among which 53 were modulated in response to pathogen infection. The earliest changes occurred in primary metabolism at 24–48 hpi and involved lipid compounds, specifically unsaturated fatty acid and ceramide; amino acids, in particular proline; and some acids and sugars. At 48 hpi, we also found changes in volatile compounds and accumulation of benzaldehyde, a promoter of salicylic acid-mediated defense. Secondary metabolism was strongly induced only at later stages. The classes of compounds that increased at 96 hpi included phenylpropanoids, flavonols, stilbenes, and stilbenoids. Among stilbenoids we found an accumulation of ampelopsin H + vaticanol C, pallidol, ampelopsin D + quadrangularin A, Z-miyabenol C, and α-viniferin in inoculated samples. Some of these compounds are known as phytoalexins, while others are novel biomarkers for the defense response in Bianca. This work highlighted some important aspects of the host response to P. viticola in a commercial variety under controlled conditions, providing biomarkers for a better understanding of the mechanism of plant defense and a

  9. A technological and physiological integrated approach for appetite control : from identification of novel biomarkers to development of new functional ingredients

    NARCIS (Netherlands)

    Mennella, I.

    2015-01-01

    A technological and physiological integrated approach for appetite control. From identification of novel biomarkers to development of new functional ingredients. Human dietary behaviour is driven by homeostatic, hedonic and environmental factors. Foods can influence

  10. Identification of Novel Translational Urinary Biomarkers for Acetaminophen-Induced Acute Liver Injury Using Proteomic Profiling in Mice

    NARCIS (Netherlands)

    van Swelm, Rachel P. L.; Laarakkers, Coby M. M.; van der Kuur, Ellen C.; Morava-Kozicz, Eva; Wevers, Ron A.; Augustijn, Kevin D.; Touw, Daan J.; Sandel, Maro H.; Masereeuw, Rosalinde; Russel, Frans G. M.

    2012-01-01

    Drug-induced liver injury (DILI) is the leading cause of acute liver failure. Currently, no adequate predictive biomarkers for DILI are available. This study describes a translational approach using proteomic profiling for the identification of urinary proteins related to acute liver injury induced

  11. Application in pesticide analysis: Liquid chromatography - A review of the state of science for biomarker discovery and identification

    Science.gov (United States)

    Book Chapter 18, titled Application in pesticide analysis: Liquid chromatography - A review of the state of science for biomarker discovery and identification, will be published in the book titled High Performance Liquid Chromatography in Pesticide Residue Analysis (Part of the C...

  12. Identification of novel translational urinary biomarkers for acetaminophen-induced acute liver injury using proteomic profiling in mice

    NARCIS (Netherlands)

    Swelm, R.P.L. van; Laarakkers, J.M.M.; Kuur, E.C. van der; Morava, E.; Wevers, R.A.; Augustijn, K.D.; Touw, D.J.; Sandel, M.H.; Masereeuw, R.; Russel, F.G.M.

    2012-01-01

    Drug-induced liver injury (DILI) is the leading cause of acute liver failure. Currently, no adequate predictive biomarkers for DILI are available. This study describes a translational approach using proteomic profiling for the identification of urinary proteins related to acute liver injury induced

  13. Identification of Novel Translational Urinary Biomarkers for Acetaminophen-Induced Acute Liver Injury Using Proteomic Profiling in Mice

    NARCIS (Netherlands)

    van Swelm, Rachel P. L.; Laarakkers, Coby M. M.; van der Kuur, Ellen C.; Morava-Kozicz, Eva; Wevers, Ron A.; Augustijn, Kevin D.; Touw, Daan J.; Sandel, Maro H.; Masereeuw, Rosalinde; Russel, Frans G. M.

    2012-01-01

    Drug-induced liver injury (DILI) is the leading cause of acute liver failure. Currently, no adequate predictive biomarkers for DILI are available. This study describes a translational approach using proteomic profiling for the identification of urinary proteins related to acute liver injury induced

  14. Top-down proteomic identification of protein biomarkers of food-borne pathogens using MALDI-TOF-TOF-MS/MS

    Science.gov (United States)

    This chapter describes a step-by-step protocol and discussion of top-down proteomic identification of protein biomarkers of food-borne pathogens using matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry (MALDI-TOF-TOF-MS/MS) and web-based software developed in the Pro...

  15. Identification of novel and candidate miRNAs in rice by high throughput sequencing

    Directory of Open Access Journals (Sweden)

    Zhang Weixiong

    2008-02-01

    Full Text Available Abstract Background Small RNA-guided gene silencing at the transcriptional and post-transcriptional levels has emerged as an important mode of gene regulation in plants and animals. Thus far, conventional sequencing of small RNA libraries from rice led to the identification of most of the conserved miRNAs. Deep sequencing of small RNA libraries is an effective approach to uncover rare and lineage- and/or species-specific microRNAs (miRNAs in any organism. Results In order to identify new miRNAs and possibly abiotic-stress regulated small RNAs in rice, three small RNA libraries were constructed from control rice seedlings and seedlings exposed to drought or salt stress, and then subjected to pyrosequencing. A total of 58,781, 43,003 and 80,990 unique genome-matching small RNAs were obtained from the control, drought and salt stress libraries, respectively. Sequence analysis confirmed the expression of most of the conserved miRNAs in rice. Importantly, 23 new miRNAs mostly each derived from a unique locus in rice genome were identified. Six of the new miRNAs are conserved in other monocots. Additionally, we identified 40 candidate miRNAs. Allowing not more than 3 mis-matches between a miRNA and its target mRNA, we predicted 20 targets for 9 of the new miRNAs. Conclusion Deep sequencing proved to be an effective strategy that allowed the discovery of 23 low-abundance new miRNAs and 40 candidate miRNAs in rice.

  16. Identification of Quantitative Trait Loci (QTL) and Candidate Genes for Cadmium Tolerance in Populus

    Energy Technology Data Exchange (ETDEWEB)

    Induri, Brahma R [West Virginia University; Ellis, Danielle R [West Virginia University; Slavov, Gancho [West Virginia University; Yin, Tongming [ORNL; Muchero, Wellington [ORNL; Tuskan, Gerald A [ORNL; DiFazio, Stephen P [West Virginia University

    2012-01-01

    Knowledge of genetic variation in response of Populus to heavy metals like cadmium (Cd) is an important step in understanding the underlying mechanisms of tolerance. In this study, a pseudo-backcross pedigree of Populus trichocarpa and Populus deltoides was characterized for Cd exposure. The pedigree showed significant variation for Cd tolerance thus enabling the identification of relatively tolerant and susceptible genotypes for intensive characterization. A total of 16 QTLs at logarithm of odds (LOD) ratio > 2.5, were found to be associated with total dry weight, its components, and root volume. Four major QTLs for total dry weight were mapped to different linkage groups in control (LG III) and Cd conditions (LG XVI) and had opposite allelic effects on Cd tolerance, suggesting that these genomic regions were differentially controlled. The phenotypic variation explained by Cd QTL for all traits under study varied from 5.9% to 11.6% and averaged 8.2% across all QTL. Leaf Cd contents also showed significant variation suggesting the phytoextraction potential of Populus genotypes, though heritability of this trait was low (0.22). A whole-genome microarray study was conducted by using two genotypes with extreme responses for Cd tolerance in the above study and differentially expressed genes were identified. Candidate genes including CAD2 (CADMIUM SENSITIVE 2), HMA5 (HEAVY METAL ATPase5), ATGTST1 (Arabidopsis thaliana Glutathione S-Transferase1), ATGPX6 (Glutathione peroxidase 6), and ATMRP 14 (Arabidopsis thaliana Multidrug Resistance associated Protein 14) were identified from QTL intervals and microarray study. Functional characterization of these candidate genes could enhance phytoremediation capabilities of Populus.

  17. Metabolomic application in toxicity evaluation and toxicological biomarker identification of natural product.

    Science.gov (United States)

    Chen, Dan-Qian; Chen, Hua; Chen, Lin; Tang, Dan-Dan; Miao, Hua; Zhao, Ying-Yong

    2016-05-25

    Natural product plays a vital role in disease prevention and treatment since the appearance of civilization, but the toxicity severely hinders its wide use. In order to avoid toxic effect as far as possible and use natural product safely, more comprehensive understandings of toxicity are urgently required. Since the metabolome represents the physiological or pathological status of organisms, metabolomics-based toxicology is of significance to observe potential injury before toxins have caused physiological or pathological damages. Metabolomics-based toxicology can evaluate toxicity and identify toxicological biomarker of natural product, which is helpful to guide clinical medication and reduce adverse drug reactions. In the past decades, dozens of metabolomic researches have been implemented on toxicity evaluation, toxicological biomarker identification and potential mechanism exploration of nephrotoxicity, hepatotoxicity, cardiotoxicity and central nervous system toxicity induced by pure compounds, extracts and compound prescriptions. In this paper, metabolomic technology, sample preparation, data process and analysis, and metabolomics-based toxicological research of natural product are reviewed, and finally, the potential problems and further perspectives in toxicological metabolomic investigations of natural product are discussed.

  18. Retracted: Identification of Novel Biomarkers for Pancreatic Cancer Using Integrated Transcriptomics With Functional Pathways Analysis.

    Science.gov (United States)

    Zhang, Xuan; Tong, Pan; Chen, Jinyun; Pei, Zenglin; Zhang, Xiaoyan; Chen, Weiping; Xu, Jianqing; Wang, Jin

    2016-02-22

    Retraction: 'Identification of Novel Biomarkers for Pancreatic Cancer Using Integrated Transcriptomics With Functional Pathways Analysis' by Zhang, X., Tong, P., Chen, J., Pei, Z., Zhang, X., Chen, W., Xu, J. and Wang, J. The above article from the Journal of Cellular Physiology, published online on 10 March 2016 in Wiley Online Library as Early View (http://onlinelibrary.wiley.com/enhanced/doi/10.1002/jcp.25353/), has been retracted by agreement between Gary Stein, the journal's Editor-in-Chief, and Wiley Periodicals, Inc. The retraction has been agreed following an investigation at the University of Texas, MD Anderson Cancer Center, which confirmed that the article was submitted and approved for publication by Dr. Jin Wang without acknowledgement of NIH funding received or the consent and authorship of Dr. Ann Killary and Dr. Subrata Sen, with whom the manuscript was originally drafted.

  19. Independent Candidate Serum Protein Biomarkers of Response to Adalimumab and to Infliximab in Rheumatoid Arthritis: An Exploratory Study.

    Directory of Open Access Journals (Sweden)

    Ignacio Ortea

    Full Text Available Response to treatment of rheumatoid arthritis shows large inter-individual variability. This heterogeneity is observed with all the anti-rheumatic drugs, including the commonly used TNF inhibitors. It seems that drug-specific and target-specific factors lead individual patients to respond or not to a given drug, although this point has been challenged. The search of biomarkers distinguishing responders from non-responders has included shotgun proteomics of serum, as a previous study of response to infliximab, an anti-TNF antibody. Here, we have used the same study design and technology to search biomarkers of response to a different anti-TNF antibody, adalimumab, and we have compared the results obtained for the two anti-TNF drugs. Search of biomarkers of response to adalimumab included depletion of the most abundant serum proteins, 8-plex isobaric tag for relative and absolute quantitation (iTRAQ labeling, two-dimensional liquid chromatography fractionation and relative quantification with a hybrid Orbitrap mass spectrometer. With this approach, 264 proteins were identified in all the samples with at least 2 peptides and 95% confidence. Nine proteins showed differences between non-responders and responders (P < 0.05, representing putative biomarkers of response to adalimumab. These results were compared with the previous study of infliximab. Surprisingly, the non-responder/responder differences in the two studies were not correlated (rs = 0.07; P = 0.40. This overall independence with all the proteins showed two identifiable components. On one side, the putative biomarkers of response to either adalimumab or infliximab, which were not shared and showed an inverse correlation (rs = -0.69; P = 0.0023. On the other, eight proteins showing significant non-responder/responder differences in the analysis combining data of response to the two drugs. These results identify new putative biomarkers of response to treatment of rheumatoid arthritis and

  20. New Meconium Biomarkers of Prenatal Methamphetamine Exposure Increase Identification of Affected Neonates

    Science.gov (United States)

    Gray, Teresa R.; Kelly, Tamsin; LaGasse, Linda L.; Smith, Lynne M.; Derauf, Chris; Grant, Penny; Shah, Rizwan; Arria, Amelia; Haning, William; Grotta, Sheri Della; Strauss, Arthur; Lester, Barry M.; Huestis, Marilyn A.

    2010-01-01

    BACKGROUND Prenatal methamphetamine (MAMP) exposure is poorly reflected in neonatal meconium. Often, maternal self-reported MAMP use is not corroborated by positive results in amphetamines immunoassays of meconium, and even if initial test results are positive, they frequently are not confirmed for MAMP or amphetamine (AMP) by chromatographic analysis. The presence of the MAMP metabolites p-hydroxymethamphetamine (pOHMAMP), p-hydroxyamphetamine (pOHAMP), and norephedrine (NOREPH) in meconium may improve the identification of MAMP- and AMP-exposed neonates. METHODS Immunoassay-positive and -negative meconium samples were subjected to liquid chromatography–tandem mass spectrometric reanalysis for these recently identified metabolites. RESULTS pOHAMP and NOREPH were detected only when MAMP and/or AMP were present and thus do not appear to be promising biomarkers of prenatal MAMP exposure. pOHMAMP, in contrast, identified 6 additional neonates whose mothers reported MAMP exposure, yet had a meconium sample screened as negative; pOHMAMP was more likely to be present if maternal MAMP use continued into the third trimester. Although the pOHMAMP results for meconium samples corroborated the maternal self-reports, the confirmation rate for positive meconium screening results did not improve with the inclusion of these new biomarkers. CONCLUSIONS pOHMAMP identified additional MAMP-exposed neonates; therefore, MAMP, AMP, and pOHMAMP should be included in meconium chromatographic analyses. To maximize the identification of MAMP-exposed children requires improvement in immunoassay screening tests to reduce false-negative and false-positive results. Additional research will help clarify which AMP-related compounds, if any, contribute to unconfirmed positive results in screening tests. Furthermore, nonamphetamine compounds endogenous to the complex meconium matrix also may cross-react, making chromatographic confirmation of screening results essential. PMID:20185623

  1. Identification of conserved surface proteins as novel antigenic vaccine candidates of Actinobacillus pleuropneumoniae.

    Science.gov (United States)

    Chen, Xiabing; Xu, Zhuofei; Li, Lu; Chen, Huanchun; Zhou, Rui

    2012-12-01

    Actinobacillus pleuropneumoniae is an important swine respiratory pathogen causing great economic losses worldwide. Identification of conserved surface antigenic proteins is helpful for developing effective vaccines. In this study, a genome-wide strategy combined with bioinformatic and experimental approaches, was applied to discover and characterize surface-associated immunogenic proteins of A. pleuropneumoniae. Thirty nine genes encoding outer membrane proteins (OMPs) and lipoproteins were identified by comparative genomics and gene expression profiling as being-highly conserved and stably transcribed in the different serotypes of A. pleuropneumoniae reference strains. Twelve of these conserved proteins were successfully expressed in Escherichia coli and their immunogenicity was estimated by homologous challenge in the mouse model, and then three of these proteins (APJL_0126, HbpA and OmpW) were further tested in the natural host (swine) by homologous and heterologous challenges. The results showed that these proteins could induce high titers of antibodies, but vaccination with each protein individually elicited low protective immunity against A. pleuropneumoniae. This study gives novel insights into immunogenicity of the conserved OMPs and lipoproteins of A. pleuropneumoniae. Although none of the surface proteins characterized in this study could individually induce effective protective immunity against A. pleuropneumoniae, they are potential candidates for subunit vaccines in combination with Apx toxins.

  2. BIOMARKER SIGNATURE IDENTIFICATION IN “OMICS” DATA WITH MULTI-CLASS OUTCOME

    Directory of Open Access Journals (Sweden)

    Vincenzo Lagani

    2013-03-01

    Full Text Available Biomarker signature identification in “omics” data is a complex challenge that requires specialized feature selection algorithms. The objective of these algorithms is to select the smallest set(s of molecular quantities that are able to predict a given outcome (target with maximal predictive performance. This task is even more challenging when the outcome comprises of multiple classes; for example, one may be interested in identifying the genes whose expressions allow discrimination among different types of cancer (nominal outcome or among different stages of the same cancer, e.g. Stage 1, 2, 3 and 4 of Lung Adenocarcinoma (ordinal outcome. In this work, we consider a particular type of successful feature selection methods, named constraint-based, local causal discovery algorithms. These algorithms depend on performing a series of conditional independence tests. We extend these algorithms for the analysis of problems with continuous predictors and multi-class outcomes, by developing and equipping them with an appropriate conditional independence test procedure for both nominal and ordinal multi-class targets. The test is based on multinomial logistic regression and employs the log-likelihood ratio test for model selection. We present a comparative, experimental evaluation on seven real-world, high-dimensional, gene-expression datasets. Within the scope of our analysis the results indicate that the new conditional independence test allows the identification of smaller and better performing signatures for multi-class outcome datasets, with respect to the current alternatives for performing the independence tests.

  3. Identification of azurocidin as a potential periodontitis biomarker by a proteomic analysis of gingival crevicular fluid

    Directory of Open Access Journals (Sweden)

    Lee Jae-Mok

    2011-07-01

    Full Text Available Abstract Background The inflammatory disease periodontitis results in tooth loss and can even lead to diseases of the whole body if not treated. Gingival crevicular fluid (GCF reflects the condition of the gingiva and contains proteins transuded from serum or cells at inflamed sites. In this study, we aimed to discover potential protein biomarkers for periodontitis in GCF proteome using LC-MS/MS. Results We identified 305 proteins from GCF of healthy individuals and periodontitis patients collected using a sterile gel loading tip by ESI-MS/MS coupled to nano-LC. Among these proteins, about 45 proteins were differentially expressed in the GCF proteome of moderate periodontitis patients when compared to the healthy individuals. We first identified azurocidin in the GCF, but not the saliva, as an upregulated protein in the periodontitis patients and verified its increased expression during periodontitis by ELISA using the GCF of the classified periodontitis patients compared to the healthy individuals. In addition, we found that azurocidin inhibited the differentiation of bone marrow-derived macrophages to osteoclasts. Conclusions Our results show that GCF collection using a gel loading tip and subsequent LC-MS/MS analysis following 1D-PAGE proteomic separation are effective for the analysis of the GCF proteome. Our current results also suggest that azurocidin could be a potential biomarker candidate for the early detection of inflammatory periodontal destruction by gingivitis and some chronic periodontitis. Our data also suggest that azurocidin may have an inhibitory role in osteoclast differentiation and, thus, a protective role in alveolar bone loss during the early stages of periodontitis.

  4. Circulating Biomarkers for Duchenne Muscular Dystrophy

    Science.gov (United States)

    Aartsma-Rus, Annemieke; Spitali, Pietro

    2015-01-01

    Abstract Duchenne muscular dystrophy is the most common form of muscular dystrophy. Genetic and biochemical research over the years has characterized the cause, pathophysiology and development of the disease providing several potential therapeutic targets and/or biomarkers. High throughput – omic technologies have provided a comprehensive understanding of the changes occurring in dystrophic muscles. Murine and canine animal models have been a valuable source to profile muscles and body fluids, thus providing candidate biomarkers that can be evaluated in patients. This review will illustrate known circulating biomarkers that could track disease progression and response to therapy in patients affected by Duchenne muscular dystrophy. We present an overview of the transcriptomic, proteomic, metabolomics and lipidomic biomarkers described in literature. We show how studies in muscle tissue have led to the identification of serum and urine biomarkers and we highlight the importance of evaluating biomarkers as possible surrogate endpoints to facilitate regulatory processes for new medicinal products. PMID:27858763

  5. Vaccinomics Approach to the Identification of Candidate Protective Antigens for the Control of Tick Vector Infestations and Anaplasma phagocytophilum Infection

    Directory of Open Access Journals (Sweden)

    Marinela Contreras

    2017-08-01

    Full Text Available Anaplasma phagocytophilum is an emerging tick-borne pathogen causing human granulocytic anaplasmosis (HGA, tick-borne fever (TBF in small ruminants, and other forms of anaplasmosis in different domestic and wild animals. The main vectors of this pathogen are Ixodes tick species, particularly I. scapularis in the United States and I. ricinus in Europe. One of the main limitations for the development of effective vaccines for the prevention and control of A. phagocytophilum infection and transmission is the identification of effective tick protective antigens. The objective of this study was to apply a vaccinomics approach to I. scapularis-A. phagocytophilum interactions for the identification and characterization of candidate tick protective antigens for the control of vector infestations and A. phagocytophilum infection. The vaccinomics pipeline included the use of quantitative transcriptomics and proteomics data from uninfected and A. phagocytophilum-infected I. scapularis ticks for the selection of candidate protective antigens based on the variation in tick mRNA and protein levels in response to infection, their putative biological function, and the effect of antibodies against these proteins on tick cell apoptosis and pathogen infection. The characterization of selected candidate tick protective antigens included the identification and characterization of I. ricinus homologs, functional characterization by different methodologies including RNA interference, immunofluorescence, gene expression profiling, and artificial tick feeding on rabbit antibodies against the recombinant antigens to select the candidates for vaccination trials. The vaccinomics pipeline developed in this study resulted in the identification of two candidate tick protective antigens that could be selected for future vaccination trials. The results showed that I. scapularis lipocalin (ISCW005600 and lectin pathway inhibitor (AAY66632 and I. ricinus homologs constitute

  6. FIRST LINE 5-FU-BASED CHEMOTHERAPY WITH/WITHOUT BEVACIZUMAB FOR METASTATIC COLORECTAL CANCER: TISSUE BIOMARKER CANDIDATES

    OpenAIRE

    Assia Konsoulova; Ivan Donev; Nikolay Conev; Sonya Draganova; Nadezhda Petrova; Eleonora Dimitrova; Hristo Popov; Kameliya Bratoeva; Petar Ghenev

    2016-01-01

    Purpose: Colorectal cancer is the second leading cause of cancer mortality in the USA. According to Bulgarian National Statistics Institute, 2370 colon and 1664 rectal cancer cases were diagnosed in 2012 with total number of patients 29995. Adding bevacizumab to chemotherapy in patients with metastatic disease improves progression-free survival (PFS) but no predictive markers have been proven in the clinical practice. In our study we examined two tissue biomarkers that may correlate with resp...

  7. Identification of Candidate Adherent-Invasive E. coli Signature Transcripts by Genomic/Transcriptomic Analysis.

    Directory of Open Access Journals (Sweden)

    Yuanhao Zhang

    Full Text Available Adherent-invasive Escherichia coli (AIEC strains are detected more frequently within mucosal lesions of patients with Crohn's disease (CD. The AIEC phenotype consists of adherence and invasion of intestinal epithelial cells and survival within macrophages of these bacteria in vitro. Our aim was to identify candidate transcripts that distinguish AIEC from non-invasive E. coli (NIEC strains and might be useful for rapid and accurate identification of AIEC by culture-independent technology. We performed comparative RNA-Sequence (RNASeq analysis using AIEC strain LF82 and NIEC strain HS during exponential and stationary growth. Differential expression analysis of coding sequences (CDS homologous to both strains demonstrated 224 and 241 genes with increased and decreased expression, respectively, in LF82 relative to HS. Transition metal transport and siderophore metabolism related pathway genes were up-regulated, while glycogen metabolic and oxidation-reduction related pathway genes were down-regulated, in LF82. Chemotaxis related transcripts were up-regulated in LF82 during the exponential phase, but flagellum-dependent motility pathway genes were down-regulated in LF82 during the stationary phase. CDS that mapped only to the LF82 genome accounted for 747 genes. We applied an in silico subtractive genomics approach to identify CDS specific to AIEC by incorporating the genomes of 10 other previously phenotyped NIEC. From this analysis, 166 CDS mapped to the LF82 genome and lacked homology to any of the 11 human NIEC strains. We compared these CDS across 13 AIEC, but none were homologous in each. Four LF82 gene loci belonging to clustered regularly interspaced short palindromic repeats region (CRISPR--CRISPR-associated (Cas genes were identified in 4 to 6 AIEC and absent from all non-pathogenic bacteria. As previously reported, AIEC strains were enriched for pdu operon genes. One CDS, encoding an excisionase, was shared by 9 AIEC strains. Reverse

  8. Independent Candidate Serum Protein Biomarkers of Response to Adalimumab and to Infliximab in Rheumatoid Arthritis: An Exploratory Study.

    Science.gov (United States)

    Ortea, Ignacio; Roschitzki, Bernd; López-Rodríguez, Rosario; Tomero, Eva G; Ovalles, Juan G; López-Longo, Javier; de la Torre, Inmaculada; González-Alvaro, Isidoro; Gómez-Reino, Juan J; González, Antonio

    2016-01-01

    Response to treatment of rheumatoid arthritis shows large inter-individual variability. This heterogeneity is observed with all the anti-rheumatic drugs, including the commonly used TNF inhibitors. It seems that drug-specific and target-specific factors lead individual patients to respond or not to a given drug, although this point has been challenged. The search of biomarkers distinguishing responders from non-responders has included shotgun proteomics of serum, as a previous study of response to infliximab, an anti-TNF antibody. Here, we have used the same study design and technology to search biomarkers of response to a different anti-TNF antibody, adalimumab, and we have compared the results obtained for the two anti-TNF drugs. Search of biomarkers of response to adalimumab included depletion of the most abundant serum proteins, 8-plex isobaric tag for relative and absolute quantitation (iTRAQ) labeling, two-dimensional liquid chromatography fractionation and relative quantification with a hybrid Orbitrap mass spectrometer. With this approach, 264 proteins were identified in all the samples with at least 2 peptides and 95% confidence. Nine proteins showed differences between non-responders and responders (P treatment of rheumatoid arthritis and indicate that they are notably drug-specific.

  9. Raman spectroscopic identification of scytonemin and its derivatives as key biomarkers in stressed environments.

    Science.gov (United States)

    Varnali, Tereza; Edwards, Howell G M

    2014-12-13

    Raman spectroscopy has been identified as an important first-pass analytical technique for deployment on planetary surfaces as part of a suite of instrumentation in projected remote space exploration missions to detect extant or extinct extraterrestrial life signatures. Aside from the demonstrable advantages of a non-destructive sampling procedure and an ability to record simultaneously the molecular signatures of biological, geobiological and geological components in admixture in the geological record, the interrogation and subsequent interpretation of spectroscopic data from these experiments will be critically dependent upon the recognition of key biomolecular markers indicative of life existing or having once existed in extreme habitats. A comparison made with the characteristic Raman spectral wavenumbers obtained from standards is not acceptable because of shifts that can occur in the presence of other biomolecules and their host mineral matrices. In this paper, we identify the major sources of difficulty experienced in the interpretation of spectroscopic data centring on a key family of biomarker molecules, namely scytonemin and its derivatives; the parent scytonemin has been characterized spectroscopically in cyanobacterial colonies inhabiting some of the most extreme terrestrial environments and, with the support of theoretical calculations, spectra have been predicted for the characterization of several of its derivatives which could occur in novel extraterrestrial environments. This work will form the foundation for the identification of novel biomarkers and for their Raman spectroscopic discrimination, an essential step in the interpretation of potentially complex and hitherto unknown biological radiation protectants based on the scytoneman and scytonin molecular skeletons which may exist in niche geological scenarios in the surface and subsurface of planets and their satellites in our Solar System. © 2014 The Author(s) Published by the Royal Society

  10. Identification of Biomarkers Associated with the Rearing Practices, Carcass Characteristics, and Beef Quality: An Integrative Approach.

    Science.gov (United States)

    Gagaoua, Mohammed; Monteils, Valérie; Couvreur, Sébastien; Picard, Brigitte

    2017-09-20

    Data from birth to slaughter of cull cows allowed using a PCA-based approach coupled with the iterative K-means algorithm the identification of three rearing practices classes. The classes were different in their carcass characteristics. Old cows raised mainly on pasture have better carcass characteristics, while having an equivalent tenderness, juiciness, flavor, intramuscular fat content, and pHu to those fattened with hay or haylage. The Longissimus thoracis muscle of the cows raised on pasture (with high physical activity) showed greater proportions of IIA fibers at the expense of the fast IIX ones. Accordingly, the meat of these animals have better color characteristics. Superoxide dismutase (SOD1) and αB-crystallin quantified by Dot-Blot were the only other biomarkers to be more abundant in "Grass" class compared to "Hay" and "Haylage" classes. The relationships between the biomarkers and the 6 carcass and 11 meat quality traits were investigated using multiple regression analyses per rearing practices. The associations were rearing practice class and phenotype trait-dependent. ICDH and TP53 were common for the three classes, but the direction of their entrance was different. In addition, rearing practices and carcass traits were not related with Hsp70-Grp75 and μ-calpain abundances. The other relationships were specific for two or one rearing practices class. The rearing practices dependency of the relationships was also found with meat quality traits. Certain proteins were for the first time related with some beef quality traits. MyHC-IIx, PGM1, Hsp40, ICDH, and Hsp70-Grp75 were common for the three rearing practices classes and retained to explain at list one beef quality trait. A positive relationship was found between PGM1 and hue angle irrespective of rearing practices class. This study confirms once again that production-related traits in livestock are the result of sophisticated biological processes finely orchestrated during the life of the animal

  11. Identification and localization of xylose-binding proteins as potential biomarkers for liver fibrosis/cirrhosis.

    Science.gov (United States)

    Zhong, Yaogang; Sun, Xiu-Xuan; Zhang, Peixin; Qin, Xinmin; Chen, Wentian; Guo, Yonghong; Jia, Zhansheng; Bian, Huijie; Li, Zheng

    2016-02-01

    In our recent study, we found that the expression levels of total xylose-binding proteins (XBPs) were up-regulated significantly in activated hepatic stellate cells (HSCs); however, the denomination, distribution, and function of the XBPs were uncharted. Herein, 70 XBPs from activated HSCs and 64 XBPs from quiescent HSCs were isolated, identified and annotated. A total of 30 XBPs were up-regulated (all fold change ≥ 1.5, p ≤ 0.05) and 14 XBPs were down-regulated (all fold change ≤ 0.67, p ≤ 0.05) in the activated HSCs. The XBPs were localized at the cytoplasm and cytoplasmic membrane in HSCs and cirrhotic liver tissues by cy/histochemistry. The XBPs (i.e. PDIA6 and CFL2) responsible for the regulation of protein binding were up-regulated and those responsible for the regulation of catalytic activity (i.e. TUBB and MX1) were up-regulated in the activated HSCs. 2 candidates (i.e. PDIA6 and APOA1) were then selected for further verification in the sera of patients with HBV-induced chronic hepatitis/cirrhosis using western blotting and serum microarrays. PDIA6 showed a higher discrimination (Area Under Curves, AUCs = 0.8985, p cirrhosis may provide pivotal information needed to discover potential glycan-binding protein-related biomarkers for diagnosis of liver fibrosis/cirrhosis and for development of new anti-fibrotic strategies.

  12. Candidate gene networks and blood biomarkers of methamphetamine-associated psychosis: an integrative RNA-sequencing report

    Science.gov (United States)

    Breen, M S; Uhlmann, A; Nday, C M; Glatt, S J; Mitt, M; Metsalpu, A; Stein, D J; Illing, N

    2016-01-01

    The clinical presentation, course and treatment of methamphetamine (METH)-associated psychosis (MAP) are similar to that observed in schizophrenia (SCZ) and subsequently MAP has been hypothesized as a pharmacological and environmental model of SCZ. However, several challenges currently exist in diagnosing MAP accurately at the molecular and neurocognitive level before the MAP model can contribute to the discovery of SCZ biomarkers. We directly assessed subcortical brain structural volumes and clinical parameters of MAP within the framework of an integrative genome-wide RNA-Seq blood transcriptome analysis of subjects diagnosed with MAP (N=10), METH dependency without psychosis (MA; N=10) and healthy controls (N=10). First, we identified discrete groups of co-expressed genes (that is, modules) and tested them for functional annotation and phenotypic relationships to brain structure volumes, life events and psychometric measurements. We discovered one MAP-associated module involved in ubiquitin-mediated proteolysis downregulation, enriched with 61 genes previously found implicated in psychosis and SCZ across independent blood and post-mortem brain studies using convergent functional genomic (CFG) evidence. This module demonstrated significant relationships with brain structure volumes including the anterior corpus callosum (CC) and the nucleus accumbens. Furthermore, a second MAP and psychoticism-associated module involved in circadian clock upregulation was also enriched with 39 CFG genes, further associated with the CC. Subsequently, a machine-learning analysis of differentially expressed genes identified single blood-based biomarkers able to differentiate controls from methamphetamine dependents with 87% accuracy and MAP from MA subjects with 95% accuracy. CFG evidence validated a significant proportion of these putative MAP biomarkers in independent studies including CLN3, FBP1, TBC1D2 and ZNF821 (RNA degradation), ELK3 and SINA3 (circadian clock) and PIGF and

  13. Tubulin Beta-3 Chain as a New Candidate Protein Biomarker of Human Skin Aging: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Sylvia G. Lehmann

    2017-01-01

    Full Text Available Skin aging is a complex process, and a lot of efforts have been made to identify new and specific targets that could help to diagnose, prevent, and treat skin aging. Several studies concerning skin aging have analyzed the changes in gene expression, and very few investigations have been performed at the protein level. Moreover, none of these proteomic studies has used a global quantitative labeled proteomic offgel approach that allows a more accurate description of aging phenotype. We applied such an approach on human primary keratinocytes obtained from sun-nonexposed skin biopsies of young and elderly women. A total of 517 unique proteins were identified, and 58 proteins were significantly differentially expressed with 40 that were downregulated and 18 upregulated with aging. Gene ontology and pathway analysis performed on these 58 putative biomarkers of skin aging evidenced that these dysregulated proteins were mostly involved in metabolism and cellular processes such as cell cycle and signaling pathways. Change of expression of tubulin beta-3 chain was confirmed by western blot on samples originated from several donors. Thus, this study suggested the tubulin beta-3 chain has a promising biomarker in skin aging.

  14. Use of Aleuria alantia Lectin Affinity Chromatography to Enrich Candidate Biomarkers from the Urine of Patients with Bladder Cancer

    Directory of Open Access Journals (Sweden)

    Sarah R. Ambrose

    2015-09-01

    Full Text Available Developing a urine test to detect bladder tumours with high sensitivity and specificity is a key goal in bladder cancer research. We hypothesised that bladder cancer-specific glycoproteins might fulfill this role. Lectin-ELISAs were used to study the binding of 25 lectins to 10 bladder cell lines and serum and urine from bladder cancer patients and non-cancer controls. Selected lectins were then used to enrich glycoproteins from the urine of bladder cancer patients and control subjects for analysis by shotgun proteomics. None of the lectins showed a strong preference for bladder cancer cell lines over normal urothlelial cell lines or for urinary glycans from bladder cancer patients over those from non-cancer controls. However, several lectins showed a strong preference for bladder cell line glycans over serum glycans and are potentially useful for enriching glycoproteins originating from the urothelium in urine. Aleuria alantia lectin affinity chromatography and shotgun proteomics identified mucin-1 and golgi apparatus protein 1 as proteins warranting further investigation as urinary biomarkers for low-grade bladder cancer. Glycosylation changes in bladder cancer are not reliably detected by measuring lectin binding to unfractionated proteomes, but it is possible that more specific reagents and/or a focus on individual proteins may produce clinically useful biomarkers.

  15. Identification and localization of trauma-related biomarkers using matrix assisted laser desorption/ionization imaging mass spectrometry

    Science.gov (United States)

    Jones, Kirstin; Reilly, Matthew A.; Glickman, Randolph D.

    2017-02-01

    Current treatments for ocular and optic nerve trauma are largely ineffective and may have adverse side effects; therefore, new approaches are needed to understand trauma mechanisms. Identification of trauma-related biomarkers may yield insights into the molecular aspects of tissue trauma that can contribute to the development of better diagnostics and treatments. The conventional approach for protein biomarker measurement largely relies on immunoaffinity methods that typically can only be applied to analytes for which antibodies or other targeting means are available. Matrix assisted laser-assisted desorption/ionization imaging mass spectrometry (MALDI-IMS) is a specialized application of mass spectrometry that not only is well suited to the discovery of novel or unanticipated biomarkers, but also provides information about the spatial localization of biomarkers in tissue. We have been using MALDI-IMS to find traumarelated protein biomarkers in retina and optic nerve tissue from animal models subjected to ocular injury produced by either blast overpressure or mechanical torsion. Work to date by our group, using MALDI-IMS, found that the pattern of protein expression is modified in the injured ocular tissue as soon as 24 hr post-injury, compared to controls. Specific proteins may be up- or down-regulated by trauma, suggesting different tissue responses to a given injury. Ongoing work is directed at identifying the proteins affected and mapping their expression in the ocular tissue, anticipating that systematic analysis can be used to identify targets for prospective therapies for ocular trauma.

  16. The role of proteomics in toxicology: identification of biomarkers of toxicity by protein expression analysis.

    Science.gov (United States)

    Kennedy, Sandy

    2002-01-01

    Proteomics, i.e. the high throughput separation, display and identification of proteins, has the potential to be a powerful tool in drug development. It could increase the predictability of early drug development and identify non-invasive biomarkers of toxicity or efficacy. This review provides an introduction to modern proteomics, with particular reference to applications in toxicology. A literature search was carried out to identify studies in two broad classes: screening/predictive toxicology, and mechanistic toxicology. The strengths and limitations of current methods and the likely impact of techniques in drug development are also considered. Proteomics can increase the speed and sensitivity of toxicological screening by identifying protein markers of toxicity. Proteomics studies have already provided insights into the mechanisms of action of a wide range of substances, from metals to peroxisome proliferators. Current limitations involving speed of throughput are being overcome by increasing automation and the development of new techniques. The isotope-coded affinity tag (ICAT) method appears particularly promising. The application of proteomics to drug development has given rise to the new field of pharmacoproteomics. New associations between proteins and toxicopathological effects are constantly being identified, and major progress is on the horizon as we move into the post-genomic era.

  17. Global DNA methylation in earthworms: A candidate biomarker of epigenetic risks related to the presence of metals/metalloids in terrestrial environments

    Energy Technology Data Exchange (ETDEWEB)

    Maldonado Santoyo, Maria; Rodriguez Flores, Crescencio; Lopez Torres, Adolfo; Wrobel, Kazimierz [Department of Chemistry, University of Guanajuato, L de Retana No 5, 36000 Guanajuato (Mexico); Wrobel, Katarzyna, E-mail: katarzyn@quijote.ugto.mx [Department of Chemistry, University of Guanajuato, L de Retana No 5, 36000 Guanajuato (Mexico)

    2011-10-15

    In this work, possible relationships between global DNA methylation and metal/metalloid concentrations in earthworms have been explored. Direct correlation was observed between soil and tissue As, Se, Sb, Zn, Cu, Mn, Ag, Co, Hg, Pb (p < 0.05). Speciation results obtained for As and Hg hint at the capability of earthworms for conversion of inorganic element forms present in soil to methylated species. Inverse correlation was observed between the percentage of methylated DNA cytosines and total tissue As, As + Hg, As + Hg + Se + Sb ({beta} = -0.8456, p = 0.071; {beta} = -0.9406, p = 0.017; {beta} = -0.9526, p = 0.012 respectively), as well as inorganic As + Hg ({beta} = -0.8807, p = 0.049). It was concluded that earthworms would be particularly helpful as bioindicators of elements undergoing in vivo methylation and might also be used to assess the related risk of epigenetic changes in DNA methylation. - Graphical abstract: Display Omitted Highlights: > Several metals and metalloids contribute to epigenetic gene regulation. > As, Hg, Se, Sb inversely correlated with global DNA methylation in earthworms. > Biomethylation of the above elements in worms suggested. > Elements biomethylation apparently competes with DNA methylation. > DNA methylation a biomarker of epigenetic risks related to soil metals/metalloids. - Biomethylation of As, Hg in earthworms versus DNA methylation - a candidate biomarker of epigenetic risks related to the presence of metals/metalloids in soil.

  18. Circulating Natural IgM Antibodies Against Angiogenin in the Peripheral Blood Sera of Patients with Osteosarcoma as Candidate Biomarkers and Reporters of Tumorigenesis

    Science.gov (United States)

    Savitskaya, Yulia A.; Rico, Genaro; Linares, Luis; González, Roberto; Téllez, René; Estrada, Eréndira; Marín, Norma; Martínez, Elisa; Alfaro, Alfonso; Ibarra, Clemente

    2010-01-01

    Background: Tumor immunology research has led to the identification of a number of tumor-associated self antigens, suggesting that most tumors trigger an immunogenic response, as is the case in osteosarcoma, where the detection of natural serum IgM antibodies might achieve the diagnosis of osteosarcoma. Natural IgM antibodies to tumor-associated proteins may expand the number of available tumor biomarkers for osteosarcoma and may be used together in a serum profile to enhance test sensitivity and specificity. Natural IgM antibodies can be consistently detected in the peripheral blood sera months to years before the tumor is diagnosed clinically. The study of the level of a potential biomarker many months (or years) prior to diagnosis is fundamentally important. Integrated circulating and imaging markers in clinical practice treating osteosarcoma have potential applications for controlling tumor angiogenesis. Objectives: To study the expression of natural IgM antibodies to the tumor antigens of angiogenesis in the peripheral blood sera of osteosarcoma patients and healthy individuals, and to develop serum-based predictive biomarkers. Methods: Peripheral venous blood samples were collected from 117 osteosarcoma patients and 117 patients with other tumors. All diagnosis was histologically confirmed. Staging of patients was performed according to the Enneking Surgical Staging System. The control group consisted of 117 age- and sex- matched healthy individuals. In this study, novel immunoconjugates were designed, synthesized and then used to develop a rapid, specific and sensitive enzyme-linked immunosorbent assay (ELISA) method to detect angiogenin (ANG)–IgM directly in the peripheral blood sera of humans. Results: Serum ANG–IgM levels are significantly higher in osteosarcoma patients than in healthy individuals (P osteosarcoma patients and ANG–IgM levels were significantly higher in osteosarcoma patients compared to any other tumors (P osteosarcoma patients than

  19. A systems biology strategy reveals biological pathways and plasma biomarker candidates for potentially toxic statin-induced changes in muscle.

    Directory of Open Access Journals (Sweden)

    Reijo Laaksonen

    Full Text Available BACKGROUND: Aggressive lipid lowering with high doses of statins increases the risk of statin-induced myopathy. However, the cellular mechanisms leading to muscle damage are not known and sensitive biomarkers are needed to identify patients at risk of developing statin-induced serious side effects. METHODOLOGY: We performed bioinformatics analysis of whole genome expression profiling of muscle specimens and UPLC/MS based lipidomics analyses of plasma samples obtained in an earlier randomized trial from patients either on high dose simvastatin (80 mg, atorvastatin (40 mg, or placebo. PRINCIPAL FINDINGS: High dose simvastatin treatment resulted in 111 differentially expressed genes (1.5-fold change and p-value<0.05, while expression of only one and five genes was altered in the placebo and atorvastatin groups, respectively. The Gene Set Enrichment Analysis identified several affected pathways (23 gene lists with False Discovery Rate q-value<0.1 in muscle following high dose simvastatin, including eicosanoid synthesis and Phospholipase C pathways. Using lipidomic analysis we identified previously uncharacterized drug-specific changes in the plasma lipid profile despite similar statin-induced changes in plasma LDL-cholesterol. We also found that the plasma lipidomic changes following simvastatin treatment correlate with the muscle expression of the arachidonate 5-lipoxygenase-activating protein. CONCLUSIONS: High dose simvastatin affects multiple metabolic and signaling pathways in skeletal muscle, including the pro-inflammatory pathways. Thus, our results demonstrate that clinically used high statin dosages may lead to unexpected metabolic effects in non-hepatic tissues. The lipidomic profiles may serve as highly sensitive biomarkers of statin-induced metabolic alterations in muscle and may thus allow us to identify patients who should be treated with a lower dose to prevent a possible toxicity.

  20. Identification of Biomarker and Co-Regulatory Motifs in Lung Adenocarcinoma Based on Differential Interactions.

    Directory of Open Access Journals (Sweden)

    Ning Zhao

    Full Text Available Changes in intermolecular interactions (differential interactions may influence the progression of cancer. Specific genes and their regulatory networks may be more closely associated with cancer when taking their transcriptional and post-transcriptional levels and dynamic and static interactions into account simultaneously. In this paper, a differential interaction analysis was performed to detect lung adenocarcinoma-related genes. Furthermore, a miRNA-TF (transcription factor synergistic regulation network was constructed to identify three kinds of co-regulated motifs, namely, triplet, crosstalk and joint. Not only were the known cancer-related miRNAs and TFs (let-7, miR-15a, miR-17, TP53, ETS1, and so on were detected in the motifs, but also the miR-15, let-7 and miR-17 families showed a tendency to regulate the triplet, crosstalk and joint motifs, respectively. Moreover, several biological functions (i.e., cell cycle, signaling pathways and hemopoiesis associated with the three motifs were found to be frequently targeted by the drugs for lung adenocarcinoma. Specifically, the two 4-node motifs (crosstalk and joint based on co-expression and interaction had a closer relationship to lung adenocarcinoma, and so further research was performed on them. A 10-gene biomarker (UBC, SRC, SP1, MYC, STAT3, JUN, NR3C1, RB1, GRB2 and MAPK1 was selected from the joint motif, and a survival analysis indicated its significant association with survival. Among the ten genes, JUN, NR3C1 and GRB2 are our newly detected candidate lung adenocarcinoma-related genes. The genes, regulators and regulatory motifs detected in this work will provide potential drug targets and new strategies for individual therapy.

  1. Biomarkers in DILI: One More Step Forward

    Science.gov (United States)

    Robles-Díaz, Mercedes; Medina-Caliz, Inmaculada; Stephens, Camilla; Andrade, Raúl J.; Lucena, M. Isabel

    2016-01-01

    Despite being relatively rare, drug-induced liver injury (DILI) is a serious condition, both for the individual patient due to the risk of acute liver failure, and for the drug development industry and regulatory agencies due to associations with drug development attritions, black box warnings, and postmarketing withdrawals. A major limitation in DILI diagnosis and prediction is the current lack of specific biomarkers. Despite refined usage of traditional liver biomarkers in DILI, reliable disease outcome predictions are still difficult to make. These limitations have driven the growing interest in developing new more sensitive and specific DILI biomarkers, which can improve early DILI prediction, diagnosis, and course of action. Several promising DILI biomarker candidates have been discovered to date, including mechanistic-based biomarker candidates such as glutamate dehydrogenase, high-mobility group box 1 protein and keratin-18, which can also provide information on the injury mechanism of different causative agents. Furthermore, microRNAs have received much attention lately as potential non-invasive DILI biomarker candidates, in particular miR-122. Advances in “omics” technologies offer a new approach for biomarker exploration studies. The ability to screen a large number of molecules (e.g., metabolites, proteins, or DNA) simultaneously enables the identification of ‘toxicity signatures,’ which may be used to enhance preclinical safety assessments and disease diagnostics. Omics-based studies can also provide information on the underlying mechanisms of distinct forms of DILI that may further facilitate the identification of early diagnostic biomarkers and safer implementation of personalized medicine. In this review, we summarize recent advances in the area of DILI biomarker studies. PMID:27597831

  2. Biomarkers in DILI: one more step forward

    Directory of Open Access Journals (Sweden)

    Mercedes Robles-Díaz

    2016-08-01

    Full Text Available Despite being relatively rare, drug-induced liver injury (DILI is a serious condition, both for the individual patient due to the risk of acute liver failure, and for the drug development industry and regulatory agencies due to associations with drug development attritions, black box warnings and postmarketing withdrawals. A major limitation in DILI diagnosis and prediction is the current lack of specific biomarkers. Despite refined usage of traditional liver biomarkers in DILI, reliable disease outcome predictions are still difficult to make. These limitations have driven the growing interest in developing new more sensitive and specific DILI biomarkers, which can improve early DILI prediction, diagnosis and course of action. Several promising DILI biomarker candidates have been discovered to date, including mechanistic-based biomarker candidates such as glutamate dehydrogenase, high-mobility group box 1 protein and keratin-18, which can also provide information on the injury mechanism of different causative agents. Furthermore, microRNAs have received much attention lately as potential non-invasive DILI biomarker candidates, in particular miR-122. Advances in omics technologies offer a new approach for biomarker exploration studies. The ability to screen a large number of molecules (for example metabolites, proteins or DNA simultaneously enables the identification of ‘toxicity signatures’, which may be used to enhance preclinical safety assessments and disease diagnostics. Omics-based studies can also provide information on the underlying mechanisms of distinct forms of DILI that may further facilitate the identification of early diagnostic biomarkers and safer implementation of personalized medicine. In this review we summarize recent advances in the area of DILI biomarker studies.

  3. Alpha-fetoprotein-L3 and Golgi protein 73 may serve as candidate biomarkers for diagnosing alpha-fetoprotein-negative hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Zhang ZG

    2015-12-01

    Full Text Available Zhiguo Zhang,1 Yanying Zhang,2 Yeying Wang,1 Lingling Xu,3 Wanju Xu3 1Department of Clinical Laboratory, Zhangqiu Maternity and Child Care Hospital, Zhangqiu, 2Department of Clinical Laboratory, Zaozhuang City Wangkai Infection Hospital, Zaozhuang, 3Department of Clinical Laboratory, Qianfoshan Hospital, Jinan, People’s Republic of China Abstract: Currently, there is no reliable biomarker for use in diagnosing alpha-fetoprotein (AFP-negative hepatocellular carcinoma (HCC. Such a biomarker would aid in making an early diagnosis of AFP-negative HCC, ensuring the timely initiation of treatment. This study examined AFP-L3 and Golgi protein 73 (GP73 as candidate biomarkers for AFP-negative HCC. The affinity adsorption method and enzyme-linked immunoassays were separately used to determine serum levels of AFP-L3 and GP73 in 50 patients with AFP-negative HCC, 30 non-HCC patients, and 50 healthy subjects. Fifty percent of patients with AFP-negative HCC tested positive for AFP-L3, while 3.33% of non-HCC patients and 2.00% of healthy subjects were AFP-L3 positive. Patients with AFP-negative HCC had significantly higher serum levels of AFP-L3 compared to non-HCC patients and healthy individuals; however, there was no significant difference in the AFP-L3 levels of non-HCC patients and healthy subjects. Sixty-six percent of patients with AFP-negative HCC tested positive for GP73, while 10% of non-HCC patients and 0% of healthy subjects were GP73-positive. Patients with AFP-negative HCC had significantly higher serum levels of GP73 compared to non-HCC patients and healthy subjects, but there was no significant difference between the GP73 levels of non-HCC patients and healthy individuals. Moreover, 20 patients with AFP-negative HCC were both AFP-L3- and GP73-positive, while no non-HCC patients or healthy subjects tested positive for both markers. Either AFP-L3 or GP73 may be used as a biomarker for diagnosing AFP-negative HCC, while their combined use

  4. Identification of Two Candidate Tumor Suppressor Genes on Chromosome l7p13.3: Assessment of their Roles in Breast and Ovarian Carcinogenesis

    Science.gov (United States)

    2000-07-01

    also been reported in primitive neuroectodermal tumors , carcinoma of the cervix uteri, medulloblastoma, osteosarcoma, astrocytoma (22), and acute...AD______ GRANT NUMBER: DAMD17-96-1-6088 TITLE: Identification of Two Candidate Tumor Suppressor Genes on Chromosome 17p13.3: Assessment of their...Identification of Two Candidate Tumor Suppressor Genes on Chromosome 17 p13 .3 : Assessment of their Roles in Breast... DAMD17-96-1-6088 6. AUTHOR(S

  5. Identification of a 5-protein biomarker molecular signature for predicting Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Martín Gómez Ravetti

    useful dataset for the identification of AD biomarkers. However, our subsequent analysis also revealed several important facts worth reporting: 1. A 5-protein signature (which is a subset of the 18-protein signature of Ray et al. has the same overall performance (when using the same classifier. 2. Using more than 20 different classifiers available in the widely-used Weka software package, our 5-protein signature has, on average, a smaller prediction error indicating the independence of the classifier and the robustness of this set of biomarkers (i.e. 96% accuracy when predicting AD against non-demented control. 3. Using very simple classifiers, like Simple Logistic or Logistic Model Trees, we have achieved the following results on 92 samples: 100 percent success to predict Alzheimer's Disease and 92 percent to predict Non Demented Control on the AD dataset.

  6. [Novel biomarkers for diabetic nephropathy].

    Science.gov (United States)

    Araki, Shin-ichi

    2014-02-01

    Diabetic nephropathy is a leading cause of end-stage renal disease worldwide. An early clinical sign of this complication is an increase of urinary albumin excretion, called microalbuminuria, which is not only a predictor of the progression of nephropathy, but also an independent risk factor for cardiovascular disease. Although microalbuminuria is clinically important to assess the prognosis of diabetic patients, it may be insufficient as an early and specific biomarker of diabetic nephropathy because of a large day-to-day variation and lack of a good correlation of microalbuminuria with renal dysfunction and pathohistological changes. Thus, more sensitive and specific biomarkers are needed to improve the diagnostic capability of identifying patients at high risk. The factors involved in renal tubulo-interstitial damage, the production and degradation of extracellular matrix, microinflammation, etc., are investigated as candidate molecules. Despite numerous efforts so far, the assessment of these biomarkers is still a subject of ongoing investigations. Recently, a variety of omics and quantitative techniques in systems biology are rapidly emerging in the field of biomarker discovery, including proteomics, transcriptomics, and metabolomics, and they have been applied to search for novel putative biomarkers of diabetic nephropathy. Novel biomarkers or their combination with microalbuminuria provide a better diagnostic accuracy than microalbuminuria alone, and may be useful for establishing personal medicine. Furthermore, the identification of novel biomarkers may provide insight into the mechanisms underlying diabetic nephropathy.

  7. Identification of host-immune response protein candidates in the sera of human oral squamous cell carcinoma patients.

    Directory of Open Access Journals (Sweden)

    Yeng Chen

    Full Text Available One of the most common cancers worldwide is oral squamous cell carcinoma (OSCC, which is associated with a significant death rate and has been linked to several risk factors. Notably, failure to detect these neoplasms at an early stage represents a fundamental barrier to improving the survival and quality of life of OSCC patients. In the present study, serum samples from OSCC patients (n = 25 and healthy controls (n = 25 were subjected to two-dimensional gel electrophoresis (2-DE and silver staining in order to identify biomarkers that might allow early diagnosis. In this regard, 2-DE spots corresponding to various up- and down-regulated proteins were sequenced via high-resolution MALDI-TOF mass spectrometry and analyzed using the MASCOT database. We identified the following differentially expressed host-specific proteins within sera from OSCC patients: leucine-rich α2-glycoprotein (LRG, alpha-1-B-glycoprotein (ABG, clusterin (CLU, PRO2044, haptoglobin (HAP, complement C3c (C3, proapolipoprotein A1 (proapo-A1, and retinol-binding protein 4 precursor (RBP4. Moreover, five non-host factors were detected, including bacterial antigens from Acinetobacter lwoffii, Burkholderia multivorans, Myxococcus xanthus, Laribacter hongkongensis, and Streptococcus salivarius. Subsequently, we analyzed the immunogenicity of these proteins using pooled sera from OSCC patients. In this regard, five of these candidate biomarkers were found to be immunoreactive: CLU, HAP, C3, proapo-A1 and RBP4. Taken together, our immunoproteomics approach has identified various serum biomarkers that could facilitate the development of early diagnostic tools for OSCC.

  8. Identification of oral cancer related candidate genes by integrating protein-protein interactions, gene ontology, pathway analysis and immunohistochemistry.

    Science.gov (United States)

    Kumar, Ravindra; Samal, Sabindra K; Routray, Samapika; Dash, Rupesh; Dixit, Anshuman

    2017-05-30

    In the recent years, bioinformatics methods have been reported with a high degree of success for candidate gene identification. In this milieu, we have used an integrated bioinformatics approach assimilating information from gene ontologies (GO), protein-protein interaction (PPI) and network analysis to predict candidate genes related to oral squamous cell carcinoma (OSCC). A total of 40973 PPIs were considered for 4704 cancer-related genes to construct human cancer gene network (HCGN). The importance of each node was measured in HCGN by ten different centrality measures. We have shown that the top ranking genes are related to a significantly higher number of diseases as compared to other genes in HCGN. A total of 39 candidate oral cancer target genes were predicted by combining top ranked genes and the genes corresponding to significantly enriched oral cancer related GO terms. Initial verification using literature and available experimental data indicated that 29 genes were related with OSCC. A detailed pathway analysis led us to propose a role for the selected candidate genes in the invasion and metastasis in OSCC. We further validated our predictions using immunohistochemistry (IHC) and found that the gene FLNA was upregulated while the genes ARRB1 and HTT were downregulated in the OSCC tissue samples.

  9. Identification of downy mildew resistance gene candidates by positional cloning in maize (Zea mays subsp. mays; Poaceae)1

    Science.gov (United States)

    Kim, Jae Yoon; Moon, Jun-Cheol; Kim, Hyo Chul; Shin, Seungho; Song, Kitae; Kim, Kyung-Hee; Lee, Byung-Moo

    2017-01-01

    Premise of the study: Positional cloning in combination with phenotyping is a general approach to identify disease-resistance gene candidates in plants; however, it requires several time-consuming steps including population or fine mapping. Therefore, in the present study, we suggest a new combined strategy to improve the identification of disease-resistance gene candidates. Methods and Results: Downy mildew (DM)–resistant maize was selected from five cultivars using a spreader row technique. Positional cloning and bioinformatics tools were used to identify the DM-resistance quantitative trait locus marker (bnlg1702) and 47 protein-coding gene annotations. Eventually, five DM-resistance gene candidates, including bZIP34, Bak1, and Ppr, were identified by quantitative reverse-transcription PCR (RT-PCR) without fine mapping of the bnlg1702 locus. Conclusions: The combined protocol with the spreader row technique, quantitative trait locus positional cloning, and quantitative RT-PCR was effective for identifying DM-resistance candidate genes. This cloning approach may be applied to other whole-genome-sequenced crops or resistance to other diseases. PMID:28224059

  10. Identification of CREB3L1 as a Biomarker Predicting Doxorubicin Treatment Outcome.

    Directory of Open Access Journals (Sweden)

    Bray Denard

    Full Text Available Doxorubicin has been shown to inhibit proliferation of cancer cells through proteolytic activation of CREB3L1 (cAMP response element binding protein 3-like 1, a transcription factor synthesized as a membrane-bound precursor. Upon doxorubicin treatment, CREB3L1 is cleaved so that the N-terminal domain of the protein can reach the nucleus where it activates transcription of genes that inhibit cell proliferation. These results suggest that the level of CREB3L1 in cancer cells may determine their sensitivity to doxorubicin.Mice transplanted with 6 lines of renal cell carcinoma (RCC were injected with doxorubicin to observe the effect of the chemotherapy on tumor growth. Immunohistochemistry and bioinformatics analyses were performed to compare CREB3L1 levels in types of cancer known to respond to doxorubicin versus those resistant to doxorubicin.Higher levels of CREB3L1 protein are correlated with increased doxorubicin sensitivity of xenograft RCC tumors (p = 0.017 by Pearson analysis. From patient tumor biopsies we analyzed, CREB3L1 was expressed in 19% of RCC, which is generally resistant to doxorubicin, but in 70% of diffuse large B-cell lymphoma that is sensitive to doxorubicin. Doxorubicin is used as the standard treatment for cancers that express the highest levels of CREB3L1 such as osteosarcoma and malignant fibrous histiocytoma but is not generally used to treat those that express the lowest levels of CREB3L1 such as RCC.Identification of CREB3L1 as the biomarker for doxorubicin sensitivity may markedly improve the doxorubicin response rate by applying doxorubicin only to patients with cancers expressing CREB3L1.

  11. Identification of biomarkers of response to IFNg during endotoxin tolerance: application to septic shock.

    Directory of Open Access Journals (Sweden)

    Florence Allantaz-Frager

    Full Text Available The rapid development in septic patients of features of marked immunosuppression associated with increased risk of nosocomial infections and mortality represents the rational for the initiation of immune targeted treatments in sepsis. However, as there is no clinical sign of immune dysfunctions, the current challenge is to develop biomarkers that will help clinicians identify the patients that would benefit from immunotherapy and monitor its efficacy. Using an in vitro model of endotoxin tolerance (ET, a pivotal feature of sepsis-induced immunosuppression in monocytes, we identified using gene expression profiling by microarray a panel of transcripts associated with the development of ET which expression was restored after immunostimulation with interferon-gamma (IFN-γ. These results were confirmed by qRT-PCR. Importantly, this short-list of markers was further evaluated in patients. Of these transcripts, six (TNFAIP6, FCN1, CXCL10, GBP1, CXCL5 and PID1 were differentially expressed in septic patients' blood compared to healthy blood upon ex vivo LPS stimulation and were restored by IFN-γ. In this study, by combining a microarray approach in an in vitro model and a validation in clinical samples, we identified a panel of six new transcripts that could be used for the identification of septic patients eligible for IFNg therapy. Along with the previously identified markers TNFa, IL10 and HLA-DRA, the potential value of these markers should now be evaluated in a larger cohort of patients. Upon favorable results, they could serve as stratification tools prior to immunostimulatory treatment and to monitor drug efficacy.

  12. Identification of biomarkers of response to IFNg during endotoxin tolerance: application to septic shock.

    Science.gov (United States)

    Allantaz-Frager, Florence; Turrel-Davin, Fanny; Venet, Fabienne; Monnin, Cécile; De Saint Jean, Amélie; Barbalat, Véronique; Cerrato, Elisabeth; Pachot, Alexandre; Lepape, Alain; Monneret, Guillaume

    2013-01-01

    The rapid development in septic patients of features of marked immunosuppression associated with increased risk of nosocomial infections and mortality represents the rational for the initiation of immune targeted treatments in sepsis. However, as there is no clinical sign of immune dysfunctions, the current challenge is to develop biomarkers that will help clinicians identify the patients that would benefit from immunotherapy and monitor its efficacy. Using an in vitro model of endotoxin tolerance (ET), a pivotal feature of sepsis-induced immunosuppression in monocytes, we identified using gene expression profiling by microarray a panel of transcripts associated with the development of ET which expression was restored after immunostimulation with interferon-gamma (IFN-γ). These results were confirmed by qRT-PCR. Importantly, this short-list of markers was further evaluated in patients. Of these transcripts, six (TNFAIP6, FCN1, CXCL10, GBP1, CXCL5 and PID1) were differentially expressed in septic patients' blood compared to healthy blood upon ex vivo LPS stimulation and were restored by IFN-γ. In this study, by combining a microarray approach in an in vitro model and a validation in clinical samples, we identified a panel of six new transcripts that could be used for the identification of septic patients eligible for IFNg therapy. Along with the previously identified markers TNFa, IL10 and HLA-DRA, the potential value of these markers should now be evaluated in a larger cohort of patients. Upon favorable results, they could serve as stratification tools prior to immunostimulatory treatment and to monitor drug efficacy.

  13. Can Genetic Analysis of Putative Blood Alzheimer's Disease Biomarkers Lead to Identification of Susceptibility Loci?

    Directory of Open Access Journals (Sweden)

    Robert C Barber

    Full Text Available Although 24 Alzheimer's disease (AD risk loci have been reliably identified, a large portion of the predicted heritability for AD remains unexplained. It is expected that additional loci of small effect will be identified with an increased sample size. However, the cost of a significant increase in Case-Control sample size is prohibitive. The current study tests whether exploring the genetic basis of endophenotypes, in this case based on putative blood biomarkers for AD, can accelerate the identification of susceptibility loci using modest sample sizes. Each endophenotype was used as the outcome variable in an independent GWAS. Endophenotypes were based on circulating concentrations of proteins that contributed significantly to a published blood-based predictive algorithm for AD. Endophenotypes included Monocyte Chemoattractant Protein 1 (MCP1, Vascular Cell Adhesion Molecule 1 (VCAM1, Pancreatic Polypeptide (PP, Beta2 Microglobulin (B2M, Factor VII (F7, Adiponectin (ADN and Tenascin C (TN-C. Across the seven endophenotypes, 47 SNPs were associated with outcome with a p-value ≤1x10(-7. Each signal was further characterized with respect to known genetic loci associated with AD. Signals for several endophenotypes were observed in the vicinity of CR1, MS4A6A/MS4A4E, PICALM, CLU, and PTK2B. The strongest signal was observed in association with Factor VII levels and was located within the F7 gene. Additional signals were observed in MAP3K13, ZNF320, ATP9B and TREM1. Conditional regression analyses suggested that the SNPs contributed to variation in protein concentration independent of AD status. The identification of two putatively novel AD loci (in the Factor VII and ATP9B genes, which have not been located in previous studies despite massive sample sizes, highlights the benefits of an endophenotypic approach for resolving the genetic basis for complex diseases. The coincidence of several of the endophenotypic signals with known AD loci may point

  14. Coherent pipeline for biomarker discovery using mass spectrometry and bioinformatics

    Directory of Open Access Journals (Sweden)

    Al-Shahib Ali

    2010-08-01

    Full Text Available Abstract Background Robust biomarkers are needed to improve microbial identification and diagnostics. Proteomics methods based on mass spectrometry can be used for the discovery of novel biomarkers through their high sensitivity and specificity. However, there has been a lack of a coherent pipeline connecting biomarker discovery with established approaches for evaluation and validation. We propose such a pipeline that uses in silico methods for refined biomarker discovery and confirmation. Results The pipeline has four main stages: Sample preparation, mass spectrometry analysis, database searching and biomarker validation. Using the pathogen Clostridium botulinum as a model, we show that the robustness of candidate biomarkers increases with each stage of the pipeline. This is enhanced by the concordance shown between various database search algorithms for peptide identification. Further validation was done by focusing on the peptides that are unique to C. botulinum strains and absent in phylogenetically related Clostridium species. From a list of 143 peptides, 8 candidate biomarkers were reliably identified as conserved across C. botulinum strains. To avoid discarding other unique peptides, a confidence scale has been implemented in the pipeline giving priority to unique peptides that are identified by a union of algorithms. Conclusions This study demonstrates that implementing a coherent pipeline which includes intensive bioinformatics validation steps is vital for discovery of robust biomarkers. It also emphasises the importance of proteomics based methods in biomarker discovery.

  15. Effect of surface-enhanced laser desorption/ionization time-of-flight mass spectrometry on identifing biomarkers of endometriosis

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hong; FENG Jie; CHANG Xiao-hong; LI Zhong-xing; WU Xiao-yi; CUI Heng

    2009-01-01

    Background Endometriosis is a common gynecological disease. This study aimed to screen proteins that were expressed differently in patients with endometriosis versus normal controls using proteomic techniques, surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF-MS).Methods Protein chip SELDI-TOF-MS combines the advantages of microarray and mass spectrometry, and can screen latent markers in sera of patients with endometriosis. Serum samples from patients and normal volunteers were analyzed by SELDI-TOF-MS.Results After comparing the serum protein spectra of 36 patients with 24 normal controls, 24 differently expressed potential biomarkers (P <0.01) were identified. Using Biomarker Pattern software, we established a tree model of the 60 serum protein spectra. When using the three biomarkers to classify the samples, the sensitivity for diagnosing endometriosis was 91.7%, specificity was 95.8%, and coincidence rate was 93.3%. Then we used serum samples from 12 patients and 8 normal controls to validate the tree model and report the sensitivity for diagnosing endometriosis was 91.7%, specificity was 75%, and coincidence rate was 85%.Conclusions SELDI-TOF-MS may be a useful tool in high-risk population screening for endometriosis. The identification and application of the biomarkers need to further study.

  16. Proteomic profiling of exosomes leads to the identification of novel biomarkers for prostate cancer

    NARCIS (Netherlands)

    D. Duijvesz (Diederick); K.E. Burnum-Johnson (Kristin); M.A. Gritsenko (Marina); A.M. Hoogland (Marije); M.S. Vredenbregt-van den Berg (Mirella); R. Willemsen (Rob); T.M. Luider (Theo); L. Paša-Tolić (Ljiljana); G.W. Jenster (Guido)

    2013-01-01

    textabstractBackground: Current markers for prostate cancer, such as PSA lack specificity. Therefore, novel biomarkers are needed. Unfortunately, the complexity of body fluids often hampers biomarker discovery. An attractive alternative approach is the isolation of small vesicles, i.e. exosomes, ∼10

  17. Identification of peroxiredoxin-1 as a novel biomarker of abdominal aortic aneurysm

    DEFF Research Database (Denmark)

    Martinez-Pinna, Roxana; Ramos-Mozo, Priscila; Madrigal-Matute, Julio

    2011-01-01

    In the search of novel biomarkers of abdominal aortic aneurysm (AAA) progression, proteins released by intraluminal thrombus (ILT) were analyzed by a differential proteomic approach.......In the search of novel biomarkers of abdominal aortic aneurysm (AAA) progression, proteins released by intraluminal thrombus (ILT) were analyzed by a differential proteomic approach....

  18. Novel benzamide-based histamine h3 receptor antagonists: the identification of two candidates for clinical development.

    Science.gov (United States)

    Letavic, Michael A; Aluisio, Leah; Apodaca, Richard; Bajpai, Manoj; Barbier, Ann J; Bonneville, Anne; Bonaventure, Pascal; Carruthers, Nicholas I; Dugovic, Christine; Fraser, Ian C; Kramer, Michelle L; Lord, Brian; Lovenberg, Timothy W; Li, Lilian Y; Ly, Kiev S; Mcallister, Heather; Mani, Neelakandha S; Morton, Kirsten L; Ndifor, Anthony; Nepomuceno, S Diane; Pandit, Chennagiri R; Sands, Steven B; Shah, Chandra R; Shelton, Jonathan E; Snook, Sandra S; Swanson, Devin M; Xiao, Wei

    2015-04-09

    The preclinical characterization of novel phenyl(piperazin-1-yl)methanones that are histamine H3 receptor antagonists is described. The compounds described are high affinity histamine H3 antagonists. Optimization of the physical properties of these histamine H3 antagonists led to the discovery of several promising lead compounds, and extensive preclinical profiling aided in the identification of compounds with optimal duration of action for wake promoting activity. This led to the discovery of two development candidates for Phase I and Phase II clinical trials.

  19. Distinct expression pattern of the full set of secreted phospholipases A2 in human colorectal adenocarcinomas: sPLA2-III as a biomarker candidate

    Science.gov (United States)

    Mounier, C M; Wendum, D; Greenspan, E; Fléjou, J-F; Rosenberg, D W; Lambeau, G

    2008-01-01

    Recent studies suggest that secreted phospholipases A2 (sPLA2s) represent attractive potential tumour biomarkers and therapeutic targets for various cancers. As a first step to address this issue in human colorectal cancer, we examined the expression of the full set of sPLA2s in sporadic adenocarcinomas and normal matched mucosa from 21 patients by quantitative PCR and immunohistochemistry. In normal colon, PLA2G2A and PLA2G12A were expressed at high levels, PLA2G2D, PLA2G5, PLA2G10 and PLA2G12B at moderate levels, and PLA2G1B, PLA2G2F and PLA2G3 at low levels. In adenocarcinomas from left and right colon, the expression of PLA2G3 was increased by up to 40-fold, while that of PLA2G2D and PLA2G5 was decreased by up to 23- and 14-fold. The variations of expression for sPLA2-IID, sPLA2-III and sPLA2-V were confirmed at the protein level. The expression pattern of these sPLA2s appeared to be linked respectively to the overexpression of interleukin-8, defensin α6, survivin and matrilysin, and downregulation of SFRP-1 and RLPA-1, all these genes being associated to colon cancer. This original sPLA2 profile observed in adenocarcinomas highlights the potential role of certain sPLA2s in colon cancer and suggests that sPLA2-III might be a good candidate as a novel biomarker for both left and right colon cancers. PMID:18212756

  20. Immunoproteomic analysis of Brucella melitensis and identification of a new immunogenic candidate protein for the development of brucellosis subunit vaccine.

    Science.gov (United States)

    Yang, Yanling; Wang, Lin; Yin, Jigang; Wang, Xinglong; Cheng, Shipeng; Lang, Xulong; Wang, Xiuran; Qu, Hailong; Sun, Chunhui; Wang, Jinglong; Zhang, Rui

    2011-10-01

    In order to screen immunogenic candidate antigens for the development of a brucellosis subunit vaccine, an immunoproteomic assay was used to identify immunogenic proteins from Brucella melitensis 16 M soluble proteins. In this study, a total of 56 immunodominant proteins were identified from the two-dimensional electrophoresis immunoblot profiles by liquid chromatography tandem mass spectrometry (LC-MS/MS). Two proteins of interest, riboflavin synthase alpha chain (RS-α) and Loraine synthase (LS-2), which are both involved in riboflavin synthesis, were detected by two-dimensional immunoblots using antisera obtained from Brucella-infected human and goats. LS-2, however, is an already well-known vaccine candidate. Therefore, we focussed our studies on the novel vaccine candidate RS-α. B. melitensis RS-α and LS-2 were then expressed in Escherichia coli as fusion proteins with His tag. The humoral and cellular immune responses to the recombinant (r)RS-α was characterized. In response to in vitro stimulation by rRS-α, splenocytes from mice vaccinated with rRS-α were able to produce γ-interferon (IFN-γ) and interleukin (IL)-2 but not interleukin (IL)-4 and interleukin (IL)-10. Furthermore, rRS-α or rLS-2-vaccinated mice were partially protected against B. melitensis infection. Our results suggested that we have developed a high-throughout, accurate, rapid and highly efficient method for the identification of candidate antigens by a combination of immunoproteomics with immunisation and bacterial challenge and rRs-α could be a useful candidate for the development of subunit vaccines against B. melitensis.

  1. Functional Analysis of Barley Powdery Mildew Effector Candidates and Identification of their Barley Targets

    DEFF Research Database (Denmark)

    Ahmed, Ali Abdurehim

    The genome of barley powdery mildew fungus (Blumeria graminis f. sp. hordei, Bgh) encodes around 500 Candidate Secreted Effector Proteins (CSEPs), which are believed to be delivered to the barley cells either to interfere with plant defence and/or promote nutrient uptake. So far, little is known...

  2. Computational disease gene identification : a concert of methods prioritizes type 2 diabetes and obesity candidate genes

    NARCIS (Netherlands)

    Tiffin, N.; Adie, E.; Turner, F.; Brunner, H.G.; Driel, M.A. van; Oti, M.O.; Lopez-Bigas, N.; Ouzounis, C.A.; Perez-Iratxeta, C.; Andrade-Navarro, M.A.; Adeyemo, A.; Patti, M.E.; Semple, C.A.; Hide, W.

    2006-01-01

    Genome-wide experimental methods to identify disease genes, such as linkage analysis and association studies, generate increasingly large candidate gene sets for which comprehensive empirical analysis is impractical. Computational methods employ data from a variety of sources to identify the most

  3. Computational disease gene identification: a concert of methods prioritizes type 2 diabetes and obesity candidate genes.

    NARCIS (Netherlands)

    Tiffin, N.; Adie, E.; Turner, F.; Brunner, H.G.; Driel, M.A. van; Oti, M.O.; Lopez-Bigas, N.; Ouzounis, C.A.; Perez-Iratxeta, C.; Andrade-Navarro, M.A.; Adeyemo, A.; Patti, M.E.; Semple, C.A.; Hide, W.

    2006-01-01

    Genome-wide experimental methods to identify disease genes, such as linkage analysis and association studies, generate increasingly large candidate gene sets for which comprehensive empirical analysis is impractical. Computational methods employ data from a variety of sources to identify the most

  4. Computational disease gene identification: a concert of methods prioritizes type 2 diabetes and obesity candidate genes.

    NARCIS (Netherlands)

    Tiffin, N.; Adie, E.; Turner, F.; Brunner, H.G.; Driel, M.A. van; Oti, M.O.; Lopez-Bigas, N.; Ouzounis, C.A.; Perez-Iratxeta, C.; Andrade-Navarro, M.A.; Adeyemo, A.; Patti, M.E.; Semple, C.A.; Hide, W.

    2006-01-01

    Genome-wide experimental methods to identify disease genes, such as linkage analysis and association studies, generate increasingly large candidate gene sets for which comprehensive empirical analysis is impractical. Computational methods employ data from a variety of sources to identify the most li

  5. Computational disease gene identification : a concert of methods prioritizes type 2 diabetes and obesity candidate genes

    NARCIS (Netherlands)

    Tiffin, N.; Adie, E.; Turner, F.; Brunner, H.G.; Driel, M.A. van; Oti, M.O.; Lopez-Bigas, N.; Ouzounis, C.A.; Perez-Iratxeta, C.; Andrade-Navarro, M.A.; Adeyemo, A.; Patti, M.E.; Semple, C.A.; Hide, W.

    2006-01-01

    Genome-wide experimental methods to identify disease genes, such as linkage analysis and association studies, generate increasingly large candidate gene sets for which comprehensive empirical analysis is impractical. Computational methods employ data from a variety of sources to identify the most li

  6. Bioinformatics-Driven Identification and Examination of Candidate Genes for Non-Alcoholic Fatty Liver Disease

    DEFF Research Database (Denmark)

    Banasik, Karina; Justesen, Johanne M.; Hornbak, Malene

    2011-01-01

    Objective: Candidate genes for non-alcoholic fatty liver disease (NAFLD) identified by a bioinformatics approach were examined for variant associations to quantitative traits of NAFLD-related phenotypes. Research Design and Methods: By integrating public database text mining, trans-organism protein...

  7. Identification of Pharmacodynamic Transcript Biomarkers in Response to FGFR Inhibition by AZD4547.

    Science.gov (United States)

    Delpuech, Oona; Rooney, Claire; Mooney, Lorraine; Baker, Dawn; Shaw, Robert; Dymond, Michael; Wang, Dennis; Zhang, Pei; Cross, Sarah; Veldman-Jones, Margaret; Wilson, Joanne; Davies, Barry R; Dry, Jonathan R; Kilgour, Elaine; Smith, Paul D

    2016-11-01

    The challenge of developing effective pharmacodynamic biomarkers for preclinical and clinical testing of FGFR signaling inhibition is significant. Assays that rely on the measurement of phospho-protein epitopes can be limited by the availability of effective antibody detection reagents. Transcript profiling enables accurate quantification of many biomarkers and provides a broader representation of pathway modulation. To identify dynamic transcript biomarkers of FGFR signaling inhibition by AZD4547, a potent inhibitor of FGF receptors 1, 2, and 3, a gene expression profiling study was performed in FGFR2-amplified, drug-sensitive tumor cell lines. Consistent with known signaling pathways activated by FGFR, we identified transcript biomarkers downstream of the RAS-MAPK and PI3K/AKT pathways. Using different tumor cell lines in vitro and xenografts in vivo, we confirmed that some of these transcript biomarkers (DUSP6, ETV5, YPEL2) were modulated downstream of oncogenic FGFR1, 2, 3, whereas others showed selective modulation only by FGFR2 signaling (EGR1). These transcripts showed consistent time-dependent modulation, corresponding to the plasma exposure of AZD4547 and inhibition of phosphorylation of the downstream signaling molecules FRS2 or ERK. Combination of FGFR and AKT inhibition in an FGFR2-mutated endometrial cancer xenograft model enhanced modulation of transcript biomarkers from the PI3K/AKT pathway and tumor growth inhibition. These biomarkers were detected on the clinically validated nanoString platform. Taken together, these data identified novel dynamic transcript biomarkers of FGFR inhibition that were validated in a number of in vivo models, and which are more robustly modulated by FGFR inhibition than some conventional downstream signaling protein biomarkers. Mol Cancer Ther; 15(11); 2802-13. ©2016 AACR.

  8. Identification of novel candidate genes for follicle selection in the broiler breeder ovary

    Directory of Open Access Journals (Sweden)

    McDerment Neil A

    2012-09-01

    Full Text Available Abstract Background Broiler breeders fed ad libitum are characterised by multiple ovulation, which leads to poor shell quality and egg production. Multiple ovulation is controlled by food restriction in commercial flocks. However, the level of food restriction raises welfare concerns, including that of severe hunger. Reducing the rate of multiple ovulation by genetic selection would facilitate progress towards developing a growth profile for optimum animal welfare. Results The study utilised 3 models of ovarian follicle development; laying hens fed ad libitum (experiment 2 and broiler breeders fed ad libitum or a restricted diet (experiments 1 & 3. This allowed us to investigate gene candidates for follicular development by comparing normal, abnormal and “controlled” follicle hierarchies at different stages of development. Several candidate genes for multiple ovulation were identified by combining microarray analysis of restricted vs. ad libitum feeding, literature searches and QPCR expression profiling throughout follicle development. Three candidate genes were confirmed by QPCR as showing significant differential expression between restricted and ad libitum feeding: FSHR, GDF9 and PDGFRL. PDGFRL, a candidate for steroidogenesis, showed significantly up-regulated expression in 6–8 mm follicles of ad libitum fed broiler breeders (P = 0.016, the period at which follicle recruitment occurs. Conclusions Gene candidates have been identified and evidence provided to support a possible role in regulation of ovarian function and follicle number. Further characterisation of these genes will be required to assess their potential for inclusion into breeding programmes to improve the regulation of follicle selection and reduce the need for feed restriction.

  9. Identification of serum biomarkers for lung cancer using magnetic bead-based SELDI-TOF-MS

    OpenAIRE

    SONG, QI-BIN; Hu, Wei-Guo; Wang, Peng; Yao, Yi; Zeng, Hua-zong

    2011-01-01

    Aim: To identify novel serum biomarkers for lung cancer diagnosis using magnetic bead-based surface-enhanced laser desorption/ionization time-of-flight mass spectrum (SELDI-TOF-MS). Methods: The protein fractions of 121 serum specimens from 30 lung cancer patients, 30 pulmonary tuberculosis patients and 33 healthy controls were enriched using WCX magnetic beads and subjected to SELDI-TOF-MS. The spectra were analyzed using Bio-marker Wizard version 3.1.0 and Biomarker Patterns Software versio...

  10. Isolation and identification of lactic acid bacteria from abalone (Haliotis asinina as a potential candidate of probiotic

    Directory of Open Access Journals (Sweden)

    YAYAN SOFYAN

    2010-01-01

    Full Text Available Sarkono, Faturrahman, Sofyan Y. 2010. Isolation and identification of lactic acid bacteria from abalone (Haliotis asinina as a potential candidate of probiotic. Nusantara Bioscience 2: 38-42. The purpose of this study was to isolate, select and characterize lactic acid bacteria (LAB from abalone as a potential candidate probiotic in abalone cultivation system. Selective isolation of LAB performed using de Man Rogosa Sharpe medium. LAB isolate that potential as probiotics was screened. Selection was based on its ability to suppress the growth of pathogenic bacteria, bacterial resistance to acidic conditions and bacterial resistance to bile salts (bile. Further characterization and identification conducted to determine the species. The results showed that two of the ten isolates potential to be developed as probiotic bacteria that have the ability to inhibit several pathogenic bacteria such as Eschericia coli, Bacillus cereus dan Staphylococus aureus, able to grow at acidic condition and bile tolerance during the incubation for 24 hour. Based on the API test kit, the both of isolate identified as members of the species Lactobacillus paracasei ssp. paracasei.

  11. Identification of biomarkers for genotyping Aspergilli using non-linear methods for clustering and classification

    DEFF Research Database (Denmark)

    Kouskoumvekaki, Irene; Yang, Zhiyong; Jonsdottir, Svava Osk

    2008-01-01

    Background: In the present investigation, we have used an exhaustive metabolite profiling approach to search for biomarkers in recombinant Aspergillus nidulans (mutants that produce the 6- methyl salicylic acid polyketide molecule) for application in metabolic engineering. Results: More than 450...

  12. Identification of plasma lipid biomarkers for prostate cancer by lipidomics and bioinformatics.

    Directory of Open Access Journals (Sweden)

    Xinchun Zhou

    Full Text Available BACKGROUND: Lipids have critical functions in cellular energy storage, structure and signaling. Many individual lipid molecules have been associated with the evolution of prostate cancer; however, none of them has been approved to be used as a biomarker. The aim of this study is to identify lipid molecules from hundreds plasma apparent lipid species as biomarkers for diagnosis of prostate cancer. METHODOLOGY/PRINCIPAL FINDINGS: Using lipidomics, lipid profiling of 390 individual apparent lipid species was performed on 141 plasma samples from 105 patients with prostate cancer and 36 male controls. High throughput data generated from lipidomics were analyzed using bioinformatic and statistical methods. From 390 apparent lipid species, 35 species were demonstrated to have potential in differentiation of prostate cancer. Within the 35 species, 12 were identified as individual plasma lipid biomarkers for diagnosis of prostate cancer with a sensitivity above 80%, specificity above 50% and accuracy above 80%. Using top 15 of 35 potential biomarkers together increased predictive power dramatically in diagnosis of prostate cancer with a sensitivity of 93.6%, specificity of 90.1% and accuracy of 97.3%. Principal component analysis (PCA and hierarchical clustering analysis (HCA demonstrated that patient and control populations were visually separated by identified lipid biomarkers. RandomForest and 10-fold cross validation analyses demonstrated that the identified lipid biomarkers were able to predict unknown populations accurately, and this was not influenced by patient's age and race. Three out of 13 lipid classes, phosphatidylethanolamine (PE, ether-linked phosphatidylethanolamine (ePE and ether-linked phosphatidylcholine (ePC could be considered as biomarkers in diagnosis of prostate cancer. CONCLUSIONS/SIGNIFICANCE: Using lipidomics and bioinformatic and statistical methods, we have identified a few out of hundreds plasma apparent lipid molecular

  13. Epidemiological concepts of validation of biomarkers for the identification/quantification of environmental carcinogenic exposures.

    OpenAIRE

    2007-01-01

    The present report has been prepared by a group of European scientists in the context of the EU-funded Network of Exellence ECNIS whose goal is to provide effective biomarkers for the study of the relationships between environmental toxicants, dietary habits and cancer. The use of biomarkers in cancer epidemiology has a rather long history (the wording "molecular epidemiology" was originally proposed by Perera and Weinstein in 1982) and great successes have been achieved, like the investigati...

  14. Biomarker Identification and Pathway Analysis by Serum Metabolomics of Lung Cancer

    OpenAIRE

    Yingrong Chen; Zhihong Ma; Lishan Min; Hongwei Li; Bin Wang; Jing Zhong; Licheng Dai

    2015-01-01

    Lung cancer is one of the most common causes of cancer death, for which no validated tumor biomarker is sufficiently accurate to be useful for diagnosis. Additionally, the metabolic alterations associated with the disease are unclear. In this study, we investigated the construction, interaction, and pathways of potential lung cancer biomarkers using metabolomics pathway analysis based on the Kyoto Encyclopedia of Genes and Genomes database and the Human Metabolome Database to identify the top...

  15. Identification of microdeletions in candidate genes for cleft lip and/or palate

    DEFF Research Database (Denmark)

    Shi, Min; Mostowska, Adrianna; Jugessur, Astanand

    2009-01-01

    BACKGROUND: Genome-wide association studies are now used routinely to identify genes implicated in complex traits. The panels used for such analyses can detect single nucleotide polymorphisms and copy number variants, both of which may help to identify small deleted regions of the genome that may...... contribute to a particular disease. METHODS: We performed a candidate gene analysis involving 1,221 SNPs in 333 candidate genes for orofacial clefting, using 2,823 samples from 725 two- and three-generation families with a proband having cleft lip with or without cleft palate. We used SNP genotyping, DNA...... sequencing, high-resolution DNA microarray analysis, and long-range PCR to confirm and characterize the deletion events. RESULTS: This dataset had a high duplicate reproducibility rate (99.98%), high Mendelian consistency rate (99.93%), and low missing data rate (0.55%), which provided a powerful opportunity...

  16. Identification of Novel Potential Vaccine Candidates against Tuberculosis Based on Reverse Vaccinology

    Directory of Open Access Journals (Sweden)

    Gloria P. Monterrubio-López

    2015-01-01

    Full Text Available Tuberculosis (TB is a chronic infectious disease, considered as the second leading cause of death worldwide, caused by Mycobacterium tuberculosis. The limited efficacy of the bacillus Calmette-Guérin (BCG vaccine against pulmonary TB and the emergence of multidrug-resistant TB warrants the need for more efficacious vaccines. Reverse vaccinology uses the entire proteome of a pathogen to select the best vaccine antigens by in silico approaches. M. tuberculosis H37Rv proteome was analyzed with NERVE (New Enhanced Reverse Vaccinology Environment prediction software to identify potential vaccine targets; these 331 proteins were further analyzed with VaxiJen for the determination of their antigenicity value. Only candidates with values ≥0.5 of antigenicity and 50% of adhesin probability and without homology with human proteins or transmembrane regions were selected, resulting in 73 antigens. These proteins were grouped by families in seven groups and analyzed by amino acid sequence alignments, selecting 16 representative proteins. For each candidate, a search of the literature and protein analysis with different bioinformatics tools, as well as a simulation of the immune response, was conducted. Finally, we selected six novel vaccine candidates, EsxL, PE26, PPE65, PE_PGRS49, PBP1, and Erp, from M. tuberculosis that can be used to improve or design new TB vaccines.

  17. In silico identification of genetically attenuated vaccine candidate genes for Plasmodium liver stage.

    Science.gov (United States)

    Kumar, Hirdesh; Frischknecht, Friedrich; Mair, Gunnar R; Gomes, James

    2015-12-01

    Genetically attenuated parasites (GAPs) that lack genes essential for the liver stage of the malaria parasite, and therefore cause developmental arrest, have been developed as live vaccines in rodent malaria models and recently been tested in humans. The genes targeted for deletion were often identified by trial and error. Here we present a systematic gene - protein and transcript - expression analyses of several Plasmodium species with the aim to identify candidate genes for the generation of novel GAPs. With a lack of liver stage expression data for human malaria parasites, we used data available for liver stage development of Plasmodium yoelii, a rodent malaria model, to identify proteins expressed in the liver stage but absent from blood stage parasites. An orthology-based search was then employed to identify orthologous proteins in the human malaria parasite Plasmodium falciparum resulting in a total of 310 genes expressed in the liver stage but lacking evidence of protein expression in blood stage parasites. Among these 310 possible GAP candidates, we further studied Plasmodium liver stage proteins by phyletic distribution and functional domain analyses and shortlisted twenty GAP-candidates; these are: fabB/F, fabI, arp, 3 genes encoding subunits of the PDH complex, dnaJ, urm1, rS5, ancp, mcp, arh, gk, lisp2, valS, palm, and four conserved Plasmodium proteins of unknown function. Parasites lacking one or several of these genes might yield new attenuated malaria parasites for experimental vaccination studies.

  18. Identification of Novel Potential Vaccine Candidates against Tuberculosis Based on Reverse Vaccinology.

    Science.gov (United States)

    Monterrubio-López, Gloria P; González-Y-Merchand, Jorge A; Ribas-Aparicio, Rosa María

    2015-01-01

    Tuberculosis (TB) is a chronic infectious disease, considered as the second leading cause of death worldwide, caused by Mycobacterium tuberculosis. The limited efficacy of the bacillus Calmette-Guérin (BCG) vaccine against pulmonary TB and the emergence of multidrug-resistant TB warrants the need for more efficacious vaccines. Reverse vaccinology uses the entire proteome of a pathogen to select the best vaccine antigens by in silico approaches. M. tuberculosis H37Rv proteome was analyzed with NERVE (New Enhanced Reverse Vaccinology Environment) prediction software to identify potential vaccine targets; these 331 proteins were further analyzed with VaxiJen for the determination of their antigenicity value. Only candidates with values ≥0.5 of antigenicity and 50% of adhesin probability and without homology with human proteins or transmembrane regions were selected, resulting in 73 antigens. These proteins were grouped by families in seven groups and analyzed by amino acid sequence alignments, selecting 16 representative proteins. For each candidate, a search of the literature and protein analysis with different bioinformatics tools, as well as a simulation of the immune response, was conducted. Finally, we selected six novel vaccine candidates, EsxL, PE26, PPE65, PE_PGRS49, PBP1, and Erp, from M. tuberculosis that can be used to improve or design new TB vaccines.

  19. iTRAQ-Based Proteomics Identification of Serum Biomarkers of Two Chronic Hepatitis B Subtypes Diagnosed by Traditional Chinese Medicine

    Directory of Open Access Journals (Sweden)

    Jiankun Yang

    2016-01-01

    Full Text Available Background. Chronic infection with hepatitis B virus (HBV is a leading cause of cirrhosis and hepatocellular carcinoma. By traditional Chinese medicine (TCM pattern classification, damp heat stasis in the middle-jiao (DHSM and liver Qi stagnation and spleen deficiency (LSSD are two most common subtypes of CHB. Results. In this study, we employed iTRAQ proteomics technology to identify potential serum protein biomarkers in 30 LSSD-CHB and 30 DHSM-CHB patients. Of the total 842 detected proteins, 273 and 345 were differentially expressed in LSSD-CHB and DHSM-CHB patients compared to healthy controls, respectively. LSSD-CHB and DHSM-CHB shared 142 upregulated and 84 downregulated proteins, of which several proteins have been reported to be candidate biomarkers, including immunoglobulin (Ig related proteins, complement components, apolipoproteins, heat shock proteins, insulin-like growth factor binding protein, and alpha-2-macroglobulin. In addition, we identified that proteins might be potential biomarkers to distinguish LSSD-CHB from DHSM-CHB, such as A0A0A0MS51_HUMAN (gelsolin, PON3_HUMAN, Q96K68_HUMAN, and TRPM8_HUMAN that were differentially expressed exclusively in LSSD-CHB patients and A0A087WT59_HUMAN (transthyretin, ITIH1_HUMAN, TSP1_HUMAN, CO5_HUMAN, and ALBU_HUMAN that were differentially expressed specifically in DHSM-CHB patients. Conclusion. This is the first time to report serum proteins in CHB subtype patients. Our findings provide potential biomarkers can be used for LSSD-CHB and DHSM-CHB.

  20. Identification of putative candidate genes for juvenile wood density in Pinus radiata.

    Science.gov (United States)

    Li, Xinguo; Wu, Harry X; Southerton, Simon G

    2012-08-01

    Wood formation is a complex developmental process driven by the annual activity of the vascular cambium. Conifers usually produce juvenile wood at young ages followed by mature wood for the rest of their lifetime. Juvenile wood exhibits poorer wood quality (i.e., lower density) compared with mature wood and can account for up to 50% of short-rotation harvested logs, thus representing a major challenge for commercial forestry globally. Wood density is an important quality trait for many timber-related products. Understanding the molecular mechanisms involved in the regulation of juvenile wood density is critical for the improvement of juvenile wood quality via marker-aided selection. A previous study has identified several candidate genes affecting mature wood density in Picea sitchensis (Bong.) Carr.; however, genes associated with juvenile wood density in conifers remain poorly characterized. Here, cDNA microarrays containing 3320 xylem unigenes were used to investigate genes differentially transcribed in juvenile wood with high (HD) and low density (LD) in Pinus radiata D.Don. In total, 814 xylem unigenes with differential transcription were identified in at least one of two microarray experiments and 73 genes (45 for HD, 28 for LD) were identified in both experiments, thus representing putative candidate genes for juvenile wood density. Interestingly, cellulose synthases (PrCesA3, PrCesA11) and sucrose synthase (SuSy), which are involved in secondary cell wall formation, had stronger transcription in juvenile wood with HD, while genes functioning in primary wall formation (pectin synthesis, cell expansion and other modifications) were more transcribed in LD wood. Cell wall genes encoding monolignol biosynthesis enzymes, arabinogalactan proteins, actins and tubulins were differentially transcribed in either HD or LD juvenile wood; however, the latter had exclusively greater transcription of genes involved in monolignol polymerization (laccase and peroxidase). The

  1. CyNetSVM: A Cytoscape App for Cancer Biomarker Identification Using Network Constrained Support Vector Machines.

    Science.gov (United States)

    Shi, Xu; Banerjee, Sharmi; Chen, Li; Hilakivi-Clarke, Leena; Clarke, Robert; Xuan, Jianhua

    2017-01-01

    One of the important tasks in cancer research is to identify biomarkers and build classification models for clinical outcome prediction. In this paper, we develop a CyNetSVM software package, implemented in Java and integrated with Cytoscape as an app, to identify network biomarkers using network-constrained support vector machines (NetSVM). The Cytoscape app of NetSVM is specifically designed to improve the usability of NetSVM with the following enhancements: (1) user-friendly graphical user interface (GUI), (2) computationally efficient core program and (3) convenient network visualization capability. The CyNetSVM app has been used to analyze breast cancer data to identify network genes associated with breast cancer recurrence. The biological function of these network genes is enriched in signaling pathways associated with breast cancer progression, showing the effectiveness of CyNetSVM for cancer biomarker identification. The CyNetSVM package is available at Cytoscape App Store and http://sourceforge.net/projects/netsvmjava; a sample data set is also provided at sourceforge.net.

  2. Identification of a strawberry flavor gene candidate using an integrated genetic-genomic-analytical chemistry approach.

    Science.gov (United States)

    Chambers, Alan H; Pillet, Jeremy; Plotto, Anne; Bai, Jinhe; Whitaker, Vance M; Folta, Kevin M

    2014-04-17

    There is interest in improving the flavor of commercial strawberry (Fragaria × ananassa) varieties. Fruit flavor is shaped by combinations of sugars, acids and volatile compounds. Many efforts seek to use genomics-based strategies to identify genes controlling flavor, and then designing durable molecular markers to follow these genes in breeding populations. In this report, fruit from two cultivars, varying for presence-absence of volatile compounds, along with segregating progeny, were analyzed using GC/MS and RNAseq. Expression data were bulked in silico according to presence/absence of a given volatile compound, in this case γ-decalactone, a compound conferring a peach flavor note to fruits. Computationally sorting reads in segregating progeny based on γ-decalactone presence eliminated transcripts not directly relevant to the volatile, revealing transcripts possibly imparting quantitative contributions. One candidate encodes an omega-6 fatty acid desaturase, an enzyme known to participate in lactone production in fungi, noted here as FaFAD1. This candidate was induced by ripening, was detected in certain harvests, and correlated with γ-decalactone presence. The FaFAD1 gene is present in every genotype where γ-decalactone has been detected, and it was invariably missing in non-producers. A functional, PCR-based molecular marker was developed that cosegregates with the phenotype in F1 and BC1 populations, as well as in many other cultivars and wild Fragaria accessions. Genetic, genomic and analytical chemistry techniques were combined to identify FaFAD1, a gene likely controlling a key flavor volatile in strawberry. The same data may now be re-sorted based on presence/absence of any other volatile to identify other flavor-affecting candidates, leading to rapid generation of gene-specific markers.

  3. Identification of candidate genes for dissecting complex branch number trait in chickpea.

    Science.gov (United States)

    Bajaj, Deepak; Upadhyaya, Hari D; Das, Shouvik; Kumar, Vinod; Gowda, C L L; Sharma, Shivali; Tyagi, Akhilesh K; Parida, Swarup K

    2016-04-01

    The present study exploited integrated genomics-assisted breeding strategy for genetic dissection of complex branch number quantitative trait in chickpea. Candidate gene-based association analysis in a branch number association panel was performed by utilizing the genotyping data of 401 SNP allelic variants mined from 27 known cloned branch number gene orthologs of chickpea. The genome-wide association study (GWAS) integrating both genome-wide GBS- (4556 SNPs) and candidate gene-based genotyping information of 4957 SNPs in a structured population of 60 sequenced desi and kabuli accessions (with 350-400 kb LD decay), detected 11 significant genomic loci (genes) associated (41% combined PVE) with branch number in chickpea. Of these, seven branch number-associated genes were further validated successfully in two inter (ICC 4958 × ICC 17160)- and intra (ICC 12299 × ICC 8261)-specific mapping populations. The axillary meristem and shoot apical meristem-specific expression, including differential up- and down-regulation (4-5 fold) of the validated seven branch number-associated genes especially in high branch number as compared to the low branch number-containing parental accessions and homozygous individuals of two aforesaid mapping populations was apparent. Collectively, this combinatorial genomic approach delineated diverse naturally occurring novel functional SNP allelic variants in seven potential known/candidate genes [PIN1 (PIN-FORMED protein 1), TB1 (teosinte branched 1), BA1/LAX1 (BARREN STALK1/LIKE AUXIN1), GRAS8 (gibberellic acid insensitive/GAI, Repressor of ga13/RGA and Scarecrow8/SCR8), ERF (ethylene-responsive element-binding factor), MAX2 (more axillary growth 2) and lipase] governing chickpea branch number. The useful information generated from this study have potential to expedite marker-assisted genetic enhancement by developing high-yielding cultivars with more number of productive (pods and seeds) branches in chickpea.

  4. Identification and validation of urinary metabolite biomarkers for major depressive disorder.

    Science.gov (United States)

    Zheng, Peng; Wang, Ying; Chen, Liang; Yang, Deyu; Meng, Huaqing; Zhou, Dezhi; Zhong, Jiaju; Lei, Yang; Melgiri, N D; Xie, Peng

    2013-01-01

    Major depressive disorder (MDD) is a widespread and debilitating mental disorder. However, there are no biomarkers available to aid in the diagnosis of this disorder. In this study, a nuclear magnetic resonance spectroscopy-based metabonomic approach was employed to profile urine samples from 82 first-episode drug-naïve depressed subjects and 82 healthy controls (the training set) in order to identify urinary metabolite biomarkers for MDD. Then, 44 unselected depressed subjects and 52 healthy controls (the test set) were used to independently validate the diagnostic generalizability of these biomarkers. A panel of five urinary metabolite biomarkers-malonate, formate, N-methylnicotinamide, m-hydroxyphenylacetate, and alanine-was identified. This panel was capable of distinguishing depressed subjects from healthy controls with an area under the receiver operating characteristic curve (AUC) of 0.81 in the training set. Moreover, this panel could classify blinded samples from the test set with an AUC of 0.89. These findings demonstrate that this urinary metabolite biomarker panel can aid in the future development of a urine-based diagnostic test for MDD.

  5. Development of on-chip multi-imaging flow cytometry for identification of imaging biomarkers of clustered circulating tumor cells.

    Directory of Open Access Journals (Sweden)

    Hyonchol Kim

    Full Text Available An on-chip multi-imaging flow cytometry system has been developed to obtain morphometric parameters of cell clusters such as cell number, perimeter, total cross-sectional area, number of nuclei and size of clusters as "imaging biomarkers", with simultaneous acquisition and analysis of both bright-field (BF and fluorescent (FL images at 200 frames per second (fps; by using this system, we examined the effectiveness of using imaging biomarkers for the identification of clustered circulating tumor cells (CTCs. Sample blood of rats in which a prostate cancer cell line (MAT-LyLu had been pre-implanted was applied to a microchannel on a disposable microchip after staining the nuclei using fluorescent dye for their visualization, and the acquired images were measured and compared with those of healthy rats. In terms of the results, clustered cells having (1 cell area larger than 200 µm2 and (2 nucleus area larger than 90 µm2 were specifically observed in cancer cell-implanted blood, but were not observed in healthy rats. In addition, (3 clusters having more than 3 nuclei were specific for cancer-implanted blood and (4 a ratio between the actual perimeter and the perimeter calculated from the obtained area, which reflects a shape distorted from ideal roundness, of less than 0.90 was specific for all clusters having more than 3 nuclei and was also specific for cancer-implanted blood. The collected clusters larger than 300 µm2 were examined by quantitative gene copy number assay, and were identified as being CTCs. These results indicate the usefulness of the imaging biomarkers for characterizing clusters, and all of the four examined imaging biomarkers-cluster area, nuclei area, nuclei number, and ratio of perimeter-can identify clustered CTCs in blood with the same level of preciseness using multi-imaging cytometry.

  6. Identification of novel translational urinary biomarkers for acetaminophen-induced acute liver injury using proteomic profiling in mice.

    Directory of Open Access Journals (Sweden)

    Rachel P L van Swelm

    Full Text Available Drug-induced liver injury (DILI is the leading cause of acute liver failure. Currently, no adequate predictive biomarkers for DILI are available. This study describes a translational approach using proteomic profiling for the identification of urinary proteins related to acute liver injury induced by acetaminophen (APAP. Mice were given a single intraperitoneal dose of APAP (0-350 mg/kg bw followed by 24 h urine collection. Doses of ≥275 mg/kg bw APAP resulted in hepatic centrilobular necrosis and significantly elevated plasma alanine aminotransferase (ALT values (p<0.0001. Proteomic profiling resulted in the identification of 12 differentially excreted proteins in urine of mice with acute liver injury (p<0.001, including superoxide dismutase 1 (SOD1, carbonic anhydrase 3 (CA3 and calmodulin (CaM, as novel biomarkers for APAP-induced liver injury. Urinary levels of SOD1 and CA3 increased with rising plasma ALT levels, but urinary CaM was already present in mice treated with high dose of APAP without elevated plasma ALT levels. Importantly, we showed in human urine after APAP intoxication the presence of SOD1 and CA3, whereas both proteins were absent in control urine samples. Urinary concentrations of CaM were significantly increased and correlated well with plasma APAP concentrations (r = 0.97; p<0.0001 in human APAP intoxicants, who did not present with elevated plasma ALT levels. In conclusion, using this urinary proteomics approach we demonstrate CA3, SOD1 and, most importantly, CaM as potential human biomarkers for APAP-induced liver injury.

  7. Genome-wide identification of R genes and exploitation of candidate RGA markers in rice

    Institute of Scientific and Technical Information of China (English)

    WANG Xusheng; WU Weiren; JIN Gulei; ZHU Jun

    2005-01-01

    By scanning the whole genomic sequence of japonica rice using 45 known plant disease resistance (R) genes, we identified 2119 resistance gene homologs or analogs (RGAs) and verified that RGAs are not randomly distributed but tend to cluster in the rice genome. The RGAs were classified into 21 families according to their functional domain based on Hidden Markov model (HMM). By comparing the RGAs of japonica rice with the whole genomic sequence of indica rice, we found 702 RGAs allelic between the two subspecies and revealed that 671 (95.6%) of them have length difference (InDels) in their genomic sequences (including coding and non-coding regions) between the two subspecies, suggesting that RGAs are highly polymorphic between the two subspecies in rice. We also exploited 402 PCR-based and co-dominant candidate RGA markers by designing primer pairs on the regions flanking the InDels and validating them via e-PCR. The length differences of the candidate RGA markers between the two subspecies are from 1 to 742 bp, with an average of 10.26 bp. All related information of the RGAs is available from our web site (http://ibi.zju.edu.cn/RGAs/index.html).

  8. Bioinformatics-driven identification and examination of candidate genes for non-alcoholic fatty liver disease.

    Directory of Open Access Journals (Sweden)

    Karina Banasik

    Full Text Available OBJECTIVE: Candidate genes for non-alcoholic fatty liver disease (NAFLD identified by a bioinformatics approach were examined for variant associations to quantitative traits of NAFLD-related phenotypes. RESEARCH DESIGN AND METHODS: By integrating public database text mining, trans-organism protein-protein interaction transferal, and information on liver protein expression a protein-protein interaction network was constructed and from this a smaller isolated interactome was identified. Five genes from this interactome were selected for genetic analysis. Twenty-one tag single-nucleotide polymorphisms (SNPs which captured all common variation in these genes were genotyped in 10,196 Danes, and analyzed for association with NAFLD-related quantitative traits, type 2 diabetes (T2D, central obesity, and WHO-defined metabolic syndrome (MetS. RESULTS: 273 genes were included in the protein-protein interaction analysis and EHHADH, ECHS1, HADHA, HADHB, and ACADL were selected for further examination. A total of 10 nominal statistical significant associations (P<0.05 to quantitative metabolic traits were identified. Also, the case-control study showed associations between variation in the five genes and T2D, central obesity, and MetS, respectively. Bonferroni adjustments for multiple testing negated all associations. CONCLUSIONS: Using a bioinformatics approach we identified five candidate genes for NAFLD. However, we failed to provide evidence of associations with major effects between SNPs in these five genes and NAFLD-related quantitative traits, T2D, central obesity, and MetS.

  9. Identification of vaccine candidate antigens of Staphylococcus pseudintermedius by whole proteome characterization and serological proteomic analyses.

    Science.gov (United States)

    Couto, Natacha; Martins, Joana; Lourenço, Ana Mafalda; Pomba, Constança; Varela Coelho, Ana

    2016-02-05

    The recent emergence of methicillin-resistant Staphylococcus pseudintermedius (MRSP) has complicated considerably the treatment of infections caused by these bacteria. Therefore new treatment strategies are urgently needed, namely through the development of vaccines towards the control of bacterial infections. Our study describes an extensive characterization of the proteome of S. pseudintermedius through a 2-DE MALDI-TOF/TOF approach, followed by SERological Proteome Analysis (SERPA) to identify potential vaccine candidate antigens. We were able to identify 361 unique proteins, of which 39 are surface proteins. In order to assess the immunogenic potential of S. pseudintermedius proteins, a Western blot analysis of two-dimensional gels was carried out with serum from healthy dogs, dogs with atopic dermatitis infected and not infected with S. pseudintermedius. Only immunogenic areas detected by ≥ 50% of the dogs with atopic dermatitis infected with S. pseudintermedius sera and by proteins could induce hypersensitivity. We were able to identify 13 unique proteins after in-gel digestion of selected protein gel spots, with 4 antigenic proteins showing promising features for vaccine development. No specific antibodies were identified in the dogs with atopic dermatitis not infected with S. pseudintermedius sera that could contribute to prevention of infection. The SERPA approach employed in this study revealed novel candidate therapeutic targets for the control of S. pseudintermedius infections.

  10. Identification of Mycobacterium tuberculosis vaccine candidates using human CD4+ T-cells expression cloning.

    Science.gov (United States)

    Coler, Rhea N; Dillon, Davin C; Skeiky, Yasir A W; Kahn, Maria; Orme, Ian M; Lobet, Yves; Reed, Steven G; Alderson, Mark R

    2009-01-07

    To identify Mycobacterium tuberculosis (Mtb) antigens as candidates for a subunit vaccine against tuberculosis (TB), we have employed a CD4+ T-cell expression screening method. Mtb-specific CD4+ T-cell lines from nine healthy PPD positive donors were stimulated with different antigenic substrates including autologous dendritic cells (DC) infected with Mtb, or cultured with culture filtrate proteins (CFP), and purified protein derivative of Mtb (PPD). These lines were used to screen a genomic Mtb library expressed in Escherichia coli and processed and presented by autologous DC. This screening led to the recovery of numerous T-cell antigens, including both novel and previously described antigens. One of these novel antigens, referred to as Mtb9.8 (Rv0287), was recognized by multiple T-cell lines, stimulated with either Mtb-infected DC or CFP. Using the mouse and guinea pig models of TB, high levels of IFN-gamma were produced, and solid protection from Mtb challenge was observed following immunization with Mtb9.8 formulated in either AS02A or AS01B Adjuvant Systems. These results demonstrate that T-cell screening of the Mtb genome can be used to identify CD4+ T-cell antigens that are candidates for vaccine development.

  11. Identification of candidate olfactory genes in Leptinotarsa decemlineata by antennal transcriptome analysis

    Directory of Open Access Journals (Sweden)

    Yang eLiu

    2015-06-01

    Full Text Available The sense of smell is critical for the survival of insects, by which insects detect the odor signals in the environment and make appropriate behavioral responses such as host preference, mate choice, and oviposition site selection. The antenna is the main olfactory organ in insects. Multiple antennal proteins have been suggested to be involved in olfactory signal transduction pathway such as odorant receptors (ORs, ionotropic receptors (IRs, odorant binding proteins (OBPs, chemosensory proteins (CSPs and sensory neuron membrane proteins (SNMPs. In this study, we identified several olfactory gene subfamilies in the economically important Coleopteran agricultural pest, Leptinotarsa decemlineata, by assembling the adult male and female antennal transcriptomes. In the male and female antennal transcriptome, we identified a total of 37 OR genes, 10 IR genes, 26 OBP genes, 15 CSP genes and 3 SNMP genes. Further all candidate ORs were validated to be expressed in male or female antenna by semi-quantitative reverse transcription PCR. Most of the candidate OR genes have similar expression level in male and female. A few OR genes have been detected as male-specific (LdecOR6 or male-bias (LdecOR5, LdecOR12, LdecOR26 and LdecOR32 expression. As well as that, two OR genes (LdecOR3 and LdecOR29 were proved to be expressed higher in female. Our findings make it possible for future research of the olfactory system of L. decemlineata at the molecular level.

  12. Identification of candidate structured RNAs in the marine organism 'Candidatus Pelagibacter ubique'

    Directory of Open Access Journals (Sweden)

    Schwalbach Michael S

    2009-06-01

    Full Text Available Abstract Background Metagenomic sequence data are proving to be a vast resource for the discovery of biological components. Yet analysis of this data to identify functional RNAs lags behind efforts to characterize protein diversity. The genome of 'Candidatus Pelagibacter ubique' HTCC 1062 is the closest match for approximately 20% of marine metagenomic sequence reads. It is also small, contains little non-coding DNA, and has strikingly low GC content. Results To aid the discovery of RNA motifs within the marine metagenome we exploited the genomic properties of 'Cand. P. ubique' by targeting our search to long intergenic regions (IGRs with relatively high GC content. Analysis of known RNAs (rRNA, tRNA, riboswitches etc. shows that structured RNAs are significantly enriched in such IGRs. To identify additional candidate structured RNAs, we examined other IGRs with similar characteristics from 'Cand. P. ubique' using comparative genomics approaches in conjunction with marine metagenomic data. Employing this strategy, we discovered four candidate structured RNAs including a new riboswitch class as well as three additional likely cis-regulatory elements that precede genes encoding ribosomal proteins S2 and S12, and the cytoplasmic protein component of the signal recognition particle. We also describe four additional potential RNA motifs with few or no examples occurring outside the metagenomic data. Conclusion This work begins the process of identifying functional RNA motifs present in the metagenomic data and illustrates how existing completed genomes may be used to aid in this task.

  13. Urine screening by Seldi-Tof, followed by biomarker identification, in a Brazilian cohort of patients with Renal Cell Carcinoma (RCC

    Directory of Open Access Journals (Sweden)

    Gilda Alves

    2013-04-01

    Full Text Available Purpose To screen proteins/peptides in urine of Renal Cell Carcinoma (RCC patients by SELDI-TOF (Surface Enhanced Laser Desorption Ionization - Time of Flight in search of possible biomarkers. Material and Methods Sixty-one urines samples from Clear Cell RCC and Papillary RCC were compared to 29 samples of control urine on CM10 chip. Mass analysis was performed in a ProteinChip Reader PCS 4,000 (Ciphergen Biosystems, Fremont, CA with the software Ciphergen Express 3.0. All chips were read at low and at high laser energy. For statistical analysis the urine samples were clustered according to the histological classification (Clear Cell and Papillary Carcinoma. For identification urine was loaded on a SDS PAGE gel and bands of most interest were excised, trypsinized and identified by MS/MS. Databank searches were performed in Swiss-Prot database using the MASCOT search algorithm and in Profound. Results Proteins that were identified from urine of controls included immunoglobulin light chains, albumin, secreted and transmembrane 1 precursor (protein K12, mannan-binding lectin-associated serine protease-2 (MASP-2 and vitelline membrane outer layer 1 isoform 1. Identification of immunoglobulins and isoforms of albumin are quite common by proteomics and therefore cannot be considered as possible molecular markers. K12 and MASP-2 play important physiological roles, while vitellite membrane outer layer 1 role is unknown since it was never purified in humans. Conclusions The down expression of Protein K-12 and MASP-2 make them good candidates for RCC urine marker and should be validated in a bigger cohort including the other less common histological RCC subtypes.

  14. Selection of Aptamers Against Whole Living Cells: From Cell-SELEX to Identification of Biomarkers.

    Science.gov (United States)

    Quang, Nam Nguyen; Miodek, Anna; Cibiel, Agnes; Ducongé, Frédéric

    2017-01-01

    Aptamer selection protocols, named cell-SELEX, have been developed to target trans-membrane proteins using whole living cells as target. This technique presents several advantages. (1) It does not necessitate the use of purified proteins. (2) Aptamers are selected against membrane proteins in their native conformation. (3) Cell-SELEX can be performed to identify aptamers against biomarkers differentially expressed between different cell lines without prior knowledge of the targets. (4) Aptamers identified by cell-SELEX can be further used to purify their targets and to identify new biomarkers. Here, we provide a protocol of cell-SELEX including the preparation of an oligonucleotide library, next-generation sequencing and radioactive binding assays. Furthermore, we also provide a protocol to purify and identify the target of these aptamers. These protocols could be useful for the discovery of lead therapeutic compounds and diagnostic cell-surface biomarkers.

  15. Biomarkers identification and detection based on GMR sensor and sub 13 nm magnetic nanoparticles.

    Science.gov (United States)

    Li, Yuanpeng; Jing, Ying; Yao, Xiaofeng; Srinivasan, Balasubramanian; Xu, Yunhao; Xing, Chengguo; Wang, Jian-Ping

    2009-01-01

    In this paper, we present a ultra high sensitive (Zeptomole, 10(-21)) technique to enable the detection of any potential low abundance biomarkers. We demonstrated for the first time the detection of sub 13nm high-moment magnetic nanoparticle and the implementation of a novel magnetoresistive (GMR) biosensor concept with higher sensitivity and 10 times lower external field in real biomarker sensing schemes. A potential lung cancer biomarker, interleukin-6 (IL-6), was successfully detected with extremely low concentration (as few as only 200 pieces of IL-6). Together with other features of GMR sensor systems like low-cost, portability, easy-to-use, our demonstrated device may lead to future family-based personalized medicine for cancer prevention.

  16. Identification of candidate genes associated with leaf senescence in cultivated sunflower (Helianthus annuus L.).

    Science.gov (United States)

    Moschen, Sebastian; Bengoa Luoni, Sofia; Paniego, Norma B; Hopp, H Esteban; Dosio, Guillermo A A; Fernandez, Paula; Heinz, Ruth A

    2014-01-01

    Cultivated sunflower (Helianthus annuus L.), an important source of edible vegetable oil, shows rapid onset of senescence, which limits production by reducing photosynthetic capacity under specific growing conditions. Carbon for grain filling depends strongly on light interception by green leaf area, which diminishes during grain filling due to leaf senescence. Transcription factors (TFs) regulate the progression of leaf senescence in plants and have been well explored in model systems, but information for many agronomic crops remains limited. Here, we characterize the expression profiles of a set of putative senescence associated genes (SAGs) identified by a candidate gene approach and sunflower microarray expression studies. We examined a time course of sunflower leaves undergoing natural senescence and used quantitative PCR (qPCR) to measure the expression of 11 candidate genes representing the NAC, WRKY, MYB and NF-Y TF families. In addition, we measured physiological parameters such as chlorophyll, total soluble sugars and nitrogen content. The expression of Ha-NAC01, Ha-NAC03, Ha-NAC04, Ha-NAC05 and Ha-MYB01 TFs increased before the remobilization rate increased and therefore, before the appearance of the first physiological symptoms of senescence, whereas Ha-NAC02 expression decreased. In addition, we also examined the trifurcate feed-forward pathway (involving ORE1, miR164, and ethylene insensitive 2) previously reported for Arabidopsis. We measured transcription of Ha-NAC01 (the sunflower homolog of ORE1) and Ha-EIN2, along with the levels of miR164, in two leaves from different stem positions, and identified differences in transcription between basal and upper leaves. Interestingly, Ha-NAC01 and Ha-EIN2 transcription profiles showed an earlier up-regulation in upper leaves of plants close to maturity, compared with basal leaves of plants at pre-anthesis stages. These results suggest that the H. annuus TFs characterized in this work could play important

  17. Identification of novel biomarkers to monitor β-cell function and enable early detection of type 2 diabetes risk.

    Science.gov (United States)

    Belongie, Kirstine J; Ferrannini, Ele; Johnson, Kjell; Andrade-Gordon, Patricia; Hansen, Michael K; Petrie, John R

    2017-01-01

    A decline in β-cell function is a prerequisite for the development of type 2 diabetes, yet the level of β-cell function in individuals at risk of the condition is rarely measured. This is due, in part, to the fact that current methods for assessing β-cell function are inaccurate, prone to error, labor-intensive, or affected by glucose-lowering therapy. The aim of the current study was to identify novel circulating biomarkers to monitor β-cell function and to identify individuals at high risk of developing β-cell dysfunction. In a nested case-control study from the Relationship between Insulin Sensitivity and Cardiovascular disease (RISC) cohort (n = 1157), proteomics and miRNA profiling were performed on fasting plasma samples from 43 individuals who progressed to impaired glucose tolerance (IGT) and 43 controls who maintained normal glucose tolerance (NGT) over three years. Groups were matched at baseline for age, gender, body mass index (BMI), insulin sensitivity (euglycemic clamp) and β-cell glucose sensitivity (mathematical modeling). Proteomic profiling was performed using the SomaLogic platform (Colorado, USA); miRNA expression was performed using a modified RT-PCR protocol (Regulus Therapeutics, California, USA). Results showed differentially expressed proteins and miRNAs including some with known links to type 2 diabetes, such as adiponectin, but also novel biomarkers and pathways. In cross sectional analysis at year 3, the top differentially expressed biomarkers in people with IGT/ reduced β-cell glucose sensitivity were adiponectin, alpha1-antitrypsin (known to regulate adiponectin levels), endocan, miR-181a, miR-342, and miR-323. At baseline, adiponectin, cathepsin D and NCAM.L1 (proteins expressed by pancreatic β-cells) were significantly lower in those that progressed to IGT. Many of the novel prognostic biomarker candidates were within the epithelial-mesenchymal transition (EMT) pathway: for example, Noggin, DLL4 and miR-181a. Further

  18. Identification of candidate genes for Fusarium yellows resistance in Chinese cabbage by differential expression analysis.

    Science.gov (United States)

    Shimizu, Motoki; Fujimoto, Ryo; Ying, Hua; Pu, Zi-jing; Ebe, Yusuke; Kawanabe, Takahiro; Saeki, Natsumi; Taylor, Jennifer M; Kaji, Makoto; Dennis, Elizabeth S; Okazaki, Keiichi

    2014-06-01

    Fusarium yellows caused by Fusarium oxysporum f. sp. conglutinans is an important disease of Brassica worldwide. To identify a resistance (R) gene against Fusarium yellows in Chinese cabbage (Brassica rapa var. pekinensis), we analyzed differential expression at the whole genome level between resistant and susceptible inbred lines using RNA sequencing. Four hundred and eighteen genes were significantly differentially expressed, and these were enriched for genes involved in response to stress or stimulus. Seven dominant DNA markers at putative R-genes were identified. Presence and absence of the sequence of the putative R-genes, Bra012688 and Bra012689, correlated with the resistance of six inbred lines and susceptibility of four inbred lines, respectively. In F(2) populations derived from crosses between resistant and susceptible inbred lines, presence of Bra012688 and Bra012689 cosegregated with resistance, suggesting that Bra012688 and Bra012689 are good candidates for fusarium yellows resistance in Chinese cabbage.

  19. Identification of Candidate Genes in Scleroderma-Related Pulmonary Arterial Hypertension

    Science.gov (United States)

    Grigoryev, DN; Mathai, SC; Fisher, MR; Girgis, RE; Zaiman, AL; Housten-Harris, T; Cheadle, C; Gao, L; Hummers, LK; Champion, HC; Garcia, JGN; Wigley, FM; Tuder, RM; Barnes, KC; Hassoun, PM

    2008-01-01

    We hypothesize that pulmonary arterial hypertension (PAH)-associated genes identified by expression profiling of peripheral blood mononuclear cells (PBMCs) from patients with idiopathic pulmonary arterial hypertension (IPAH) can also be identified in PBMCs from scleroderma patients with PAH (PAH-SSc). Gene expression profiles of PBMCs collected from IPAH (n=9), PAH-SSc (n=10) patients and healthy controls (n=5) were generated using HG_U133A_2.0 GeneChips and processed by RMA/GCOS_1.4/SAM_1.21 data analysis pipeline. Disease severity in consecutive patients was assessed by functional status and hemodynamic measurements. The expression profiles were analyzed using PAH severity-stratification, and identified candidate genes were validated with real time PCR (rtPCR). Transcriptomics of PBMCs from IPAH patients was highly comparable with that of PMBCs from PAH-SSc patients. The PBMC gene expression patterns significantly correlate with right atrium pressure (RA) and cardiac index (CI), known predictors of survival in PAH. Array stratification by RA and CI identified 364 PAH-associated candidate genes. Gene ontology analysis revealed significant (Zscore > 1.96) alterations in angiogenesis genes according to PAH severity: MMP9 and VEGF were significantly upregulated in mild as compared to severe PAH and healthy controls, as confirmed by rtPCR. These data demonstrate that PBMCs from patients with PAH-SSc carry distinct transcriptional expression. Furthermore, our findings suggest an association between angiogenesis-related gene expression and severity of PAH in PAH-SSc patients. Deciphering the role of genes involved in vascular remodeling and PAH development may reveal new treatment targets for this devastating disorder. PMID:18355767

  20. Identification of candidate susceptibility genes for colorectal cancer through eQTL analysis

    Science.gov (United States)

    Closa, Adria; Cordero, David; Sanz-Pamplona, Rebeca; Solé, Xavier; Crous-Bou, Marta; Paré-Brunet, Laia; Berenguer, Antoni; Guino, Elisabet; Lopez-Doriga, Adriana; Guardiola, Jordi; Biondo, Sebastiano; Salazar, Ramon; Moreno, Victor

    2014-01-01

    In this study, we aim to identify the genes responsible for colorectal cancer risk behind the loci identified in genome-wide association studies (GWAS). These genes may be candidate targets for developing new strategies for prevention or therapy. We analyzed the association of genotypes for 26 GWAS single nucleotide polymorphisms (SNPs) with the expression of genes within a 2 Mb region (cis-eQTLs). Affymetrix Human Genome U219 expression arrays were used to assess gene expression in two series of samples, one of healthy colonic mucosa (n = 47) and other of normal mucosa adjacent to colon cancer (n = 97, total 144). Paired tumor tissues (n = 97) were also analyzed but did not provide additional findings. Partial Pearson correlation (r), adjusted for sample type, was used for the analysis. We have found Bonferroni-significant cis-eQTLs in three loci: rs3802842 in 11q23.1 associated to C11orf53, COLCA1 (C11orf92) and COLCA2 (C11orf93; r = 0.60); rs7136702 in 12q13.12 associated to DIP2B (r = 0.63) and rs5934683 in Xp22.3 associated to SHROOM2 and GPR143 (r = 0.47). For loci in chromosomes 11 and 12, we have found other SNPs in linkage disequilibrium that are more strongly associated with the expression of the identified genes and are better functional candidates: rs7130173 for 11q23.1 (r = 0.66) and rs61927768 for 12q13.12 (r = 0.86). These SNPs are located in DNA regions that may harbor enhancers or transcription factor binding sites. The analysis of trans-eQTLs has identified additional genes in these loci that may have common regulatory mechanisms as shown by the analysis of protein–protein interaction networks. PMID:24760461

  1. Genetic and serological identification of three Vibrio parahaemolyticus strains as candidates for novel provisional O serotypes.

    Science.gov (United States)

    Guo, Xi; Liu, Bin; Chen, Min; Wang, Yuanyuan; Wang, Lu; Chen, Hongyou; Wang, Yao; Tu, Lihong; Zhang, Xi; Feng, Lu

    2017-03-20

    Vibrio parahaemolyticus is a Gram-negative, halophilic Vibrio that naturally inhabits marine and estuarine environments worldwide and has recently been recognized as one of the most important foodborne pathogens. To date, 13 O serotypes and 71 K serotypes of V. parahaemolyticus have been identified. However, untypeable V. parahaemolyticus strains are frequently found during routine detection, indicating that other forms of serotypes exist and suggesting the necessity for extension of the antigenic scheme. In this work, through the genetic analysis of the O serotype genetic determinants (OGDs) and the production of antisera and serological tests, we identified three novel O serotypes of V. parahaemolyticus. Further analyses showed that recombination and gene-set deletions/insertions within OGDs may play key roles in the generation of V. parahaemolyticus O serotype diversity. A PCR method was developed for the identification of these novel O serotypes, and specificity and sensitivity were evaluated. A double-blind test including 283 clinical isolates was performed, giving perfect correlation with the agglutination test results. Generally, our study expanded the O-antigenic scheme of V. parahaemolyticus from 13 to 16 and provided a tool with the potential for the detection and identification of V. parahaemolyticus strains (especially untypeable strains) isolated from both the clinic and the environment.

  2. VennPainter: A Tool for the Comparison and Identification of Candidate Genes Based on Venn Diagrams.

    Directory of Open Access Journals (Sweden)

    Guoliang Lin

    Full Text Available VennPainter is a program for depicting unique and shared sets of genes lists and generating Venn diagrams, by using the Qt C++ framework. The software produces Classic Venn, Edwards' Venn and Nested Venn diagrams and allows for eight sets in a graph mode and 31 sets in data processing mode only. In comparison, previous programs produce Classic Venn and Edwards' Venn diagrams and allow for a maximum of six sets. The software incorporates user-friendly features and works in Windows, Linux and Mac OS. Its graphical interface does not require a user to have programing skills. Users can modify diagram content for up to eight datasets because of the Scalable Vector Graphics output. VennPainter can provide output results in vertical, horizontal and matrix formats, which facilitates sharing datasets as required for further identification of candidate genes. Users can obtain gene lists from shared sets by clicking the numbers on the diagram. Thus, VennPainter is an easy-to-use, highly efficient, cross-platform and powerful program that provides a more comprehensive tool for identifying candidate genes and visualizing the relationships among genes or gene families in comparative analysis.

  3. A proteomics approach to the identification of biomarkers for psoriasis utilising keratome biopsy

    DEFF Research Database (Denmark)

    Williamson, James C; Scheipers, Peter; Schwämmle, Veit

    2013-01-01

    skin biopsy, which results in reduced cellular complexity compared to punch biopsy. Furthermore, we applied short term ex vivo culture in order to enrich for a "secretome" sub-proteome reflective of the disease and enriched in potential biomarkers. Using these sample preparation techniques we performed...

  4. Early Identification of Molecular Predictors of Heterotopic Ossification Following Extremity Blast Injury with a Biomarker Assay

    Science.gov (United States)

    2016-10-01

    analysis of animal biopsy specimens was performed by the Nesti partner lab in order to identify molecular predictors of HO. qRT-PCR and Western blot ...IMPORTANT – this page contains unpublished data that should be protected 12 3. Biomarker expression of animal biopsy specimens by western blot (provided by Nesti partner lab).

  5. Identification and dynamic modeling of biomarkers for bacterial uptake and effect of sulfonamide antimicrobials

    NARCIS (Netherlands)

    Richter, M.K.; Focks, A.; Siegfried, B.; Rentsch, D.; Krauss, M.

    2013-01-01

    The effects of sulfathiazole (STA) on Escherichia coli with glucose as a growth substrate was investigated to elucidate the effect-based reaction of sulfonamides in bacteria and to identify biomarkers for bacterial uptake and effect. The predominant metabolite was identified as pterine-sulfathiazole

  6. A data-mining approach to biomarker identification from protein profiles using discrete stationary wavelet transform

    Institute of Scientific and Technical Information of China (English)

    Hussain MONTAZERY-KORDY; Mohammad Hossein MIRAN-BAYGI; Mohammad Hassan MORADI

    2008-01-01

    Objective: To develop a new bioinformatic tool based on a data-mining approach for extraction of the most infor-mative proteins that could be used to fred the potential biomarkers for the detection of cancer. Methods: Two independent datasets from serum samples of 253 ovarian cancer and 167 breast cancer patients were used. The samples were examined by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS). The datasets were used to extract the informative proteins using a data-mining method in the discrete stationary wavelet transform domain. As a dimensionality re-duction procedure, the hard threshoiding method was applied to reduce the number of wavelet coefficients. Also, a distance measure was used to select the most discriminative coefficients. To find the potential biomarkers using the selected wavelet coefficients, we applied the inverse discrete stationary wavelet transform combined with a two-sided t-test. Results: From the ovarian cancer dataset, a set of five proteins were detected as potential biomarkers that could be used to identify the cancer patients from the healthy cases with accuracy, sensitivity, and specificity of 100%. Also, from the breast cancer dataset, a set of eight proteins were found as the potential biomarkers that could separate the healthy cases from the cancer patients with accuracy of 98.26%, sensitivity of 100%, and specificity of 95.6%. Conclusion: The results have shown that the new bioinformatic tool can be used in combination with the high-throughput proteomic data such as SELDI-TOF MS to find the potential biomarkers with high discriminative power.

  7. Identification of peptidoglycan-associated proteins as vaccine candidates for enterococcal infections.

    Directory of Open Access Journals (Sweden)

    Felipe Romero-Saavedra

    Full Text Available Infections by opportunistic bacteria have significant contributions to morbidity and mortality of hospitalized patients and also lead to high expenses in healthcare. In this setting, one of the major clinical problems is caused by Gram-positive bacteria such as enterococci and staphylococci. In this study we extract, purify, identify and characterize immunogenic surface-exposed proteins present in the vancomycin resistant enterococci (VRE strain Enterococcus faecium E155 using three different extraction methods: trypsin shaving, biotinylation and elution at high pH. Proteomic profiling was carried out by gel-free and gel-nanoLC-MS/MS analyses. The total proteins found with each method were 390 by the trypsin shaving, 329 by the elution at high pH, and 45 using biotinylation. An exclusively extracytoplasmic localization was predicted in 39 (10% by trypsin shaving, in 47 (15% by elution at high pH, and 27 (63% by biotinylation. Comparison between the three extraction methods by Venn diagram and subcellular localization predictors (CELLO v.2.5 and Gpos-mPLoc allowed us to identify six proteins that are most likely surface-exposed: the SCP-like extracellular protein, a low affinity penicillin-binding protein 5 (PBP5, a basic membrane lipoprotein, a peptidoglycan-binding protein LysM (LysM, a D-alanyl-D-alanine carboxypeptidase (DdcP and the peptidyl-prolyl cis-trans isomerase (PpiC. Due to their close relationship with the peptidoglycan, we chose PBP5, LysM, DdcP and PpiC to test their potential as vaccine candidates. These putative surface-exposed proteins were overexpressed in Escherichia coli and purified. Rabbit polyclonal antibodies raised against the purified proteins were able to induce specific opsonic antibodies that mediated killing of the homologous strain E. faecium E155 as well as clinical strains E. faecium E1162, Enterococcus faecalis 12030, type 2 and type 5. Passive immunization with rabbit antibodies raised against these proteins

  8. Detection of Dispersed Radio Pulses: A machine learning approach to candidate identification and classification

    CERN Document Server

    Devine, Thomas; McLaughlin, Maura

    2016-01-01

    Searching for extraterrestrial, transient signals in astronomical data sets is an active area of current research. However, machine learning techniques are lacking in the literature concerning single-pulse detection. This paper presents a new, two-stage approach for identifying and classifying dispersed pulse groups (DPGs) in single-pulse search output. The first stage identified DPGs and extracted features to characterize them using a new peak identification algorithm which tracks sloping tendencies around local maxima in plots of signal-to-noise ratio vs. dispersion measure. The second stage used supervised machine learning to classify DPGs. We created four benchmark data sets: one unbalanced and three balanced versions using three different imbalance treatments.We empirically evaluated 48 classifiers by training and testing binary and multiclass versions of six machine learning algorithms on each of the four benchmark versions. While each classifier had advantages and disadvantages, all classifiers with im...

  9. Identification of candidate antigens from adult stages of Toxocara canis for the serodiagnosis of human toxocariasis

    Directory of Open Access Journals (Sweden)

    Patrícia Longuinhos Peixoto

    2011-03-01

    Full Text Available In the present work, we identified adult Toxocara canis antigens through sodium dodecyl sulfate-polyacrylamide gel electrophoresis for potential use in human toxocariasis immunodiagnosis. The sensitivity and specificity of several semi-purified antigens, as well as their cross-reactivity with other parasitic infections, were assessed by IgM and IgG-enzime linked immunosorbent assay. Whilst we found that the crude extract of the parasite presented limited sensitivity, specificity and high cross-reactivity against other parasites, we identified 42, 58, 68 and 97-kDa semi-purified antigens as the most promising candidates for immunodiagnosis. Moreover, the 58 and 68-kDa antigens presented the lowest IgM cross-reactivity. When tested as a combination, a mixture of the 58 and 68-kDa antigens presented 100% sensitivity and specificity, as well as minor cross-reactivity. Although the combination of the 42, 58, 68 and 97-kDa antigens presented 100% sensitivity at a dilution of 1:40, the low specificity and high cross-reactivity observed suggested a limited use for diagnostic purposes. Our data suggested that the 58 and 68-kDa antigens might be most suitable for the immunodiagnosis of human toxocariasis.

  10. The identification of MAXI J1659-152 as a black hole candidate

    CERN Document Server

    Kalamkar, M; Altamirano, D; van der Klis, M; Casella, P; Linares, M

    2010-01-01

    We report on the analysis of all 65 pointed Rossi X-ray Timing Explorer observations of the recently discovered soft X-ray transient MAXI J1659-152 (initially referred to as GRB 100925A). The source was studied in terms of its evolution through the hardness-intensity diagram (HID) as well as its X-ray variability properties. MAXI J1659-152 traced out an anti-clockwise loop in the HID, which is commonly seen in transient low-mass X-ray binaries. The variability properties of the source, in particular the detection of type-B and type-C low-frequency quasi-periodic oscillations, and the way they evolve along the HID track, indicate that MAXI J1659-152 is a black hole candidate. The spectral and variability properties of MAXI J1659-152 imply that the source was observed in the hard and soft intermediate states during the RXTE observations, with several transitions between these two states.

  11. Identification and Evolutionary Analysis of Potential Candidate Genes in a Human Eating Disorder.

    Science.gov (United States)

    Sabbagh, Ubadah; Mullegama, Saman; Wyckoff, Gerald J

    2016-01-01

    The purpose of this study was to find genes linked with eating disorders and associated with both metabolic and neural systems. Our operating hypothesis was that there are genetic factors underlying some eating disorders resting in both those pathways. Specifically, we are interested in disorders that may rest in both sleep and metabolic function, generally called Night Eating Syndrome (NES). A meta-analysis of the Gene Expression Omnibus targeting the mammalian nervous system, sleep, and obesity studies was performed, yielding numerous genes of interest. Through a text-based analysis of the results, a number of potential candidate genes were identified. VGF, in particular, appeared to be relevant both to obesity and, broadly, to brain or neural development. VGF is a highly connected protein that interacts with numerous targets via proteolytically digested peptides. We examined VGF from an evolutionary perspective to determine whether other available evidence supported a role for the gene in human disease. We conclude that some of the already identified variants in VGF from human polymorphism studies may contribute to eating disorders and obesity. Our data suggest that there is enough evidence to warrant eGWAS and GWAS analysis of these genes in NES patients in a case-control study.

  12. Identification and Evolutionary Analysis of Potential Candidate Genes in a Human Eating Disorder

    Directory of Open Access Journals (Sweden)

    Ubadah Sabbagh

    2016-01-01

    Full Text Available The purpose of this study was to find genes linked with eating disorders and associated with both metabolic and neural systems. Our operating hypothesis was that there are genetic factors underlying some eating disorders resting in both those pathways. Specifically, we are interested in disorders that may rest in both sleep and metabolic function, generally called Night Eating Syndrome (NES. A meta-analysis of the Gene Expression Omnibus targeting the mammalian nervous system, sleep, and obesity studies was performed, yielding numerous genes of interest. Through a text-based analysis of the results, a number of potential candidate genes were identified. VGF, in particular, appeared to be relevant both to obesity and, broadly, to brain or neural development. VGF is a highly connected protein that interacts with numerous targets via proteolytically digested peptides. We examined VGF from an evolutionary perspective to determine whether other available evidence supported a role for the gene in human disease. We conclude that some of the already identified variants in VGF from human polymorphism studies may contribute to eating disorders and obesity. Our data suggest that there is enough evidence to warrant eGWAS and GWAS analysis of these genes in NES patients in a case-control study.

  13. Identification of Candidate Coral Pathogens on White Band Disease-Infected Staghorn Coral.

    Science.gov (United States)

    Gignoux-Wolfsohn, Sarah A; Vollmer, Steven V

    2015-01-01

    Bacterial diseases affecting scleractinian corals pose an enormous threat to the health of coral reefs, yet we still have a limited understanding of the bacteria associated with coral diseases. White band disease is a bacterial disease that affects the two Caribbean acroporid corals, the staghorn coral Acropora cervicornis and the elkhorn coral A. palmate. Species of Vibrio and Rickettsia have both been identified as putative WBD pathogens. Here we used Illumina 16S rRNA gene sequencing to profile the bacterial communities associated with healthy and diseased A. cervicornis collected from four field sites during two different years. We also exposed corals in tanks to diseased and healthy (control) homogenates to reduce some of the natural variation of field-collected coral bacterial communities. Using a combination of multivariate analyses, we identified community-level changes between diseased and healthy corals in both the field-collected and tank-exposed datasets. We then identified changes in the abundances of individual operational taxonomic units (OTUs) between diseased and healthy corals. By comparing the diseased and healthy-associated bacteria in field-collected and tank-exposed corals, we were able to identify 16 healthy-associated OTUs and 106 consistently disease-associated OTUs, which are good candidates for putative WBD pathogens. A large percentage of these disease-associated OTUs belonged to the order Flavobacteriales. In addition, two of the putative pathogens identified here belong to orders previously suggested as WBD pathogens: Vibronales and Rickettsiales.

  14. Identification of Candidate Coral Pathogens on White Band Disease-Infected Staghorn Coral.

    Directory of Open Access Journals (Sweden)

    Sarah A Gignoux-Wolfsohn

    Full Text Available Bacterial diseases affecting scleractinian corals pose an enormous threat to the health of coral reefs, yet we still have a limited understanding of the bacteria associated with coral diseases. White band disease is a bacterial disease that affects the two Caribbean acroporid corals, the staghorn coral Acropora cervicornis and the elkhorn coral A. palmate. Species of Vibrio and Rickettsia have both been identified as putative WBD pathogens. Here we used Illumina 16S rRNA gene sequencing to profile the bacterial communities associated with healthy and diseased A. cervicornis collected from four field sites during two different years. We also exposed corals in tanks to diseased and healthy (control homogenates to reduce some of the natural variation of field-collected coral bacterial communities. Using a combination of multivariate analyses, we identified community-level changes between diseased and healthy corals in both the field-collected and tank-exposed datasets. We then identified changes in the abundances of individual operational taxonomic units (OTUs between diseased and healthy corals. By comparing the diseased and healthy-associated bacteria in field-collected and tank-exposed corals, we were able to identify 16 healthy-associated OTUs and 106 consistently disease-associated OTUs, which are good candidates for putative WBD pathogens. A large percentage of these disease-associated OTUs belonged to the order Flavobacteriales. In addition, two of the putative pathogens identified here belong to orders previously suggested as WBD pathogens: Vibronales and Rickettsiales.

  15. Identification of a candidate proteomic signature to discriminate multipotent and non-multipotent stromal cells.

    Directory of Open Access Journals (Sweden)

    Michael Rosu-Myles

    Full Text Available Bone marrow stromal cell cultures contain multipotent cells that may have therapeutic utility for tissue restoration; however, the identity of the cell that maintains this function remains poorly characterized. We have utilized a unique model of murine bone marrow stroma in combination with liquid chromatography mass spectrometry to compare the nuclear, cytoplasmic and membrane associated proteomes of multipotent (MSC (CD105+ and non-multipotent (CD105- stromal cells. Among the 25 most reliably identified proteins, 10 were verified by both real-time PCR and Western Blot to be highly enriched, in CD105+ cells and were members of distinct biological pathways and functional networks. Five of these proteins were also identified as potentially expressed in human MSC derived from both standard and serum free human stromal cultures. The quantitative amount of each protein identified in human stromal cells was only minimally affected by media conditions but varied highly between bone marrow donors. This study provides further evidence of heterogeneity among cultured bone marrow stromal cells and identifies potential candidate proteins that may prove useful for identifying and quantifying both murine and human MSC in vitro.

  16. Identification of the candidate genes associated with cellular rejection in pig-to-human xenotransplantation

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    To identify the genes associated with cellular rejection in pig-to-human xenotransplantation, the suppression subtractive hybridization (SSH) was used in screening the up-regulated genes from a co-culture of human peripheral blood mononuclear cells (PBMCs) and porcine vascular endothelial cell line PIEC. The up-regulated cDNAs were cloned into pGEM-T Easy vector and then sequenced. Nucleic acid homology searches were performed using the BLAST program. A subtracted cDNA library including about 300 clones with the expected up-regulated genes was obtained. Twenty-four of these clones were analyzed by sequencing and homology comparison was made. These clones represent the genes of human perforin (PRF1), proteasome, lymphocyte specific interferon regulatory factor/interferon regulatory factor 4 (LSIRF/IRF 4), muscleblind-like (MBNL) protein and a porcine expressed sequence tag (EST) which has 81% homology with human oxidative-stress responsive 1 (OSR 1). These genes might be the candidate genes which are associated with cellular rejection in pig-to-human xenotransplantation.

  17. MicroRNA as potential biomarkers in Glioblastoma.

    Science.gov (United States)

    Areeb, Zammam; Stylli, Stanley S; Koldej, Rachel; Ritchie, David S; Siegal, Tali; Morokoff, Andrew P; Kaye, Andrew H; Luwor, Rodney B

    2015-11-01

    Glioblastoma is the most aggressive and lethal tumour of the central nervous system and as such the identification of reliable prognostic and predictive biomarkers for patient survival and tumour recurrence is paramount. MicroRNA detection has rapidly emerged as potential biomarkers, in patients with glioblastoma. Over the last decade, analysis of miRNA in laboratory based studies have yielded several candidates as potential biomarkers however, the accepted use of these candidates in the clinic is yet to be validated. Here we will examine the use of miRNA signatures to improve glioblastoma stratification into subgroups and summarise recent advances made in miRNA examination as potential biomarkers for glioblastoma progression and recurrence.

  18. Molecular identification of species in Prunus sect.Persica (Rosaceae), with emphasis on evaluation of candidate barcodes for plants

    Institute of Scientific and Technical Information of China (English)

    Xu QUAN; Shi-Liang ZHOU

    2011-01-01

    Species of Prunus L. sect. Persica are not only important fruit trees, but also popular ornamental and medicinal plants. Correct identification of seedlings, barks, or fruit kernels is sometimes required, but no reliable morphological characters are available. Nowadays, the technique of DNA barcoding has the potential to meet such requirements. In this study, we evaluated the suitability of 11 DNA loci (atpB-rbcL, trnH-psbA, trnL-F, trnS-G,atpF-H, rbcL, marK, rpoB, rpoC1, nad1, and internal transcribed spacer [ITS]) as candidate DNA barcodes for peaches, using samples from 38 populations, covering all the species in sect. Persica. On the whole, the primers worked well in this group and sequencing difficulties were met only in the case of ITS locus. Five loci (rbcL,matK, rpoB, rpoC, and nad1) have very low variation rates, whereas atpB-rbcL, atpF-H, trnH-psbA, trnL-F and trnS-G show more variability. The most variable loci, atpB-rbcL and trnH-psbA, can distinguish three of the five species. Two two-locus combinations, atpB-rbcL+trnL-F and atpB-rbcL+atpF-H, can resolve all five species. We also find that identification powers of the loci are method-dependent. The NeighborNet method shows higher species identification power than maximum parsimony, neighbor joining, and unweighted pair group method with arithmetic mean methods.

  19. Identification and evaluation of vaccine candidate antigens from the poultry red mite (Dermanyssus gallinae).

    Science.gov (United States)

    Bartley, Kathryn; Wright, Harry W; Huntley, John F; Manson, Erin D T; Inglis, Neil F; McLean, Kevin; Nath, Mintu; Bartley, Yvonne; Nisbet, Alasdair J

    2015-11-01

    An aqueous extract of the haematophagous poultry ectoparasite, Dermanyssus gallinae, was subfractionated using anion exchange chromatography. Six of these subfractions were used to immunise hens and the blood from these hens was fed, in vitro, to poultry red mites. Mite mortality following these feeds was indicative of protective antigens in two of the subfractions, with the risks of mites dying being 3.1 and 3.7 times higher than in the control group (P<0.001). A combination of two-dimensional immunoblotting and immunoaffinity chromatography, using IgY from hens immunised with these subfractions, was used in concert with proteomic analyses to identify the strongest immunogenic proteins in each of these subfractions. Ten of the immunoreactive proteins were selected for assessment as vaccine candidates using the following criteria: intensity of immune recognition; likelihood of exposure of the antigen to the antibodies in a blood meal; proposed function and known vaccine potential of orthologous molecules. Recombinant versions of each of these 10 proteins were produced in Escherichia coli and were used to immunise hens. Subsequent in vitro feeding of mites on blood from these birds indicated that immunisation with Deg-SRP-1 (serpin), Deg-VIT-1 (vitellogenin), Deg-HGP-1 (hemelipoglycoprotein) or Deg-PUF-1 (a protein of unknown function) resulted in significantly increased risk of mite death (1.7-2.8times higher than in mites fed blood from control hens immunised with adjuvant only, P<0.001). The potential for using these antigens in a recombinant vaccine is discussed.

  20. High-resolution comparative genomic hybridization of inflammatory breast cancer and identification of candidate genes.

    Directory of Open Access Journals (Sweden)

    Ismahane Bekhouche

    Full Text Available BACKGROUND: Inflammatory breast cancer (IBC is an aggressive form of BC poorly defined at the molecular level. We compared the molecular portraits of 63 IBC and 134 non-IBC (nIBC clinical samples. METHODOLOGY/FINDINGS: Genomic imbalances of 49 IBCs and 124 nIBCs were determined using high-resolution array-comparative genomic hybridization, and mRNA expression profiles of 197 samples using whole-genome microarrays. Genomic profiles of IBCs were as heterogeneous as those of nIBCs, and globally relatively close. However, IBCs showed more frequent "complex" patterns and a higher percentage of genes with CNAs per sample. The number of altered regions was similar in both types, although some regions were altered more frequently and/or with higher amplitude in IBCs. Many genes were similarly altered in both types; however, more genes displayed recurrent amplifications in IBCs. The percentage of genes whose mRNA expression correlated with CNAs was similar in both types for the gained genes, but ∼7-fold lower in IBCs for the lost genes. Integrated analysis identified 24 potential candidate IBC-specific genes. Their combined expression accurately distinguished IBCs and nIBCS in an independent validation set, and retained an independent prognostic value in a series of 1,781 nIBCs, reinforcing the hypothesis for a link with IBC aggressiveness. Consistent with the hyperproliferative and invasive phenotype of IBC these genes are notably involved in protein translation, cell cycle, RNA processing and transcription, metabolism, and cell migration. CONCLUSIONS: Our results suggest a higher genomic instability of IBC. We established the first repertory of DNA copy number alterations in this tumor, and provided a list of genes that may contribute to its aggressiveness and represent novel therapeutic targets.

  1. Association mapping in Salix viminalis L. (Salicaceae) - identification of candidate genes associated with growth and phenology.

    Science.gov (United States)

    Hallingbäck, Henrik R; Fogelqvist, Johan; Powers, Stephen J; Turrion-Gomez, Juan; Rossiter, Rachel; Amey, Joanna; Martin, Tom; Weih, Martin; Gyllenstrand, Niclas; Karp, Angela; Lagercrantz, Ulf; Hanley, Steven J; Berlin, Sofia; Rönnberg-Wästljung, Ann-Christin

    2016-05-01

    Willow species (Salix) are important as short-rotation biomass crops for bioenergy, which creates a demand for faster genetic improvement and breeding through deployment of molecular marker-assisted selection (MAS). To find markers associated with important adaptive traits, such as growth and phenology, for use in MAS, we genetically dissected the trait variation of a Salix viminalis (L.) population of 323 accessions. The accessions were sampled throughout northern Europe and were established at two field sites in Pustnäs, Sweden, and at Woburn, UK, offering the opportunity to assess the impact of genotype-by-environment interactions (G × E) on trait-marker associations. Field measurements were recorded for growth and phenology traits. The accessions were genotyped using 1536 SNP markers developed from phenology candidate genes and from genes previously observed to be differentially expressed in contrasting environments. Association mapping between 1233 of these SNPs and the measured traits was performed taking into account population structure and threshold selection bias. At a false discovery rate (FDR) of 0.2, 29 SNPs were associated with bud burst, leaf senescence, number of shoots or shoot diameter. The percentage of accession variation (Radj2) explained by these associations ranged from 0.3% to 4.4%, suggesting that the studied traits are controlled by many loci of limited individual impact. Despite this, a SNP in the EARLY FLOWERING 3 gene was repeatedly associated (FDR < 0.2) with bud burst. The rare homozygous genotype exhibited 0.4-1.0 lower bud burst scores than the other genotype classes on a five-grade scale. Consequently, this marker could be promising for use in MAS and the gene deserves further study. Otherwise, associations were less consistent across sites, likely due to their small Radj2 estimates and to considerable G × E interactions indicated by multivariate association analyses and modest trait accession correlations across sites (0.32-0.61).

  2. Identification of the novel autoantigen candidate Rab GDP dissociation inhibitor alpha in isolated adrenocorticotropin deficiency.

    Science.gov (United States)

    Kiyota, Atsushi; Iwama, Shintaro; Sugimura, Yoshihisa; Takeuchi, Seiji; Takagi, Hiroshi; Iwata, Naoko; Nakashima, Kohtaro; Suzuki, Haruyuki; Nishioka, Tomoki; Kato, Takuya; Enomoto, Atsushi; Arima, Hiroshi; Kaibuchi, Kozo; Oiso, Yutaka

    2015-01-01

    Isolated adrenocorticotropin deficiency (IAD) is characterized by low or absent adrenocorticotropic hormone (ACTH) production. IAD is presumed to be caused in part by an autoimmune mechanism, and several lines of evidence have suggested the presence of anti-pituitary antibodies in IAD. However, the exact autoantigens remain unknown. The present study was designed to identify the autoantigen(s) in IAD using chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Rat anterior pituitary lysate was subjected to SDS-PAGE, and immunoblotting was performed using the sera from two patients with IAD and from a healthy subject. The bands detected by the patient serum samples, but not by the healthy subject sample, were excised, in-gel digested using trypsin, and subjected to LC-MS/MS analysis. On immunoblots, a 51-kDa band in the insoluble pellet was detected by the sera from the IAD patients but not from the healthy subject. Mass spectrometric analysis revealed the 51-kDa band contained Rab guanine nucleotide dissociation inhibitor (GDI) alpha. Consistent with the mass spectrometric analysis, a recombinant full-length human Rab GDI alpha was recognized by the two IAD patient samples but not by the healthy subject sample using immunoblotting. In total, anti-Rab GDI alpha antibodies were detected in serum samples from three of five patients with IAD (60%) but were absent in 5 healthy subjects. In addition, Rab GDI alpha was expressed in the anterior pituitary. In conclusion, it appears that Rab GDI alpha is a candidate autoantigen involved in IAD, and that anti-Rab GDI alpha antibodies are present predominantly in patients with IAD.

  3. Identification of Arabidopsis candidate genes in response to biotic and abiotic stresses using comparative microarrays.

    Directory of Open Access Journals (Sweden)

    Arjun Sham

    Full Text Available Plants have evolved with intricate mechanisms to cope with multiple environmental stresses. To adapt with biotic and abiotic stresses, plant responses involve changes at the cellular and molecular levels. The current study was designed to investigate the effects of combinations of different environmental stresses on the transcriptome level of Arabidopsis genome using public microarray databases. We investigated the role of cyclopentenones in mediating plant responses to environmental stress through TGA (TGACG motif-binding factor transcription factor, independently from jasmonic acid. Candidate genes were identified by comparing plants inoculated with Botrytis cinerea or treated with heat, salt or osmotic stress with non-inoculated or non-treated tissues. About 2.5% heat-, 19% salinity- and 41% osmotic stress-induced genes were commonly upregulated by B. cinerea-treatment; and 7.6%, 19% and 48% of genes were commonly downregulated by B. cinerea-treatment, respectively. Our results indicate that plant responses to biotic and abiotic stresses are mediated by several common regulatory genes. Comparisons between transcriptome data from Arabidopsis stressed-plants support our hypothesis that some molecular and biological processes involved in biotic and abiotic stress response are conserved. Thirteen of the common regulated genes to abiotic and biotic stresses were studied in detail to determine their role in plant resistance to B. cinerea. Moreover, a T-DNA insertion mutant of the Responsive to Dehydration gene (rd20, encoding for a member of the caleosin (lipid surface protein family, showed an enhanced sensitivity to B. cinerea infection and drought. Overall, the overlapping of plant responses to abiotic and biotic stresses, coupled with the sensitivity of the rd20 mutant, may provide new interesting programs for increased plant resistance to multiple environmental stresses, and ultimately increases its chances to survive. Future research

  4. Identification of miRNAs as biomarkers for acquired endocrine resistance in breast cancer.

    Science.gov (United States)

    Muluhngwi, Penn; Klinge, Carolyn M

    2017-11-15

    Therapies targeting estrogen receptor α (ERα) including tamoxifen, a selective estrogen receptor modulator (SERM) and aromatase inhibitors (AI), e.g., letrozole, have proven successful in reducing the death rate for breast cancer patients whose initial tumors express ERα. However, about 40% of patients develop acquired resistance to these endocrine treatments. There is a critical need to develop sensitive circulating biomarkers that accurately identify signaling pathways altered in breast cancer patients resistant to endocrine therapies. Serum miRNAs have the potential to serve as biomarkers of the progression of endocrine-resistant breast cancer due to their cancer-specific expression and stability. Exosomal transfer of miRNAs has been implicated in metastasis and endocrine-resistance. This review focuses on miRNAs in breast tumors and in serum, including exosomes, from breast cancer patients that are associated with resistance to tamoxifen since it is best-studied. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Identification of Airway-Mucosal Type-2 inflammation by Clinical Biomarkers in Asthma

    DEFF Research Database (Denmark)

    Silkoff, Philip E; Laviolette, Michel; Singh, Dave

    2017-01-01

    BACKGROUND AND OBJECTIVE: The Airways Disease Endotyping for Personalized Therapeutics (ADEPT) study profiled mild, moderate and severe asthma, and non-atopic healthy controls. We explored this dataset to define Type-2 inflammation based on airway-mucosal IL-13-driven gene expression and how...... this related to clinically-accessible biomarkers. METHODS: IL-13-driven gene expression was evaluated in several human cell lines. We then defined Type-2 status in 25 healthy subjects, 28 mild, 29 moderate, and 26 severe asthmatics, based on airway-mucosal expression of 1) CC-motif chemokine ligand (CCL)-26......, (the most differentially expressed gene), 2) periostin, or 3) a multi-gene IL-13 in-vitro signature (IVS). Clinically accessible biomarkers included fractional exhaled nitric oxide (FENO), blood eosinophils (bEOS), serum CCL26, and serum CCL17. RESULTS: Expression of airway-mucosal-CCL26, periostin...

  6. Identification of candidate molecules for the building blocks of life's earliest polymers

    Science.gov (United States)

    Hud, Nicholas

    2016-07-01

    Chemists have yet to find a plausible prebiotic route to RNA polymers, and most proposed mechanisms for prebiotic peptide synthesis are inefficient. We are exploring the hypothesis that RNA and peptides have both evolved from polymers with different chemical structures. We have found that molecules closely related to amino acids and the nucleobases of RNA, which were likely present on the prebiotic Earth, greatly facilitate the formation of polypeptides and RNA-like structures (Chen et al., 2014; Forsythe et al., 2015). The identification of molecules that may have served as precursors to the building blocks of extant polymers, or as prebiotic catalysts for biopolymer formation, has direct implications regarding which molecules that should be considered as possible signs of chemistries that can support the emergence of life in the universe. Furthermore, the possibility that life started with molecules that can be repeatedly cycled between their monomeric and polymeric states, as is still the case with extant biopolymers, suggests environmental characteristics that would have facilitated the formation and early evolution of functional biopolymers (Walker et al., 2012). M. C. Chen, et al., J. Am. Chem. Soc., 2014, 136, 5640-5646 J. G. Forsythe, et al., Angew. Chem., Int. Ed. Engl., 2015, 54, 9871-9875. M.A. Walker, et al., PLoS ONE, 2012, 7, e34166.

  7. Identification of urine metabolites associated with 5-year changes in biomarkers of glucose homoeostasis

    DEFF Research Database (Denmark)

    Friedrich, N.; Skaaby, T.; Pietzner, Maik

    2017-01-01

    Aim: Metabolomics provides information on pathogenetic mechanisms and targets for interventions, and may improve risk stratification. During the last decade, metabolomics studies were used to gain deeper insight into the pathogenesis of diabetes mellitus. However, longitudinal metabolomics studies...... urine metabolites were found to be associated with detrimental longitudinal changes in biomarkers of glucose homoeostasis. The identified metabolites point to mechanisms involving betaine and coffee metabolism as well as the possible influence of the gut microbiome....

  8. Identification of Novel Epithelial Ovarian Cancer Biomarkers by Cross-laboratory Microarray Analysis

    Institute of Scientific and Technical Information of China (English)

    蒋学锋; 朱涛; 杨洁; 李双; 叶双梅; 廖书杰; 孟力; 卢运萍; 马丁

    2010-01-01

    The purpose of this study was to pool information in epithelial ovarian cancer by combining studies using Affymetrix expression microarray datasets made at different laboratories to identify novel biomarkers.Epithelial microarray expression information across laboratories was screened and combined after preprocessing raw microarray data,then ANOVA and unpaired T test statistical analysis was performed for identifying differentially expressed genes(DEGs),followed by clustering and pathway analysis for these ...

  9. Identification of serum biomarkers for diagnosing stage Ⅰ lung adenocarcinoma by MALDI-TOF mass spectrometry

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Objective To identify specific biomarkers that could improve early diagnosis of lung adenocarcinoma using matrix-assisted laser desorption/ionization (MALDI) technology. Methods Serum samples were isolated from 17 patients with stage Ⅰ lung adenocarcinoma and 17 age-and sex-matched healthy controls,and the serum proteomic profiles were obtained by matrix-assisted laser desorption ionization time of flight (MALDI-TOF) mass spectrometry. Results Compared with healthy control group,two highly expressed potenti...

  10. Identification of Epigenetic Biomarkers of Lung Adenocarcinoma through Multi-Omics Data Analysis.

    Science.gov (United States)

    Kikutake, Chie; Yahara, Koji

    2016-01-01

    Epigenetic mechanisms such as DNA methylation or histone modifications are essential for the regulation of gene expression and development of tissues. Alteration of epigenetic modifications can be used as an epigenetic biomarker for diagnosis and as promising targets for epigenetic therapy. A recent study explored cancer-cell specific epigenetic biomarkers by examining different types of epigenetic modifications simultaneously. However, it was based on microarrays and reported biomarkers that were also present in normal cells at a low frequency. Here, we first analyzed multi-omics data (including ChIP-Seq data of six types of histone modifications: H3K27ac, H3K4me1, H3K9me3, H3K36me3, H3K27me3, and H3K4me3) obtained from 26 lung adenocarcinoma cell lines and a normal cell line. We identified six genes with both H3K27ac and H3K4me3 histone modifications in their promoter regions, which were not present in the normal cell line, but present in ≥85% (22 out of 26) and ≤96% (25 out of 26) of the lung adenocarcinoma cell lines. Of these genes, NUP210 (encoding a main component of the nuclear pore complex) was the only gene in which the two modifications were not detected in another normal cell line. RNA-Seq analysis revealed that NUP210 was aberrantly overexpressed among the 26 lung adenocarcinoma cell lines, although the frequency of NUP210 overexpression was lower (19.3%) in 57 lung adenocarcinoma tissue samples studied and stored in another database. This study provides a basis to discover epigenetic biomarkers highly specific to a certain cancer, based on multi-omics data at the cell population level.

  11. Early Identification of Molecular Predictors of Heterotopic Ossification Following Extremity Blast Injury with a Biomarker Assay

    Science.gov (United States)

    2015-10-01

    will be identified by analyzing correlations with radiographic HO and will be compared to gene expression signatures in existing human tissue samples...They were processed to collect total RNAs and protein lysates for identifying both gene- and protein-level biomarkers and will be compared to gene...predictors of HO, was performed by the Nesti partner lab. qRT- PCR and Western blot analysis was carried out to examine the expression of fibrosis markers

  12. Rapid, non-targeted discovery of biochemical transformation and biomarker candidates in oncovirus-infected cell lines using LAESI mass spectrometry.

    Science.gov (United States)

    Shrestha, Bindesh; Sripadi, Prabhakar; Walsh, Callee M; Razunguzwa, Trust T; Powell, Matthew J; Kehn-Hall, Kylene; Kashanchi, Fatah; Vertes, Akos

    2012-04-18

    Finding insights into how viruses hijack metabolic processes and biomarkers for viral diseases often require hypotheses about target compounds and/or labelling techniques. Here we present a method based on laser ablation electrospray ionization mass spectrometry to rapidly identify potential protein and metabolite biomarkers of oncovirus infection in B lymphocytes.

  13. Identification and Validation of Protein Biomarkers of Response to Neoadjuvant Platinum Chemotherapy in Muscle Invasive Urothelial Carcinoma.

    Directory of Open Access Journals (Sweden)

    Alexander S Baras

    Full Text Available The 5-year cancer specific survival (CSS for patients with muscle invasive urothelial carcinoma of the bladder (MIBC treated with cystectomy alone is approximately 50%. Platinum based neoadjuvant chemotherapy (NAC plus cystectomy results in a marginal 5-10% increase in 5-year CSS in MIBC. Interestingly, responders to NAC (candidate protein based biomarkers detectable by immunohistochemistry (IHC. These candidate biomarkers were subsequently tested in tissue microarrays derived from an independent cohort of NAC naive MIBC biopsy specimens from whom the patients were treated with neoadjuvant gemcitabine cisplatin NAC and subsequent cystectomy. The clinical parameters that have been previously associated with NAC response were also examined in our cohort.Our analyses of the available mRNA gene expression data in a discovery cohort (n = 33 and the HPA resulted in 8 candidate protein biomarkers. The combination of GDPD3 and SPRED1 resulted in a multivariate classification tree that was significantly associated with NAC response status (Goodman-Kruskal γ = 0.85 p<0.0001 in our independent NAC treated MIBC cohort. This model was independent of the clinical factors of age and clinical tumor stage, which have been previously associated with NAC response by our group. The combination

  14. Biomarker identification and pathway analysis of preeclampsia based on serum metabolomics.

    Science.gov (United States)

    Chen, Tingting; He, Ping; Tan, Yong; Xu, Dongying

    2017-03-25

    Preeclampsia presents serious risk of both maternal and fetal morbidity and mortality. Biomarkers for the detection of preeclampsia are critical for risk assessment and targeted intervention. The goal of this study is to screen potential biomarkers for the diagnosis of preeclampsia and to illuminate the pathogenesis of preeclampsia development based on the differential expression network. Two groups of subjects, including healthy pregnant women, subjects with preeclampsia, were recruited for this study. The metabolic profiles of all of the subjects' serum were obtained by liquid chromatography quadruple time-of-flight mass spectrometry. Correlation between metabolites was analyzed by bioinformatics technique. Results showed that the PC(14:0/00), proline betaine and proline were potential sensitive and specific biomarkers for preeclampsia diagnosis and prognosis. Perturbation of corresponding biological pathways, such as iNOS signaling, nitric oxide signaling in the cardiovascular system, mitochondrial dysfunction were responsible for the pathogenesis of preeclampsia. This study indicated that the metabolic profiling had a good clinical significance in the diagnosis of preeclampsia as well as in the study of its pathogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Identification of serum biomarkers for diagnosing stage I lung adenocarcinoma by MALDI-TOF mass spectrometry

    Institute of Scientific and Technical Information of China (English)

    Xin-ju Li; Da-lin He; Jun-ke Fu; Jing-ren Liang

    2009-01-01

    Objectire To identify specific biomarkers that could improve early diagnsis of lung adenuearcinoma using matrix-assisted laser desorptian/ionization (MALDI) technology. Methods Serum samples were isolated from 17 patients with stage I lung adenuearcinoma and 17 age- and sex-matched healthy controls, and the serum proteomic profiles were obtained by matrix-assistcd laser desorption ionization time of flight (MALDI-TOF) mass spectrometry. Results Compared with healthy control group, two highly expressed potential biomarkers were identified with the relative molecular weights of 6 631.64 Da and 4 964. 21 Da. The two best novel protein peaks were automatically chosen for the system training and the development of the constructed model. The constructed model was then used to test an independent set of masked serum samples from 15 lung adenocarcinoma patients and 22 healthy individuals. The analysis yielded a sensitivity of 93.3 %, and a specificity of 95.5 %. Conclusion These results suggest that MALDI-TOF-MS ProteinChip technology is a quick, convenient, and high-output analyzing method that is capable of selecting several relatively potential biomarkers from the serum of lung adenocarcinoma patients and may have a clinical value in the future, and will provide clues to identifying new serologic btomarkers of lung adenocarcinoma.

  16. Identification of human urinary biomarkers of cruciferous vegetable consumption by metabonomic profiling.

    Science.gov (United States)

    Edmands, William M B; Beckonert, Olaf P; Stella, Cinzia; Campbell, Alison; Lake, Brian G; Lindon, John C; Holmes, Elaine; Gooderham, Nigel J

    2011-10-07

    Consumption of cruciferous vegetables (CVs) is inversely correlated to many human diseases including cancer (breast, lung, and bladder), diabetes, and cardiovascular and neurological disease. Presently, there are no readily measurable biomarkers of CV consumption and intake of CVs has relied on dietary recall. Here, biomarkers of CV intake were identified in the urine of 20 healthy Caucasian adult males using (1)H NMR spectroscopy with multivariate statistical modeling. The study was separated into three phases of 14 days: a run-in period with restricted CV consumption (phase I); a high CV phase where participants consumed 250 g/day of both broccoli and Brussels sprouts (phase II); a wash-out phase with a return to restricted CV consumption (phase III). Each study participant provided a complete cumulative urine collection over 48 h at the end of each phase; a spot urine (U0), 0-10 h (U0-10), 10-24 h (U10-24), and 24-48 h (U24-48) urine samples. Urine samples obtained after consumption of CVs were differentiated from low CV diet samples by four singlet (1)H NMR spectroscopic peaks, one of which was identified as S-methyl-l-cysteine sulfoxide (SMCSO) and the three other peaks were tentatively identified as other metabolites structurally related to SMCSO. These stable urinary biomarkers of CV consumption will facilitate future assessment of CVs in nutritional population screening and dietary intervention studies and may correlate to population health outcomes.

  17. Identification of novel serum peptide biomarkers for high-altitude adaptation: a comparative approach

    Science.gov (United States)

    Yang, Juan; Li, Wenhua; Liu, Siyuan; Yuan, Dongya; Guo, Yijiao; Jia, Cheng; Song, Tusheng; Huang, Chen

    2016-05-01

    We aimed to identify serum biomarkers for screening individuals who could adapt to high-altitude hypoxia at sea level. HHA (high-altitude hypoxia acclimated; n = 48) and HHI (high-altitude hypoxia illness; n = 48) groups were distinguished at high altitude, routine blood tests were performed for both groups at high altitude and at sea level. Serum biomarkers were identified by comparing serum peptidome profiling between HHI and HHA groups collected at sea level. Routine blood tests revealed the concentration of hemoglobin and red blood cells were significantly higher in HHI than in HHA at high altitude. Serum peptidome profiling showed that ten significantly differentially expressed peaks between HHA and HHI at sea level. Three potential serum peptide peaks (m/z values: 1061.91, 1088.33, 4057.63) were further sequence identified as regions of the inter-α trypsin inhibitor heavy chain H4 fragment (ITIH4 347-356), regions of the inter-α trypsin inhibitor heavy chain H1 fragment (ITIH1 205-214), and isoform 1 of fibrinogen α chain precursor (FGA 588-624). Expression of their full proteins was also tested by ELISA in HHA and HHI samples collected at sea level. Our study provided a novel approach for identifying potential biomarkers for screening people at sea level who can adapt to high altitudes.

  18. Identification of Methanotrophic Biomarker Lipids in the Symbiont-Containing Gills of Seep Mussels

    Science.gov (United States)

    Jahnke, L. L.; Zahiralis, K. D.; Klein, H. P.; Morrison, David (Technical Monitor)

    1994-01-01

    Mussels collected from hydrocarbon seeps in the Gulf of Mexico grow with methane as sole carbon and energy source due to a symbiotic association with methane-oxidizing bacteria. Transmission electron micrographs of mussel gills show cells with stacked intracytoplasmic membranes similar to type I methanotrophic bacteria. Methanotrophs are known to synthesize several types of cyclic triterpenes, hopanoids and methyl sterols, as well as unique monounsaturated fatty acid, double bond positional isomers that serve as biomarkers for this group. Lipid analysis of dissected mussels demonstrated the presence of these biomarkers predominantly in the gill tissue with much smaller amounts in mantle and remaining body tissues. Gill tissue contained 1150 micrograms/g dry wt. of hopanepolyol derivatives and diplopterol while the mantle tissue contained only 17 micrograms/g. The C16 monounsaturated fatty acids (16:1) characteristic of type I methanotrophic membranes dominated the gill tissue making up 53% of the total while only 5% 16:1 was present in the mantle tissue. The methyl sterol distribution was more dispersed. The predominant sterol in all tissues was cholesterol with lesser amounts of other desmethyl and 4-methyl sterols. The gill and mantle tissues contained 3461 micrograms (17% methyl) and 2750 micrograms (5% methyl) sterol per gm dry wt., respectively. Methyl sterol accounted for 44% of the sterol esters isolated from the gill, suggesting active demethylation of the methanotrophic sterols in this tissue. The use of lipid biomarkers could provide an effective means for identifying host-symbiont relationships.

  19. Custom database development and biomarker discovery methods for MALDI-TOF mass spectrometry-based identification of high-consequence bacterial pathogens.

    Science.gov (United States)

    Tracz, Dobryan M; Tyler, Andrea D; Cunningham, Ian; Antonation, Kym S; Corbett, Cindi R

    2017-03-01

    A high-quality custom database of MALDI-TOF mass spectral profiles was developed with the goal of improving clinical diagnostic identification of high-consequence bacterial pathogens. A biomarker discovery method is presented for identifying and evaluating MALDI-TOF MS spectra to potentially differentiate biothreat bacteria from less-pathogenic near-neighbour species.

  20. Potential biomarkers for identification of mycobacterial cultures by proton transfer reaction mass spectrometry analysis

    NARCIS (Netherlands)

    Crespo, E.; de Ronde, H.; Kuijper, S.; Pol, A.; Kolk, A.H.J.; Cristescu, S. M.; Anthony, R.M.; Harren, F. J. M.

    2012-01-01

    RATIONALE Several mycobacterial species can produce serious infections in humans, and the treatment required depends on the infecting species. Fast identification, ideally with minimal manipulation of the infecting species, is therefore critical; here, we propose a method potentially allowing cultur

  1. Single-strand conformation polymorphism analysis of candidate genes for reliable identification of alleles by capillary array electrophoresis.

    Science.gov (United States)

    Kuhn, David N; Borrone, James; Meerow, Alan W; Motamayor, Juan C; Brown, J Steven; Schnell, Raymond J

    2005-01-01

    We investigated the reliability of capillary array electrophoresis-single strand conformation polymorphism (CAE-SSCP) to determine if it can be used to identify novel alleles of candidate genes in a germplasm collection. Both strands of three different size fragments (160, 245 and 437 bp) that differed by one or more nucleotides in sequence were analyzed at four different temperatures (18 degrees C, 25 degrees C, 30 degrees C, and 35 degrees C). Mixtures of amplified fragments of either the intron interrupting the C-terminal WRKY domain of the Tc10 locus or the NBS domain of the TcRGH1 locus of Theobroma cacao were electroinjected into all 16 capillaries of an ABI 3100 Genetic Analyzer and analyzed three times at each temperature. Multiplexing of samples of different size range is possible, as intermediate and large fragments were analyzed simultaneously in these experiments. A statistical analysis of the means of the fragment mobilities demonstrated that single-stranded conformers of the fragments could be reliably identified by their mobility at all temperatures and size classes. The order of elution of fragments was not consistent over strands or temperatures for the intermediate and large fragments. If samples are only run once at a single temperature, small fragments could be identified from a single strand at a single temperature. A combination of data from both strands of a single run was needed to identify correctly all four of the intermediate fragments and no combination of data from strands or temperatures would allow the correct identification of two large fragments that differed by only a single single-nucleotide polymorphism (SNP) from a single run. Thus, to adequately assess alleles at a candidate gene locus using SSCP on a capillary array, fragments should be strands and both temperatures, and undenatured double-stranded (ds)DNA molecular weight standards, such as ROX 2500, should be included as internal standards.

  2. Isolation, screening and identification of Bacillus spp. as direct-fed microbial candidates for aflatoxin B1 biodegradation

    Institute of Scientific and Technical Information of China (English)

    Rosario Galarza-Seeber; Juan David Latorre; Xochitl Hernandez-Velasco; Amanda Drake Wolfenden; Lisa Renee Bielke; Anita Menconi; Billy Marshall Hargis; Guillermo Tellez

    2015-01-01

    To evaluate the ability of Bacillus spp. as direct-fed microbials (DFM) to biodegrade aflatoxin B1 (AFB1) by using an in vitro digestive model simulating in vivo conditions. Methods: Sixty-nine Bacillus isolates were obtained from intestines, and soil samples were screened by using a selective media method against 0.25 and 1.00 µg/mL of AFB1 in modified Czapek-Dox medium. Plates were incubated at 37 °C and observed every two days for two weeks. Physiological properties of the three Bacillus spp. candidates were characterized biochemically and by 16S rRNA sequence analyzes for identification. Tolerance to acidic pH, osmotic concentrations of NaCl, bile salts were tested, and antimicrobial sensitivity profiles were also determined. Bacillus candidates were individually sporulated by using a solid fermentation method and combined. Spores were incorporated into 1 of 3 experimental feed groups: 1) Negative control group, with unmedicated starter broiler feed without AFB1; 2) Positive control group, with negative control feed contaminated with 0.01% AFB1; 3) DFM treated group, with positive control feed supplemented with 109 spores/g. After digestion time (3:15 h), supernatants and digesta were collected for high-performance liquid chromatography fluorescence detection analysis by triplicate. Results: Three out of those sixty-nine DFM candidates showed ability to biodegrade AFB1 in vitro based on growth as well as reduction of fluorescence and area of clearance around each colony in modified Czapek-Dox medium which was clearly visible under day light after 48 h of evaluation. Analysis of 16S-DNA identified the strains as Bacillus amyloliquefaciens, Bacillus megaterium and Bacillus subtilis. The three Bacillus strains were tolerant to acidic conditions (pH 2.0), tolerant to a high osmotic pressure (NaCl at 6.5%), and were able to tolerate 0.037%bile salts after 24 h of incubation. No significant differences (P > 0.05) were observed in the concentrations of AFB1 in

  3. 125. Application of biomarkers for the identification of health hazards and risk in human populations

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@The emerging area of molecular epidemiology uses biomarkers of exposure, susceptibility and effect to evaluate the risk of cancer and other diseases in human popultations. This approach has considerable potential for improving exposure assessment, identifying genotoxic agents as well as susceptible individuals within the population, detecting early pre-clinical stages of disease, and allowing intervention steps to be taken to reduce the incidence of disease. Our knowledge of carcinogenesis and other genetic diseases has expanded rapidly over the past two decades as has our ability to detect and measure genetic changes in human cells and

  4. Identification and validation of novel cerebrospinal fluid biomarkers for staging early Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Richard J Perrin

    Full Text Available Ideally, disease modifying therapies for Alzheimer disease (AD will be applied during the 'preclinical' stage (pathology present with cognition intact before severe neuronal damage occurs, or upon recognizing very mild cognitive impairment. Developing and judiciously administering such therapies will require biomarker panels to identify early AD pathology, classify disease stage, monitor pathological progression, and predict cognitive decline. To discover such biomarkers, we measured AD-associated changes in the cerebrospinal fluid (CSF proteome.CSF samples from individuals with mild AD (Clinical Dementia Rating [CDR] 1 (n = 24 and cognitively normal controls (CDR 0 (n = 24 were subjected to two-dimensional difference-in-gel electrophoresis. Within 119 differentially-abundant gel features, mass spectrometry (LC-MS/MS identified 47 proteins. For validation, eleven proteins were re-evaluated by enzyme-linked immunosorbent assays (ELISA. Six of these assays (NrCAM, YKL-40, chromogranin A, carnosinase I, transthyretin, cystatin C distinguished CDR 1 and CDR 0 groups and were subsequently applied (with tau, p-tau181 and Aβ42 ELISAs to a larger independent cohort (n = 292 that included individuals with very mild dementia (CDR 0.5. Receiver-operating characteristic curve analyses using stepwise logistic regression yielded optimal biomarker combinations to distinguish CDR 0 from CDR>0 (tau, YKL-40, NrCAM and CDR 1 from CDR<1 (tau, chromogranin A, carnosinase I with areas under the curve of 0.90 (0.85-0.94 95% confidence interval [CI] and 0.88 (0.81-0.94 CI, respectively.Four novel CSF biomarkers for AD (NrCAM, YKL-40, chromogranin A, carnosinase I can improve the diagnostic accuracy of Aβ42 and tau. Together, these six markers describe six clinicopathological stages from cognitive normalcy to mild dementia, including stages defined by increased risk of cognitive decline. Such a panel might improve clinical trial efficiency by guiding

  5. Top-down identification of protein biomarkers in bacteria with unsequenced genomes.

    Science.gov (United States)

    Wynne, Colin; Fenselau, Catherine; Demirev, Plamen A; Edwards, Nathan

    2009-12-01

    MALDI mass spectrometry-based systems for rapid characterization of microorganisms in biodefense or medical diagnostics usually detect intact proteins in the 5000-20,000 Da range. To evaluate the reliability of species discrimination, and also for forensic applications, it is important that these biomarker proteins be identified. In the present study we apply high resolution tandem mass analysis on an Orbitrap and top-down bioinformatics to identify major biomarker proteins observed in MALDI spectra of intact bacteria for which little genomic or protein sequence information is available. The strategy depends on recognition of proteins with very high homology in related (sequenced) species, making it possible to place unsequenced organisms in their correct phylogenetic context. We show that this rapid proteomics based approach to phylogenetic characterization produces similar results to the traditional techniques, and may even be applied to target organisms of undetermined taxonomy. We further discuss important issues in combining genomics/proteomics databases and MALDI MS for the rapid characterization of microorganisms.

  6. Composition of betel specific chemicals in saliva during betel chewing for the identification of biomarkers

    Science.gov (United States)

    Franke, Adrian A.; Mendez, Ana Joy; Lai, Jennifer F.; Arat-Cabading, Celine; Li, Xingnan; Custer, Laurie J.

    2015-01-01

    Betel nut chewing causes cancer in humans including strong associations with head and neck cancer in Guam. In the search for biomarkers of betel chewing we sought to identify chemicals specific for the 3 most commonly consumed betel preparations in Guam: nut (‘BN’), nut + Piper betle leaf (‘BL’), and betel quid (‘BQ’) consisting of nut+lime+tobacco+Piper betle leaf. Chemicals were extracted from the chewing material and saliva of subjects chewing these betel preparations. Saliva analysis involved protein precipitation with acetonitrile, dilution with formic acid followed by LCMS analysis. Baseline and chewing saliva levels were compared using t-tests and differences between groups were compared by ANOVA; p<0.05 indicated significance. Predominant compounds in chewing material were guvacine, arecoline, guvacoline, arecaidine, chavibetol, and nicotine. In chewing saliva we found significant increases from baseline for guvacine (BN, BQ), arecoline (all groups), guvacoline (BN), arecaidine (all groups), nicotine (BQ), and chavibetol (BL, BQ) and significant differences between all groups for total areca- specific alkaloids, total tobacco-specific alkaloids and chavibetol. From this pilot study, we propose the following chemical patterns as biomarkers: areca alkaloids for BN use, areca alkaloids and chavibetol for BL use, and areca alkaloids plus chavibetol and tobacco-specific alkaloids for BQ use. PMID:25797484

  7. Identification of novel biomarkers in chronic immune thrombocytopenia (ITP) by microarray-based serum protein profiling.

    Science.gov (United States)

    Bal, Gürkan; Futschik, Matthias E; Hartl, Daniela; Ringel, Frauke; Kamhieh-Milz, Julian; Sterzer, Viktor; Hoheisel, Jörg D; Alhamdani, Mohamed S S; Salama, Abdulgabar

    2016-02-01

    The pathological mechanisms underlying the development of immune thrombocytopenia (ITP) are unclear and its diagnosis remains a process of exclusion. Currently, there are no known specific biomarkers for ITP to support differential diagnosis and treatment decisions. Profiling of serum proteins may be valuable for identifying such biomarkers. Sera from 46 patients with primary chronic ITP and 34 healthy blood donors were analysed using a microarray of 755 antibodies. We identified 161 differentially expressed proteins. In addition to oncoproteins and tumour-suppressor proteins, including apoptosis regulator BCL2, breast cancer type 1 susceptibility protein (BRCA1), Fanconi anaemia complementation group C (FANCC) and vascular endothelial growth factor A (VEGFA), we detected six anti-nuclear autoantibodies in a subset of ITP patients: anti-PCNA, anti-SmD, anti-Ro/SSA60, anti-Ro/SSA52, anti-La/SSB and anti-RNPC antibodies. This finding may provide a rational explanation for the association of ITP with malignancies and other autoimmune diseases. While RUNX1mRNA expression in the peripheral blood mononuclear cells (PBMC) of patients was significantly downregulated, an accumulation of RUNX1 protein was observed in the platelets of ITP patients. This may indicate dysregulation of RUNX1 expression in PBMC and megakaryocytes and may lead to an imbalanced immune response and impaired thrombopoiesis. In conclusion, we provide novel insights into the pathogenic mechanisms of ITP that warrant further exploration.

  8. Application of Machine Learning to Proteomics Data: Classification and Biomarker Identification in Postgenomics Biology

    Science.gov (United States)

    Swan, Anna Louise; Mobasheri, Ali; Allaway, David; Liddell, Susan

    2013-01-01

    Abstract Mass spectrometry is an analytical technique for the characterization of biological samples and is increasingly used in omics studies because of its targeted, nontargeted, and high throughput abilities. However, due to the large datasets generated, it requires informatics approaches such as machine learning techniques to analyze and interpret relevant data. Machine learning can be applied to MS-derived proteomics data in two ways. First, directly to mass spectral peaks and second, to proteins identified by sequence database searching, although relative protein quantification is required for the latter. Machine learning has been applied to mass spectrometry data from different biological disciplines, particularly for various cancers. The aims of such investigations have been to identify biomarkers and to aid in diagnosis, prognosis, and treatment of specific diseases. This review describes how machine learning has been applied to proteomics tandem mass spectrometry data. This includes how it can be used to identify proteins suitable for use as biomarkers of disease and for classification of samples into disease or treatment groups, which may be applicable for diagnostics. It also includes the challenges faced by such investigations, such as prediction of proteins present, protein quantification, planning for the use of machine learning, and small sample sizes. PMID:24116388

  9. LC-MS/MS Identification of a Bromelain Peptide Biomarker from Ananas comosus Merr

    Directory of Open Access Journals (Sweden)

    Eric R. Secor

    2012-01-01

    Full Text Available Bromelain (Br is a cysteine peptidase (GenBank AEH26024.1 from pineapple, with over 40 years of clinical use. The constituents mediating its anti-inflammatory activity are not thoroughly characterized and no peptide biomarker exists. Our objective is to characterize Br raw material and identify peptides in the plasma of Br treated mice. After SDS-PAGE in-gel digestion, Br (VN#3507; Middletown, CT, USA peptides were analyzed via LC/MS/MS using 95% protein probability, 95% peptide probability, and a minimum peptide number = 5. Br spiked mouse plasma (1 ug/ul and plasma from i.p. treated mice (12 mg/kg were assessed using SRM. In Br raw material, we identified seven proteins: four proteases, one jacalin-like lectin, and two protease inhibitors. In Br spiked mouse plasma, six proteins (ananain, bromelain inhibitor, cysteine proteinase AN11, FB1035 precursor, FBSB precursor, and jacalin-like lectin were identified. Using LC/MS/MS, we identified the unique peptide, DYGAVNEVK, derived from FB1035, in the plasma of i.p. Br treated mice. The spectral count of this peptide peaked at 6 hrs and was undetectable by 24 hrs. In this study, a novel Br peptide was identified in the plasma of treated mice for the first time. This Br peptide could serve as a biomarker to standardize the therapeutic dose and maximize clinical utility.

  10. Serum Circulating microRNA Profiling for Identification of Potential Breast Cancer Biomarkers

    Directory of Open Access Journals (Sweden)

    Fermín Mar-Aguilar

    2013-01-01

    Full Text Available MicroRNAs (miRNAs are a class of small, non-coding RNA molecules that can regulate gene expression, thereby affecting crucial processes in cancer development. miRNAs offer great potential as biomarkers for cancer detection because of their remarkable stability in blood and their characteristic expression in different diseases. We investigated whether quantitative RT-PCR miRNA profiling on serum could discriminate between breast cancer patients and healthy controls. We performed miRNA profiling on serum from breast cancer patients, followed by construction of ROC (Receiver Operating Characteristic curves to determine the sensitivity and specificity of the assay. We found that seven miRNAs (miR-10b, miR-21, miR-125b, miR-145, miR-155 miR-191 and miR-382 had different expression patterns in serum of breast cancer patients compared to healthy controls. ROC curve analyses revealed that three serum miRNAs could be valuable biomarkers for distinguishing BC from normal controls. Additionally, a combination of ROC curve analyses of miR-145, miR-155 and miR-382 showed better sensitivity and specificity of our assay. miRNA profiling in serum has potential as a novel method for breast cancer detection in the Mexican population.

  11. LC-MS/MS Identification of a Bromelain Peptide Biomarker from Ananas comosus Merr.

    Science.gov (United States)

    Secor, Eric R; Szczepanek, Steven M; Singh, Anurag; Guernsey, Linda; Natarajan, Prabitha; Rezaul, Karim; Han, David K; Thrall, Roger S; Silbart, Lawrence K

    2012-01-01

    Bromelain (Br) is a cysteine peptidase (GenBank AEH26024.1) from pineapple, with over 40 years of clinical use. The constituents mediating its anti-inflammatory activity are not thoroughly characterized and no peptide biomarker exists. Our objective is to characterize Br raw material and identify peptides in the plasma of Br treated mice. After SDS-PAGE in-gel digestion, Br (VN#3507; Middletown, CT, USA) peptides were analyzed via LC/MS/MS using 95% protein probability, 95% peptide probability, and a minimum peptide number = 5. Br spiked mouse plasma (1 ug/ul) and plasma from i.p. treated mice (12 mg/kg) were assessed using SRM. In Br raw material, we identified seven proteins: four proteases, one jacalin-like lectin, and two protease inhibitors. In Br spiked mouse plasma, six proteins (ananain, bromelain inhibitor, cysteine proteinase AN11, FB1035 precursor, FBSB precursor, and jacalin-like lectin) were identified. Using LC/MS/MS, we identified the unique peptide, DYGAVNEVK, derived from FB1035, in the plasma of i.p. Br treated mice. The spectral count of this peptide peaked at 6 hrs and was undetectable by 24 hrs. In this study, a novel Br peptide was identified in the plasma of treated mice for the first time. This Br peptide could serve as a biomarker to standardize the therapeutic dose and maximize clinical utility.

  12. Identification of CEACAM5 as a Biomarker for Prewarning and Prognosis in Gastric Cancer.

    Science.gov (United States)

    Zhou, Jinfeng; Fan, Xing; Chen, Ning; Zhou, Fenli; Dong, Jiaqiang; Nie, Yongzhan; Fan, Daiming

    2015-12-01

    MGd1, a monoclonal antibody raised against gastric cancer cells, possesses a high degree of specificity for gastric cancer (GC). Here we identified that the antigen of MGd1 is CEACAM5, and used MGd1 to investigate the expression of CEACAM5 in non-GC and GC tissues (N=643), as a biomarker for prewarning and prognosis. The expression of CEACAM5 was detected by immunohistochemistry in numerous tissues; its clinicopathological correlation was statistically analyzed. CEACAM5 expression was increased progressively from normal gastric mucosa to chronic atrophic gastritis, intestinal metaplasia, dysplasia and finally to GC (pgastric precancerous lesions (intestinal metaplasia and dysplasia), CEACAM5-positive patients had a higher risk of developing GC as compared with CEACAM5-negative patients (OR = 12.68, pgastric adenocarcinoma (p<0.001). In survival analysis, CEACAM5 was demonstrated to be an independent prognostic predictor for patients with GC of clinical stage IIIA/IV (p=0.033). Our results demonstrate that CEACAM5 is a promising biomarker for GC prewarning and prognostic evaluation.

  13. Identification of the potential biomarkers for the metastasis of rectal adenocarcinoma.

    Science.gov (United States)

    Hua, Yang; Ma, Xiukun; Liu, Xianglong; Yuan, Xiangfei; Qin, Hai; Zhang, Xipeng

    2017-02-01

    Rectal cancer is a common malignant tumor of the digestive tract, with a high incidence and high mortality. This study aimed to identify the potential biomarkers and therapeutic targets for rectal adenocarcinoma (RAC) metastasis. The expression profiling of RAC patients with metastasis and RAC patients without metastasis was downloaded from The Cancer Genome Atlas (TCGA) database. The datasets were used to identify the genes associated with RAC metastasis. Fifty up-regulated genes and seventeen down-regulated genes were identified in the primary tumor loci of RAC metastasis compared with non-metastasis. Sixty-seven dysregulated gens were conducted to construct the protein-protein network, and CCND3 was the hub protein. The dysregulated genes were significantly enriched in pancreatic secretion, cell adhesion molecules pathways, response to vitamin D of biological process, and retinoid binding of molecular function. Quantitative real-time polymerase chain reaction results demonstrated that CCND3, AQP3, PEG10, and RAB27B had the up-regulated tendency in RAC metastasis; ADCY1 had the down-regulated tendency in RAC metastasis. CCND3, AQP3, PEG10, RAB27B, and ADCY1 might play essential roles in the metastasis process of RAC through pancreatic secretion and cell adhesion molecules pathways. The five genes could be potential diagnosis biomarkers or therapeutic targets for RAC metastasis.

  14. Identification of Predictive Early Biomarkers for Sterile-SIRS after Cardiovascular Surgery.

    Science.gov (United States)

    Stoppelkamp, Sandra; Veseli, Kujtim; Stang, Katharina; Schlensak, Christian; Wendel, Hans Peter; Walker, Tobias

    2015-01-01

    Systemic inflammatory response syndrome (SIRS) is a common complication after cardiovascular surgery that in severe cases can lead to multiple organ dysfunction syndrome and even death. We therefore set out to identify reliable early biomarkers for SIRS in a prospective small patient study for timely intervention. 21 Patients scheduled for planned cardiovascular surgery were recruited in the study, monitored for signs of SIRS and blood samples were taken to investigate biomarkers at pre-assigned time points: day of admission, start of surgery, end of surgery, days 1, 2, 3, 5 and 8 post surgery. Stored plasma and cryopreserved blood samples were analyzed for cytokine expression (IL1β, IL2, IL6, IL8, IL10, TNFα, IFNγ), other pro-inflammatory markers (sCD163, sTREM-1, ESM-1) and response to endotoxin. Acute phase proteins CRP, PCT and pro-inflammatory cytokines IL6 and IL8 were significantly increased (pSIRS group at the end of surgery. Soluble TREM-1 plasma concentrations were significantly increased in patients with SIRS (pSIRS after cardiovascular surgery. A combination of normalized IL1β plasma levels, responses to endotoxin and soluble TREM-1 plasma concentrations at the end of surgery are predictive markers of SIRS development in this small scale study and could act as an indicator for starting early therapeutic interventions.

  15. Evaluation of full-resolution J-resolved 1H NMR projections of biofluids for metabonomics information retrieval and biomarker identification.

    Science.gov (United States)

    Fonville, Judith M; Maher, Anthony D; Coen, Muireann; Holmes, Elaine; Lindon, John C; Nicholson, Jeremy K

    2010-03-01

    Spectroscopic profiling of biological samples is an integral part of metabolically driven top-down systems biology and can be used for identifying biomarkers of toxicity and disease. However, optimal biomarker information recovery and resonance assignment still pose significant challenges in NMR-based complex mixture analysis. The reduced signal overlap as achieved when projecting two-dimensional (2D) J-resolved (JRES) NMR spectra can be exploited to mitigate this problem and, here, full-resolution (1)H JRES projections have been evaluated as a tool for metabolic screening and biomarker identification. We show that the recoverable information content in JRES projections is intrinsically different from that in the conventional one-dimensional (1D) and Carr-Purcell-Meiboom-Gill (CPMG) spectra, because of the combined result of reduction of the over-representation of highly split multiplet peaks and relaxation editing. Principal component and correlation analyses of full-resolution JRES spectral data demonstrated that peak alignment is necessary. The application of statistical total correlation spectroscopy (STOCSY) to JRES projections improved the identification of previously overlapped small molecule resonances in JRES (1)H NMR spectra, compared to conventional 1D and CPMG spectra. These approaches are demonstrated using a galactosamine-induced hepatotoxicity study in rats and show that JRES projections have a useful and complementary role to standard one-dimensional experiments in complex mixture analysis for improved biomarker identification.

  16. In silico identification and comparative genomics of candidate genes involved in biosynthesis and accumulation of seed oil in plants.

    Science.gov (United States)

    Sharma, Arti; Chauhan, Rajinder Singh

    2012-01-01

    Genes involved in fatty acids biosynthesis, modification and oil body formation are expected to be conserved in structure and function in different plant species. However, significant differences in the composition of fatty acids and total oil contents in seeds have been observed in different plant species. Comparative genomics was performed on 261 genes involved in fatty acids biosynthesis, TAG synthesis, and oil bodies formation in Arabidopsis, Brassica rapa, castor bean and soybean. In silico expression analysis revealed that stearoyl desaturase, FatB, FAD2, oleosin and DGAT are highly abundant in seeds, thereby considered as ideal candidates for mining of favorable alleles in natural population. Gene structure analysis for major genes, ACCase, FatA, FatB, FAD2, FAD3 and DGAT, which are known to play crucial role in oil synthesis revealed that there are uncommon variations (SNPs and INDELs) which lead to varying content and composition of fatty acids in seed oil. The predicted variations can provide good targets for seed oil QTL identification, understanding the molecular mechanism of seed oil accumulation, and genetic modification to enhance seed oil yield in plants.

  17. In Silico Identification and Comparative Genomics of Candidate Genes Involved in Biosynthesis and Accumulation of Seed Oil in Plants

    Directory of Open Access Journals (Sweden)

    Arti Sharma

    2012-01-01

    Full Text Available Genes involved in fatty acids biosynthesis, modification and oil body formation are expected to be conserved in structure and function in different plant species. However, significant differences in the composition of fatty acids and total oil contents in seeds have been observed in different plant species. Comparative genomics was performed on 261 genes involved in fatty acids biosynthesis, TAG synthesis, and oil bodies formation in Arabidopsis, Brassica rapa, castor bean and soybean. In silico expression analysis revealed that stearoyl desaturase, FatB, FAD2, oleosin and DGAT are highly abundant in seeds, thereby considered as ideal candidates for mining of favorable alleles in natural population. Gene structure analysis for major genes, ACCase, FatA, FatB, FAD2, FAD3 and DGAT, which are known to play crucial role in oil synthesis revealed that there are uncommon variations (SNPs and INDELs which lead to varying content and composition of fatty acids in seed oil. The predicted variations can provide good targets for seed oil QTL identification, understanding the molecular mechanism of seed oil accumulation, and genetic modification to enhance seed oil yield in plants.

  18. An In Silico Identification of Common Putative Vaccine Candidates against Treponema pallidum: A Reverse Vaccinology and Subtractive Genomics Based Approach

    Science.gov (United States)

    Kumar Jaiswal, Arun; Tiwari, Sandeep; Jamal, Syed Babar; Barh, Debmalya; Azevedo, Vasco; Soares, Siomar C.

    2017-01-01

    Sexually transmitted infections (STIs) are caused by a wide variety of bacteria, viruses, and parasites that are transmitted from one person to another primarily by vaginal, anal, or oral sexual contact. Syphilis is a serious disease caused by a sexually transmitted infection. Syphilis is caused by the bacterium Treponema pallidum subspecies pallidum. Treponema pallidum (T. pallidum) is a motile, gram-negative spirochete, which can be transmitted both sexually and from mother to child, and can invade virtually any organ or structure in the human body. The current worldwide prevalence of syphilis emphasizes the need for continued preventive measures and strategies. Unfortunately, effective measures are limited. In this study, we focus on the identification of vaccine targets and putative drugs against syphilis disease using reverse vaccinology and subtractive genomics. We compared 13 strains of T. pallidum using T. pallidum Nichols as the reference genome. Using an in silicoapproach, four pathogenic islands were detected in the genome of T. pallidum Nichols. We identified 15 putative antigenic proteins and sixdrug targets through reverse vaccinology and subtractive genomics, respectively, which can be used as candidate therapeutic targets in the future. PMID:28216574

  19. Identification of novel biomarkers associated with poor patient outcomes in invasive breast carcinoma

    DEFF Research Database (Denmark)

    Canevari, Renata A; Marchi, Fabio A; Domingues, Maria A C

    2016-01-01

    Breast carcinoma (BC) corresponds to 23 % of all cancers in women, with 1.38 million new cases and 460,000 deaths worldwide annually. Despite the significant advances in the identification of molecular markers and different modalities of treatment for primary BC, the ability to predict its metast...

  20. Identification of new cancer biomarkers based on aberrant mucin glycoforms by in situ proximity ligation

    DEFF Research Database (Denmark)

    Pinto, Rita; Carvalho, Ana S; Conze, Tim

    2012-01-01

    Mucin glycoproteins are major secreted or membrane-bound molecules that, in cancer, show modifications in both the mucin proteins expression and in the O-glycosylation profile, generating some of the most relevant tumour markers in clinical use for decades. Thus far, the identification of these b...

  1. Diagnostic cerebrospinal fluid biomarkers for Parkinson's disease: a pathogenetically based approach.

    Science.gov (United States)

    van Dijk, Karin D; Teunissen, Charlotte E; Drukarch, Benjamin; Jimenez, Connie R; Groenewegen, Henk J; Berendse, Henk W; van de Berg, Wilma D J

    2010-09-01

    The inaccuracy of the early diagnosis of Parkinson's disease (PD) has been a major incentive for studies aimed at the identification of biomarkers. Brain-derived cerebrospinal fluid (CSF) proteins are potential biomarkers considering the major role that proteins play in PD pathogenesis. In this review, we discuss the current hypotheses about the pathogenesis of PD and identify the most promising candidate biomarkers among the CSF proteins studied so far. The list of potential markers includes proteins involved in various pathogenetic processes, such as oxidative stress and protein aggregation. This list will undoubtedly grow in the near future by application of CSF proteomics and subsequent validation of identified proteins. Probably a single biomarker will not suffice to reach high sensitivity and specificity, because PD is pathogenetically heterogeneous and shares etiological factors with other neurodegenerative diseases. Furthermore, identified candidate biomarkers will have to be thoroughly validated before they can be implemented as diagnostic aids.

  2. Molecular diversity of volatile compounds in rare willow (Salix spp.) honeydew honey: identification of chemical biomarkers.

    Science.gov (United States)

    Jerković, I; Marijanović, Z; Tuberoso, C I G; Bubalo, D; Kezić, N

    2010-05-01

    Salix spp. honeydew honey volatiles were analyzed for the first time by headspace solid-phase microextraction (HS-SPME) and ultrasonic solvent extraction (USE) followed by gas chromatography and mass spectrometry (GC, GC-MS). The use of HS-SPME and USE had advantageous results over the use of one single technique, as it provided different complementary chromatographic profiles for a comprehensive screening of the honeydew volatile composition. The volatiles with different functionality, molecular weight, and polarity were extracted and identified. High percentages of benzoic acid, phenylacetic acid, 2-hydroxybenzoic acid, 4-hydroxyphenylacetic acid with minor percentages of 4-methoxybenzoic acid, 4-hydroxyphenylethanol, and 4-hydroxybenzoic acid from USE extracts can be emphasized as volatile biomarkers of this honeydew that probably originated from Salix spp., as well as methyl salicylate identified only by HS-SPME. The application of heat treatment at 80 degrees C for 2 h did not change significantly the volatile composition of this honeydew.

  3. Identification of ESM-1 as a new endothelial biomarker in the pathogenesis of rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    Gönül Gürol Ciftci

    2016-05-01

    Full Text Available The aim of this study was to investigate the use of ESM-1 (endothelial cell-specific molecule-1 as a new biomarker for the pathogenesis of rheumatoid arthritis (RA. The study cohort was divided into four groups according to the DAS28 disease activity score: 16 patients were classified as being in remission (DAS28 5.1; 20 healthy subjects were included as a control group. Serum samples were gathered from the patients with documented seropositivity for rheumatoid factor (RF and anti-cyclic citrullinated peptide antibodies in order to assess RF IgM and ESM-1. ESM-1 levels were significantly higher in patients with RA than in healthy subjects (p = 0.035. The data presented here strongly indicate ESM-1 as an attractive target for the treatment of inflammation-related diseases, such as RA.

  4. Identification of a metabolic biomarker panel in rats for prediction of acute and idiosyncratic hepatotoxicity.

    Science.gov (United States)

    Sun, Jinchun; Slavov, Svetoslav; Schnackenberg, Laura K; Ando, Yosuke; Greenhaw, James; Yang, Xi; Salminen, William; Mendrick, Donna L; Beger, Richard

    2014-07-01

    It has been estimated that 10% of acute liver failure is due to "idiosyncratic hepatotoxicity". The inability to identify such compounds with classical preclinical markers of hepatotoxicity has driven the need to discover a mechanism-based biomarker panel for hepatotoxicity. Seven compounds were included in this study: two overt hepatotoxicants (acetaminophen and carbon tetrachloride), two idiosyncratic hepatotoxicants (felbamate and dantrolene), and three non-hepatotoxicants (meloxicam, penicillin and metformin). Male Sprague-Dawley rats were orally gavaged with a single dose of vehicle, low dose or high dose of the compounds. At 6 h and 24 h post-dosing, blood was collected for metabolomics and clinical chemistry analyses, while organs were collected for histopathology analysis. Forty-one metabolites from previous hepatotoxicity studies were semi-quantified and were used to build models to predict hepatotoxicity. The selected metabolites were involved in various pathways, which have been noted to be linked to the underlying mechanisms of hepatotoxicity. PLS models based on all 41 metabolite or smaller subsets of 6 (6 h), 7 (24 h) and 20 (6 h and 24 h) metabolites resulted in models with an accuracy of at least 97.4% for the hold-out test set and 100% for training sets. When applied to the external test sets, the PLS models predicted that 1 of 9 rats at both 6 h and 24 h treated with idiosyncratic liver toxicants was exposed to a hepatotoxic chemical. In conclusion, the biomarker panel might provide information that along with other endpoint data (e.g., transcriptomics and proteomics) may diagnose acute and idiosyncratic hepatotoxicity in a clinical setting.

  5. Identification of miR-194-5p as a potential biomarker for postmenopausal osteoporosis.

    Science.gov (United States)

    Meng, Jia; Zhang, Dapeng; Pan, Nanan; Sun, Ning; Wang, Qiujun; Fan, Jingxue; Zhou, Ping; Zhu, Wenliang; Jiang, Lihong

    2015-01-01

    The incidence of osteoporosis is high in postmenopausal women due to altered estrogen levels and continuous calcium loss that occurs with aging. Recent studies have shown that microRNAs (miRNAs) are involved in the development of osteoporosis. These miRNAs may be used as potential biomarkers to identify women at a high risk for developing the disease. In this study, whole blood samples were collected from 48 postmenopausal Chinese women with osteopenia or osteoporosis and pooled into six groups according to individual T-scores. A miRNA microarray analysis was performed on pooled blood samples to identify potential miRNA biomarkers for postmenopausal osteoporosis. Five miRNAs (miR-130b-3p, -151a-3p, -151b, -194-5p, and -590-5p) were identified in the microarray analysis. These dysregulated miRNAs were subjected to a pathway analysis investigating whether they were involved in regulating osteoporosis-related pathways. Among them, only miR-194-5p was enriched in multiple osteoporosis-related pathways. Enhanced miR-194-5p expression in women with osteoporosis was confirmed by quantitative reverse transcription-polymerase chain reaction analysis. For external validation, a significant correlation between the expression of miR-194-5p and T-scores was found in an independent patient collection comprised of 24 postmenopausal women with normal bone mineral density, 30 postmenopausal women with osteopenia, and 32 postmenopausal women with osteoporosis (p osteoporosis.

  6. Identification of melanoma biomarkers based on network modules by integrating the human signaling network with microarrays

    Directory of Open Access Journals (Sweden)

    Chunyun Huang

    2014-01-01

    Full Text Available Background: Melanoma is a leading cause of cancer death. Thus, accurate prognostic biomarkers that will assist rational treatment planning need to be identified. Methods: Microarray analysis of melanoma and normal tissue samples was performed to identify differentially expressed modules (DEMs from the signaling network and ultimately detect molecular markers to support histological examination. Network motifs were extracted from the human signaling network. Then, significant expression-correlation differential modules were identified by comparing the network module expression-correlation differential scores under normal and disease conditions using the gene expression datasets. Finally, we obtained DEMs by the Wilcoxon rank test and considered the average gene expression level in these modules as the classification features for diagnosing melanoma. Results: In total, 99 functional DEMs were identified from the signaling network and gene expression profiles. The area under the curve scores for cancer module genes, melanoma module genes, and whole network modules are 92.4%, 90.44%, and 88.45%, respectively. The classification efficiency rates for nonmodule features are 71.04% and 79.38%, which correspond to the features of cancer genes and melanoma cancer genes, respectively. Finally, we acquired six significant molecular biomarkers, namely, module 10 (CALM3, Ca 2+ , PKC, PDGFRA, phospholipase-g, PIB5PA, and phosphatidylinositol-3-kinase, module 14 (SRC, Src homology 2 domain-containing [SHC], SAM68, GIT1, transcription factor-4, CBLB, GRB2, VAV2, LCK, YES, PTCH2, downstream of tyrosine kinase [DOK], and KIT, module 16 (ELK3, p85beta, SHC, ZFYVE9, TGFBR1, TGFBR2, CITED1, SH3KBP1, HCK, DOK, and KIT, module 45 (RB, CCND3, CCNA2, CDK4, and CDK6, module 75 (PCNA, CDK4, and CCND1, and module 114 (PSD93, NMDAR, and FYN. Conclusion: We explored the gene expression profile and signaling network in a global view and identified DEMs that can be used as

  7. Identification of biomarkers for cervical cancer in peripheral blood lymphocytes using oligonucleotide microarrays

    Institute of Scientific and Technical Information of China (English)

    SHENG Jie; ZHANG Wei-yuan

    2010-01-01

    Background Oligonucleotide microarrays are increasingly being used to identify gene expression profiles that associated with complex genetic diseases. Peripheral lymphocytes communicate with cells and extracellular matrixes in almost all tissues and organs in human body, suggesting that the gene expression profiles in peripheral lymphocytes may reflect the presence of disease in the body. This study aimed to identify molecular biomarkers for cervical cancer in peripheral blood lymphocytes by using oligonucleotide microarrays.Methods Total RNA was extracted from peripheral blood lymphocytes of 24 early stage cervical cancer patients and 18 healthy controls. We used 22K Human Genome microarrays to profile peripheral blood lymphocytes from 4 early stage cervical cancer patients and compared their gene expression profiles with those from 3 healthy controls. Differentially expressed genes would be identified if they had adjusted P values of less than 0.05 and a groupwise average fold change greater than 1.5 or less than 0.67. Then the selected 5 genes were validated in the remaining 20 early stage cervical cancer patients and the 15 healthy controls by using real-time reverse-transcription polymerase chain reaction (RT-PCR).Results Genes identified by the gene selection program expressed differently between the blood samples of the early stage cervical cancer patients and those of the healthy controls. To validate the gene expression data, 5 genes were analyzed by real-time RT-PCR. In three of the 5 identified genes, tenasin-c (TNC), nuceolin (NCL), and enolase 2 (ENO2) showed a significant up-regulation in the blood samples of the early stage cervical cancer patients versus that of the healthy controls.Conclusions The up-regulation of TNC, NCL, and ENO2 in peripheral blood may be used to identify novel blood biomarkers for detecting cervical cancer in a clinically accessible surrogate tissue, and thus to provide a possibility to develop a noninvasive and predictive

  8. Identification of a metabolic biomarker panel in rats for prediction of acute and idiosyncratic hepatotoxicity

    Directory of Open Access Journals (Sweden)

    Jinchun Sun

    2014-07-01

    Full Text Available It has been estimated that 10% of acute liver failure is due to “idiosyncratic hepatotoxicity”. The inability to identify such compounds with classical preclinical markers of hepatotoxicity has driven the need to discover a mechanism-based biomarker panel for hepatotoxicity. Seven compounds were included in this study: two overt hepatotoxicants (acetaminophen and carbon tetrachloride, two idiosyncratic hepatotoxicants (felbamate and dantrolene, and three non-hepatotoxicants (meloxicam, penicillin and metformin. Male Sprague–Dawley rats were orally gavaged with a single dose of vehicle, low dose or high dose of the compounds. At 6 h and 24 h post-dosing, blood was collected for metabolomics and clinical chemistry analyses, while organs were collected for histopathology analysis. Forty-one metabolites from previous hepatotoxicity studies were semi-quantified and were used to build models to predict hepatotoxicity. The selected metabolites were involved in various pathways, which have been noted to be linked to the underlying mechanisms of hepatotoxicity. PLS models based on all 41 metabolite or smaller subsets of 6 (6 h, 7 (24 h and 20 (6 h and 24 h metabolites resulted in models with an accuracy of at least 97.4% for the hold-out test set and 100% for training sets. When applied to the external test sets, the PLS models predicted that 1 of 9 rats at both 6 h and 24 h treated with idiosyncratic liver toxicants was exposed to a hepatotoxic chemical. In conclusion, the biomarker panel might provide information that along with other endpoint data (e.g., transcriptomics and proteomics may diagnose acute and idiosyncratic hepatotoxicity in a clinical setting.

  9. Identification of Salt Stress Biomarkers in Romanian Carpathian Populations of Picea abies (L. Karst.

    Directory of Open Access Journals (Sweden)

    Sorin T Schiop

    Full Text Available The Norway spruce (Picea abies, the most important tree species in European forests, is relatively sensitive to salt and does not grow in natural saline environments. Yet many trees are actually exposed to salt stress due to the common practice of de-icing of mountain roads in winter, using large amounts of NaCl. To help develop strategies for an appropriate use of reproductive seed material on reforestation sites, ensuring better chances of seedling survival in salt-affected areas, we have studied the responses of young spruce seedlings to salt treatments. The specific aim of the work was to identify the optimal salt stress biomarkers in Picea abies, using as experimental material seedlings obtained by germination of seeds with origin in seven populations from the Romanian Carpathian Mountains. These responses included general, conserved reactions such as the accumulation of ions and different osmolytes in the seedlings needles, reduction in photosynthetic pigments levels, or activation of antioxidant systems. Although changes in the contents of different compounds involved in these reactions can be associated to the degree of stress affecting the plants, we propose that the (decreasing levels of total phenolics or total carotenoids and the (increasing levels of Na+ or K+ ions in Picea abies needles, should be considered as the most reliable and useful biomarkers for salt stress in this species. They all show very high correlation with the intensity of salt stress, independently of the genetic background of the seeds parental population, and relatively easy, quantitative assays are available to determine their concentrations, requiring simple equipment and little amount of plant material.

  10. Identification of Salt Stress Biomarkers in Romanian Carpathian Populations of Picea abies (L.) Karst.

    Science.gov (United States)

    Schiop, Sorin T; Al Hassan, Mohamad; Sestras, Adriana F; Boscaiu, Monica; Sestras, Radu E; Vicente, Oscar

    2015-01-01

    The Norway spruce (Picea abies), the most important tree species in European forests, is relatively sensitive to salt and does not grow in natural saline environments. Yet many trees are actually exposed to salt stress due to the common practice of de-icing of mountain roads in winter, using large amounts of NaCl. To help develop strategies for an appropriate use of reproductive seed material on reforestation sites, ensuring better chances of seedling survival in salt-affected areas, we have studied the responses of young spruce seedlings to salt treatments. The specific aim of the work was to identify the optimal salt stress biomarkers in Picea abies, using as experimental material seedlings obtained by germination of seeds with origin in seven populations from the Romanian Carpathian Mountains. These responses included general, conserved reactions such as the accumulation of ions and different osmolytes in the seedlings needles, reduction in photosynthetic pigments levels, or activation of antioxidant systems. Although changes in the contents of different compounds involved in these reactions can be associated to the degree of stress affecting the plants, we propose that the (decreasing) levels of total phenolics or total carotenoids and the (increasing) levels of Na+ or K+ ions in Picea abies needles, should be considered as the most reliable and useful biomarkers for salt stress in this species. They all show very high correlation with the intensity of salt stress, independently of the genetic background of the seeds parental population, and relatively easy, quantitative assays are available to determine their concentrations, requiring simple equipment and little amount of plant material.

  11. Prognostic Biomarker Identification Through Integrating the Gene Signatures of Hepatocellular Carcinoma Properties

    Directory of Open Access Journals (Sweden)

    Jialin Cai

    2017-05-01

    Full Text Available Many molecular classification and prognostic gene signatures for hepatocellular carcinoma (HCC patients have been established based on genome-wide gene expression profiling; however, their generalizability is unclear. Herein, we systematically assessed the prognostic effects of these gene signatures and identified valuable prognostic biomarkers by integrating these gene signatures. With two independent HCC datasets (GSE14520, N = 242 and GSE54236, N = 78, 30 published gene signatures were evaluated, and 11 were significantly associated with the overall survival (OS of postoperative HCC patients in both datasets. The random survival forest models suggested that the gene signatures were superior to clinical characteristics for predicting the prognosis of the patients. Based on the 11 gene signatures, a functional protein-protein interaction (PPI network with 1406 nodes and 10,135 edges was established. With tissue microarrays of HCC patients (N = 60, we determined the prognostic values of the core genes in the network and found that RAD21, CDK1, and HDAC2 expression levels were negatively associated with OS for HCC patients. The multivariate Cox regression analyses suggested that CDK1 was an independent prognostic factor, which was validated in an independent case cohort (N = 78. In cellular models, inhibition of CDK1 by siRNA or a specific inhibitor, RO-3306, reduced cellular proliferation and viability for HCC cells. These results suggest that the prognostic predictive capacities of these gene signatures are reproducible and that CDK1 is a potential prognostic biomarker or therapeutic target for HCC patients.

  12. Identification of Predictive Early Biomarkers for Sterile-SIRS after Cardiovascular Surgery.

    Directory of Open Access Journals (Sweden)

    Sandra Stoppelkamp

    Full Text Available Systemic inflammatory response syndrome (SIRS is a common complication after cardiovascular surgery that in severe cases can lead to multiple organ dysfunction syndrome and even death. We therefore set out to identify reliable early biomarkers for SIRS in a prospective small patient study for timely intervention. 21 Patients scheduled for planned cardiovascular surgery were recruited in the study, monitored for signs of SIRS and blood samples were taken to investigate biomarkers at pre-assigned time points: day of admission, start of surgery, end of surgery, days 1, 2, 3, 5 and 8 post surgery. Stored plasma and cryopreserved blood samples were analyzed for cytokine expression (IL1β, IL2, IL6, IL8, IL10, TNFα, IFNγ, other pro-inflammatory markers (sCD163, sTREM-1, ESM-1 and response to endotoxin. Acute phase proteins CRP, PCT and pro-inflammatory cytokines IL6 and IL8 were significantly increased (p<0.001 at the end of surgery in all patients but could not distinguish between groups. Normalization of samples revealed significant increases in IL1β changes (p<0.05 and decreased responses to endotoxin (p<0.01 in the SIRS group at the end of surgery. Soluble TREM-1 plasma concentrations were significantly increased in patients with SIRS (p<0.01. This small scale patient study could show that common sepsis markers PCT, CRP, IL6 and TNFα had low predictive value for early diagnosis of SIRS after cardiovascular surgery. A combination of normalized IL1β plasma levels, responses to endotoxin and soluble TREM-1 plasma concentrations at the end of surgery are predictive markers of SIRS development in this small scale study and could act as an indicator for starting early therapeutic interventions.

  13. Genome-wide association study for biomarker identification of Rapamycin and Everolimus using a lymphoblastoid cell line system

    Directory of Open Access Journals (Sweden)

    Jing eJiang

    2013-08-01

    Full Text Available The mammalian target of rapamycin (mTOR inhibitors, a set of promising potential anti-cancer agents, has shown response variability among individuals. This study aimed to identify novel biomarkers and mechanisms that might influence the response to Rapamycin and Everolimus. Genome-wide association (GWA analyses involving single nucleotide polymorphisms (SNPs, mRNA and microRNAs microarray data were assessed for association with area under the cytotoxicity dose response curve (AUC of two mTOR inhibitors in 272 human lymphoblastoid cell lines (LCLs. Integrated analysis among SNPs, expression data, microRNA data and AUC values were also performed to help select candidate genes for further functional characterization. Functional validation of candidate genes using siRNA screening in multiple cell lines followed by MTS assays for the two mTOR inhibitors were performed. We found that 16 expression probe sets (genes that overlapped between the two drugs were associated with AUC values of two mTOR inhibitors. 127 and 100 SNPs had P<10-4, while 8 and 10 SNPs had P<10-5 with Rapamycin and Everolimus AUC, respectively. Functional studies indicated that 13 genes significantly altered cell sensitivity to either one or both drugs in at least one cell line. Additionally, one microRNA, miR-10a, was significantly associated with AUC values for both drugs and was shown to repress expression of genes that were associated with AUC and desensitize cells to both drugs. In summary, this study identified genes and a microRNA that might contribute to response to mTOR inhibitors.

  14. Proteome-scale MDR-TB-antibody responses for identification of putative biomarkers for the diagnosis of drug-resistant Mycobacterium tuberculosis.

    Science.gov (United States)

    Yari, Shamsi; Hadizadeh Tasbiti, Alireza; Ghanei, Mostafa; Siadat, Seyed Davar; Yari, Fatemeh; Bahrmand, A

    2016-12-01

    , specific anti-mycobacterial antibodies, such as MDR-TB antibodies, can be essential tools in the identification of species-restricted antigens, such as drug-resistant TB antigens. The MDR-TB antibodies described here might promote identification of mycobacterial antigens during the course of infection, which could be helpful for the development of newer TB-vaccine candidates or therapeutic agents for improved TB treatment or diagnosis. Copyright © 2016.

  15. Serum albumin and body weight as biomarkers for the antemortem identification of bone and gastrointestinal disease in the common marmoset.

    Science.gov (United States)

    Baxter, Victoria K; Shaw, Gillian C; Sotuyo, Nathaniel P; Carlson, Cathy S; Olson, Erik J; Zink, M Christine; Mankowski, Joseph L; Adams, Robert J; Hutchinson, Eric K; Metcalf Pate, Kelly A

    2013-01-01

    The increasing use of the common marmoset (Callithrix jacchus) in research makes it important to diagnose spontaneous disease that may confound experimental studies. Bone disease and gastrointestinal disease are two major causes of morbidity and mortality in captive marmosets, but currently no effective antemortem tests are available to identify affected animals prior to the terminal stage of disease. In this study we propose that bone disease and gastrointestinal disease are associated disease entities in marmosets and aim to establish the efficacy of several economical antemortem tests in identifying and predicting disease. Tissues from marmosets were examined to define affected animals and unaffected controls. Complete blood count, serum chemistry values, body weight, quantitative radiographs, and tissue-specific biochemical markers were evaluated as candidate biomarkers for disease. Bone and gastrointestinal disease were associated, with marmosets being over seven times more likely to have either concurrent bone and gastrointestinal disease or neither disease as opposed to lesions in only one organ system. When used in tandem, serum albumin disease. Progressive body weight loss of 0.05% of peak body weight per day predicted which marmosets would develop disease prior to the terminal stage. Bone tissue-specific tests, such as quantitative analysis of radiographs and serum parathyroid hormone levels, were effective for distinguishing between marmosets with bone disease and those without. These results provide an avenue for making informed decisions regarding the removal of affected marmosets from studies in a timely manner, preserving the integrity of research results.

  16. Identification of Oxidative Stress Related Proteins as Biomarkers for Lung Cancer and Chronic Obstructive Pulmonary Disease in Bronchoalveolar Lavage

    Directory of Open Access Journals (Sweden)

    Amancio Carnero

    2013-02-01

    Full Text Available Lung cancer (LC and chronic obstructive pulmonary disease (COPD commonly coexist in smokers, and the presence of COPD increases the risk of developing LC. Cigarette smoke causes oxidative stress and an inflammatory response in lung cells, which in turn may be involved in COPD and lung cancer development. The aim of this study was to identify differential proteomic profiles related to oxidative stress response that were potentially involved in these two pathological entities. Protein content was assessed in the bronchoalveolar lavage (BAL of 60 patients classified in four groups: COPD, COPD and LC, LC, and control (neither COPD nor LC. Proteins were separated into spots by two dimensional polyacrylamide gel electrophoresis (2D-PAGE and examined by matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF/TOF. A total of 16 oxidative stress regulatory proteins were differentially expressed in BAL samples from LC and/or COPD patients as compared with the control group. A distinct proteomic reactive oxygen species (ROS protein signature emerged that characterized lung cancer and COPD. In conclusion, our findings highlight the role of the oxidative stress response proteins in the pathogenic pathways of both diseases, and provide new candidate biomarkers and predictive tools for LC and COPD diagnosis.

  17. Differential Proteomics Identification of HSP90 as Potential Serum Biomarker in Hepatocellular Carcinoma by Two-dimensional Electrophoresis and Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Yiyi Sun

    2010-03-01

    Full Text Available The aim of the current study is to identify the potential biomarkers involved in Hepatocellular carcinoma (HCC carcinogenesis. A comparative proteomics approach was utilized to identify the differentially expressed proteins in the serum of 10 HCC patients and 10 controls. A total of 12 significantly altered proteins were identified by mass spectrometry. Of the 12 proteins identified, HSP90 was one of the most significantly altered proteins and its over-expression in the serum of 20 HCC patients was confirmed using ELISA analysis. The observations suggest that HSP90 might be a potential biomarker for early diagnosis, prognosis, and monitoring in the therapy of HCC. This work demonstrates that a comprehensive strategy of proteomic identification combined with further validation should be adopted in the field of cancer biomarker discovery.

  18. Identification of potential biomarkers for gut barrier failure in broiler chickens

    Directory of Open Access Journals (Sweden)

    Juxing eChen

    2015-05-01

    Full Text Available The objective of the present study was to identify potential biomarkers for gut barrier failure in chickens. A total of 144 day-of-hatch Ross 308 male broiler chickens were housed in 24 battery cages with 6 chicks per cage. Cages were randomly assigned to either a control group (CON or gut barrier failure (GBF group. During the first 13 d, birds in CON or GBF groups were fed a common corn-soy starter diet. On d 14, CON chickens were switched to a corn grower diet and GBF chickens were switched to rye-wheat-barley grower diet. In addition, on d 21, GBF chickens were orally challenged with a coccidiosis vaccine. At d 21 and d 28, birds were weighed by cage and feed intake was recorded to calculate feed conversion ratio. At d 28, one chicken from each cage was euthanized to collect intestinal samples for morphometric analysis, blood for serum, and intestinal mucosa scrapings for gene expression. Overall performance and feed efficiency was severely affected (P < 0.05 by a GBF model when compared with CON group at d 21 and d 28. Duodenum of GBF birds had wider villi, longer crypt depth, and higher crypt depth/villi height ratio than CON birds. Similarly, GBF birds had longer crypt depth in jejunum and ileum when compared with CON birds. An increase (P <0.05 in serum endotoxin, α1-acid glycoprotein (AGP, as well as interleukin (IL-8, IL-1β, transforming growth factor (TGF-β4 and fatty-acid-binding protein (FABP 6 mRNA levels were increased in GBF birds compared to CON; however, FABP2 mRNA levels were decreased (P <0.05 in GBF birds compared to CON. Occludin was numerically reduced by 24% (P = 0.107 and mucin 2 (MUC2 was reduced by 29 % (P = 0.088 in GBF birds compared to CON birds. The results from the present study suggest that serum endotoxin and AGP, as well as, gene expression of FABP2, FABP6, IL-8, IL-1β and TGF-β4 in mucosa may work as potential biomarkers for gut barrier health in chickens.

  19. Identification of Blood Let-7e-5p as a Biomarker for Ischemic Stroke

    Science.gov (United States)

    Guo, Yi; Li, Lu; Zhang, Yanwei; Zhou, Li; Yang, Binyao; Wu, Shuang; Zhang, Ying; Xie, Changhui; Li, Shanshan; Cheng, Jinquan

    2016-01-01

    Circulating microRNAs (miRNAs) are emerging as novel disease biomarkers. Using a miRNA microarray, we previously showed that the whole blood level of let-7e-5p was significantly higher in ischemic stroke patients than in control subjects. However, the association between let-7e-5p expression and the occurrence of ischemic stroke remains unknown. In this study, we validated the expression levels of let-7e-5p in two case-control populations using miRNA TaqMan assays and further investigated the potential targets of let-7e-5p. The results suggest that the blood level of let-7e-5p was significantly higher in patients with ischemic stroke than in controls (p<0.05). Higher levels of let-7e-5p were associated with increased occurrence of ischemic stroke (adjusted OR, 1.89; 95% CI, 1.61~2.21, p<0.001) in the combined population. The addition of let-7e-5p to traditional risk factors led to an improvement in the area under the curve, which increased from 0.74 (95% CI, 0.70~0.78) to 0.82 (95% CI, 0.78~0.85), with a net reclassification improvement of 16.76% (p<0.0001) and an integrated discrimination improvement of 0.10 (p<0.0001) for patients with ischemic stroke. Bioinformatics prediction and cell experiments suggested that the expression levels of four genes enriched in the MAPK signaling pathway were down-regulated by let-7e-5p transfection. Specifically, the expression levels of the genes CASP3 and NLK were significantly lower in ischemic stroke patients than in controls and were negatively correlated with let-7e-5p expression. In summary, our study suggests the potential use of blood let-7e-5p as a biomarker for ischemic stroke and indicates its involvement in the related pathomechanism. PMID:27776139

  20. Identification of Matrix Metalloproteinase-2 and 9 as Biomarker of Intrahepatic Cholestasis of Pregnancy.

    Science.gov (United States)

    Chen, Zhong; Shen, Zongji; Hu, Lingqing; Lu, Mudan; Feng, Yizhong

    2017-01-01

    Intrahepatic cholestasis of pregnancy (ICP) is a severe liver disease uniquely occurring during pregnancy. In this study we aimed to identify novel biomarker for the diagnosis of ICP in Chinese population. 50 healthy pregnant women, 50 mild ICP patients and 48 severe ICP patients were enrolled for this study. Liver function tests, including serum total bilirubin, direct bilirubin, alanine transaminase, aspartate aminotransferase and cholyglycine, were performed in all participants. After an overnight fast serum levels of total bile acids (TBA), matrix metalloproteinase (MMP)-2 and MMP-9 were measured, and their correlation with liver function tests were analyzed. The observed increase in serum TBA in ICP patients was not statistically significant which made it unreliable for diagnosis of ICP in Chinese population. On the other hand, both MMP-2 and MMP-9 serum levels exhibited a progressive and significant elevation in mild and severe ICP patients compared with healthy pregnant women, which also positively correlated with liver function tests. Serum levels of both MMP-2 and MMP-9 could be reliably used as laboratory abnormalities for accurate diagnosis and sensitive grading of ICP in Chinese population.

  1. Identification and Validation of PCAT14 as Prognostic Biomarker in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Sudhanshu Shukla

    2016-08-01

    Full Text Available Rapid advances in the discovery of long noncoding RNAs (lncRNAs have identified lineage- and cancer-specific biomarkers that may be relevant in the clinical management of prostate cancer (PCa. Here we assembled and analyzed a large RNA-seq dataset, from 585 patient samples, including benign prostate tissue and both localized and metastatic PCa to discover and validate differentially expressed genes associated with disease aggressiveness. We performed Sample Set Enrichment Analysis (SSEA and identified genes associated with low versus high Gleason score in the RNA-seq database. Comparing Gleason 6 versus 9+ PCa samples, we identified 99 differentially expressed genes with variable association to Gleason grade as well as robust expression in prostate cancer. The top-ranked novel lncRNA PCAT14, exhibits both cancer and lineage specificity. On multivariate analysis, low PCAT14 expression independently predicts for BPFS (P = .00126, PSS (P = .0385, and MFS (P = .000609, with trends for OS as well (P = .056. An RNA in-situ hybridization (ISH assay for PCAT14 distinguished benign vs malignant cases, as well as high vs low Gleason disease. PCAT14 is transcriptionally regulated by AR, and endogenous PCAT14 overexpression suppresses cell invasion. Thus, Using RNA-sequencing data we identify PCAT14, a novel prostate cancer and lineage-specific lncRNA. PCAT14 is highly expressed in low grade disease and loss of PCAT14 predicts for disease aggressiveness and recurrence.

  2. Identification of new biomarkers for human papillary thyroid carcinoma employing NanoString analysis.

    Science.gov (United States)

    Chitikova, Zhanna; Pusztaszeri, Marc; Makhlouf, Anne-Marie; Berczy, Margaret; Delucinge-Vivier, Celine; Triponez, Frederic; Meyer, Patrick; Philippe, Jacques; Dibner, Charna

    2015-05-10

    We previously reported an upregulation of the clock transcript BMAL1, correlating with TIMP1 expression in fresh-frozen samples from papillary thyroid carcinoma (PTC). Since frozen postoperative biopsy samples are difficult to obtain, we aimed to validate the application of high-precision NanoString analysis for formalin-fixed paraffin-embedded (FFPE) thyroid nodule samples and to screen for potential biomarkers associated with PTC. No significant differences were detected between fresh-frozen and FFPE samples. NanoString analysis of 51 transcripts in 17 PTC and 17 benign nodule samples obtained from different donors and in 24 pairs of benign and PTC nodules, obtained from the same donor (multinodular goiters), confirmed significant alterations in the levels of BMAL1, c-MET, c-KIT, TIMP1, and other transcripts. Moreover, we identified for the first time alterations in CHEK1 and BCL2 levels in PTC. A predictive score was established for each sample, based on the combined expression levels of BMAL1, CHEK1, c-MET, c-KIT and TIMP1. In combination with BRAF mutation analysis, this predictive score closely correlated with the clinicopathological characteristics of the analyzed thyroid nodules. Our study identified new thyroid transcripts with altered levels in PTC using the NanoString approach. A predictive score correlation coefficient might contribute to improve the preoperative diagnosis of thyroid nodules.

  3. Biomarker identification and pathway analysis by serum metabolomics of childhood acute lymphoblastic leukemia.

    Science.gov (United States)

    Bai, Yunnuo; Zhang, Haitao; Sun, Xiaohan; Sun, Changhao; Ren, Lihong

    2014-09-25

    Acute lymphoblastic leukemia (ALL) is a common hematological malignant neoplasm that typically affects children. Although intense chemotherapeutic regimens have been useful to combat the disease, approximately 20% of patients will relapse despite treatment. Diagnosing ALL requires bone marrow puncture procedure, which many parents do not consent to for it is invasive. Additionally, metabolic alterations associated with the disease are unclear. Metabolic alterations associated with ALL were investigated by performing serum metabolomics based on ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry and multivariate statistical analysis. Ingenuity Pathways Analysis (IPA) was also performed. Thirty metabolites (17 detected in positive mode and 13 in negative mode) were differentially expressed between patients with ALL and control patients; these metabolites were selected as potential biomarkers. Based on IPA analysis, glycerophospholipid metabolism is deregulated in patients with ALL and may represent an underlying metabolic pathway associated with disease progression. Metabolomics can be used to analyze the metabolic activity of ALL patients compared to healthy controls. The data we provide here suggest that glycerophospholipid metabolism may be a key mechanism underlying disease progression and development. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Transgenerational actions of environmental compounds on reproductive disease and identification of epigenetic biomarkers of ancestral exposures.

    Directory of Open Access Journals (Sweden)

    Mohan Manikkam

    Full Text Available Environmental factors during fetal development can induce a permanent epigenetic change in the germ line (sperm that then transmits epigenetic transgenerational inheritance of adult-onset disease in the absence of any subsequent exposure. The epigenetic transgenerational actions of various environmental compounds and relevant mixtures were investigated with the use of a pesticide mixture (permethrin and insect repellant DEET, a plastic mixture (bisphenol A and phthalates, dioxin (TCDD and a hydrocarbon mixture (jet fuel, JP8. After transient exposure of F0 gestating female rats during the period of embryonic gonadal sex determination, the subsequent F1-F3 generations were obtained in the absence of any environmental exposure. The effects on the F1, F2 and F3 generations pubertal onset and gonadal function were assessed. The plastics, dioxin and jet fuel were found to promote early-onset female puberty transgenerationally (F3 generation. Spermatogenic cell apoptosis was affected transgenerationally. Ovarian primordial follicle pool size was significantly decreased with all treatments transgenerationally. Differential DNA methylation of the F3 generation sperm promoter epigenome was examined. Differential DNA methylation regions (DMR were identified in the sperm of all exposure lineage males and found to be consistent within a specific exposure lineage, but different between the exposures. Several genomic features of the DMR, such as low density CpG content, were identified. Exposure-specific epigenetic biomarkers were identified that may allow for the assessment of ancestral environmental exposures associated with adult onset disease.

  5. Nutriproteomics: technologies and applications for identification and quantification of biomarkers and ingredients.

    Science.gov (United States)

    Sénéchal, Sandra; Kussmann, Martin

    2011-08-01

    Nutrition refers to the process by which a living organism ingests and digests food and uses the nutrients therein for growth, tissue maintenance and all other functions essential to life. Food components interact with our body at molecular, cellular, organ and system level. Nutrients come in complex mixtures, in which the presence and concentration of single compounds as well as their interactions with other compounds and the food matrix influence their bioavailability and bioefficacy. Traditionally, nutrition research mainly concentrated on supplying nutrients of quality to nourish populations and on preventing specific nutrient deficiencies. More recently, it investigates health-related aspects of individual ingredients or of complete diets, in view of health promotion, performance optimisation, disease prevention and risk assessment. This review focuses on proteins and peptides, their role as nutrients and biomarkers and on the technologies developed for their analysis. In the first part of this review, we provide insights into the way proteins are currently characterised and analysed using classical and emerging proteomic approaches. The scope of the second part is to review major applications of proteomics to nutrition, from characterisation of food proteins and peptides, via investigation of health-related food benefits to understanding disease-related mechanisms.

  6. Metabolomic Profiling for Identification of Novel Potential Biomarkers in Cardiovascular Diseases

    Directory of Open Access Journals (Sweden)

    Maria G. Barderas

    2011-01-01

    Full Text Available Metabolomics involves the identification and quantification of metabolites present in a biological system. Three different approaches can be used: metabolomic fingerprinting, metabolic profiling, and metabolic footprinting, in order to evaluate the clinical course of a disease, patient recovery, changes in response to surgical intervention or pharmacological treatment, as well as other associated features. Characteristic patterns of metabolites can be revealed that broaden our understanding of a particular disorder. In the present paper, common strategies and analytical techniques used in metabolomic studies are reviewed, particularly with reference to the cardiovascular field.

  7. Evaluation and identification of dioxin exposure biomarkers in human urine by high-resolution metabolomics, multivariate analysis and in vitro synthesis.

    Science.gov (United States)

    Jeanneret, Fabienne; Tonoli, David; Hochstrasser, Denis; Saurat, Jean-Hilaire; Sorg, Olivier; Boccard, Julien; Rudaz, Serge

    2016-01-05

    A previous high-resolution metabolomic study pointed out a dysregulation of urinary steroids and bile acids in human cases of acute dioxin exposure. A subset of 24 compounds was highlighted as putative biomarkers. The aim of the current study was (i) to evaluate the 24 biomarkers in an independent human cohort exposed to dioxins released from the incineration fumes of a municipal waste incinerator and; (ii) to identify them by comparison with authentic chemical standards and biosynthesised products obtained with in vitro metabolic reactions. An orthogonal projection to latent structures discriminant analysis built on biomarker profiles measured in the intoxicated cohort and the controls separated both groups with reported values of 93.8%; 100% and 87.5% for global accuracy; sensitivity and specificity; respectively. These results corroborated the 24 compounds as exposure biomarkers; but a definite identification was necessary for a better understanding of dioxin toxicity. Dehydroepiandrosterone 3β-sulfate, androsterone 3α-glucuronide, androsterone 3α-sulfate, pregnanediol 3α-glucuronide and 11-ketoetiocholanolone 3α-glucuronide were identified by authentic standards. Metabolic reactions characterised four biomarkers: glucuronide conjugates of 11β-hydroxyandrosterone; glycochenodeoxycholic acid and glycocholic acid produced in human liver microsomes and glycoursodeoxycholic acid sulfate generated in cytosol fraction. The combination of metabolomics by high-resolution mass spectrometry with in vitro metabolic syntheses confirmed a perturbed profile of steroids and bile acids in human cases of dioxin exposure.

  8. Development of fatty acid biomarkers for the identification of wild and aquacultured sea cucumber ( Apostichopus japonicus)

    Science.gov (United States)

    Zadorozhnyj, P. A.; Pivnenko, T. N.; Kovalev, N. N.

    2016-02-01

    In this study, the fatty acids (FAs) of the organs and tissues of sea cucumber ( Apostichopus japonicus) were profiled in order to compare the FA composition of sea cucumber collected from natural habitat (wild) and cages (cultured). The differences in FA contents in dermomuscular tube, peripharyngeal annulus, gonad and intestine (with or without content) between the wild and the cultured were determined. The main fatty acids in all organs and tissues were 20:5n-3, 16:1n-7, 20:4n-6, 22:6n-3, 18:0, and 18:1n-7. The basically different FAs of body wall and digestive tube were 16:1n-7, 18:1n-9 and 20:1n-11. The ratio of saturated to mono- and polyunsaturated FAs in digestive tube was independent on inside content while there was a redistribution of the total amount of n-3 and n-6 fatty acids. The comparison of FA composition of the wild and the cultured sea cucumber showed that 20:5n-3, 16:1n-7 and 18:1n-7 predominated the wild while 20:4n-6 predominated the cultured. The content of branched-chain fatty acids in the wild was 3%-4% and about 9% in the cultured. The possible FAs for identifying the wild and the cultured sea cucumbers were selected. It was suggested that the indexes such as the ratio of either (n-3:n-6) to (n-7:n-6) or (n-3) + (n-7) to (n-6) may serve as the biomarkers distinguishing the wild and the cultured sea cucumber.

  9. Early energy deficit in Huntington disease: identification of a plasma biomarker traceable during disease progression.

    Directory of Open Access Journals (Sweden)

    Fanny Mochel

    Full Text Available Huntington disease (HD is a fatal neurodegenerative disorder, with no effective treatment. The pathogenic mechanisms underlying HD has not been elucidated, but weight loss, associated with chorea and cognitive decline, is a characteristic feature of the disease that is accessible to investigation. We, therefore, performed a multiparametric study exploring body weight and the mechanisms of its loss in 32 presymptomatic carriers and HD patients in the early stages of the disease, compared to 21 controls. We combined this study with a multivariate statistical analysis of plasma components quantified by proton nuclear magnetic resonance ((1H NMR spectroscopy. We report evidence of an early hypermetabolic state in HD. Weight loss was observed in the HD group even in presymptomatic carriers, although their caloric intake was higher than that of controls. Inflammatory processes and primary hormonal dysfunction were excluded. (1H NMR spectroscopy on plasma did, however, distinguish HD patients at different stages of the disease and presymptomatic carriers from controls. This distinction was attributable to low levels of the branched chain amino acids (BCAA, valine, leucine and isoleucine. BCAA levels were correlated with weight loss and, importantly, with disease progression and abnormal triplet repeat expansion size in the HD1 gene. Levels of IGF1, which is regulated by BCAA, were also significantly lower in the HD group. Therefore, early weight loss in HD is associated with a systemic metabolic defect, and BCAA levels may be used as a biomarker, indicative of disease onset and early progression. The decreased plasma levels of BCAA may correspond to a critical need for Krebs cycle energy substrates in the brain that increased metabolism in the periphery is trying to provide.

  10. Identification of serum biomarkers for occupational medicamentosa-like dermatitis induced by trichloroethylene using mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Wen-Xu; Liu, Wei [Key Laboratory of Modern Toxicology of Shenzhen, Medical Key Laboratory of Guangdong Province, Medical Key Laboratory of Health Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055 (China); Zhang, Yanfang [Shenzhen Prevention and Treatment Center for Occupational Disease, Shenzhen 518001 (China); Huang, Peiwu; Yang, Xifei; Ren, Xiaohu; Ye, Jinbo; Huang, Haiyan [Key Laboratory of Modern Toxicology of Shenzhen, Medical Key Laboratory of Guangdong Province, Medical Key Laboratory of Health Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055 (China); Tang, Haiyan [Shenzhen Prevention and Treatment Center for Occupational Disease, Shenzhen 518001 (China); Zhou, Guifeng [Medical School of Hunan Normal University, Changsha 410006 (China); Huang, Xinfeng; Zhuang, Zhixiong [Key Laboratory of Modern Toxicology of Shenzhen, Medical Key Laboratory of Guangdong Province, Medical Key Laboratory of Health Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055 (China); Liu, Jianjun, E-mail: bio-research@hotmail.com [Key Laboratory of Modern Toxicology of Shenzhen, Medical Key Laboratory of Guangdong Province, Medical Key Laboratory of Health Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055 (China)

    2013-11-15

    Occupational medicamentosa-like dermatitis induced by trichloroethylene (OMLDT) is an autoimmune disease and it has become a serious occupational health hazard. In the present study, we collected fasting blood samples from patients with OMLDT (n = 18) and healthy volunteers (n = 33) to explore serum peptidome patterns. Peptides in sera were purified using weak cation exchange magnetic beads (MB-WCX), and analyzed by matrix-assisted laser desorption ionization time-of-flight-mass spectrometry (MALDI-TOF-MS) and ClinProTools bioinformatics software. The intensities of thirty protein/peptide peaks were significantly different between the healthy control and OMLDT patients. A pattern of three peaks (m/z 2106.3, 2134.5, and 3263.67) was selected for supervised neural network (SNN) model building to separate the OMLDT patients from the healthy controls with a sensitivity of 95.5% and a specificity of 73.8%. Furthermore, two peptide peaks of m/z 4091.61 and 4281.69 were identified as fragments of ATP-binding cassette transporter family A member 12 (ABCA12), and cationic trypsinogen (PRRS1), respectively. Our findings not only show that specific proteomic fingerprints in the sera of OMLDT patients can be served as a differentiated tool of OMLDT patients with high sensitivity and high specificity, but also reveal the novel correlation between OMLDT with ABC transports and PRRS1, which will be of potential value for clinical and mechanistic studies of OMLDT. - Highlights: • Identify 30 differential protein/peptide peaks between OMLDT and healthy control • The test sensitivity and test specificity were 95.5% and 73.8%, respectively. • ABCA12 and PRSS1 were identified as potential biomarkers in OMLDT patients.

  11. Identification of early biomarkers during acetaminophen-induced hepatotoxicity by fourier transform infrared microspectroscopy.

    Directory of Open Access Journals (Sweden)

    Rekha Gautam

    Full Text Available Acetaminophen is a widely prescribed drug used to relieve pain and fever; however, it is a leading cause of drug-induced liver injury and a burden on public healthcare. In this study, hepatotoxicity in mice post oral dosing of acetaminophen was investigated using liver and sera samples with Fourier Transform Infrared microspectroscopy. The infrared spectra of acetaminophen treated livers in BALB/c mice show decrease in glycogen, increase in amounts of cholesteryl esters and DNA respectively. Rescue experiments using L-methionine demonstrate that depletion in glycogen and increase in DNA are abrogated with pre-treatment, but not post-treatment, with L-methionine. This indicates that changes in glycogen and DNA are more sensitive to the rapid depletion of glutathione. Importantly, analysis of sera identified lowering of glycogen and increase in DNA and chlolesteryl esters earlier than increase in alanine aminotransferase, which is routinely used to diagnose liver damage. In addition, these changes are also observed in C57BL/6 and Nos2(-/- mice. There is no difference in the kinetics of expression of these three molecules in both strains of mice, the extent of damage is similar and corroborated with ALT and histological analysis. Quantification of cytokines in sera showed increase upon APAP treatment. Although the levels of Tnfα and Ifnγ in sera are not significantly affected, Nos2(-/- mice display lower Il6 but higher Il10 levels during this acute model of hepatotoxicity. Overall, this study reinforces the growing potential of Fourier Transform Infrared microspectroscopy as a fast, highly sensitive and label-free technique for non-invasive diagnosis of liver damage. The combination of Fourier Transform Infrared microspectroscopy and cytokine analysis is a powerful tool to identify multiple biomarkers, understand differential host responses and evaluate therapeutic regimens during liver damage and, possibly, other diseases.

  12. Identification of circulating microRNAs as potential biomarkers for detecting acute myeloid leukemia.

    Directory of Open Access Journals (Sweden)

    Feng Zhi

    Full Text Available Acute myeloid leukemia (AML is the most common acute leukemia in adults. The disease is characterized by various cytogenetic and molecular abnormalities with distinct prognoses and gene expression profiles. Emerging evidence has suggested that circulating microRNAs (miRNAs could serve as noninvasive biomarkers for cancer detection; however, little is known about circulating miRNA profiles in AML patients. In this study, a genome-wide serum miRNA expression analysis was performed using Solexa sequencing for initial screen, followed by validation with real-time PCR assays. The analysis was conducted on training and verification sets of serum samples from 140 newly diagnosed AML patients and 135 normal adult donors. After a two-phase selection and validation process, 6 miRNAs, miR-10a-5p, miR-93-5p, miR-129-5p, miR-155-5p, miR-181b-5p and miR-320d, were found to have significantly different expression levels in AML compared with control serum samples. Furthermore, unsupervised clustering analysis revealed the remarkable ability of the 6-miRNA profile to differentiate between AML patients and normal controls. The areas under the ROC curve for the selected miRNAs ranged from 0.8129 to 0.9531. More importantly, miR-181b-5p levels in serum were significantly associated with overall survival. These data demonstrated that the expression patterns of circulating miRNAs were systematically altered in AML and miR-181b-5p may serve as a predictor for overall survival in AML patients.

  13. Comprehensive proteomic analysis of bovine spermatozoa of varying fertility rates and identification of biomarkers associated with fertility

    Directory of Open Access Journals (Sweden)

    Kaya Abdullah

    2008-02-01

    Full Text Available Abstract Background Male infertility is a major problem for mammalian reproduction. However, molecular details including the underlying mechanisms of male fertility are still not known. A thorough understanding of these mechanisms is essential for obtaining consistently high reproductive efficiency and to ensure lower cost and time-loss by breeder. Results Using high and low fertility bull spermatozoa, here we employed differential detergent fractionation multidimensional protein identification technology (DDF-Mud PIT and identified 125 putative biomarkers of fertility. We next used quantitative Systems Biology modeling and canonical protein interaction pathways and networks to show that high fertility spermatozoa differ from low fertility spermatozoa in four main ways. Compared to sperm from low fertility bulls, sperm from high fertility bulls have higher expression of proteins involved in: energy metabolism, cell communication, spermatogenesis, and cell motility. Our data also suggests a hypothesis that low fertility sperm DNA integrity may be compromised because cell cycle: G2/M DNA damage checkpoint regulation was most significant signaling pathway identified in low fertility spermatozoa. Conclusion This is the first comprehensive description of the bovine spermatozoa proteome. Comparative proteomic analysis of high fertility and low fertility bulls, in the context of protein interaction networks identified putative molecular markers associated with high fertility phenotype.

  14. Application of quantitative proteomic analysis using tandem mass tags for discovery and identification of novel biomarkers in periodontal disease.

    Science.gov (United States)

    Tsuchida, Sachio; Satoh, Mamoru; Kawashima, Yusuke; Sogawa, Kazuyuki; Kado, Sayaka; Sawai, Setsu; Nishimura, Motoi; Ogita, Mayumi; Takeuchi, Yasuo; Kobyashi, Hiroaki; Aoki, Akira; Kodera, Yoshio; Matsushita, Kazuyuki; Izumi, Yuichi; Nomura, Fumio

    2013-08-01

    Periodontal disease is a bacterial infection that destroys the gingiva and surrounding tissues of the oral cavity. Gingival crevicular fluid (GCF) is extracted from the gingival sulcus and pocket. Analysis of biochemical markers in GCF, which predict the progression of periodontal disease, may facilitate disease diagnosis. However, no useful GCF biochemical markers with high sensitivity for detecting periodontal disease have been identified. Thus, the search for biochemical markers of periodontal disease is of continued interest in experimental and clinical periodontal disease research. Using tandem mass tag (TMT) labeling, we analyzed GCF samples from healthy subjects and patients with periodontal disease, and identified a total of 619 GCF proteins based on proteomic analysis. Of these, we focused on two proteins, matrix metalloproteinase (MMP)-9 and neutrophil gelatinase-associated lipocalin (LCN2), which are involved in the progression of periodontal disease. Western blot analysis revealed that the levels of MMP-9 and LCN2 were significantly higher in patients with periodontal disease than in healthy subjects. In addition, ELISA also detected significantly higher levels of LCN2 in patients with periodontal disease than in healthy subjects. Thus, LC-MS/MS analyses of GCF using TMT labeling led to the identification of LCN2, which may be a promising GCF biomarker for the detection of periodontal disease.

  15. Enrichment of an in vivo phage display repertoire by subtraction for easy identification of pathology biomarkers

    Directory of Open Access Journals (Sweden)

    karina Vargas Sanchez

    2015-03-01

    Conclusion. This physical subtraction discarded from a complex repertoire the non-specific selected ligands. STRATEGY 1 Three rounds of in vivo phage peptide selection in EAE female Lewis rats ("EAE repertoire" vs controls ("HEALTHY repertoire". 2 DNA subtraction of the most common sequences between «HEALTHY» and «EAE» phage repertoires to obtain a third EAE specific «SUBTRACTION » phage repertoire. 3 Massive sequencing of the three repertoires and bioinformatic analysis to identify the peptides sequences with high EAE specificity. 4 Biological tests of potential EAE specific phage clones with CNS tissues from EAE and Healthy control rats. 5 Biological tests of the EAE specific peptide and phage clones on the BBB in vitro model (hCMEC/D3 cells under inflammatory conditions (IL-1β stimulation. 6 Target separation and identification by cross-link between the selected phage clones and hMEC/D3 endothelial cells targets under IL-1β stimulation vs controls.

  16. Biomarkers identification in Alzheimer’s disease using effective connectivity analysis from electroencephalography recordings

    Directory of Open Access Journals (Sweden)

    Jazmín X. Suárez-Revelo

    2016-09-01

    Full Text Available Alzheimer’s disease (AD is the most common cause of dementia, which generally affects people over 65 years old. Some genetic mutations induce early onset of AD and help to track the evolution of the symptoms and the physiological changes at different stages of the disease. In Colombia there is a large family group with the PSEN1 E280A mutation with a median age of 46,8 years old for onset of symptoms. AD has been defined as a disconnection syndrome; consequently, network approaches could help to capture different features of the disease. The aim of the current work is to identify a biomarker in AD that helps in the tracking of the neurodegenerative process. Electroencephalography (EEG was recorded during the encoding of visual information for four groups of individuals: asymptomatic and mild cognitive impairment carriers of the PSEN1 E280A mutation, and two non-carrier control groups. For each individual, the effective connectivity was estimated using the direct Directed Transfer Function and three measurements from graph theory were extracted: input strength, output strength and total strength. A relation between the cognitive status and age of the participants with the connectivity features was calculated. For those connectivity measures in which there is a relation with the age or the clinical scale, the performance as a diagnostic feature was evaluated. We found that output strength connectivity in the right occipito-parietal region is related to age of the carrier groups (r=−0,54, p=0,0036 and has a high sensitivity and high specificity to distinguish between carriers and non-carriers (67% sensitivity and 80% specificity in asymptomatic cases, and 83% sensitivity and 67% specificity in symptomatic cases. This relationship indicates that output strength connectivity could be related to the neurodegenerative process of the disease and could help to track the conversion from the asymptomatic stage to dementia.

  17. The identification and characterization of novel N-glycan-based biomarkers in gastric cancer.

    Directory of Open Access Journals (Sweden)

    Long Liu

    Full Text Available BACKGROUND AND AIMS: To identify and validate N-glycan biomarkers in gastric cancer (GC and to elucidate their underlying molecular mechanism of action. METHODS: In total, 347 individuals, including patients with GC (gastric cancer or atrophic gastritis and healthy controls, were randomly divided into a training group (n=287 and a retrospective validation group (n=60. Serum N-glycan profiling was achieved with DNA sequencer-assisted/fluorophore-assisted carbohydrate electrophoresis (DSA-FACE. Two diagnostic models were constructed based on the N-glycan profiles using logistic stepwise regression. The diagnostic performance of each model was assessed in retrospective, prospective (n=60, and follow-up (n=40 cohorts. Lectin blotting was performed to determine total core-fucosylation, and the expression of genes involved in core-fucosylation in GC was analyzed by reverse transcriptase-polymerase chain reaction. RESULTS: We identified at least 9 N-glycan structures (peaks and the levels of core fucose residues and fucosyltransferase were significantly decreased in GC. Two diagnostic models, designated GCglycoA and GCglycoB, were constructed to differentiate GC from control and atrophic gastritis. The areas under the receiver operating characteristic (ROC curves (AUC for both GCglycoA and GCglycoB were higher than those for CEA, CA19-9, CA125 and CA72-4. Compared with CEA, CA19-9, CA125 and CA72-4, the sensitivity of GCglycoA increased 29.66%, 37.28%, 56.78% and 61.86%, respectively, and the accuracy increased 10.62%, 16.82%, 25.67% and 28.76%, respectively. For GCglycoB, the sensitivity increased 27.97%, 35.59%, 55.09% and 60.17% and the accuracy increased 21.26%, 24.64%, 31.40% and 34.30% compared with CEA, CA19-9, CA125 and CA72-4, respectively. After curative surgery, the core fucosylated peak (peak 3 and the total core fucosylated N-glycans (sumfuc were reversed. CONCLUSIONS: The results indicated that the diagnostic models based on N

  18. Identification of probable early-onset biomarkers for tuberculosis disease progression.

    Directory of Open Access Journals (Sweden)

    Jayne S Sutherland

    Full Text Available Determining what constitutes protective immunity to TB is critical for the development of improved diagnostics and vaccines. The comparison of the immune system between contacts of TB patients, who later develop TB disease (progressors, versus contacts who remain healthy (non-progressors, allows for identification of predictive markers of TB disease. This study provides the first comprehensive analysis of the immune system of progressors and non-progressors using a well-characterised TB case-contact (TBCC platform in The Gambia, West Africa. 22 progressors and 31 non-progressors were analysed at recruitment, 3 months and 18 months (time to progression: median[IQR] of 507[187-714] days. Immunophenotyping of PBMC, plasma cytokine levels and RT-MLPA analysis of whole blood-derived RNA was performed to capture key immune system parameters. At recruitment, progressors had lower PBMC proportions of CD4+ T cells, NKT cells and B cells relative to non-progressors. Analysis of the plasma showed higher levels of IL-18 in progressors compared to non-progressors and analysis of the RNA showed significantly lower gene expression of Bcl2 but higher CCR7 in progressors compared to non-progressors. This study shows several markers that may predict the onset of active TB at a very early stage after infection. Once these markers have been validated in larger studies, they provide avenues to prospectively identify people at risk of developing TB, a key issue in the testing of new TB vaccines.

  19. Identification of four potential predicting miRNA biomarkers for multiple myeloma from published datasets

    Science.gov (United States)

    Sun, Peng; Liu, Gao

    2017-01-01

    Background Multiple myeloma is a cancer which has a high occurrence rate and causes great injury to people worldwide. In recent years, many studies reported the effects of miRNA on the appearance of multiple myeloma. However, due to the differences of samples and sequencing platforms, a large number of inconsistent results have been generated among these studies, which limited the cure of multiple myeloma at the miRNA level. Methods We performed meta-analyses to identify the key miRNA biomarkers which could be applied on the treatment of multiple myeloma. The key miRNAs were determined by overlap comparisons of seven datasets in multiple myeloma. Then, the target genes for key miRNAs were predicted by the software TargetScan. Additionally, functional enrichments and binding TFs were investigated by DAVID database and Tfacts database, respectively. Results Firstly, comparing the normal tissues, 13 miRNAs were differently expressed miRNAs (DEMs) for at least three datasets. They were considered as key miRNAs, with 12 up-regulated (hsa-miR-106b, hsa-miR-125b, hsa-miR-130b, hsa-miR-138, hsa-miR-15b, hsa-miR-181a, hsa-miR-183, hsa-miR-191, hsa-miR-19a, hsa-miR-20a, hsa-miR-221 and hsa-miR-25) and one down-regulated (hsa-miR-223). Secondly, functional enrichment analyses indicated that target genes of the upregulated miRNAs were mainly transcript factors and enriched in transcription regulation. Besides, these genes were enriched in multiple pathways: the cancer signal pathway, insulin signal metabolic pathway, cell binding molecules, melanin generation, long-term regression and P53 signaling pathway. However, no significant enrichment was found for target genes of the down-regulated genes. Due to the distinct regulation function, four miRNAs (hsa-miR-19a has-miR-221 has-miR25 and has-miR223) were ascertained as the potential prognostic and diagnostic markers in MM. Thirdly, transcript factors analysis unveiled that there were 148 TFs and 60 TFs which bind target genes

  20. Steroid Biomarkers Revisited – Improved Source Identification of Faecal Remains in Archaeological Soil Material

    Science.gov (United States)

    Prost, Katharina; Birk, Jago Jonathan; Lehndorff, Eva; Gerlach, Renate; Amelung, Wulf

    2017-01-01

    Steroids are used as faecal markers in environmental and in archaeological studies, because they provide insights into ancient agricultural practices and the former presence of animals. Up to now, steroid analyses could only identify and distinguish between herbivore, pig, and human faecal matter and their residues in soils and sediments. We hypothesized that a finer differentiation between faeces of different livestock animals could be achieved when the analyses of several steroids is combined (Δ5-sterols, 5α-stanols, 5β-stanols, epi-5β-stanols, stanones, and bile acids). We therefore reviewed the existing literature on various faecal steroids from livestock and humans and analysed faeces from old livestock breed (cattle, horse, donkey, sheep, goat, goose, and pig) and humans. Additionally, we performed steroid analyses on soil material of four different archaeological periods (sites located in the Lower Rhine Basin, Western Germany, dating to the Linearbandkeramik, Urnfield Period / Bronze Age, Iron Age, Roman Age) with known or supposed faecal inputs. By means of already established and newly applied steroid ratios of the analysed faeces together with results from the literature, all considered livestock faeces, except sheep and cattle, could be distinguished on the basis of their steroid signatures. Most remarkably was the identification of horse faeces (via the ratio: epi-5β-stigmastanol: 5β-stigmastanol + epicoprostanol: coprostanol; together with the presence of chenodeoxycholic acid) and a successful differentiation between goat (with chenodeoxycholic acid) and sheep/cattle faeces (without chenodeoxycholic acid). The steroid analysis of archaeological soil material confirmed the supposed faecal inputs, even if these inputs had occurred several thousand years ago. PMID:28060808

  1. Identification of Predictive DNA Methylation Biomarkers for Chemotherapy Response in Colorectal Cancer

    Science.gov (United States)

    Baharudin, Rashidah; Ab Mutalib, Nurul-Syakima; Othman, Sri N.; Sagap, Ismail; Rose, Isa M.; Mohd Mokhtar, Norfilza; Jamal, Rahman

    2017-01-01

    Resistance to 5-Fluorouracil (5-FU) is a major obstacle to the successful treatment of colorectal cancer (CRC) and posed an increased risk of recurrence. DNA methylation has been suggested as one of the underlying mechanisms for recurrent disease and its contribution to the development of drug resistance remains to be clarified. This study aimed to determine the methylation phenotype in CRC for identification of predictive markers for chemotherapy response. We performed DNA methylation profiling on 43 non-recurrent and five recurrent CRC patients using the Illumina Infinium HumanMethylation450 Beadchip assay. In addition, CRC cells with different genetic backgrounds, response to 5-FU and global methylation levels (HT29 and SW48) were treated with 5-FU and DNA methylation inhibitor 5-aza-2′-deoxycytidine (5-azadC). The singular and combined effects of these two drug classes on cell viability and global methylation profiles were investigated. Our genome-wide methylation study on the clinical specimens showed that recurrent CRCs exhibited higher methylation levels compared to non-recurrent CRCs. We identified 4787 significantly differentially methylated genes (P < 0.05); 3112 genes were hyper- while 1675 genes were hypomethylated in the recurrent group compared to the non-recurrent. Fifty eight and 47 of the significantly hypermethylated and hypomethylated genes have an absolute recurrent/non-recurrent methylation difference of ≥20%. Most of the hypermethylated genes were involved in the MAPK signaling pathway which is a key regulator for apoptosis while the hypomethylated genes were involved in the PI3K-AKT signaling pathway and proliferation process. We also demonstrate that 5-azadC treatment enhanced response to 5-FU which resulted in significant growth inhibition compared to 5-FU alone in hypermethylated cell lines SW48. In conclusion, we found the evidence of five potentially biologically important genes in recurrent CRCs that could possibly serve as a new

  2. Project on Elite Athlete Commitment (PEAK): IV. identification of new candidate commitment sources in the sport commitment model.

    Science.gov (United States)

    Scanlan, Tara K; Russell, David G; Scanlan, Larry A; Klunchoo, Tatiana J; Chow, Graig M

    2013-10-01

    Following a thorough review of the current updated Sport Commitment Model, new candidate commitment sources for possible future inclusion in the model are presented. They were derived from data obtained using the Scanlan Collaborative Interview Method. Three elite New Zealand teams participated: amateur All Black rugby players, amateur Silver Fern netball players, and professional All Black rugby players. An inductive content analysis of these players' open-ended descriptions of their sources of commitment identified four unique new candidate commitment sources: Desire to Excel, Team Tradition, Elite Team Membership, and Worthy of Team Membership. A detailed definition of each candidate source is included along with example quotes from participants. Using a mixed-methods approach, these candidate sources provide a basis for future investigations to test their viability and generalizability for possible expansion of the Sport Commitment Model.

  3. Identification of Putative Stage-Specific Grapevine Berry Biomarkers and Omics Data Integration into Networks1[C][W][OA

    Science.gov (United States)

    Zamboni, Anita; Di Carli, Mariasole; Guzzo, Flavia; Stocchero, Matteo; Zenoni, Sara; Ferrarini, Alberto; Tononi, Paola; Toffali, Ketti; Desiderio, Angiola; Lilley, Kathryn S.; Pè, M. Enrico; Benvenuto, Eugenio; Delledonne, Massimo; Pezzotti, Mario

    2010-01-01

    The analysis of grapevine (Vitis vinifera) berries at the transcriptomic, proteomic, and metabolomic levels can provide great insight into the molecular events underlying berry development and postharvest drying (withering). However, the large and very different data sets produced by such investigations are difficult to integrate. Here, we report the identification of putative stage-specific biomarkers for berry development and withering and, to our knowledge, the first integrated systems-level study of these processes. Transcriptomic, proteomic, and metabolomic data were integrated using two different strategies, one hypothesis free and the other hypothesis driven. A multistep hypothesis-free approach was applied to data from four developmental stages and three withering intervals, with integration achieved using a hierarchical clustering strategy based on the multivariate bidirectional orthogonal projections to latent structures technique. This identified stage-specific functional networks of linked transcripts, proteins, and metabolites, providing important insights into the key molecular processes that determine the quality characteristics of wine. The hypothesis-driven approach was used to integrate data from three withering intervals, starting with subdata sets of transcripts, proteins, and metabolites. We identified transcripts and proteins that were modulated during withering as well as specific classes of metabolites that accumulated at the same time and used these to select subdata sets of variables. The multivariate bidirectional orthogonal projections to latent structures technique was then used to integrate the subdata sets, identifying variables representing selected molecular processes that take place specifically during berry withering. The impact of this holistic approach on our knowledge of grapevine berry development and withering is discussed. PMID:20826702

  4. A proteomic approach combining MS and bioinformatic analysis for the detection and identification of biomarkers of administration of exogenous human growth hormone in humans.

    Science.gov (United States)

    Boateng, Joshua; Kay, Richard; Lancashire, Lee; Brown, Pamela; Velloso, Cristiana; Bouloux, Pierre; Teale, Phil; Roberts, Jane; Rees, Robert; Ball, Graham; Harridge, Stephen; Goldspink, Geoffrey; Creaser, Colin

    2009-08-01

    An integrated MS-based proteomic approach is described that combines MALDI-MS and LC-MS with artificial neural networks for the identification of protein and peptide biomarkers associated with recombinant human growth hormone (rhGH) administration. Serum from exercised males administered with rhGH or placebo was analysed using ELISA to determine insulin-like growth factor-I concentrations. Diluted serum from rhGH- and placebo-treated subjects was analysed for protein biomarkers by MALDI-MS, whereas LC-MS was used to analyse tryptically digested ACN-depleted serum extracts for peptide biomarkers. Ion intensities and m/z values were used as inputs to artificial neural networks to classify samples into rhGH- and placebo-treated groups. Six protein ions (MALDI-MS) correctly classified 96% of samples into their respective groups, with a sensitivity of 91% (20 of 22 rhGH treated) and specificity of 100% (24 of 24 controls). Six peptide ions (LC-MS) were also identified and correctly classified 93% of samples with a sensitivity of 90% (19 of 21 rhGH treated) and a specificity of 95% (20 of 21 controls). The peptide biomarker ion with the highest significance was sequenced using LC-MS/MS and database searching and found to be associated with leucine-rich α-2-glycoprotein. Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Identification of biomarkers for Mycobacterium tuberculosis infection and disease in BCG-vaccinated young children in Southern India

    DEFF Research Database (Denmark)

    Dhanasekaran, S; Jenum, S; Stavrum, R

    2013-01-01

    Pediatric tuberculosis (TB) often goes undiagnosed because of the lack of reliable diagnostic methods. With the aim of assessing biomarker(s) that can aid in the diagnosis of TB infection and disease, we investigated 746 Indian children with suspected TB. Whole-blood mRNA from 210 children was ex...

  6. Neuronal damage biomarkers in the identification of patients at risk of long-term postoperative cognitive dysfunction after cardiac surgery

    NARCIS (Netherlands)

    Kok, W F; Koerts, Janneke; Tucha, O; Scheeren, T W L; Absalom, A R

    2017-01-01

    Biomarkers of neurological injury can potentially predict postoperative cognitive dysfunction. We aimed to identify whether classical neuronal damage-specific biomarkers, including brain fatty acid-binding protein, neuron-specific enolase and S100 calcium-binding protein β, as well as plasma-free ha

  7. Identification of rheumatoid arthritis biomarkers based on single nucleotide polymorphisms and haplotype blocks: A systematic review and meta-analysis

    Directory of Open Access Journals (Sweden)

    Mohamed N. Saad

    2016-01-01

    Full Text Available Genetics of autoimmune diseases represent a growing domain with surpassing biomarker results with rapid progress. The exact cause of Rheumatoid Arthritis (RA is unknown, but it is thought to have both a genetic and an environmental bases. Genetic biomarkers are capable of changing the supervision of RA by allowing not only the detection of susceptible individuals, but also early diagnosis, evaluation of disease severity, selection of therapy, and monitoring of response to therapy. This review is concerned with not only the genetic biomarkers of RA but also the methods of identifying them. Many of the identified genetic biomarkers of RA were identified in populations of European and Asian ancestries. The study of additional human populations may yield novel results. Most of the researchers in the field of identifying RA biomarkers use single nucleotide polymorphism (SNP approaches to express the significance of their results. Although, haplotype block methods are expected to play a complementary role in the future of that field.

  8. SpeX spectroscopy of unresolved very low mass binaries. II. Identification of 14 candidate binaries with late-M/early-L and T dwarf components

    Energy Technology Data Exchange (ETDEWEB)

    Bardalez Gagliuffi, Daniella C.; Burgasser, Adam J.; Nicholls, Christine P. [Center for Astrophysics and Space Sciences, University of California, San Diego, 9500 Gilman Drive, Mail Code 0424, La Jolla, CA 92093 (United States); Gelino, Christopher R. [NASA Exoplanet Science Institute, Mail Code 100-22, California Institute of Technology, 770 South Wilson Avenue, Pasadena, CA 91125 (United States); Looper, Dagny L. [School of Mathematics and Physics, The University of Queensland, Brisbane, QLD 4072 (Australia); Schmidt, Sarah J. [Department of Physics and Astronomy, Hunter College, City University of New York, 695 Park Avenue, New York, NY 10065 (United States); Cruz, Kelle [Department of Astrophysics, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024 (United States); West, Andrew A. [Department of Physics and Astronomy, University of Delaware, 104 The Green, Newark, DE 19716 (United States); Gizis, John E. [Department of Physics and Astronomy, Western University, London, ON N6A 3K7 (Canada); Metchev, Stanimir, E-mail: daniella@physics.ucsd.edu [Infrared Processing and Analysis Center, Mail Code 100-22, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States)

    2014-10-20

    Multiplicity is a key statistic for understanding the formation of very low mass (VLM) stars and brown dwarfs. Currently, the separation distribution of VLM binaries remains poorly constrained at small separations (≤1 AU), leading to uncertainty in the overall binary fraction. We approach this problem by searching for late-M/early-L plus T dwarf spectral binaries whose combined light spectra exhibit distinct peculiarities, allowing for separation-independent identification. We define a set of spectral indices designed to identify these systems, and we use a spectral template fitting method to confirm and characterize spectral binary candidates from a library of 815 spectra from the SpeX Prism Spectral Libraries. We present 11 new binary candidates, confirm 3 previously reported candidates, and rule out 2 previously identified candidates, all with primary and secondary spectral types in the range M7-L7 and T1-T8, respectively. We find that subdwarfs and blue L dwarfs are the primary contaminants in our sample and propose a method for segregating these sources. If confirmed by follow-up observations, these systems may add to the growing list of tight separation binaries, whose orbital properties may yield further insight into brown dwarf formation scenarios.

  9. Expression profiling of blood samples from an SU5416 Phase III metastatic colorectal cancer clinical trial: a novel strategy for biomarker identification

    Directory of Open Access Journals (Sweden)

    Smolich Beverly D

    2003-02-01

    Full Text Available Abstract Background Microarray-based gene expression profiling is a powerful approach for the identification of molecular biomarkers of disease, particularly in human cancers. Utility of this approach to measure responses to therapy is less well established, in part due to challenges in obtaining serial biopsies. Identification of suitable surrogate tissues will help minimize limitations imposed by those challenges. This study describes an approach used to identify gene expression changes that might serve as surrogate biomarkers of drug activity. Methods Expression profiling using microarrays was applied to peripheral blood mononuclear cell (PBMC samples obtained from patients with advanced colorectal cancer participating in a Phase III clinical trial. The PBMC samples were harvested pre-treatment and at the end of the first 6-week cycle from patients receiving standard of care chemotherapy or standard of care plus SU5416, a vascular endothelial growth factor (VEGF receptor tyrosine kinase (RTK inhibitor. Results from matched pairs of PBMC samples from 23 patients were queried for expression changes that consistently correlated with SU5416 administration. Results Thirteen transcripts met this selection criterion; six were further tested by quantitative RT-PCR analysis of 62 additional samples from this trial and a second SU5416 Phase III trial of similar design. This method confirmed four of these transcripts (CD24, lactoferrin, lipocalin 2, and MMP-9 as potential biomarkers of drug treatment. Discriminant analysis showed that expression profiles of these 4 transcripts could be used to classify patients by treatment arm in a predictive fashion. Conclusions These results establish a foundation for the further exploration of peripheral blood cells as a surrogate system for biomarker analyses in clinical oncology studies.

  10. Validation of New Cancer Biomarkers

    DEFF Research Database (Denmark)

    Duffy, Michael J; Sturgeon, Catherine M; Söletormos, Georg

    2015-01-01

    BACKGROUND: Biomarkers are playing increasingly important roles in the detection and management of patients with cancer. Despite an enormous number of publications on cancer biomarkers, few of these biomarkers are in widespread clinical use. CONTENT: In this review, we discuss the key steps...... in advancing a newly discovered cancer candidate biomarker from pilot studies to clinical application. Four main steps are necessary for a biomarker to reach the clinic: analytical validation of the biomarker assay, clinical validation of the biomarker test, demonstration of clinical value from performance...... initiation of the study. SUMMARY: Application of the methodology outlined above should result in a more efficient and effective approach to the development of cancer biomarkers as well as the reporting of cancer biomarker studies. With rigorous application, all stakeholders, and especially patients, would...

  11. Identification by genomic immunization of a pool of DNA vaccine candidates that confer protective immunity in mice against Neisseria meningitidis serogroup B.

    Science.gov (United States)

    Yero, Daniel; Pajón, Rolando; Pérez, Yusleydis; Fariñas, Mildrey; Cobas, Karem; Diaz, Daiyana; Solis, Rosa L; Acosta, Armando; Brookes, Charlotte; Taylor, Stephen; Gorringe, Andrew

    2007-07-09

    We have shown previously that expression library immunization is viable alternative approach to induce protective immunity against Neisseria meningitidis serogroup B. In this study we report that few rounds of library screening allow identification of protective pools of defined antigens. A previously reported protective meningococcal library (L8, with 600 clones) was screened and two sub-libraries of 95 clones each were selected based on the induction of bactericidal and protective antibodies in BALB/c mice. After sequence analysis of each clone within these sub-libraries, we identified a pool of 20 individual antigens that induced protective immune responses in mice against N. meningitidis infection, and the observed protection was associated with the induction of bactericidal antibodies. Our studies demonstrate for the first time that ELI combined with sequence analysis is a powerful and efficient tool for identification of candidate antigens for use in a meningococcal vaccine.

  12. Proteomic Analysis of Plasma from California Sea Lions (Zalophus californianus Reveals Apolipoprotein E as a Candidate Biomarker of Chronic Domoic Acid Toxicosis.

    Directory of Open Access Journals (Sweden)

    Benjamin A Neely

    Full Text Available Domoic acid toxicosis (DAT in California sea lions (Zalophus californianus is caused by exposure to the marine biotoxin domoic acid and has been linked to massive stranding events and mortality. Diagnosis is based on clinical signs in addition to the presence of domoic acid in body fluids. Chronic DAT further is characterized by reoccurring seizures progressing to status epilepticus. Diagnosis of chronic DAT is often slow and problematic, and minimally invasive tests for DAT have been the focus of numerous recent biomarker studies. The goal of this study was to retrospectively profile plasma proteins in a population of sea lions with chronic DAT and those without DAT using two dimensional gel electrophoresis to discover whether individual, multiple, or combinations of protein and clinical data could be utilized to identify sea lions with DAT. Using a training set of 32 sea lion sera, 20 proteins and their isoforms were identified that were significantly different between the two groups (p<0.05. Interestingly, 11 apolipoprotein E (ApoE charge forms were decreased in DAT samples, indicating that ApoE charge form distributions may be important in the progression of DAT. In order to develop a classifier of chronic DAT, an independent blinded test set of 20 sea lions, seven with chronic DAT, was used to validate models utilizing ApoE charge forms and eosinophil counts. The resulting support vector machine had high sensitivity (85.7% with 92.3% negative predictive value and high specificity (92.3% with 85.7% positive predictive value. These results suggest that ApoE and eosinophil counts along with machine learning can perform as a robust and accurate tool to diagnose chronic DAT. Although this analysis is specifically focused on blood biomarkers and routine clinical data, the results demonstrate promise for future studies combining additional variables in multidimensional space to create robust classifiers.

  13. iTRAQ-Based Proteomics Analysis of Serum Proteins in Wistar Rats Treated with Sodium Fluoride: Insight into the Potential Mechanism and Candidate Biomarkers of Fluorosis

    Science.gov (United States)

    Wei, Yan; Zeng, Beibei; Zhang, Hua; Chen, Cheng; Wu, Yanli; Wang, Nanlan; Wu, Yanqiu; Shen, Liming

    2016-01-01

    Fluorosis induced by exposure to high level fluoride is quite widespread in the world. The manifestations of fluorosis include dental mottling, bone damage, and impaired malfunction of soft tissues. However, the molecular mechanism of fluorosis has not been clarified until now. To explore the underlying mechanisms of fluorosis and screen out serum biomarkers, we carried out a quantitative proteomics study to identify differentially expressed serum proteins in Wistar rats treated with sodium fluoride (NaF) by using a proteomics approach of isobaric tagging for relative and absolute quantitation (iTRAQ). We fed Wistar rats drinking water that had 50, 150, and 250 mg/L of dissolved NaF for 24 weeks. For the experimental duration, each rat was given an examination of the lower incisors to check for the condition of dental fluorosis (DF). By the end of the treatment, fluoride ion concentration in serum and lower incisors were detected. The results showed that NaF treatment can induce rat fluorosis. By iTRAQ analysis, a total of 37 differentially expressed serum proteins were identified between NaF-treated and control rats. These proteins were further analyzed by bioinformatics, out of which two proteins were validated by enzyme-linked immunoadsorbent assays (ELISA). The major proteins were involved in complement and coagulation cascade, inflammatory response, complement activation, defense response, and wound response, suggesting that inflammation and immune reactions may play a key role in fluorosis pathogenesis. These proteins may contribute to the understanding of the mechanism of fluoride toxicity, and may serve as potential biomarkers for fluorosis. PMID:27690006

  14. iTRAQ-Based Proteomics Analysis of Serum Proteins in Wistar Rats Treated with Sodium Fluoride: Insight into the Potential Mechanism and Candidate Biomarkers of Fluorosis

    Directory of Open Access Journals (Sweden)

    Yan Wei

    2016-09-01

    Full Text Available Fluorosis induced by exposure to high level fluoride is quite widespread in the world. The manifestations of fluorosis include dental mottling, bone damage, and impaired malfunction of soft tissues. However, the molecular mechanism of fluorosis has not been clarified until now. To explore the underlying mechanisms of fluorosis and screen out serum biomarkers, we carried out a quantitative proteomics study to identify differentially expressed serum proteins in Wistar rats treated with sodium fluoride (NaF by using a proteomics approach of isobaric tagging for relative and absolute quantitation (iTRAQ. We fed Wistar rats drinking water that had 50, 150, and 250 mg/L of dissolved NaF for 24 weeks. For the experimental duration, each rat was given an examination of the lower incisors to check for the condition of dental fluorosis (DF. By the end of the treatment, fluoride ion concentration in serum and lower incisors were detected. The results showed that NaF treatment can induce rat fluorosis. By iTRAQ analysis, a total of 37 differentially expressed serum proteins were identified between NaF-treated and control rats. These proteins were further analyzed by bioinformatics, out of which two proteins were validated by enzyme-linked immunoadsorbent assays (ELISA. The major proteins were involved in complement and coagulation cascade, inflammatory response, complement activation, defense response, and wound response, suggesting that inflammation and immune reactions may play a key role in fluorosis pathogenesis. These proteins may contribute to the understanding of the mechanism of fluoride toxicity, and may serve as potential biomarkers for fluorosis.

  15. Single strand conformation polymorphism analysis of candidate genes for reliable identification of alleles by capillary array electrophoresis.

    Science.gov (United States)

    We investigated the reliability of capillary array electrophoresis-SSCP to determine if it can be used to identify novel alleles of candidate genes in a germplasm collection. Both strands of three different size fragments (160 bp, 245 pb and 437 bp) that differed by one or more nucleotides in sequen...

  16. Investigation of a screening programme and the possible identification of biomarkers for early disseminated histiocytic sarcoma in Bernese Mountain dogs.

    Science.gov (United States)

    Nielsen, L N; McEvoy, F; Jessen, L R; Kristensen, A T

    2012-06-01

    The aim of the study was to construct a screening programme for disseminated histiocytic sarcoma (DHS) in Bernese Mountain dogs using diagnostic imaging and blood analysis and evaluate blood borne biomarkers as early disease detection biomarkers. Healthy Bernese Mountain dogs were screened on four occasions in an attempt to detect early disease. Eleven blood borne biomarkers were examined for their worth as early tumour biomarkers. During 2.5 years, five dogs with early DHS were identified; four of these by diagnostic imaging. No dogs developed symptomatic DHS without being detected within 6 months of the screening programme. Only serum ferritin showed potential as a blood borne marker of the disease. Median survival times for the dogs with early DHS were 226 days. Screening programmes every 6 months for Bernese Mountain dogs over 4 years of age including diagnostic imaging and ferritin measurements may identify early DHS. © 2011 Blackwell Publishing Ltd.

  17. SCRUTINIZING THE BIOMARKERS FOR THE NEGLECTED CHAGAS DISEASE: HOW REMARKABLE!

    Directory of Open Access Journals (Sweden)

    Rosa Pinho

    2016-08-01

    Full Text Available Biomarkers or biosignature profiles have become accessible over time in population-based studies for Chagas disease. Thus, the identification of consistent and reliable indicators of the diagnosis and prognosis of patients with heart failure might facilitate the prioritization of therapeutic management to those with the highest chance contracting this disease. The purpose of this paper is to review the recent state and the upcoming trends in biomarkers for human Chagas disease. As an emerging concept, we propose a classification of biomarkers based on plasmatic-, phenotype-, antigenic-, genetic- and management-related candidates. The available data revisited here reveal the lessons learned thus far and the existing challenges that still lie ahead to enable biomarkers to be employed consistently in risk evaluation for this disease. There is a strong need for biomarker validation, particularly for biomarkers that are specific to the clinical forms of Chagas disease. The current failure to achieve the eradication of the transmission of this disease has produced determination to solve this validation issue. Finally, it would be strategic to develop a wide variety of biomarkers and to test them in both preclinical and clinical trials.

  18. Scrutinizing the Biomarkers for the Neglected Chagas Disease: How Remarkable!

    Science.gov (United States)

    Pinho, Rosa T.; Waghabi, Mariana C.; Cardillo, Fabíola; Mengel, José; Antas, Paulo R. Z.

    2016-01-01

    Biomarkers or biosignature profiles have become accessible over time in population-based studies for Chagas disease. Thus, the identification of consistent and reliable indicators of the diagnosis and prognosis of patients with heart failure might facilitate the prioritization of therapeutic management to those with the highest chance of contracting this disease. The purpose of this paper is to review the recent state and the upcoming trends in biomarkers for human Chagas disease. As an emerging concept, we propose a classification of biomarkers based on plasmatic-, phenotype-, antigenic-, genetic-, and management-related candidates. The available data revisited here reveal the lessons learned thus far and the existing challenges that still lie ahead to enable biomarkers to be employed consistently in risk evaluation for this disease. There is a strong need for biomarker validation, particularly for biomarkers that are specific to the clinical forms of Chagas disease. The current failure to achieve the eradication of the transmission of this disease has produced determination to solve this validation issue. Finally, it would be strategic to develop a wide variety of biomarkers and to test them in both preclinical and clinical trials. PMID:27563302

  19. Biomarkers in sarcoidosis.

    Science.gov (United States)

    Chopra, Amit; Kalkanis, Alexandros; Judson, Marc A

    2016-11-01

    Numerous biomarkers have been evaluated for the diagnosis, assessment of disease activity, prognosis, and response to treatment in sarcoidosis. In this report, we discuss the clinical and research utility of several biomarkers used to evaluate sarcoidosis. Areas covered: The sarcoidosis biomarkers discussed include serologic tests, imaging studies, identification of inflammatory cells and genetic analyses. Literature was obtained from medical databases including PubMed and Web of Science. Expert commentary: Most of the biomarkers examined in sarcoidosis are not adequately specific or sensitive to be used in isolation to make clinical decisions. However, several sarcoidosis biomarkers have an important role in the clinical management of sarcoidosis when they are coupled with clinical data including the results of other biomarkers.

  20. IKAROS expression in distinct bone marrow cell populations as a candidate biomarker for outcome with lenalidomide-dexamethasone therapy in multiple myeloma.

    Science.gov (United States)

    Bolomsky, Arnold; Hübl, Wolfgang; Spada, Stefano; Müldür, Ercan; Schlangen, Karin; Heintel, Daniel; Rocci, Alberto; Weißmann, Adalbert; Fritz, Veronique; Willheim, Martin; Zojer, Niklas; Palumbo, Antonio; Ludwig, Heinz

    2017-03-01

    Immunomodulatory drugs (IMiDs) are a cornerstone in the treatment of multiple myeloma (MM), but specific markers to predict outcome are still missing. Recent work pointed to a prognostic role for IMiD target genes (e.g. CRBN). Moreover, indirect activity of IMiDs on immune cells correlated with outcome, raising the possibility that cell populations in the bone marrow (BM) microenvironment could serve as biomarkers. We therefore analysed gene expression levels of six IMiD target genes in whole BM samples of 44 myeloma patients treated with lenalidomide-dexamethasone. Expression of CRBN (R = 0.30, P = .05), IKZF1 (R = 0.31, P = .04), IRF4 (R = 0.38, P = .01), MCT-1 (R = 0.30, P = .05), and CD147 (R = 0.38, P = .01), but not IKZF3 (R = -0.15, P = .34), was significantly associated with response. Interestingly, IKZF1 expression was elevated in BM environmental cells and thus selected for further investigation by multicolor flow cytometry. High IKAROS protein levels in total BM mononuclear cells (median OS 83.4 vs. 32.2 months, P = .02), CD19(+) B cells (median OS 71.1 vs. 32.2 months, P = .05), CD3(+) CD8(+) T cells (median OS 83.4 vs 19.0 months, P = .008) as well as monocytes (median OS 53.9 vs 18.0 months, P = .009) were associated with superior overall survival (OS). In contrast, IKAROS protein expression in MM cells was not predictive for OS. Our data therefore corroborate the central role of immune cells for the clinical activity of IMiDs and built the groundwork for prospective analysis of IKAROS protein levels in distinct cell populations as a potential biomarker for IMiD based therapies.

  1. Identification of new candidate drugs for lung cancer using chemical-chemical interactions, chemical-protein interactions and a K-means clustering algorithm.

    Science.gov (United States)

    Lu, Jing; Chen, Lei; Yin, Jun; Huang, Tao; Bi, Yi; Kong, Xiangyin; Zheng, Mingyue; Cai, Yu-Dong

    2016-01-01

    Lung cancer, characterized by uncontrolled cell growth in the lung tissue, is the leading cause of global cancer deaths. Until now, effective treatment of this disease is limited. Many synthetic compounds have emerged with the advancement of combinatorial chemistry. Identification of effective lung cancer candidate drug compounds among them is a great challenge. Thus, it is necessary to build effective computational methods that can assist us in selecting for potential lung cancer drug compounds. In this study, a computational method was proposed to tackle this problem. The chemical-chemical interactions and chemical-protein interactions were utilized to select candidate drug compounds that have close associations with approved lung cancer drugs and lung cancer-related genes. A permutation test and K-means clustering algorithm were employed to exclude candidate drugs with low possibilities to treat lung cancer. The final analysis suggests that the remaining drug compounds have potential anti-lung cancer activities and most of them have structural dissimilarity with approved drugs for lung cancer.

  2. Integration of gene-based markers in a pearl millet genetic map for identification of candidate genes underlying drought tolerance quantitative trait loci

    Directory of Open Access Journals (Sweden)

    Sehgal Deepmala

    2012-01-01

    Full Text Available Abstract Background Identification of genes underlying drought tolerance (DT quantitative trait loci (QTLs will facilitate understanding of molecular mechanisms of drought tolerance, and also will accelerate genetic improvement of pearl millet through marker-assisted selection. We report a map based on genes with assigned functional roles in plant adaptation to drought and other abiotic stresses and demonstrate its use in identifying candidate genes underlying a major DT-QTL. Results Seventy five single nucleotide polymorphism (SNP and conserved intron spanning primer (CISP markers were developed from available expressed sequence tags (ESTs using four genotypes, H 77/833-2, PRLT 2/89-33, ICMR 01029 and ICMR 01004, representing parents of two mapping populations. A total of 228 SNPs were obtained from 30.5 kb sequenced region resulting in a SNP frequency of 1/134 bp. The positions of major pearl millet linkage group (LG 2 DT-QTLs (reported from crosses H 77/833-2 × PRLT 2/89-33 and 841B × 863B were added to the present consensus function map which identified 18 genes, coding for PSI reaction center subunit III, PHYC, actin, alanine glyoxylate aminotransferase, uridylate kinase, acyl-CoA oxidase, dipeptidyl peptidase IV, MADS-box, serine/threonine protein kinase, ubiquitin conjugating enzyme, zinc finger C- × 8-C × 5-C × 3-H type, Hd3, acetyl CoA carboxylase, chlorophyll a/b binding protein, photolyase, protein phosphatase1 regulatory subunit SDS22 and two hypothetical proteins, co-mapping in this DT-QTL interval. Many of these candidate genes were found to have significant association with QTLs of grain yield, flowering time and leaf rolling under drought stress conditions. Conclusions We have exploited available pearl millet EST sequences to generate a mapped resource of seventy five new gene-based markers for pearl millet and demonstrated its use in identifying candidate genes underlying a major DT-QTL in this species. The reported gene

  3. Decreased saliva/serum irisin concentrations in the acute myocardial infarction promising for being a new candidate biomarker for diagnosis of this pathology.

    Science.gov (United States)

    Aydin, Suna; Aydin, Suleyman; Kobat, Mehmet Ali; Kalayci, Mehmet; Eren, Mehmet Nesimi; Yilmaz, Musa; Kuloglu, Tuncay; Gul, Evrim; Secen, Ozlem; Alatas, Omer Dogan; Baydas, Adil

    2014-06-01

    Irisin is a muscle-secreted protein. Cardiac muscle produces more irisin than skeletal muscle in response to acute exercise, and is associated with myocardial infarction (MI) in an experimental model induced by isoproterenol in rats. The timing and significance of its release in patients with acute myocardial infarction (AMI) needs further investigation. We have studied the relationship between serum/saliva irisin concentration and AMI in humans. Serum and saliva samples were taken within 3 days of admission in 11 patients with AMI and in 14 matched controls. Salivary gland irisin was detected immunohistochemically, and serum and saliva levels were measured by ELISA. The three major paired salivary glands (submandibular, sublingual and parotid) produce and release irisin into saliva. Troponin-I, CK, CK-MB concentrations in the AMI group gradually increased from up to 12h, while saliva and serum irisin gradually decreased from up to 48 h, compared with the control group (Psaliva and serum irisin started to increase at 72 h. Serum irisin levels correlated with age, while troponin I, CK-MB, and CK were correlated and with saliva irisin in AMI patients. Besides cardiac troponin and CK-MB, irisin adds new diagnostic information in AMI patients, and the gradual decrease of saliva/serum irisin over 48 h could be a useful biomarker.

  4. Harnessing 3D models of mammary epithelial morphogenesis: An off the beaten path approach to identify candidate biomarkers of early stage breast cancer.

    Science.gov (United States)

    Rossetti, Stefano; Bshara, Wiam; Reiners, Johanna A; Corlazzoli, Francesca; Miller, Austin; Sacchi, Nicoletta

    2016-10-01

    Regardless of the etiological factor, an aberrant morphology is the common hallmark of ductal carcinoma in situ (DCIS), which is a highly heterogeneous disease. To test if critical core morphogenetic mechanisms are compromised by different mutations, we performed proteomics analysis of five mammary epithelial HME1 mutant lines that develop a DCIS-like morphology in three dimensional (3D) culture. Here we show first, that all HME1 mutant lines share a common protein signature highlighting an inverse deregulation of two annexins, ANXA2 and ANXA8. Either ANXA2 downregulation or ANXA8 upregulation in the HME1 cell context are per se sufficient to confer a 3D DCIS-like morphology. Seemingly, different mutations impinged on a common mechanism that differentially regulates the two annexins. Second, we show that ANXA8 expression is significantly higher in DCIS tissue samples versus normal breast tissue and atypical ductal hyperplasia (ADH). Apparently, ANXA8 expression is significantly more upregulated in ER-negative versus ER-positive cases, and significantly correlates with tumor stage, grade and positive lymph node. Based on our study, 3D mammary morphogenesis models can be an alternate/complementary strategy for unraveling new DCIS mechanisms and biomarkers.

  5. Proteomic study of malignant pleural mesothelioma by laser microdissection and two-dimensional difference gel electrophoresis identified cathepsin D as a novel candidate for a differential diagnosis biomarker.

    Science.gov (United States)

    Hosako, Mutsumi; Muto, Taika; Nakamura, Yukiko; Tsuta, Koji; Tochigi, Naobumi; Tsuda, Hitoshi; Asamura, Hisao; Tomonaga, Takeshi; Kawai, Akira; Kondo, Tadashi

    2012-01-04

    To investigate the proteomic background of malignancies of the pleura, we examined and compared the proteomic profile of malignant pleural mesothelioma (MPM)(10 cases), lung adenocarcinoma (11 cases), squamous cell carcinoma of the lung (13 cases), pleomorphic carcinoma of the lung (3 cases) and synovial sarcoma (6 cases). Cellular proteins were extracted from specific populations of tumor cells recovered by laser microdissection. The extracted proteins were labeled with CyDye DIGE Fluor saturation dyes and subjected to two-dimensional difference gel electrophoresis (2D-DIGE) using a large format electrophoresis device. Among 3875 protein spots observed, the intensity of 332 was significantly different (Wilcoxon p value less than 0.05) and with more than two-fold inter-sample-group average difference between the different histology groups. Among these 332, 282 were annotated by LC-MS/MS and included known biomarker proteins for MPM, such as calretinin, as well as proteins previously uncharacterized in MPM. Tissue microarray immunohistochemistry revealed that the expression of cathepsin D was lower in MPM than in lung adenocarcinoma (15% vs. 44% of cases respectively in immunohistochemistry). In conclusion, we examined the protein expression profile of MPM and other lung malignancies, and identified cathepsin D to distinguish MPM from most popular lung cancer such as lung adenocarcinoma. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Selection of candidate radiation biomarkers in the serum of rats exposed to gamma-rays by GC/TOFMS-based metabolomics.

    Science.gov (United States)

    Liu, Haixiang; Wang, Zhidong; Zhang, Xueqing; Qiao, Yulei; Wu, Shengming; Dong, Fangting; Chen, Ying

    2013-04-01

    In the study, gas chromatography/time-of-flight mass spectrometry (GC/TOFMS) techniques coupled with principal components analysis (PCA) were used to investigate metabolite perturbations in the serum of the rats exposed to 0.75, 3 or 8 Gy gamma rays. Male standard deviation rats were gamma-irradiated at doses of 0.75, 3 and 8 Gy (1.9 Gy min(-1)) or sham-irradiated. Serum samples were collected over the first 24 h under the exposure to irradiation in order to analyse the samples by GC/TOFMS. And multivariate data were analysed by PCA. The composition of metabolites in serum yielded distinct metabolomic phenotypes for 0.75, 3 and 8 Gy at 24 h after irradiation. Nine serum metabolites were significantly altered as a result of radiation exposure. Up-regulated metabolites included inositol, serine, lysine, glycine, threonine and glycerol; down-regulated metabolites included isocitrate, gluconic acid and stearic acid. The nine metabolites were significantly altered after ionising radiation for they may be the potential biomarkers for the diagnosis of radiation injury.

  7. Optimization of a multi-stage, multi-subunit malaria vaccine candidate for the production in Pichia pastoris by the identification and removal of protease cleavage sites.

    Science.gov (United States)

    Spiegel, Holger; Schinkel, Helga; Kastilan, Robin; Dahm, Pia; Boes, Alexander; Scheuermayer, Matthias; Chudobová, Ivana; Maskus, Dominika; Fendel, Rolf; Schillberg, Stefan; Reimann, Andreas; Fischer, Rainer

    2015-04-01

    We demonstrated the successful optimization of a recombinant multi-subunit malaria vaccine candidate protein for production in the methylotrophic yeast Pichia pastoris by the identification and subsequent removal of two protease cleavage sites. After observing protein degradation in the culture supernatant of a fed-batch fermentation, the predominant proteolytic fragment of the secreted recombinant protein was analyzed by mass spectrometry. The MS data indicated the cleavage of an amino acid sequence matching the yeast KEX2-protease consensus motif EKRE. The cleavage in this region was completely abolished by the deletion of the EKRE motif in a modified variant. This modified variant was produced, purified, and used for immunization of rabbits, inducing high antigen specific antibody titers (2 × 10(6) ). Total IgG from rabbit immune sera recognized different stages of Plasmodium falciparum parasites in immunofluorescence assays, indicating native folding of the vaccine candidate. However, the modified variant was still degraded, albeit into different fragments. Further analysis by mass spectrometry and N-terminal sequencing revealed a second cleavage site downstream of the motif PEVK. We therefore removed a 17-amino-acid stretch including the PEVK motif, resulting in the subsequent production of the full-length recombinant vaccine candidate protein without significant degradation, with a yield of 53 mg per liter culture volume. We clearly demonstrate that the proteolytic degradation of recombinant proteins by endogenous P. pastoris proteases can be prevented by the identification and removal of such cleavage sites. This strategy is particularly relevant for the production of recombinant subunit vaccines, where product yield and stability play a more important role than for the production of a stringently-defined native sequence which is necessary for most therapeutic molecules.

  8. A cohort of balanced reciprocal translocations associated with dyslexia: identification of two putative candidate genes at DYX1

    DEFF Research Database (Denmark)

    Buonincontri, Roberta; Bache, Iben; Silahtaroglu, Asli

    2011-01-01

    Dyslexia is one of the most common neurodevelopmental disorders where likely many genes are involved in the pathogenesis. So far six candidate dyslexia genes have been proposed, and two of these were identified by rare chromosomal translocations in affected individuals. By systematic re......-examination of all translocation carriers in Denmark, we have identified 16 different translocations associated with dyslexia. In four families, where the translocation co-segregated with the phenotype, one of the breakpoints concurred (at the cytogenetic level) with either a known dyslexia linkage region--at 15q21...... (DYX1), 2p13 (DYX3) and 1p36 (DYX8)--or an unpublished linkage region at 19q13. As a first exploitation of this unique cohort, we identify three novel candidate dyslexia genes, ZNF280D and TCF12 at 15q21, and PDE7B at 6q23.3, by molecular mapping of the familial translocation with the 15q21 breakpoint....

  9. Isolation and identification of lactid acid bacteria originated from king grass (Pennisetum purpureophoides) as candidate of probiotic for livestock

    OpenAIRE

    Santoso B; Maunatin A; Hariadi BT; Abubakar H

    2013-01-01

    A study was conducted to isolate and identify strain of lactic acid bacteria (LAB) isolated from king grass, and to determine their potential as candidate of probiotic for livestock. The LAB was isolated by culturing king grass extract in De Man, Rogosa and Sharpe (MRS) medium. The pure culture LAB was used to identify strain of bacteria using Analytical Profile Index (API) 50 CH kit. The result showed that the strain bacteria was identified as Lactobacillus plantarum. L. plantarum was able t...

  10. Rapid Identification of Candidate Genes for Seed Weight Using the SLAF-Seq Method in Brassica napus.

    Directory of Open Access Journals (Sweden)

    Xinxin Geng

    Full Text Available Seed weight is a critical and direct trait for oilseed crop seed yield. Understanding its genetic mechanism is of great importance for yield improvement in Brassica napus breeding. Two hundred and fifty doubled haploid lines derived by microspore culture were developed from a cross between a large-seed line G-42 and a small-seed line 7-9. According to the 1000-seed weight (TSW data, the individual DNA of the heaviest 46 lines and the lightest 47 lines were respectively selected to establish two bulked DNA pools. A new high-throughput sequencing technology, Specific Locus Amplified Fragment Sequencing (SLAF-seq, was used to identify candidate genes of TSW in association analysis combined with bulked segregant analysis (BSA. A total of 1,933 high quality polymorphic SLAF markers were developed and 4 associated markers of TSW were procured. A hot region of ~0.58 Mb at nucleotides 25,401,885-25,985,931 on ChrA09 containing 91 candidate genes was identified as tightly associated with the TSW trait. From annotation information, four genes (GSBRNA2T00037136001, GSBRNA2T00037157001, GSBRNA2T00037129001 and GSBRNA2T00069389001 might be interesting candidate genes that are highly related to seed weight.

  11. Computational protein biomarker prediction: a case study for prostate cancer

    Directory of Open Access Journals (Sweden)

    Adam Bao-Ling

    2004-03-01

    Full Text Available Abstract Background Recent technological advances in mass spectrometry pose challenges in computational mathematics and statistics to process the mass spectral data into predictive models with clinical and biological significance. We discuss several classification-based approaches to finding protein biomarker candidates using protein profiles obtained via mass spectrometry, and we assess their statistical significance. Our overall goal is to implicate peaks that have a high likelihood of being biologically linked to a given disease state, and thus to narrow the search for biomarker candidates. Results Thorough cross-validation studies and randomization tests are performed on a prostate cancer dataset with over 300 patients, obtained at the Eastern Virginia Medical School using SELDI-TOF mass spectrometry. We obtain average classification accuracies of 87% on a four-group classification problem using a two-stage linear SVM-based procedure and just 13 peaks, with other methods performing comparably. Conclusions Modern feature selection and classification methods are powerful techniques for both the identification of biomarker candidates and the related problem of building predictive models from protein mass spectrometric profiles. Cross-validation and randomization are essential tools that must be performed carefully in order not to bias the results unfairly. However, only a biological validation and identification of the underlying proteins will ultimately confirm the actual value and power of any computational predictions.

  12. Spatiotemporal proteomic analyses during pancreas cancer progression identifies serine/threonine stress kinase 4 (STK4) as a novel candidate biomarker for early stage disease.

    Science.gov (United States)

    Mirus, Justin E; Zhang, Yuzheng; Hollingsworth, Michael A; Solan, Joell L; Lampe, Paul D; Hingorani, Sunil R

    2014-12-01

    Pancreas cancer, or pancreatic ductal adenocarcinoma, is the deadliest of solid tumors, with a five-year survival rate of disease improves survival rates, but access to tissue and other biospecimens that could be used to develop early detection markers is confounded by the insidious nature of pancreas cancer. Mouse models that accurately recapitulate the human condition allow disease tracking from inception to invasion and can therefore be useful for studying early disease stages in which surgical resection is possible. Using a highly faithful mouse model of pancreas cancer in conjunction with a high-density antibody microarray containing ∼2500 antibodies, we interrogated the pancreatic tissue proteome at preinvasive and invasive stages of disease. The goal was to discover early stage tissue markers of pancreas cancer and follow them through histologically defined stages of disease using cohorts of mice lacking overt clinical signs and symptoms and those with end-stage metastatic disease, respectively. A panel of seven up-regulated proteins distinguishing pancreas cancer from normal pancreas was validated, and their levels were assessed in tissues collected at preinvasive, early invasive, and moribund stages of disease. Six of the seven markers also differentiated pancreas cancer from an experimental model of chronic pancreatitis. The levels of serine/threonine stress kinase 4 (STK4) increased between preinvasive and invasive stages, suggesting its potential as a tissue biomarker, and perhaps its involvement in progression from precursor pancreatic intraepithelial neoplasia to pancreatic ductal adenocarcinoma. Immunohistochemistry of STK4 at different stages of disease revealed a dynamic expression pattern further implicating it in early tumorigenic events. Immunohistochemistry of a panel of human pancreas cancers confirmed that STK4 levels were increased in tumor epithelia relative to normal tissue. Overall, this integrated approach yielded several tissue

  13. A multi-resource data integration approach: Identification of candidate genes regulating cell proliferation during neocortical development

    Directory of Open Access Journals (Sweden)

    Cynthia M Vied

    2014-08-01

    Full Text Available Neurons of the mammalian neocortex are produced by proliferating cells located in the ventricular zone (VZ lining the lateral ventricles. This is a complex and sequential process, requiring precise control of cell cycle progression, fate commitment and differentiation. We have analyzed publicly available databases from mouse and human to identify candidate genes that are potentially involved in regulating early neocortical development and neurogenesis. We used a mouse in situ hybridization dataset (The Allen Institute for Brain Science to identify 13 genes (Cdon, Celsr1, Dbi, E2f5, Eomes, Hmgn2, Neurog2, Notch1, Pcnt, Sox3, Ssrp1, Tead2, Tgif2 with high correlation of expression in the proliferating cells of the VZ of the neocortex at early stages of development (E15.5. We generated a similar human brain network using microarray and RNA-seq data (BrainSpan Atlas and identified 407 genes with high expression in the developing human VZ and subventricular zone (SVZ at 8-9 post-conception weeks. Seven of the human genes were also present in the mouse VZ network. The human and mouse networks were extended using available genetic and proteomic datasets through GeneMANIA. A gene ontology search of the mouse and human networks indicated that many of the genes are involved in the cell cycle, DNA replication, mitosis and transcriptional regulation. The reported involvement of Cdon, Celsr1, Dbi, Eomes, Neurog2, Notch1, Pcnt, Sox3, Tead2 and Tgif2 in neural development or diseases resulting from the disruption of neurogenesis validates these candidate genes. Taken together, our knowledge-based discovery method has validated the involvement of many genes already known to be involved in neocortical development and extended the potential number of genes by 100's, many of which are involved in functions related to cell proliferation but others of which are potential candidates for involvement in the regulation of neocortical development.

  14. Proteins of human urine. II. Identification by two-dimensional electrophoresis of a new candidate marker for prostatic cancer

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, J.J. (Argonne National Lab., IL); Anderson, N.G.; Tollaksen, S.L.; von Eschenbach, A.C.; Guevara, J. Jr.

    1982-01-01

    A protein series common to the urine and prostatic tissue of 16 of 17 patients with prostatic adenocarcinoma has been identified by high-resolution two-dimensional gel electrophoresis. These proteins, designated PCA-1, have a relative molecular mass in sodium dodecyl sulfate of about 40,000. Analyses of urines from eight age-matched controls, seven patients with other types of urogenital malignancies, two patients with benign prostatic hyperplasia, and five patients with malignancies not associated with the urogenital system failed to show PCA-1 in the patterns. These preliminary findings suggest that this protein should be systematically investigated as a candidate marker for prostatic adenocarcinoma in man.

  15. Identification of hepatic biomarkers for physiological imbalance of dairy cows in early and mid lactation using proteomic technology

    DEFF Research Database (Denmark)

    Moyes, Kasey; Bendixen, Emøke; Codrea, Marius Cosmin;

    2013-01-01

    either the greatest (PI) or least (normal; N) degree of PI and were used for isobaric tags for relative and absolute quantitation (iTRAQ)-based quantitative profiling in liver using liquid chromatography-tandem mass spectrometry. We identified pyruvate carboxylase and isocitrate dehydrogenase...... as potential hepatic biomarkers for PI for cows during early lactation and alcohol dehydrogenase-4 and methylmalonate-semialdehyde dehydrogenase for cows in mid lactation. This preliminary study identified new biomarkers in liver for PI and provided a better understanding of the differences in coping...

  16. CyNetSVM: A Cytoscape App for Cancer Biomarker Identification Using Network Constrained Support Vector Machines

    OpenAIRE

    Shi, Xu; Banerjee, Sharmi; Chen, Li; Hilakivi-Clarke, Leena; Clarke, Robert; Xuan, Jianhua

    2017-01-01

    One of the important tasks in cancer research is to identify biomarkers and build classification models for clinical outcome prediction. In this paper, we develop a CyNetSVM software package, implemented in Java and integrated with Cytoscape as an app, to identify network biomarkers using network-constrained support vector machines (NetSVM). The Cytoscape app of NetSVM is specifically designed to improve the usability of NetSVM with the following enhancements: (1) user-friendly graphical user...

  17. Mass Spectrometry Applications for the Identification and Quantitation of Biomarkers Resulting from Human Exposure to Chemical Warfare Agents

    Science.gov (United States)

    Smith, J. Richard; Capacio, Benedict R.

    In recent years, a number of analytical methods using biomedical samples such as blood and urine have been developed for the verification of exposure to chemical warfare agents. The majority of methods utilize gas or liquid chromatography in conjunction with mass spectrometry. In a small number of cases of suspected human exposure to chemical warfare agents, biomedical specimens have been made available for testing. This chapter provides an overview of biomarkers that have been verified in human biomedical samples, details of the exposure incidents, the methods utilized for analysis, and the biomarker concentration levels determined in the blood and/or urine.

  18. Pleural effusion adenosine deaminase: a candidate biomarker to discriminate between Gram-negative and Gram-positive bacterial infections of the pleural space

    Directory of Open Access Journals (Sweden)

    Ruolin Li

    2016-05-01

    Full Text Available OBJECTIVES: Delay in the treatment of pleural infection may contribute to its high mortality. In this retrospective study, we aimed to evaluate the diagnostic accuracy of pleural adenosine deaminase in discrimination between Gram-negative and Gram-positive bacterial infections of the pleural space prior to selecting antibiotics. METHODS: A total of 76 patients were enrolled and grouped into subgroups according to Gram staining: 1 patients with Gram-negative bacterial infections, aged 53.2±18.6 years old, of whom 44.7% had empyemas and 2 patients with Gram-positive bacterial infections, aged 53.5±21.5 years old, of whom 63.1% had empyemas. The pleural effusion was sampled by thoracocentesis and then sent for adenosine deaminase testing, biochemical testing and microbiological culture. The Mann-Whitney U test was used to examine the differences in adenosine deaminase levels between the groups. Correlations between adenosine deaminase and specified variables were also quantified using Spearman’s correlation coefficient. Moreover, receiver operator characteristic analysis was performed to evaluate the diagnostic accuracy of pleural effusion adenosine deaminase. RESULTS: Mean pleural adenosine deaminase levels differed significantly between Gram-negative and Gram-positive bacterial infections of the pleural space (191.8±32.1 U/L vs 81.0±16.9 U/L, p<0.01. The area under the receiver operator characteristic curve was 0.689 (95% confidence interval: 0.570, 0.792, p<0.01 at the cutoff value of 86 U/L. Additionally, pleural adenosine deaminase had a sensitivity of 63.2% (46.0-78.2%; a specificity of 73.7% (56.9-86.6%; positive and negative likelihood ratios of 2.18 and 0.50, respectively; and positive and negative predictive values of 70.6% and 66.7%, respectively. CONCLUSIONS: Pleural effusion adenosine deaminase is a helpful alternative biomarker for early and quick discrimination of Gram-negative from Gram-positive bacterial infections of the

  19. Label-Free LC-MS Profiling of Skeletal Muscle Reveals Heart-Type Fatty Acid Binding Protein as a Candidate Biomarker of Aerobic Capacity.

    Science.gov (United States)

    Malik, Zulezwan Ab; Cobley, James N; Morton, James P; Close, Graeme L; Edwards, Ben J; Koch, Lauren G; Britton, Steven L; Burniston, Jatin G

    2013-12-01

    transcriptome profiling work and show LC-MS is a viable means of profiling the abundance of almost all major metabolic enzymes of skeletal muscle in a highly parallel manner. Moreover, our approach is relatively more time efficient than techniques relying on orthogonal separations, and we demonstrate LC-MS profiling of the HCR/LCR selection model was able to highlight biomarkers that also exhibit differences in trained and untrained human muscle.

  20. The noradrenaline metabolite MHPG is a candidate biomarker between the depressive, remission, and manic states in bipolar disorder I: two long-term naturalistic case reports

    Directory of Open Access Journals (Sweden)

    Kurita M

    2015-02-01

    that peripheral MHPG levels (which is related to noradrenaline levels in the brain could be used as a biomarker of mood states in BDI. The noradrenaline level in the brain is likely to reflect the clinical characteristics of the switch process in BDI, and has prognostic significance for the treatment of both manic and depressive states.Keywords: brain-derived neurotrophic factor (BDNF, monoamine, dopamine, homovanilic acid (HVA, depression, pathophysiology, mood disorder

  1. Identification of phosphorylated MYL12B as a potential plasma biomarker for septic acute kidney injury using a quantitative proteomic approach

    Science.gov (United States)

    Wu, Fan; Dong, Xiu-Juan; Li, Yan-Yan; Zhao, Yan; Xu, Qiu-Lin; Su, Lei

    2015-01-01

    Acute kidney injury (AKI) is a common and increasingly encountered complication in hospitalized patients with critical illness in intensive care units (ICU). According to the etiology, Sepsis-induced AKI (SAKI) is a leading contributor to AKI and significantly has very poor prognosis, which might be related to the late detection when the elevation of BUN and serum creatinine (SCr) is used. Many genes are up-regulated in the damaged kidney with the corresponding protein products appearing in plasma and urine. Some of these are candidate biomarkers for more timely diagnosis of SAKI. Therefore, extensive research efforts over this past decade have been directed at the discovery and validation of novel SAKI biomarkers to detect injury prior to changes in kidney function, a number of serum and urinary proteins, including NGAL, KIM-1, cystatin-C, IL-18, and L-FABP, have been identified for predicting SAKI before a rise in BUN and serum creatinine in several experimental and clinical trainings. Unfortunately, an ideal biomarker of SAKI with highly sensitivity and specificity has not been identified yet. Recent progresses in quantitative proteomics have offered opportunities to discover biomarkers for SAKI. In the present study, kidney tissue samples from SAKI mice were analyzed by two-dimensional differential gel electrophoresis (2D-DIGE), and 4 up-regulated proteins, which were actin (ACTB), myosin regulatory light chain 12B (MYL12B), myosin regulatory light polypeptide 9 (MYL9), and myosin regulatory light chain 12A (MYL12A) were identified by matrix assisted laser desorption ionization-time of flight/time of flight mass spectrometry (MALDI-TOF/TOF MS). Among all the varied proteins, MYL12B was validated by western blot. Interestingly, there was no change between the SAKI and control kidney tissues, however, phosphorylated MYL12B was detected to be consistent with the proteomics data. Furthermore, phosphorylated MYL12B was found similarly to be increased in SAKI plasma

  2. Functional annotation and identification of candidate disease genes by computational analysis of normal tissue gene expression data.

    Directory of Open Access Journals (Sweden)

    Laura Miozzi

    Full Text Available BACKGROUND: High-throughput gene expression data can predict gene function through the "guilt by association" principle: coexpressed genes are likely to be functionally associated. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed publicly available expression data on normal human tissues. The analysis is based on the integration of data obtained with two experimental platforms (microarrays and SAGE and of various measures of dissimilarity between expression profiles. The building blocks of the procedure are the Ranked Coexpression Groups (RCG, small sets of tightly coexpressed genes which are analyzed in terms of functional annotation. Functionally characterized RCGs are selected by means of the majority rule and used to predict new functional annotations. Functionally characterized RCGs are enriched in groups of genes associated to similar phenotypes. We exploit this fact to find new candidate disease genes for many OMIM phenotypes of unknown molecular origin. CONCLUSIONS/SIGNIFICANCE: We predict new functional annotations for many human genes, showing that the integration of different data sets and coexpression measures significantly improves the scope of the results. Combining gene expression data, functional annotation and known phenotype-gene associations we provide candidate genes for several genetic diseases of unknown molecular basis.

  3. Identification of novel candidate gene loci and increased sex chromosome aneuploidy among infants with conotruncal heart defects.

    Science.gov (United States)

    Osoegawa, Kazutoyo; Iovannisci, David M; Lin, Bin; Parodi, Christina; Schultz, Kathleen; Shaw, Gary M; Lammer, Edward J

    2014-02-01

    Congenital heart defects (CHDs) are common malformations, affecting four to eight per 1,000 total births. Conotruncal defects are an important pathogenetic subset of CHDs, comprising nearly 20% of the total. Although both environmental and genetic factors are known to contribute to the occurrence of conotruncal defects, the causes remain unknown for most. To identify novel candidate genes/loci, we used array comparative genomic hybridization to detect chromosomal microdeletions/duplications. From a population base of 974,579 total births born during 1999-2004, we screened 389 California infants born with tetralogy of Fallot or d-transposition of the great arteries. We found that 1.7% (5/288) of males with a conotruncal defect had sex chromosome aneuploidy, a sevenfold increased frequency (relative risk = 7.0; 95% confidence interval 2.9-16.9). We identified eight chromosomal microdeletions/duplications for conotruncal defects. From these duplications and deletions, we found five high priority candidate genes (GATA4, CRKL, BMPR1A, SNAI2, and ZFHX4). This is the initial report that sex chromosome aneuploidy is associated with conotruncal defects among boys. These chromosomal microduplications/deletions provide evidence that GATA4, SNAI2, and CRKL are highly dosage sensitive genes involved in outflow tract development. Genome wide screening for copy number variation can be productive for identifying novel genes/loci contributing to non-syndromic common malformations.

  4. Identification of Candidate Tolerogenic CD8+ T Cell Epitopes for Therapy of Type 1 Diabetes in the NOD Mouse Model

    Directory of Open Access Journals (Sweden)

    Cailin Yu

    2016-01-01

    Full Text Available Type 1 diabetes is an autoimmune disease in which insulin-producing pancreatic islet β cells are the target of self-reactive B and T cells. T cells reactive with epitopes derived from insulin and/or IGRP are critical for the initiation and maintenance of disease, but T cells reactive with other islet antigens likely have an essential role in disease progression. We sought to identify candidate CD8+ T cell epitopes that are pathogenic in type 1 diabetes. Proteins that elicit autoantibodies in human type 1 diabetes were analyzed by predictive algorithms for candidate epitopes. Using several different tolerizing regimes using synthetic peptides, two new predicted tolerogenic CD8+ T cell epitopes were identified in the murine homolog of the major human islet autoantigen zinc transporter ZnT8 (aa 158–166 and 282–290 and one in a non-β cell protein, dopamine β-hydroxylase (aa 233–241. Tolerizing vaccination of NOD mice with a cDNA plasmid expressing full-length proinsulin prevented diabetes, whereas plasmids encoding ZnT8 and DβH did not. However, tolerizing vaccination of NOD mice with the proinsulin plasmid in combination with plasmids expressing ZnT8 and DβH decreased insulitis and enhanced prevention of disease compared to vaccination with the plasmid encoding proinsulin alone.

  5. Loci and candidate gene identification for resistance to Phytophthora sojae via association analysis in soybean [Glycine max (L.) Merr].

    Science.gov (United States)

    Li, Lihong; Guo, Na; Niu, Jingping; Wang, Zili; Cui, Xiaoxia; Sun, Jutao; Zhao, Tuanjie; Xing, Han

    2016-06-01

    Phytophthora sojae is an oomycete soil-borne plant pathogen that causes the serious disease Phytophthora root rot in soybean, leading to great loss of soybean production every year. Understanding the genetic basis of this plant-pathogen interaction is important to improve soybean disease resistance. To discover genes or QTLs underlying naturally occurring variations in soybean P.sojae resistance, we performed a genome-wide association study using 59,845 single-nucleotide polymorphisms identified from re-sequencing of 279 accessions from Yangtze-Huai soybean breeding germplasm. We used two models for association analysis. The same strong peak was detected by both two models on chromosome 13. Within the 500-kb flanking regions, three candidate genes (Glyma13g32980, Glyma13g33900, Glyma13g33512) had SNPs in their exon regions. Four other genes were located in this region, two of which contained a leucine-rich repeat domain, which is an important characteristic of R genes in plants. These candidate genes could be potentially useful for improving the resistance of cultivated soybean to P.sojae in future soybean breeding.

  6. A preliminary study for identification of candidate AFLP markers under artificial selection for shell color in pearl oyster Pinctada fucata.

    Science.gov (United States)

    Zou, Keshu; Zhang, Dianchang; Guo, Huayang; Zhu, Caiyan; Li, Min; Jiang, Shigui

    2014-05-25

    Pearl oyster Pinctada fucata is widely cultured to produce seawater pearl in South China, and the quality of pearl is significantly affected by its shell color. Thus the Pearl Oyster Selective Breeding Program (POSBP) was carried out for the shell color and growth traits. The black (B), gold (G), red (R) and white (W) shell strains with fast growth trait were achieved after five successive generation selection. In this study, AFLP technique was used to scan genome of four strains with different shell colors to identify the candidate markers under artificial selection. Eight AFLP primer combinations were screened and yielded 688 loci, 676 (98.26%) of which were polymorphic. In black, gold, red and white strains, the percentage of polymorphic loci was 90.41%, 87.79%, 93.60% and 93.31%, respectively, Nei's gene diversity was 0.3225, 0.2829, 0.3221 and 0.3292, Shannon's information index was 0.4801, 0.4271, 0.4825 and 0.4923, and the value of FST was 0.1805. These results suggested that the four different shell color strains had high genetic diversity and great genetic differentiation among strains, which had been subjected to the continuous selective pressures during the artificial selective breeding. Furthermore, six outlier loci were considered as the candidate markers under artificial selection for shell color. This study provides a molecular evidence for the inheritance of shell color of P. fucata.

  7. Identification of biomarkers for intake of protein from meat, dairy products and grains: A controlled dietary intervention study

    NARCIS (Netherlands)

    Altorf-van der Kuil, W.; Brink, E.J.; Boetje, M.; Siebelink, E.; Bijlsma, S.; Engberink, M.F.; Veer, P.V.'.; Tomé, D.; Bakker, S.J.L.; Baak, M.A. van; Geleijnse, J.M.

    2013-01-01

    In the present controlled, randomised, multiple cross-over dietary intervention study, we aimed to identify potential biomarkers for dietary protein from dairy products, meat and grain, which could be useful to estimate intake of these protein types in epidemiological studies. After 9 d run-in, thir

  8. Identification of potential biomarkers of hepatitis B-induced acute liver failure using hepatic cells derived from human skin precursors.

    Science.gov (United States)

    Rodrigues, Robim M; Sachinidis, Agapios; De Boe, Veerle; Rogiers, Vera; Vanhaecke, Tamara; De Kock, Joery

    2015-09-01

    Besides their role in the elucidation of pathogenic processes of medical and pharmacological nature, biomarkers can also be used to document specific toxicological events. Hepatic cells generated from human skin-derived precursors (hSKP-HPC) were previously shown to be a promising in vitro tool for the evaluation of drug-induced hepatotoxicity. In this study, their capacity to identify potential liver-specific biomarkers at the gene expression level was investigated with particular emphasis on acute liver failure (ALF). To this end, a set of potential ALF-specific biomarkers was established using clinically relevant liver samples obtained from patients suffering from hepatitis B-associated ALF. Subsequently, this data was compared to data obtained from primary human hepatocyte cultures and hSKP-HPC, both exposed to the ALF-inducing reference compound acetaminophen. It was found that both in vitro systems revealed a set of molecules that was previously identified in the ALF liver samples. Yet, only a limited number of molecules was common between both in vitro systems and the ALF liver samples. Each of the in vitro systems could be used independently to identify potential toxicity biomarkers related to ALF. It seems therefore more appropriate to combine primary human hepatocyte cultures with complementary in vitro models to efficiently screen out potential hepatotoxic compounds.

  9. Validation of QTL mapping and transcriptome profiling for identification of candidate genes associated with nitrogen stress tolerance in sorghum.

    Science.gov (United States)

    Gelli, Malleswari; Konda, Anji Reddy; Liu, Kan; Zhang, Chi; Clemente, Thomas E; Holding, David R; Dweikat, Ismail M

    2017-07-11

    Quantitative trait loci (QTLs) detected in one mapping population may not be detected in other mapping populations at all the time. Therefore, before being used for marker assisted breeding, QTLs need to be validated in different environments and/or genetic backgrounds to rule out statistical anomalies. In this regard, we mapped the QTLs controlling various agronomic traits in a recombinant inbred line (RIL) population in response to Nitrogen (N) stress and validated these with the reported QTLs in our earlier study to find the stable and consistent QTLs across populations. Also, with Illumina RNA-sequencing we checked the differential expression of gene (DEG) transcripts between parents and pools of RILs with high and low nitrogen use efficiency (NUE) and overlaid these DEGs on to the common validated QTLs to find candidate genes associated with N-stress tolerance in sorghum. An F7 RIL population derived from a cross between CK60 (N-stress sensitive) and San Chi San (N-stress tolerant) inbred sorghum lines was used to map QTLs for 11 agronomic traits tested under different N-levels. Composite interval mapping analysis detected a total of 32 QTLs for 11 agronomic traits. Validation of these QTLs revealed that of the detected, nine QTLs from this population were consistent with the reported QTLs in earlier study using CK60/China17 RIL population. The validated QTLs were located on chromosomes 1, 6, 7, 8, and 9. In addition, root transcriptomic profiling detected 55 and 20 differentially expressed gene (DEG) transcripts between parents and pools of RILs with high and low NUE respectively. Also, overlay of these DEG transcripts on to the validated QTLs found candidate genes transcripts for NUE and also showed the expected differential expression. For example, DEG transcripts encoding Lysine histidine transporter 1 (LHT1) had abundant expression in San Chi San and the tolerant RIL pool, whereas DEG transcripts encoding seed storage albumin, transcription factor IIIC

  10. Label-Free LC-MS Profiling of Skeletal Muscle Reveals Heart-Type Fatty Acid Binding Protein as a Candidate Biomarker of Aerobic Capacity

    Directory of Open Access Journals (Sweden)

    Zulezwan A. Malik

    2013-12-01

    .54-fold (p = 0.0064 more abundant in HCR than LCR soleus. This discovery was verified using selective reaction monitoring (SRM of the y5 ion (551.21 m/z of the doubly-charged peptide SLGVGFATR (454.19 m/z of residues 23–31 of FABPH. SRM was conducted on technical replicates of each biological sample and exhibited a coefficient of variation of 20%. The abundance of FABPH measured by SRM was 2.84-fold greater (p = 0.0095 in HCR muscle. In addition, SRM of FABPH was performed in vastus lateralis samples of young and elderly humans with different habitual activity levels (collected during a previous study finding FABPH abundance was 2.23-fold greater (p = 0.0396 in endurance-trained individuals regardless of differences in age. In summary, our findings in HCR/LCR rats provide protein-level confirmation for earlier transcriptome profiling work and show LC-MS is a viable means of profiling the abundance of almost all major metabolic enzymes of skeletal muscle in a highly parallel manner. Moreover, our approach is relatively more time efficient than techniques relying on orthogonal separations, and we demonstrate LC-MS profiling of the HCR/LCR selection model was able to highlight biomarkers that also exhibit differences in trained and untrained human muscle.

  11. Proteomic profiling of a mouse model of acute intestinal Apc deletion leads to identification of potential novel biomarkers of human colorectal cancer (CRC).

    Science.gov (United States)

    Hammoudi, Abeer; Song, Fei; Reed, Karen R; Jenkins, Rosalind E; Meniel, Valerie S; Watson, Alastair J M; Pritchard, D Mark; Clarke, Alan R; Jenkins, John R

    2013-10-25

    Colorectal cancer (CRC) is the fourth most common cause of cancer-related death worldwide. Accurate non-invasive screening for CRC would greatly enhance a population's health. Adenomatous polyposis coli (Apc) gene mutations commonly occur in human colorectal adenomas and carcinomas, leading to Wnt signalling pathway activation. Acute conditional transgenic deletion of Apc in murine intestinal epithelium (AhCre(+)Apc(fl)(/)(fl)) causes phenotypic changes similar to those found during colorectal tumourigenesis. This study comprised a proteomic analysis of murine small intestinal epithelial cells following acute Apc deletion to identify proteins that show altered expression during human colorectal carcinogenesis, thus identifying proteins that may prove clinically useful as blood/serum biomarkers of colorectal neoplasia. Eighty-one proteins showed significantly increased expression following iTRAQ analysis, and validation of nine of these by Ingenuity Pathaway Analysis showed they could be detected in blood or serum. Expression was assessed in AhCre(+)Apc(fl)(/)(fl) small intestinal epithelium by immunohistochemistry, western blot and quantitative real-time PCR; increased nucelolin concentrations were also detected in the serum of AhCre(+)Apc(fl)(/)(fl) and Apc(Min)(/)(+) mice by ELISA. Six proteins; heat shock 60kDa protein 1, Nucleolin, Prohibitin, Cytokeratin 18, Ribosomal protein L6 and DEAD (Asp-Glu-Ala-Asp) box polypeptide 5,were selected for further investigation. Increased expression of 4 of these was confirmed in human CRC by qPCR. In conclusion, several novel candidate biomarkers have been identified from analysis of transgenic mice in which the Apc gene was deleted in the intestinal epithelium that also showed increased expression in human CRC. Some of these warrant further investigation as potential serum-based biomarkers of human CRC.

  12. Identification of S100A9 as biomarker of responsiveness to the methotrexate/etanercept combination in rheumatoid arthritis using a proteomic approach.

    Directory of Open Access Journals (Sweden)

    Antoine Obry

    Full Text Available One way to optimize the drug prescription in rheumatoid arthritis (RA is to identify predictive biomarkers of drug responsiveness. Here, we investigated the potential "theranostic" value of proteins of the S100 family by monitoring levels of both S100A8 and S100A9 in blood samples from RA patients.For proteomic analysis, peripheral blood mononuclear cells (PBMC and serum samples were collected in patients prior to initiation of the methotrexate/etanercept (MTX/ETA combination. Firstly, relative mass spectrometry (MS quantification focusing on S100A8 and S100A9 proteins was carried out from PBMCs samples to identify potential biomarkers. The same approach was also performed from serum samples from responder (R and non responder (NR patients. Finally, to confirm these results, an absolute quantification of S100A8, S100A9 proteins and calprotectin (heterodimer of S100A8/S100A9 was carried out on the serum samples using ELISA.MS analyses revealed that both S100A8 and S100A9 proteins were significantly accumulated in PBMC from responders. In contrast to PBMC, only the S100A9 protein was significantly overexpressed in the serum of R patients. Absolute quantification by ELISA confirmed this result and pointed out a similar expression level of S100A8 protein and calprotectin in sera from both R and NR groups. Thus, the S100A9 protein revealed to be predictive of MTX/ETA responsiveness, contrarily to parameters of inflammation and auto-antibodies which did not allow significant discrimination.This is the first report of an overexpression of S100A9 protein in both PBMCs and serum of patients with subsequent response to the MTX/ETA combination. This protein thus represents an interesting biomarker candidate of therapeutic response in RA.

  13. Blood Biomarkers of Ischemic Stroke

    National Research Council Canada - National Science Library

    Jickling, Glen C; Sharp, Frank R

    2011-01-01

    .... Though many candidate blood based biomarkers for ischemic stroke have been identified, none are currently used in clinical practice. With further well designed study and careful validation, the development of blood biomarkers to improve the care of patients with ischemic stroke may be achieved.

  14. Identification of Gene Biomarkers for Distinguishing Small-Cell Lung Cancer from Non-Small-Cell Lung Cancer Using a Network-Based Approach

    Directory of Open Access Journals (Sweden)

    Fei Long

    2015-01-01

    Full Text Available Lung cancer consists of two main subtypes: small-cell lung cancer (SCLC and non-small-cell lung cancer (NSCLC that are classified according to their physiological phenotypes. In this study, we have developed a network-based approach to identify molecular biomarkers that can distinguish SCLC from NSCLC. By identifying positive and negative coexpression gene pairs in normal lung tissues, SCLC, or NSCLC samples and using functional association information from the STRING network, we first construct a lung cancer-specific gene association network. From the network, we obtain gene modules in which genes are highly functionally associated with each other and are either positively or negatively coexpressed in the three conditions. Then, we identify gene modules that not only are differentially expressed between cancer and normal samples, but also show distinctive expression patterns between SCLC and NSCLC. Finally, we select genes inside those modules with discriminating coexpression patterns between the two lung cancer subtypes and predict them as candidate biomarkers that are of diagnostic use.

  15. Isolation and identification of lactid acid bacteria originated from king grass (Pennisetum purpureophoides as candidate of probiotic for livestock

    Directory of Open Access Journals (Sweden)

    Santoso B

    2013-06-01

    Full Text Available A study was conducted to isolate and identify strain of lactic acid bacteria (LAB isolated from king grass, and to determine their potential as candidate of probiotic for livestock. The LAB was isolated by culturing king grass extract in De Man, Rogosa and Sharpe (MRS medium. The pure culture LAB was used to identify strain of bacteria using Analytical Profile Index (API 50 CH kit. The result showed that the strain bacteria was identified as Lactobacillus plantarum. L. plantarum was able to survive in extreme condition at pH 2 and 0.3% bile salt. L. plantarum also survived against pathogenic bacteria i.e. Staphylococcus aureus, Escherechia coli and Salmonella thypi. It is concluded that L. plantarum isolated from king grass could potentially to be used as probiotic for livestock.

  16. Recovery of divergent avian bornaviruses from cases of proventricular dilatation disease: identification of a candidate etiologic agent.

    Science.gov (United States)

    Kistler, Amy L; Gancz, Ady; Clubb, Susan; Skewes-Cox, Peter; Fischer, Kael; Sorber, Katherine; Chiu, Charles Y; Lublin, Avishai; Mechani, Sara; Farnoushi, Yigal; Greninger, Alexander; Wen, Christopher C; Karlene, Scott B; Ganem, Don; DeRisi, Joseph L

    2008-07-31

    Proventricular dilatation disease (PDD) is a fatal disorder threatening domesticated and wild psittacine birds worldwide. It is characterized by lymphoplasmacytic infiltration of the ganglia of the central and peripheral nervous system, leading to central nervous system disorders as well as disordered enteric motility and associated wasting. For almost 40 years, a viral etiology for PDD has been suspected, but to date no candidate etiologic agent has been reproducibly linked to the disease. Analysis of 2 PDD case-control series collected independently on different continents using a pan-viral microarray revealed a bornavirus hybridization signature in 62.5% of the PDD cases (5/8) and none of the controls (0/8). Ultra high throughput sequencing was utilized to recover the complete viral genome sequence from one of the virus-positive PDD cases. This revealed a bornavirus-like genome organization for this agent with a high degree of sequence divergence from all prior bornavirus isolates. We propose the name avian bornavirus (ABV) for this agent. Further specific ABV PCR analysis of an additional set of independently collected PDD cases and controls yielded a significant difference in ABV detection rate among PDD cases (71%, n = 7) compared to controls (0%, n = 14) (P = 0.01; Fisher's Exact Test). Partial sequence analysis of a total of 16 ABV isolates we have now recovered from these and an additional set of cases reveals at least 5 distinct ABV genetic subgroups. These studies clearly demonstrate the existence of an avian reservoir of remarkably diverse bornaviruses and provide a compelling candidate in the search for an etiologic agent of PDD.

  17. Recovery of divergent avian bornaviruses from cases of proventricular dilatation disease: Identification of a candidate etiologic agent

    Directory of Open Access Journals (Sweden)

    Greninger Alexander

    2008-07-01

    Full Text Available Abstract Background Proventricular dilatation disease (PDD is a fatal disorder threatening domesticated and wild psittacine birds worldwide. It is characterized by lymphoplasmacytic infiltration of the ganglia of the central and peripheral nervous system, leading to central nervous system disorders as well as disordered enteric motility and associated wasting. For almost 40 years, a viral etiology for PDD has been suspected, but to date no candidate etiologic agent has been reproducibly linked to the disease. Results Analysis of 2 PDD case-control series collected independently on different continents using a pan-viral microarray revealed a bornavirus hybridization signature in 62.5% of the PDD cases (5/8 and none of the controls (0/8. Ultra high throughput sequencing was utilized to recover the complete viral genome sequence from one of the virus-positive PDD cases. This revealed a bornavirus-like genome organization for this agent with a high degree of sequence divergence from all prior bornavirus isolates. We propose the name avian bornavirus (ABV for this agent. Further specific ABV PCR analysis of an additional set of independently collected PDD cases and controls yielded a significant difference in ABV detection rate among PDD cases (71%, n = 7 compared to controls (0%, n = 14 (P = 0.01; Fisher's Exact Test. Partial sequence analysis of a total of 16 ABV isolates we have now recovered from these and an additional set of cases reveals at least 5 distinct ABV genetic subgroups. Conclusion These studies clearly demonstrate the existence of an avian reservoir of remarkably diverse bornaviruses and provide a compelling candidate in the search for an etiologic agent of PDD.

  18. Detection and identification of the Candida species by 25S ribosomal DNA analysis in the urine of candidal cystitis.

    Science.gov (United States)

    Kano, Rui; Hattori, Yousuke; Okuzumi, Katsuko; Miyazaki, Yoshio; Yamauchi, Rie; Koie, Hiroshi; Watari, Toshihiro; Hasegawa, Atsuhiko

    2002-02-01

    Candida species in clinical urine samples were identified directly by the newly developed method of PCR analysis on 25S ribosomal DNA (rDNA). Two dogs were referred to the Animal Medical Center, Nihon University School of Veterinary Medicine, Fujisawa, Kanagawa, Japan for the examination of chronic cystitis. Microscopic examination of urine samples from these dogs revealed yeast cells. Urine culture on Sabouraud's dextrose agar at 27 degrees C for 5 days produced white to cream colored colonies. The isolates were identifical to Candida albicans and C. parapsilosis by mycological examination, respectively. The nucleotide sequences of 25S ribosomal DNA from these urine isolates showed 99% similarity to those of a reference strain of Candida albicans or C. parapsilosis. The nucleotide sequences of 25S rDNA obtained directly from urine samples were also identical to C. albicans and C. parapsilosis, respectively. Confirming the results on the isolates cultured from the same urine samples. This PCR analysis method could be available for the direct identification of Candida species in urine samples within 2 days.

  19. On consensus biomarker selection

    Directory of Open Access Journals (Sweden)

    Gambin Anna

    2007-05-01

    Full Text Available Abstract Background Recent development of mass spectrometry technology enabled the analysis of complex peptide mixtures. A lot of effort is currently devoted to the identification of biomarkers in human body fluids like serum or plasma, based on which new diagnostic tests for different diseases could be constructed. Various biomarker selection procedures have been exploited in recent studies. It has been noted that they often lead to different biomarker lists and as a consequence, the patient classification may also vary. Results Here we propose a new approach to the biomarker selection problem: to apply several competing feature ranking procedures and compute a consensus list of features based on their outcomes. We validate our methods on two proteomic datasets for the diagnosis of ovarian and prostate cancer. Conclusion The proposed methodology can improve the classification results and at the same time provide a unified biomarker list for further biological examinations and interpretation.

  20. A new strategy for faster urinary biomarkers identification by Nano-LC-MALDI-TOF/TOF mass spectrometry

    Directory of Open Access Journals (Sweden)

    Le Meur Y

    2008-11-01

    Full Text Available Abstract Background LC-MALDI-TOF/TOF analysis is a potent tool in biomarkers discovery characterized by its high sensitivity and high throughput capacity. However, methods based on MALDI-TOF/TOF for biomarkers discovery still need optimization, in particular to reduce analysis time and to evaluate their reproducibility for peak intensities measurement. The aims of this methodological study were: (i to optimize and critically evaluate each step of urine biomarker discovery method based on Nano-LC coupled off-line to MALDI-TOF/TOF, taking full advantage of the dual decoupling between Nano-LC, MS and MS/MS to reduce the overall analysis time; (ii to evaluate the quantitative performance and reproducibility of nano-LC-MALDI analysis in biomarker discovery; and (iii to evaluate the robustness of biomarkers selection. Results A pool of urine sample spiked at increasing concentrations with a mixture of standard peptides was used as a specimen for biological samples with or without biomarkers. Extraction and nano-LC-MS variabilities were estimated by analyzing in triplicates and hexaplicates, respectively. The stability of chromatographic fractions immobilised with MALDI matrix on MALDI plates was evaluated by successive MS acquisitions after different storage times at different temperatures. Low coefficient of variation (CV%: 10–22% and high correlation (R2 > 0.96 values were obtained for the quantification of the spiked peptides, allowing quantification of these peptides in the low fentomole range, correct group discrimination and selection of "specific" markers using principal component analysis. Excellent peptide integrity and stable signal intensity were found when MALDI plates were stored for periods of up to 2 months at +4°C. This allowed storage of MALDI plates between LC separation and MS acquisition (first decoupling, and between MS and MSMS acquisitions while the selection of inter-group discriminative ions is done (second decoupling

  1. Identification of Single Nucleotide Polymorphisms and analysis of Linkage Disequilibrium in sunflower elite inbred lines using the candidate gene approach

    Directory of Open Access Journals (Sweden)

    Heinz Ruth A

    2008-01-01

    Full Text Available Abstract Background Association analysis is a powerful tool to identify gene loci that may contribute to phenotypic variation. This includes the estimation of nucleotide diversity, the assessment of linkage disequilibrium structure (LD and the evaluation of selection processes. Trait mapping by allele association requires a high-density map, which could be obtained by the addition of Single Nucleotide Polymorphisms (SNPs and short insertion and/or deletions (indels to SSR and AFLP genetic maps. Nucleotide diversity analysis of randomly selected candidate regions is a promising approach for the success of association analysis and fine mapping in the sunflower genome. Moreover, knowledge of the distance over which LD persists, in agronomically meaningful sunflower accessions, is important to establish the density of markers and the experimental design for association analysis. Results A set of 28 candidate genes related to biotic and abiotic stresses were studied in 19 sunflower inbred lines. A total of 14,348 bp of sequence alignment was analyzed per individual. In average, 1 SNP was found per 69 nucleotides and 38 indels were identified in the complete data set. The mean nucleotide polymorphism was moderate (θ = 0.0056, as expected for inbred materials. The number of haplotypes per region ranged from 1 to 9 (mean = 3.54 ± 1.88. Model-based population structure analysis allowed detection of admixed individuals within the set of accessions examined. Two putative gene pools were identified (G1 and G2, with a large proportion of the inbred lines being assigned to one of them (G1. Consistent with the absence of population sub-structuring, LD for G1 decayed more rapidly (r2 = 0.48 at 643 bp; trend line, pooled data than the LD trend line for the entire set of 19 individuals (r2 = 0.64 for the same distance. Conclusion Knowledge about the patterns of diversity and the genetic relationships between breeding materials could be an invaluable aid in crop

  2. Biomarkers in the pathogenesis, diagnosis, and treatment of psoriasis

    Directory of Open Access Journals (Sweden)

    Molteni S

    2012-09-01

    Full Text Available Silvia Molteni, Eva RealiLaboratory of Translational Immunology, Istituto Ortopedico Galeazzi, Milan, ItalyAbstract: Development of psoriasis results from a complex interplay between genetically predisposing factors and environmental triggers that give rise to a self-sustaining pathogenic cycle involving T cells, dendritic cells, connective tissue, and skin epithelium. From 5% to 40% of patients with psoriasis also develop psoriatic arthritis, and increasing evidence indicates an association with other systemic manifestations, including cardiovascular disease and the metabolic syndrome. In psoriatic disease, there is a need for development of biomarkers for assessment of disease severity, for prediction of the outcome of therapeutic interventions, and for distinction between the different clinical variants of the disease. A field of great importance is identification of biomarkers for prediction of development of comorbidities, such as arthritis, cardiovascular disease, and the metabolic syndrome. Genetic determinants of psoriasis and their products not only give an important insight into the pathogenesis of the disease, but may also function as markers of risk for developing cutaneous psoriasis or psoriatic arthritis. So far, there are limited validation data to support the use of candidate biomarkers in clinical practice. Here we review the data from several studies on some of the most promising candidate biomarkers for cutaneous psoriasis and psoriatic arthritis, for the detection of systemic inflammation, and for use as endpoints for therapeutic interventions. Attention is focused on the molecules that take part in the interplay giving rise to psoriasis and on gene products that may represent a link between predisposing genetic factors and the immune and inflammatory processes involved in pathogenesis of the disease. Finally, we provide an overview on how biomarkers can offer insights into the pathogenesis and natural history of psoriasis

  3. Identification and prioritization of candidate genes for symptom variability in breast cancer survivors based on disease characteristics at the cellular level

    Directory of Open Access Journals (Sweden)

    Koleck TA

    2016-03-01

    Full Text Available Theresa A Koleck,1 Yvette P Conley2 1School of Nursing, 2Department of Human Genetics, School of Nursing and Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA Abstract: Research is beginning to suggest that the presence and/or severity of symptoms reported by breast cancer survivors may be associated with disease-related factors of cancer. In this article, we present a novel approach to the identification and prioritization of biologically plausible candidate genes to investigate relationships between genomic variation and symptom variability in breast cancer survivors. Cognitive dysfunction is utilized as a representative breast cancer survivor symptom to elucidate the conceptualization of and justification for our cellular, disease-based approach to address symptom variability in cancer survivors. Initial candidate gene identification was based on genes evaluated as part of multigene expression profiles for breast cancer, which are commonly used in the clinical setting to characterize the biology of cancer cells for the purpose of describing overall tumor aggressiveness, prognostication, and individualization of therapy. A list of genes evaluated within five multigene expression profiles for breast cancer was compiled. In order to prioritize candidate genes for investigation, genes used in each profile were compared for duplication. Twenty-one genes (BAG1, BCL2, BIRC5, CCNB1, CENPA, CMC2, DIAPH3, ERBB2, ESR1, GRB7, MELK, MKI67, MMP11, MYBL2, NDC80, ORC6, PGR, RACGAP1, RFC4, RRM2, and SCUBE2 are utilized in two or more profiles, including five genes (CCNB1, CENPA, MELK, MYBL2, and ORC6 used in three profiles. To ensure that the parsimonious 21 gene set is representative of the more global biological hallmarks of cancer, an Ingenuity Pathway Analysis was conducted. Evaluation of genes known to impact pathways involved with cancer development and progression provide a means to evaluate the overlap between the

  4. Correlated fragile site expression allows the identification of candidate fragile genes involved in immunity and associated with carcinogenesis

    Directory of Open Access Journals (Sweden)

    Puliti Alda

    2006-09-01

    Full Text Available Abstract Background Common fragile sites (cfs are specific regions in the human genome that are particularly prone to genomic instability under conditions of replicative stress. Several investigations support the view that common fragile sites play a role in carcinogenesis. We discuss a genome-wide approach based on graph theory and Gene Ontology vocabulary for the functional characterization of common fragile sites and for the identification of genes that contribute to tumour cell biology. Results Common fragile sites were assembled in a network based on a simple measure of correlation among common fragile site patterns of expression. By applying robust measurements to capture in quantitative terms the non triviality of the network, we identified several topological features clearly indicating departure from the Erdos-Renyi random graph model. The most important outcome was the presence of an unexpected large connected component far below the percolation threshold. Most of the best characterized common fragile sites belonged to this connected component. By filtering this connected component with Gene Ontology, statistically significant shared functional features were detected. Common fragile sites were found to be enriched for genes associated to the immune response and to mechanisms involved in tumour progression such as extracellular space remodeling and angiogenesis. Moreover we showed how the internal organization of the graph in communities and even in very simple subgraphs can be a starting point for the identification of new factors of instability at common fragile sites. Conclusion We developed a computational method addressing the fundamental issue of studying the functional content of common fragile sites. Our analysis integrated two different approaches. First, data on common fragile site expression were analyzed in a complex networks framework. Second, outcomes of the network statistical description served as sources for the

  5. High-throughput sequencing of microRNAs in peripheral blood mononuclear cells: identification of potential weight loss biomarkers.

    Directory of Open Access Journals (Sweden)

    Fermín I Milagro

    Full Text Available INTRODUCTION: MicroRNAs (miRNAs are being increasingly studied in relation to energy metabolism and body composition homeostasis. Indeed, the quantitative analysis of miRNAs expression in different adiposity conditions may contribute to understand the intimate mechanisms participating in body weight control and to find new biomarkers with diagnostic or prognostic value in obesity management. OBJECTIVE: The aim of this study was the search for miRNAs in blood cells whose expression could be used as prognostic biomarkers of weight loss. METHODS: Ten Caucasian obese women were selected among the participants in a weight-loss trial that consisted in following an energy-restricted treatment. Weight loss was considered unsuccessful when 5% (responders. At baseline, total miRNA isolated from peripheral blood mononuclear cells (PBMC was sequenced with SOLiD v4. The miRNA sequencing data were validated by RT-PCR. RESULTS: Differential baseline expression of several miRNAs was found between responders and non-responders. Two miRNAs were up-regulated in the non-responder group (mir-935 and mir-4772 and three others were down-regulated (mir-223, mir-224 and mir-376b. Both mir-935 and mir-4772 showed relevant associations with the magnitude of weight loss, although the expression of other transcripts (mir-874, mir-199b, mir-766, mir-589 and mir-148b also correlated with weight loss. CONCLUSIONS: This research addresses the use of high-throughput sequencing technologies in the search for miRNA expression biomarkers in obesity, by determining the miRNA transcriptome of PBMC. Basal expression of different miRNAs, particularly mir-935 and mir-4772, could be prognostic biomarkers and may forecast the response to a hypocaloric diet.

  6. Identification of Apo-A1 as a biomarker for early diagnosis of bladder transitional cell carcinoma

    Directory of Open Access Journals (Sweden)

    Wang Shixin

    2011-04-01

    Full Text Available Abstract Background Bladder transitional cell carcinoma (BTCC is the fourth most frequent neoplasia in men, clinically characterized by high recurrent rates and poor prognosis. Availability of urinary tumor biomarkers represents a convenient alternative for early detection and disease surveillance because of its direct contact with the tumor and sample accessibility. Results We tested urine samples from healthy volunteers and patients with low malignant or aggressive BTCC to identify potential biomarkers for early detection of BTCC by two-dimensional electrophoresis (2-DE coupled with mass spectrometry (MS and bioinformatics analysis. We observed increased expression of five proteins, including fibrinogen (Fb, lactate dehydrogenase B (LDHB, apolipoprotein-A1 (Apo-A1, clusterin (CLU and haptoglobin (Hp, which were increased in urine samples of patients with low malignant or aggressive bladder cancer. Further analysis of urine samples of aggressive BTCC showed significant increase in Apo-A1 expression compared to low malignant BTCC. Apo-A1 level was measured quantitatively using enzyme-linked immunosorbent assay (ELISA and was suggested to provide diagnostic utility to distinguish patients with bladder cancer from controls at 18.22 ng/ml, and distinguish patients with low malignant BTCC from patients with aggressive BTCC in two-tie grading system at 29.86 ng/ml respectively. Further validation assay showed that Apo-A1 could be used as a biomarker to diagnosis BTCC with a sensitivity and specificity of 91.6% and 85.7% respectively, and classify BTCC in two-tie grading system with a sensitivity and specificity of 83.7% and 89.7% respectively. Conclusion Taken together, our findings suggest Apo-A1 could be a potential biomarker related with early diagnosis and classification in two-tie grading system for bladder cancer.

  7. RNA-seq analyses of changes in the Anopheles gambiae transcriptome associated with resistance to pyrethroids in Kenya: identification of candidate-resistance genes and candidate-resistance SNPs.

    Science.gov (United States)

    Bonizzoni, Mariangela; Ochomo, Eric; Dunn, William Augustine; Britton, Monica; Afrane, Yaw; Zhou, Guofa; Hartsel, Joshua; Lee, Ming-Chieh; Xu, Jiabao; Githeko, Andrew; Fass, Joseph; Yan, Guiyun

    2015-09-17

    The extensive use of pyrethroids for control of malaria vectors, driven by their cost, efficacy and safety, has led to widespread resistance. To favor their sustainable use, the World Health Organization (WHO) formulated an insecticide resistance management plan, which includes the identification of the mechanisms of resistance and resistance surveillance. Recognized physiological mechanisms of resistance include target site mutations in the para voltage-gated sodium channel, metabolic detoxification and penetration resistance. Such understanding of resistance mechanisms has allowed the development of resistance monitoring tools, including genotyping of the kdr mutation L1014F/S in the para gene. The sequence-based technique RNA-seq was applied to study changes in the transcriptome of deltamethrin-resistant and -susceptible Anopheles gambiae mosquitoes from the Western Province of Kenya. The resulting gene expression profiles were compared to data in the most recent literature to derive a list of candidate resistance genes. RNA-seq data were analyzed also to identify sequence polymorphisms linked to resistance. A total of five candidate-resistance genes (AGAP04177, AGAP004572, AGAP008840, AGAP007530 and AGAP013036) were identified with altered expression between resistant and susceptible mosquitoes from West and East Africa. A change from G to C at position 36043997 of chromosome 3R resulting in A101G of the sulfotransferase gene AGAP009551 was significantly associated with the resistance phenotype (odds ratio: 5.10). The kdr L1014S mutation was detected at similar frequencies in both phenotypically resistant and susceptible mosquitoes, suggesting it is no longer fully predictive of the resistant phenotype. Overall, these results support the conclusion that resistance to pyrethroids is a complex and evolving phenotype, dependent on multiple gene functions including, but not limited to, metabolic detoxification. Functional convergence among metabolic detoxification

  8. First Identification of Direct Collapse Black Hole Candidates in the Early Universe in CANDELS/GOODS-S

    CERN Document Server

    Pacucci, Fabio; Grazian, Andrea; Fiore, Fabrizio; Giallongo, Emanuele

    2016-01-01

    The first black hole seeds, formed when the Universe was younger than 500 Myr, are recognized to play an important role for the growth of early (z ~ 7) super-massive black holes. While progresses have been made in understanding their formation and growth, their observational signatures remain largely unexplored. As a result, no detection of such sources has been confirmed so far. Supported by numerical simulations, we present a novel photometric method to identify black hole seed candidates in deep multi-wavelength surveys. We predict that these highly-obscured sources are characterized by a steep spectrum in the infrared (1.6-4.5 micron), i.e. by very red colors. The method selects the only 2 objects with a robust X-ray detection found in the CANDELS/GOODS-S survey with a photometric redshift z > 6. Fitting their infrared spectra only with a stellar component would require unrealistic star formation rates (>2000 solar masses per year). To date, the selected objects represent the most promising black hole see...

  9. Identification of metabolic QTLs and candidate genes for glucosinolate synthesis in Brassica oleracea leaves, seeds and flower buds.

    Directory of Open Access Journals (Sweden)

    Tamara Sotelo

    Full Text Available Glucosinolates are major secondary metabolites found in the Brassicaceae family. These compounds play an essential role in plant defense against biotic and abiotic stresses, but more interestingly they have beneficial effects on human health. We performed a genetic analysis in order to identify the genome regions regulating glucosinolates biosynthesis in a DH mapping population of Brassica oleracea. In order to obtain a general overview of regulation in the whole plant, analyses were performed in the three major organs where glucosinolates are synthesized (leaves, seeds and flower buds. Eighty two significant QTLs were detected, which explained a broad range of variability in terms of individual and total glucosinolate (GSL content. A meta-analysis rendered eighteen consensus QTLs. Thirteen of them regulated more than one glucosinolate and its content. In spite of the considerable variability of glucosinolate content and profiles across the organ, some of these consensus QTLs were identified in more than one tissue. Consensus QTLs control the GSL content by interacting epistatically in complex networks. Based on in silico analysis within the B. oleracea genome along with synteny with Arabidopsis, we propose seven major candidate loci that regulate GSL biosynthesis in the Brassicaceae family. Three of these loci control the content of aliphatic GSL and four of them control the content of indolic glucosinolates. GSL-ALK plays a central role in determining aliphatic GSL variation directly and by interacting epistatically with other loci, thus suggesting its regulatory effect.

  10. Identification of a candidate gene for panicle length in rice (Oryza sativa L. via association and linkage analysis

    Directory of Open Access Journals (Sweden)

    Erbao eLiu

    2016-05-01

    Full Text Available Panicle length (PL is an important trait for improving panicle architecture and grain yield in rice (Oryza sativa L.. Three populations were used to identify QTLs and candidate genes associated with PL. Four QTLs for PL were detected on chromosomes 4, 6 and 9 through linkage mapping in the recombinant inbred line population derived from a cross between the cultivars Xiushui79 (short panicle and C-bao (long panicle. Ten SSR markers associated with PL were detected on chromosomes 2, 3, 5, 6, 8, 9 and 10 in the natural population consisting of 540 accessions collected from East and Southeast Asia. A major locus on chromosome 9 with the largest effect was identified via both linkage and association mapping. LONG PANICLE 1 (LP1 locus was delimited to a 90-kb region of the long arm of chromosome 9 through fine mapping using a single segment segregating F2 population. Two single nucleotide polymorphisms (SNPs leading to amino acid changes were detected in the third and fifth exons of LP1. LP1encodes a Remorin_C-containing protein of unknown function with homologs in a variety of species. Sequencing analysis of LP1 in two parents and 103 rice accessions indicated that SNP1 is associated with panicle length. The LP1 allele of Xiushui79 leads to reduced panicle length, whereas the allele of C-bao relieves the suppression of panicle length. LP1 and the elite alleles can be used to improve panicle length in rice.

  11. Identification of candidate genes for prostate cancer-risk SNPs utilizing a normal prostate tissue eQTL data set

    Science.gov (United States)

    Thibodeau, S. N.; French, A. J.; McDonnell, S. K.; Cheville, J.; Middha, S.; Tillmans, L.; Riska, S.; Baheti, S.; Larson, M. C.; Fogarty, Z.; Zhang, Y.; Larson, N.; Nair, A.; O'Brien, D.; Wang, L.; Schaid, D J.

    2015-01-01

    Multiple studies have identified loci associated with the risk of developing prostate cancer but the associated genes are not well studied. Here we create a normal prostate tissue-specific eQTL data set and apply this data set to previously identified prostate cancer (PrCa)-risk SNPs in an effort to identify candidate target genes. The eQTL data set is constructed by the genotyping and RNA sequencing of 471 samples. We focus on 146 PrCa-risk SNPs, including all SNPs in linkage disequilibrium with each risk SNP, resulting in 100 unique risk intervals. We analyse cis-acting associations where the transcript is located within 2 Mb (±1 Mb) of the risk SNP interval. Of all SNP–gene combinations tested, 41.7% of SNPs demonstrate a significant eQTL signal after adjustment for sample histology and 14 expression principal component covariates. Of the 100 PrCa-risk intervals, 51 have a significant eQTL signal and these are associated with 88 genes. This study provides a rich resource to study biological mechanisms underlying genetic risk to PrCa. PMID:26611117

  12. Identification of putative candidate genes for red rot resistance in sugarcane (Saccharum species hybrid) using LD-based association mapping.

    Science.gov (United States)

    Singh, Ram K; Banerjee, Nandita; Khan, M S; Yadav, Sonia; Kumar, Sanjeev; Duttamajumder, S K; Lal, Ram Ji; Patel, Jinesh D; Guo, H; Zhang, Dong; Paterson, Andrew H

    2016-06-01

    Red rot is a serious disease of sugarcane caused by the fungus Colletotrichum falcatum that has a colossal damage potential. The fungus, prevalent mainly in the Indian sub-continent, keeps on producing new pathogenic strains leading to breakdown of resistance in newly released varieties and hence the deployment of linked markers for marker-assisted selection for resistance to this disease can fine tune the breeding programme. This study based on a panel of 119 sugarcane genotypes fingerprinted for 944 SSR alleles was undertaken with an aim to identify marker-trait associations (MTAs) for resistance to red rot. Mixed linear model containing population structure and kinship as co-factor detected four MTAs that were able to explain 10-16 % of the trait variation, individually. Among the four MTAs, EST sequences diagnostic of three could be BLAST searched to the sorghum genome with significant sequence homology. Several genes encoding important plant defence related proteins, viz., cytochrome P450, Glycerol-3-phosphate transporter-1, MAP Kinase-4, Serine/threonine-protein kinase, Ring finger domain protein and others were localized to the vicinity of these MTAs. These positional candidate genes are worth of further investigation and possibly these could contribute directly to red rot resistance, and may find a potential application in marker-assisted sugarcane breeding.

  13. Identification of Candidate Genes for Reactivity in Guzerat (Bos indicus) Cattle: A Genome-Wide Association Study

    Science.gov (United States)

    Fonseca, Pablo Augusto de Souza; Pires, Maria de Fátima Ávila; Ventura, Ricardo Vieira; Rosse, Izinara da Cruz.; Bruneli, Frank Angelo Tomita; Machado, Marco Antonio; Carvalho, Maria Raquel Santos

    2017-01-01

    Temperament is fundamental to animal production due to its direct influence on the animal-herdsman relationship. When compared to calm animals, the aggressive, anxious or fearful ones exhibit less weight gain, lower reproductive efficiency, decreased milk production and higher herd maintenance costs, all of which contribute to reduced profits. However, temperament is a trait that is complex and difficult to assess. Recently, a new quantitative system, REATEST®, for assessing reactivity, a phenotype of temperament, was developed. Herein, we describe the results of a Genome-wide association study for reactivity, assessed using REATEST® with a sample of 754 females from five dual-purpose (milk and meat production) Guzerat (Bos indicus) herds. Genotyping was performed using a 50k SNP chip and a two-step mixed model approach (Grammar-Gamma) with a one-by-one marker regression was used to identify QTLs. QTLs for reactivity were identified on chromosomes BTA1, BTA5, BTA14, and BTA25. Five intronic and two intergenic markers were significantly associated with reactivity. POU1F1, DRD3, VWA3A, ZBTB20, EPHA6, SNRPF and NTN4 were identified as candidate genes. Previous QTL reports for temperament traits, covering areas surrounding the SNPs/genes identified here, further corroborate these associations. The seven genes identified in the present study explain 20.5% of reactivity variance and give a better understanding of temperament biology. PMID:28125592

  14. Construction of SMART cDNA Library of Sheep Ovary and Identification of Candidate Gene by Homologous Cloning

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The cDNA library of an ovary from Small Tail Han sheep before estrus was constructed by switching mechanism at 5' end of RNA transcript (SMART) approach. This library had a plaque titer of 1 × 109pfu mL-1 and a 96% recombinant ratio of which the fragment length of inserted average eDNA sequences was 1.0 kb. Based on bioinformatics analysis of the sequences, we obtained 338 expressed sequence tags (ESTs) from 380 cDNA clones which indicated 191 contigs. These contigs consist of 89 unmatched ESTs, 9 homologous known genes in sheep, and 93 homologous sequences in species of mouse, bovine, and human beings, including 19 sequences expressed in the ovary or follicle and 14 unknown sequences.Several candidate genes associated with sheep reproduction trait such as epidermal growth factor (EGF), estrogen receptor (ESR), Inhibin, follicle stimulating hormone receptor (FSHR), prostaglandin (PG), and transforming growth factor-β (TGF-β) were identified and the homologous were cloned from this library, which will contribute to compile expression profies and find the major genes of prolificacy of Small Tail Han sheep.

  15. Identification of candidate genes for congenital splay leg in piglets by alternative analysis of DNA microarray data

    Directory of Open Access Journals (Sweden)

    Steffen Maak, Diana Boettcher, Jens Tetens, Monika Wensch-Dorendorf, Gerd Nürnberg, Klaus Wimmers, Hermann H. Swalve, Georg Thaller

    2009-01-01

    Full Text Available The congenital splay leg syndrome in piglets is characterized by a temporarily impaired functionality of the hind leg muscles immediately after birth. Etiology and pathogenetic mechanisms for the disease are still not well understood. We compared genome wide gene expression of three hind leg muscles (M. adductores, M. gracilis and M. sartorius between affected piglets and their healthy littermates with the GeneChip® Porcine Genome Array (Affymetrix in order to identify candidate genes for the disease. Data analysis with standard algorithms revealed no significant differences between both groups. By application of an alternative approach, we identified 63 transcripts with differences in two muscles and 5 genes differing between the groups in three muscles. The expression of six selected genes (SQSTM1, SSRP1, DDIT4, ENAH, MAF, and PDK4 was investigated with SYBRGreen RT - Real time PCR. The differences obtained with the microarray analysis could be confirmed and demonstrate the validity of the alternative approach to microarray data analysis. Four genes with different expression levels in at least two muscles (SQSTM1, SSRP1, DDIT4, and MAF are assigned to transcriptional cascades related to cell death and may thus indicate pathways for further investigations on congenital splay leg in piglets.

  16. Identification of metabolic QTLs and candidate genes for glucosinolate synthesis in Brassica oleracea leaves, seeds and flower buds.

    Science.gov (United States)

    Sotelo, Tamara; Soengas, Pilar; Velasco, Pablo; Rodríguez, Víctor M; Cartea, María Elena

    2014-01-01

    Glucosinolates are major secondary metabolites found in the Brassicaceae family. These compounds play an essential role in plant defense against biotic and abiotic stresses, but more interestingly they have beneficial effects on human health. We performed a genetic analysis in order to identify the genome regions regulating glucosinolates biosynthesis in a DH mapping population of Brassica oleracea. In order to obtain a general overview of regulation in the whole plant, analyses were performed in the three major organs where glucosinolates are synthesized (leaves, seeds and flower buds). Eighty two significant QTLs were detected, which explained a broad range of variability in terms of individual and total glucosinolate (GSL) content. A meta-analysis rendered eighteen consensus QTLs. Thirteen of them regulated more than one glucosinolate and its content. In spite of the considerable variability of glucosinolate content and profiles across the organ, some of these consensus QTLs were identified in more than one tissue. Consensus QTLs control the GSL content by interacting epistatically in complex networks. Based on in silico analysis within the B. oleracea genome along with synteny with Arabidopsis, we propose seven major candidate loci that regulate GSL biosynthesis in the Brassicaceae family. Three of these loci control the content of aliphatic GSL and four of them control the content of indolic glucosinolates. GSL-ALK plays a central role in determining aliphatic GSL variation directly and by interacting epistatically with other loci, thus suggesting its regulatory effect.

  17. Candidate Gene Identification with SNP Marker-Based Fine Mapping of Anthracnose Resistance Gene Co-4 in Common Bean.

    Science.gov (United States)

    Burt, Andrew J; William, H Manilal; Perry, Gregory; Khanal, Raja; Pauls, K Peter; Kelly, James D; Navabi, Alireza

    2015-01-01

    Anthracnose, caused by Colletotrichum lindemuthianum, is an important fungal disease of common bean (Phaseolus vulgaris). Alleles at the Co-4 locus confer resistance to a number of races of C. lindemuthianum. A population of 94 F4:5 recombinant inbred lines of a cross between resistant black bean genotype B09197 and susceptible navy bean cultivar Nautica was used to identify markers associated with resistance in bean chromosome 8 (Pv08) where Co-4 is localized. Three SCAR markers with known linkage to Co-4 and a panel of single nucleotide markers were used for genotyping. A refined physical region on Pv08 with significant association with anthracnose resistance identified by markers was used in BLAST searches with the genomic sequence of common bean accession G19833. Thirty two unique annotated candidate genes were identified that spanned a physical region of 936.46 kb. A majority of the annotated genes identified had functional similarity to leucine rich repeats/receptor like kinase domains. Three annotated genes had similarity to 1, 3-β-glucanase domains. There were sequence similarities between some of the annotated genes found in the study and the genes associated with phosphoinositide-specific phosphilipases C associated with Co-x and the COK-4 loci found in previous studies. It is possible that the Co-4 locus is structured as a group of genes with functional domains dominated by protein tyrosine kinase along with leucine rich repeats/nucleotide binding site, phosphilipases C as well as β-glucanases.

  18. Identification of bioactive candidate compounds responsible for oxidative challenge from hydro-ethanolic extract of Moringa oleifera leaves.

    Science.gov (United States)

    Karthivashan, Govindarajan; Tangestani Fard, Masoumeh; Arulselvan, Palanisamy; Abas, Faridah; Fakurazi, Sharida

    2013-09-01

    Free radicals trigger chain reaction and inflict damage to the cells and its components, which in turn ultimately interrupts their biological activities. To prevent free radical damage, together with an endogenous antioxidant system, an exogenous supply of antioxidant components to the body in the form of functional food or nutritional diet helps undeniably. Research conducted by the Natl. Inst. of Health claimed that Moringa oleifera Lam possess the highest antioxidant content among various natural food sources based on an oxygen radical absorbent capacity assay. In this study, a 90% (ethanol:distilled water--90:10) gradient solvent was identified as one of the best gradient solvents for the effectual extraction of bioactive components from M. oleifera leaves. This finding was confirmed by various antioxidant assays, including radical scavenging activity (that is, 1, 1-diphenyl-2-picrylhydrazyl, H(2)O(2), and NO radical scavenging assay) and total antioxidant capacity (that is, ferric reducing antioxidant power and molybdenum assay). High-performance liquid chromatography (HPLC) fingerprints of the 90% gradient extract visually showed few specific peaks, which on further analysis, using HPLC-DAD-ESI-MS, were identified as flavonoids and their derivatives. Despite commonly reported flavonoids, that is, kaempferol and quercetin, we report here for the 1st time the presence of multiflorin-B and apigenin in M. oleifera leaves. These findings might help researchers to further scrutinize this high activity exhibiting gradient extract and its bio-active candidates for fruitful clinical/translational investigations.

  19. Metabonomic analysis of hepatitis B virus-induced liver failure: identification of potential diagnostic biomarkers by fuzzy support vector machine

    Institute of Scientific and Technical Information of China (English)

    Yong MAO; Xin HUANG; Ke YU; Hai-bin QU; Chang-xiao LIU; Yi-yu CHENG

    2008-01-01

    Hepatitis B virus (HBV)-induced liver failure is an emergent liver disease leading to high mortality. The severity of liver failure may be reflected by the profile of some metabolites. This study assessed the potential of using metabolites as biomarkers for liver failure by identifying metabolites with good discriminative performance for its phenotype. The serum samples from 24 HBV-induced liver failure patients and 23 healthy volunteers were collected and analyzed by gas chromatography-mass spectrometry (GC-MS) to generate metabolite profiles. The 24 patients were further grouped into two classes according to the severity of liver failure. Twenty-five commensal peaks in all metabolite profiles were extracted, and the relative area values of these peaks were used as features for each sample. Three algorithms, F-test, k-nearest neighbor (KNN) and fuzzy support vector machine (FSVM) combined with exhaustive search (ES), were employed to identify a subset of metabolites (biomarkers) that best predict liver failure. Based on the achieved experimental dataset, 93.62% predictive accuracy by 6 features was selected with FSVM-ES and three key metabolites, glyceric acid, cis-aconitic acid and citric acid, are identified as potential diagnostic biomarkers.

  20. Use of the local false discovery rate for identification of metabolic biomarkers in rat urine following Genkwa Flos-induced hepatotoxicity.

    Directory of Open Access Journals (Sweden)

    Zuojing Li

    Full Text Available Metabolomics is concerned with characterizing the large number of metabolites present in a biological system using nuclear magnetic resonance (NMR and HPLC/MS (high-performance liquid chromatography with mass spectrometry. Multivariate analysis is one of the most important tools for metabolic biomarker identification in metabolomic studies. However, analyzing the large-scale data sets acquired during metabolic fingerprinting is a major challenge. As a posterior probability that the features of interest are not affected, the local false discovery rate (LFDR is a good interpretable measure. However, it is rarely used to when interrogating metabolic data to identify biomarkers. In this study, we employed the LFDR method to analyze HPLC/MS data acquired from a metabolomic study of metabolic changes in rat urine during hepatotoxicity induced by Genkwa flos (GF treatment. The LFDR approach was successfully used to identify important rat urine metabolites altered by GF-stimulated hepatotoxicity. Compared with principle component analysis (PCA, LFDR is an interpretable measure and discovers more important metabolites in an HPLC/MS-based metabolomic study.