WorldWideScience

Sample records for biomagnetism

  1. Biomagnetism an interdisciplinary approach

    CERN Document Server

    Romani, Gian-Luca; Kaufman, Lloyd; Modena, Ivo

    1983-01-01

    Biomagnetism is the study of magnetic fields that originate in biological systems. This is a relatively new discipline that has attracted considerable interest throughout the scientific commu- ty. The study of biomagnetic fields requires the use of techniques and concepts drawn from widely disparate scientific disciplines. To make these techniques and concepts available to a wide spectrum of the scientific community, a NATO Advanced study Institute on B- magnetism was held near Frascati at Grottaferrata, Italy, in S- tember 1982. This volume is based on the lectures delivered by scholars representing many different scientific areas, ranging from solid state physics to psychology. It attempts to preserve the - herent development of concepts drawn from physiology, psychology, biology, physics, medicine, occupational health and geology that was evident during the Institute. The reader will quickly become aware that the progress in biomagnetism over the past decade was due principally to the efforts of interdisci...

  2. Multichannel instrumentation for biomagnetism

    International Nuclear Information System (INIS)

    A review of recent developments of multichannel instrumentation for Biomagnetism is presented. The main factors affecting the design, with different source configuration, is examined. Problems related to the SQUID sensors, the detection coils and the cryogenic aspects are examined. The existing large array multichannel systems and of those one that will be ready in the near future are described. (orig.)

  3. Biomagnetism using SQUIDs: status and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Sternickel, Karsten [CardioMag Imaging, Inc., 450 Duane Avenue, Schenectady, NY 12304 (United States); Braginski, Alex I [Research Center Juelich, ISG-2, D-52425 Juelich (Germany)

    2006-03-15

    Biomagnetism involves the measurement and analysis of very weak local magnetic fields of living organisms and various organs in humans. Such fields can be of physiological origin or due to magnetic impurities or markers. This paper reviews existing and prospective applications of biomagnetism in clinical research and medical diagnostics. Currently, such applications require sensitive magnetic SQUID sensors and amplifiers. The practicality of biomagnetic methods depends especially on techniques for suppressing the dominant environmental electromagnetic noise, and on suitable nearly real-time data processing and interpretation methods. Of the many biomagnetic methods and applications, only the functional studies of the human brain (magnetoencephalography) and liver susceptometry are in clinical use, while functional diagnostics of the human heart (magnetocardiography) approaches the threshold of clinical acceptance. Particularly promising for the future is the ongoing research into low-field magnetic resonance anatomical imaging using SQUIDs.

  4. TOPICAL REVIEW: SQUID systems for biomagnetic imaging

    Science.gov (United States)

    Pizzella, Vittorio; Della Penna, Stefania; DelGratta, Cosimo; Luca Romani, Gian

    2001-07-01

    This review paper illustrates the different SQUID based systems used for biomagnetic imaging. The review is divided into nine sections. The first three sections are introductory: section 1 is a short overview of the topic; section 2 summarizes how the biomagnetic fields are generated and what are the basic mathematical models for the field sources; section 3 illustrates the principles of operation of the SQUID device. Sections 4-8 are specifically devoted to the description of the different systems used for biomagnetic measurements: section 4 discusses the different types of detection coils; section 5 illustrates the SQUID sensors specifically designed for biomagnetic applications together with the necessary driving electronics, with special emphasis on high-temperature superconductivity (HTS) SQUIDs, since HTS devices are still in a developing stage; section 6 illustrates the different noise reduction techniques; section 7 describes the different multichannel sensors presently operating; and, finally, section 8 gives a hint of what kind of physiological and/or clinical information may be gathered by the biomagnetic technique. Section 9 suggests some future trends for the biomagnetic technique.

  5. Pharyngeal transit time measured by scintigraphic and biomagnetic method

    International Nuclear Information System (INIS)

    A comparative evaluation between scintigraphic and biomagnetic method to measure the pharyngeal transit is presented. Three volunteers have been studied. The aliment (yogurt) was labeled with 99m Technetium for the scintigraphic test and with ferrite for the biomagnetic one. The preliminary results indicate a difference between the values obtained, probably due to the biomagnetic detector resolution

  6. New horizons in biomagnetics and bioimaging

    International Nuclear Information System (INIS)

    This paper reviews recently developed techniques in biomagnetics and bioimaging such as transcranial magnetic stimulation (TMS), magnetic resonance imaging (MRI), and cancer therapy based on magnetic stimulation. The technique of localized and vectorial TMS has made it possible to obtain non-invasive functional mapping of the human brain, and the development of new bioimaging technologies such as current distribution MRI and conductivity MRI may make it possible to understand the dynamics of brain functions, which include millisecond-level changes in functional regions and dynamic relations between brain neuronal networks. These techniques are leading medicine and biology toward new horizons through novel applications of magnetism. (author)

  7. Performances of compact integrated superconducting magnetometers for biomagnetic imaging

    Science.gov (United States)

    Granata, C.; Vettoliere, A.; Rombetto, S.; Nappi, C.; Russo, M.

    2008-10-01

    In the present paper, performances of compact fully integrated superconducting quantum interference device (SQUID) magnetometers, recently developed, have been investigated in view of their employment in large multichannel systems for biomagnetic imaging. The analysis has been focused on SQUID sensors having a pickup loop side length of 3 and 4 mm based on a design aimed to maximize the magnetic flux transferred from the detection coil to the SQUID in comparison with a magnetometer with 9 mm side length having a suitable sensitivity for biomagnetic applications. The performance study has been consisted in the computation of the magnetic responses to a current dipole which is the most fundamental approach used in biomagnetism. The results have shown that the dipole current sensitivity of 4 mm long side compact magnetometers is suitable for application in multichannel systems for magnetoencephalography and magnetocardiography.

  8. Bio-magnetic signatures of fetal breathing movement

    International Nuclear Information System (INIS)

    The purpose of fetal magnetoencephalography (fMEG) is to record and analyze fetal brain activity. Unavoidably, these recordings consist of a complex mixture of bio-magnetic signals from both mother and fetus. The acquired data include biological signals that are related to maternal and fetal heart function as well as fetal gross body and breathing movements. Since fetal breathing generates a significant source of bio-magnetic interference during these recordings, the goal of this study was to identify and quantify the signatures pertaining to fetal breathing movements (FBM). The fMEG signals were captured using superconducting quantum interference devices (SQUIDs) The existence of FBM was verified and recorded concurrently by an ultrasound-based video technique. This simultaneous recording is challenging since SQUIDs are extremely sensitive to magnetic signals and highly susceptible to interference from electronic equipment. For each recording, an ultrasound-FBM (UFBM) signal was extracted by tracing the displacement of the boundary defined by the fetal thorax frame by frame. The start of each FBM was identified by using the peak points of the UFBM signal. The bio-magnetic signals associated with FBM were obtained by averaging the bio-magnetic signals time locked to the FBMs. The results showed the existence of a distinctive sinusoidal signal pattern of FBM in fMEG data

  9. Proceedings of the biomagnetic effects workshop. [Lead abstract

    Energy Technology Data Exchange (ETDEWEB)

    Tenforde, T.S. (ed.)

    1978-01-01

    Separate abstracts were prepared for six of the eight chapters contained in these proceedings. The other two chapters contain introductory material (Chapter 1) dealing with the rationale for the work shop, and a summary (Chapter 8) of the major objectives that were accomplished at the workshop relative to the current status of awareness in the field of biomagnetic effects. (ERB)

  10. Application of superconducting electronics to registration of biomagnetic signals

    International Nuclear Information System (INIS)

    Computer-aided systems used to measure superweak magnetic fields in a human body are created. A relaxation oscillation (RO) SQUID magnetometer is the basis of these systems. It is shown that if the RO operation mode is utilized, it becomes possible to improve the parameters and simplify the SQUID-magnetometer electronics. The software used for preprocessing provides the digital filtration, data input and accumulation, visual signal-quality control and signal averaging and all this is done in a PC/AT. The magnetocardiogram (MCG) processing programs yield magnetic mapping, magnetic chart visualization, provide the correlational/ statistical analysis and magnetic signal source localization. The biomagnetic systems are now installed in the cardiological clinic. The specialists examine MCGs, magnetoplethismograms and perform magnetic liver biopsy. More then 400 patients have been examined and the experience gained after such examinations shows that biomagnetic investigations aimed at human body organ disease diagnosis are of high informational value. (orig.)

  11. Study of the Gastric Emptying in Humans: Biomagnetic Assessments

    Science.gov (United States)

    Hernández, E.; Córdova, T.; Huerta-Franco, R.; Sosa, M.; Vargas-Luna, M.

    2006-09-01

    Biomagnetic studies of the gastrointestinal system can be carried out in two ways. Recording the magnetic field produced by the myenteric nervous system or created by any oral contrast mean as magnetic tracers or markers. In the first case, a SQUID magnetometer is demanded while a fluxgate magnetometer is enough in the second case. In this work, a magnetic marker was ingested by 8 healthy volunteers, in three gastric volume conditions, to measure the luminal content volume effect in the gastric emptying and to perform the quantification of the peristaltic frequencies in gastric and duodenum tract segments. The average emptying times for low luminal content, relative to the emptying time when the intake was the highest, were 43.6 ± 15.6 % and 77.3 ± 47.0 %. These results show that the biomagnetic technique is a powerful modality to estimate the effects of the gastric volume in the gastric emptying and a way to record the peristaltic frequencies.

  12. Interpreting Biomagnetic Fields of Planar Wave Fronts in Cardiac Muscle

    OpenAIRE

    dos Santos, Rodrigo Weber; Koch, Hans

    2005-01-01

    The recent results of Holzer and co-workers reveal the existence of net currents that flow along the front of a planar wave propagating through cardiac tissue. This is an important contribution toward the better understanding of the physics of biomagnetic fields. However, although the authors claim their results reveal particular bidomain properties, we show in this short letter that the results allow multiple interpretations. For instance, cardiac anisotropy by itself may also explain the ex...

  13. 11-channel multipurpose biomagnetic system for operation in unshielded environment

    International Nuclear Information System (INIS)

    Progress toward the realization of a medium size multipurpose biomagnetic system is described. Eleven second-order gradiometers are coupled with as many dc-SQUIDs manifactured in our laboratory. The geometry of the detecting coils consists of seven sensors arranged in a straight line and four sensors placed around the center. By means of this configuration it is possible to scan the chest or the abdomen with the seven aligned sensors, to measure the head with the seven central sensors whereas the whole system can provide significant information for ''single shot'' cardiomagnetic measurements in clinical studies. (orig.)

  14. Numerical investigation of biomagnetic fluids in circular ducts.

    Science.gov (United States)

    Tzirakis, K; Papaharilaou, Y; Giordano, D; Ekaterinaris, J

    2014-03-01

    A mathematical model for the description of biomagnetic fluid flow exposed to a magnetic field that accounts for both electric and magnetic properties of the biofluid is presented. This is achieved by adding the Lorentz and magnetization forces in the Navier-Stokes equations. To demonstrate the effects of magnetic fields, we consider the case of laminar, incompressible, viscous, the steady flow of a Newtonian biomagnetic fluid (i) between two parallel plates; and (ii) through a straight rigid tube with a 60% in diameter, 84% on area, axisymmetric stenosis. Two external magnetic fields were investigated: one produced by an infinite wire carrying constant current, and a dipole-like field. We show, numerically and analytically, that the wire produces an irrotational force that, independent of its intensity, only alters the pressure leaving the velocity field unaffected. In contrast, when the fluid is exposed to the dipole-like field, which generates a rotational force, then both pressure and velocity can be strongly influenced even at moderate field strengths. Similar trends were obtained when a time varying flow is simulated through the axisymmetric stenosis in the presence of the dipole-like rotational magnetic field. It is expected that our findings could have important applications in blood flow control. PMID:24123947

  15. Experience with a multichannel system for biomagnetic study.

    Science.gov (United States)

    Schneider, S; Abraham-Fuchs, K; Reichenberger, H; Seifert, H; Hoenig, H E; Röhrlein, G

    1993-11-01

    The components of the biomagnetic multichannel system Krenikon are described. The combination of biomagnetically yielded localizations with anatomic images gained from MR or CT is discussed as well as the enhancement of the signal-to-noise ratio by using a correlation technique. The overall localization accuracy is tested with technical phantoms. With volunteers measurements of auditory, visual and somatosensory evoked fields are performed to evaluate the system performance in vivo. Clinical studies were performed mainly with partners from the Universities of Erlangen-Nünberg and Ulm. The data acquisition time typically is 2-10 min which is tolerable both for the patient and the clinical staff. Electric potentials even with invasive electrodes can be recorded simultaneously with the magnetic fields. MEG gives important information for the presurgical diagnosis of epileptic patients and for the understanding of the epilepsy genesis. With MCG, centres of biologic excitation such as ventricular ectopies or accessory bundles in WPW syndrome have been successfully localized. PMID:8274986

  16. NOTE: Sampling and reconstruction schemes for biomagnetic sensor arrays

    Science.gov (United States)

    Naddeo, Adele; Della Penna, Stefania; Nappi, Ciro; Vardaci, Emanuele; Pizzella, Vittorio

    2002-09-01

    In this paper we generalize the approach of Ahonen et al (1993 IEEE Trans. Biomed. Eng. 40 859-69) to two-dimensional non-uniform sampling. The focus is on two main topics: (1) searching for the optimal sensor configuration on a planar measurement surface; and (2) reconstructing the magnetic field (a continuous function) from a discrete set of data points recorded with a finite number of sensors. A reconstruction formula for Bz is derived in the framework of the multidimensional Papoulis generalized sampling expansion (Papoulis A 1977 IEEE Trans. Circuits Syst. 24 652-4, Cheung K F 1993 Advanced Topics in Shannon Sampling and Interpolation Theory (New York: Springer) pp 85-119) in a particular case. Application of these considerations to the design of biomagnetic sensor arrays is also discussed.

  17. The atomic magnetometer: A new era in biomagnetism

    Energy Technology Data Exchange (ETDEWEB)

    Wakai, Ronald T., E-mail: rtwakai@wisc.edu [1005 Wisconsin Institutes for Medical Research, 1111 Highland Avenue, University of Wisconsin-Madison, Madison, Wisconsin 53705 (United States)

    2014-11-07

    The high cost and impracticality of SQUID (Superconducting QUantum Interference Device) magnetometers has limited the expansion of magnetoencephalography (MEG) and magnetocardiography (MCG), especially in countries where the cost of liquid helium is high. A recent breakthrough, however, has the potential to radically change this situation. In 2003, a group at Princeton University demonstrated an atomic magnetometer, known as the SERF (spin-exchange free relaxation) magnetometer, with unprecedented sensitivity. Since then, several research groups have utilized SERF magnetometers to record MEG, MCG, and fetal MCG signals. Despite some modest drawbacks, it now seems almost certain that SERF magnetometers can replace SQUIDs for many applications. With a price tag that is likely to be far less than that of SQUIDs, SERF magnetometers can propel the next wave of growth in biomagnetism.

  18. Biomagnetic fluid flow in an aneurysm using ferrohydrodynamics principles

    Science.gov (United States)

    Tzirtzilakis, E. E.

    2015-06-01

    In this study, the fundamental problem of biomagnetic fluid flow in an aneurysmal geometry under the influence of a steady localized magnetic field is numerically investigated. The mathematical model used to formulate the problem is consistent with the principles of ferrohydrodynamics. Blood is considered to be an electrically non-conducting, homogeneous, non-isothermal Newtonian magnetic fluid. For the numerical solution of the problem, which is described by a coupled, non-linear system of Partial Differential Equations (PDEs), with appropriate boundary conditions, the stream function-vorticity formulation is adopted. The solution is obtained by applying an efficient pseudotransient numerical methodology using finite differences. This methodology is based on the application of a semi-implicit numerical technique, transformations, stretching of the grid, and construction of the boundary conditions for the vorticity. The results regarding the velocity and temperature field, skin friction, and rate of heat transfer indicate that the presence of a magnetic field considerably influences the flow field, particularly in the region of the aneurysm.

  19. High Tc superconducting asymmetric gradiometer for biomagnetic applications

    International Nuclear Information System (INIS)

    We describe a high transition temperature superconducting, first-order gradiometer intended for biomagnetic measurements in an unshielded environment. The gradiometer involves a single-layer, planar flux transformer with two loops of unequal size, the smaller of which is inductively coupled to the pickup loop of a directly coupled magnetometer. In this configuration, the presence of the flux transformer reduces the sensitivity of the magnetometer by only about 5%. The flux transformer is patterned in a thin film of YBa2Cu3O7-δ deposited on a 100 mm diam wafer, and has a baseline of 48 mm. The flux transformer and magnetometer substrates are permanently bonded together in a flipchip arrangement. The common mode rejection of uniform magnetic field fluctuations in any direction is better than 1 part per 100. The outputs of two such gradiometers are subtracted to form a second-order gradiometer, which rejects first-order gradient fluctuations to about 1 part in 100. With the aid of three orthogonally mounted magnetometers, one can reduce the response of the gradiometers to uniform field fluctuations to below 100 ppm. This system is used to detect magnetic signals from the human heart in an unshielded environment. (c) 2000 American Institute of Physics

  20. Magnetoresistive-superconducting mixed sensors for biomagnetic applications

    Energy Technology Data Exchange (ETDEWEB)

    Pannetier-Lecoeur, M. [DSM/IRAMIS/SPEC, CEA Saclay, 91191 Gif sur Yvette Cedex (France); Fermon, C., E-mail: claude.fermon@cea.f [DSM/IRAMIS/SPEC, CEA Saclay, 91191 Gif sur Yvette Cedex (France); Dyvorne, H.; Jacquinot, J.F.; Polovy, H.; Walliang, A.L. [DSM/IRAMIS/SPEC, CEA Saclay, 91191 Gif sur Yvette Cedex (France)

    2010-05-15

    When coupled to a giant magnetoresistive (GMR) sensor, a superconducting loop containing a constriction can be a very sensitive magnetometer. It has thermal noise levels of few fT/sqrt(Hz), comparable to low-T{sub c} SQUID noise, with a flat frequency response. These mixed sensors are good candidates for detection of weak biomagnetic signals, like a cardiac or neuronal signature. Furthermore, being sensitive to the flux, mixed sensors can be used for nuclear magnetic resonance (NMR) detection and Magnetic Resonance Imaging (MRI) especially at low fields. They are very robust and accept strong RF pulses with a very short recovery time compared to tuned RF coils, which allow measurements of broad signals (short relaxation time or multiple resonances). We will first present the last generation sensors having a noise level of 3 fT/sqrt(Hz) and we will show signals measured at low frequency (magnetocardiography-magnetoencephalography range) and at higher frequency (NMR signals). The use of additional flux transformers for improving the signal-to-noise will be discussed. Finally, we will present perspectives for low-field MRI, which can be combined with neural signal detection (MEG), especially for brain anatomy and temporal response on the same experimental setup.

  1. High-T{sub c} superconducting quantum interference devices and biomagnetic applications

    Energy Technology Data Exchange (ETDEWEB)

    Yang, H. C.; Wu, C. H.; Chen, J. C.; Chen, K. L.; Chen, M. J.; Yang, S. Y. [National Taiwan University, Taipei (China); Liao, S. H.; Horng, H. E. [National Taiwan Normal University, Taipei (China)

    2006-05-15

    The superconducting quantum interference device (SQUID) is the most sensitive detector of the magnetic flux in the range of frequencies from dc to MHz and has widely been used in biomagnetic applications. In this paper, we highlight a few aspects of High-T{sub c} SQUIDs, novel biomagnetic applications, and perspective. We give an overview of the current status and the principle techniques used to fabricate High-T{sub c} SQUIDs. SQUID applications in magnetocardiography, biological immunoassay, and nuclear magnetic resonance are addressed. The results are discussed.

  2. Biomagnetic source localization and image fusion as a tool for functional diagnosis

    International Nuclear Information System (INIS)

    This paper reports on functional diagnosis of electric activity in the body by measurement of the minute extracorporeal magnetic fields, combining the results with three-dimensional MR images. A multichannel biomagnetic system in a shielded room simultaneously measures the coherent magnetic signals in 37 channels. A special bite piece for head measurements and localization coils with watermarks for chest measurements are used. Pass marks are defined in the reference frames for biomagnetism and MR. Acquisition of data for the heart or the brain is completed within a few minutes without repositioning of the patient. Localization of focal electric sources is calculated on the basis of appropriate models

  3. Spatial distribution assessment of particulate matter in an urban street canyon using biomagnetic leaf monitoring of tree crown deposited particles

    International Nuclear Information System (INIS)

    Recently, biomagnetic monitoring of tree leaves has proven to be a good estimator for ambient particulate concentration. This paper investigates the usefulness of biomagnetic leaf monitoring of crown deposited particles to assess the spatial PM distribution inside individual tree crowns and an urban street canyon in Ghent (Belgium). Results demonstrate that biomagnetic monitoring can be used to assess spatial PM variations, even within single tree crowns. SIRM values decrease exponentially with height and azimuthal effects are obtained for wind exposed sides of the street canyon. Edge and canyon trees seem to be exposed differently. As far as we know, this study is the first to present biomagnetic monitoring results of different trees within a single street canyon. The results not only give valuable insights into the spatial distribution of particulate matter inside tree crowns and a street canyon, but also offer a great potential as validation tool for air quality modelling. Highlights: ► Spatial distribution of tree crown deposited PM was evaluated. ► SIRM values decrease exponentially with height. ► Azimuthal effects were observed at wind exposed sides of the street canyon. ► Edge and canyon trees seem to be exposed differently. ► Biomagnetic monitoring offers a great potential as validation of air quality models. -- Biomagnetic leaf monitoring provides useful insights into the spatial distribution of particulates inside individual tree crowns and an urban street canyon in Ghent (Belgium)

  4. Multichannel biomagnetic system for study of electrical activity in the brain and heart.

    Science.gov (United States)

    Schneider, S; Hoenig, E; Reichenberger, H; Abraham-Fuchs, K; Moshage, W; Oppelt, A; Stefan, H; Weikl, A; Wirth, A

    1990-09-01

    The authors designed a multichannel system for noninvasive measurement of the extremely weak magnetic fields generated by the brain and the heart. It uses a flat array of 37 superconducting magnetic field-sensing coils connected to sophisticated superconducting quantum interference devices. To prevent interference from external electromagnetic fields, the system is operated inside a shielded room. Complete sets of coherent data, even from spontaneous events, can be recorded. System performance was evaluated with phantom measurements and evoked-response studies. A spatial resolution of a few millimeters and a temporal resolution of a millisecond were obtained. First results in patients with partial epilepsy and investigations of the cardiac conductive pathway indicate that biomagnetism is now ready for a systematic clinical evaluation. Interpretation of measurements was facilitated by highlighting biomagnetically localized electrical activity in three-dimensional digital magnetic resonance images. PMID:2389043

  5. Recent advances in biomagnetics; Seitai jiki kenkyu no saikin no tenkai

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, S. [The University of Tokyo, Tokyo (Japan). Institute of Medical Electronics

    1996-01-20

    The latest trend of biomagnetics was described in outline. On oxide superconductivity SQUID (i.e., high Tc SQUID), the SQUID element that operates at a liquid nitrogen temperature of 77 K is presently produced for trial, and the Magnetocardiography has been already measured. However, a problem occurs in the reliability of element sensitivity and the change with passage of time. To use the SQUID element for biomagnetics or clinical application, the technology must be more improved in future. A magnetic shield obtained when Permalloy plates with high-permeability are laminated by two to six layers is used to measure the Magnetoencephalography in a magnetic shielded room. The technology by which the magnetic shield in a wide space used for high-temperature superconductive materials can be easily mounted is required. In the SQUID system of a hole head type, the progress of software and system technology is required more and more. Moreover, the latest subject of a SQUID microscope, inverse problem and biomagnetics imaging, and magnetic resonance imaging was described. 1 ref., 1 fig.

  6. Dual signal subspace projection (DSSP): a novel algorithm for removing large interference in biomagnetic measurements

    Science.gov (United States)

    Sekihara, Kensuke; Kawabata, Yuya; Ushio, Shuta; Sumiya, Satoshi; Kawabata, Shigenori; Adachi, Yoshiaki; Nagarajan, Srikantan S.

    2016-06-01

    Objective. In functional electrophysiological imaging, signals are often contaminated by interference that can be of considerable magnitude compared to the signals of interest. This paper proposes a novel algorithm for removing such interferences that does not require separate noise measurements. Approach. The algorithm is based on a dual definition of the signal subspace in the spatial- and time-domains. Since the algorithm makes use of this duality, it is named the dual signal subspace projection (DSSP). The DSSP algorithm first projects the columns of the measured data matrix onto the inside and outside of the spatial-domain signal subspace, creating a set of two preprocessed data matrices. The intersection of the row spans of these two matrices is estimated as the time-domain interference subspace. The original data matrix is projected onto the subspace that is orthogonal to this interference subspace. Main results. The DSSP algorithm is validated by using the computer simulation, and using two sets of real biomagnetic data: spinal cord evoked field data measured from a healthy volunteer and magnetoencephalography data from a patient with a vagus nerve stimulator. Significance. The proposed DSSP algorithm is effective for removing overlapped interference in a wide variety of biomagnetic measurements.

  7. Advances in biomagnetic research using high- T{sub c} superconducting quantum interference devices

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hong-Chang [Department of Physics/Institute of Applied Physics, National Taiwan University, Taipei 106, Taiwan (China); Horng, Herng-Er; Yang, S Y [Institute of Electro-Optical Science and Technology, National Taiwan Normal University, Taipei 116, Taiwan (China); Liao, Shu-Hsien, E-mail: hcyang@phys.ntu.edu.t [Department of Physics, National Taiwan Normal University, Taipei 116, Taiwan (China)

    2009-09-15

    This review reports the advances of biomagnetic research using high- T{sub c} superconducting quantum interference devices (SQUIDs). It especially focuses on SQUID-detected magnetocardiography (MCG), magnetically labeled immunoassays (MLIs) as well as nuclear magnetic resonance and imaging (NMR/MRI). The progress in MCG that scientists have made and the encountered challenges are discussed here. This study includes the early detection of the electromagnetic change in cardiac activity in animal studies of hypercholesterolemic rabbits, which suggests the possibility of early diagnosis of cardiac disease in clinical applications. The progress on MLIs using measurements of remanence, magnetic relaxation and magnetic susceptibility reduction is presented. The wash-free immunomagnetic reduction shows both high sensitivity and high specificity. NMR/MRI of high spectral resolution and of high signal-to-noise ratio are addressed and discussed. The proton-phosphate J-coupling of trimethyl phosphate ((CH{sub 3}){sub 3}PO{sub 4}) in one shot in microtesla fields is demonstrated. The prospects of biomagnetic applications are addressed. (topical review)

  8. [Development of a nonmagnetic angle encoder for active shielding during biomagnetic measurements].

    Science.gov (United States)

    Giessler, F; Witt, C; Haueisen, J; Bellemann, M E

    2002-04-01

    Biomagnetic fields--in particular in the low-frequency range--are subject to environmental interference, which cannot be adequately reduced by most passive shielding methods. However, the signal-to-noise ratio can be increased by active compensation. For this purpose, the interference is detected by reference sensors and fed back through integrated compensation coils. To establish deviation of normal directions between reference sensors and compensation coils, an angle encoder was developed. The rotation of the reference sensors about two axes at right angles to each other, is converted into voltage pulses by means of codewheels and photoelectric beams. The pulses are counted by incremental encoders, and represent a measure of the angles. A cardanic suspension and a plumb-line act as a reference system. The pulses counted are converted into binary angle values, which are used for coordinate transformation of the interfering fields. The angle encoder can determine the tilt of the reference sensors with an accuracy of 1 degree within a range between -45 and +45 degrees. The noise level of the system remains unaffected during a biomagnetic measurement. Magnetic signals of up to 5 pT arising during the oscillation of the plumb-line can be neglected because of the static nature of the angular measurement. PMID:12051137

  9. Effects of anatomical position on esophageal transit time: A biomagnetic diagnostic technique

    Institute of Scientific and Technical Information of China (English)

    Teodoro Cordova-Fraga; Modesto Sosa; Cados Wiechers; Jose Maria De la Roca-Chiapas; Alejandro Maldonado Moreles; Jesus BernaI-Alvarado; Raquel Huerta-Franco

    2008-01-01

    AIM: To study the esophageal transit time (ETT)and compare its mean value among three anatomical inclinations of the body; and to analyze the correlation of ETT to body mass index (BMI).METHODS: A biomagnetic technique was implemented to perform this study: (1) The transit time of a magnetic marker (MM) through the esophagus was measured using two fluxgate sensors placed over the chest of 14 healthy subjects; (2) the ETT was assessed in three anatomical positions (at upright,fowler,and supine positions; 90°,45° and 0°,respectively).RESULTS: ANOVA and Tuckey post-hoc tests demonstrated significant differences between ETT mean of the different positions.The ETT means were 5.2 ±1.1 s,6.1±1.5 s,and 23.6 ± 9.2 s for 90°,45° and 0°,respectively.Pearson correlation results were r = -0.716 and P < 0.001 by subjects' anatomical position,and r =-0.024 and P > 0.05 according the subject's BHI.CONCLUSION: We demonstrated that using this biomagnetic technique,it is possible to measure the ETT and the effects of the anatomical position on the ETT.

  10. Propulsion Velocity and ETT on Biomagnetic Assessment of the Human Esophagus

    International Nuclear Information System (INIS)

    Esophagus transit time measurement is a common clinical practical. Biomagnetic techniques and modern instrumentation can perform non invasive and functional assessments of the gastrointestinal tract. This study presents the evaluation of the esophagus transit time and propulsion velocity of a magnetic marker from the mouth to stomach using water vs. a swallow easy substance recently patented. A group of ten healthy subjects from 45 to 55 years, were evaluated in identical conditions for two times, they ingested randomly a magnetic marker in an anatomical body position of 45 deg., one times with water and the other one with a patented substance developed in order to help the subjects to swallow pills. The esophagus transit time was shorter when the subjects ingested the magnetic marker with the swallow easy substance than they ingested the magnetic marker with same quantity of water

  11. Biomagnetic multi-channel system consisting of several self-contained autonomous small-size units

    International Nuclear Information System (INIS)

    A new approach is suggested to the design of mulit-channel systems for biomagnetic applications, based on a combination of several autonomous small-size measuring modules within one system. Small-diameter second-order gradiometers have been developed for practical realization of the new design; the gradiometers are based on integrated dc-SQUIDs and have an intrinsic noise level of 5.10-15T/√Hz. Small-size 1.3 liter fiberglass helium dewars have been designed; the operating period of such dewards is more than two days. Tests have been carried out on a 3-channel version of the modular system. Ways are suggested for future development of modular multi-channel measuring system. (orig.)

  12. Development of a rat biomagnetic measurement system using a high-TC SQUID magnetometer

    International Nuclear Information System (INIS)

    We have developed a rat magnetocardiograph (MCG) system employing a high-TC SQUID magnetometer and a tabletop magnetic shield. We obtained clear MCG signals from a healthy Wistar Kyoto rat with a relatively high peak amplitude of 50 pT by virtue of the small gap cryostat developed in this study. Well defined P-, QRS- and T-waves were observed on the MCG of the healthy rat. In the case of a spontaneously hypertensive rat measurement, the MCG showed quite a disturbed wave pattern thought to be caused by the hypertensive heart abnormality. The results suggest that the rat biomagnetic measurement system has a strong potential for monitoring the progress of the heart disease model.

  13. Biomagnetic Measurement System on Mice-Evaluation of System Performance by MCG and Application to MEG

    International Nuclear Information System (INIS)

    We developed a biomagnetic measurement system on mice. Our initial model of the system has the magnetic field sensitivity of 1.3 pT/Hz1/2 in the white-noise region (10 Hz-10 kHz). And using the system, we succeeded to obtain magnetically the heart activity on mice. However, in its application to measure the brain activity on mice, it was necessary to improve the magnetic field sensitivity of the system. Therefore, we changed the material of the window cap, which holds a sapphire glass window on the dewar tail, to ceramic. The system noise was decreased and the magnetic field sensitivity of the system was improved to 0.75 pT/Hz1/2 in the white-noise region. For an initial measurement of the brain activity, we also developed a whisker stimulation system using a piezoelectric element to evoke somatosensory responses

  14. Magnetic particle capture for biomagnetic fluid flow in stenosed aortic bifurcation considering particle-fluid coupling

    Science.gov (United States)

    Bose, Sayan; Banerjee, Moloy

    2015-07-01

    Magnetic nanoparticles drug carriers continue to attract considerable interest for drug targeting in the treatment of cancer and other pathological conditions. Guiding magnetic iron oxide nanoparticles with the help of an external magnetic field to its target is the basic principle behind the Magnetic Drug Targeting (MDT). It is essential to couple the ferrohydrodynamic (FHD) and magnetohydrodynamic (MHD) principles when magnetic fields are applied to blood as a biomagnetic fluid. The present study is devoted to study on MDT technique by particle tracking in the presence of a non uniform magnetic field in a stenosed aortic bifurcation. The present numerical model of biomagnetic fluid dynamics (BFD) takes into accounts both magnetization and electrical conductivity of blood. The blood flow in the bifurcation is considered to be incompressible and Newtonian. An Eulerian-Lagrangian technique is adopted to resolve the hemodynamic flow and the motion of the magnetic particles in the flow using ANSYS FLUENT two way particle-fluid coupling. An implantable infinitely long cylindrical current carrying conductor is used to create the requisite magnetic field. Targeted transport of the magnetic particles in a partly occluded vessel differs distinctly from the same in a regular unblocked vessel. Results concerning the velocity and temperature field indicate that the presence of the magnetic field influences the flow field considerably and the disturbances increase as the magnetic field strength increases. The insert position is also varied to observe the variation in flow as well as temperature field. Parametric investigation is conducted and the influence of the particle size (dp), flow Reynolds number (Re) and external magnetic field strength (B0) on the "capture efficiency" (CE) is reported. The difference in CE is also studied for different particle loading condition. According to the results, the magnetic field increased the particle concentration in the target region

  15. Biomagnetic monitoring of heavy metals contamination in deposited atmospheric dust, a case study from Isfahan, Iran.

    Science.gov (United States)

    Norouzi, Samira; Khademi, Hossein; Cano, Angel Faz; Acosta, Jose A

    2016-05-15

    Tree leaves are considered as one of the best biogenic dust collectors due to their ability to trap and retain particulate matter on their surfaces. In this study, the magnetic susceptibility (MS) and the concentration of selected heavy metals of plane tree (Platanus orientalis L.) leaves and deposited atmospheric dust, sampled by an indirect and a direct method, respectively, were determined to investigate the relationships between leaf magnetic parameters and the concentration of heavy metals in deposited atmospheric dust. The objective was to develop a biomagnetic method as an alternative to the common ones used for determining atmospheric heavy metal contaminations. Plane tree leaves were monthly sampled on the 19th of May to November, 2012 (T1-T7), for seven months from 21 different sites in the city of Isfahan, central Iran. Deposited atmospheric dust samples were also collected using flat glass surfaces from the same sites on the same dates, except for T1. MS (χlf, χhf) values in washed (WL) and unwashed leaves (UL) as well as Cu, Fe, Mn, Ni, Pb, and Zn concentrations in UL and deposited atmospheric dust samples were determined. The results showed that the MS content with a biogenic source was low with almost no significant change during the sampling period, while an increasing trend was observed in the MS content of UL samples due to the deposition of heavy metals and magnetic particles on leaf surfaces throughout the plant growth. The latter type of MS content could be reduced through washing off by rain. Most heavy metals examined, as well as the Tomlinson pollution load index (PLI) in UL, showed statistically significant correlations with MS values. The correlation between heavy metals content in atmospheric dust deposited on glass surfaces and leaf MS values was significant for Cu, Fe, Pb, and Zn. Moreover, the similarity observed between the spatial distribution maps of leaf MS and deposited atmospheric dust PLI provided convincing evidence regarding

  16. Interpretation of the MEG-MUSIC scan in biomagnetic source localization

    Energy Technology Data Exchange (ETDEWEB)

    Mosher, J.C.; Lewis, P.S. [Los Alamos National Lab., NM (United States); Leahy, R.M. [University of Southern California, Los Angeles, CA (United States). Signal and Image Processing Inst.

    1993-09-01

    MEG-Music is a new approach to MEG source localization. MEG-Music is based on a spatio-temporal source model in which the observed biomagnetic fields are generated by a small number of current dipole sources with fixed positions/orientations and varying strengths. From the spatial covariance matrix of the observed fields, a signal subspace can be identified. The rank of this subspace is equal to the number of elemental sources present. This signal sub-space is used in a projection metric that scans the three dimensional head volume. Given a perfect signal subspace estimate and a perfect forward model, the metric will peak at unity at each dipole location. In practice, the signal subspace estimate is contaminated by noise, which in turn yields MUSIC peaks which are less than unity. Previously we examined the lower bounds on localization error, independent of the choice of localization procedure. In this paper, we analyzed the effects of noise and temporal coherence on the signal subspace estimate and the resulting effects on the MEG-MUSIC peaks.

  17. A proposal to study the esophageal transit by biomagnetic and scintigraphic study

    International Nuclear Information System (INIS)

    The initial results for a new apparatus to study the esophageal transit time is studied in asymptomatic persons for a yogurt bolus (10 ml). The bolus is uniformly labeled with 5 g of ferrite powder (biomagnetic study, B) or 350 MBq of 99m Tc (scintigraphic study, C). For the B study the detection is made by means two pair of coils in opposite phase excited by a 10 k Hz sinusoidal voltage. The signal response is obtained when the bolus traverses the coils placed on the regions-of-interest (ROIs) of the esophagus (furcula, F and xiphoid process, X) and produces a signal voltage that is measured by a lock-in amplifier Stanford SR530. For C studies an Orbiter Siemens scintillation camera is used linked to a computer. The data analysis shows a (4.1±0.7)s in B studies and (3.7±0.9)s in C studies (R=0.6, P<0.07)

  18. Flow of a biomagnetic viscoelastic fluid: application to estimation of blood flow in arteries during electromagnetic hyperthermia,a therapeutic procedure for cancer treatment

    Institute of Scientific and Technical Information of China (English)

    J.C.MISRA; A.SINHA; G.C.SHIT

    2010-01-01

    The paper deals with the theoretical investigation of a fundamental problem of biomagnetic fluid flow through a porous medium subject to a magnetic field by using the principles of biomagnetic fluid dynamics(BFD).The study pertains to a situation where magnetization of the fluid varies with temperature.The fluid is considered to be non-Newtonian,whose flow is governed by the equation of a second-grade viscoelastic fluid.The walls of the channel are assumed to be stretchable,where the surface velocity is proportional to the longitudinal distance from the origin of coordinates.The problem is first reduced to solving a system of coupled nonlinear differential equations involving seven parameters.Considering blood as a biomagnetic fluid and using the present analysis,an attempt is made to compute some parameters of the blood flow by developing a suitable numerical method and by devising an appropriate finite difference scheme.The computational results are presented in graphical form,and thereby some theoretical predictions are made with respect to the hemodynamical flow of the blood in a hyperthermal state under the action of a magnetic field.The results clearly indicate that the presence of a magnetic dipole bears the potential so as to affect the characteristics of the blood flow in arteries to a significant extent during the therapeutic procedure of electromagnetic hyperthermia.The study will attract the attention of clinicians,to whom the results would be useful in the treatment of cancer patients by the method of electromagnetic hyperthermia.

  19. The high temperature superconductor YBa2Cu3O7-δ: symmetry of the order parameter, and gradiometers for biomagnetic applications

    International Nuclear Information System (INIS)

    The cuprate YBa2Cu3O7-δ is the material that drives the majority of the technological applications of high transition temperature (Tc) superconductors, particularly in the area of superconducting electronics. Despite the widespread use of high-Tc superconducting materials in a variety of applications, the nature of the superconducting state in these materials remains unknown since their discovery more than a decade ago. Many properties of the high-Tc superconductors are determined by their order parameter, which is a wavefunction describing the superconducting condensate. The symmetry of the order parameter in cuprates has been the subject of intensive investigation, leading to conflicting sets of results. Some experiments supported conventional, s-wave symmetry of the order parameter, while others indicated an unconventional, d-wave symmetry. The first part of this thesis is an experimental study of the symmetry of the order parameter in YBa2Cu3O7-δ. A new class of phase sensitive experiments is described that involve Josephson tunneling along the c-axis of twinned crystals of YBa2Cu3O7-δ. These experiments showed that an s-wave component must reverse sign across the twin boundary, providing direct evidence for a mixed, s+d symmetry of the order parameter in YBa2Cu3O7-δ, and thereby reconciling two conflicting sets of previous findings and establishing the dominant d-wave pairing symmetry. The second part of the thesis focuses on practical applications of YBa2Cu3O7-δ in superconducting electronics. The authors introduce a novel Superconducting Quantum Interference Device (SQUID) gradiometer. The principle of operation of these long baseline high-Tc SQUID gradiometers is based on the inductive coupling of the input coil of a planar flux transformer to the pickup up loop of a directly coupled magnetometer. The long baseline of the gradiometer, 48 mm, and the intrinsic. Balance of better than 1 part in 100 make it an ideal candidate for operation in biomagnetic

  20. The high temperature superconductor YBa(2)Cu(3)O(7-delta): Symmetry of the order parameter, and gradiometers for biomagnetic applications

    Science.gov (United States)

    Kouznetsov, Konstantin Alexander

    biomagnetic systems in an unshielded environment. We demonstrate a practical multichannel SQUID system for MagnetoCardioGraphy. Using this system, we are able to detect magnetic signals from the human heart in an unshielded environment, thereby demonstrating the applicability of our technology to practical applications. Our gradiometers are readily manufacturable devices that could be used in clinical applications in the near future.

  1. The high temperature superconductor YBa2Cu3O7-δ: symmetry of the order parameter, and gradiometers for biomagnetic applications

    Energy Technology Data Exchange (ETDEWEB)

    Kouznetsov, Konstantin Alexander [Univ. of California, Berkeley, CA (US). Dept. of Physics; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    1999-12-01

    pickup up loop of a directly coupled magnetometer. The long baseline of the gradiometer, 48 mm, and the intrinsic. Balance of better than 1 part in 100 make it an ideal candidate for operation in biomagnetic systems in an unshielded environment. They demonstrate a practical multichannel SQUID system for MagnetoCardioGraphy. Using this system, they are able to detect magnetic signals from the human heart in an unshielded environment, thereby demonstrating the applicability of their technology to practical applications. Their gradiometers are readily manufacturable devices that could be used in clinical applications in the near future.

  2. Measurements of Gastric Emptying by Biomagnetic Techniques

    Science.gov (United States)

    Vázquez, L. A.; Sosa, M.; Córdova, T.; Vargas, F. M.; Huerta, M. R.

    2006-09-01

    In the present work a new method to measure the average time of gastric emptying by using a magnetic tracer is showed, this work shows the application of foundations of the electromagnetic theory in the study of the gastrointestinal system. The presented technique is relatively cheap and can be used it to diagnose of diseases, is a noninvasive method, is a technique that does not use ionizing radiation. In this investigation was possible to measure the average time of gastric emptying with a very high precision. In this investigation measurements of 10 healthy volunteers were made, and an average time of gastric emptying of 36.45 minutes in the space of the time was obtained, in addition with the analysis to the signal by means of the use of a pass-band filter it was possible to measure the peristaltic frequencies of the stomach and an average time of 37.24 minutes in the space of frequencies. With this technique it is possible to obtain data of the walls of the stomach. A peristaltic frequency of 2.79 was obtained cpm (cycles per minute).

  3. Application of SQUID for NDE and biomagnetism measurement

    International Nuclear Information System (INIS)

    SQUID is the most sensitive magnetic sensor known. It is able to detect the magnetic field as small as few femto Tesla (fT), which is equivalent to one of 10 billionth of earth magnetic field (about 50μT). SQUID can be applied in the various fields and its need will be increased greatly in the future. If SQUID is applied in the medical technology, there will be improvement in accurate diagnosis of brain and heart by supplying more information about the functions of such human organs. The nondestructive evaluation (NDE) of deep-lying flaws in the inner layer of lab jointed structures of aircraft, which is very difficult with the existing method became possible using high Tc. SQUID. In this paper, the current status of SQUID applications in both medical and NDE fields will be reviewed.

  4. Femto-Tesla Cs magnetometer arrays for biomagnetic measurements and fundamental research

    International Nuclear Information System (INIS)

    Full text: We have developed scalar magnetometers using laser-driven and -detected magnetic resonance in paraffin-coated Cs vapor cells. A single laser can drive up to several hundred sensor heads, where each requires only a few micro-Watt of light for optimal performance, thus allowing operation of multi-sensor arrays. The individual sensor heads are fiber-coupled compact structures (few cm3) reaching a (close to) shot-noise limited sensitivity of a few 10 fT/Hz1/2. We have solved the problems of cell mass production (300 excellent cells produced so far), light delivery to the sensor heads, and digital control using FPGA electronics. We will report on magneto-cardiographic measurements using a 19 channel second order gradiometry scheme with 25 sensors and will outline prospects for the use of sensor arrays in a new search for a permanent electric dipole moment of the neutron. (author)

  5. Algorithms for biomagnetic source imaging with prior anatomical and physiological information

    Energy Technology Data Exchange (ETDEWEB)

    Hughett, P W [Univ. of California, Berkeley, CA (United States). Dept. of Electrical Engineering and Computer Sciences

    1995-12-01

    This dissertation derives a new method for estimating current source amplitudes in the brain and heart from external magnetic field measurements and prior knowledge about the probable source positions and amplitudes. The minimum mean square error estimator for the linear inverse problem with statistical prior information was derived and is called the optimal constrained linear inverse method (OCLIM). OCLIM includes as special cases the Shim-Cho weighted pseudoinverse and Wiener estimators but allows more general priors and thus reduces the reconstruction error. Efficient algorithms were developed to compute the OCLIM estimate for instantaneous or time series data. The method was tested in a simulated neuromagnetic imaging problem with five simultaneously active sources on a grid of 387 possible source locations; all five sources were resolved, even though the true sources were not exactly at the modeled source positions and the true source statistics differed from the assumed statistics.

  6. Subjective memory complaints are associated with differential biomagnetic patterns during a memory task

    OpenAIRE

    Jose María Ruiz; Pedro Gil; Francisco del Pozo; Tomás Ortiz; Angel Nevado

    2010-01-01

    A significant fraction of elders reporting subjective memory complaints (SMC) have scores compatible with healthy aging in neuropsychological tests. We investigate whether neurophysiological correlates of those complaints can be found with magnetoencephalography (MEG) during the completion of a memory task. Elderly participants (N=51), aged 72±8, were divided into the following groups: Patients with both Mild Cognitive Impairment (MCI), an objective deficit as assessed by a neuropsychol...

  7. Closed-cycle cryocooled SQUID system with superconductive shield for biomagnetism

    International Nuclear Information System (INIS)

    We developed a cryocooled SQUID system with which human magnetocardiogram (MCG) and possibly magnetoenceparogram (MEG) can be measured. To reduce cyclic magnetic noises originating from the regenerator of the cold heads of the cryocooler, a superconductive shield (99.5% Pb) was used to protect the SQUID sensors, and a ferromagnetic shield (78% Ni alloy) was used to screen the cold head. In addition, the SQUID sensors’ chamber was placed at a distance of 1.8 m from the cold head chamber to install the cold-head chamber outside the magnetically shielded room (MSR) for future development. The loss in cooling power due to the increased distance was compensated by increasing the number of thermal rods, and thus the SQUID sensor and superconductive shield could be refrigerated to 4.8 K and 5 K, respectively. The superconductive shield successfully rejected thermal noise emitted from metallic blocks used to improve thermal conduction. The noise of the SQUID system was 3 fT/Hz1/2, and the cyclic magnetic noise could be reduced to 1.7 pT. We could obtain a clear MCG signal while the entire cryogenics was in operation without any special digital processing. (paper)

  8. Continuous observation on heart-disease-model mice using biomagnetic measurement system

    Energy Technology Data Exchange (ETDEWEB)

    Kasai, Y; Oikawa, T; Saitoh, Y; Ishiyama, A [Department of Electrical Engineering and Bioscience, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555 (Japan); Ono, Y [Department of Physiology and Neuroscience, Kanagawa Dental College, 82 Inaokacho, Yokosuka, Kanagawa 238-8580 (Japan); Kasai, N [National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Odawara, A; Chinone, K [SII Nano Technology Inc. 1-8 Nakase, Mihama-ku, Chiba 261-8507 (Japan)], E-mail: you.kasai@asagi.waseda.jp

    2008-02-01

    Magnetocardiography (MCG) is a non-invasive method that can contribute to elucidating heart disease mechanisms and the verification of pharmacological effects. The object of our study is to show the potential of MCG for such study in mice. By using the developed MCG system, which adopts a single channel superconducting quantum interference device (SQUID) magnetometer with the spatial resolution of 500 {mu}m, we continuously measured MCGs for 2 heart-disease-model mice with a high incidence of cardiac infarction from 7-weeks-old to death. An abnormal MCG appeared 1 or 2 weeks before death. The abnormal MCG changes indicate that the damaged place in the ventricles was different for each individual. In addition, we have developed a method to obtain MCGs for newborn mice in particular because they are small and frail. The MCGs of newborn mice were similar to those of adult mice. This study proved the potential of MCG for detecting abnormal cardiac excitation at the early stage of cardiac infarction and monitoring the progress of heart disease in detail from infancy to old age in mice.

  9. Cancellation technique of external noise inside a magnetically shielded room used for biomagnetic measurements

    Science.gov (United States)

    Kandori, Akihiko; Miyashita, Tsuyoshi; Tsukada, Keiji

    2000-05-01

    First-order gradiometers inside a magnetically shielded room (MSR) were used to cancel magnetic-field noise. However, the magnetic field inside a MSR is distorted when the amount of external noise is large. This distortion is caused by the low-pass filter property of the MSR. Therefore, the time constants of the frequency-dependent attenuation of the MSR vary spatially and this variation must be taken into account. To investigate noise cancellation, we used a multichannel superconducting quantum interference device consisting of four gradiometers measuring a source signal and two gradiometers as a reference. To compensate for the different magnitudes of the gradiometer wave forms, which differed because of slight differences in their pickup-coil cancel rates, we calculated a fitting parameter. The noise-cancellation method consisted of two processes: reduction of ambient noise caused by the differences in the cancel rate of the gradiometers and a gradient magnetic field inside the MSR, and cancellation of wave-form distortion caused by the spatial variation of the time constants inside the MSR. This cancellation method provides additional attenuation of over 20-30 dB in addition to the balance (>46 dB) of a first-order gradiometer. However, the remaining noise, especially a spike (<2 pT) at the beginning of a large ambient noise step, could not be completely canceled. This noise was caused by the slight difference between the time constants at the reference sensor position and at the signal sensor position. Except for this noise spike, however, the noise cancellation enabled clear magnetocardiogram wave forms to be measured without being affected by strong external noise.

  10. Biomagnetic monitoring of traffic air pollution in Toulouse (France) using magnetic properties of tree bark

    Science.gov (United States)

    Macouin, M.; Rousse, S.; Brulfert, F.; Durand, M.; Feida, N.; Durand, X.; Becaud, L.

    2012-12-01

    Magnetic properties of various atmospheric samples represent rapid and economic proxies in the pollution studies based on their strong linkage to heavy metals and/or volatile organic carbons. We report a biomonitoring study of air pollution in Toulouse (France) based on the magnetic properties of tree (Platanus acerifolia) bark. More than 250 bark samples were taken at different areas of the city. Both mass specific magnetic susceptibility and isothermal remanent magnetization (IRM) at 1 Tesla display relationships with the traffic intensity and the distance to the road. Urban roadside tree bark exhibit significant enhancement in their values of susceptibility and IRM reflecting surface accumulation of particulate pollutants, compared with tree growing at lower traffic sites. To estimate the deposition time and accumulation on bark, we have deposited 20 "clean" bark samples from low traffic area with susceptibility inferior to 10 SI, near the city ring road. Samples were then collected during three months. Samples were imparted a 1 Tesla IRM both prior the deposition and after the resampling. Results are useful to apprehend the process of magnetic particulates accumulation and to evaluate the potential of tree bark for the air quality monitoring.

  11. Ultra-sensitive sensors for weak electromagnetic fields using high-Tc SQUIDS for biomagnetism, NDE, and corrosion currents

    International Nuclear Information System (INIS)

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The research has directly contributed to a new DOE supported project, three patents (one granted and two submitted), and several potential opportunities for new program funding at the Laboratory. The authors report significant developments extending from basic understanding of and fabrication techniques for high critical-temperature (high-Tc) SQUID devices to the development of high-level applications such as the SQUID Microscope. The development of ramp edge geometry and silver-doped YBa2Cu3O7-x (YBCO) electrodes has tremendously improved the performance of high-Tc SQUIDS. Recent experiments have proven and quantified the LANL-patented superconducting imaging plane gradiometry concept. A SQUID microscope, developed largely under this project, has recently acquired data that demonstrated exceptional sensitivity and resolution. New techniques for background noise suppression, needed to use the extraordinarily sensitive SQUID sensors in unshielded environments, have also been developed. Finally, initial investigations to use SQUIDs in a basic physics experiment to measure the electric dipole moment of the neutron were very successful

  12. Biomagnetic and bioelectric detection of gastric slow wave activity in normal human subjects—a correlation study

    International Nuclear Information System (INIS)

    We measured gastric slow wave activity simultaneously with a Superconducting Quantum Interference Device (SQUID) magnetometer, mucosal electrodes and cutaneous electrodes in 18 normal human subjects (11 women and 7 men). We processed signals with Fourier spectral analysis and SOBI blind-source separation techniques. We observed a high waveform correlation between the mucosal electromyogram (EMG) and multichannel SQUID magnetogastrogram (MGG). There was a lower waveform correlation between the mucosal EMG and cutaneous electrogastrogram (EGG), but the correlation improved with the application of SOBI. There was also a high correlation between the frequency of the electrical activity recorded in the MGG and in mucosal electrodes (r = 0.97). We concluded that SQUID magnetometers noninvasively record gastric slow wave activity that is highly correlated with the activity recorded by invasive mucosal electrodes. (paper)

  13. High-resolution room-temperature sample scanning superconducting quantum interference device microscope configurable for geological and biomagnetic applications

    International Nuclear Information System (INIS)

    We have developed a scanning superconducting quantum interference device (SQUID) microscope system with interchangeable sensor configurations for imaging magnetic fields of room-temperature (RT) samples with submillimeter resolution. The low-critical-temperature (Tc) niobium-based monolithic SQUID sensors are mounted on the tip of a sapphire and thermally anchored to the helium reservoir. A 25 μm sapphire window separates the vacuum space from the RT sample. A positioning mechanism allows us to adjust the sample-to-sensor spacing from the top of the Dewar. We achieved a sensor-to-sample spacing of 100 μm, which could be maintained for periods of up to four weeks. Different SQUID sensor designs are necessary to achieve the best combination of spatial resolution and field sensitivity for a given source configuration. For imaging thin sections of geological samples, we used a custom-designed monolithic low-Tc niobium bare SQUID sensor, with an effective diameter of 80 μm, and achieved a field sensitivity of 1.5 pT/Hz1/2 and a magnetic moment sensitivity of 5.4x10-18 A m2/Hz1/2 at a sensor-to-sample spacing of 100 μm in the white noise region for frequencies above 100 Hz. Imaging action currents in cardiac tissue requires a higher field sensitivity, which can only be achieved by compromising spatial resolution. We developed a monolithic low-Tc niobium multiloop SQUID sensor, with sensor sizes ranging from 250 μm to 1 mm, and achieved sensitivities of 480-180 fT/Hz1/2 in the white noise region for frequencies above 100 Hz, respectively. For all sensor configurations, the spatial resolution was comparable to the effective diameter and limited by the sensor-to-sample spacing. Spatial registration allowed us to compare high-resolution images of magnetic fields associated with action currents and optical recordings of transmembrane potentials to study the bidomain nature of cardiac tissue or to match petrography to magnetic field maps in thin sections of geological samples

  14. National Institute of Biomedical Imaging and Bioengineering

    Science.gov (United States)

    ... Diagnostic and Interventional Structural Biology Magnetic, Biomagnetic and Bioelectric Devices Micro- and Nano- Systems; Platform Technologies Rehabilitation Engineering Surgical Tools, Techniques and Systems Mathematical Modeling, Simulation ...

  15. Mossbauer and magnetic study of solid phases formed by dissimilatory iron-reducing bacteria

    Czech Academy of Sciences Publication Activity Database

    Chistyakova, N.I.; Rusakov, V.S.; Shapkin, A.A.; Pigalev, P.A.; Kazakov, A.P.; Zhilina, T.N.; Zavarzina, D.G.; Lančok, Adriana; Kohout, J.; Greneche, J. M.

    2012-01-01

    Roč. 190, JUNE (2012), s. 721-724. ISSN 1012-0394 Institutional research plan: CEZ:AV0Z40320502 Keywords : Mossbauer spectroscopy * dissimilatory iron-reducing bacteria * iron oxides * biomagnetism Subject RIV: CA - Inorganic Chemistry

  16. Magnetic Particle-Based Hybrid Platforms for Bioanalytical Sensors

    Directory of Open Access Journals (Sweden)

    Silvana Andreescu

    2009-04-01

    Full Text Available Biomagnetic nano and microparticles platforms have attracted considerable interest in the field of biological sensors due to their interesting physico-chemical properties, high specific surface area, good mechanical stability and opportunities for generating magneto-switchable devices. This review discusses recent advances in the development and characterization of active biomagnetic nanoassemblies, their interaction with biological molecules and their use in bioanalytical sensors.

  17. Laser-pumped cesium magnetometers for high-resolution medical and fundamental research

    OpenAIRE

    Groeger, Stephan; Bison, Georg; Knowles, Paul E.; Wynands, Robert; Weis, Antoine

    2007-01-01

    Laser-pumped cesium magnetometers allow highly sensitive magnetometry at room temperature. We report on applications of that technique in biomagnetic diagnostics and in a neutron electric dipole moment (nEDM) experiment. In the biomagnetic application the magnetic field from the beating human heart is detected using a gradiometer, which reaches an intrinsic sensitivity of 80 fT/Hz1/2. The device can record time-resolved magnetic field maps above the human body surface with a spatial resolutio...

  18. Scanning high-T{sub c} SQUID imaging system for magnetocardiography

    Energy Technology Data Exchange (ETDEWEB)

    Yang, H-C [Department of Physics, National Taiwan University, Taipei 106, Taiwan (China); Wu, T-Y [Institute of Electro-Optical Science and Technology, National Normal Taiwan University 116, Taipei, Taiwan (China); Horng, H-E [Institute of Electro-Optical Science and Technology, National Normal Taiwan University 116, Taipei, Taiwan (China); Wu, C-C [Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University School of Medicine, Taipei 106, Taiwan (China); Yang, S Y [Institute of Electro-Optical Science and Technology, National Normal Taiwan University 116, Taipei, Taiwan (China); Liao, S-H [Department of Physics, National Normal Taiwan University, Taipei 116, Taiwan (China); Wu, C-H [Department of Physics, National Taiwan University, Taipei 106, Taiwan (China); Jeng, J T [Department of Mechanical Engineering, National Taipei University of Technology, Taipei, 105, Taiwan (China); Chen, J C [Department of Physics, National Taiwan University, Taipei 106, Taiwan (China); Chen, Kuen-Lin [Department of Physics, National Taiwan University, Taipei 106, Taiwan (China); Chen, M J [Department of Physics, National Taiwan University, Taipei 106, Taiwan (China)

    2006-05-15

    A scanning magnetocardiography (MCG) system constructed from SQUID sensors offers potential to basic or clinical research in biomagnetism. In this work, we study a first order scanning electronic high-T{sub c} (HTS) SQUID MCG system for biomagnetic signals. The scanning MCG system was equipped with an x-y translation bed powered by step motors. Using noise cancellation and {mu}-metal shielding, we reduced the noise level substantially. The established scanning HTS MCG system was used to study the magnetophysiology of hypercholesterolaemic (HC) rabbits. The MCG data of HC rabbits were analysed. The MCG contour map of HC rabbits provides experimental models for the interpretation of human cardiac patterns.

  19. Human MCG measurements with a high-sensitivity potassium atomic magnetometer

    International Nuclear Information System (INIS)

    Measuring biomagnetic fields, such as magnetocardiograms (MCGs), is important for investigating biological functions. To address to this need, we developed an optically pumped atomic magnetometer. In this study, human MCGs were acquired using a potassium atomic magnetometer without any modulating systems. The sensitivity of the magnetometer is comparable to that of high-Tc superconducting quantum interference devices (SQUIDs) and is sufficient for acquiring human MCGs. The activity of a human heart estimated from the MCG maps agrees well with that measured with SQUID magnetometers. Thus, our magnetometer produces reliable results, which demonstrate the potential of our atomic magnetometer for biomagnetic measurements. (paper)

  20. Scanning high-Tc SQUID imaging system for magnetocardiography

    International Nuclear Information System (INIS)

    A scanning magnetocardiography (MCG) system constructed from SQUID sensors offers potential to basic or clinical research in biomagnetism. In this work, we study a first order scanning electronic high-Tc (HTS) SQUID MCG system for biomagnetic signals. The scanning MCG system was equipped with an x-y translation bed powered by step motors. Using noise cancellation and μ-metal shielding, we reduced the noise level substantially. The established scanning HTS MCG system was used to study the magnetophysiology of hypercholesterolaemic (HC) rabbits. The MCG data of HC rabbits were analysed. The MCG contour map of HC rabbits provides experimental models for the interpretation of human cardiac patterns

  1. Pacific Northwest Laboratory annual report for 1977 to the DOE Assistant Secretary for Environment. Part 1. Biomedical sciences

    Energy Technology Data Exchange (ETDEWEB)

    Wiley, W.R.

    1978-02-01

    Separate abstracts were prepared for 68 sections of this report that discuss the health hazards associated with the nuclear fuel cycle, fossil fuel cycle, oil shale processing, and biomagnetic effects associated with fusion. A list is included of 52 publications during the time period covered by this report.

  2. Leaf-deposition of particulate matter as a monitoring tool for the urban distribution of atmospheric particles: an experimental and modelling approach

    Science.gov (United States)

    Hofman, Jelle

    Throughout this Ph.D. research, the applicability of biomagnetic monitoring of leaf-deposited particles is evaluated for both monitoring and modelling purposes, using different spatial and temporal scales. First, biomagnetic monitoring of Platanus x acerifofia Willd. leaves was applied to assess the spatial distribution of atmospheric particles throughout an urban street canyon. To investigate the temporal variation of the biomagnetic signal, we evaluated the accumulation behaviour of SIRM by collecting 2-weekly leaf samples of a typical roadside Platanus x acerifolia Willd. tree throughout an entire in-leaf season and examined the seasonal development of the total leaf SIRM signal as well as the leaf-encapsulated fraction. Furthermore, the relevancy of the biomagnetic monitoring approach was evaluated by comparing gravimetric results with SIRM results of leaf-deposited particles within three different size fractions. As biomagnetic monitoring showed to be related to the atmospheric particulate concentration and applicable in urban areas at different Spatial and temporal resolution, the SIRM signal was used for comparison with air quality models at different spatial scales. A micro scale air quality model (ENVI-met RTM) was evaluated, using 96 tree crown sampling locations in a typical urban street canyon, while modelled atmospheric PM10 and NO2 concentrations at the urban scale were compared with leaf SIRM results of ivy (Hedera sp.) at 1 10 locations throughout Antwerp. The last part of this Ph.D. focussed on the influence of tree crown morphology on the distribution and leaf-deposition of atmospheric particles. A model study was conducted to investigate the influence of a detailed LiDAR-derived tree crown, not only on the amount of leaf-deposited particles, but also on the local atmospheric PM distribution in the vicinity of the tree crown. Overall, this Ph.D. demonstrated the application potential of biomagnetic monitoring to gain insights on local ambient PM

  3. Dynamic shielding of the magnetic fields

    Directory of Open Access Journals (Sweden)

    RAU, M.

    2010-11-01

    Full Text Available The paper presents a comparative study of the methods used to control and compensate the direct and alternative magnetic fields. Two frequently used methods in the electromagnetic compatibility of the complex biomagnetism installations were analyzed. The two methods refer to the use of inductive magnetic field sensors (only for alternative fields and of fluxgate magnetometers as active transducers which measures both the direct and alternative components of the magnetic field. The applications of the dynamic control of the magnetic field are: control of the magnetic field of the military ships, control of parasite magnetic field produced by power transformers and the electrical networks, protection of the mass spectrometers, electronic microscopes, SQUID and optical pumping magnetometers for applications in biomagnetism.

  4. Application of HTS technology to cardiac dysrhythmia detection

    Energy Technology Data Exchange (ETDEWEB)

    Sobel, A.L. [Sandia National Labs., Albuquerque, NM (United States); Avrin, W.F. [Quantum Magnetics, Inc., San Diego, CA (United States)

    1994-12-01

    This paper discusses the conceptual design considerations and challenges for development of a contactless, mobile, single channel biomagnetic sensor system based on High-Temperature Superconductor (HTS) Superconducting Quantum Interference Devices (SQUIDs) and employing the Three-SQUID Gradiometer (TSG) concept. Operating in magnetically unshielded environments, as are encountered in many medical scenarios, this instrument class would monitor cardiac electrical activity with minimal patient preparation and intrusiveness, and would notionally be coupled with a clinically adaptive human-system interface (HSI).

  5. Biophysical aspects of the influence of electromagnetic fields (EMF) on the human body Influencia de los campos electromagnéticos en el organismo humano: aspectos biofísicos

    OpenAIRE

    Napaleon Hernández

    1993-01-01

     

    Some historical aspects of biomagnetism and of the various steps that led to the development of bioelectricity and electro technique are summarized. Alterations observed in individuals working for long periods of time in contact with artificial EMF are described as well as the correlation between natural EMF and accidentality. The utilization of EMF for therapeutic purposes ...

  6. Labeling of mesenchymal stem cells for MRI with single-cell sensitivity

    OpenAIRE

    Ariza de Schellenberger A; Kratz H; Farr TD; Löwa N; Hauptmann R; Wagner S; Taupitz M; Schnorr J; Schellenberger EA

    2016-01-01

    Angela Ariza de Schellenberger,1 Harald Kratz,1 Tracy D Farr,2,3 Norbert Löwa,4 Ralf Hauptmann,1 Susanne Wagner,1 Matthias Taupitz,1 Jörg Schnorr,1 Eyk A Schellenberger1 1Department of Radiology, 2Department of Experimental Neurology, Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany; 3School of Life Sciences, University of Nottingham, Medical School, Nottingham, UK; 4Department of Biomagnetic Signals, Physikalisch-Technische...

  7. Labeling of mesenchymal stem cells for MRI with single-cell sensitivity

    OpenAIRE

    Ariza de Schellenberger, Angela

    2016-01-01

    Angela Ariza de Schellenberger,1 Harald Kratz,1 Tracy D Farr,2,3 Norbert Löwa,4 Ralf Hauptmann,1 Susanne Wagner,1 Matthias Taupitz,1 Jörg Schnorr,1 Eyk A Schellenberger1 1Department of Radiology, 2Department of Experimental Neurology, Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany; 3School of Life Sciences, University of Nottingham, Medical School, Nottingham, UK; 4Department of Biomagnetic Signals, Phy...

  8. A Role for Bioelectric Effects in the Induction of Bystander Signals by Ionizing Radiation?

    OpenAIRE

    Mothersill, C; Moran, G; McNeill, F.; Gow, M.D.; Denbeigh, J.; Prestwich, W.; Seymour, C. B.

    2007-01-01

    The induction of “bystander effects” i.e. effects in cells which have not received an ionizing radiation track, is now accepted but the mechanisms are not completely clear. Bystander effects following high and low LET radiation exposure are accepted but mechanisms are still not understood. There is some evidence for a physical component to the signal. This paper tests the hypothesis that bioelectric or biomagnetic phenomena are involved. Human immortalized skin keratinocytes and primary expla...

  9. Pulse-Driven Magnetoimpedance Sensor Detection of Cardiac Magnetic Activity

    OpenAIRE

    Nakayama, Shinsuke; Sawamura, Kenta; Mohri, Kaneo; Uchiyama, Tsuyoshi

    2011-01-01

    This study sought to establish a convenient method for detecting biomagnetic activity in the heart. Electrical activity of the heart simultaneously induces a magnetic field. Detection of this magnetic activity will enable non-contact, noninvasive evaluation to be made. We improved the sensitivity of a pulse-driven magnetoimpedance (PMI) sensor, which is used as an electric compass in mobile phones and as a motion sensor of the operation handle in computer games, toward a pico-Tesla (pT) level...

  10. A Magneto-Mechanical Assessment of Fetal Bradycardia

    OpenAIRE

    Nana Aba Mensah-Brown; Janette Strasburger

    2010-01-01

    Simultaneous SQUID and pulsed-Doppler ultrasound techniques have been implemented in our laboratory to assess the magneto-mechanical function of the bradycardic fetal heart. The objective is to single out the most detrimental cases of fetal bradycardia using magneto-mechanical indices. Recordings were made in a magnetically shielded room in the Biomagnetism Laboratory at the University of Wisconsin--Madison. Simultaneous echo/fetal magnetocardiography(fMCG) signals were recorded and analyzed...

  11. Elimination of flux-transformer crosstalk in multichannel SQUID magnetometers

    OpenAIRE

    Brake, ter, O.; Fleuren, F.H.; Ulfman, J.A.; Flokstra, J.

    1986-01-01

    Multichannel SQUID magnetometers are being developed for signal-field mapping in biomagnetic experiments. A problem that becomes more serious as the number of channels is increased is the crosstalk caused by the mutual inductances between the individual sensing coils. A simple and effective method for eliminating this crosstalk is presented in this Paper. The method is based on a rearrangement of the feedback loops which causes the flux-transformer circuits to become currentless. The feasibil...

  12. Elimination of flux-transformer crosstalk in multichannel SQUID magnetometers

    Science.gov (United States)

    ter Brake, H. J. M.; Fleuren, F. H.; Ulfrnan, J. A.; Flokstra, J.

    Multichannel SQUID magnetometers are being developed for signal-field mapping in biomagnetic experiments. A problem that becomes more serious as the number of channels is increased is the crosstalk caused by the mutual inductances between the individual sensing coils. A simple and effective method for eliminating this crosstalk is presented in this Paper. The method is based on a rearrangement of the feedback loops which causes the flux-transformer circuits to become currentless. The feasibility of the method is verified experimentally.

  13. Highly Automated Dipole EStimation (HADES)

    OpenAIRE

    Campi, C.; Pascarella, A.; Sorrentino, A.; M. Piana

    2011-01-01

    Automatic estimation of current dipoles from biomagnetic data is still a problematic task. This is due not only to the ill-posedness of the inverse problem but also to two intrinsic difficulties introduced by the dipolar model: the unknown number of sources and the nonlinear relationship between the source locations and the data. Recently, we have developed a new Bayesian approach, particle filtering, based on dynamical tracking of the dipole constellation. Contrary to many ...

  14. Biomedical Engineering at the Technical University of Denmark

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Andersen, Ole Trier; Wilhjelm, Jens Erik;

    1998-01-01

    The paper gives a brief overview of the biomedical engineering research and education at the Technical University of Denmark. An account of the research activities since the 1950?s is given, and examples of major efforts within ultrasound, biomagnetism, and neuroimaging are described. The evolution...... of the teaching activities since the late 1960?s along with an account of the recent initiatives to make a biomedical engineering profile at the university is described....

  15. Magnetic resonance imaging in entomology: a critical review

    OpenAIRE

    Hart, A.G.; Bowtell, R W; Köckenberger, W; Wenseleers, T.; Ratnieks, F.L.W.

    2005-01-01

    Magnetic resonance imaging (MRI) enables in vivo imaging of organisms. The recent development of the magnetic resonance microscope (MRM) has enabled organisms within the size range of many insects to be imaged. Here, we introduce the principles of MRI and MRM and review their use in entomology. We show that MRM has been successfully applied in studies of parasitology, development, metabolism, biomagnetism and morphology, and the advantages and disadvantages relative to other imaging technique...

  16. 3D Magnetic Induction Maps of Nanoscale Materials Revealed by Electron Holographic Tomography

    OpenAIRE

    Wolf, Daniel; RODRIGUEZ, Luis A; Béché, Armand; Javon, Elsa; Serrano, Luis; Magen, Cesar; GATEL, Christophe; Lubk, Axel; Lichte, Hannes; Bals, Sara; Van Tendeloo, Gustaaf; Fernández-Pacheco, Amalio; De Teresa, José M.; Snoeck, Etienne

    2015-01-01

    The investigation of three-dimensional (3D) ferromagnetic nanoscale materials constitutes one of the key research areas of the current magnetism roadmap and carries great potential to impact areas such as data storage, sensing, and biomagnetism. The properties of such nanostructures are closely connected with their 3D magnetic nanostructure, making their determination highly valuable. Up to now, quantitative 3D maps providing both the internal magnetic and electric configuration of the same s...

  17. 3D magnetic induction maps of nanoscale materials revealed by electron holographic tomography

    OpenAIRE

    Wolf, Daniel; RODRIGUEZ, Luis A; Béché, Armand; Bals, Sara; Tendeloo, van, G.; et al, ...

    2015-01-01

    Abstract: The investigation of three-dimensional (3D) ferromagnetic nanoscale materials constitutes one of the key research areas of the current magnetism roadmap and carries great potential to impact areas such as data storage, sensing, and biomagnetism. The properties of such nanostructures are closely connected with their 3D magnetic nanostructure, making their determination highly valuable. Up to now, quantitative 3D maps providing both the internal magnetic and electric configuration of ...

  18. Feasibility study of the application of biotechnology to nuclear waste treatment

    International Nuclear Information System (INIS)

    A number of biotechnology areas applicable to the removal of radionuclides from industrial nuclear effluents were considered, namely: use of Biopolymers; Biosorption using biomass; microbial leaching and solubilisation of metal ions. The potential of biomagnetic separation technology, genetic engineering and monoclonal antibody technology was also examined. It appeared that the most appropriate technologies to develop for radionuclide removal in the short term were based on biosorptions of radionuclides by biomass and modified and unmodified biopolymers. (author)

  19. Pacific Northwest Laboratory annual report for 1983 to the DOE Office of Energy Research. Part 1. Biomedical sciences

    Energy Technology Data Exchange (ETDEWEB)

    Drucker, H.

    1983-02-01

    Biomedical and health effects research conducted at PNL in 1982 on the evaluation of risk to man from existing and/or developing energy-related technologies are described. Most of the studies described in this report relate to activities for three major energy technologies: nuclear fuel cycle; fossil fuel cycle (oil, gas, and coal process technologies, mining, and utilization; synfuel development), and fudion (biomagnetic effects). The report is organized under these technologies. In addition, research reports are included on the application of nuclear energy to biomedical problems. Individual projects are indexed separately.

  20. SQUID '80: Superconducting quantum interference devices and their applications

    International Nuclear Information System (INIS)

    The nine invited lectures and 64 contributed papers collected in this volume provide an overview on the last four years of research and development work in the field of Josephson junctions. The main chapters are: Josephson junction physics, junctions and circuit noise, junction and circuit fabrication, cryogenic techniques, SQUID applications in low frequency devices, SQUID applications in geophysics, junctions and SQUID applications in microwave devices, and summary and conclusions. Lectures and papers on SQUID applications in biomagnetism have been excluded here and will be published in a separat volume. (WRI)

  1. Pacific Northwest Laboratory annual report for 1983 to the DOE Office of Energy Research. Part 1. Biomedical sciences

    International Nuclear Information System (INIS)

    Biomedical and health effects research conducted at PNL in 1982 on the evaluation of risk to man from existing and/or developing energy-related technologies are described. Most of the studies described in this report relate to activities for three major energy technologies: nuclear fuel cycle; fossil fuel cycle (oil, gas, and coal process technologies, mining, and utilization; synfuel development), and fudion (biomagnetic effects). The report is organized under these technologies. In addition, research reports are included on the application of nuclear energy to biomedical problems. Individual projects are indexed separately

  2. A second-order planar gradiometer composed of concentric superconductive loops

    Science.gov (United States)

    Kuriki, S.; Isobe, Y.; Mizutani, Y.

    1987-01-01

    A planar gradiometer composed of three concentric superconductive loops is analyzed. The gradiometer performs the second derivative with a rotational symmetry in a form of ∂2Bz/∂r2, where r2=x2+y2. In response to the biomagnetic field generated by a current dipole, an isoflux line distribution which resembles well the magnetic field distribution is obtained. The location and the strength of the current-dipole source can readily be estimated from the isoflux pattern. Reduction of the magnetic field noise from distant sources with respect to the signal of a near source is calculated to be comparable with that of conventional axial gradiometers.

  3. Hydromagnetic transport phenomena from a stretching or shrinking nonlinear nanomaterial sheet with Navier slip and convective heating: A model for bio-nano-materials processing

    Energy Technology Data Exchange (ETDEWEB)

    Uddin, M.J., E-mail: jashim_74@yahoo.com [Department of Mathematics, American International University-Bangladesh, Banani Dhaka 1213 (Bangladesh); Bég, O. Anwar [Gort Engovation Research (Propulsion/Biomechanics), Gabriel' s Wing House, 15 Southmere Ave., Bradford, BD7 3NU England (United Kingdom); Amin, N. [Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor (Malaysia)

    2014-11-15

    Steady two-dimensional magnetohydrodynamic laminar free convective boundary layer slip flow of an electrically conducting Newtonian nanofluid from a translating stretching/shrinking sheet in a quiescent fluid is studied. A convective heating boundary condition is incorporated. The transport equations along with the boundary conditions are first converted into dimensionless form and following the implementation of a linear group of transformations, the similarity governing equations are developed. The transformed equations are solved numerically using the Runge–Kutta–Fehlberg fourth fifth order method from Maple. Validation of the Maple solutions is achieved with previous non-magnetic published results. The effects of the emerging thermophysical parameters; namely, stretching/shrinking, velocity slip, magnetic field, convective heat transfer and buoyancy ratio parameters, on the dimensionless velocity, temperature and concentration (nanoparticle fraction) are depicted graphically and interpreted at length. It is found that velocity increases whilst temperature and concentration reduce with the velocity slip. Magnetic field causes to reduce velocity and enhances temperature and concentration. Velocity, temperature as well as concentration rises with convective heating parameter. The study is relevant to the synthesis of bio-magnetic nanofluids of potential interest in wound treatments, skin repair and smart coatings for biological devices. - Highlights: • This paper analyses MHD slip flow of nofluid with convective boundary conditions. • Group method is used to transform governing equations into similarity equations. • The Runge–Kutta–Fehlberg method is used for numerical computations. • The study is relevant to synthesis of bio-magnetic nanofluids.

  4. MEMS magnetic field sensor based on magnetoelectric composites

    International Nuclear Information System (INIS)

    For the measurement of biomagnetic signals in the pico- and femtotesla regime superconducting interference devices (SQUIDs) are commonly used. Their major limitation comes from helium cooling which makes these sensors bulky and expensive. We show that MEMS sensors based on magnetoelectric (ME) composites could be capable as a replacement for biomagnetic measurements. Using surface micromachining processes a cantilever beam with a stack composed of SiO2/Ti/Pt/AlN/Cr/FeCoSiB was fabricated on a 150 mm Si (1 0 0) wafer. First measurements of a rectangular micro cantilever with a thickness of 4 µm and lateral dimensions of 0.2 mm × 1.12 mm showed a giant ME coefficient αME = 1000 (V m−1)/(A m−1) in resonance at 2.4 kHz. The resulting static ME coefficient is αME = 14 (V m−1)/(A m−1). In resonance operation a sensitivity of 780 V T−1 and noise levels as low as 100 pT Hz−1/2 have been reached. (paper)

  5. Symmetry-Breaking Zeeman-Coherence Parametric Wave Mixing Magnetometry

    CERN Document Server

    Zhou, Feng; Hagley, E W; Deng, L

    2016-01-01

    The nonlinear magneto-optical effect has significantly impacted modern society with prolific applications ranging from precision mapping of the Earth's magnetic field to bio-magnetic sensing. Pioneering works on collisional spin-exchange effects have led to ultra-high magnetic field detection sensitivities at the level of $fT/\\sqrt{Hz}$ using a single linearly-polarized probe light field. Here we demonstrate a nonlinear Zeeman-coherence parametric wave-mixing optical-atomic magnetometer using room temperature rubidium vapor that results in more than a three-order-of-magnitude optical signal-to-noise ratio (SNR) enhancement for extremely weak magnetic field sensing. This unprecedented enhancement was achieved with nearly a two-order-of-magnitude reduction in laser power while preserving the sensitivity of the widely-used single-probe beam optical-atomic magnetometry method. This new method opens a myriad of applications ranging from bio-magnetic imaging to precision measurement of the magnetic properties of su...

  6. Magnetic characterization of human blood in the atherosclerotic process in coronary arteries

    Energy Technology Data Exchange (ETDEWEB)

    Janus, B. [Institute of Environmental Engineering PAS, ul. SkLodowskiej-Curie 34, 41-819 Zabrze (Poland); Bucko, M.S., E-mail: michal.bucko@helsinki.f [Institute of Environmental Engineering PAS, ul. SkLodowskiej-Curie 34, 41-819 Zabrze (Poland); Division of Geophysics and Astronomy, P.O. Box 64, Gustaf Haellstroemin katu 2, 00014 University of Helsinki (Finland); Chrobak, A. [University of Silesia, Institute of Physics, ul. Uniwersytecka 4, 40-007 Katowice (Poland); Wasilewski, J. [3rd Chair and Clinical Ward of Cardiology, Medical University of Silesia, Katowice, Silesian Centre of Heart Diseases, ul. Szpitalna 2, 41-800 Zabrze (Poland); Zych, M. [Department of Pharmacognosy and Phytochemistry, Medical University of Silesia, ul. Jagiellonska 4, 41-200 Sosnowiec (Poland)

    2011-03-15

    In the last decades there has been an increasing interest in biomagnetism-a field of biophysics concerned with the magnetic properties of living organisms. Biomagnetism focuses on the measurement of magnetic properties of biological samples in the clinical environment. Progress in this field can provide new data for the understanding of the pathomechanism of atherosclerosis and support the diagnostic options for the evaluation and treatment of atherothrombotic complications. Lyophilized human blood samples from patients with atherosclerotic lesions (calcium scoring (CS) CS>0) and without atherosclerotic lesions (CS=0) were magnetically investigated. Magnetic measurements (performed in room and low temperature) indicated significant magnetic differences between these two groups of patients. Atherosclerotic blood samples are characterized by higher concentration of ferrimagnetic particles (magnetite and/or maghemite) and significant changes in the superparamagnetic behaviour. This research presents that magnetometry, in combination with medical research can lead to a better understanding of iron physiology in the atherosclerotic process. - Research Highlights: {yields}Blood samples are characterized by higher concentration of ferrimagnetic particles. {yields}Atherosclerotic blood samples consist of larger superparamagnetic clusters. {yields}Superparamagnetic particles in pathological samples are considered to be magnetite. {yields}The formation of ferrimagnetic particles is favoured in the atherosclerotic patients. {yields}Magnetite may play a role in the progression of atherosclerosis.

  7. A Room Temperature Ultrasensitive Magnetoelectric Susceptometer for Quantitative Tissue Iron Detection

    Science.gov (United States)

    Xi, Hao; Qian, Xiaoshi; Lu, Meng-Chien; Mei, Lei; Rupprecht, Sebastian; Yang, Qing X.; Zhang, Q. M.

    2016-07-01

    Iron is a trace mineral that plays a vital role in the human body. However, absorbing and accumulating excessive iron in body organs (iron overload) can damage or even destroy an organ. Even after many decades of research, progress on the development of noninvasive and low-cost tissue iron detection methods is very limited. Here we report a recent advance in a room-temperature ultrasensitive biomagnetic susceptometer for quantitative tissue iron detection. The biomagnetic susceptometer exploits recent advances in the magnetoelectric (ME) composite sensors that exhibit an ultrahigh AC magnetic sensitivity under the presence of a strong DC magnetic field. The first order gradiometer based on piezoelectric and magnetostrictive laminate (ME composite) structure shows an equivalent magnetic noise of 0.99 nT/rt Hz at 1 Hz in the presence of a DC magnetic field of 0.1 Tesla and a great common mode noise rejection ability. A prototype magnetoelectric liver susceptometry has been demonstrated with liver phantoms. The results indicate its output signals to be linearly responsive to iron concentrations from normal iron dose (0.05 mg Fe/g liver phantom) to 5 mg Fe/g liver phantom iron overload (100X overdose). The results here open up many innovative possibilities for compact-size, portable, cost-affordable, and room-temperature operated medical systems for quantitative determinations of tissue iron.

  8. Hydromagnetic transport phenomena from a stretching or shrinking nonlinear nanomaterial sheet with Navier slip and convective heating: A model for bio-nano-materials processing

    International Nuclear Information System (INIS)

    Steady two-dimensional magnetohydrodynamic laminar free convective boundary layer slip flow of an electrically conducting Newtonian nanofluid from a translating stretching/shrinking sheet in a quiescent fluid is studied. A convective heating boundary condition is incorporated. The transport equations along with the boundary conditions are first converted into dimensionless form and following the implementation of a linear group of transformations, the similarity governing equations are developed. The transformed equations are solved numerically using the Runge–Kutta–Fehlberg fourth fifth order method from Maple. Validation of the Maple solutions is achieved with previous non-magnetic published results. The effects of the emerging thermophysical parameters; namely, stretching/shrinking, velocity slip, magnetic field, convective heat transfer and buoyancy ratio parameters, on the dimensionless velocity, temperature and concentration (nanoparticle fraction) are depicted graphically and interpreted at length. It is found that velocity increases whilst temperature and concentration reduce with the velocity slip. Magnetic field causes to reduce velocity and enhances temperature and concentration. Velocity, temperature as well as concentration rises with convective heating parameter. The study is relevant to the synthesis of bio-magnetic nanofluids of potential interest in wound treatments, skin repair and smart coatings for biological devices. - Highlights: • This paper analyses MHD slip flow of nofluid with convective boundary conditions. • Group method is used to transform governing equations into similarity equations. • The Runge–Kutta–Fehlberg method is used for numerical computations. • The study is relevant to synthesis of bio-magnetic nanofluids

  9. A Room Temperature Ultrasensitive Magnetoelectric Susceptometer for Quantitative Tissue Iron Detection

    Science.gov (United States)

    Xi, Hao; Qian, Xiaoshi; Lu, Meng-Chien; Mei, Lei; Rupprecht, Sebastian; Yang, Qing X.; Zhang, Q. M.

    2016-01-01

    Iron is a trace mineral that plays a vital role in the human body. However, absorbing and accumulating excessive iron in body organs (iron overload) can damage or even destroy an organ. Even after many decades of research, progress on the development of noninvasive and low-cost tissue iron detection methods is very limited. Here we report a recent advance in a room-temperature ultrasensitive biomagnetic susceptometer for quantitative tissue iron detection. The biomagnetic susceptometer exploits recent advances in the magnetoelectric (ME) composite sensors that exhibit an ultrahigh AC magnetic sensitivity under the presence of a strong DC magnetic field. The first order gradiometer based on piezoelectric and magnetostrictive laminate (ME composite) structure shows an equivalent magnetic noise of 0.99 nT/rt Hz at 1 Hz in the presence of a DC magnetic field of 0.1 Tesla and a great common mode noise rejection ability. A prototype magnetoelectric liver susceptometry has been demonstrated with liver phantoms. The results indicate its output signals to be linearly responsive to iron concentrations from normal iron dose (0.05 mg Fe/g liver phantom) to 5 mg Fe/g liver phantom iron overload (100X overdose). The results here open up many innovative possibilities for compact-size, portable, cost-affordable, and room-temperature operated medical systems for quantitative determinations of tissue iron. PMID:27465206

  10. Influence of compression forces on tablets disintegration by AC Biosusceptometry.

    Science.gov (United States)

    Corá, Luciana A; Fonseca, Paulo R; Américo, Madileine F; Oliveira, Ricardo B; Baffa, Oswaldo; Miranda, José Ricardo A

    2008-05-01

    Analysis of physical phenomena that occurs during tablet disintegration has been studied by several experimental approaches; however none of them satisfactorily describe this process. The aim of this study was to investigate the influence of compression force on the tablets by associating the AC Biosusceptometry with consolidated methods in order to validate the biomagnetic technique as a tool for quality control in pharmaceutical processes. Tablets obtained at five compression levels were submitted to mechanical properties tests. For uncoated tablets, water uptake and disintegration force measurements were performed in order to compare with magnetic data. For coated tablets, magnetic measurements were carried out to establish a relationship between physical parameters of the disintegration process. According to the results, differences between the compression levels were found for water uptake, force development and magnetic area variation measurements. ACB method was able to estimate the disintegration properties as well as the kinetics of disintegration process for uncoated and coated tablets. This study provided a new approach for in vitro investigation and validated this biomagnetic technique as a tool for quality control for pharmaceutical industry. Moreover, using ACB will also be possible to test these parameters in humans allowing to establish an in vitro/in vivo correlation (IVIVC). PMID:18164605

  11. The models of experimental magnetic measurements of various biological samples

    International Nuclear Information System (INIS)

    Complete text of publication follows. At the Geomagnetic Institute, in the Laboratory for paleomagnetism and archeomagnetism research and at the Geomagnetic Observatory, Grocka (GCK) during the period from November 2004 to February 2008 the researchers carried out experimental magnetic measurements of the total-intensity gradient of the magnetic field vector (changes in the total magnetisation vector) of various biomaterials. Measurements of the gradient total intensity of the magnetic field vector were carried out by GSM-19 magnetometers of high accuracy and recording resolution (accuracy: ΔF=0.1 nT; sampling rate: 1-5 per second). During these experimental biomagnetic measurements samples of water, tissue, blood, cotton, wool, pitch and magnetite-powder were used. In this study, the part of the biomagnetic measurement results relate to the water, blood and tissue. The results of the measurements of gradient total-intensity of the magnetic field for the biomaterial samples showed physical processes which are connected with the diamagnetic and paramagnetic properties of such biomaterials.

  12. Base distance optimization for SQUID gradiometers

    Energy Technology Data Exchange (ETDEWEB)

    Garachtchenko, A. [Applied Materials, Santa Clara, CA (United States); Matlashov, A.; Kraus, R. [Los Alamos National Lab., NM (United States)

    1998-12-31

    The measurement of magnetic fields generated by weak nearby biomagnetic sources is affected by ambient noise generated by distant sources both internal and external to the subject under study. External ambient noise results from sources with numerous origins, many of which are unpredictable in nature. Internal noise sources are biomagnetic in nature and result from muscle activity (such as the heart, eye blinks, respiration, etc.), pulsation associated with blood flow, surgical implants, etc. Any magnetic noise will interfere with measurements of magnetic sources of interest, such as magnetoencephalography (MEG), in various ways. One of the most effective methods of reducing the magnetic noise measured by the SQUID sensor is to use properly designed superconducting gradiometers. Here, the authors optimized the baseline length of SQUID-based symmetric axial gradiometers using computer simulation. The signal-to-noise ratio (SNR) was used as the optimization criteria. They found that in most cases the optimal baseline is not equal to the depth of the primary source, rather it has a more complex dependence on the gradiometer balance and the ambient magnetic noise. They studied both first and second order gradiometers in simulated shielded environments and only second order gradiometers in a simulated unshielded environment. The noise source was simulated as a distant dipolar source for the shielded cases. They present optimal gradiometer baseline lengths for the various simulated situations below.

  13. A Room Temperature Ultrasensitive Magnetoelectric Susceptometer for Quantitative Tissue Iron Detection.

    Science.gov (United States)

    Xi, Hao; Qian, Xiaoshi; Lu, Meng-Chien; Mei, Lei; Rupprecht, Sebastian; Yang, Qing X; Zhang, Q M

    2016-01-01

    Iron is a trace mineral that plays a vital role in the human body. However, absorbing and accumulating excessive iron in body organs (iron overload) can damage or even destroy an organ. Even after many decades of research, progress on the development of noninvasive and low-cost tissue iron detection methods is very limited. Here we report a recent advance in a room-temperature ultrasensitive biomagnetic susceptometer for quantitative tissue iron detection. The biomagnetic susceptometer exploits recent advances in the magnetoelectric (ME) composite sensors that exhibit an ultrahigh AC magnetic sensitivity under the presence of a strong DC magnetic field. The first order gradiometer based on piezoelectric and magnetostrictive laminate (ME composite) structure shows an equivalent magnetic noise of 0.99 nT/rt Hz at 1 Hz in the presence of a DC magnetic field of 0.1 Tesla and a great common mode noise rejection ability. A prototype magnetoelectric liver susceptometry has been demonstrated with liver phantoms. The results indicate its output signals to be linearly responsive to iron concentrations from normal iron dose (0.05 mg Fe/g liver phantom) to 5 mg Fe/g liver phantom iron overload (100X overdose). The results here open up many innovative possibilities for compact-size, portable, cost-affordable, and room-temperature operated medical systems for quantitative determinations of tissue iron. PMID:27465206

  14. Fabrication and characterization of a MEMS nano-Tesla ferromagnetic-piezoelectric magnetic sensor array

    Science.gov (United States)

    Qu, Peng; Gollapudi, Sreenivasulu; Bidthanapally, Rao; Srinivasan, Gopalan; Petrov, Vladimir; Qu, Hongwei

    2016-06-01

    A self-biased MEMS magnetic sensor array with ferromagnetic-piezoelectric composites has been fabricated and characterized. The array with two Quartz-Nickel-Metglas cantilevers with nano-tesla sensitivity was fabricated by MEMS processes including silicon-quartz low temperature bonding, quartz wafer thinning, and electroplating of thick nickel thin films. Under self-biasing due to magnetization grading of ferromagnetic layer, magnetoelectric coefficients of 6.6 and 5.6 V/cm Oe and resolutions of ˜0.58 and ˜0.75 nT are obtained at the mechanical resonant frequencies of 191.5 and 184.8 Hz for the two sensors in the array, respectively. Such arrays have the potential for applications in biomagnetic imaging technologies including magneto-cardiography.

  15. Solid Test Meal to Measure the Gastric Emptying with Magnetogastrography

    International Nuclear Information System (INIS)

    The gastric emptying is the time of evacuating the food ingested from the stomach to the duodenum in a controlled rate. Diverse studies express the results of the gastric emptying in form of half-time (t1/2). The Magnetogastrography (MGG) is a biomagnetic technique that has the advantage of not being invasive, radiation free and does not interfere with the privacy of the subject. The objective was to analyze the magnetic signal of magnetic tracers mixed in a solid food to measure gastric emptying using Magnetogastrography. The ingested test meal displayed a magnetic signal, which served to obtain the signal registered by the fluxgate and the peristaltic contractions could be calculated while the stomach was emptying. The solid food product developed results to work satisfactorily in magnetogastrography

  16. Neuromagnetic recordings of the human peripheral nerve with planar SQUID gradiometers

    International Nuclear Information System (INIS)

    Magnetic fields produced by a travelling volley in the human ulnar nerve have been successfully measured in a lightly shielded environment. Recordings of the tangential component of the magnetic field were made using a planar second-order gradiometer integrated with a first-order gradiometric superconducting quantum interference device (SQUID). Devices were fabricated in our clean-room facility at the University of Strathclyde and measurements taken in an eddy-current shielded room at the Wellcome Biomagnetism Unit. We use no additional shielding and no electronic differencing or field-nulling techniques. Evoked magnetic fields of 60 fT peak-to-peak were obtained after 1536 averages but they could be seen easily as early as 512 averages. Measurements were made over four points above the ulnar nerve on the upper arm and from these the conduction velocity was calculated as 60 m s-1. (author)

  17. Applied superconductivity handbook on devices and applications

    CERN Document Server

    2015-01-01

    This wide-ranging presentation of applied superconductivity, from fundamentals and materials right up to the latest applications, is an essential reference for physicists and engineers in academic research as well as in the field. Readers looking for a systematic overview on superconducting materials will expand their knowledge and understanding of both low and high Tc superconductors, including organic and magnetic materials. Technology, preparation and characterization are covered for several geometries, but the main benefit of this work lies in its broad coverage of significant applications in power engineering or passive devices, such as filter and antenna or magnetic shields. The reader will also find information on superconducting magnets for diverse applications in mechanical engineering, particle physics, fusion research, medicine and biomagnetism, as well as materials processing. SQUIDS and their usage in medicine or geophysics are thoroughly covered as are applications in quantum metrology, and, las...

  18. DC-SQUID with enhanced magnetic field sensitivity

    International Nuclear Information System (INIS)

    When designing a thinfilm DC-SQUID for insertion into a multichannel sensor circuit for biomagnetic applications, a minimum number of fabrication steps (e.g. mask layers) and simple thinfilm patterns are desirable. For measurements in a well shielded environment like the Berlin magnetically shielded room /1/ this requirement is met advantageously when flux transformers are omitted and the SQUID-loops themselves serve as magnetometer pick-up coils. In this case the DC-SQUIDs are designed for optimized magnetic field sensitivity instead of flux response. In this paper a single layer all-Nb thinfilm design that displays I-V- characteristics without resonant structures and the merits of a resistively shunted double loop circuit are presented

  19. Neuromagnetic recordings of the human peripheral nerve with planar SQUID gradiometers

    Energy Technology Data Exchange (ETDEWEB)

    Lang, G.; Maas, P.; Pegrum, C.M.; Donaldson, G.B. [Department of Physics and Applied Physics, University of Strathclyde, 107 Rottenrow, Glasgow G4 0NG (United Kingdom); Shahani, U.; Weir, A.I. [Wellcome Biomagnetism Unit, Southern General Hospital, 1345 Govan Road, Glasgow G51 4TF (United Kingdom)

    1998-08-01

    Magnetic fields produced by a travelling volley in the human ulnar nerve have been successfully measured in a lightly shielded environment. Recordings of the tangential component of the magnetic field were made using a planar second-order gradiometer integrated with a first-order gradiometric superconducting quantum interference device (SQUID). Devices were fabricated in our clean-room facility at the University of Strathclyde and measurements taken in an eddy-current shielded room at the Wellcome Biomagnetism Unit. We use no additional shielding and no electronic differencing or field-nulling techniques. Evoked magnetic fields of 60 fT peak-to-peak were obtained after 1536 averages but they could be seen easily as early as 512 averages. Measurements were made over four points above the ulnar nerve on the upper arm and from these the conduction velocity was calculated as 60 m s{sup -1}. (author)

  20. Yves Rocard or the last of the Mohicans

    International Nuclear Information System (INIS)

    The author proposes a biography of Yves Rocard, the man at the origin of the development of physics in France after the Second World War, and also often considered as the father of the French atomic bomb. He briefly recalls his youth, his studies in the Ecole Normale Superieure (ENS), his works dealing with automotive construction and with applied electronics, his activities in the French Resistance during the war, his role at the head of the ENS Physics Laboratory, his works in the field of ionosphere predictions, radio-astronomy, and development of the first linear accelerator. As far as the French nuclear bomb is concerned, his role is still a matter of debate. He worked on explosion detection, and initiated the creation of a CEA department dedicated to military applications, but was not really involved in the activities of this department. His last works addressed geophysics and bio-magnetism

  1. Mapping of Human Heart Beat Dynamics by Atomic Magnetometers

    Science.gov (United States)

    Weis, A.; Bison, G.; Wynands, R.

    2005-05-01

    Stimulated by recent progress in laser-based optical magnetometry and in developments of powerful signal denoising techniques we initiated the development of a low-cost laser-driven optically pumped magnetometer (OPM) for biomagnetic applications. The OPM uses optically pumped cesium atoms in glass cells of a few cm3. Its sensitivity (<70 fT in 1 Hz bandwidth), bandwidth (140 Hz), and spatial resolution (cm) were optimized for the two-dimensional mapping of the magnetic field produced above the chest by the beating human heart. Signal averaging using an electrocardiographic signal as a reference and gradiometric detection reduces residual noise significantly so that the dynamics of the heart field can be displayed a movie. We discuss the principle of the technique and give a status report on ongoing work towards the development of a multichannel device.

  2. Two channel model as a possible microscopic configuration of the open-quotes barrierclose quotes in high-Tc grain boundary junctions

    International Nuclear Information System (INIS)

    High-Tc superconductors are intensively studied for applications such as biomagnetism, but the great difficulties in making integrated dc SQUIDs have slowed down applications in the biomedical field. Moreover, magnetic noise and energy resolution are not always low enough to permit measurements of human body magnetic signals. Noise in bicrystal and biepitaxial grain boundary junctions has been extensively analyzed, and both structures showed similar 1/f noise behaviors. In order to account for the experimental results, different models describing grain boundary junctions have been made, each able to explain some aspects of the phenomenology. In this work we suggest that the open-quotes barrierclose quotes is constituted by a large number of microscopic weak links in parallel, and we analyze the effects of such a model on noise properties and the temperature dependences of the critical current, finding a good agreement with most experiments carried out on grain boundary junctions. 15 refs., 1 fig

  3. Frontiers in European radiology 8

    International Nuclear Information System (INIS)

    Out of the eight contributions to this volume, the last two have been analysed for the data base. The articles deal with 'Progress in Biomagnetic Imaging of heat arrhythmias', 'Selective Endovascular Treatment of Intracranial Aneurysms by means of Latex Balloons Filled with a Polymerizing Substance', 'Self-Expandable Endoprotheses as an Adjunct to Balloon Angioplasty in the Treatment of Peripheral Arterial Lesions', 'Laser-Induced Shock Wave Angioplasty: Discrimination between Calcified and Other Plaque Material Before Generation of Laser-Induced Shock Waves', 'Contrast Agents in Clinical Angiography - Relevance to Thromboembolic Phenomena', 'Sodium and Oxygen Addition to Nonionic Contrast Media Effects on Contractile Force and Risk of Ventricular Fibrillation in the Isolated Rabbit Heart', 'Clinical Magnetic Resonance Spectroscopy - The Present State' and 'Image Contour Spread in Computed Tomography'. (UWA). 49 figs., 9 tabs

  4. Magneto-cardiogram measurement using a high-Tc SQUID magnetometer

    International Nuclear Information System (INIS)

    We made Superconducting Quantum Interference Devices (SQUIDs) coupled with large pick-up loops (directly coupled SQUIDs) by using single-layer YBCO thin films on SrTiO3 bicrystal substrates. The I-V characteristics of the SQUIDs showed Resistively Shunted Junction type (RSJ-type) behavior, and the measured IcRn values were in the 100∼300 μV range. The rms field resolution of a directly coupled SQUID measured in liquid nitrogen was 0.9 pT/Hz at 1 Hz and 0.1 pT/Hz at 1 kHz. Using this directly coupled SQUID, we have developed a SQUID magnetometer system operating in liquid nitroge, and we used that system in a magnetically shielded environment to measure biomagnetic signals from human heart

  5. HTSC-RF-SQUID sensors in magnetic fields: Characterisation and noise reduction

    International Nuclear Information System (INIS)

    Due to their excellent sensitivity to magnetic fields, HTS SQUID sensors are widely used in many applications outside magnetic shielding, e.g. for geophysical exploration of ore and hydrocarbon deposits, for nondestructive evaluation of aircraft and bridge components and for the measurement of biomagnetic signals for diagnostic purposes. In this work, two main subjects are investigated which are essential for the realisation of highly sensitive SQUID systems for operation in a magnetically strongly disturbed environment, for example for application in magnetocardiography: the influence of magnetic fields on the operation of YBa2Cu3O7-δ-rf-washer-SQUIDs with step-edge Josephson junctions is investigated (section 3) and a method for the reduction of environmental magnetic noise is presented and characterised (section 4). (orig.)

  6. Neuromagnetic recordings of the human peripheral nerve with planar SQUID gradiometers

    Science.gov (United States)

    Lang, G.; Shahani, U.; Weir, A. I.; Maas, P.; Pegrum, C. M.; Donaldson, G. B.

    1998-08-01

    Magnetic fields produced by a travelling volley in the human ulnar nerve have been successfully measured in a lightly shielded environment. Recordings of the tangential component of the magnetic field were made using a planar second-order gradiometer integrated with a first-order gradiometric superconducting quantum interference device (SQUID). Devices were fabricated in our clean-room facility at the University of Strathclyde and measurements taken in an eddy-current shielded room at the Wellcome Biomagnetism Unit. We use no additional shielding and no electronic differencing or field-nulling techniques. Evoked magnetic fields of 60 fT peak-to-peak were obtained after 1536 averages but they could be seen easily as early as 512 averages. Measurements were made over four points above the ulnar nerve on the upper arm and from these the conduction velocity was calculated as .

  7. Fabrication and performance of highly sensitive YBa2Cu3O7 dc SQUID magnetometer with thin-film flux transformer

    International Nuclear Information System (INIS)

    Dc SQUIDs as sensors of magnetic field are one of the first applications for devices made from the ceramic high-Tc superconductor YBa2Cu3O7 (YBCO). In order to provide the high sensitivity as required for example in biomagnetism, one has to couple external magnetic fields more efficiently to the extremely small effective area of a bare dc SQUID. This can be reached by use of a superconducting flux transformer consisting of a large area pick-up coil in series with a small area multiturn input coil, which is inductively coupled to the dc SQUID. We present results from a magnetometer where the dc SQUID has been combined with the thin-film flux transformer in a flip-chip configuration. (orig.)

  8. HTSC-RF-SQUID sensors in magnetic fields: Characterisation and noise reduction; HTSL-rf-SQUID-Sensoren in Magnetfeldern: Charakterisierung und Stoersignalunterdrueckung

    Energy Technology Data Exchange (ETDEWEB)

    Bick, M.

    2001-07-01

    Due to their excellent sensitivity to magnetic fields, HTS SQUID sensors are widely used in many applications outside magnetic shielding, e.g. for geophysical exploration of ore and hydrocarbon deposits, for nondestructive evaluation of aircraft and bridge components and for the measurement of biomagnetic signals for diagnostic purposes. In this work, two main subjects are investigated which are essential for the realisation of highly sensitive SQUID systems for operation in a magnetically strongly disturbed environment, for example for application in magnetocardiography: the influence of magnetic fields on the operation of YBa{sub 2}Cu{sub 3}O{sub 7-{delta}}-rf-washer-SQUIDs with step-edge Josephson junctions is investigated (section 3) and a method for the reduction of environmental magnetic noise is presented and characterised (section 4). (orig.)

  9. Magnetocardiography with GMR-based sensors

    Energy Technology Data Exchange (ETDEWEB)

    Pannetier-Lecoeur, M; Polovy, H; Sergeeva-Chollet, N; Cannies, G; Fermon, C [DSM/IRAMIS/SPEC- CNRS URA 2464, CEA Saclay, 91191 Gif sur Yvette Cedex France (France); Parkkonen, L, E-mail: myriam.lecoeur@cea.fr [Elekta Oy, 00530 Helsinki (Finland)

    2011-07-06

    We have developed a sensor based on the Giant Magneto-Resistive (GMR) effect, associated to a superconducting flux-to-field transformer, which allows femtotesla field detection in a wide range of frequencies [1]. Such sensors are good candidates for measurements of biomagnetic signals generated by the brain or the heart. Here we present Magneto-Cardiographic (MCG) recordings over the chest of healthy volunteers at 4K and 77K with these sensors in a magnetically shielded room. The sensitivity is now limited by the 1/f noise of the GMR element which appears below few kHz. We present a technique based on supercurrent switching which reduces this low frequency noise.

  10. Highly Automated Dipole EStimation (HADES).

    Science.gov (United States)

    Campi, C; Pascarella, A; Sorrentino, A; Piana, M

    2011-01-01

    Automatic estimation of current dipoles from biomagnetic data is still a problematic task. This is due not only to the ill-posedness of the inverse problem but also to two intrinsic difficulties introduced by the dipolar model: the unknown number of sources and the nonlinear relationship between the source locations and the data. Recently, we have developed a new Bayesian approach, particle filtering, based on dynamical tracking of the dipole constellation. Contrary to many dipole-based methods, particle filtering does not assume stationarity of the source configuration: the number of dipoles and their positions are estimated and updated dynamically during the course of the MEG sequence. We have now developed a Matlab-based graphical user interface, which allows nonexpert users to do automatic dipole estimation from MEG data with particle filtering. In the present paper, we describe the main features of the software and show the analysis of both a synthetic data set and an experimental dataset. PMID:21437232

  11. Mathematical Methods in Tomography

    CERN Document Server

    Louis, Alfred; Natterer, Frank

    1991-01-01

    The conference was devoted to the discussion of present and future techniques in medical imaging, including 3D x-ray CT, ultrasound and diffraction tomography, and biomagnetic ima- ging. The mathematical models, their theoretical aspects and the development of algorithms were treated. The proceedings contains surveys on reconstruction in inverse obstacle scat- tering, inversion in 3D, and constrained least squares pro- blems.Research papers include besides the mentioned imaging techniques presentations on image reconstruction in Hilbert spaces, singular value decompositions, 3D cone beam recon- struction, diffuse tomography, regularization of ill-posed problems, evaluation reconstruction algorithms and applica- tions in non-medical fields. Contents: Theoretical Aspects: J.Boman: Helgason' s support theorem for Radon transforms-a newproof and a generalization -P.Maass: Singular value de- compositions for Radon transforms- W.R.Madych: Image recon- struction in Hilbert space -R.G.Mukhometov: A problem of in- teg...

  12. Multi-Channel Magnetocardiogardiography System Based on Low-Tc SQUIDs in an Unshielded Environment

    Science.gov (United States)

    Kong, Xiangyan; Zhang, Shulin; Wang, Yongliang; Zeng, Jia; Xie, Xiaoming

    Magnetocardiography (MCG) using superconducting quantum interference devices (SQUIDs) is a new medical diagnostic tool measuring biomagnetic signals that are generated by the electrical activity of the human heart. This technique is completely passive, contactless, and it has an advantage in the early diagnosis of heart diseases. We developed the first unshielded four-channel MCG system based on low-Tc DC SQUIDs in China. Instead of using a costly magnetically shielded room, the environmental noise suppression was realized by using second-order gradiometers and three-axis reference magnetometer. The measured magnetic field resolution of the system is better than 1 pT, and multi-cycle human heart signals can be recorded directly. Also, with the infrared positioning system, 48 points data collection can be realized by moving the non-magnetic bed nine times.

  13. Technology for SQUID systems for the application in magnetically disturbed environment. Final report

    International Nuclear Information System (INIS)

    International available SQUID systems, as used for example in biomagnetic research, obtain high sensitivities for magnetic fields or magnetic fieldgradients. However, these systems were optimised for operation in magnetically shielded rooms. Goal of this project was to develop SQUIDs suppressing the external noise and therefore are able to operate without external shielding in normal environments. As a consequence, the required Nb/AlOx/Nb technology has also been developed. The resulting planar SQUID gradiometers as produced at the IPHT, reached a suppression of homogeneous fields up to 5 x 104 for a magnetic field sensitivity c, project. SQUID gradiometers, produced using YBCO technology, were successfully operated in non shielded eddy current NDE measurements in the lab. (orig.)

  14. A venture capital view of superconductivity electronics

    International Nuclear Information System (INIS)

    Many venture capital backed start-up companies have followed major technological innovations in recent years. However, the field of electronics based on the use of superconducting devices (i.e. the Josephson Junction) has been a noteworthy exception. Until 1983, the bulk of the American development effort on superconductivity electronics was conducted by IBM where the focus was to demonstrate the feasibility of a superconducting computer prototype. Other activities using Josephson Junctions involved the development and production of magnetic sensing instruments and modest quantities of magnetometers which were marketed by several very small companies primarily for laboratory use. In addition, other applications in radiation sensing and biomagnetism and research leading to practical systems were ongoing in several organizations

  15. Solid Test Meal to Measure the Gastric Emptying with Magnetogastrography

    Science.gov (United States)

    Reynaga-Ornelas, M. G.; De la Roca-Chiapas, J. M.; Cordova-Fraga, T.; Bernal, J. J.; Sosa, M.

    2008-08-01

    The gastric emptying is the time of evacuating the food ingested from the stomach to the duodenum in a controlled rate. Diverse studies express the results of the gastric emptying in form of half-time (t1/2). The Magnetogastrography (MGG) is a biomagnetic technique that has the advantage of not being invasive, radiation free and does not interfere with the privacy of the subject. The objective was to analyze the magnetic signal of magnetic tracers mixed in a solid food to measure gastric emptying using Magnetogastrography. The ingested test meal displayed a magnetic signal, which served to obtain the signal registered by the fluxgate and the peristaltic contractions could be calculated while the stomach was emptying. The solid food product developed results to work satisfactorily in magnetogastrography.

  16. Mobile magnetic anomaly detection using a field-compensated high-Tc single layer SQUID gradiometer

    International Nuclear Information System (INIS)

    High-Tc single layer SQUID gradiometers are useful for measuring small localized magnetic fields in the presence of much larger background interference. Such sensors have been used extensively for eddy-current non-destructive evaluation and biomagnetic measurements, where the sensor is stationary or scanned in a straight line. However for magnetic anomaly detection (MAD) and geophysical exploration it is necessary that gradiometers can undergo rotation and vibration in the Earth's magnetic field without degrading their sensitivity. We describe a portable system that uses background field cancellation techniques to allow a gradiometer's orientation to change during magnetic mapping applications without compromising its sensitivity. We describe the system setup and demonstrate its capability to detect a magnetic target whilst undergoing random motion in a laboratory environment.

  17. Non-invasive long-term recordings of cortical 'direct current' (DC-) activity in humans using magnetoencephalography.

    Science.gov (United States)

    Mackert, B M; Wübbeler, G; Burghoff, M; Marx, P; Trahms, L; Curio, G

    1999-10-01

    Recently, biomagnetic fields below 0.1 Hz arising from nerve or muscle injury currents have been measured non-invasively using superconducting quantum interference devices (SQUIDs). Here we report first long-term recordings of cortical direct current (DC) fields in humans based on a horizontal modulation (0.4 Hz) of the body and, respectively, head position beneath the sensor array: near-DC fields with amplitudes between 90 and 540 fT were detected in 5/5 subjects over the auditory cortex throughout prolonged stimulation periods (here: 30 s) during which subjects were listening to concert music. These results prove the feasibility to record non-invasively low amplitude near-DC magnetic fields of the human brain and open the perspective for studies on DC-phenomena in stroke, such as anoxic depolarization or periinfarct depolarization, and in migraine patients. PMID:10515183

  18. The development of a multichannel atomic magnetometer array for fetal magnetocardiography

    Science.gov (United States)

    Wylie, Robert, IV

    Biomagnetic signals can provide important information about electrical processes in the human body. Because of the small signal sizes, magnetic detection is generally used where other detection methods are incomplete or insufficiently sensitive. One important example is fetal magnetocardiography (fMCG), where the detection of magnetic signals is currently the only available technique for certain clinical applications, such as the detection of cardiac arrhythmia. Until now, magnetometers based on superconducting quantum interference devices (SQUIDs), which can operate at sensitivities down to 1 fT Hz-1/2 have been the only option. The low Tc superconductors and associated cryogenics required for the most sensitive devices has led to interest in alternative technologies. In the last decade, atomic magnetometers operating in the spin-exchange relaxation-free (SERF) regime have demonstrated a higher sensitivity than SQUIDs while operating near room temperature. Though large SERF magnetometer arrays have not yet been built, smaller arrays should be sufficient for applications such as fMCG. In this thesis, we present the design and characterization of a portable four-channel SERF atomic magnetometer array with a 5-10 fT Hz-1/2 single channel baseline sensitivity. The magnetometer array has several design features intended to maximize its suitability for biomagnetic measurement, specifically fMCG, such as a compact modular design and large, flexible channel spacing from 5-15 cm. The modular design allows for easily adding units to the array and the independent positioning and orientation of each magnetometer, in principle allowing for non-planar array geometries. Using this array in a magnetically shielded room, we acquire adult magnetocadiograms and, for the first time with a SERF magnetometer, fMCG. We also investigate the use of different operational modes of the magnetometer to extend its functionality, specifically modulation methods for additional directional

  19. Water-soluble and biocompatible MnO@PVP nanoparticles for MR imaging in vitro and in vivo.

    Science.gov (United States)

    Hu, Xiaoqing; Ji, Yuxuan; Wang, Mingliang; Miao, Fei; Ma, Hongmei; Shen, Hebai; Jia, Nengqin

    2013-06-01

    The uniform-sized manganese oxide nanoparticles (the oleic-capped MnO NPs) were synthesized by the thermal decomposition of Mn-oleate complex and were transferred into water with the help of cationic surfactant of cetyltrimethyl ammonium bromide (CTAB), then the poly(vinylpyrrolidone) (PVP) membrane was further coated on to them with the aid of anionic dispersant of poly(styrenesulfonate) (PSS) by layer-by-layer electrostatic assembly to render them water soluble and biocompatible. They were characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray diffraction (XRD), Fourier-transform infrared (FTIR) and MTT assay. In vitro cellular uptake test revealed the MnO@PVP NPs were low cytotoxic, biocompatible and could be used as a T,-positive contrast agent for passive targeting magnetic resonance imaging (MRI). Interestingly, signal enhancement in cerebral spinal fluid (CSF) spaces in vivo experiment suggested that the MnO@PVP NPs can pass through the blood brain barrier (BBB). These results show that MnO@PVP NPs are good candidates as MRI contrast agents with the lack of cytotoxicity and have great potential applications in magnetic nano-device and biomagnetic field. PMID:23858961

  20. Hydromagnetic transport phenomena from a stretching or shrinking nonlinear nanomaterial sheet with Navier slip and convective heating: A model for bio-nano-materials processing

    Science.gov (United States)

    Uddin, M. J.; Bég, O. Anwar; Amin, N.

    2014-11-01

    Steady two-dimensional magnetohydrodynamic laminar free convective boundary layer slip flow of an electrically conducting Newtonian nanofluid from a translating stretching/shrinking sheet in a quiescent fluid is studied. A convective heating boundary condition is incorporated. The transport equations along with the boundary conditions are first converted into dimensionless form and following the implementation of a linear group of transformations, the similarity governing equations are developed. The transformed equations are solved numerically using the Runge-Kutta-Fehlberg fourth fifth order method from Maple. Validation of the Maple solutions is achieved with previous non-magnetic published results. The effects of the emerging thermophysical parameters; namely, stretching/shrinking, velocity slip, magnetic field, convective heat transfer and buoyancy ratio parameters, on the dimensionless velocity, temperature and concentration (nanoparticle fraction) are depicted graphically and interpreted at length. It is found that velocity increases whilst temperature and concentration reduce with the velocity slip. Magnetic field causes to reduce velocity and enhances temperature and concentration. Velocity, temperature as well as concentration rises with convective heating parameter. The study is relevant to the synthesis of bio-magnetic nanofluids of potential interest in wound treatments, skin repair and smart coatings for biological devices.

  1. A study of unsteady physiological magneto-fluid flow and heat transfer through a finite length channel by peristaltic pumping.

    Science.gov (United States)

    Tripathi, Dharmendra; Bég, O Anwar

    2012-08-01

    Magnetohydrodynamic peristaltic flows arise in controlled magnetic drug targeting, hybrid haemodynamic pumps and biomagnetic phenomena interacting with the human digestive system. Motivated by the objective of improving an understanding of the complex fluid dynamics in such flows, we consider in the present article the transient magneto-fluid flow and heat transfer through a finite length channel by peristaltic pumping. Reynolds number is small enough and the wavelength to diameter ratio is large enough to negate inertial effects. Analytical solutions for temperature field, axial velocity, transverse velocity, pressure gradient, local wall shear stress, volume flowrate and averaged volume flowrate are obtained. The effects of the transverse magnetic field, Grashof number and thermal conductivity on the flow patterns induced by peristaltic waves (sinusoidal propagation along the length of channel) are studied using graphical plots. The present study identifies that greater pressure is required to propel the magneto-fluid by peristaltic pumping in comparison to a non-conducting Newtonian fluid, whereas, a lower pressure is required if heat transfer is effective. The analytical solutions further provide an important benchmark for future numerical simulations. PMID:23057236

  2. A simplified HTc rf SQUID to analyze the human cardiac magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chen, E-mail: zhangchen2010@pku.edu.cn, E-mail: tfk616@sina.com, E-mail: maping@pku.edu.cn, E-mail: zizhaogan@pku.edu.cn [Applied Superconductivity Research Center of Peking University, Department of Physics, State Key Laboratory for Artificial Microstructure and Mesoscopic Physics,Peking University, Beijing 100871 (China); Department of Cardiology, the 309" t" h Hospital of PLA, Beijing, 100091 (China); Tang, Fakuan, E-mail: zhangchen2010@pku.edu.cn, E-mail: tfk616@sina.com, E-mail: maping@pku.edu.cn, E-mail: zizhaogan@pku.edu.cn [Department of Cardiology, the 309" t" h Hospital of PLA, Beijing, 100091 (China); Ma, Ping, E-mail: zhangchen2010@pku.edu.cn, E-mail: tfk616@sina.com, E-mail: maping@pku.edu.cn, E-mail: zizhaogan@pku.edu.cn; Gan, Zizhao, E-mail: zhangchen2010@pku.edu.cn, E-mail: tfk616@sina.com, E-mail: maping@pku.edu.cn, E-mail: zizhaogan@pku.edu.cn [Applied Superconductivity Research Center of Peking University, Department of Physics, State Key Laboratory for Artificial Microstructure and Mesoscopic Physics,Peking University, Beijing 100871 (China)

    2014-12-15

    We have developed a four-channel high temperature radio-frequency superconducting quantum interference device (HT{sub c} rf SQUID) in a simple magnetically shielded room (MSR) that can be used to analyze the cardiac magnetic field. It is more robust and compact than existing systems. To achieve the high-quality magnetocardiographic signal, we explored new adaptive software gradiometry technology constructed by the first-order axial gradiometer with a baseline of 80mm, which can adjust its performance timely with the surrounding conditions. The magnetic field sensitivity of each channel was less than 100fT/√Hz in the white noise region. Especially, in the analysis of MCG signal data, we proposed the total transient mapping (TTM) technique to visualize current density map (CDM), then we focused to observe the time-varying behavior of excitation propagation and estimated the underlying currents at T wave. According to the clear 3D imaging, isomagnetic field and CDM, the position and distribution of a current source in the heart can be visualized. It is believed that our four-channel HT{sub c} rf SQUID magnetometer based on biomagnetic system is available to detect MCG signals with sufficient signal-to-noise (SNR) ratio. In addition, the CDM showed the macroscopic current activation pattern, in a way, it has established strong underpinnings for researching the cardiac microscopic movement mechanism and opening the way for its use in clinical diagnosis.

  3. Pulse-driven magnetoimpedance sensor detection of cardiac magnetic activity.

    Directory of Open Access Journals (Sweden)

    Shinsuke Nakayama

    Full Text Available This study sought to establish a convenient method for detecting biomagnetic activity in the heart. Electrical activity of the heart simultaneously induces a magnetic field. Detection of this magnetic activity will enable non-contact, noninvasive evaluation to be made. We improved the sensitivity of a pulse-driven magnetoimpedance (PMI sensor, which is used as an electric compass in mobile phones and as a motion sensor of the operation handle in computer games, toward a pico-Tesla (pT level, and measured magnetic fields on the surface of the thoracic wall in humans. The changes in magnetic field detected by this sensor synchronized with the electric activity of the electrocardiogram (ECG. The shape of the magnetic wave was largely altered by shifting the sensor position within 20 mm in parallel and/or perpendicular to the thoracic wall. The magnetic activity was maximal in the 4th intercostals near the center of the sterna. Furthermore, averaging the magnetic activity at 15 mm in the distance between the thoracic wall and the sensor demonstrated magnetic waves mimicking the P wave and QRS complex. The present study shows the application of PMI sensor in detecting cardiac magnetic activity in several healthy subjects, and suggests future applications of this technology in medicine and biology.

  4. A magnetically shielded room with ultra low residual field and gradient

    Science.gov (United States)

    Altarev, I.; Babcock, E.; Beck, D.; Burghoff, M.; Chesnevskaya, S.; Chupp, T.; Degenkolb, S.; Fan, I.; Fierlinger, P.; Frei, A.; Gutsmiedl, E.; Knappe-Grüneberg, S.; Kuchler, F.; Lauer, T.; Link, P.; Lins, T.; Marino, M.; McAndrew, J.; Niessen, B.; Paul, S.; Petzoldt, G.; Schläpfer, U.; Schnabel, A.; Sharma, S.; Singh, J.; Stoepler, R.; Stuiber, S.; Sturm, M.; Taubenheim, B.; Trahms, L.; Voigt, J.; Zechlau, T.

    2014-07-01

    A versatile and portable magnetically shielded room with a field of (700 ± 200) pT within a central volume of 1 m × 1 m × 1 m and a field gradient less than 300 pT/m, achieved without any external field stabilization or compensation, is described. This performance represents more than a hundredfold improvement of the state of the art for a two-layer magnetic shield and provides an environment suitable for a next generation of precision experiments in fundamental physics at low energies; in particular, searches for electric dipole moments of fundamental systems and tests of Lorentz-invariance based on spin-precession experiments. Studies of the residual fields and their sources enable improved design of future ultra-low gradient environments and experimental apparatus. This has implications for developments of magnetometry beyond the femto-Tesla scale in, for example, biomagnetism, geosciences, and security applications and in general low-field nuclear magnetic resonance (NMR) measurements.

  5. Enhancing the versatility of alternate current biosusceptometry (ACB) through the synthesis of a dextrose-modified tracer and a magnetic muco-adhesive cellulose gel

    International Nuclear Information System (INIS)

    Alternate Current Biosusceptometry (ACB) is a promising bio-magnetic method, radiation free and easily performed used for gastric emptying exams. Due to development on its sensitivity level, interesting nature, noninvasiveness and low cost it has attracted a lot of attention. In this work, magnetic nanoparticles of Mn–Zn ferrite as well as dextrose-modified nanoparticles were synthesized to be used as possible tracers in ACB gastric emptying exams. In addition, a magnetic muco-adhesive gel was obtained by modifying the ferrite nanoparticles with cellulose. Based on in-vivo tests in rats, we show that the pure ferrite nanoparticles, whose isoelectric point was found to be at pH = 3.2, present a great sensitivity to pH variations along the gastrointestinal tract, while the reduction of the isoelectric point by the dextrose modification leads to suitable nanoparticles for rapid gastric emptying examinations. On the other hand, the in-vivo tests show that the muco-adhesive cellulose gel presents substantial stomach adhesion and is a potential drug delivery system easily traceable by the ACB system

  6. A model explaining synchronization of neuron bioelectric frequency under weak alternating low frequency magnetic field

    International Nuclear Information System (INIS)

    A biomagnetic-electrical model is presented that explains rather well the experimentally observed synchronization of the bioelectric potential firing rate (“frequency”), f, of single unit neurons of Helix aspersa mollusc under the application of extremely low frequency (ELF) weak alternating (AC) magnetic fields (MF). The proposed model incorporates to our widely experimentally tested model of superdiamagnetism (SD) and Ca2+ Coulomb explosion (CE) from lipid (LP) bilayer membrane (SD–CE model), the electrical quadrupolar long range interaction between the bilayer LP membranes of synchronized neuron pairs, not considered before. The quadrupolar interaction is capable of explaining well the observed synchronization. Actual extension of our SD–CE-model shows that the neuron firing frequency field, B, dependence becomes not modified, but the bioelectric frequency is decreased and its spontaneous temperature, T, dependence is modified. A comparison of the model with synchronization experimental results of pair of neurons under weak (B0≅0.2–15 mT) AC-MF of frequency fM=50 Hz is reported. From the deduced size of synchronized LP clusters under B, is suggested the formation of small neuron networks via the membrane lipid correlation. - Highlights: • Neuron pair synchronization under low frequency alternating (AC) magnetic field (MF). • Superdiamagnetism and Ca2+ Coulomb explosion for AC MF effect in synchronized frequency. • Membrane lipid electrical quadrupolar pair interaction as synchronization mechamism. • Good agreement of model with electrophysiological experiments on mollusc Helix neurons

  7. A simplified HTc rf SQUID to analyze the human cardiac magnetic field

    International Nuclear Information System (INIS)

    We have developed a four-channel high temperature radio-frequency superconducting quantum interference device (HTc rf SQUID) in a simple magnetically shielded room (MSR) that can be used to analyze the cardiac magnetic field. It is more robust and compact than existing systems. To achieve the high-quality magnetocardiographic signal, we explored new adaptive software gradiometry technology constructed by the first-order axial gradiometer with a baseline of 80mm, which can adjust its performance timely with the surrounding conditions. The magnetic field sensitivity of each channel was less than 100fT/√Hz in the white noise region. Especially, in the analysis of MCG signal data, we proposed the total transient mapping (TTM) technique to visualize current density map (CDM), then we focused to observe the time-varying behavior of excitation propagation and estimated the underlying currents at T wave. According to the clear 3D imaging, isomagnetic field and CDM, the position and distribution of a current source in the heart can be visualized. It is believed that our four-channel HTc rf SQUID magnetometer based on biomagnetic system is available to detect MCG signals with sufficient signal-to-noise (SNR) ratio. In addition, the CDM showed the macroscopic current activation pattern, in a way, it has established strong underpinnings for researching the cardiac microscopic movement mechanism and opening the way for its use in clinical diagnosis

  8. Measurement of fMCG Signals using an Axial Type First-Order SQUID Gradiometer System

    International Nuclear Information System (INIS)

    We have fabricated a low-noise 61-channel axial-type first-order gradiometer system for measuring fetal magnetocardiography(MCG) signals. Superconducting quantum interference device(SQUID) sensor was based on double relaxation oscillation SQUID(DROS) for detecting biomagnetic signal, such as MCG, magnetoencphalogram(MEG) and fetal-MCG. The SQUID sensor detected axial component of fetal MCG signal. The pickup coil of SQUID sensor was wound with 120 μm NbTi wire on bobbin(20 mm diameter) and was a first-order gradiometer to reject the environment noise. The sensors have low white noise of 3 fT/Hz1/2 at 100 Hz on average. The fetal MCG was measured from 24 - 36 weeks fetus in a magnetically shielded room(MSR) with shielding factor of 35 dB at 0.1 Hz and 80 dB at 100 Hz(comparatively mild shielding). The MCG signal contained maternal and fetal MCG. Fetal MCG could be distinguished relatively easily from maternal MCG by using independent component analysis(ICA) filter. In addition, we could observe T peak as well as QRS wave, respectively. It will be useful in detecting fetal cardiac diseases.

  9. Sub-fT/Hz1/2 resolution and field-stable SQUID magnetometer based on low parasitic capacitance sub-micrometer cross-type Josephson tunnel junctions

    International Nuclear Information System (INIS)

    We review the development of low parasitic capacitance sub-micrometer cross-type Josephson tunnel junctions for their use in highly sensitive and field-stable SQUID magnetometers. The potential of such junctions is shown on I-V characteristics as well as on Fraunhofer diffraction patterns. The evaluation of Fiske steps lead to a specific junction capacitance of about 62 fF/μm2 for a critical current density of about 1.7 kA/cm2. The avoidance of any idle-region - the undesired overlap between superconducting electrodes around the junction - due to a self-aligned junction definition process lead to highly sensitive SQUIDs; multiloop SQUID magnetometers exhibiting exceptionally low magnetic field noise levels as low as 0.3 fT/Hz1/2, as well as large usable voltage swings of more than 150 μVpp. Furthermore, junction dimensions in the sub-micrometer range allowed for very high tolerable background fields during cool-down of up to 6.5 mT. In operation mode, the SQUID magnetometers recovered completely from magnetization pulses of up to 76 mT. With respect to their easy and reliable usage as well as their high sensitivity, the presented SQUID sensors are adequate for many applications, like in geophysics, biomagnetism or low-field magnetic resonance imaging.

  10. Diurnal anisotropy of cosmic rays during intensive solar activity for the period 2001-2014

    Science.gov (United States)

    Tezari, A.; Mavromichalaki, H.

    2016-07-01

    The diurnal variation of cosmic ray intensity, based on the records of two neutron monitor stations at Athens (Greece) and Oulu (Finland) for the time period 2001 to 2014, is studied. This period covers the maximum and the descending phase of the solar cycle 23, the minimum of the solar cycles 23/24 and the ascending phase of the solar cycle 24.These two stations differ in their geographic latitude and magnetic threshold rigidity. The amplitude and phase of the diurnal anisotropy vectors have been calculated on annual and monthly basis. From our analysis it is resulted that there is a different behaviour in the characteristics of the diurnal anisotropy during the different phases of the solar cycle, depended on the solar magnetic field polarity, but also during extreme events of solar activity, such as Ground Level Enhancements and cosmic ray events, such as Forbush decreases and magnetospheric events. These results may be useful to Space Weather forecasting and especially to Biomagnetic studies.

  11. Highly sensitive hybridization assay using the electrochemiluminescence of an ITO electrode, CdTe quantum dots functionalized with hierarchical nanoporous PtFe nanoparticles, and magnetic graphene nanosheets

    International Nuclear Information System (INIS)

    We report on a disposable microdevice suitable for sandwich-type electrochemiluminescence (ECL) detection of DNA. The method is making use of CdTe quantum dots functionalized with hierarchical nanoporous PtFe (CdTe-PtFe) nanoparticles and with magnetic graphene nanosheets. The latter were selected as carriers for the capture DNA due to their excellent biomagnetic separation capability and electrical properties. The CdTe-PtFe nanoparticles were used to label the signal DNA which resulted in distinctly enhanced ECL owing to the large specific surface area and good electrical conductivity of the PtFe alloy. A DNA sensor was constructed on a disk-shaped indium tin oxide electrode that was fabricated via etching. Under optimal conditions, the biosensor responds linearly to DNA in the 0.02 fM to 5000 fM concentration range, with a detection limit as low as 15 aM. The electrode is regenerable. The method displays excellent specificity, extremely good sensitivity, and is highly reproducible. (author)

  12. Long-time stable high-temperature superconducting DC-SQUID gradiometers with silicon dioxide passivation for measurements with superconducting flux transformers

    International Nuclear Information System (INIS)

    In applications for high-Tc superconducting DC-SQUIDs such as biomagnetism, nondestructive evaluation and the relaxation of magnetic nanoparticles, it is important to maintain reliable sensor performance over an extended time period. We have designed and produced DC-SQUID gradiometers based on YBa2Cu3O7-x (YBCO) thin films which are inductively coupled to a flux transformer to achieve a higher sensitivity. The gradiometers are protected against ambient atmosphere and humidity by SiO2 and amorphous YBCO layers. The noise properties of the sensor in flip-chip configuration, especially in unshielded environments, are shown. We present a comparison of Tl2Ba2CaCu2O8+x (TBCCO) thin films on buffered sapphire or LaAlO3 substrates for the flux transformer in shielded and unshielded environments. We reach a low white field gradient noise of 72 fT cm-1 Hz-1 with the TBCCO on LaAlO3 flux transformer. The electric properties of the gradiometers (critical current IC, normal state resistance RN and the transfer function VΦ) were measured over a period of one year and do not show significant signs of degradation

  13. Single-layer 2nd-order high-T{sub c} SQUID gradiometer for use in unshielded environments

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Soon-Gul; Park, Seung Moon; Kang, Chan Seok [Korea University, Chungnam (Korea, Republic of); Kim, In-Seon [Korea Research Institute of Standards and Science, Daejon (Korea, Republic of); Kim, Sang-Jae [Cheju National University, Cheju (Korea, Republic of)

    2006-05-15

    We have studied the fabrication of second-order SQUID gradiometers from single-layer high-T{sub c} film and the feasibility of using those gradiometers in magnetocardiography. The gradiometer contains three parallel-connected pickup loops that are directly coupled to a step-edge junction SQUID with the coupling polarity of the center loop opposite to those of the two side loops. For a well-balanced gradiometer with a balancing factor of 10{sup 3}, we achieved an unshielded gradient noise of 0.84 pT/cm{sup 2}/Hz{sup 1/2} at 1 Hz, which corresponds to an equivalent field noise of 280 fT/Hz{sup 1/2}. A gradiometer with a 5.8-mm baseline successfully recorded the magnetocardic signals of a human subject, demonstrating the feasibility of using the device in biomagnetism. We have also studied the use of submicron YBCO bridges as Josephson elements of long-baseline gradiometers. The bridges were fabricated from 3-{mu}m-wide, 300-nm-thick YBCO lines with a thin layer of Au on top by using a focused-ion-beam (FIB) patterning method. The temperature-dependent critical currents, I{sub c}(T), and the normal state resistances, R{sub N}(T), showed SIS-type behaviors, which are believed to be due to naturally formed grain boundaries.

  14. Noise in small magnetic systems-applications to very sensitive magnetoresistive sensors

    Energy Technology Data Exchange (ETDEWEB)

    Pannetier, M. [CAPMAG/DRECAM, CEA Saclay 91191 Gif-sur-Yvette Cedex (France)]. E-mail: mpannetier@cea.fr; Fermon, C. [CAPMAG/DRECAM, CEA Saclay 91191 Gif-sur-Yvette Cedex (France); Le Goff, G. [CAPMAG/DRECAM, CEA Saclay 91191 Gif-sur-Yvette Cedex (France); Simola, J. [Elekta Neuromag Oy, P.O. Box 68, FIN-00511 Helsinki (Finland); Kerr, E. [SFI-Nanosciences Laboratory, Physics Department, Trinity College, Dublin 2 (Ireland); Coey, J.M.D. [SFI-Nanosciences Laboratory, Physics Department, Trinity College, Dublin 2 (Ireland)

    2005-04-15

    Reduction for 1/f noise (or random telegraph noise) is a crucial issue for small magnetic sensors which is strongly related to structural properties and magnetic configuration. We show how it is possible to eliminate magnetic noise at low frequency in GMR/TMR sensors by a combination of cross anisotropies, window frame shapes and suitably designed magnetoresisitive stack. These sensors are superior to almost all existing field and flux sensors. Results are presented on a mixed sensor, where a superconducting loop acts as a flux-to-field transformer to the GMR sensor. This device is suitable for detection of biomagnetic signals, such as in magnetocardiography or in magnetoencephalography. Measurements on niobium-based and YBCO-based sensors are presented, leading to sensitivity of 30 fT/{radical}Hz at 77 K for small samples. Sensitivity lower than 1 fT/{radical}(Hz) is expected with appropriate design and use of TMR or CMR layers, which makes these a powerful alternative to SQUIDs.

  15. Measurement of fMCG Signals using an Axial Type First-Order SQUID Gradiometer System

    Energy Technology Data Exchange (ETDEWEB)

    Yu, K. K.; Kim, K.; Kang, C. S.; Kim, J. M.; Lee, Y. H. [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2009-04-15

    We have fabricated a low-noise 61-channel axial-type first-order gradiometer system for measuring fetal magnetocardiography(MCG) signals. Superconducting quantum interference device(SQUID) sensor was based on double relaxation oscillation SQUID(DROS) for detecting biomagnetic signal, such as MCG, magnetoencphalogram(MEG) and fetal-MCG. The SQUID sensor detected axial component of fetal MCG signal. The pickup coil of SQUID sensor was wound with 120 {mu}m NbTi wire on bobbin(20 mm diameter) and was a first-order gradiometer to reject the environment noise. The sensors have low white noise of 3 fT/Hz{sup 1/2} at 100 Hz on average. The fetal MCG was measured from 24 - 36 weeks fetus in a magnetically shielded room(MSR) with shielding factor of 35 dB at 0.1 Hz and 80 dB at 100 Hz(comparatively mild shielding). The MCG signal contained maternal and fetal MCG. Fetal MCG could be distinguished relatively easily from maternal MCG by using independent component analysis(ICA) filter. In addition, we could observe T peak as well as QRS wave, respectively. It will be useful in detecting fetal cardiac diseases.

  16. First Results for a Superconducting Imaging-Surface Sensor Array for Magnetocardiography

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, R.H. Jr.; Flynn, E.R.; Espy, M.A.; Matlachov, A.; Overton, W.; Wood, C.C.; Peters, M.V.; Ruminer, P.

    1998-08-28

    The authors have completed fabrication and preliminary testing of a 12-channel SQUID array using the superconducting image-surface gradiometer concept. Sensor response to point dipole magnetic sources, and uniform fields used to simulate ambient magnetic fields followed predicted values to high precision. Edge effects were not observed for sources, within 5cm of the center of the imaging surface independent of whether the source is close or far from the surface. The superconducting imaging-surface also reduced uniform ambient fields at the SQUID sensors by approximately a factor of ten. Finally, a high degree of symmetry was observed between sides of the imaging surface for uniform fields. This symmetry, together with the very small sensitivity of sensors on the back side of the imaging surface to sources close to the front side provides an excellent circumstance for implementing either digital or analog background rejection. Their goal is to implement a higher density array with the superconducting imaging surface, together with background rejection, and utilize this system for MCG and other biomagnetic studies.

  17. Detection geometry and reconstruction error in magnetic source imaging

    Energy Technology Data Exchange (ETDEWEB)

    Hughett, P.; Budinger, T.F. [Lawrence Berkeley Lab., CA (United States)]|[California Univ., Berkeley, CA (United States). Dept. of Electrical Engineering and Computer Sciences

    1993-11-01

    A recently developed reconstruction algorithm for magnetic source imaging exploits prior knowledge about source location, source power density, detector geometry, and detector noise power to obtain an explicit estimate of the reconstruction error. This paper demonstrates the application of the new algorithm to the optimal design of practical detector arrays to minimize the reconstruction error in specific applications. For a representative configuration for magnetocardiography, the optimal array width (for minimum reconstruction error) varies from 19 to 28 cm depending on the assumed source depth, number of detectors, source power and noise power. The reconstruction accuracy ranges from 5% of the a priori standard deviation for the sources nearest the detector plane to 95% of the a priori deviation for the deepest sources. The reconstruction error was found to depend on accidental alignments between dipole sources and point detectors, indicating that a more sophisticated model is required for accurate estimates of reconstruction error. The error calculation is fast, taking about a second for this problem on a workstation-class computer. The availability of a method for rapidly computing the reconstruction error for any given source characteristics and detector geometry will facilitate the optimal design of magnetometer array size, element spacing, and orientation for specific applications in biomagnetic and geomagnetic source imaging.

  18. Imaging Ferromagnetic Tracers with a Magnetoresistive Sensors Array

    Science.gov (United States)

    Leyva, Juan A.; Carneiro, Antonio A. O.; Murta, Luís O.; Baffa, O.

    2006-09-01

    The aim of this work was to study the feasibility to obtain images from a distribution of ferromagnetic tracers using a magnetoresistive multichannel sensor array (MRA). A magnetic imaging system formed by a linear array composed of 12 magnetoresistive sensors (Honeywell HMC 1001) was constructed covering a scanning area of (16×18) cm2. The signal was pre-processed for off-set correction and interpolation to generate a matrix of (256×256). The point spread function of the MRA was evaluated and the sensors were spaced accordingly. The magnetic images were generated by mapping the response of the MRA at short distances from the presence of a magnetite powder dispersed in planar phantoms with different shapes. The phantoms were magnetized by a pulse field of approximately 80 mT produced by a Helmholtz coil. Using the Wiener filtering, the magnetic source images were obtained. We conclude that this biomagnetic method can be successfully used to generate planar functional images of the gastrointestinal tract using magnetic markers in the near field.

  19. Miniaturized superconducting quantum interference magnetometers for high sensitivity applications

    Science.gov (United States)

    Granata, C.; Vettoliere, A.; Russo, M.

    2007-09-01

    A miniaturized niobium based dc superconducting quantum interference device (SQUID) magnetometer for high magnetic field sensitivity applications has been developed. The sensing coil consists of an integrated square superconducting coil with a length of 3mm, involving a device area much smaller with respect to the standard SQUID magnetometers with a comparable magnetic field sensitivity; so it allows increasing the spatial resolution keeping the magnetic field sensitivity unaltered. Furthermore, a small pickup coil minimizes its antenna gain, reducing the radio frequency interference. At T =4.2K, the sensors have shown smooth and resonance free V-Φ characteristics and an intrinsic white magnetic field noise spectral density as low as 5.8fT /Hz1/2, measured in flux locked loop configuration. The good agreement with the theoretical predictions guarantees the reliability and the controllability of the sensors. Due to their compactness and good characteristic parameters, such sensors are suitable for large multichannel systems used in biomagnetic imaging.

  20. Superconducting Quantum Interference Magnetometer for Large Multichannel Systems with Low Crosstalk Level

    Science.gov (United States)

    Vettoliere, A.; Granata, C.; Ruggiero, B.; Russo, M.

    Magnetometers based on Superconducting Quantum Interference Device (SQUID) are widely employed in high sensitivity magnetometry. In particular, new multichannel systems for biomagnetic applications require many sensors which are very close to each other giving the crosstalk disturbance between the neighboring channel. Here, we present experimental results about a fully integrated dc-SQUID magnetometer, based on niobium technology, having a suitable design which allows to reduce crosstalk due to both the feedback coil and wires. The crosstalk level measurements relative to a particular arrangement of sensors are reported. In such configuration, four magnetometers are placed over a square board 30 mm in side with a distance between their sensor centers of 14 mm. The measurements have been performed in a 4He cryostat at T = 4.2 K in a flux-locked loop configuration using a readout electronics with a direct coupled scheme. The experimental data have shown a substantial reduction of crosstalk among neighboring sensors with respect to a traditional feedback coil. Furthermore, the field noise measurements have ensured that the new pickup and feedback coils design does not introduce any noise level degradation.

  1. Soft magnetic memory of silk cocoon membrane.

    Science.gov (United States)

    Roy, Manas; Dubey, Amarish; Singh, Sushil Kumar; Bhargava, Kalpana; Sethy, Niroj Kumar; Philip, Deepu; Sarkar, Sabyasachi; Bajpai, Alok; Das, Mainak

    2016-01-01

    Silk cocoon membrane (SCM), a solid matrix of protein fiber, responds to light, heat and moisture and converts these energies to electrical signals. Essentially it exhibits photo-electric and thermo-electric properties; making it a natural electro-magnetic sensor, which may influence the pupal development. This raises the question: 'is it only electricity?', or 'it also posses some kind of magnetic memory?' This work attempted to explore the magnetic memory of SCM and confirm its soft magnetism. Fe, Co, Ni, Mn, Gd were found in SCM, in traces, through energy dispersive X-ray analysis (EDX), X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma mass spectrometry (ICP-MS). Presence of iron was ascertained by electron paramagnetic resonance (EPR). In addition, EPR-spectra showed the presence of a stable pool of carbon-centric free radical in the cocoon structure. Carbon-centric free radicals behaves as a soft magnet inherently. Magnetic-Hysteresis (M-H) of SCM confirmed its soft magnetism. It can be concluded that the soft bio-magnetic feature of SCM is due to the entrapment of ferromagnetic elements in a stable pool of carbon centric radicals occurring on the super-coiled protein structure. Natural soft magnets like SCM provide us with models for developing eco-friendly, protein-based biological soft magnets. PMID:27374752

  2. Perception of acoustically complex phonological features in vowels is reflected in the induced brain-magnetic activity

    Directory of Open Access Journals (Sweden)

    Obleser Jonas

    2007-06-01

    Full Text Available Abstract A central issue in speech recognition is which basic units of speech are extracted by the auditory system and used for lexical access. One suggestion is that complex acoustic-phonetic information is mapped onto abstract phonological representations of speech and that a finite set of phonological features is used to guide speech perception. Previous studies analyzing the N1m component of the auditory evoked field have shown that this holds for the acoustically simple feature place of articulation. Brain magnetic correlates indexing the extraction of acoustically more complex features, such as lip rounding (ROUND in vowels, have not been unraveled yet. The present study uses magnetoencephalography (MEG to describe the spatial-temporal neural dynamics underlying the extraction of phonological features. We examined the induced electromagnetic brain response to German vowels and found the event-related desynchronization in the upper beta-band to be prolonged for those vowels that exhibit the lip rounding feature (ROUND. It was the presence of that feature rather than circumscribed single acoustic parameters, such as their formant frequencies, which explained the differences between the experimental conditions. We conclude that the prolonged event-related desynchronization in the upper beta-band correlates with the computational effort for the extraction of acoustically complex phonological features from the speech signal. The results provide an additional biomagnetic parameter to study mechanisms of speech perception.

  3. [Site and propagation of focal epileptic activity: multichannel MEG/EEG analysis].

    Science.gov (United States)

    Stefan, H; Abraham-Fuchs, K; Schüler, P; Schneider, S; Neubauer, P U; Huk, H J; Neundörfer, B

    1991-12-01

    Electrophysiological examinations provide the basis for a deeper pathophysiological understanding of focal epileptic activity. In addition to electroencephalography, magnetoencephalography from field measurements is now available for biomagnetic diagnosis. As magnetoencephalography (MEG) is basically better suited for the localization of focal epileptic activity than EEG, an increase in MEG measurements has taken place over the last years. In this study we discuss magnetic source localization which was combined with anatomical 3-D-MR-images and compared with the results of EEG-registration carried out simultaneously and with other investigative procedures of presurgical diagnosis. The results of investigation show that simultaneous magnetic field measurements over one hemisphere of the skull allow localization of sources both in the temporal lobe and in deeper areas of the brain. Furthermore, propagation of epileptic activity can be registered not only in neighbouring areas of the epileptogenic source but also in regions localized deeper in the temporal lobe. This opens new possibilities for presurgical evaluation as well as an understanding of partial and generalized epilepsies. The results of investigation show primary focal epileptic activity neocortex laterally or surrounding a mesio-temporal lesion in all investigated patients with partial (temporal, frontal) and secondary generalized epilepsies. Furthermore, a pattern of propagation of focal epileptic activity which is directed from neocortical-lateral to mediobasal-limbic brain structures is found in most of these patients. PMID:1795752

  4. A model explaining synchronization of neuron bioelectric frequency under weak alternating low frequency magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Moral, A. del, E-mail: delmoral@unizar.es [Laboratorio de Magnetismo, Departamento de Física de Materia Condensada and Instituto de Ciencia de Materiales, Universidad de Zaragoza and Consejo Superior de Investigaciones Científicas, 50009 Zaragoza (Spain); Laboratorio de Magnetobiología, Departamento de Anatomía e Histología, Facultad de Medicina, Universidad de Zaragoza, 50009 Zaragoza (Spain); Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Madrid (Spain); Azanza, María J., E-mail: mjazanza@unizar.es [Laboratorio de Magnetobiología, Departamento de Anatomía e Histología, Facultad de Medicina, Universidad de Zaragoza, 50009 Zaragoza (Spain); Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Madrid (Spain)

    2015-03-01

    A biomagnetic-electrical model is presented that explains rather well the experimentally observed synchronization of the bioelectric potential firing rate (“frequency”), f, of single unit neurons of Helix aspersa mollusc under the application of extremely low frequency (ELF) weak alternating (AC) magnetic fields (MF). The proposed model incorporates to our widely experimentally tested model of superdiamagnetism (SD) and Ca{sup 2+} Coulomb explosion (CE) from lipid (LP) bilayer membrane (SD–CE model), the electrical quadrupolar long range interaction between the bilayer LP membranes of synchronized neuron pairs, not considered before. The quadrupolar interaction is capable of explaining well the observed synchronization. Actual extension of our SD–CE-model shows that the neuron firing frequency field, B, dependence becomes not modified, but the bioelectric frequency is decreased and its spontaneous temperature, T, dependence is modified. A comparison of the model with synchronization experimental results of pair of neurons under weak (B{sub 0}≅0.2–15 mT) AC-MF of frequency f{sub M}=50 Hz is reported. From the deduced size of synchronized LP clusters under B, is suggested the formation of small neuron networks via the membrane lipid correlation. - Highlights: • Neuron pair synchronization under low frequency alternating (AC) magnetic field (MF). • Superdiamagnetism and Ca{sup 2+} Coulomb explosion for AC MF effect in synchronized frequency. • Membrane lipid electrical quadrupolar pair interaction as synchronization mechamism. • Good agreement of model with electrophysiological experiments on mollusc Helix neurons.

  5. A protocol for variable-resolution first-order reversal curve (FORC) measurements

    Science.gov (United States)

    Heslop, David; Zhao, Xiang; Roberts, Andrew

    2016-04-01

    High-resolution first-order reversal curve (FORC) diagrams are being increasingly used in rock and environmental magnetism, including for detection of biomagnetic signals in sediments. Resolution can be a major barrier to obtaining high-quality FORC diagrams and timeconsuming measurements that employ small field steps are necessary to resolve the finest features of a FORC distribution. We present a new experimental protocol with irregularly spaced field steps that allow different parts of a FORC diagram to be measured at different resolutions. Larger numbers of measurements can, therefore, be made in key regions of a FORC distribution to resolve diagnostic features at higher resolution. Specification of the field steps in the irregular measurement grid is based on major hysteresis properties; no a priori knowledge concerning the underlying FORC distribution is required. FORC diagrams obtained with conventional measurements and with our new measurement protocol give consistent results. Because of its variable resolution, the irregular protocol provides a clear representation of finescale features produced by quasi-reversible superparamagnetic and non-interacting singledomain particles. Although the proposed irregular measurement protocol is not as efficient at suppressing noise as recently developed post-processing techniques (e.g., VARIFORC, Egli [2013]), it enables efficient high-resolution analysis for relatively strongly magnetized samples where measurement noise is not detrimental to FORC distribution estimation.

  6. Enhancing the versatility of alternate current biosusceptometry (ACB) through the synthesis of a dextrose-modified tracer and a magnetic muco-adhesive cellulose gel

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Murillo L., E-mail: murillolongo@gmail.com [Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen (Denmark); Instituto de Biociências, Universidade Estadual Paulista, CP 510, 18618–970 Botucatu SP (Brazil); Calabresi, Marcos F.; Quini, Caio; Matos, Juliana F.; Miranda, José R.A.; Saeki, Margarida J. [Instituto de Biociências, Universidade Estadual Paulista, CP 510, 18618–970 Botucatu SP (Brazil); Bordallo, Heloisa N. [Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen (Denmark)

    2015-03-01

    Alternate Current Biosusceptometry (ACB) is a promising bio-magnetic method, radiation free and easily performed used for gastric emptying exams. Due to development on its sensitivity level, interesting nature, noninvasiveness and low cost it has attracted a lot of attention. In this work, magnetic nanoparticles of Mn–Zn ferrite as well as dextrose-modified nanoparticles were synthesized to be used as possible tracers in ACB gastric emptying exams. In addition, a magnetic muco-adhesive gel was obtained by modifying the ferrite nanoparticles with cellulose. Based on in-vivo tests in rats, we show that the pure ferrite nanoparticles, whose isoelectric point was found to be at pH = 3.2, present a great sensitivity to pH variations along the gastrointestinal tract, while the reduction of the isoelectric point by the dextrose modification leads to suitable nanoparticles for rapid gastric emptying examinations. On the other hand, the in-vivo tests show that the muco-adhesive cellulose gel presents substantial stomach adhesion and is a potential drug delivery system easily traceable by the ACB system.

  7. Bit patterned media with composite structure for microwave assisted magnetic recording

    Science.gov (United States)

    Eibagi, Nasim

    Patterned magnetic nano-structures are under extensive research due to their interesting emergent physics and promising applications in high-density magnetic data storage, through magnetic logic to bio-magnetic functionality. Bit-patterned media is an example of such structures which is a leading candidate to reach magnetic densities which cannot be achieved by conventional magnetic media. Patterned arrays of complex heterostructures such as exchange-coupled composites are studied in this thesis as a potential for next generation of magnetic recording media. Exchange-coupled composites have shown new functionality and performance advantages in magnetic recording and bit patterned media provide unique capability to implement such architectures. Due to unique resonant properties of such structures, their possible application in spin transfer torque memory and microwave assisted switching is also studied. This dissertation is divided into seven chapters. The first chapter covers the history of magnetic recording, the need to increase magnetic storage density, and the challenges in the field. The second chapter introduces basic concepts of magnetism. The third chapter explains the fabrication methods for thin films and various lithographic techniques that were used to pattern the devices under study for this thesis. The fourth chapter introduces the exchanged coupled system with the structure of [Co/Pd] / Fe / [Co/Pd], where the thickness of Fe is varied, and presents the magnetic properties of such structures using conventional magnetometers. The fifth chapter goes beyond what is learned in the fourth chapter and utilizes polarized neutron reflectometry to study the vertical exchange coupling and reversal mechanism in patterned structures with such structure. The sixth chapter explores the dynamic properties of the patterned samples, and their reversal mechanism under microwave field. The final chapter summarizes the results and describes the prospects for future

  8. Self-assembly and manipulation of multicomponent nanowires

    Science.gov (United States)

    Chen, Min

    The bottom-up approach in nanofabrication involves the synthesis of functional nanoscale building blocks and controllable assembly into larger scale superstructures. Electrochemical template synthesis has been employed in this work to fabricate two kinds of nanoscale building blocks: (1) Ni/Cu multilayer nanowires, and (2) Au/Pt/Au and Au/Ni/Au multi-segment nanowires. Magnetic nanowires exhibit unique physical properties and have potential applications in spintronics devices as well as in biomagnetic application. In magnetic multilayer nanowires, the orientation of the easy axis, the coercivity, remanence, demagnetization factor and many other magnetic parameters can be tuned by varying the size, shape and spacing of magnetic layers and nonmagnetic layers. Ni/Cu multilayer nanowires were fabricated using single bath techniques in polycarbonate templates with diameters in the range of 40-140 nm. The composition and structure of the nanowires was studied using x-ray diffraction, auger electron spectroscopy and transmission electron microscopy. The magnetic properties of nanowires depend on the diameter and aspect ratio of the nickel layers and the spacing of nickel layers. Micromagnetic simulations were used to model the M-H loops. The different magnetic alignment of nanowires in suspension was demonstrated. Multicomponent nanowires allow the possibility of attaching different functional groups to different segments thereby providing spatially localized functionality. This feature is particularly attractive for self-assembly since receptor groups can be attached at specific locations on the particle where attachment will occur. Directed assembly using receptor mediated interactions provides a powerful tool for the self-assembly of complex architectures. The kinetic of receptor-mediated end-to-end assembly can be explained by diffusion-limited aggregation process analogues to linear polycondensation theory.

  9. Biophysical aspects of the influence of electromagnetic fields (EMF on the human body Influencia de los campos electromagnéticos en el organismo humano: aspectos biofísicos

    Directory of Open Access Journals (Sweden)

    Napaleon Hernández

    1993-03-01

    Full Text Available

     

    Some historical aspects of biomagnetism and of the various steps that led to the development of bioelectricity and electro technique are summarized. Alterations observed in individuals working for long periods of time in contact with artificial EMF are described as well as the correlation between natural EMF and accidentality. The utilization of EMF for therapeutic purposes 15 reviewed and some considerations are given to the so called ";bioenergetic medicine"; that employs light, laser, sound, electricity and magnetism. A warning 15 made against the indiscriminate therapeutic use of EMF by practitioners without proper training; the need for solid research which may support the development of this area of medicine Is emphasized.

     

    En este artículo se resumen algunos aspectos históricos del biomagnetismo y de las etapas que condujeron al desarrollo de la bioelectricidad y la electrotécnica. Se describen las alteraciones observadas en quienes trabajan por períodos prolongados en contacto con campos electromagnéticos (CEM artificiales y la correlación entre los CEM naturales y la accidentalidad. Se revisan la utilización de los CEM con fines curativos y la escuela llamada ";bioenergética"; que utiliza terapéuticamente la luz, el láser, el sonido, la electricidad y el magnetismo. Se previene contra el uso terapéutico Indiscriminado de los CEM por personas sin adecuada formación y se hace énfasis en la necesidad de adelantar Investigaciones serias que sustenten este desarrollo de la medicina.

  10. Rapid screening of waterborne pathogens using phage-mediated separation coupled with real-time PCR detection.

    Science.gov (United States)

    Wang, Ziyuan; Wang, Danhui; Kinchla, Amanda J; Sela, David A; Nugen, Sam R

    2016-06-01

    Escherichia coli O157:H7 is a ubiquitous pathogen which can be linked to foodborne outbreaks worldwide. In addition to the significant illnesses, hospitalizations, and deaths resulting from the outbreaks, there can be severe economic consequences to farmers, food manufacturers, and municipalities. A rapid detection assay which can validate sanitation and water quality would prove beneficial to these situations. Here, we report a novel bacteriophage-mediated detection of E. coli O157:H7 which utilizes the specific recognition between phages and their host cell as well as the natural lysis component of the infection cycle for DNA release. Carboxylic acid-functionalized magnetic beads were conjugated with bacteriophage and used to separate and concentrate E. coli O157:H7. The effects of bead incubation time, salinity, pH, and temperature on the bio-magnetic separation were investigated and compared to an antibody-based counterpart. The conditions of 0.01 M PBS, pH 7.0, and 20 min of reaction at 37 °C were found to be optimal. The capture efficiency of the coupled assay was approximately 20 % higher than that of antibody-based separation under extreme conditions. The resulting bead-phage-bacteria complexes were quantitatively detected by real-time PCR (qPCR). Our results demonstrated that the use of phage-based magnetic separation coupled with qPCR improved the sensitivity of detection by 2 orders of magnitude compared that without phage-based pre-concentration. Specificity and selectivity of the assay system was evaluated, and no cross-reactivity occurred when Salmonella typhimurium, Staphylococcus aureus, and Pseudomonas aeruginosa were tested. The total assay time was less than 2 h. PMID:27071764

  11. Quantum metrology and its application in biology

    Science.gov (United States)

    Taylor, Michael A.; Bowen, Warwick P.

    2016-02-01

    Quantum metrology provides a route to overcome practical limits in sensing devices. It holds particular relevance to biology, where sensitivity and resolution constraints restrict applications both in fundamental biophysics and in medicine. Here, we review quantum metrology from this biological context, focusing on optical techniques due to their particular relevance for biological imaging, sensing, and stimulation. Our understanding of quantum mechanics has already enabled important applications in biology, including positron emission tomography (PET) with entangled photons, magnetic resonance imaging (MRI) using nuclear magnetic resonance, and bio-magnetic imaging with superconducting quantum interference devices (SQUIDs). In quantum metrology an even greater range of applications arise from the ability to not just understand, but to engineer, coherence and correlations at the quantum level. In the past few years, quite dramatic progress has been seen in applying these ideas into biological systems. Capabilities that have been demonstrated include enhanced sensitivity and resolution, immunity to imaging artefacts and technical noise, and characterization of the biological response to light at the single-photon level. New quantum measurement techniques offer even greater promise, raising the prospect for improved multi-photon microscopy and magnetic imaging, among many other possible applications. Realization of this potential will require cross-disciplinary input from researchers in both biology and quantum physics. In this review we seek to communicate the developments of quantum metrology in a way that is accessible to biologists and biophysicists, while providing sufficient details to allow the interested reader to obtain a solid understanding of the field. We further seek to introduce quantum physicists to some of the central challenges of optical measurements in biological science. We hope that this will aid in bridging the communication gap that exists

  12. A numerical and experimental investigation of planar asymmetric SQUID gradiometer characteristics

    International Nuclear Information System (INIS)

    A low-cost, high-performance magnetic field sensor for applications such as biomagnetism and nondestructive evaluation can be fabricated by integrating a superconducting quantum interference device (SQUID) and a gradiometer on a single chip. Conventionally, the gradiometric pick-up loop would have a rectangular outline divided symmetrically about the midpoint of its length so that its spatial response was also symmetrical. However, it is also possible to divide the same outline asymmetrically, maintaining the field rejection order of the gradiometer by adding an extra crossover. The spatial response of this arrangement will also be asymmetric, which may be exploited to reduce the effects of the nearby SQUID as a magnetic anomaly or to enhance the sensitivity of the device to magnetic sources at a particular distance. The techniques to calculate the crossover positions are well established. Here we outline how different designs may be evaluated theoretically and report on first experimental results for three simple designs. Several devices have been fabricated using a well established Nb/Al-Al2O3/Nb trilayer process with high yields. The measurement of the spatial response of an asymmetric first-order gradiometer shows the expected magnetometer characteristics for a magnetic dipole source in the near field and first-order gradiometric characteristics for a far-field source. The balance of the integrated gradiometer appears to be better than one part in 104, and the magnetic field gradient sensitivity has been measured to be 100 fT cm-1 Hz-1/2. (author)

  13. High-T(c) squid application in medicine and geophysics

    Science.gov (United States)

    Polushkin, V. N.; Uchaikin, S. V.; Vasiliev, B. V.

    1991-01-01

    In our laboratory of high-T(sub c), a one-hole squid was built from Y1Ba2Cu3O(7-x) ceramics obtained by a standard procedure of solid state reaction. The ceramics with critical current density J(sub c) is greater than 100 A/sq cm was selected. In the middle of a 10 x 10 x 2 mm ceramics pellet, a 0.8 mm hole was drilled in which the superconducting loop of the squid was located. Between the hole and the edge of the pellet, a cut was mechanically filed out with a bridge inside it connecting the superconducting ring. A scheme of the magnetometer is presented. The resonant frequency shift of the tank circuit, the connection of the squid with this circuit, and the squid inductance are evaluated. One of the most interesting fields of the squid-based magnetometer application is biomagnetism, particularly, the human heart magnetocardiogram measuring. The low-temperature squids were used in this area and many interesting and important scientific results have been obtained. The observations have shown that the main noise contribution was not due to the squid but to the Earth's magnetic field variations, industrial inductions, and mainly to the vibrations caused by liquid nitrogen boiling and by vibrations of the box. Further attempts are needed to reduce the magnetic noise inductions. Nevertheless, the estimations promise the maximum signal/noise relation of the high-T(sub c) squid-magnetocardiometer to be not less than 10:1 in a bandwidth of 60 Hz. Apparently, such resolution would be enough not only for steady cardiogram reading but even for thin structure investigation at average technique application.

  14. PREFACE: Fifth International Conference on Fine Particle Magnetism

    Science.gov (United States)

    Pankhurst, Quentin

    2005-01-01

    In September 2004, the UK Nanomagnetism Network and the London Centre for Nanotechnology hosted the 5th International Conference on Fine Particle Magnetism. The objective of the meeting, as in Rome (1991), Bangor (1996), Barcelona (1999) and Pittsburgh (2002), was to explore latest developments in the fundamentals and applications of nanoscale magnetic clusters, particles and grains. This particular conference had a very broad remit, and encompassed the interdisciplinary breadth of much of today's innovative work on nanoscale magnetic materials. In recognition of this, symposia were organised around the themes of biomagnetism and Earth and the environment, alongside the familiar themes of fundamental properties, applications, and imaging and characterisation. The aim was that this wide-ranging scope would provide the participants with new insights into how researchers from other disciplines approach similar problems to their own, which would help in their own work. This seemed to be borne out by the lively and good-natured discussion that the talks and posters generated. In keeping with this goal of combining cutting edge research with educating ourselves across traditional disciplinary boundaries, we are very pleased to have received such excellent support from the contributing authors for this proceedings volume. The papers contained herein are an accurate reflection of the topics covered, and include several review style papers. We hope that these proceedings will provide the reader with an understanding of the current vibrancy of research into fine particle magnetism. Furthermore, we hope that this volume sets the scene for the continuing cross-border work between physical scientists, life scientists, social scientists, clinicians and engineers that promises to make this field a very lively one in the years to come.

  15. Consciousness of Unification: The Mind-Matter Phallacy Bites the Dust

    Science.gov (United States)

    Beichler, James E.

    A complete theoretical model of how consciousness arises in neural nets can be developed based on a mixed quantum/classical basis. Both mind and consciousness are multi-leveled scalar and vector electromagnetic complexity patterns, respectively, which emerge within all living organisms through the process of evolution. Like life, the mind and consciousness patterns extend throughout living organisms (bodies), but the neural nets and higher level groupings that distinguish higher levels of consciousness only exist in the brain so mind and consciousness have been traditionally associated with the brain alone. A close study of neurons and neural nets in the brain shows that the microtubules within axons are classical bio-magnetic inductors that emit and absorb electromagnetic pulses from each other. These pulses establish interference patterns that influence the quantized vector potential patterns of interstitial water molecules within the neurons as well as create the coherence within neurons and neural nets that scientists normally associate with more complex memories, thought processes and streams of thought. Memory storage and recall are guided by the microtubules and the actual memory patterns are stored as magnetic vector potential complexity patterns in the points of space at the quantum level occupied by the water molecules. This model also accounts for the plasticity of the brain and implies that mind and consciousness, like life itself, are the result of evolutionary processes. However, consciousness can evolve independent of an organism's birth genetics once it has evolved by normal bottom-up genetic processes and thus force a new type of top-down evolution on living organisms and species as a whole that can be explained by expanding the laws of thermodynamics to include orderly systems.

  16. Parser Combinators: a Practical Application for Generating Parsers for NMR Data.

    Science.gov (United States)

    Fenwick, Matthew; Weatherby, Gerard; Ellis, Heidi Jc; Gryk, Michael R

    2013-01-01

    Nuclear Magnetic Resonance (NMR) spectroscopy is a technique for acquiring protein data at atomic resolution and determining the three-dimensional structure of large protein molecules. A typical structure determination process results in the deposition of a large data sets to the BMRB (Bio-Magnetic Resonance Data Bank). This data is stored and shared in a file format called NMR-Star. This format is syntactically and semantically complex making it challenging to parse. Nevertheless, parsing these files is crucial to applying the vast amounts of biological information stored in NMR-Star files, allowing researchers to harness the results of previous studies to direct and validate future work. One powerful approach for parsing files is to apply a Backus-Naur Form (BNF) grammar, which is a high-level model of a file format. Translation of the grammatical model to an executable parser may be automatically accomplished. This paper will show how we applied a model BNF grammar of the NMR-Star format to create a free, open-source parser, using a method that originated in the functional programming world known as "parser combinators". This paper demonstrates the effectiveness of a principled approach to file specification and parsing. This paper also builds upon our previous work [1], in that 1) it applies concepts from Functional Programming (which is relevant even though the implementation language, Java, is more mainstream than Functional Programming), and 2) all work and accomplishments from this project will be made available under standard open source licenses to provide the community with the opportunity to learn from our techniques and methods. PMID:24352525

  17. Magnetic properties of Acidithiobacillus ferrooxidans

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Lei; Zhang, Shuang [College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319 (China); Chen, Peng [Gansu Institute of Business and Technology, Lanzhou, 730010 (China); Wang, Weidong; Wang, Yanjie [College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319 (China); Li, Hongyu, E-mail: hekouyanlei@gmail.com [Institute of Microbiology, School of Life Sciences, Lanzhou University, Lanzhou, 730000 (China)

    2013-10-15

    Understanding the magnetic properties of magnetotactic bacteria (MTBs) is of great interest in fields of life sciences, geosciences, biomineralization, biomagnetism, and planetary sciences. Acidithiobacillus ferrooxidans (At. ferrooxidans), obtaining energy through the oxidation of ferrous iron and various reduced inorganic sulfur compounds, can synthesize intracellular magnetite magnetosomes. However, the magnetic properties of such microorganism remain unknown. Here we used transmission electronmicroscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD) assay, vibrating sample magnetometer (VSM), magneto–thermogravimetric analysis (MTGA), and low temperature magnetometry to comprehensively investigate the magnetic characteristics of At. ferrooxidans. Results revealed that each cell contained only 1 to 3 magnetite magnetosomes, which were arranged irregularly. The magnetosomes were generally in a stable single-domain (SD) state, but superparamagnetic (SP) magnetite particles were also found. The calcined bacteria exhibited a ferromagnetic behavior with a Curie Temperature of 454 °C and a coercivity of 16.36 mT. Additionally, the low delta ratio (δ{sub FC}/δ{sub ZFC} = 1.27) indicated that there were no intact magnetosome chains in At. ferrooxidans. Our results provided the new insights on the biomineralization of bacterial magnetosomes and magnetic properties of At. ferrooxidans. - Highlights: • Rock magnetic investigations carried out on At.ferrooxidans in detail. • Results indicated that each cell contained 1 to 3 scattered magnetite magnetosomes. • The magnetosomes consist of SD and SP magnetite nanoparticles. • Cells showed ferromagnetic behavior with high Curie Temperature and low δ{sub FC}/δ{sub ZFC}. • Results are useful in studying the magnetosomes biomineralization.

  18. Magnetic properties of Acidithiobacillus ferrooxidans

    International Nuclear Information System (INIS)

    Understanding the magnetic properties of magnetotactic bacteria (MTBs) is of great interest in fields of life sciences, geosciences, biomineralization, biomagnetism, and planetary sciences. Acidithiobacillus ferrooxidans (At. ferrooxidans), obtaining energy through the oxidation of ferrous iron and various reduced inorganic sulfur compounds, can synthesize intracellular magnetite magnetosomes. However, the magnetic properties of such microorganism remain unknown. Here we used transmission electronmicroscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD) assay, vibrating sample magnetometer (VSM), magneto–thermogravimetric analysis (MTGA), and low temperature magnetometry to comprehensively investigate the magnetic characteristics of At. ferrooxidans. Results revealed that each cell contained only 1 to 3 magnetite magnetosomes, which were arranged irregularly. The magnetosomes were generally in a stable single-domain (SD) state, but superparamagnetic (SP) magnetite particles were also found. The calcined bacteria exhibited a ferromagnetic behavior with a Curie Temperature of 454 °C and a coercivity of 16.36 mT. Additionally, the low delta ratio (δFC/δZFC = 1.27) indicated that there were no intact magnetosome chains in At. ferrooxidans. Our results provided the new insights on the biomineralization of bacterial magnetosomes and magnetic properties of At. ferrooxidans. - Highlights: • Rock magnetic investigations carried out on At.ferrooxidans in detail. • Results indicated that each cell contained 1 to 3 scattered magnetite magnetosomes. • The magnetosomes consist of SD and SP magnetite nanoparticles. • Cells showed ferromagnetic behavior with high Curie Temperature and low δFC/δZFC. • Results are useful in studying the magnetosomes biomineralization

  19. Low-frequency noise in high-{Tc} superconductor Josephson junctions, SQUIDs, and magnetometers

    Energy Technology Data Exchange (ETDEWEB)

    Miklich, A.H.

    1994-05-01

    Design and performance of high-T{sub c} dc superconducting quantum interference devices (SQUEDs), junctions that comprise them, and magnetometers made from them are described, with attention to sources of 1/f noise. Biepitaxial junctions are found to have large levels of critical current fluctuations which make them unsuitable for low-noise SQUIDS; this suggests a poorly connected interface at the grain boundary junction. SQUIDs from bicrystal junctions have levels of critical current noise controllable using bias current reversal techniques which leave the noise white down to frequencies of a few Hz. A SQUID with an energy resolution of 1.5{times}10{sup {minus}30} J Hz{sup {minus}1} at 1 Hz is reported. Magnetometers in which a (9 mm){sup 2} pickup loop is directly coupled to a SQUID body have achieved field resolutions of 93 fT Hz{sup {minus}1/2} down to frequencies below I Hz, improving to 39 fT Hz{sup {minus}1/2} at 1 Hz with the addition of a 50mm-diameter single-turn flux transformer. Poor coupling to pickup loop makes it difficult to satisfy competing goals of high field resolution and small detector size necessary for multichannel biomagnetic imaging. Improved coupling is demonstrated by the use of multiturn-input-coil flux transformers, and a resolution of 35 fT Hz{sup {minus}1/2} in the white noise region is reported with a (10 mm){sup 2} pickup loop. However, additional 1/f noise from processed multilayer structures in the transformer limits the resolution at 1 Hz to 114 fT Hz{sup {minus}1/2}. High-T{sub c} SQUIDs exhibit additional 1/f noise when cooled in a nonzero static magnetic field because of additional flux vortices trapped in the film, with the noise power at 1 Hz typically increasing by a factor of 10--20 in a field of 0.05mT (0.5 G). Finally, a SQUID-based voltmeter with a resolution of 9.2 pV.Hz{sup {minus}1/2} at 10 Hz (24 pV Hz{sup {minus}1/2} at 1 Hz) is described.

  20. Synthesis and characterization of monosize magnetic poly(glycidyl methacrylate) beads

    Institute of Scientific and Technical Information of China (English)

    Evrim; Banu; Alt1nta

    2007-01-01

    ,A.,(O)zkan,G.,& Arica,M.Y.(2000).Preparation and characterization of magnetic polymethylmethacrylate microbeads carrying ethylene diamine for removal of Cu(Ⅱ),Cd(Ⅱ),Pb (Ⅱ),Hg(Ⅱ) from aqueous solutions.Journal of Applied Polymer Science,78(1),81-89.[12]Denizli,A.,& Say,R.(2001).Preparation of magnetic dye affinity adsorbent and its use in the removal of aluminium ions.Journal of Biomaterials Science Polymer Edition,12(10),1059-1073.[13]Denizli,A.,Tanyolac,D.,Salih,B.,& (O)zdural,A.(1998).Cibacron blue F3GA-attached polyvinylbutyral microbeads as novel magnetic sorbents for removal of Cu(Ⅱ),Cd(Ⅱ) and Pb(Ⅱ) ions.Journal of Chromatography A,793(1),47-56.[14]Denizli,A.,Yavuz,H.,Garipcan,B.,& Arica,M.Y.(2000).Nonporous monosize polymeric sorbents:Dye and metal chelate affinity separation of lysozyme.Journal of Applied Polymer Science,76(2),115-124.[15]Guo,Z.,& Sun,Y.(2004).Characteristics of immobilized lipase on hydrophobic superparamagnetic microspheres to catalyze esterification.Biotechnology Progress,20(2),500-506.[16]Huang,S.H.,Liao,M.H.,& Chen,D.H.(2003).Direct binding and characterization of lipase onto magnetic nanoparticles.Biotechnology Progress,19(3),1095-1100.[17]Kouassi,G.K.,Irudayaraj,J.,& McCarty,G.(2005).Activity of glucose oxidase functionalized onto magnetic nanoparticles.Biomagnetic Research and Technology,3,1-10.[18]Ma,Z.Y.,Guan,Y.P.,& Liu,H.Z.(2005).Synthesis of monodisperse nonporous crosslinked poly(glycidyl methacrylate) particles with metal affinity ligands for protein adsorption.Polymer International,54(11),1502-1507.[19]Ma,Z.Y.,Guan,Y.P.,& Liu,H.Z.(2006).Affinity adsorption of albumin on Cibacron Blue F3GA-coupled non-porous micrometer-sized magnetic polymer microspheres.Reactive and Functional Polymers,66(6),618-624.[20]Ma,Z.Y.,Guan,Y.P.,Liu,X.Q.,& Liu,H.Z.(2005).Synthesis of magnetic chelator for high-capacity immobilized metal affinity adsorption of protein by cerium initiated graft polymerization.Langmuir,21(15),6987-6994.[21]Martin,C.,& Cuellar

  1. The Institute for Rock Magnetism and its Role in Initiating Routine Low-Temperature Magnetic Measurements in Environmental Magnetism, Rock Magnetism and Paleomagnetism.

    Science.gov (United States)

    Banerjee, S. K.; Moskowitz, B. M.; Jackson, M. J.; Marvin, J. A.; Solheid, P. A.

    2002-12-01

    Magnetic minerals in rocks and sediments are information repositories for past changes in the geological or planetary environment, preserved in the varying composition, concentration, grain size and overall magnetic alignment of the magnetic species: iron oxides, hydroxides, carbonates and sulfides. The creation of the Institute for Rock Magnetism, with the support of the National Science Foundation's Earth Science Division, the Keck Foundation and the University of Minnesota - Twin Cities, has meant that scientists who use paleomagnetism and rock magnetism can have some of their most basic questions answered through cooperative research at the IRM. In the last decade, scientists from two other disciplines -- global environmental change and biomagnetism -- have also utilized the IRM for controlled experiments on target minerals, sometimes as small as 5 nm, to interpret in a more quantitative manner the amplitudes of past variations. Of all the instruments made available to the magnetics community by the IRM, e.g., high and low field magnetometers, particle size analyzers, M”ssbauer spectrometers and magneto-optic and magnetic force microscopes, it is the SQUID susceptometers (operating at temperatures down to 1.5K and magnetic fields from zero to 5 Tesla) that have made the most impact on the science. In-house researchers and NSF/EAR-supported visiting fellows have made a number of discoveries based on new fundamental knowledge of low temperature magnetism of the following 8 minerals: (titano)magnetite, hematite, goethite, lepidocrocite, ferrihydrite, siderite, rhodochrocite and pyrrhotite. For a significant number of U.S. and international geologists and geophysicists, thermal demagnetization of low temperature (~10-20K) magnetizations has now become the most widely-used non-destructive technique for recognition and estimation of (a) magnetite in natural sediments, (b) glacial/interglacial climate change records in worldwide loess deposits and (c) paleoredox

  2. Efecto del agua tratada magnéticamente sobre los procesos biológicos (Magnetically treated water effect on biological processes

    Directory of Open Access Journals (Sweden)

    Alfonso-Insua, Daniel

    2009-04-01

    Full Text Available ResumenEn la presente monografía se describen aspectos de la importancia práctica, económica y ⎯con énfasis especial⎯ biológica del biomagnetismo, en específico del agua tratada magnéticamente, incluyéndose una exposición resumida de la experiencia de los autores sobre los beneficios de ésta en los procesos biológicos que normalmente ocurren en los animales. Los resultados de los estudios de los fenómenos biofísicos relacionados con los efectos delconsumo de agua con tratamiento magnético en el fisiologismo animal son más favorables. Se comprobaron bio respuestas positivas en los parámetros de salud y producción en las diferentes categorías de ganado bovino investigadas (terneros, vacas lecheras, toros sementales y toros de ceba. El consumo del agua con tratamiento magnético puede constituir una alternativa viable y económicamente factible para la explotación de las diferentes categoríaszootécnicas del ganado bovino, repercutiendo favorablemente sobre losmecanismos defensa de la salud y los parámetros productivos.SummaryIn the present monograph were described aspects of the practical, economic and ⎯with special emphasis⎯ biological importance of biomagnetism, in specific of magnetically treated water, being included a summary of the experience of the authors about the benefits of this in the biological processes that usually happen in the animals. The results of the studies of the biophysicalphenomena related with the effects of the consumption of water with magnetic treatment in the animal phisiologism are more favorable. They were proven bio positive answers in the parameters of health and production in the different investigated categories of bovine livestock (calves, cows milkmaids, bulls sires and bulls of it feeds. The consumption of the water with magnetic treatmentcan constitute a viable and economically feasible alternative for the exploitation of the bovine livestock in the different zootechnics

  3. Isolation of a Microaerobic Magnetotactic Bacterium TH-1 and Studies on the Magnetosome%一株微好氧趋磁细菌TH-1的分离及其磁小体研究

    Institute of Scientific and Technical Information of China (English)

    刘伟伟; 孙秀兰; 张银志; 王进; 樊惠良; 陈文君

    2012-01-01

    In order to study the properties of biomagnetism, a kind of magnetotactic bacteria TH-1 which is able to respond and orient along the lines of terrestrial or artificial magnmetic fields was isolated from Taihu lake. TH-1 is the first reported magnetotactic bacterium isolated from Taihu lake. Morphological observation was carried out using the transmission electron microscope and the results showed that magnetic cells each possess several magnetosomes that is circular-shaped and 10 nm-100 nm in diameter, which distributed in cytoplasm and the front cell wall. The Energy dispersive X-ray spectrum of magnetosome indicates that stain TH-1 consists of three mineral elements Fe,S and O. The magnetic properties both of the bacteria and magnetosomes were studied and a preliminary biochemical identification of the bacteria -was carried out . All the above results demonstrated that strain TH-1 is magnetotactic bacteria.%研究生物磁学的性质,从无锡太湖水域中分离到了一株沿着磁力线运动的微好氧细菌-趋磁细菌TH-1.尽管在其他淡水中曾经分离过到过趋磁细菌,但却从未在太湖中分离到过,因此TH-1是目前所见报道的第一株分离自太湖的趋磁细菌.采用透射电镜的方法对细菌进行了形态学观察,结果表明,每个细胞内含多个磁小体,呈圆形,直径范围在10~100 nm,分布在细胞质以及细胞壁前端.能谱结果显示,该菌磁小体的元素组成为铁(Fe)、硫(S)和氧(O).还对该菌以及磁小体的磁性进行了分析并且对菌株做了初步的生化鉴定.结果表明,分离得到的菌株隶属于趋磁细菌.

  4. Low-Frequency Noise in High-T Superconductor Josephson Junctions, Squids, and Magnetometers.

    Science.gov (United States)

    Miklich, Andrew Hostetler

    The design and performance of high-T_ {rm c} dc superconducting quantum interference devices (SQUIDs), the junctions that comprise them, and magnetometers made from them are described, with special attention paid to sources of 1/f noise. Biepitaxial junctions are found to have large levels of critical current fluctuations which make them unsuitable for low-noise SQUIDs. This noise suggests a poorly connected interface at the grain boundary junction. SQUIDs from bicrystal junctions, in contrast, have levels of critical current noise that are controllable using bias current reversal techniques which leave the noise white down to frequencies of a few Hz. A SQUID with an energy resolution of 1.5times 10^{-30} J Hz^ {-1} at 1 Hz is reported. Magnetometers in which a (9 mm)^2 pickup loop is directly coupled to a SQUID body have achieved field resolutions of 93 fT Hz^{-1/2} down to frequencies below 1 Hz, improving to 39 fT Hz^{-1/2} at 1 Hz with the addition of a 50 mm-diameter single-turn flux transformer. Although the performance of these devices is sufficient for single -channel biomagnetometry or geophysical studies, their relatively poor coupling to the pickup loop makes it difficult to satisfy the competing goals of high field resolution and small detector size necessary for multichannel biomagnetic imaging. Improved coupling is demonstrated by the use of multiturn-input-coil flux transformers, and a resolution of 35 fT Hz^{-1/2} in the white noise region is reported with a (10 mm) ^2 pickup loop. However, additional 1/f noise from the processed multilayer structures in the transformer limits the resolution at 1 Hz to 114 fT Hz^ {-1/2}. High-T_{ rm c} SQUIDs are shown to exhibit additional 1/f noise when they are cooled in a nonzero static magnetic field because of the additional flux vortices trapped in the film, with the noise power at 1 Hz typically increasing by a factor of 10-20 in a field of 0.05 mT (0.5 G). Finally, a SQUID-based voltmeter with a resolution

  5. Low-frequency noise in high-(Tc) superconductor Josephson junctions, SQUIDs, and magnetometers

    Science.gov (United States)

    Miklich, A. H.

    1994-05-01

    Design and performance of high-T(sub c) dc superconducting quantum interference devices (SQUID's), junctions that comprise them, and magnetometers made from them are described, with attention to sources of 1/f noise. Biepitaxial junctions are found to have large levels of critical current fluctuations which make them unsuitable for low-noise SQUID's; this suggests a poorly connected interface at the grain boundary junction. SQUID's from bicrystal junctions have levels of critical current noise controllable using bias current reversal techniques which leave the noise white down to frequencies of a few Hz. A SQUID with an energy resolution of 1.5 x 10(exp -30) J Hz(exp -1) at 1 Hz is reported. Magnetometers in which a (9 mm)(exp 2) pickup loop is directly coupled to a SQUID body have achieved field resolutions of 93 fT Hz(exp -1/2) down to frequencies below 1 Hz, improving to 39 fT Hz(exp -1/2) at 1 Hz with the addition of a 50mm-diameter single-turn flux transformer. Poor coupling to pickup loop makes it difficult to satisfy competing goals of high field resolution and small detector size necessary for multichannel biomagnetic imaging. Improved coupling is demonstrated by the use of multiturn-input-coil flux transformers, and a resolution of 35 fT Hz(exp -1/2) in the white noise region is reported with a (10 mm)(exp 2) pickup loop. However, additional 1/f noise from processed multilayer structures in the transformer limits the resolution at 1 Hz to 114 fT Hz(exp -1/2). High-T(sub c) SQUID's exhibit additional 1/f noise when cooled in a nonzero static magnetic field because of additional flux vortices trapped in the film, with the noise power at 1 Hz typically increasing by a factor of 10-20 in a field of 0.05mT (0.5 G). Finally, a SQUID-based voltmeter with a resolution of 9.2 pV Hz(exp -1/2) at 10 Hz (24 pV Hz(exp -1/2) at 1 Hz) is described.

  6. Labeling of mesenchymal stem cells for MRI with single-cell sensitivity

    Directory of Open Access Journals (Sweden)

    Ariza de Schellenberger A

    2016-04-01

    Full Text Available Angela Ariza de Schellenberger,1 Harald Kratz,1 Tracy D Farr,2,3 Norbert Löwa,4 Ralf Hauptmann,1 Susanne Wagner,1 Matthias Taupitz,1 Jörg Schnorr,1 Eyk A Schellenberger1 1Department of Radiology, 2Department of Experimental Neurology, Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany; 3School of Life Sciences, University of Nottingham, Medical School, Nottingham, UK; 4Department of Biomagnetic Signals, Physikalisch-Technische Bundesanstalt Berlin, Berlin, Germany Abstract: Sensitive cell detection by magnetic resonance imaging (MRI is an important tool for the development of cell therapies. However, clinically approved contrast agents that allow single-cell detection are currently not available. Therefore, we compared very small iron oxide nanoparticles (VSOP and new multicore carboxymethyl dextran-coated iron oxide nanoparticles (multicore particles, MCP designed by our department for magnetic particle imaging (MPI with discontinued Resovist® regarding their suitability for detection of single mesenchymal stem cells (MSC by MRI. We achieved an average intracellular nanoparticle (NP load of >10 pg Fe per cell without the use of transfection agents. NP loading did not lead to significantly different results in proliferation, colony formation, and multilineage in vitro differentiation assays in comparison to controls. MRI allowed single-cell detection using VSOP, MCP, and Resovist® in conjunction with high-resolution T2*-weighted imaging at 7 T with postprocessing of phase images in agarose cell phantoms and in vivo after delivery of 2,000 NP-labeled MSC into mouse brains via the left carotid artery. With optimized labeling conditions, a detection rate of ~45% was achieved; however, the experiments were limited by nonhomogeneous NP loading of the MSC population. Attempts should be made to achieve better cell separation for homogeneous NP loading and to thus improve NP

  7. Attitudes and perceptions of Australian pharmacy students towards Complementary and Alternative Medicine – a pilot study

    Directory of Open Access Journals (Sweden)

    Wallis Marianne

    2008-01-01

    Full Text Available Abstract Background With the increased usage of CAM worldwide comes the demand for its integration into health professional education. However, the incorporation of CAM into health professional curricula is handled quite differently by different institutions and countries. Furthermore, the evaluation of CAM curricula is complicated because students' ability to learn about CAM may be influenced by factors such as student's prior knowledge and motivation, together with the perceptions and attitudes of clinical preceptors. The study aimed to describe the attitudes, perceptions and beliefs of second, third and fourth year pharmacy students towards complementary and alternative medicine (CAM and to explore factors that might affect attitudes such as learning, preceptors and placements. Methods Pharmacy students from a University in South East Queensland, Australia participated in the study. The study consisted of a cross-sectional survey (n = 110 and semi-structured interviews (n = 9. Results The overall response rate for the survey was 75%, namely 50% (36/72 for second year, 77.3% (34/44 for third year and 97.6% (40/41 for fourth year students. Overall, 95.5% of pharmacy students believe that pharmacists should be able to advise patients about CAM and most (93.7% have used CAM prior to course enrolment. Students' attitudes to CAM are influenced by the use of CAM by family, friends and self, CAM training, lecturers and to a lesser degree by preceptors. The majority of pharmacy students (89.2% perceive education about CAM as a core and integral part of their professional degree and favour it over an additional postgraduate degree. However, they see a greater need for education in complementary medicines (such as herbal medicines, vitamins and minerals than for education in complementary therapies (such as acupuncture, meditation and bio-magnetism. Knowledge and educational input rationalised rather than marginalised students' attitudes towards CAM

  8. A modular, extendible and field-tolerant multichannel vector magnetometer based on current sensor SQUIDs

    Science.gov (United States)

    Storm, J.-H.; Drung, D.; Burghoff, M.; Körber, R.

    2016-09-01

    We present the prototype module of our extendible and robust multichannel SQUID magnetometer system. A large multi-module arrangement can be implemented by using up to 7 modules. The system is intended for high-precision measurements of biomagnetism and spin precession. Further demanding applications are magnetorelaxometry and ultra-low-field nuclear magnetic resonance (ULF NMR), where pulsed magnetic fields of up to 100 mT are typically applied. The system is operated inside the Berlin magnetically shielded room (BMSR-2) and equipped with 18 magnetometers consisting of niobium (Nb) wire-wound pick-up coils. A total of 16 small pick-up coils with 17.1 mm diameter form a regular grid with individual channels arranged to ensure system sensitivity covers all three orthogonal spatial directions. Two large hexagonal pick-up coils with an equivalent diameter of 74.5 mm sensitive in z-direction surround the grid at two different heights and are suitable for the detection of deep sources. Each pick-up coil is connected to the input of a thin-film Nb SQUID current sensor via a detachable superconducting contact. The SQUIDs are equipped with integrated input current limiters. Feedback into the pick-up coils is employed to minimise crosstalk between channels. The current sensor chip package includes a superconducting shield of Nb. The field distortion of the prototype and a multi-module arrangement was analysed by numerical simulation. The measured noise of the small magnetometers was between 0.6 and 1.5 fT {{Hz}}-1/2, and well below 1 fT {{Hz}}-1/2 for the large ones. Using a software gradiometer, we achieved a minimum noise level of 0.54 fT {{Hz}}-1/2. We performed ULF NMR experiments, verifying the system’s robustness against pulsed fields, and magnetoencephalographgy (MEG) on somatosensory evoked neuronal activity. The low noise performance of our 18-channel prototype enabled the detection of high-frequency components at around 1 kHz by MEG.

  9. Obituary: Gordon Donaldson Obituary: Gordon Donaldson

    Science.gov (United States)

    Pegrum, Colin; Campbell, Archie; Hampshire, Damian

    2013-07-01

    Gordon Donaldson died in Glasgow on 28 November 2012 at the age of 71. He was born in Edinburgh and brought up and educated in Glasgow, which was his home city for much of his life. He was educated first at Glasgow Academy, and then with a scholarship at Christ's College Cambridge. Here he read Natural Sciences, finishing with first class honors in Physics. He then did a PhD on tunneling in superconductors in the Mond Laboratory, supervised by John Adkins. These were interesting times, since type II superconductors had only recently been identified, and the Mond was a leading player in the physics of vortices and other quantum effects. It was headed by Pippard and Shoenberg, and colleagues around that time were Brian Josephson, John Clarke, Colin Gough and John Waldram. On finishing his PhD in 1966 Gordon went straight to a lectureship at the University of Lancaster. In 1975 during a sabbatical at the University of California, Berkeley, with John Clarke's group, Gordon co-invented thin-film gradiometers with integrated DC SQUIDs. He then moved back to Glasgow, to the Department of Applied Physics at Strathclyde University, where he founded a new research group to make and use superconducting devices, especially SQUIDs and gradiometers. From modest beginnings the group grew steadily, acquiring new facilities and members, until in the 1990s it had over 20 members and a host of collaborators from elsewhere in Glasgow and abroad. With funding from the Wellcome Trust, Gordon and colleagues at Glasgow University and the Southern General Hospital in Glasgow set up a new biomagnetism facility in 1998 on the hospital campus to use SQUID gradiometers made at Strathclyde for measurements on patients and volunteers. Another of his main research interests was the use of SQUIDs for nondestructive evaluation (NDE). This started in the days before high temperature superconductors (HTS) with wire-wound gradiometers and niobium SQUIDs, soon moving on to miniature thin-film niobium

  10. Quantum technology and its applications

    International Nuclear Information System (INIS)

    Quantum states of matter can be exploited as high performance sensors for measuring time, gravity, rotation, and electromagnetic fields, and quantum states of light provide powerful new tools for imaging and communication. Much attention is being paid to the ultimate limits of this quantum technology. For example, it has already been shown that exotic quantum states can be used to measure or image with higher precision or higher resolution or lower radiated power than any conventional technologies, and proof-of-principle experiments demonstrating measurement precision below the standard quantum limit (shot noise) are just starting to appear. However, quantum technologies have another powerful advantage beyond pure sensing performance that may turn out to be more important in practical applications: the potential for building devices with lower size/weight/power (SWaP) and cost requirements than existing instruments. The organizers of Quantum Technology Applications Workshop (QTAW) have several goals: (1) Bring together sponsors, researchers, engineers and end users to help build a stronger quantum technology community; (2) Identify how quantum systems might improve the performance of practical devices in the near- to mid-term; and (3) Identify applications for which more long term investment is necessary to realize improved performance for realistic applications. To realize these goals, the QTAW II workshop included fifty scientists, engineers, managers and sponsors from academia, national laboratories, government and the private-sector. The agenda included twelve presentations, a panel discussion, several breaks for informal exchanges, and a written survey of participants. Topics included photon sources, optics and detectors, squeezed light, matter waves, atomic clocks and atom magnetometry. Corresponding applications included communication, imaging, optical interferometry, navigation, gravimetry, geodesy, biomagnetism, and explosives detection. Participants

  11. EDITORIAL: New scope for Journal of Physics D: Applied Physics New scope for Journal of Physics D: Applied Physics

    Science.gov (United States)

    Roche, Olivia; Margaritondo, Giorgio

    2011-10-01

    surface and interface science—and much of condensed matter physics—towards nanoscience. We are sure this merged section will bring the authors' work in both of these sections to a broader audience. All sections have seen some additions to, and removals from, the scope. A full copy of the new scope can be found at the end of this editorial. Some of the areas from which we are particularly keen to receive more papers include: photovoltaics, terahertz science and technology, plasmonics, spintronics, bulk magnetic materials, biomagnetism, graphene, plasma medicine and plasma propulsion. Many others are closely monitored as potential developments and we will act rapidly whenever necessary to avoid missing opportunities. As part of these changes, we will be asking all authors to explain their choice of journal section within the new scope. We will also ask authors to submit a short statement of the applications or potential applications of their work. This will allow us to assess the suitability of the research for the journal but will also allow us to highlight the most exciting research we publish, ensuring it gets the highest possible visibility. We would like to take this opportunity to thank our hard-working and dedicated publishing team and Editorial Board. We would also like to thank the authors and referees of JPhysD, without whom the journal could not exist. We believe these changes will allow further strengthening, development and growth of the journal and we look forward to a positive future for JPhysD.

  12. PREFACE: Joint European Magnetic Symposia - JEMS 2010

    Science.gov (United States)

    Spałek, Jozef

    2011-07-01

    łekChairman of JEMS 2010 Symposia 1. Plenary, Semi-plenary, Tutorials 2. Magnetization Processes Spin Excitations and Ultrafast DynamicsCoordinator: Andrzej Maziewski (Bialystok) 3. Hard Magnetic Materials and MagnetocaloricsCoordinator: Henryk Figiel (Kraków) 4. Magnetic HydridesCoordinators: Ladislav Havela (Praha), Zbigniew Tarnawski (Kraków) 5. Interface of Magnetic Thin FilmsCoordinators: Jürgen Fassbender (Dresden), N-T H Kim-Ngan (Kraków) 6. Magnonic CrystalsCoordinators: Bahram Djafari-Rouhani (Lille), Henryk Puszkarski (Poznan) 7. Magnetism of Metals, Alloys, and IntermetallicsCoordinator: Andrzej Szytula (Kraków) 8. Molecular MagnetismCoordinators: Stephen Blundell (Oxford), Maria Balanda (Kraków) 9. Magnetooptics of NanomagnetsCoordinators: Kamil Postava (Ostrava), Marek Kisielewski (Bialystok) 10. NanomagnetismCoordinators: Marek Przybylski (Halle), Jürgen Kirschner (Halle) 11. Other topics - Biomagnetism, Domain Walls, InstrumentationCoordinator: Henryk Figiel (Kraków) 12. Magnetic Perovskites and MultiferroicsCoordinator: Henryk Szymczak (Warszawa) 13. Magnetic Semiconductors and InsulatorsCoordinators: Klaus Baerner (Göttingen), Tadeusz Gron (Katowice) 14. Magnetic Shape Memory Effects and Related PhenomenaCoordinators: Oliver Gutfleisch (Dresden), Sebastian Fähler (Dresden) 15. Soft Magnetic MaterialsCoordinators: Julian González (San Sebastian), Krzysztof Kulakowski (Kraków) 16. SpintronicsCoordinator: Maciej Sawicki (Warszawa) 17. Strongly Correlated Electron Systems, Magnetism and SuperconductivityCoordinator: Andrzej Slebarski (Katowice) The next Joint European Magnetic Symposia, JEMS 2012, will be held in Parma, Italy, 9-14 September 2012.www.jems2012.itCo-Chairs:Franca Albertini, Institute of Materials for Electronics and Magnetism (IMEM), CNR, ParmaRoberto De Renzi, Department of Physics, University of Parma

  13. Quantum technology and its applications

    Energy Technology Data Exchange (ETDEWEB)

    Boshier, Malcolm [Los Alamos National Laboratory; Berkeland, Dana [USG; Govindan, Tr [ARO; Abo - Shaeer, Jamil [DARPA

    2010-12-10

    Quantum states of matter can be exploited as high performance sensors for measuring time, gravity, rotation, and electromagnetic fields, and quantum states of light provide powerful new tools for imaging and communication. Much attention is being paid to the ultimate limits of this quantum technology. For example, it has already been shown that exotic quantum states can be used to measure or image with higher precision or higher resolution or lower radiated power than any conventional technologies, and proof-of-principle experiments demonstrating measurement precision below the standard quantum limit (shot noise) are just starting to appear. However, quantum technologies have another powerful advantage beyond pure sensing performance that may turn out to be more important in practical applications: the potential for building devices with lower size/weight/power (SWaP) and cost requirements than existing instruments. The organizers of Quantum Technology Applications Workshop (QTAW) have several goals: (1) Bring together sponsors, researchers, engineers and end users to help build a stronger quantum technology community; (2) Identify how quantum systems might improve the performance of practical devices in the near- to mid-term; and (3) Identify applications for which more long term investment is necessary to realize improved performance for realistic applications. To realize these goals, the QTAW II workshop included fifty scientists, engineers, managers and sponsors from academia, national laboratories, government and the private-sector. The agenda included twelve presentations, a panel discussion, several breaks for informal exchanges, and a written survey of participants. Topics included photon sources, optics and detectors, squeezed light, matter waves, atomic clocks and atom magnetometry. Corresponding applications included communication, imaging, optical interferometry, navigation, gravimetry, geodesy, biomagnetism, and explosives detection. Participants

  14. CONFERENCE SUMMARY: Summary and comment on superconducting analogue electronics research, including materials and fabrication, as presented at ISEC 07

    Science.gov (United States)

    Foley, C. P.

    2007-11-01

    -micron Josephson junctions using laser etching (Büttner et al) and the development of passivation layers using amorphous YBCO and SiO2 (Seidel et al) were also presented. Characterization methods using Raman and photo-emission spectroscopy (Kikunaga et al) emerged as fresh approaches. Josephson junction (JJ) research covered the areas of critical current fluctuations where results on Tl-based junctions suggested a 40 times lower δI/Ic, and LTS junctions for voltage standards using a Nb-Si barrier for improved SNS junctions (Kieler et al). Development of MTS junctions based on MgB2 are yet to be realized with the interface barrier appearing to be the limiting factor. HTS Josephson junctions were reviewed by asking the question: `Are all HTS JJs the same?' with a clear `no' as the answer. Research on intrinsic stacked junctions, sub-micron junctions, the manipulation of electronic band structure to increase energy gap and mid-gap states was also presented. Developments in packaging and cooling were not as dominant at this conference as in previous years. However, there was research reported on the importance of non-magnetic structures in packaging, the design of magnetic shielding improvement by using finite element analysis to optimize design (Tanaka et al) and the use of cryocoolers (Vernik et al). SQUID research reported some breakthrough developments with new ideas presented on nano-SQUIDs with the possible detection of a ferritin spin-flip, a successful airborne trial using a rotating gradiometer and the development of a new 4 cm long baseline planar gradiometer, achieving a sensitivity of 35 fT cm-1 Hz-½. Applications in non-destructive evaluation (NDE) covered the use of SQUIDs in the detection of stainless steel foreign objects in food, defects in wire and circuit boards and surface imaging with most developments focusing on potential customer requirements. Biomagnetic applications have continued to be embraced in the use of SQUIDs in MRI (Zotev et al), NMR, MEG